WO2013125555A1 - Liquid atomization device - Google Patents

Liquid atomization device Download PDF

Info

Publication number
WO2013125555A1
WO2013125555A1 PCT/JP2013/054105 JP2013054105W WO2013125555A1 WO 2013125555 A1 WO2013125555 A1 WO 2013125555A1 JP 2013054105 W JP2013054105 W JP 2013054105W WO 2013125555 A1 WO2013125555 A1 WO 2013125555A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
orifice
pressure source
syringe
Prior art date
Application number
PCT/JP2013/054105
Other languages
French (fr)
Japanese (ja)
Inventor
博良 麻川
良太 久下
Original Assignee
ノズルネットワーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノズルネットワーク株式会社 filed Critical ノズルネットワーク株式会社
Priority to JP2014500726A priority Critical patent/JP5971532B2/en
Publication of WO2013125555A1 publication Critical patent/WO2013125555A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/062Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
    • B05B7/066Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet with an inner liquid outlet surrounded by at least one annular gas outlet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/02Sprayers or atomisers specially adapted for therapeutic purposes operated by air or other gas pressure applied to the liquid or other product to be sprayed or atomised
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/02Membranes or pistons acting on the contents inside the container, e.g. follower pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/06Gas or vapour producing the flow, e.g. from a compressible bulb or air pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/06Gas or vapour producing the flow, e.g. from a compressible bulb or air pump
    • B05B11/062Gas or vapour producing the flow, e.g. from a compressible bulb or air pump designed for spraying particulate material
    • B05B11/064Gas or vapour producing the flow, e.g. from a compressible bulb or air pump designed for spraying particulate material the particulate material being stored in several discrete quantities delivered one at a time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1087Combination of liquid and air pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/006Sprayers or atomisers specially adapted for therapeutic purposes operated by applying mechanical pressure to the liquid to be sprayed or atomised
    • A61M11/007Syringe-type or piston-type sprayers or atomisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/08Inhaling devices inserted into the nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/30Vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • A61M2205/071General characteristics of the apparatus having air pumping means hand operated
    • A61M2205/073Syringe, piston type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • A61M2205/071General characteristics of the apparatus having air pumping means hand operated
    • A61M2205/075Bulb type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • A61M2205/078General characteristics of the apparatus having air pumping means foot operated

Definitions

  • the present invention relates to a liquid atomizing apparatus for atomizing a liquid.
  • an injector atomizer having a cylinder having a spray nozzle at the tip and a piston inserted into the cylinder is known (see, for example, Patent Document 1). Since this spray nozzle is a one-fluid spray nozzle, the average particle diameter to be sprayed was as large as about 25 to 40 ⁇ m.
  • This injector type atomizer is mainly used for the purpose of spraying drugs, vaccines and the like on the mucous membrane in the nostril.
  • the above-mentioned method of spraying and administering a drug has a limited use because of the large spray particle size.
  • the particle size of the spray is large, and the sprayed chemical solution cannot reach the target site in the body. Therefore, there is a demand for reducing the particle size of the spray particles so that the drug reaches the target site, for example, the esophagus, trachea, etc., deeper than the site of the mucosa in the nostril.
  • the present inventor has developed a new miniaturization different from the conventional principle of a general two-fluid nozzle (a gas and a liquid are jetted in the same jetting direction and the liquid is miniaturized by a shearing effect due to a gas-liquid accompanying flow). It is an object of the present invention to provide a liquid atomizing apparatus that can be carried without using a power source and can atomize a liquid with low energy by using the principle.
  • a liquid orifice A cylindrical liquid storage section for storing liquid therein;
  • a manual, foot, mechanical or blown gas pressure source for generating a gas flow for atomizing the liquid;
  • a first gas orifice part and a second gas orifice part for injecting the gas sent from the gas pressure source as two gas streams;
  • the first gas flow ejected from the first gas orifice portion, the second gas flow ejected from the second gas orifice portion, and the liquid exiting from the liquid orifice portion collide with each other to atomize the liquid.
  • a gas-liquid mixing area part which is an area to be made to be
  • the gas pressure source is a manual type, a mechanical type, a foot type, and a blowing type (including exhalation), it is portable and can be used regardless of location. Since no compressor or power supply is used, the device configuration can be simplified and the equipment cost can be reduced.
  • the liquid atomizing device is A piston part movable in the liquid storage part; A gas passage portion in which a part of the gas from the gas pressure source branches and flows, and The gas pressure source causes gas pressure to act from the rear of the piston part, and pushes the piston part to the liquid orifice part of the liquid storage part, thereby ejecting the liquid from the liquid orifice part,
  • the first and second gas orifice portions inject the gas flowing from the gas passage portion into the gas-liquid mixing area portion as respective gas flows, and cause the first gas flow and the second gas flow to collide with each other.
  • the liquid in the liquid storage portion is ejected by a gas action from a single gas pressure source, and the gas flow from the gas pressure source is ejected from two opposing directions to collide with the liquid.
  • the liquid can be atomized (miniaturized). Since the obtained spray particles have a particle diameter smaller than that of the prior art, for example, the spray particles can reach the inner part of the body.
  • FIG. 1A is a front view of the tip outlet 6a of the liquid orifice portion 6.
  • FIG. The first and second gas orifice portions 1 and 2 extend from the left and right sides facing each other toward the tip outlet 6 a of the central liquid orifice portion 6.
  • the liquid 61 in the liquid storage part is pushed out by the piston part and ejected from the liquid orifice part 6.
  • gas flows G1 and G2 are injected from the first and second gas orifices 1 and 2, respectively.
  • FIG. 1B is an enlarged view of the AA cross section of FIG. 1A.
  • FIG. 1C is an enlarged view of the BB cross section of FIG. 1A.
  • the jetted gas flows G1 and G2 collide to form a collision portion W.
  • a portion including the collision portion W is referred to as a collision wall.
  • the liquid L is ejected from the liquid orifice part 6 toward the collision wall (collision part W).
  • collision part W When the liquid L collides with the collision wall, the liquid L is pulverized (atomized) to become a mist F.
  • An area where the gas flows G1 and G2 collide with the liquid flow L and the mist F is generated is indicated by a broken line as a gas-liquid mixing area portion M. 1A to 1C, the gas-liquid mixing area portion M is provided inside the spray outlet portion 3 and forms a recess.
  • the present invention is not particularly limited to this, and the tip position of the spray outlet portion 3 is not limited thereto. May not project from the position of the collision part W (may be retracted). That is, in the present invention, internal gas / liquid mixing in the concave gas / liquid mixing area or external mixing of gas / liquid may be used. After the gas flows G ⁇ b> 1 and G ⁇ b> 2 collide with each other in the gas-liquid mixing area M, the gas flows out from the tip of the spray outlet 3 to the outside of the open space. On the other hand, the liquid 61 in the liquid storage part is pushed out by the piston part and ejected from the liquid orifice part 6 to collide with the gas flow.
  • Reference numeral 3 a indicates an outer surface portion of the spray outlet portion 3.
  • the fog F spreads from the tip of the spray outlet 3 to a wide angle (spreads like a fan) and is sprayed.
  • a spray pattern of fog for example, it is formed in a wide fan shape, and its cross-sectional shape is elliptical or oval. Parallel to the collision surface where the gas flows collide (in the direction in which the collision surface expands), the gas that collided (after the collision) diffuses, and the mist F spreads in this direction in a fan shape and is ejected.
  • Wide angle spraying in which the angle ⁇ in the major axis direction of the spray pattern is 70 ° to 120 ° is possible. Further, not only a wide-angle spray pattern of 70 ° to 120 ° but also a spray angle ⁇ of 70 ° or less is possible. For example, it can be set to 20 ° to 40 °.
  • the liquid storage part is formed with an injection port for injecting the liquid.
  • the liquid exits from the liquid orifice by the siphon action of the first and second gas flows injected from the first and second gas orifices.
  • two gas flows can be generated from a single gas pressure source, and the liquid can be ejected by siphon action of the two gas flows.
  • a member corresponding to the above-described piston portion can be omitted, and the member configuration can be simplified.
  • the liquid storage unit may be constituted by a cartridge that is detachable from the apparatus main body. According to this configuration, it is not necessary to form an injection port, and it is only necessary to mount a used cartridge in the apparatus main body.
  • the form and method of mounting the cartridge are not particularly limited.
  • the gas pressure source includes a syringe and a plunger that moves inside the syringe and pushes the gas inside the syringe to the outside.
  • a disposable syringe syringe, plunger
  • the connection part (method) between the syringe and the liquid atomizer is not particularly limited, and for example, a tube, a connector, a Luer Taper, or the like may be used.
  • the gas pressure source is a balloon pump or a portable inflator.
  • the balloon-type pump and the portable inflator may be connected to the entrance of the syringe, or may be directly connected to the liquid storage unit and the gas passage unit without the syringe.
  • the portable inflator include a bicycle inflator and a balloon inflator.
  • the first gas flow ejected from the first gas orifice portion and the second fluid with respect to the liquid ejected from the tip portion of the liquid orifice portion.
  • Two liquid columns are formed by colliding with the second gas flow ejected from the gas orifice, and the liquid is atomized.
  • FIGS. 3A to 3E Two liquid columns L1 and L2 are formed by causing the gas flows G1 and G2 ejected from the first and second gas orifices 1 and 2 to collide with the liquid flow L ejected from the liquid orifice unit 6. And fog F is generated (FIGS. 3A and 3B).
  • FIG. 3C shows one liquid column in a state where only the liquid flow L is ejected. In this state, two gas streams that collide with each other are caused to collide with the liquid column.
  • one liquid column is separated (vertically divided) to form two liquid columns L1 and L2, and the liquid in the central portion of the liquid column is refined.
  • Fog F F (FIGS. 3A and 3D). This means that two gas flows are sandwiched between one liquid column, the liquid column is split (split), and a liquid film is generated at the center of the liquid column. However, this liquid film is broken and refined. And if one liquid column is made into a small diameter, a liquid film will also become thin and the particle
  • a thin film can be formed with a low energy (low pressure, low flow rate) gas flow, which assists in the fine particle formation of the thin film.
  • the mist can be sprayed at low speed in the atmosphere.
  • the width d1 of the liquid flow L with which the gas flows G1 and G2 collide is smaller than or the same as the width d2 of the gas flow.
  • the width d1 (or diameter) of the liquid flow L there are portions that do not collide with the gas flow (in FIG. 3E, two protruding portions Lb and Lc).
  • the width d2 (or diameter) (d2 / d1) of the gas flows G1 and G2 is, for example, in the range of 0.1 to 0.9, preferably 0. .3 to 0.8, and more preferably 0.4 to 0.7.
  • the liquid film becomes thinner as the liquid flow width d1 is smaller, the effect of miniaturization becomes higher.
  • the gas-liquid mixing area part M is shown with a broken line.
  • the spray direction of the mist F is regulated by the spray outlet portion 3 surrounding the mist F.
  • the spray outlet portion 3 may be formed integrally with a member (gas orifice portions 1 and 2) for forming a gas orifice, or may be formed by a separate member.
  • a spray pattern of fog it forms in the shape of a wide fan, for example, and the cross-sectional shape becomes an ellipse shape or an ellipse shape.
  • the spray angle ⁇ of the fog F is, for example, 20 ° to 90 ° (FIG. 3B).
  • two or three liquid orifice portions are formed in series,
  • the first gas flow injected from the first gas orifice part and the second gas flow injected from the second gas orifice part are sandwiched from both ends of the series of the liquid orifice parts arranged in series. It collides with the liquid exiting from the liquid orifice and atomizes the liquid.
  • the number of holes in the liquid orifice part is two, two, or three from two because the effect of miniaturization is increased. Further, when the number of holes in the liquid orifice part is set to two or three, it is possible to increase the siphon effect by reducing the orifice cross-sectional size (cross-sectional diameter) and to increase the amount of liquid sucked up as a whole.
  • the miniaturization promoting portion described later when the miniaturization promoting portion described later is not provided, this makes it possible to control the average particle diameter of the mist.
  • the structure for finely adjusting the average particle diameter is one, two, or three structures. Is suitable. Examples of the shape of the orifice hole include a circle, an ellipse, a rectangle, a rounded rectangle, and a rounded square.
  • the hole diameters of the plurality of liquid orifice portions may be different or the same, but are preferably the same from the viewpoint of processing and moldability.
  • three, four, five or six liquid orifice portions are formed. Although it may be arranged in series, it may be arranged so that the appearance shape when arranged forms a polygon. In proportion to the increase in the total cross-sectional size of the liquid orifice portion, the collision size between the gas flows (or the collision size between the gas flows and the liquid) increases. Therefore, the size of the device itself is also increased.
  • the liquid atomizing device is provided in a spraying direction of the mist coming out of the gas-liquid mixing area, has the internal space, and further refines the mist in the internal space. It further has a miniaturization promoting part.
  • Examples of the shape of the miniaturization promoting portion having the internal space include a cylindrical shape, a trumpet shape, and an L shape.
  • the gas pressure source is not electrically driven, and is configured to generate a gas pressure (gas flow) by, for example, a manual type, a foot type, or a mechanical type.
  • the gas pressure Pa (MPa) is, for example, in the range of 0.005 to 0.40, preferably 0.01 to 0.30, and more preferably 0.03 to 0.1.
  • the liquid can be atomized with only such low gas energy.
  • the gas pressure Pa (MPa) is, for example, in the range of 0.10 to 0.40.
  • the pressures of the two gas streams are preferably set to be the same or substantially the same, and the flow rates are preferably set to be the same or substantially the same.
  • the cross-sectional shape of the gas flow injected from the gas orifice part is not particularly limited, and examples thereof include a circular shape, an elliptical shape, a rectangular shape, and a polygonal shape.
  • the cross-sectional shape of the gas flow depends on the orifice cross section of the gas orifice portion.
  • the cross-sectional shape of the liquid orifice part is not particularly limited. In the case of a circular cross section, workability is good.
  • the spray outlet part 3 may be formed integrally with a member (gas orifice part 1, 2) for forming a gas orifice part or may be formed by a separate member.
  • the liquid atomizing device may be made disposable, or each component part may be made removable and reused so that it can be cleaned. Moreover, it is preferable that the liquid atomization apparatus has the compactness excellent in portability. Moreover, you may couple
  • an intersection angle between an injection direction axis of the first gas orifice portion and an injection direction axis of the second gas orifice portion is in a range of 90 ° to 180 °.
  • the angle range in which the respective injection direction axes of the first gas orifice part 1 and the second gas orifice part 2 intersect each other is such that the gas injected from the first gas orifice part 1 and the gas flow injected from the second gas orifice part 2 It corresponds to the collision angle.
  • FIG. 2 shows the collision angle ⁇ .
  • the “collision angle ⁇ ” is 80 ° to 220 °, preferably 80 ° to 180 °, more preferably 90 ° to 150 °, and particularly preferably 100 ° to 130 °.
  • the two gas orifices preferably have a structure in which the space on the upstream side (for example, the size of the cross-sectional rectangle, the size of the cross-sectional circle, etc.) is large in the flow direction of the gas flow, and the space becomes smaller toward the downstream.
  • This space may be a gap formed between the inner wall surface of the outer member and the outer wall surface of the inner member, for example.
  • the gas is not particularly limited, and examples thereof include air, clean air (clean air), nitrogen, inert gas, fuel mixed air, oxygen, and the like, and can be appropriately set according to the purpose of use.
  • the liquid is not particularly limited, but a low-viscosity liquid is preferable.
  • cosmetic liquids such as water, ionized water, moisturizing liquid, beauty water, lotion, etc.
  • examples thereof include paints, fuel oils, coating agents, solvents, and resins.
  • FIG. 1B is an enlarged view of the AA cross section of FIG. 1A.
  • 1B is an enlarged view of a BB cross section of FIG. 1A.
  • FIG. It is a schematic diagram for demonstrating the crossing angle formed with two gas injection axes. It is a schematic diagram for demonstrating an example of the cross section of the spray outlet part periphery of another embodiment. It is the schematic diagram seen from the side of FIG. 3A. It is explanatory drawing for demonstrating the atomization mechanism. It is explanatory drawing for demonstrating the atomization mechanism. It is explanatory drawing for demonstrating the width
  • FIG. 1 It is a cross-sectional schematic diagram of the whole liquid atomization apparatus of Embodiment 1.
  • FIG. It is the figure which expanded the liquid atomization apparatus of Embodiment 1.
  • FIG. It is a figure for demonstrating the spraying operation
  • FIG. It is a cross-sectional schematic diagram of the whole liquid atomization apparatus of Embodiment 2.
  • FIG. It is a figure which expanded the liquid atomization apparatus of Embodiment 2.
  • FIG. It is a figure which shows the connection structure of the syringe and nozzle main-body part of another embodiment.
  • FIG. 3 shows the connection structure of the syringe and nozzle main-body part of another embodiment.
  • FIG. 6 is a schematic cross-sectional view taken along the line AA of the liquid atomizing apparatus according to Embodiment 3. It is the figure which expanded the front-end
  • FIG. It is a figure for demonstrating the crossing angle (collision angle) of the injection direction axis
  • FIG. 4 is a schematic cross-sectional view of the entire liquid atomizing apparatus 100.
  • FIG. 5 is an enlarged view of the nozzle main body portion of the liquid atomizing apparatus 100.
  • the liquid atomizing apparatus 100 includes a gas pressure source 130 having a syringe 131 and a plunger 132.
  • the syringe 131 has a female luer lock joint 131a formed on the tip side thereof.
  • the syringe 131 is connected to the nozzle body 30.
  • the nozzle main body 30 is provided with a male luer lock joint 30 a and is connected to the female luer lock joint 131 a of the syringe 131.
  • the nozzle body 30 has a cylindrical cross section, and the liquid storage section 10 having a cylindrical cross section is provided therein.
  • a space is provided between the outer wall surface of the liquid storage unit 10 and the inner wall surface of the nozzle body 30. This space is the gas passage portion R1 and communicates with the internal space of the liquid storage portion 10 through openings 11 and 12 provided behind the liquid storage portion 10 (the liquid orifice portion side is the front). Part of the gas from the gas pressure source 130 is branched from the liquid storage unit 10 through the openings 11 and 12 and flows into the gas passages R1 and R2.
  • the liquid storage unit 10 is arranged inside the nozzle body 30 and fixed with the nozzle tip 20.
  • the nozzle tip portion 20 has a female screw portion 20a at the rear portion thereof.
  • the nozzle tip portion 20 is held down so as to cover the outer wall surface of the tip portion of the liquid storage portion 10, and the female screw portion 20a and the male screw portion 30b of the nozzle body portion 30 are fixed by screws.
  • a packing 60 is provided as a seal member between contact end portions of the nozzle tip portion 20 and the nozzle main body portion 30.
  • the gas flowing through the gas passage portions R1 and R2 flows to the first gas orifice portion 21 and the second gas orifice portion 22 formed in the space between the inner wall surface of the nozzle tip portion 20 and the outer wall surface of the liquid storage portion 10.
  • the first gas orifice portion 21 and the second gas orifice portion 22 are injected as two gas flows.
  • two concave grooves are formed on the outer wall surface of the liquid storage portion 10, and each gas orifice portion is formed by covering the inner wall surface of the nozzle tip portion 20.
  • the crossing angle (collision angle ⁇ ) of the injection direction axes of the first and second gas orifices is 90 °.
  • the collision angle ⁇ is in the range of 80 ° to 180 °.
  • a piston unit 50 that moves inside the liquid storage unit 10 is disposed in the interior of the liquid storage unit 10.
  • a rubber plug 40 is formed at the tip of the piston portion 50.
  • the liquid storage unit 10 has a liquid orifice unit 15 having a diameter smaller than the diameter of the liquid storage unit 10 in the distal direction.
  • a predetermined amount of liquid L is stored in the liquid storage unit 10.
  • the method for storing the liquid L in the liquid storage unit 10 is not particularly limited.
  • the piston L may be removed to inject the liquid L, or the liquid L may be sucked up from the liquid orifice 15 by pulling the piston 50 backward from the tip position.
  • the injection hole may be formed by providing a horizontal hole.
  • the plunger 132 is waiting at a predetermined position in the syringe 131. From this state, the plunger 132 is pushed into the tip (front) of the syringe 131. As a result, the gas in the syringe 131 flows into the liquid storage unit 10. The gas pressure of the inflowing gas acts on the rubber plug 40, and the rubber plug 40 is pushed toward the tip of the liquid storage unit 10. At the same time, gas flows into the gas passage portions R1 and R2 through the open portions 11 and 12 of the liquid storage portion 10. This gas passes through the gas passage portions R1 and R2, flows to the first gas orifice portion 21 and the second gas orifice portion 22, and is injected from the tip thereof.
  • FIG. 6 shows a state in which the rubber stopper 40 reaches the tip of the liquid storage unit 10 and stops.
  • the gas-liquid mixing area part M which is an area in which two gas flows and a liquid collide to perform atomization, is located in front of the orifice axis of the liquid orifice part 15.
  • the nozzle main body 30 is removed from the syringe 131, and the piston 50 is pulled backward, whereby the liquid can be injected again into the liquid storage unit 10.
  • first and second gas orifice portions 21 and 22 is not limited to the above configuration.
  • a groove may be formed on the inner wall surface side of the nozzle tip 20 and a lid may be formed on the outer wall surface of the liquid storage unit 10.
  • connection method between the members is not particularly limited, and may be configured to be detachable, for example, may be connected by screw connection, fitting, or may be bonded by an adhesive. Moreover, when connecting each member, you may interpose sealing members, such as packing.
  • the said liquid atomization apparatus is provided in the spray direction of the mist which comes out from the gas-liquid mixing area part M ahead of the nozzle front-end
  • FIG. 7 is a schematic cross-sectional view of the entire liquid atomizing apparatus.
  • FIG. 8 is an enlarged view of the tip side of the liquid atomizing device.
  • the cover part 70 is provided outside the nozzle body part 30 and the nozzle tip part 20.
  • the front part of the cover part 70 protrudes forward (forward in the spraying direction) from the nozzle tip part 20.
  • a predetermined space is provided from the liquid orifice portion 15 to the tip opening portion 71 of the cover portion 70.
  • a gas-liquid mixing area is formed in this space.
  • the front end opening 71 of the cover part 70 has a shape that is inclined forward in diameter, and this corresponds to a spray outlet part.
  • the piston portion 50 and the rubber plug 40 are not provided.
  • the liquid in the liquid storage part 10 can be pushed out only by the gas pressure without the piston part 50 and the rubber plug 40 being interposed. Since the liquid injected by the surface tension is held inside as the internal diameter of the liquid storage unit 10 is smaller, there may be no rubber stopper.
  • the connecting member is not particularly limited, and can be connected by a connector, a tube, or the like.
  • FIG. 10A is a schematic cross-sectional view of the entire liquid atomizing apparatus 300.
  • FIG. 10B is a schematic cross-sectional view of the liquid atomizing apparatus 300 taken along the line AA.
  • FIG. 10C is an enlarged view of the nozzle tip B portion of the liquid atomizing apparatus 300.
  • the liquid atomizing apparatus 300 has a gas pressure source having a syringe (not shown) and a plunger.
  • the syringe has a female lock joint formed on the tip side thereof.
  • the syringe is connected to the nozzle main body 330.
  • the nozzle body 330 is provided with a male luer lock joint 310 and is connected to a syringe luer lock joint of a syringe.
  • the nozzle body 330 has a cylindrical cross section, and provides a space along the central axis X where the liquid storage unit 340 is disposed.
  • the liquid storage portion 340 has already been arranged along the central axis X of the nozzle body 330.
  • the liquid storage unit 340 is formed with an injection port 341, communicates with the opening 330 a of the nozzle body 330, injects liquid from the opening 330 a, and stores the liquid in the liquid storage unit 340 through the injection port 341. It is configured.
  • a lid or plug (not shown) for closing the opening 330a is provided.
  • the liquid inlet 341 may not be formed in the liquid storage part 340, and the liquid storage part 340 may be configured to be detachable from the nozzle body 330.
  • the nozzle main body 330 has four gas passage portions 331, 332, 333, and 334 formed around the liquid storage portion 340 along the central axis X (see FIGS. 10B and 10C). These gas passage portions are areas where gas from a gas pressure source (not shown) branches and flows.
  • the number of gas passages is not limited to four, and may be 1, 2, 3, 4 or more.
  • a liquid orifice part 350 in which three orifice holes 351, 352, 353 are formed in series is provided at the tip of the liquid storage part 340.
  • Two concave grooves 355 a and 355 b are formed on the outer wall of the liquid orifice portion 350.
  • Two concave grooves 355a and 355b are formed so as to be sandwiched from both ends of the orifice holes arranged in series.
  • a cap 360 on which a spray outlet 362 is formed is connected to the nozzle main body 330 with a packing 370 with a screw.
  • the inner wall surface 361 of the cap 360 and the outer wall surface 357 of the liquid orifice part 350 are in contact with each other up to the position reaching the opening of the spray outlet part 362, and two gas flows R1 and R2 are generated by the two concave grooves 355a and 355b.
  • the two concave grooves 355a and 355b correspond to first and second gas orifice portions, respectively.
  • the gas flowing through the gas passage portions 331, 332, 333, and 334 merges in the space E between the tip of the nozzle body 330 and the inner wall of the side surface of the cap 360, and two gas flows R1 and R2 are generated by the two concave grooves 355a and 355b. Is done.
  • the two gas flows collide with each other in the gas-liquid mixing area M, and the collided gas flows are injected to the outside through the spray outlet 362. Due to the jetting action of this gas flow, the inside of the gas-liquid mixing area M becomes a negative pressure, and the liquid is sucked up from the three orifice holes 351, 352, 353 of the liquid orifice part 350 by the siphon action, and this liquid becomes two gases.
  • the liquid collides with the streams R1 and R2, the liquid is atomized (miniaturized), and the mist is sprayed from the spray outlet 362 to the outside.
  • the intersection angle (collision angle ⁇ 1) of the injection direction axes of the two gas flows generated by the grooves 355a and 355b is 110 °.
  • An angle ⁇ 2 (cross-sectional angle) formed by the inner wall surface 361 of the cap 360 is 120 °.
  • the collision angle ⁇ and the angle formed by the inner wall surface of the nozzle tip 20 are the same, but in the third embodiment, they are different angles.
  • the two gas orifice portions have a structure in which the space on the upstream side is large in the flow direction of the gas flow and the space becomes small as it goes downstream.
  • . ⁇ 2 is preferably in the range of ⁇ 1 + 5 ° to 20 °, for example.
  • increasing the air amount increases the siphon action and increases the spray amount, but tends to increase the average particle diameter of the mist.
  • ⁇ 1 ⁇ 2 it is possible to maintain or reduce the average particle diameter of the mist without increasing the spray amount while keeping the air amount constant and without reducing the refining action.
  • connection method between the members is not particularly limited, and may be configured to be detachable, for example, may be connected by screw connection, fitting, or may be bonded by an adhesive. Moreover, when connecting each member, you may interpose sealing members, such as packing.
  • liquid storage unit 340 and the liquid orifice unit 350 may be integrally configured. Further, the nozzle body 330 and the cap 360 may be provided integrally.
  • the said liquid atomization apparatus has further the refinement
  • Example> The spray characteristics were evaluated using a liquid atomizing apparatus (with a cover) configured as shown in the second embodiment.
  • the amount of water injected into the liquid storage unit is 0.12 ml.
  • the cross-sectional diameter of the liquid orifice portion 15 is ⁇ 0.1 mm, the concave portions (cross-sectional rectangles) of the first and second gas orifice portions are 0.3 mm deep, and the slit width is 0.1 mm. Air was used as the gas.
  • the plunger was pushed all the way to the syringe tip (1 push).
  • the spray amount at that time was 0.12 ml, and the entire amount was extruded and sprayed. Moreover, the spray state was favorable and it was a low speed spray.
  • the average particle size (SMD) of the sprayed mist particles was 6.43 ⁇ m.
  • the average particle size (SMD) was measured with a laser diffraction measuring instrument. The measurement position was 100 mm from the liquid orifice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nozzles (AREA)
  • Coating Apparatus (AREA)

Abstract

The purpose of the present invention is to provide a liquid atomization device which is portable and capable of atomizing liquid using little energy without using an electric power source. This liquid atomization device is provided with: a liquid orifice (15); a cylindrical liquid-accommodating section (10) for accommodating a liquid therein; a hand-operated, foot-operated, mechanical, or blow-operated gas pressure source for generating a gas flow for atomizing the liquid; a first gas orifice (21) and a second gas orifice (22) for ejecting, as two gas flows, the gas fed from the gas pressure source; and a gas/liquid mixing area (M) in which a first gas flow ejected from the first gas orifice (21) and a second gas flow ejected from the second gas orifice (22) are made to collide with the liquid emitted from the liquid orifice (15), to atomize the liquid.

Description

液体霧化装置Liquid atomizer
 本発明は、液体を霧化するための液体霧化装置に関する。 The present invention relates to a liquid atomizing apparatus for atomizing a liquid.
 従来から、先端に噴霧ノズルを備えたシリンダとこのシリンダ内に挿入されるピストンを有するインジェクター型アトマイザーが知られている(例えば、特許文献1参照)。この噴霧ノズルは、一流体噴霧ノズルであるため、噴霧される平均粒子径も25~40μm程度と大きいものであった。このインジェクター型アトマイザーは、主に、鼻口内粘膜に薬剤、ワクチンなどを噴霧して投与する目的に用いられている。 Conventionally, an injector atomizer having a cylinder having a spray nozzle at the tip and a piston inserted into the cylinder is known (see, for example, Patent Document 1). Since this spray nozzle is a one-fluid spray nozzle, the average particle diameter to be sprayed was as large as about 25 to 40 μm. This injector type atomizer is mainly used for the purpose of spraying drugs, vaccines and the like on the mucous membrane in the nostril.
 上記のような噴霧して薬剤を投与する方法は、噴霧の粒子径が大きいために使用用途に制限があった。例えば、上記インジェクター型アトマイザーでは、噴霧の粒子径が大きく、体内奥の目的部位まで噴霧された薬液を到達させることができない。そこで、噴霧粒子の粒子径を小さくすることで、鼻口内粘膜の部位よりも奥の目的部位、例えば食道、気管などに薬剤を到達させたいという要求がある。 The above-mentioned method of spraying and administering a drug has a limited use because of the large spray particle size. For example, in the injector atomizer, the particle size of the spray is large, and the sprayed chemical solution cannot reach the target site in the body. Therefore, there is a demand for reducing the particle size of the spray particles so that the drug reaches the target site, for example, the esophagus, trachea, etc., deeper than the site of the mucosa in the nostril.
 また、医療機器(例えば、吸入機)、美容用薬液噴霧器、保湿用薬液噴霧器等の分野では、電源を使用せず、携帯できかつ低エネルギーで液体を霧化させたいとの要求がある。 Also, in the fields of medical devices (for example, inhalers), cosmetic liquid sprayers, moisturizing liquid sprayers, etc., there is a demand for atomizing liquids without using a power source and with low energy.
特許第2930526号Japanese Patent No. 2930526
 本発明者は、従来の一般的な二流体ノズルの原理(気体と液体とを同一噴射方向で噴射させて気液の随伴流によるせん断効果で液体を微細化する)とは異なる新たな微細化原理を用いて、電源を使用せず、携帯できかつ低エネルギーで液体を霧化させることができる液体霧化装置を提供することを目的とする。 The present inventor has developed a new miniaturization different from the conventional principle of a general two-fluid nozzle (a gas and a liquid are jetted in the same jetting direction and the liquid is miniaturized by a shearing effect due to a gas-liquid accompanying flow). It is an object of the present invention to provide a liquid atomizing apparatus that can be carried without using a power source and can atomize a liquid with low energy by using the principle.
 液体オリフィス部と、
 液体を内部に収納する筒状の液体収納部と、
 前記液体を霧化するための気体流を生じさせるための手動式、フット式、機械式または吹き込み式の気体圧力源と、
 前記気体圧力源から送られた気体を2つの気体流として噴射するための第1気体オリフィス部および第2気体オリフィス部と、
 前記第1気体オリフィス部から噴射された第1気体流と、前記第2気体オリフィス部から噴射された第2気体流と、前記液体オリフィス部から出る前記液体とを衝突させて当該液体を霧化させるエリアである気液混合エリア部と、を有する。
A liquid orifice,
A cylindrical liquid storage section for storing liquid therein;
A manual, foot, mechanical or blown gas pressure source for generating a gas flow for atomizing the liquid;
A first gas orifice part and a second gas orifice part for injecting the gas sent from the gas pressure source as two gas streams;
The first gas flow ejected from the first gas orifice portion, the second gas flow ejected from the second gas orifice portion, and the liquid exiting from the liquid orifice portion collide with each other to atomize the liquid. And a gas-liquid mixing area part which is an area to be made to be
 この構成によれば、気体圧力源を手動式、機械式、フット式、吹き込み式(吐息を含む)にしているので、携帯が可能であり、場所を選ばず使用できる。コンプレッサーや電源を用いないため装置構成を簡単にし、機器コストを低減できる。 According to this configuration, since the gas pressure source is a manual type, a mechanical type, a foot type, and a blowing type (including exhalation), it is portable and can be used regardless of location. Since no compressor or power supply is used, the device configuration can be simplified and the equipment cost can be reduced.
 本発明の一実施形態として、前記液体霧化装置は、
 前記液体霧化装置は、
 前記液体収納部内を可動するピストン部と、
 前記気体圧力源からの気体の一部が分岐して流れる気体通路部と、をさらに有し、
 前記気体圧力源は、前記ピストン部の後方から気体圧力を作用させて、当該ピストン部を前記液体収納部の前記液体オリフィス部へ押し出すことで、前記液体を当該液体オリフィス部から噴射し、
 前記第1、第2気体オリフィス部は、前記気体通路部から流れてきた気体をそれぞれの気体流として前記気液混合エリア部へ噴射し、第1気体流と第2気体流とを衝突させる。
As one embodiment of the present invention, the liquid atomizing device,
The liquid atomizer is
A piston part movable in the liquid storage part;
A gas passage portion in which a part of the gas from the gas pressure source branches and flows, and
The gas pressure source causes gas pressure to act from the rear of the piston part, and pushes the piston part to the liquid orifice part of the liquid storage part, thereby ejecting the liquid from the liquid orifice part,
The first and second gas orifice portions inject the gas flowing from the gas passage portion into the gas-liquid mixing area portion as respective gas flows, and cause the first gas flow and the second gas flow to collide with each other.
 この構成によれば、単一の気体圧力源からの気体作用で液体収納部内の液体を噴射し、かつその気体圧力源からの気体流を対向する2方向から噴射して当該液体に衝突させて当該液体を霧化(微細化)させることができる。得られた噴霧粒子は、従来技術よりも粒子径が小さいため、例えば体内奥の方にまで噴霧粒子を到達させることが可能になる。 According to this configuration, the liquid in the liquid storage portion is ejected by a gas action from a single gas pressure source, and the gas flow from the gas pressure source is ejected from two opposing directions to collide with the liquid. The liquid can be atomized (miniaturized). Since the obtained spray particles have a particle diameter smaller than that of the prior art, for example, the spray particles can reach the inner part of the body.
 まず、本発明の霧化原理について図1A~1Cを参照しながら説明する。図1Aは、液体オリフィス部6の先端出口6aを正面視した図である。対向する左右から、中心の液体オリフィス部6の先端出口6aに向かって第1、第2気体オリフィス部1、2が伸びる。液体収容部内の液体61がピストン部によって押し出されて液体オリフィス部6から噴射される。一方、第1、第2気体オリフィス部1、2からそれぞれ気体流G1,G2が噴射される。図1Bは、図1AのA-A断面の拡大図である。図1Cは、図1AのB-B断面の拡大図である。噴射された気体流同士G1、G2が衝突して、衝突部Wが形成される。この衝突部Wを含む部分を衝突壁と呼ぶ。この衝突壁(衝突部W)に向かって、液体オリフィス部6から液体Lが噴射される。この衝突壁に液体Lが衝突することで、液体Lが粉砕(霧化)され霧Fとなる。気体流G1,G2と液体流Lが衝突し、霧Fが発生するエリアを気液混合エリア部Mとして破線で示す。図1A~Cにおいて、気液混合エリア部Mは、噴霧出口部3の内部に設けられ、凹部を形成しているが、本発明は、特にこれに制限されず、噴霧出口部3の先端位置が衝突部Wの位置より突設していなくてもよい(引っ込んでいてもよい)。すなわち、本発明において、凹形状の気液混合エリア部内における気液の内部混合であってもよく、気液の外部混合でもよい。この気液混合エリア部Mで気体流同士G1、G2が衝突した後に、気体は、開放空間の外部へ噴霧出口部3の先端部から流れ出る。一方、液体収容部内の液体61がピストン部によって押し出されて液体オリフィス部6から噴射され、上記気体流と衝突する。符号3aは、噴霧出口部3の外側表面部を示す。 First, the atomization principle of the present invention will be described with reference to FIGS. 1A to 1C. FIG. 1A is a front view of the tip outlet 6a of the liquid orifice portion 6. FIG. The first and second gas orifice portions 1 and 2 extend from the left and right sides facing each other toward the tip outlet 6 a of the central liquid orifice portion 6. The liquid 61 in the liquid storage part is pushed out by the piston part and ejected from the liquid orifice part 6. On the other hand, gas flows G1 and G2 are injected from the first and second gas orifices 1 and 2, respectively. FIG. 1B is an enlarged view of the AA cross section of FIG. 1A. FIG. 1C is an enlarged view of the BB cross section of FIG. 1A. The jetted gas flows G1 and G2 collide to form a collision portion W. A portion including the collision portion W is referred to as a collision wall. The liquid L is ejected from the liquid orifice part 6 toward the collision wall (collision part W). When the liquid L collides with the collision wall, the liquid L is pulverized (atomized) to become a mist F. An area where the gas flows G1 and G2 collide with the liquid flow L and the mist F is generated is indicated by a broken line as a gas-liquid mixing area portion M. 1A to 1C, the gas-liquid mixing area portion M is provided inside the spray outlet portion 3 and forms a recess. However, the present invention is not particularly limited to this, and the tip position of the spray outlet portion 3 is not limited thereto. May not project from the position of the collision part W (may be retracted). That is, in the present invention, internal gas / liquid mixing in the concave gas / liquid mixing area or external mixing of gas / liquid may be used. After the gas flows G <b> 1 and G <b> 2 collide with each other in the gas-liquid mixing area M, the gas flows out from the tip of the spray outlet 3 to the outside of the open space. On the other hand, the liquid 61 in the liquid storage part is pushed out by the piston part and ejected from the liquid orifice part 6 to collide with the gas flow. Reference numeral 3 a indicates an outer surface portion of the spray outlet portion 3.
 霧Fは、噴霧出口部3の先端から広角に広がって(扇状に広がって)噴霧される。霧の噴霧パターンとして、例えば、幅広の扇状に形成され、その断面形状は楕円状または長円状となる。気体流同士が衝突した衝突面に平行に(衝突面が拡張する方向に)、衝突した(衝突後の)気体が拡散し、この方向に霧Fが扇状に広がって噴出される。噴霧パターンにおける長径方向の角γが70°~120°の広角噴霧が可能になる。また、70°~120°の広角噴霧パターンだけでなく、70°以下の噴霧角γが可能であり、例えば、20°~40°にすることもできる。 The fog F spreads from the tip of the spray outlet 3 to a wide angle (spreads like a fan) and is sprayed. As a spray pattern of fog, for example, it is formed in a wide fan shape, and its cross-sectional shape is elliptical or oval. Parallel to the collision surface where the gas flows collide (in the direction in which the collision surface expands), the gas that collided (after the collision) diffuses, and the mist F spreads in this direction in a fan shape and is ejected. Wide angle spraying in which the angle γ in the major axis direction of the spray pattern is 70 ° to 120 ° is possible. Further, not only a wide-angle spray pattern of 70 ° to 120 ° but also a spray angle γ of 70 ° or less is possible. For example, it can be set to 20 ° to 40 °.
 本発明の一実施形態として、前記液体収納部は、前記液体を注入するための注入口が形成されている。 As an embodiment of the present invention, the liquid storage part is formed with an injection port for injecting the liquid.
 本発明の一実施形態として、前記第1、第2気体オリフィス部から噴射された第1、第2気体流によるサイフォン作用によって、前記液体オリフィス部から前記液体が出る。 As an embodiment of the present invention, the liquid exits from the liquid orifice by the siphon action of the first and second gas flows injected from the first and second gas orifices.
 この構成によれば、単一の気体圧力源から2つの気体流を生成し、かつ2つの気体流のサイフォン作用によって、液体を噴射させることができる。上記のピストン部に相当する部材を省略でき、部材構成をより簡単にできる。 According to this configuration, two gas flows can be generated from a single gas pressure source, and the liquid can be ejected by siphon action of the two gas flows. A member corresponding to the above-described piston portion can be omitted, and the member configuration can be simplified.
 本発明の一実施形態として、前記液体収納部は、装置本体内に着脱可能なカートリッジで構成されてもよい。この構成によれば、注入口を形成する必要がなく、使い切りのカートリッジを装置本体に装着するだけでよい。ここで、カートリッジを装着する形態、方法は特に制限されない。 As an embodiment of the present invention, the liquid storage unit may be constituted by a cartridge that is detachable from the apparatus main body. According to this configuration, it is not necessary to form an injection port, and it is only necessary to mount a used cartridge in the apparatus main body. Here, the form and method of mounting the cartridge are not particularly limited.
 本発明の一実施形態として、前記気体圧力源は、シリンジと、前記シリンジ内を可動して、シリンジ内部の気体を外部に押し出すプランジャーとを有する。この場合、ディスポーザブルの注射器(シリンジ、プランジャ)を用いることができるため、より低コスト化が可能になる。注射器と液体霧化装置との連結部(方法)は特に制限されず、例えば、チューブ、コネクタ、ルアーテーパー(Luer Taper)などを用いてもよい。 As an embodiment of the present invention, the gas pressure source includes a syringe and a plunger that moves inside the syringe and pushes the gas inside the syringe to the outside. In this case, since a disposable syringe (syringe, plunger) can be used, the cost can be further reduced. The connection part (method) between the syringe and the liquid atomizer is not particularly limited, and for example, a tube, a connector, a Luer Taper, or the like may be used.
 また、他の実施形態として前記気体圧力源は、バルーン式ポンプまたは携帯式空気入れで構成される。バルーン式ポンプや携帯式空気入れは、上記シリンジの入り口に連結してもよく、上記シリンジを無くして、直接に上記、液体収納部や気体通路部に連結される構造でもよい。この場合、市販のものを使用できるため、低コスト化が可能になる。携帯式空気入れは、例えば、自転車の空気入れ、風船の空気入れが挙げられる。 In another embodiment, the gas pressure source is a balloon pump or a portable inflator. The balloon-type pump and the portable inflator may be connected to the entrance of the syringe, or may be directly connected to the liquid storage unit and the gas passage unit without the syringe. In this case, since a commercially available product can be used, the cost can be reduced. Examples of the portable inflator include a bicycle inflator and a balloon inflator.
 また、本発明の一実施形態として、前記気液混合エリア部において、前記液体オリフィス部先端部から噴射された液体に対し、前記第1気体オリフィス部から噴射された第1気体流と前記第2気体オリフィス部から噴射された第2気体流とを衝突させて2本の液柱を形成し、かつ当該液体を霧化させる。 Moreover, as one embodiment of the present invention, in the gas-liquid mixing area portion, the first gas flow ejected from the first gas orifice portion and the second fluid with respect to the liquid ejected from the tip portion of the liquid orifice portion. Two liquid columns are formed by colliding with the second gas flow ejected from the gas orifice, and the liquid is atomized.
 この構成によって低速噴霧が可能になる。この構成の作用効果を図3A~3Eを参照しながら説明する。液体オリフィス部6から噴射された液体流Lに対し、第1、第2気体オリフィス部1、2から噴射した気体流G1、G2を衝突させることで、2本の液柱L1、L2が形成され、かつ霧Fが発生する(図3A、3B)。この液柱が形成されるメカニズムは以下の通りである。図3Cに、液体流Lのみを噴射した状態の1本の液柱を示す。この状態において、互いに衝突しあう2本の気体流を液柱に衝突させる。このとき、2本の気体流の衝突の衝撃により、1本の液柱がセパレート(縦割り)されて2本の液柱L1、L2が形成され、かつ液柱中央部分の液体が微細化されて霧Fとなる(図3A、3D)。これは、1本の液柱を2本の気体流が挟んで、液柱をスプリット(分裂)し、液柱の中央部に液膜を発生させる。しかしこの液膜は破れて微細化される。そして、1本の液柱を小径とすれば、液膜も薄くなり、液膜破断後の粒子も微細になる。この霧化原理によれば、従来技術の高速空気流のせん断力による微細化原理とは異なり、低エネルギー(低圧、低流量)の気体流で、薄膜形成でき、薄膜の微細粒子化をアシストし、大気中に霧を低速噴霧させられる。 This configuration enables low-speed spraying. The operational effects of this configuration will be described with reference to FIGS. 3A to 3E. Two liquid columns L1 and L2 are formed by causing the gas flows G1 and G2 ejected from the first and second gas orifices 1 and 2 to collide with the liquid flow L ejected from the liquid orifice unit 6. And fog F is generated (FIGS. 3A and 3B). The mechanism by which this liquid column is formed is as follows. FIG. 3C shows one liquid column in a state where only the liquid flow L is ejected. In this state, two gas streams that collide with each other are caused to collide with the liquid column. At this time, due to the impact of the collision of the two gas flows, one liquid column is separated (vertically divided) to form two liquid columns L1 and L2, and the liquid in the central portion of the liquid column is refined. Fog F (FIGS. 3A and 3D). This means that two gas flows are sandwiched between one liquid column, the liquid column is split (split), and a liquid film is generated at the center of the liquid column. However, this liquid film is broken and refined. And if one liquid column is made into a small diameter, a liquid film will also become thin and the particle | grains after a liquid film fracture | rupture will also become fine. According to this atomization principle, unlike the prior art high-speed air flow refinement principle based on shearing force, a thin film can be formed with a low energy (low pressure, low flow rate) gas flow, which assists in the fine particle formation of the thin film. The mist can be sprayed at low speed in the atmosphere.
 上記実施形態おいて、気体流G1、G2がそれぞれ衝突する液体流Lの幅d1が、その気体流の幅d2より小さいまたは同じであることが好ましい。例えば、気体流と衝突しない部分(図3Eでは、2つのはみ出し部分Lb、Lc)がある。液体流Lの幅d1(あるいは直径)に対し、気体流G1,G2の幅d2(あるいは直径)(d2/d1)は、例えば、0.1~0.9の範囲であり、好ましくは、0.3~0.8であり、より好ましくは、0.4~0.7である。また、液体流の幅d1が小さいほど、液膜が薄くなるため、微細化効果が高くなる。 In the above embodiment, it is preferable that the width d1 of the liquid flow L with which the gas flows G1 and G2 collide is smaller than or the same as the width d2 of the gas flow. For example, there are portions that do not collide with the gas flow (in FIG. 3E, two protruding portions Lb and Lc). For the width d1 (or diameter) of the liquid flow L, the width d2 (or diameter) (d2 / d1) of the gas flows G1 and G2 is, for example, in the range of 0.1 to 0.9, preferably 0. .3 to 0.8, and more preferably 0.4 to 0.7. Moreover, since the liquid film becomes thinner as the liquid flow width d1 is smaller, the effect of miniaturization becomes higher.
 また、図3Aにおいて、気液混合エリア部Mを破線で示す。霧Fは、その周囲を囲む噴霧出口部3によって噴霧方向が規制される。噴霧出口部3は、気体オリフィスを形成するための部材(気体オリフィス部1、2)と一体に形成されていてもよく、別部材で形成していてもよい。また、霧の噴霧パターンとして、例えば、幅広の扇状に形成され、その断面形状は楕円状または長円状となる。気体流同士が衝突した衝突面に平行に(衝突面が拡張する方向に)、衝突した(衝突後の)気体が拡散し、この方向に霧Fが扇状に広がって噴出される。本発明において、霧Fの噴霧角γは、例えば20°~90°である(図3B)。 Moreover, in FIG. 3A, the gas-liquid mixing area part M is shown with a broken line. The spray direction of the mist F is regulated by the spray outlet portion 3 surrounding the mist F. The spray outlet portion 3 may be formed integrally with a member (gas orifice portions 1 and 2) for forming a gas orifice, or may be formed by a separate member. Moreover, as a spray pattern of fog, it forms in the shape of a wide fan, for example, and the cross-sectional shape becomes an ellipse shape or an ellipse shape. Parallel to the collision surface where the gas flows collide (in the direction in which the collision surface expands), the gas that collided (after the collision) diffuses, and the mist F spreads in this direction in a fan shape and is ejected. In the present invention, the spray angle γ of the fog F is, for example, 20 ° to 90 ° (FIG. 3B).
 また、本発明の一実施形態として、前記液体オリフィス部が、直列に2つまたは3つ形成され、
 前記第1気体オリフィス部から噴射された第1気体流と前記第2気体オリフィス部から噴射された第2気体流とが、直列に配置された前記液体オリフィス部の直列両端から挟み込むように、前記液体オリフィス部から出た液体に衝突し、当該液体を霧化する。
Moreover, as one embodiment of the present invention, two or three liquid orifice portions are formed in series,
The first gas flow injected from the first gas orifice part and the second gas flow injected from the second gas orifice part are sandwiched from both ends of the series of the liquid orifice parts arranged in series. It collides with the liquid exiting from the liquid orifice and atomizes the liquid.
 この構成により、液体オリフィス部の孔数が1つより2つ、2つより3つ設けたほうが、微細化効果が高くなり好ましい。また、液体オリフィス部の孔数を2つまたは3つにした場合に、そのオリフィス断面サイズ(断面径)を小さくしてサイフォン効果を高めると共に、全体の吸い上げる液体量を増加させることができる。 With this configuration, it is preferable that the number of holes in the liquid orifice part is two, two, or three from two because the effect of miniaturization is increased. Further, when the number of holes in the liquid orifice part is set to two or three, it is possible to increase the siphon effect by reducing the orifice cross-sectional size (cross-sectional diameter) and to increase the amount of liquid sucked up as a whole.
 また、後述する微細化促進部を設けない場合に、これによって、霧の平均粒子径をコントロールすることが可能になる。また、本発明では液体オリフィス部の孔を4つ以上を設けることも可能である。しかしながら、孔を多く設けるほど気体流の圧力を大きくする必要があり、かつその加工精度も要求されるため、平均粒子径を微調整する構成としては、1つ、2つまたは3つまでの構造が適している。また、オリフィス孔の形状は、例えば、断面が円、楕円、矩形、角丸長方形、角丸正方形などが例示される。 In addition, when the miniaturization promoting portion described later is not provided, this makes it possible to control the average particle diameter of the mist. In the present invention, it is also possible to provide four or more holes in the liquid orifice portion. However, as the number of holes is increased, the pressure of the gas flow needs to be increased and the processing accuracy is also required. Therefore, the structure for finely adjusting the average particle diameter is one, two, or three structures. Is suitable. Examples of the shape of the orifice hole include a circle, an ellipse, a rectangle, a rounded rectangle, and a rounded square.
 また、本発明の一実施形態として、複数の液体オリフィス部の孔径は、異なっていてもよく、同じでもよいが、加工、成形性の観点では同じであることが好ましい。 As an embodiment of the present invention, the hole diameters of the plurality of liquid orifice portions may be different or the same, but are preferably the same from the viewpoint of processing and moldability.
 また、本発明の一実施形態として、前記液体オリフィス部が、3、4、5または6つ形成されている。直列配置されていてもよいが、配置したときの外観形状が多角形を形成するように配置されていてもよい。液体オリフィス部の全断面サイズを大きくするに比例して、気体流同士の衝突サイズ(あるいは気体流同士と液体との衝突サイズ)が大きくなる。そのため、装置自体のサイズも大きくなる。 Further, as one embodiment of the present invention, three, four, five or six liquid orifice portions are formed. Although it may be arranged in series, it may be arranged so that the appearance shape when arranged forms a polygon. In proportion to the increase in the total cross-sectional size of the liquid orifice portion, the collision size between the gas flows (or the collision size between the gas flows and the liquid) increases. Therefore, the size of the device itself is also increased.
 また、本発明の一実施形態として、前記液体霧化装置は、前記気液混合エリア部から出る霧の噴霧方向に設けられ、前記内部空間を有し、当該内部空間において霧をさらに微細化する微細化促進部をさらに有する。 Moreover, as one embodiment of the present invention, the liquid atomizing device is provided in a spraying direction of the mist coming out of the gas-liquid mixing area, has the internal space, and further refines the mist in the internal space. It further has a miniaturization promoting part.
 この構成により、発生した霧をより微細化させることができるので好ましい。内部空間を有する微細化促進部の形状としては、例えば、筒形状、ラッパ形状、L字形状などが挙げられる。 This configuration is preferable because the generated fog can be further refined. Examples of the shape of the miniaturization promoting portion having the internal space include a cylindrical shape, a trumpet shape, and an L shape.
 また、本発明において、気体圧力源は、電気駆動されるものではく、例えば、手動式、フット式または機械式で気体圧(気体流)を発生させる構成であり、かかる場合の気体圧力源の気体圧Pa(MPa)は、例えば、0.005~0.40の範囲が例示され、好ましくは0.01~0.30、より好ましくは0.03~0.1である。本発明では、このように低い気体エネルギーのみで液体を霧化できる。また、気体圧力源がシリンジおよびプランジャータイプの場合には、気体圧Pa(MPa)は、例えば、0.10~0.40の範囲が例示される。 Further, in the present invention, the gas pressure source is not electrically driven, and is configured to generate a gas pressure (gas flow) by, for example, a manual type, a foot type, or a mechanical type. The gas pressure Pa (MPa) is, for example, in the range of 0.005 to 0.40, preferably 0.01 to 0.30, and more preferably 0.03 to 0.1. In the present invention, the liquid can be atomized with only such low gas energy. When the gas pressure source is a syringe or plunger type, the gas pressure Pa (MPa) is, for example, in the range of 0.10 to 0.40.
 2本の気体流の圧力は、同じまたは略同じに設定することが好ましく、その流量も、同じまたは略同じに設定することが好ましい。また、気体オリフィス部から噴射される気体流の断面形状は、特に制限されず、例えば、円状、楕円状、矩形状、多角形状が挙げられる。気体流の断面形状は、気体オリフィス部のオリフィス断面に依存する。 The pressures of the two gas streams are preferably set to be the same or substantially the same, and the flow rates are preferably set to be the same or substantially the same. Moreover, the cross-sectional shape of the gas flow injected from the gas orifice part is not particularly limited, and examples thereof include a circular shape, an elliptical shape, a rectangular shape, and a polygonal shape. The cross-sectional shape of the gas flow depends on the orifice cross section of the gas orifice portion.
 また、上記液体オリフィス部の断面形状は、特に制限されない。断面円状の場合、加工性がよい。 Further, the cross-sectional shape of the liquid orifice part is not particularly limited. In the case of a circular cross section, workability is good.
 また、霧Fは、その周囲を囲む噴霧出口部3によって噴霧方向が規制される。噴霧出口部3は、気体オリフィス部を形成するための部材(気体オリフィス部1、2)と一体に形成されていてもよく、別部材で形成していてもよい。 Further, the spray direction of the fog F is regulated by the spray outlet portion 3 surrounding the fog F. The spray outlet part 3 may be formed integrally with a member (gas orifice part 1, 2) for forming a gas orifice part or may be formed by a separate member.
 また、液体霧化装置をディスポーザブルにしてもよく、各構成パーツを着脱可能にして洗浄できるように再利用できるようにしてもよい。また、液体霧化装置は、携帯性優れたコンパクト性を有していることが好ましい。また、液体霧化装置の全パーツまたは一部のパーツ同士を接着剤で結合してもよい。 Also, the liquid atomizing device may be made disposable, or each component part may be made removable and reused so that it can be cleaned. Moreover, it is preferable that the liquid atomization apparatus has the compactness excellent in portability. Moreover, you may couple | bond all the parts of liquid atomizer, or some parts with an adhesive agent.
 上記発明の一実施形態として、前記第1気体オリフィス部の噴射方向軸と前記第2気体オリフィス部の噴射方向軸との交差角度が90°~180°の範囲であることが好ましい。第1気体オリフィス部1および第2気体オリフィス部2のそれぞれの噴射方向軸が交差する角度範囲は、第1気体オリフィス部1から噴射された気体と第2気体オリフィス部2から噴射された気体流の衝突角に相当する。図2に衝突角αを示す。例えば、「衝突角α」は、80°~220°であり、好ましくは80°~180°であり、より好ましくは90°~150°であり、特に好ましくは100°~130°である。 As an embodiment of the present invention, it is preferable that an intersection angle between an injection direction axis of the first gas orifice portion and an injection direction axis of the second gas orifice portion is in a range of 90 ° to 180 °. The angle range in which the respective injection direction axes of the first gas orifice part 1 and the second gas orifice part 2 intersect each other is such that the gas injected from the first gas orifice part 1 and the gas flow injected from the second gas orifice part 2 It corresponds to the collision angle. FIG. 2 shows the collision angle α. For example, the “collision angle α” is 80 ° to 220 °, preferably 80 ° to 180 °, more preferably 90 ° to 150 °, and particularly preferably 100 ° to 130 °.
 2本の気体オリフィス部は、気体流の流れ方向で上流側の空間(例えば、断面矩形のサイズ、断面円のサイズなど)が大きく、下流にいくほど空間が小さくなる構造が好ましい。この空間は、例えば、外部材の内壁面と内部材の外壁面とで形成される隙間であってもよい。 The two gas orifices preferably have a structure in which the space on the upstream side (for example, the size of the cross-sectional rectangle, the size of the cross-sectional circle, etc.) is large in the flow direction of the gas flow, and the space becomes smaller toward the downstream. This space may be a gap formed between the inner wall surface of the outer member and the outer wall surface of the inner member, for example.
 上記気体としては、特に制限されないが、例えば、空気、清浄空気(クリーンエア)、窒素、不活性ガス、燃料混合エア、酸素等が挙げられ、使用目的に応じて適宜設定可能である。 The gas is not particularly limited, and examples thereof include air, clean air (clean air), nitrogen, inert gas, fuel mixed air, oxygen, and the like, and can be appropriately set according to the purpose of use.
 上記液体としては、特に制限されないが、低粘度の液体が好ましく、例えば、水、イオン化水、保湿液、美用水、化粧水等の化粧薬液、医薬液、殺菌液、除菌液等の薬液、塗料、燃料油、コーティング剤、溶剤、樹脂等が挙げられる。 The liquid is not particularly limited, but a low-viscosity liquid is preferable.For example, cosmetic liquids such as water, ionized water, moisturizing liquid, beauty water, lotion, etc. Examples thereof include paints, fuel oils, coating agents, solvents, and resins.
噴霧出口部を正面視した図である。It is the figure which looked at the spray outlet part from the front. 図1AのA-A断面の拡大図である。FIG. 1B is an enlarged view of the AA cross section of FIG. 1A. 図1AのB-B断面の拡大図である。1B is an enlarged view of a BB cross section of FIG. 1A. FIG. 2つの気体噴射軸で形成される交差角度を説明するための模式図である。It is a schematic diagram for demonstrating the crossing angle formed with two gas injection axes. 別実施形態の噴霧出口部周辺の断面の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the cross section of the spray outlet part periphery of another embodiment. 図3Aの側面からみた模式図である。It is the schematic diagram seen from the side of FIG. 3A. 霧化メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the atomization mechanism. 霧化メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the atomization mechanism. 液体流の幅d1と気体流の幅d2について説明するための説明図である。It is explanatory drawing for demonstrating the width | variety d1 of a liquid flow, and the width | variety d2 of a gas flow. 実施形態1の液体霧化装置の全体の断面模式図である。It is a cross-sectional schematic diagram of the whole liquid atomization apparatus of Embodiment 1. FIG. 実施形態1の液体霧化装置を拡大した図である。It is the figure which expanded the liquid atomization apparatus of Embodiment 1. FIG. 実施形態1の液体霧化装置の噴霧動作を説明するための図である。It is a figure for demonstrating the spraying operation | movement of the liquid atomization apparatus of Embodiment 1. FIG. 実施形態2の液体霧化装置の全体の断面模式図である。It is a cross-sectional schematic diagram of the whole liquid atomization apparatus of Embodiment 2. 実施形態2の液体霧化装置を拡大した図である。It is the figure which expanded the liquid atomization apparatus of Embodiment 2. FIG. 別実施形態のシリンジとノズル本体部との連結構造を示す図である。It is a figure which shows the connection structure of the syringe and nozzle main-body part of another embodiment. 実施形態3の液体霧化装置の全体の断面模式図である。It is a cross-sectional schematic diagram of the whole liquid atomization apparatus of Embodiment 3. 実施形態3の液体霧化装置のA-A断面模式図である。FIG. 6 is a schematic cross-sectional view taken along the line AA of the liquid atomizing apparatus according to Embodiment 3. 実施形態3の液体霧化装置の先端B部を拡大した図である。It is the figure which expanded the front-end | tip B part of the liquid atomization apparatus of Embodiment 3. FIG. 2つの気体オリフィス部の噴射方向軸の交差角度(衝突角)を説明するための図である。It is a figure for demonstrating the crossing angle (collision angle) of the injection direction axis | shaft of two gas orifice parts.
 (実施形態1)
 本実施形態の液体霧化装置100を図面を参照しながら説明する。図4は、液体霧化装置100の全体の断面模式図である。図5は、液体霧化装置100のノズル本体部分を拡大した図である。液体霧化装置100は、シリンジ131と、プランジャー132とを有する気体圧力源130を有する。シリンジ131は、その先端側にメスルアーロック継手131aが形成されている。シリンジ131は、ノズル本体部30と連結される。このノズル本体部30は、オスルアーロック継手30aが設けられていて、シリンジ131のメスルアーロック継手131aと連結される。
(Embodiment 1)
The liquid atomization apparatus 100 of this embodiment is demonstrated referring drawings. FIG. 4 is a schematic cross-sectional view of the entire liquid atomizing apparatus 100. FIG. 5 is an enlarged view of the nozzle main body portion of the liquid atomizing apparatus 100. The liquid atomizing apparatus 100 includes a gas pressure source 130 having a syringe 131 and a plunger 132. The syringe 131 has a female luer lock joint 131a formed on the tip side thereof. The syringe 131 is connected to the nozzle body 30. The nozzle main body 30 is provided with a male luer lock joint 30 a and is connected to the female luer lock joint 131 a of the syringe 131.
 ノズル本体部30は、断面筒状であり、その内部に断面筒状の液体収納部10を設けている。液体収納部10の外壁面と、ノズル本体部30の内壁面との間に空間を設けている。この空間が気体通路部R1であり、液体収納部10の内部空間と、液体収納部10の後方(液体オリフィス部側を前方とする)に設けられた開口部11、12を介して通じており、気体圧力源130からの気体の一部がこの開口部11、12で液体収納部10内から分岐され気体通路部R1、R2へ流入する。 The nozzle body 30 has a cylindrical cross section, and the liquid storage section 10 having a cylindrical cross section is provided therein. A space is provided between the outer wall surface of the liquid storage unit 10 and the inner wall surface of the nozzle body 30. This space is the gas passage portion R1 and communicates with the internal space of the liquid storage portion 10 through openings 11 and 12 provided behind the liquid storage portion 10 (the liquid orifice portion side is the front). Part of the gas from the gas pressure source 130 is branched from the liquid storage unit 10 through the openings 11 and 12 and flows into the gas passages R1 and R2.
 液体収納部10をノズル本体部30の内部に配置し、ノズル先端部20でそれらを固定する。ノズル先端部20は、その後方部に雌ネジ部20aを有する。ノズル先端部20は、液体収納部10の先端部の外壁面を覆い被せるようにして抑えこまれ、この雌ネジ部20aとノズル本体部30の雄ネジ部30bとがネジ止め固定される。ノズル先端部20とノズル本体部30との接触端部同士にはシール部材としてパッキン60が設けられる。 The liquid storage unit 10 is arranged inside the nozzle body 30 and fixed with the nozzle tip 20. The nozzle tip portion 20 has a female screw portion 20a at the rear portion thereof. The nozzle tip portion 20 is held down so as to cover the outer wall surface of the tip portion of the liquid storage portion 10, and the female screw portion 20a and the male screw portion 30b of the nozzle body portion 30 are fixed by screws. A packing 60 is provided as a seal member between contact end portions of the nozzle tip portion 20 and the nozzle main body portion 30.
 気体通路部R1、R2を通じて流れてきた気体は、上記ノズル先端部20の内壁面と液体収納部10の外壁面との空間で形成した第1気体オリフィス部21および第2気体オリフィス部22に流れ、第1気体オリフィス部21および第2気体オリフィス部22から2つの気体流として噴射される。ここで、液体収納部10の外壁面には、2つの凹溝が形成されていて、ノズル先端部20の内壁面でそれに蓋をすることで各気体オリフィス部が形成されている。図4では、第1、第2気体オリフィス部の噴射方向軸の交差角度(衝突角α)は、90°である。別実施形態として、衝突角αは、80°~180°の範囲である。 The gas flowing through the gas passage portions R1 and R2 flows to the first gas orifice portion 21 and the second gas orifice portion 22 formed in the space between the inner wall surface of the nozzle tip portion 20 and the outer wall surface of the liquid storage portion 10. The first gas orifice portion 21 and the second gas orifice portion 22 are injected as two gas flows. Here, two concave grooves are formed on the outer wall surface of the liquid storage portion 10, and each gas orifice portion is formed by covering the inner wall surface of the nozzle tip portion 20. In FIG. 4, the crossing angle (collision angle α) of the injection direction axes of the first and second gas orifices is 90 °. In another embodiment, the collision angle α is in the range of 80 ° to 180 °.
 液体収納部10の内部には、その内部を可動するピストン部50が配置される。ピストン部50の先端にはゴム栓40が形成されている。液体収納部10は、その先端方向に液体収納部10の径よりも径小の液体オリフィス部15を有する。ピストン部50の後方から気体圧力を作用させることで、ピストン部50(ゴム栓40)が前方へ動き、液体収納部10前方方向の液体オリフィス部15へ押し出される。 In the interior of the liquid storage unit 10, a piston unit 50 that moves inside the liquid storage unit 10 is disposed. A rubber plug 40 is formed at the tip of the piston portion 50. The liquid storage unit 10 has a liquid orifice unit 15 having a diameter smaller than the diameter of the liquid storage unit 10 in the distal direction. By applying a gas pressure from the rear of the piston part 50, the piston part 50 (rubber plug 40) moves forward and is pushed out to the liquid orifice part 15 in the forward direction of the liquid storage part 10.
 以下に霧化までの動作説明をする。図5において、液体収納部10に所定量の液体Lが収納される。なお、液体Lを液体収納部10に収納させる方法は特に問わない。ピストン部50を外して液体Lを注入してもよく、ピストン部50を先端位置から後方に引くことで液体Lを液体オリフィス部15から吸い上げてもよい。後述する実施形態3のように、横穴を設けて注入口を形成してもよい。 The following describes the operation until atomization. In FIG. 5, a predetermined amount of liquid L is stored in the liquid storage unit 10. The method for storing the liquid L in the liquid storage unit 10 is not particularly limited. The piston L may be removed to inject the liquid L, or the liquid L may be sucked up from the liquid orifice 15 by pulling the piston 50 backward from the tip position. As in Embodiment 3 to be described later, the injection hole may be formed by providing a horizontal hole.
 プランジャー132がシリンジ131内の所定位置に待機している。この状態から、プランジャー132をシリンジ131先端(前方)に押し込む。これによって、シリンジ131内の気体が液体収納部10へ流入する。この流入した気体の気体圧がゴム栓40に作用し、ゴム栓40が液体収納部10の先端方向へ押し込まれる。これと同時に、液体収納部10の開放部11、12を通じて気体通路部R1、R2に気体が流入する。この気体は気体通路部R1、R2を通り、第1気体オリフィス部21と、第2気体オリフィス部22へ流れ、それら先端から噴射される。このように、液体オリフィス部15から噴射された液体Lに対し、第1気体オリフィス部21から噴射された気体と第2気体オリフィス部22から噴射された気体とを衝突させて、液体Lを霧化させ、噴霧Fを発生させる。図6は、ゴム栓40が液体収納部10の先端まで達して停止した状態を示す。図6では、2つの気体流と液体とを衝突させて霧化を行うエリアである気液混合エリア部Mが、液体オリフィス部15のオリフィス軸の前方に位置している。 The plunger 132 is waiting at a predetermined position in the syringe 131. From this state, the plunger 132 is pushed into the tip (front) of the syringe 131. As a result, the gas in the syringe 131 flows into the liquid storage unit 10. The gas pressure of the inflowing gas acts on the rubber plug 40, and the rubber plug 40 is pushed toward the tip of the liquid storage unit 10. At the same time, gas flows into the gas passage portions R1 and R2 through the open portions 11 and 12 of the liquid storage portion 10. This gas passes through the gas passage portions R1 and R2, flows to the first gas orifice portion 21 and the second gas orifice portion 22, and is injected from the tip thereof. As described above, the liquid L ejected from the liquid orifice unit 15 is caused to collide with the gas ejected from the first gas orifice unit 21 and the gas ejected from the second gas orifice unit 22 to mist the liquid L. And spray F is generated. FIG. 6 shows a state in which the rubber stopper 40 reaches the tip of the liquid storage unit 10 and stops. In FIG. 6, the gas-liquid mixing area part M, which is an area in which two gas flows and a liquid collide to perform atomization, is located in front of the orifice axis of the liquid orifice part 15.
 噴霧動作終了後、シリンジ131からノズル本体部30を取り外し、ピストン部50を後方に引くことで、再び液体を液体収納部10に注入することができる。 After the spraying operation is completed, the nozzle main body 30 is removed from the syringe 131, and the piston 50 is pulled backward, whereby the liquid can be injected again into the liquid storage unit 10.
 また、第1、第2気体オリフィス部21、22の構成は、上記構成に制限されない。ノズル先端部20の内壁面側に溝を形成し、液体収納部10の外壁面で蓋をして形成してもよい。 Further, the configuration of the first and second gas orifice portions 21 and 22 is not limited to the above configuration. A groove may be formed on the inner wall surface side of the nozzle tip 20 and a lid may be formed on the outer wall surface of the liquid storage unit 10.
 また、各部材同士の連結方法は、特に制限されず、着脱自在に構成してもよく、例えば、ネジ式結合、嵌め合わせで結合してもよく、接着剤で接着してもよい。また、各部材同士の連結に際し、パッキンなどのシール部材を介在させてもよい。 Further, the connection method between the members is not particularly limited, and may be configured to be detachable, for example, may be connected by screw connection, fitting, or may be bonded by an adhesive. Moreover, when connecting each member, you may interpose sealing members, such as packing.
 また、上記実施形態において、前記液体霧化装置は、ノズル先端部20の前方に、気液混合エリア部Mから出る霧の噴霧方向に設けられ、L字形状の内部空間を有し、当該内部空間において霧をさらに微細化する微細化促進部をさらに設けられていてもよい。 Moreover, in the said embodiment, the said liquid atomization apparatus is provided in the spray direction of the mist which comes out from the gas-liquid mixing area part M ahead of the nozzle front-end | tip part 20, has an L-shaped internal space, A miniaturization promoting unit that further refines the fog in the space may be further provided.
 (実施形態2)
 本実施形態2の液体霧化装置を図面を参照しながら説明する。図7は、液体霧化装置の全体の断面模式図である。図8は、液体霧化装置の先端側を拡大した図である。本実施形態では、ノズル本体部30とノズル先端部20の外側にカバー部70を設けた構成である。カバー部70の前方部は、ノズル先端部20よりも前方(噴霧方向前方)へ突設している。液体オリフィス部15からカバー部70の先端開口部71まで所定の空間を設けている。この空間に気液混合エリア部が形成される。カバー部70の先端開口部71は、前方に径大に傾斜した形状を有し、これが噴霧出口部に相当する。
(Embodiment 2)
The liquid atomization apparatus of Embodiment 2 will be described with reference to the drawings. FIG. 7 is a schematic cross-sectional view of the entire liquid atomizing apparatus. FIG. 8 is an enlarged view of the tip side of the liquid atomizing device. In this embodiment, the cover part 70 is provided outside the nozzle body part 30 and the nozzle tip part 20. The front part of the cover part 70 protrudes forward (forward in the spraying direction) from the nozzle tip part 20. A predetermined space is provided from the liquid orifice portion 15 to the tip opening portion 71 of the cover portion 70. A gas-liquid mixing area is formed in this space. The front end opening 71 of the cover part 70 has a shape that is inclined forward in diameter, and this corresponds to a spray outlet part.
 (別実施形態)
 上記実施形態では、シリンジとノズル本体部との連結をルアーロック継手で行っていたが、本発明は、これに制限されない。例えば、図9に示すように、シリンジ131の先端部に嵌めこまれるフランジ部35が形成されたノズル本体部30によって、シリンジ131とノズル本体部30とを連結することができる。
(Another embodiment)
In the said embodiment, although the connection of a syringe and a nozzle main-body part was performed with the luer lock joint, this invention is not restrict | limited to this. For example, as shown in FIG. 9, the syringe 131 and the nozzle main body 30 can be connected by the nozzle main body 30 in which the flange portion 35 fitted into the tip of the syringe 131 is formed.
 また、実施形態として、ピストン部50およびゴム栓40を設けない構成がある。液体収納部10の液体を、ピストン部50およびゴム栓40を介在させずに、気体圧のみで押し出すことができる。液体収納部10の内部直径が小さいほど表面張力によって注入された液が内部に保持されるためゴム栓が無くてもよい。 Further, as an embodiment, there is a configuration in which the piston portion 50 and the rubber plug 40 are not provided. The liquid in the liquid storage part 10 can be pushed out only by the gas pressure without the piston part 50 and the rubber plug 40 being interposed. Since the liquid injected by the surface tension is held inside as the internal diameter of the liquid storage unit 10 is smaller, there may be no rubber stopper.
 また、シリンジおよびプランジャーの代わりに、バルーン式ポンプまたは携帯式空気入れを用いることができる。かかる場合に、連結部材は特に制限されず、コネクタ、チューブなどで連結することができる。 In addition, a balloon pump or a portable inflator can be used instead of the syringe and the plunger. In such a case, the connecting member is not particularly limited, and can be connected by a connector, a tube, or the like.
 (実施形態3)
 本実施形態3の液体霧化装置300を図面を参照しながら説明する。図10Aは、液体霧化装置300の全体の断面模式図である。図10Bは、液体霧化装置300のA-A断面模式図である。図10Cは、液体霧化装置300のノズル先端B部を拡大した図である。
(Embodiment 3)
A liquid atomizing apparatus 300 according to Embodiment 3 will be described with reference to the drawings. FIG. 10A is a schematic cross-sectional view of the entire liquid atomizing apparatus 300. FIG. 10B is a schematic cross-sectional view of the liquid atomizing apparatus 300 taken along the line AA. FIG. 10C is an enlarged view of the nozzle tip B portion of the liquid atomizing apparatus 300.
 液体霧化装置300は、不図示のシリンジと、プランジャーとを有する気体圧力源を有する。シリンジは、その先端側にメスルアーロック継手が形成されている。シリンジは、ノズル本体部330と連結される。このノズル本体部330は、オスルアーロック継手310が設けられていて、シリンジのメスルアーロック継手と連結される。 The liquid atomizing apparatus 300 has a gas pressure source having a syringe (not shown) and a plunger. The syringe has a female lock joint formed on the tip side thereof. The syringe is connected to the nozzle main body 330. The nozzle body 330 is provided with a male luer lock joint 310 and is connected to a syringe luer lock joint of a syringe.
 ノズル本体部330は、断面筒状であり、中心軸Xに沿って液体収納部340が配置されるスペースを設けている。図10Aでは、ノズル本体330の中心軸Xに沿って液体収納部340がすでに配置されている。この液体収納部340は注入口341が形成され、ノズル本体330の開口部330aと通じ、当該開口部330aから液体を注入し、注入口341を介して液体収納部340へ液体を収納できるように構成されている。開口部330aを塞ぐ蓋あるいは栓(不図示)が設けられている。また、別実施形態として、液体収納部340に注入口341が形成されておらず、液体収納部340がノズル本体330に対して着脱自在に構成されていてもよい。 The nozzle body 330 has a cylindrical cross section, and provides a space along the central axis X where the liquid storage unit 340 is disposed. In FIG. 10A, the liquid storage portion 340 has already been arranged along the central axis X of the nozzle body 330. The liquid storage unit 340 is formed with an injection port 341, communicates with the opening 330 a of the nozzle body 330, injects liquid from the opening 330 a, and stores the liquid in the liquid storage unit 340 through the injection port 341. It is configured. A lid or plug (not shown) for closing the opening 330a is provided. Further, as another embodiment, the liquid inlet 341 may not be formed in the liquid storage part 340, and the liquid storage part 340 may be configured to be detachable from the nozzle body 330.
 ノズル本体部330は、中心軸Xに沿って液体収納部340の周りに4本の気体通路部331、332、333、334が形成されている(図10B、10C参照)。これら気体通路部は、不図示の気体圧力源からの気体が分岐して流れるエリアである。気体通路部は、4本に限定されず、1、2、3、4本以上でもよい。 The nozzle main body 330 has four gas passage portions 331, 332, 333, and 334 formed around the liquid storage portion 340 along the central axis X (see FIGS. 10B and 10C). These gas passage portions are areas where gas from a gas pressure source (not shown) branches and flows. The number of gas passages is not limited to four, and may be 1, 2, 3, 4 or more.
 図10Cに示すように、液体収納部340の先端に、3つのオリフィス孔351、352、353が直列に形成された液体オリフィス部350が設けられる。液体オリフィス部350の外壁に2つの凹溝355a、355bが形成されている。直列に配置されたオリフィス孔の直列両端から挟み込むように、2つの凹溝355a、355bが形成されている。 As shown in FIG. 10C, a liquid orifice part 350 in which three orifice holes 351, 352, 353 are formed in series is provided at the tip of the liquid storage part 340. Two concave grooves 355 a and 355 b are formed on the outer wall of the liquid orifice portion 350. Two concave grooves 355a and 355b are formed so as to be sandwiched from both ends of the orifice holes arranged in series.
 図10Cに示すように、ノズル本体部330には、噴霧出口部362が形成されたキャップ360がパッキン370を介在させ、ネジ式で連結されている。キャップ360の内壁面361と液体オリフィス部350の外壁面357とが、噴霧出口部362の開口に至る位置までに接触し、2つの凹溝355a、355bによって2つの気体流R1、R2を生成する。この2つの凹溝355a、355bは、それぞれ第1、第2気体オリフィス部に相当する。気体通路部331、332、333、334を通じて流れる気体が、ノズル本体330先端からキャップ360の側面内壁との空間Eで合流し、2つの凹溝355a、355bによって2つの気体流R1、R2が生成される。2つの気体流同士が気液混合エリアMで衝突し、衝突した気体流が噴霧出口部362を通って外部へ噴射される。この気体流の噴射作用で、気液混合エリアM内部が負圧になり、サイフォン作用によって、液体オリフィス部350の3つのオリフィス孔351、352、353から液体が吸い上げられ、この液体が2つの気体流R1,R2と衝突し、この液体が霧化(微細化)され、噴霧出口部362から外部へ霧が噴霧される。 As shown in FIG. 10C, a cap 360 on which a spray outlet 362 is formed is connected to the nozzle main body 330 with a packing 370 with a screw. The inner wall surface 361 of the cap 360 and the outer wall surface 357 of the liquid orifice part 350 are in contact with each other up to the position reaching the opening of the spray outlet part 362, and two gas flows R1 and R2 are generated by the two concave grooves 355a and 355b. . The two concave grooves 355a and 355b correspond to first and second gas orifice portions, respectively. The gas flowing through the gas passage portions 331, 332, 333, and 334 merges in the space E between the tip of the nozzle body 330 and the inner wall of the side surface of the cap 360, and two gas flows R1 and R2 are generated by the two concave grooves 355a and 355b. Is done. The two gas flows collide with each other in the gas-liquid mixing area M, and the collided gas flows are injected to the outside through the spray outlet 362. Due to the jetting action of this gas flow, the inside of the gas-liquid mixing area M becomes a negative pressure, and the liquid is sucked up from the three orifice holes 351, 352, 353 of the liquid orifice part 350 by the siphon action, and this liquid becomes two gases. The liquid collides with the streams R1 and R2, the liquid is atomized (miniaturized), and the mist is sprayed from the spray outlet 362 to the outside.
 図10Dに示すとおり、凹溝355a、355bによって生成された2つの気体流の噴射方向軸の交差角度(衝突角α1)は、110°である。キャップ360の内壁面361によって形成される角度α2(断面角度)は、120°である。実施形態1では、衝突角αとノズル先端部20の内壁面で形成される角度は同じであったが、実施形態3では、それらが異なる角度である。異なる角度同士の組み合わせの場合、2本の気体オリフィス部は、気体流の流れ方向で上流側の空間が大きく、下流にいくほど空間が小さくなる構造である。効果的なサイフォン作用を得るための衝突角α1と角度α2との組み合わせとしては、例えば、α1<α2であって、α1=60°~140°、α2=61°~150°の範囲が挙げられる。また、α2は、例えばα1+5°~20°の範囲であることが好ましい。このように、衝突角α1とキャップ360の内壁面361によって形成される角度α2との組み合わせを変えることで、噴霧量を増加させ、かつ微細化作用を低下させることがない。α1とα2とが同じである場合には、エア量を増加させることでサイフォン作用が強くなり噴霧量を増加させることができるが、霧の平均粒子径が大きくなる傾向である。一方、α1<α2にすることで、エア量一定のまま、噴霧量を増加させ、かつ微細化作用も低下させることがなく、霧の平均粒子径を維持あるいは小さくできる。 As shown in FIG. 10D, the intersection angle (collision angle α1) of the injection direction axes of the two gas flows generated by the grooves 355a and 355b is 110 °. An angle α2 (cross-sectional angle) formed by the inner wall surface 361 of the cap 360 is 120 °. In the first embodiment, the collision angle α and the angle formed by the inner wall surface of the nozzle tip 20 are the same, but in the third embodiment, they are different angles. In the case of a combination of different angles, the two gas orifice portions have a structure in which the space on the upstream side is large in the flow direction of the gas flow and the space becomes small as it goes downstream. As a combination of the collision angle α1 and the angle α2 for obtaining an effective siphon action, for example, α1 <α2 and α1 = 60 ° to 140 ° and α2 = 61 ° to 150 ° can be mentioned. . Α2 is preferably in the range of α1 + 5 ° to 20 °, for example. In this way, by changing the combination of the collision angle α1 and the angle α2 formed by the inner wall surface 361 of the cap 360, the spray amount is increased and the refinement effect is not lowered. When α1 and α2 are the same, increasing the air amount increases the siphon action and increases the spray amount, but tends to increase the average particle diameter of the mist. On the other hand, by setting α1 <α2, it is possible to maintain or reduce the average particle diameter of the mist without increasing the spray amount while keeping the air amount constant and without reducing the refining action.
 また、各部材同士の連結方法は、特に制限されず、着脱自在に構成してもよく、例えば、ネジ式結合、嵌め合わせで結合してもよく、接着剤で接着してもよい。また、各部材同士の連結に際し、パッキンなどのシール部材を介在させてもよい。 Further, the connection method between the members is not particularly limited, and may be configured to be detachable, for example, may be connected by screw connection, fitting, or may be bonded by an adhesive. Moreover, when connecting each member, you may interpose sealing members, such as packing.
 また、別実施形態として、液体収納部340と液体オリフィス部350とが一体に構成されていてもよい。また、ノズル本体部330とキャップ360が一体に設けられていてもよい。 As another embodiment, the liquid storage unit 340 and the liquid orifice unit 350 may be integrally configured. Further, the nozzle body 330 and the cap 360 may be provided integrally.
 また、上記実施形態において、前記液体霧化装置は、キャップ360の前方に、直線状またはL字形状の内部空間を有し、当該内部空間において霧をさらに微細化する微細化促進部をさらに設けられていてもよい。 Moreover, in the said embodiment, the said liquid atomization apparatus has further the refinement | miniaturization acceleration | stimulation part which has linear or L-shaped internal space ahead of the cap 360, and further refines | miniaturizes fog in the said internal space. It may be done.
<実施例>
 実施形態2に示す構成の液体霧化装置(カバー部付)を用いて噴霧特性を評価した。液体収納部への水の注水量は、0.12mlである。液体オリフィス部15の断面直径がφ0.1mm、第1、第2気体オリフィス部の凹部(断面矩形)は深さ0.3mm、スリット幅が0.1mmである。気体として空気を用いた。
<Example>
The spray characteristics were evaluated using a liquid atomizing apparatus (with a cover) configured as shown in the second embodiment. The amount of water injected into the liquid storage unit is 0.12 ml. The cross-sectional diameter of the liquid orifice portion 15 is φ0.1 mm, the concave portions (cross-sectional rectangles) of the first and second gas orifice portions are 0.3 mm deep, and the slit width is 0.1 mm. Air was used as the gas.
 プランジャーを一気にシリンジ先端まで押しこんだ(1プッシュ)。そのときの噴霧量は0.12mlであり、全量が押し出され噴霧された。また、噴霧状態は良好であり、低速噴霧であった。噴霧された霧粒子の平均粒子径(SMD)は、6.43μmであった。平均粒子径(SMD)はレーザー回折法の計測装置により測定した。測定位置は、液体オリフィス部から100mmの位置とした。 The plunger was pushed all the way to the syringe tip (1 push). The spray amount at that time was 0.12 ml, and the entire amount was extruded and sprayed. Moreover, the spray state was favorable and it was a low speed spray. The average particle size (SMD) of the sprayed mist particles was 6.43 μm. The average particle size (SMD) was measured with a laser diffraction measuring instrument. The measurement position was 100 mm from the liquid orifice.
 また、シリンジとプランジャーに代わり、市販のバルーン式ポンプ(手動式)と、携帯式空気入れ(airbone社製、ミニポンプ)で同様に行った。その結果も良好な噴霧状態を確認できた。 Further, instead of a syringe and a plunger, a commercially available balloon pump (manual type) and a portable air pump (manufactured by Airbone, mini pump) were used in the same manner. As a result, a good spray state was confirmed.
1    第1気体オリフィス部
2    第2気体オリフィス部
6    液体オリフィス部
10   液体収納部
11、12 開口部
15   液体オリフィス部
20   ノズル先端部
21   第1気体オリフィス部
22   第2気体オリフィス部
30   ノズル本体部
40   ゴム栓
50   ピストン部
60   パッキン
70   カバー部
130  空気圧源
131  シリンジ
132  プランジャー
L    液体
M    気液混合エリア部
R1,R2 気体通路部
F    霧
DESCRIPTION OF SYMBOLS 1 1st gas orifice part 2 2nd gas orifice part 6 Liquid orifice part 10 Liquid storage part 11, 12 Opening part 15 Liquid orifice part 20 Nozzle front-end | tip part 21 1st gas orifice part 22 2nd gas orifice part 30 Nozzle main-body part 40 Rubber plug 50 Piston part 60 Packing 70 Cover part 130 Air pressure source 131 Syringe 132 Plunger L Liquid M Gas-liquid mixing area part R1, R2 Gas passage part F Fog

Claims (8)

  1.  液体オリフィス部と、
     液体を内部に収納する筒状の液体収納部と、
     前記液体を霧化するための気体流を生じさせるための手動式、フット式、機械式または吹き込み式の気体圧力源と、
     前記気体圧力源から送られた気体を2つの気体流として噴射するための第1気体オリフィス部および第2気体オリフィス部と、
     前記第1気体オリフィス部から噴射された第1気体流と、前記第2気体オリフィス部から噴射された第2気体流と、前記液体オリフィス部から出る前記液体とを衝突させて当該液体を霧化させるエリアである気液混合エリア部と、を有する液体霧化装置。
    A liquid orifice,
    A cylindrical liquid storage section for storing liquid therein;
    A manual, foot, mechanical or blown gas pressure source for generating a gas flow for atomizing the liquid;
    A first gas orifice part and a second gas orifice part for injecting the gas sent from the gas pressure source as two gas streams;
    The first gas flow ejected from the first gas orifice portion, the second gas flow ejected from the second gas orifice portion, and the liquid exiting from the liquid orifice portion collide with each other to atomize the liquid. A liquid atomization device having a gas-liquid mixing area portion that is an area to be made to flow.
  2.  前記液体霧化装置は、
     前記液体収納部内を可動するピストン部と、
     前記気体圧力源からの気体の一部が分岐して流れる気体通路部と、をさらに有し、
     前記気体圧力源は、前記ピストン部の後方から気体圧力を作用させて、当該ピストン部を前記液体収納部の前記液体オリフィス部へ押し出すことで、前記液体を当該液体オリフィス部から噴射し、
     前記第1、第2気体オリフィス部は、前記気体通路部から流れてきた気体をそれぞれの気体流として前記気液混合エリア部へ噴射し、第1気体流と第2気体流とを衝突させる、請求項1に記載の液体霧化装置。
    The liquid atomizer is
    A piston part movable in the liquid storage part;
    A gas passage portion in which a part of the gas from the gas pressure source branches and flows, and
    The gas pressure source causes gas pressure to act from the rear of the piston part, and pushes the piston part to the liquid orifice part of the liquid storage part, thereby ejecting the liquid from the liquid orifice part,
    The first and second gas orifice portions inject the gas flowing from the gas passage portion into the gas-liquid mixing area portion as respective gas flows, and collide the first gas flow and the second gas flow. The liquid atomization apparatus according to claim 1.
  3.  前記第1、第2気体オリフィス部から噴射された第1、第2気体流によるサイフォン作用によって、前記液体オリフィス部から前記液体が出ることを特徴とする請求項1に記載の液体霧化装置。 2. The liquid atomizing apparatus according to claim 1, wherein the liquid is ejected from the liquid orifice portion by siphon action by the first and second gas flows ejected from the first and second gas orifice portions.
  4.  前記気体圧力源は、
     シリンジと、
     前記シリンジ内を可動して、シリンジ内部の気体をシリンジ先端から押し出すプランジャーと、を有して構成される、請求項1から3のいずれか1項に記載の液体霧化装置。
    The gas pressure source is:
    A syringe,
    The liquid atomizing apparatus according to any one of claims 1 to 3, further comprising a plunger that moves inside the syringe and pushes the gas inside the syringe from the tip of the syringe.
  5.  前記気体圧力源は、
     バルーン式ポンプまたは携帯式空気入れである、請求項1から4のいずれか1項に記載の液体霧化装置。
    The gas pressure source is:
    The liquid atomizing apparatus according to any one of claims 1 to 4, wherein the liquid atomizing apparatus is a balloon-type pump or a portable air pump.
  6.  前記気液混合エリア部において、前記液体オリフィス部先端部から噴射された液体に対し、前記第1気体オリフィス部から噴射された第1気体流と前記第2気体オリフィス部から噴射された第2気体流とを衝突させて2本の液柱を形成し、かつ当該液体を霧化させる、ことを特徴とする、請求項1から5のいずれか1項に記載の液体霧化装置。 In the gas-liquid mixing area portion, the first gas flow injected from the first gas orifice portion and the second gas injected from the second gas orifice portion with respect to the liquid injected from the tip portion of the liquid orifice portion The liquid atomizing apparatus according to claim 1, wherein the liquid is collided to form two liquid columns and the liquid is atomized.
  7.  前記液体オリフィス部が、直列に2つまたは3つ形成され、
     前記第1気体オリフィス部から噴射された第1気体流と前記第2気体オリフィス部から噴射された第2気体流とが、直列に配置された前記液体オリフィス部の直列両端から挟み込むように、前記液体オリフィス部から出た液体に衝突し、当該液体を霧化する、請求項1~6のいずれか1項に記載の液体霧化装置。
    Two or three liquid orifice portions are formed in series,
    The first gas flow injected from the first gas orifice part and the second gas flow injected from the second gas orifice part are sandwiched from both ends of the series of the liquid orifice parts arranged in series. The liquid atomizing device according to any one of claims 1 to 6, wherein the liquid atomizing device collides with the liquid exiting from the liquid orifice portion and atomizes the liquid.
  8.  前記液体霧化装置は、
     前記気液混合エリア部から出る霧の噴霧方向に設けられ、前記内部空間を有し、当該内部空間において霧をさらに微細化する微細化促進部をさらに有する請求項1~7のいずれか1項に記載の液体霧化装置。
    The liquid atomizer is
    8. The apparatus according to claim 1, further comprising a miniaturization promoting unit that is provided in a spraying direction of the mist coming from the gas-liquid mixing area part, has the internal space, and further refines the mist in the internal space. The liquid atomization apparatus as described in.
PCT/JP2013/054105 2012-02-21 2013-02-20 Liquid atomization device WO2013125555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500726A JP5971532B2 (en) 2012-02-21 2013-02-20 Liquid atomizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-035241 2012-02-21
JP2012035241 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013125555A1 true WO2013125555A1 (en) 2013-08-29

Family

ID=49005737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054105 WO2013125555A1 (en) 2012-02-21 2013-02-20 Liquid atomization device

Country Status (2)

Country Link
JP (1) JP5971532B2 (en)
WO (1) WO2013125555A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219088A (en) * 2014-05-16 2015-12-07 フェムトディプロイメンツ株式会社 Liquid membrane nozzle device, injection needle, syringe, syringe type liquid membrane generation device, liquid sterilization device, liquid screen formation device, and method for manufacturing liquid membrane nozzle device
WO2017180151A1 (en) 2016-04-15 2017-10-19 Kaer Biotherapeutics Corporation Aerosolizing nozzle and method of operating such aerosolizing nozzle
CN107376063A (en) * 2017-07-04 2017-11-24 浙江医尔仁医疗科技有限公司 Chinese and Western medicine targets atomising device
IT201600080879A1 (en) * 2016-08-01 2018-02-01 Giorgio Mezzoli REGULATOR
JP2018149170A (en) * 2017-03-14 2018-09-27 ニプロ株式会社 Syringe type ejection device
WO2018186277A1 (en) * 2017-04-04 2018-10-11 ニプロ株式会社 Syringe-type ejector
WO2019017176A1 (en) * 2017-07-21 2019-01-24 スプレーイングシステムスジャパン合同会社 Double-fluid nozzle
WO2019225226A1 (en) * 2018-05-24 2019-11-28 ニプロ株式会社 Syringe-type ejection device
WO2019228946A1 (en) * 2018-05-29 2019-12-05 Shl Medical Ag Assembly for spray device, spray device, medicament delivery device and method
US10661033B2 (en) 2016-04-15 2020-05-26 Kaer Biotherapeutics Corporation Aerosolizing nozzle and method of operating such aerosolizing nozzle
JP2021522920A (en) * 2018-05-29 2021-09-02 エスエイチエル・メディカル・アーゲー Nozzle and cartridge assembly
WO2022003592A1 (en) * 2020-07-01 2022-01-06 Adl Farmaceutici S.R.L. Improved nasal atomizer
US11278925B2 (en) 2017-04-27 2022-03-22 Aptar France Sas Head for dispensing a fluid product
EP4201457A1 (en) * 2021-12-22 2023-06-28 Gerresheimer Regensburg GmbH Atomizing means

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234525A1 (en) * 2017-06-22 2018-12-27 Softhale Nv Inhalation device with multiliquid-nozzle and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914296B2 (en) * 1974-01-04 1984-04-04 フイブス カイユ バブコツク Cooling device for continuous casting equipment
JP2583780Y2 (en) * 1991-02-06 1998-10-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー Low pressure high volume spray type
WO2002024298A1 (en) * 2000-09-25 2002-03-28 Siemens Aktiengesellschaft Device for continuously vaporizing small quantities of a liquid
JP2004527347A (en) * 2001-05-26 2004-09-09 イノバータ・バイオメッド・リミテッド apparatus
JP2007038124A (en) * 2005-08-02 2007-02-15 Institute Of Physical & Chemical Research Liquid atomizing nozzle and device using the same
JP2011062582A (en) * 2009-09-15 2011-03-31 Nozzle Network Co Ltd Instrument for accelerating micronization and gas-liquid mixing nozzle device
JP2011098284A (en) * 2009-11-05 2011-05-19 Nozzle Network Co Ltd Nozzle for mixing gas and liquid
JP2011212649A (en) * 2010-03-15 2011-10-27 Nozzle Network Co Ltd Two-fluid nozzle and atomizing device provided with two-fluid nozzle
JP2012030179A (en) * 2010-07-30 2012-02-16 Nozzle Network Co Ltd Micronizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435282A (en) * 1994-05-19 1995-07-25 Habley Medical Technology Corporation Nebulizer
JP2930526B2 (en) * 1994-05-31 1999-08-03 株式会社キートロン Injector type atomizer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914296B2 (en) * 1974-01-04 1984-04-04 フイブス カイユ バブコツク Cooling device for continuous casting equipment
JP2583780Y2 (en) * 1991-02-06 1998-10-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー Low pressure high volume spray type
WO2002024298A1 (en) * 2000-09-25 2002-03-28 Siemens Aktiengesellschaft Device for continuously vaporizing small quantities of a liquid
JP2004527347A (en) * 2001-05-26 2004-09-09 イノバータ・バイオメッド・リミテッド apparatus
JP2007038124A (en) * 2005-08-02 2007-02-15 Institute Of Physical & Chemical Research Liquid atomizing nozzle and device using the same
JP2011062582A (en) * 2009-09-15 2011-03-31 Nozzle Network Co Ltd Instrument for accelerating micronization and gas-liquid mixing nozzle device
JP2011098284A (en) * 2009-11-05 2011-05-19 Nozzle Network Co Ltd Nozzle for mixing gas and liquid
JP2011212649A (en) * 2010-03-15 2011-10-27 Nozzle Network Co Ltd Two-fluid nozzle and atomizing device provided with two-fluid nozzle
JP2012030179A (en) * 2010-07-30 2012-02-16 Nozzle Network Co Ltd Micronizer

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219088A (en) * 2014-05-16 2015-12-07 フェムトディプロイメンツ株式会社 Liquid membrane nozzle device, injection needle, syringe, syringe type liquid membrane generation device, liquid sterilization device, liquid screen formation device, and method for manufacturing liquid membrane nozzle device
CN109562237B (en) * 2016-04-15 2021-08-27 卡尔生物治疗公司 Atomizing nozzle and method for operating such an atomizing nozzle
WO2017180151A1 (en) 2016-04-15 2017-10-19 Kaer Biotherapeutics Corporation Aerosolizing nozzle and method of operating such aerosolizing nozzle
AU2016402362B2 (en) * 2016-04-15 2022-03-17 Kaer Biotherapeutics Corporation Aerosolizing nozzle and method of operating such aerosolizing nozzle
EP3442628A4 (en) * 2016-04-15 2020-01-01 KAER Biotherapeutics Corporation Aerosolizing nozzle and method of operating such aerosolizing nozzle
US10661033B2 (en) 2016-04-15 2020-05-26 Kaer Biotherapeutics Corporation Aerosolizing nozzle and method of operating such aerosolizing nozzle
CN109562237A (en) * 2016-04-15 2019-04-02 卡尔生物治疗公司 Atomizer and the method for operating such atomizer
IT201600080879A1 (en) * 2016-08-01 2018-02-01 Giorgio Mezzoli REGULATOR
JP2018149170A (en) * 2017-03-14 2018-09-27 ニプロ株式会社 Syringe type ejection device
US11638791B2 (en) 2017-04-04 2023-05-02 Nipro Corporation Syringe type ejection device
JP2018175006A (en) * 2017-04-04 2018-11-15 ニプロ株式会社 Syringe type jet device
WO2018186277A1 (en) * 2017-04-04 2018-10-11 ニプロ株式会社 Syringe-type ejector
US11278925B2 (en) 2017-04-27 2022-03-22 Aptar France Sas Head for dispensing a fluid product
CN107376063B (en) * 2017-07-04 2020-08-21 浙江医尔仁医疗科技有限公司 Chinese and western medicine targeted atomization device
CN107376063A (en) * 2017-07-04 2017-11-24 浙江医尔仁医疗科技有限公司 Chinese and Western medicine targets atomising device
JP2019018183A (en) * 2017-07-21 2019-02-07 スプレーイングシステムスジャパン合同会社 Two-fluid nozzle
WO2019017176A1 (en) * 2017-07-21 2019-01-24 スプレーイングシステムスジャパン合同会社 Double-fluid nozzle
JP2019201985A (en) * 2018-05-24 2019-11-28 ニプロ株式会社 Syringe type ejection device
WO2019225226A1 (en) * 2018-05-24 2019-11-28 ニプロ株式会社 Syringe-type ejection device
US11975137B2 (en) 2018-05-24 2024-05-07 Nipro Corporation Syringe-shaped spraying device
WO2019228946A1 (en) * 2018-05-29 2019-12-05 Shl Medical Ag Assembly for spray device, spray device, medicament delivery device and method
JP2021522920A (en) * 2018-05-29 2021-09-02 エスエイチエル・メディカル・アーゲー Nozzle and cartridge assembly
WO2022003592A1 (en) * 2020-07-01 2022-01-06 Adl Farmaceutici S.R.L. Improved nasal atomizer
EP4201457A1 (en) * 2021-12-22 2023-06-28 Gerresheimer Regensburg GmbH Atomizing means

Also Published As

Publication number Publication date
JP5971532B2 (en) 2016-08-17
JPWO2013125555A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5971532B2 (en) Liquid atomizer
US20240024590A1 (en) Mixing channel for an inhalation device and inhalation device
WO2013094522A1 (en) Liquid atomization device
JP2002126587A (en) Spray nozzle device
CN102470026A (en) Atomized liquid oral cleaning appliance
CN106456915A (en) Aerosolisation engine for liquid drug delivery background
KR102446255B1 (en) aerosol generator
US20150035179A1 (en) Liquid atomization device
JP2011098284A (en) Nozzle for mixing gas and liquid
US20130334342A1 (en) Liquid atomizing device and liquid atomizing method
JP2020524541A (en) Inhalation device and method with multi-liquid nozzle
RU2755024C2 (en) Nozzle for various liquids
US20130181063A1 (en) Liquid Atomizing Device and Liquid Atomizing Method
WO2013073336A1 (en) Liquid atomization device
JP2011062583A (en) Gas-liquid mixing nozzle
CN202479071U (en) Anti-effusion atomizing nozzle
TWI527628B (en) Ultrasonic nozzle of two-fluid atomizing device
JP2013180258A (en) Liquid atomizing device
WO2023228634A1 (en) Atomization device
CN219334602U (en) Electronic atomizing device
JP6030790B1 (en) Spray nozzle device
WO2016066833A1 (en) Gas supplied atomiser
JP2013193006A (en) Liquid atomization apparatus
US20180161526A1 (en) Spray device for the delivery of therapeutic agents
CN118142736A (en) Electronic atomizing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752121

Country of ref document: EP

Kind code of ref document: A1