WO2013125493A1 - Tomographic image acquisition device - Google Patents

Tomographic image acquisition device Download PDF

Info

Publication number
WO2013125493A1
WO2013125493A1 PCT/JP2013/053892 JP2013053892W WO2013125493A1 WO 2013125493 A1 WO2013125493 A1 WO 2013125493A1 JP 2013053892 W JP2013053892 W JP 2013053892W WO 2013125493 A1 WO2013125493 A1 WO 2013125493A1
Authority
WO
WIPO (PCT)
Prior art keywords
tomographic image
main body
image acquisition
acquisition apparatus
unit
Prior art date
Application number
PCT/JP2013/053892
Other languages
French (fr)
Japanese (ja)
Inventor
狩野 渉
裕一 多田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013125493A1 publication Critical patent/WO2013125493A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer

Definitions

  • the present invention relates to a tomographic image acquisition apparatus that is inserted into a living body to acquire a tomographic image and from which a treatment tool that performs a treatment on the living body protrudes.
  • Patent Document 1 describes a technique for projecting a puncture needle that shows an example of a treatment instrument that performs a treatment on a living body from an ultrasonic probe that shows an example of a tomographic image acquisition apparatus.
  • the protrusion angle at which the treatment tool protrudes by tilting the tip of the main body part regulate.
  • the protrusion angle at which the treatment tool protrudes is constant. Therefore, when there is a treatment target part to be treated at a position away from the wall surface of the bronchus or blood vessel or the like into which the main body part of the tomographic image acquisition apparatus is inserted, the treatment tool is operated by operating the position and posture of the tip of the main body part. It was necessary to adjust the protruding angle to protrude, and the work was very troublesome.
  • the projection angle was adjusted by operating the main body with a human hand, so that the surgeon can accurately reach the treatment target site. The ability of was greatly influenced.
  • An object of the present invention is to provide a tomographic image acquisition apparatus that can simplify the work in consideration of the above-mentioned problems and can accurately reach the treatment tool to the treatment target site without being affected by the ability of the operator. It is to provide.
  • a tomographic image acquisition apparatus of the present invention includes a tubular main body, a sensor unit, an insertion port, a projection port, a projection angle adjustment mechanism, and a control unit. And with.
  • the main body is inserted into the living body.
  • a sensor part is provided in the front-end
  • the insertion port is provided in the main body, and a treatment tool for performing treatment on a treatment target site in a living body is inserted.
  • the projecting port is provided in the main body, and projects the distal end of the treatment instrument inserted into the main body.
  • the protrusion angle adjusting mechanism is provided in the protrusion and adjusts the protrusion angle of the treatment instrument. And a control part produces
  • the projecting angle of the treatment tool can be changed without changing the position and posture of the main body, so that the operation can be simplified.
  • the control unit automatically adjusts the protrusion angle of the treatment tool based on the tomographic image, the treatment tool can accurately reach the treatment target region without being affected by the ability of the operator. .
  • FIG. 10A shows a tomographic image acquisition apparatus according to a fourth embodiment of the present invention.
  • FIG. 10A is a cross-sectional view showing a state in which the first sensor is inserted into the main body, and FIG.
  • FIG. 10B shows that the second sensor is inserted into the main body. it is a sectional view showing a state.
  • FIG. 11A is a sectional view and FIG. 11B is a front view showing a modification of the fixing mechanism of the tomographic image acquisition apparatus according to the fourth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a tomographic image acquisition apparatus of this example
  • FIG. 2 is a cross-sectional view showing a main part of the tomographic image acquisition apparatus of this example.
  • a tomographic image acquisition apparatus 1 shown in FIG. 1 is an apparatus that acquires a tomographic image in a living body and projects a treatment tool that performs a treatment on the living body.
  • the tomographic image acquisition apparatus 1 includes an ultrasonic probe 2 that is inserted into a living body, an image diagnosis unit 7, and a motor drive unit 8 that indicates a rotation drive unit.
  • the ultrasonic probe 2 has a main body portion 11 formed in a tubular shape, a sensor portion 12 built in the main body portion 11, and a drive shaft 13 (see FIG. 2).
  • a treatment tool 3 for performing treatment on a living body is attached to the ultrasonic probe 2 so as to be movable back and forth.
  • Examples of the treatment tool 3 include a biopsy device that collects tissue of a treatment target site in a living body, a guide wire that marks the position of the treatment target site, and / or guides the biopsy device, a stylet, and the like. .
  • the main body 11 is formed in an elongated and substantially cylindrical shape, and both ends thereof are closed.
  • the shape of the main body 11 is not limited to a substantially cylindrical shape, and various other shapes such as a rectangular tube shape or an elliptical cross section cut in a direction orthogonal to the axial direction are applied. can.
  • the front end of the main body 11 in the axial direction, that is, the side to be inserted into the living body is formed in a substantially hemispherical shape so as to be easily inserted into the lumen of the living body. Further, the main body 11 has flexibility in order to bend according to the bending of the lumen.
  • An insertion port 14 is formed on the base end side of the main body 11, and a projection port 15 is formed on the front end side of the main body 11.
  • the insertion port 14 and the projection port 15 communicate with each other through the insertion hole 16. Then, the treatment instrument 3 is inserted into the main body 11 from the insertion port 14.
  • the treatment tool 3 inserted into the insertion port 14 is inserted through the insertion hole 16. Further, the distal end portion of the treatment instrument 3 inserted through the insertion hole 16 protrudes from the protrusion port 15 to the outside of the main body portion 11.
  • the axial direction of the main body 11 is defined as the first direction X, and the direction orthogonal to the first direction X in the plane formed by the first direction X and the direction in which the treatment instrument 3 protrudes is the second direction. described as Y.
  • the main body 11 is provided with a protrusion angle adjusting mechanism 17 that adjusts the protrusion angle ⁇ of the treatment instrument 3.
  • the protrusion angle adjustment mechanism 17 includes an adjustment piece 21, an operation wire 22, an urging member 23, and an adjustment drive unit (not shown).
  • the adjusting piece 21 adjusts the protrusion angle of the treatment tool 3 from the protrusion 15 by bending the tip of the treatment tool 3 by contacting the treatment tool 3.
  • the adjustment piece 21 is formed in the shape of a tongue piece, and is arranged on the distal end side of the main body portion 11 in the protruding port 15.
  • a support shaft 24 is attached to one end of the adjustment piece 21 on the protruding port 15 side. Further, the adjustment piece 21 is rotatably supported by the main body 11 by the support shaft 24. Then, the adjustment piece 21 rotates along a plane formed by the first direction X and the second direction Y.
  • the treatment instrument 3 comes into contact with the contact surface 21a on the opposite side of the tip of the main body 11 in the adjustment piece 21.
  • the contact surface 21 a of the adjustment piece 21 is erected along the second direction Y, and the direction in which the opening of the protrusion 15 and the insertion hole 16 extend (first It is orthogonal to the direction X).
  • a biasing member 23 is attached to the other end of the adjustment piece 21 opposite to the end where the support shaft 24 is provided.
  • the urging member 23 is formed from a tension coil spring. The urging member 23 is fixed to the other end of the adjustment piece 21, and always urges the other end of the adjustment piece 21 toward the distal end side of the main body 11.
  • an operation wire 22 is attached to the other end of the adjustment piece 21.
  • the operation wire 22 is provided so as to be movable back and forth along the first direction X in which the main body 11 extends.
  • the end of the operation wire 22 opposite to the adjustment piece 21 is connected to the adjustment drive unit.
  • the adjustment drive unit When the adjustment drive unit is driven and the operation wire 22 is operated (pulled) toward the proximal end in the axial direction of the main body 11, the other end of the adjustment piece 21 protrudes against the urging force of the urging member 23.
  • the adjustment piece 21 rotates in a direction approaching the mouth 15 (see FIG. 7). That is, the adjustment piece 21 is inclined with respect to the first direction X.
  • protrusion angle the angle at which the treatment instrument 3 protrudes from the protrusion 15
  • the example which formed the adjustment piece 21 of the protrusion angle adjustment mechanism 17 in the shape of a tongue piece was demonstrated in this example, it is not limited to this.
  • a sensor unit 12 that transmits and receives signals is rotatably provided at the tip of the main body unit 11.
  • the sensor unit 12 is disposed closer to the distal end side of the main body 11 than the protrusion 15 provided in the main body 11.
  • the sensor unit 12 is provided so as to be biased in a direction away from the projecting port 15 with respect to the axis direction of the main body unit 11 in the second direction Y.
  • the position where the sensor unit 12 is provided is not limited to the position deviated from the axis center.
  • the sensor unit 12 may be arranged at the axial center of the main body unit 11, and the position where the sensor unit 12 is provided is not particularly limited.
  • the sensor unit 12 includes a substantially cylindrical ultrasonic transducer that transmits ultrasonic waves to a living body, and a receiver that receives a reflected ultrasonic signal reflected from the living body. That is, the tomographic image acquisition apparatus 1 of this example is an apparatus that acquires a tomographic image in a living body as an ultrasound image. A drive shaft 13 is attached to the sensor unit 12.
  • the drive shaft 13 is inserted through the main body portion 11 from the distal end portion to the proximal end portion.
  • the drive shaft 13 is connected to a motor drive unit 8 (see FIG. 3) provided at the proximal end portion of the main body portion 11 in the axial direction.
  • a motor drive unit 8 (see FIG. 3) provided at the proximal end portion of the main body portion 11 in the axial direction.
  • the rotational force is transmitted to the sensor unit 12 via the drive shaft 13.
  • the sensor unit 12 rotates about the first direction X as a rotation center.
  • the tomographic image acquisition apparatus 1 of this example has a scanning range of 360 degrees around the side surface of the main body 11, that is, in a direction orthogonal to the first direction X.
  • the ultrasonic image is acquired in the range of 360 degrees by rotating the sensor unit 12
  • the present invention is not limited to this.
  • the sensor unit 12 may not be rotated, or ultrasonic transducers may be arranged in an arc shape to acquire an ultrasonic image within a range of 360 degrees or less. That is, the present invention only needs to acquire an in-vivo tomographic image including the treatment target region M1.
  • the ultrasonic probe 2 is used while being inserted into a guide sheath 6.
  • the guide sheath 6 is formed in a tube shape with both ends open and has flexibility.
  • the guide sheath 6 is for guiding the ultrasonic probe 2 to the central part of the bronchus N1 and supporting the insertion of the ultrasonic probe 2.
  • a balloon 6 a that has elasticity and can be inflated and contracted is provided at the distal end of the guide sheath 6 in the axial direction.
  • the balloon 6a When the balloon 6a is inflated with the guide sheath 6 inserted into the lumen of the living body, the balloon 6a comes into close contact with the wall surface of the lumen (see FIG. 5).
  • the example which provided the balloon 6a in the guide sheath 6 was demonstrated in this example, it is not limited to this, You may provide the balloon 6a in the front-end
  • the balloon 6 a may be provided on at least one of the ultrasonic probe 2 and the guide sheath 6.
  • a balloon 6 a may be provided on the side surface of the main body 11 so as to surround the sensor unit 12. In this case, a liquid capable of transmitting ultrasonic vibration is injected into the balloon 6a.
  • FIG. 3 is a block diagram showing a control system of the tomographic image acquisition apparatus 1.
  • the image diagnosis unit 7 includes a control unit 31 and an image display unit 32.
  • the control unit 31 includes an angle adjustment signal transmission / reception unit 33, an ultrasonic signal transmission / reception unit 34, a motor control circuit 35, and a signal processing unit 36.
  • the angle adjustment signal transmission / reception unit 33 is connected to the protrusion angle adjustment mechanism 17 in the ultrasonic probe 2. Further, the angle adjustment signal transmitting / receiving unit 33 is connected to the signal processing unit 36. The angle adjustment signal transmission / reception unit 33 receives the angle adjustment signal calculated by the signal processing unit 36. Further, the angle adjustment signal transmission / reception unit 33 transmits the received angle adjustment signal to the protrusion angle adjustment mechanism 17. And the protrusion angle adjustment mechanism 17 drives the adjustment drive part based on the received angle adjustment signal, and adjusts the angle of the adjustment piece 21 (refer FIG. 2).
  • the angle adjustment signal transmission / reception unit 33 receives angle information of the adjustment piece 21 (see FIG. 2) from the protrusion angle adjustment mechanism 17 and transmits it to the signal processing unit 36.
  • the ultrasonic signal transmission / reception unit 34 is connected to the sensor unit 12 and the signal processing unit 36 of the ultrasonic probe 2.
  • the ultrasonic signal transmitting / receiving unit 34 is connected to the sensor unit 12 via the drive shaft 13 via a rotary joint 41 described later.
  • the ultrasonic signal transmission / reception unit 34 receives an ultrasonic oscillation signal from the signal processing unit 36 and transmits the received ultrasonic oscillation signal to the sensor unit 12.
  • the sensor unit 12 oscillates the ultrasonic transducer based on the ultrasonic oscillation signal from the ultrasonic signal transmission / reception unit 34.
  • the reflected ultrasonic signal received by the receiver of the sensor unit 12 is sent from the sensor unit 12 to the ultrasonic signal transmitting / receiving unit 34. Then, the ultrasonic signal transmitting / receiving unit 34 transmits the received reflected ultrasonic signal to the signal processing unit 36.
  • the signal processing unit 36 is connected to the image display unit 32.
  • the signal processing unit 36 is connected to the motor drive unit 8 through the motor control circuit 35.
  • the motor drive unit 8 includes a rotary joint 41 and a rotation drive device 42.
  • the rotation drive device 42 is connected to the drive shaft 13 of the ultrasonic probe 2 via the rotary joint 41.
  • the rotation drive device 42 includes a radial scanning motor 43 and an encoder unit 44.
  • the radial scanning motor 43 is driven to rotate based on a rotation signal sent from the signal processing unit 36 via the motor control circuit 35.
  • the rotational force of the radial scanning motor 43 is transmitted to the drive shaft 13 and the sensor unit 12 of the ultrasonic probe 2 via the rotary joint 41. Further, the rotation information of the radial scanning motor 43 is detected by the encoder unit 44.
  • the encoder unit 44 transmits the detected rotation information of the radial scanning motor 43 to the signal processing unit 36 via the motor control circuit 35.
  • the signal processing unit 36 generates an ultrasonic tomographic image based on the reflected ultrasonic image signal received by the sensor unit 12 and the rotation information of the radial scanning motor 43 received from the encoder unit 44.
  • the ultrasonic tomographic image generated by the signal processing unit 36 is displayed on the image display unit 32.
  • an ultrasonic endoscope apparatus was demonstrated as a tomographic image acquisition apparatus in this example, it is not limited to this.
  • an optical coherence tomography apparatus (provided with a light irradiating unit that irradiates light to a living body and a light receiving unit that receives light reflected from the living body and using light interference)
  • Optical Coherent Tomography may be applied.
  • the tomographic image acquisition apparatus may be any apparatus that can acquire a tomographic image in a living body.
  • FIG. 4 is an explanatory diagram showing a state in which the ultrasonic probe 2 is inserted into the living body.
  • the guide sheath 6 is omitted.
  • FIG. 5 is a side view showing a state in which the distal end portion of the ultrasonic probe 2 is inserted to the vicinity of the treatment target site.
  • 6 is a diagram illustrating an example of a tomographic image displayed on the image display unit 32 of the image diagnostic unit 7
  • FIG. 7 is a cross-sectional view illustrating a state where the treatment tool 3 is punctured into a treatment target site.
  • the ultrasonic probe 2 is inserted from the oral cavity P of the patient R into the bronchus N1 of the lung Q showing an example of a living body. At this time, the ultrasonic probe 2 is inserted through the cylindrical hole of the guide sheath 6 as shown in FIGS.
  • the balloon 6a provided at the distal end of the guide sheath 6 is inflated, and the balloon 6a is brought into close contact with the wall surface of the bronchus N1. Thereby, the periphery of the bronchi N1 ahead of the balloon 6a is occluded.
  • a liquid that is an ultrasonic transmission medium is injected into the distal side of the bronchi N1 from the balloon 6a. Examples of the liquid to be injected include physiological saline.
  • the air layer that obstructs the propagation of ultrasonic waves can be removed by filling the peripheral side of the bronchi N1 with liquid. As a result, a clear ultrasonic image can be acquired by the ultrasonic probe 2.
  • the ultrasonic probe 2 is inserted up to the treatment target site M1, that is, a location where a so-called nodule is found.
  • pouring the liquid was demonstrated, you may inject
  • the sensor unit 12 is driven to receive the reflected ultrasonic signal reflected from the bronchus N1. Then, the sensor unit 12 transmits the received reflected ultrasonic signal to the control unit 31 of the image diagnostic unit 7. At this time, when the motor drive unit 8 is driven, the sensor unit 12 and the drive shaft 13 rotate around the first direction X (see FIG. 7). The rotation information of the sensor unit 12 is sent from the encoder unit 44 to the control unit 31.
  • the control unit 31 generates an ultrasonic tomographic image from the reflected ultrasonic signal and the rotation information of the sensor unit 12.
  • the generated ultrasonic tomographic image is displayed on the image display unit 32. Thereby, an ultrasonic image in a range of 360 degrees around the side surface of the main body 11, that is, in a direction orthogonal to the first direction X can be acquired.
  • the position of the ultrasonic probe 2 is adjusted so that the treatment target site M1 is captured on the ultrasonic image obtained by the ultrasonic probe 2.
  • the image display unit 32 of the image diagnosis unit 7 displays a cross-sectional image of the main body 11 of the ultrasonic probe 2 and the bronchi N1 as shown in FIG. 6, for example.
  • An ultrasonic image including a tomographic image is displayed.
  • the sensor unit 12 is disposed at a position deviated from the axis of the main body unit 11 in the second direction Y, that is, away from the projecting port 15 in the second direction Y.
  • the position of the projection port 15 from which the treatment tool 3 projects can be easily determined. Then, the surgeon rotates the ultrasonic probe 2 so that the protruding port 15 faces the treatment target site M1 side in the second direction Y.
  • the image display unit 32 may display a mark P indicating the side of the main body 11 where the protrusion 15 is provided, that is, the position where the treatment instrument 3 protrudes. In this case, even if the sensor unit 12 is provided at the axial center of the main body unit 11, the position of the protruding port 15 can be easily determined.
  • the surgeon designates a treatment target part M1 to be treated from the displayed ultrasonic image, and inputs position information of the treatment target part M1 to the image diagnosis unit 7 (see FIG. 3). Based on the input position information, the control unit 31 of the image diagnostic unit 7 measures the distance D in the second direction Y from the outer wall of the side surface of the main body 11 to the central part of the treatment target site M1.
  • control unit 31 may automatically search the treatment target part M1 from the ultrasonic image and measure the distance D. good. Further, when the treatment target part M1 is designated, the control is performed when the treatment target part M1 is not located in the plane A (see FIG. 6) formed in the first direction X and the direction in which the treatment tool 3 protrudes.
  • the unit 31 may display on the image display unit 32 that the ultrasonic probe 2 needs to be rotated.
  • the distance L in the first direction X from the sensor unit 12 to the projection port 15 from which the treatment instrument 3 projects is always constant.
  • the information on the distance L is set in the control unit 31 in advance.
  • control part 31 calculates protrusion angle (theta) which makes the treatment tool 3 protrude from the distance D and the distance L.
  • the control unit 31 generates an angle adjustment signal based on the calculated protrusion angle ⁇ , and transmits the generated angle adjustment signal to the protrusion angle adjustment mechanism 17. And as shown in FIG. 7, the protrusion angle adjustment mechanism 17 drives an adjustment drive part based on the received angle adjustment signal.
  • the adjustment drive unit is driven, the operation wire 22 is pulled by the adjustment drive unit.
  • the adjustment piece 21 rotates around the support shaft 24 against the urging force of the urging member 23. Thereby, the angle of the adjustment piece 21 is adjusted.
  • the control unit 31 includes the lower limit distance D1 in the second direction Y from the outer wall of the side surface of the main body 11 to the lower limit position where treatment is possible in the treatment target site M1, and the The upper limit distance D2 in the second direction Y from the outer wall of the side surface portion to the upper limit position at which treatment is possible in the treatment target site M1 is measured. Then, the protrusion angle range ⁇ 1 to ⁇ 2 may be calculated from the measured lower limit distance D1 and upper limit distance D2 and the distance L. In this way, by providing a range for the protrusion angle ⁇ , the accuracy of angle adjustment by the protrusion angle adjusting mechanism 17 can be set low.
  • the treatment instrument 3 is inserted into the insertion port 14 of the ultrasonic probe 2. Note that when the ultrasonic probe 2 is inserted into the bronchi N1 and the guide sheath 6, the treatment tool 3 may be inserted through the insertion hole of the ultrasonic probe 2 in advance.
  • the treatment tool 3 is bent by coming into contact with the contact surface 21a of the adjustment piece 21, and its traveling direction is adjusted. Therefore, the distal end portion of the treatment instrument 3 protrudes from the protrusion port 15 at a protrusion angle ⁇ .
  • the protrusion angle ⁇ of the treatment instrument 3 is set so that the treatment instrument 3 reliably reaches the treatment target site M1. Therefore, when the treatment tool 3 is further inserted into the bronchi N1, the distal end portion of the treatment tool 3 reaches the treatment target site M1.
  • the operation of the tomographic image acquisition apparatus 1 of this example is completed.
  • the control unit 31 automatically calculates the protrusion angle ⁇ of the treatment instrument 3 from the ultrasonic image acquired by the sensor unit 12. Therefore, the optimal protrusion angle ⁇ of the treatment instrument 3 can be automatically set without being affected by the ability of the operator.
  • the projection angle ⁇ of the treatment tool 3 can be set more accurately. Thereby, it can control that the arrival part of treatment implement 3 shifts from treatment object part M1.
  • the protrusion angle adjustment mechanism is automatically operated based on the calculated protrusion angle ⁇ . Therefore, the protrusion angle of the treatment tool 3 can be changed without changing the position and posture of the distal end portion of the main body 11, and the work can be simplified.
  • FIG. 8 is a cross-sectional view showing the main part of the tomographic image acquisition apparatus according to the second embodiment.
  • the difference between the tomographic image acquisition apparatus 51 according to the second embodiment and the tomographic image acquisition apparatus 1 according to the first embodiment is the configuration of the protrusion angle adjustment mechanism in the ultrasonic probe. Therefore, here, the protrusion angle adjusting mechanism will be described, and the same reference numerals are given to the portions common to the tomographic image acquisition apparatus 1, and the redundant description will be omitted.
  • the ultrasonic probe 52 in the tomographic image acquisition apparatus 51 is provided with a protrusion angle adjusting mechanism 57.
  • the protrusion angle adjustment mechanism 57 includes an adjustment piece 61, a first operation wire 62, a second operation wire 63, a support shaft 64, and an adjustment drive unit (not shown).
  • the adjustment piece 61 is formed in the shape of a tongue piece, and is disposed on the distal end side of the main body 11 in the protruding port 15.
  • a first operation wire 62 is attached to one end of the adjustment piece 61 on the protruding port 15 side.
  • a second operation wire 63 is attached to the other end of the adjustment piece 61 opposite to the one end.
  • a support shaft 64 is provided at an intermediate portion between one end and the other end of the adjustment piece 61.
  • the adjustment piece 61 is rotatably supported on the main body 11 by a support shaft 64. Then, the adjustment piece 61 rotates along a plane that is locked in the first direction X and the second direction Y.
  • the first operation wire 62 and the second operation wire 63 are arranged to be movable back and forth along the first direction X in which the main body 11 extends.
  • An adjustment drive unit is connected to the end of the first operation wire 62 and the second operation wire 63 opposite to the adjustment piece 61.
  • the adjustment piece 61 rotates around the support shaft 64.
  • the angle with the first direction X on the contact surface 61a of the adjustment piece 61 is increased. That is, the adjustment piece 61 rotates in a direction in which the contact surface 61 a is orthogonal to the first direction X.
  • the adjustment piece 61 rotates about the support shaft 64 in the direction opposite to the above-described direction.
  • the angle of the contact surface 61a of the adjustment piece 61 with the first direction X is small. That is, the adjustment piece 61 rotates in a direction in which the contact surface 61 a is parallel to the first direction X.
  • FIG. 9 is a schematic configuration diagram of a tomographic image acquisition apparatus according to the third embodiment.
  • the difference between the tomographic image acquisition apparatus 71 according to the third embodiment and the tomographic image acquisition apparatus 1 according to the first embodiment is the position of the insertion port provided in the main body of the ultrasonic probe. is there. Therefore, here, the ultrasonic probe will be described, and the same reference numerals are given to portions common to the tomographic image acquisition apparatus 1, and duplicate description will be omitted.
  • the ultrasonic probe 72 in the tomographic image acquisition apparatus 71 has a main body portion 81 and a sensor portion 12 built in the main body portion 81. In the vicinity of the sensor portion 12 at the distal end portion of the main body portion 81, a protruding port 85 from which the treatment instrument 3 protrudes is formed.
  • an insertion port 84 for inserting the treatment instrument 3 is provided in the vicinity of the projection port 85 in the main body 81.
  • the insertion port 84 is formed closer to the proximal end side in the axial direction of the main body 81 than the projection port 85.
  • the insertion port 84 and the projection port 85 communicate with each other through the insertion hole 86.
  • the insertion hole 86 of the ultrasonic probe 72 according to the third embodiment is set shorter than the insertion hole 16 of the ultrasonic probe 2 according to the first embodiment. Then, the treatment tool 3 is inserted only into the distal end portion of the main body portion 81.
  • the ultrasonic probe 72 is left with the treatment tool 3 left.
  • the extraction work can be easily performed.
  • the length of the treatment tool 3 used in the tomographic image acquisition apparatus 71 according to the third embodiment is smaller than that of the treatment tool 3 used in the tomographic image acquisition apparatus 1 according to the first embodiment. Can be shortened.
  • the ultrasonic probe 72 is inserted into the living body after the treatment instrument 3 is inserted into the ultrasonic probe 72.
  • FIGS. 10A and 10B are cross-sectional views of a tomographic image acquisition apparatus according to the fourth embodiment.
  • the tomographic image acquisition apparatus 301 according to the fourth embodiment is different from the tomographic image acquisition apparatus 1 according to the first embodiment in that the sensor unit can be attached to and detached from the main body of the ultrasonic probe. such is the point. Therefore, here, the main body part and the sensor part of the ultrasonic probe will be described, the same reference numerals are given to the parts common to the tomographic image acquisition apparatus 1, and the duplicate description will be omitted.
  • the main body portion 311 of the tomographic image acquisition apparatus 301 is provided with the protrusion angle adjusting mechanism 17 and the insertion hole 16 through which the treatment instrument 3 is inserted.
  • an insertion hole 314 into which the first sensor portion 312 and the second sensor portion 313 are detachably inserted is formed.
  • the insertion hole 314 penetrates the main body 311 along the axial direction. Therefore, an opening of the insertion hole 314 is formed at the tip of the main body portion 311 in the axial direction.
  • the first sensor unit 312 is a sensor that is made of, for example, a camera and can visually recognize the front of the main body unit 311 in the axial direction.
  • the first sensor unit 312 is attached to the distal end of the bendable insertion member 312a in the axial direction.
  • the second sensor unit 313 includes an ultrasonic transducer that transmits an ultrasonic wave to a living body and a receiver that receives a reflected ultrasonic signal reflected from the living body.
  • the second sensor unit 313 can acquire an in-vivo tomographic image as an ultrasonic image.
  • the second sensor portion 313 is attached to the distal end of the bendable insertion member 313a in the axial direction.
  • the main body 311 and the second sensor unit 313 are provided with a fixing mechanism 315 that fixes the second sensor unit 313 at a predetermined position of the insertion hole 314.
  • the fixing mechanism 315 includes a main body side magnet 315 a provided in the insertion hole 314 of the main body portion 311 and a sensor side magnet 315 b provided in the second sensor portion 313.
  • the main body side magnet 315a and the sensor side magnet 315b are attracted and fixed to a predetermined position of the insertion hole 314 by attracting each other by the magnetic force.
  • the example which provided the magnet for both the main-body part 311 and the 2nd sensor part 313 was demonstrated as the fixing mechanism 315, it is not limited to this.
  • at least one of the main body portion 311 and the second sensor portion 313 may be provided with a magnet, and the other of the main body portion 311 and the second sensor portion 313 may be provided with a ferromagnetic material made of iron or the like.
  • the tomographic image acquisition apparatus 301 First, as shown to FIG. 10A, it inserts in the insertion hole 314 of the main-body part 311 using the 1st sensor part 312 which is a sensor which can visually recognize the front. Next, the main body 311 is guided to a target site in the living body using image information from the first sensor unit 312.
  • the first sensor unit 312 is pulled out from the insertion hole 314.
  • the 2nd sensor part 313 which acquires a tomographic image in a living body is inserted in an insertion hole.
  • the main body side magnet 315a and the sensor side magnet 315b are attracted and fixed.
  • the second sensor unit 313 can be fixed at a predetermined position in the insertion hole 314.
  • the other configuration is the same as that of the tomographic image acquisition apparatus 1 according to the first embodiment described above, description thereof is omitted. Also by the tomographic image acquisition apparatus 301 having such a main body 311, the same operations and effects as those of the tomographic image acquisition apparatus 1 according to the first embodiment described above can be obtained.
  • FIGS. 11A and 11B are diagrams showing a modification of the fixing mechanism of the tomographic image acquisition apparatus 301 according to the fourth embodiment.
  • the fixing mechanism 315B includes an engaging protrusion 316 provided in the insertion hole 314B of the main body 311B, an engaging protrusion 316, and an engaging groove 317.
  • the engagement groove 317 is provided in the second sensor unit 313B.
  • the engagement protrusion 316 protrudes from the wall surface of the insertion hole 314B toward the radial center.
  • the second sensor portion 313B is fixed at a predetermined position in the insertion hole 314B.
  • the engagement groove 317 is not provided in the first sensor unit. Therefore, the first sensor portion is not fixed at the position where the engagement protrusion 316 is provided in the insertion hole 314B.
  • the engaging groove 317 may be provided in the first sensor unit and fixed at the same position as the second sensor unit 313B.
  • the diameter of the first sensor unit is sufficiently larger than the diameter of the second sensor unit 313B. You may make it small and set to the magnitude
  • the present invention is not limited to this.
  • a cylindrical member that accommodates the second sensor portion in the cylindrical hole may be provided, and a fixing mechanism may be provided on the cylindrical member. You may enable it to support the 2nd sensor part rotatably in the axial direction within the cylinder hole of this cylindrical member.
  • the present invention is not limited to the embodiment described above and shown in the drawings, and various modifications can be made without departing from the scope of the invention described in the claims.
  • the living body into which the main body portion is inserted is not limited to the bronchi.
  • it can be applied to the treatment of living bodies in the digestive system such as the large intestine, the small intestine, the esophagus, the urinary system such as the urinary tract, and the other parts such as blood vessels.
  • a protrusion angle adjustment mechanism may be provided in all of the plurality of protrusions, or a protrusion angle adjustment mechanism may be provided in at least one of the plurality of protrusions.

Abstract

This tomographic image acquisition device (1) has a tubular main body (11), a sensor unit (12), an insertion hole (14), a protrusion hole (15), a protrusion-angle adjustment mechanism (17), and a control unit (31). The sensor unit (12) is provided at the tip of the main body (11), which is inserted into the subject, and transmits and receives signals into/from the subject's body. The protrusion-angle adjustment mechanism (17) is provided at the protrusion hole (15) and adjusts the angle (θ) at which a treatment tool (3) protrudes. The control unit (31) generates tomographic images on the basis of the signals received by the sensor unit (12) and operates the protrusion-angle adjustment mechanism (17) on the basis of said images.

Description

断層画像取得装置Tomographic image acquisition device
 本発明は、生体内に挿入されて断層画像を取得し、生体に対して処置を行う処置具が突出する断層画像取得装置に関する。 The present invention relates to a tomographic image acquisition apparatus that is inserted into a living body to acquire a tomographic image and from which a treatment tool that performs a treatment on the living body protrudes.
 従来のこの種の断層画像取得装置としては、例えば特許文献1に記載されているようなものがある。この特許文献1には、断層画像取得装置の一例を示す超音波プローブから生体に対して処置を行う処置具の一例を示す穿刺針を突出させる技術が記載されている。 As this type of conventional tomographic image acquisition apparatus, there is an apparatus described in Patent Document 1, for example. This Patent Document 1 describes a technique for projecting a puncture needle that shows an example of a treatment instrument that performs a treatment on a living body from an ultrasonic probe that shows an example of a tomographic image acquisition apparatus.
 特許文献1に記載された技術では、まず超音波プローブを生体内に挿入し、処置を行う処置対象部位の画像を取得する。そして、超音波プローブが取得した画像を観察した状態で穿刺針を処置対象部位に穿刺している。 In the technique described in Patent Document 1, first, an ultrasonic probe is inserted into a living body, and an image of a treatment target site to be treated is acquired. Then, the puncture needle is punctured at the treatment target site while observing the image acquired by the ultrasonic probe.
 また、断層画像取得装置の本体部が挿入される気管支や血管等の壁面から離れた位置に処置を行う処置対象部位がある場合、本体部の先端を傾かせて処置具が突出する突出角度を調節している。 In addition, when there is a treatment target part to be treated at a position away from a wall surface such as a bronchus or a blood vessel into which the main body part of the tomographic image acquisition apparatus is inserted, the protrusion angle at which the treatment tool protrudes by tilting the tip of the main body part regulate.
特開2003-164455号公報JP 2003-164455 A
 しかしながら、特許文献1に開示された技術では、処置具が突出する突出角度が一定であった。そのため、断層画像取得装置の本体部が挿入される気管支や血管等の壁面から離れた位置に処置を行う処置対象部位がある場合、本体部の先端の位置や姿勢を操作して、処置具が突出する突出角度を調節する必要があり、作業が大変煩わしいものであった。 However, in the technique disclosed in Patent Document 1, the protrusion angle at which the treatment tool protrudes is constant. Therefore, when there is a treatment target part to be treated at a position away from the wall surface of the bronchus or blood vessel or the like into which the main body part of the tomographic image acquisition apparatus is inserted, the treatment tool is operated by operating the position and posture of the tip of the main body part. It was necessary to adjust the protruding angle to protrude, and the work was very troublesome.
 また、術者が取得した生体の断層画像を観察しながら、人の手で本体部を操作して突出角度を調節していたため、正確に処置具を処置対象部位に到達させるには、術者の力量が大きく影響していた。 In addition, while observing the tomographic image of the living body acquired by the surgeon, the projection angle was adjusted by operating the main body with a human hand, so that the surgeon can accurately reach the treatment target site. The ability of was greatly influenced.
 本発明の目的は、上記の問題点を考慮し、作業の簡易化を図ると共に術者の力量に影響されることなく正確に処置具を処置対象部位に到達させることができる断層画像取得装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a tomographic image acquisition apparatus that can simplify the work in consideration of the above-mentioned problems and can accurately reach the treatment tool to the treatment target site without being affected by the ability of the operator. It is to provide.
 上記課題を解決し、本発明の目的を達成するため、本発明の断層画像取得装置は、管状の本体部と、センサ部と、挿入口と、突出口と、突出角度調節機構と、制御部とを備えた。
 本体部は、生体内に挿入される。センサ部は、本体部における生体内に挿入される先端部に設けられ、生体へ信号を送受信する。挿入口は、本体部に設けられ、生体における処置対象部位に対して処置を行う処置具が挿入される。突出口は、本体部に設けられ、本体部に挿入された処置具の先端部を突出させる。突出角度調節機構は、突出口に設けられ、処置具の突出角度を調節する。そして、制御部は、センサ部が受信した信号に基づいて断層画像を生成し、生成した断層画像に基づいて突出角度調節機構を操作する。
In order to solve the above problems and achieve the object of the present invention, a tomographic image acquisition apparatus of the present invention includes a tubular main body, a sensor unit, an insertion port, a projection port, a projection angle adjustment mechanism, and a control unit. And with.
The main body is inserted into the living body. A sensor part is provided in the front-end | tip part inserted in the biological body in a main-body part, and transmits / receives a signal to a biological body. The insertion port is provided in the main body, and a treatment tool for performing treatment on a treatment target site in a living body is inserted. The projecting port is provided in the main body, and projects the distal end of the treatment instrument inserted into the main body. The protrusion angle adjusting mechanism is provided in the protrusion and adjusts the protrusion angle of the treatment instrument. And a control part produces | generates a tomographic image based on the signal which the sensor part received, and operates a protrusion angle adjustment mechanism based on the produced | generated tomographic image.
 本発明の断層画像取得装置によれば、本体部の位置や姿勢を変えることなく、処置具の突出角度を変更することができるため、作業を簡易化することができる。また、断層画像に基づいて制御部が自動的に処置具の突出角度を調節しているため、術者の力量に影響されることなく、正確に処置具を処置対象部位に到達させることができる。 According to the tomographic image acquisition apparatus of the present invention, the projecting angle of the treatment tool can be changed without changing the position and posture of the main body, so that the operation can be simplified. In addition, since the control unit automatically adjusts the protrusion angle of the treatment tool based on the tomographic image, the treatment tool can accurately reach the treatment target region without being affected by the ability of the operator. .
本発明の第1の実施の形態例にかかる断層画像取得装置を示す概略構成図である。It is a schematic block diagram which shows the tomographic image acquisition apparatus concerning the 1st Example of this invention. 本発明の第1の実施の形態例にかかる断層画像取得装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the tomographic image acquisition apparatus concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態例にかかる断層画像取得装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the tomographic image acquisition apparatus concerning the 1st Example of this invention. 本発明の第1の実施の形態例にかかる断層画像取得装置の使用状態を示すもので、断層画像取得装置を気管支内に挿入した状態を示す説明図である。It is explanatory drawing which shows the use condition of the tomographic image acquisition apparatus concerning the 1st Example of this invention, and shows the state which inserted the tomographic image acquisition apparatus in the bronchus. 本発明の第1の実施の形態例にかかる断層画像取得装置の本体部を生体内に挿入した状態を示す説明図である。It is explanatory drawing which shows the state which inserted the main-body part of the tomographic image acquisition apparatus concerning the 1st Example of this invention in the biological body. 本発明の第1の実施の形態例にかかる断層画像取得装置の画像表示部に表示される例を示す説明図である。It is explanatory drawing which shows the example displayed on the image display part of the tomographic image acquisition apparatus concerning the 1st Example of this invention. 本発明の第1の実施の形態例にかかる断層画像取得装置の調節片の角度を変更した状態を示す断面図である。It is sectional drawing which shows the state which changed the angle of the adjustment piece of the tomographic image acquisition apparatus concerning the 1st Example of this invention. 本発明の第2の実施の形態例にかかる断層画像取得装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the tomographic image acquisition apparatus concerning the 2nd Example of this invention. 本発明の第3の実施の形態例にかかる断層画像取得装置を示す概略構成図である。It is a schematic block diagram which shows the tomographic image acquisition apparatus concerning the 3rd Example of this invention. 本発明の第4の実施の形態例にかかる断層画像取得装置を示すもので、図10Aは第1センサを本体部に挿入した状態を示す断面図、図10Bは第2センサを本体部に挿入した状態を示す断面図である。FIG. 10A shows a tomographic image acquisition apparatus according to a fourth embodiment of the present invention. FIG. 10A is a cross-sectional view showing a state in which the first sensor is inserted into the main body, and FIG. 10B shows that the second sensor is inserted into the main body. it is a sectional view showing a state. 本発明の第4の実施の形態例にかかる断層画像取得装置の固定機構の変形例を示すもので、図11Aは断面図、図11Bは正面図である。FIG. 11A is a sectional view and FIG. 11B is a front view showing a modification of the fixing mechanism of the tomographic image acquisition apparatus according to the fourth embodiment of the present invention.
 以下、本発明の断層画像取得装置の実施の形態例について、図1~図11を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。また、本発明は、以下の形態に限定されるものではない。 Hereinafter, embodiments of the tomographic image acquisition apparatus of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the common member in each figure. The present invention is not limited to the following form.
<1.第1の実施の形態例>
[断層画像取得装置の構成例]
 次に、図1~図3を参照して本発明の断層画像取得装置の第1の実施の形態例(以下、「本例」という。)の構成例について説明する。
 図1は、本例の断層画像取得装置を示す概略構成図、図2は、本例の断層画像取得装置の要部を示す断面図である。
<1. First Embodiment>
[Configuration example of tomographic image acquisition device]
Next, a configuration example of a first embodiment of the tomographic image acquisition apparatus of the present invention (hereinafter referred to as “this example”) will be described with reference to FIGS. 1 to 3.
FIG. 1 is a schematic configuration diagram showing a tomographic image acquisition apparatus of this example, and FIG. 2 is a cross-sectional view showing a main part of the tomographic image acquisition apparatus of this example.
 図1に示す断層画像取得装置1は、生体内の断層画像を取得すると共に生体に対して処置を行う処置具が突出する装置である。断層画像取得装置1は、生体に挿入される超音波プローブ2と、画像診断部7と、回転駆動ユニットを示すモータドライブユニット8とを有している。 A tomographic image acquisition apparatus 1 shown in FIG. 1 is an apparatus that acquires a tomographic image in a living body and projects a treatment tool that performs a treatment on the living body. The tomographic image acquisition apparatus 1 includes an ultrasonic probe 2 that is inserted into a living body, an image diagnosis unit 7, and a motor drive unit 8 that indicates a rotation drive unit.
[超音波プローブ]
 超音波プローブ2は、管状に形成された本体部11と、この本体部11に内蔵されたセンサ部12と、ドライブシャフト13(図2参照)とを有している。この超音波プローブ2には、生体に対して処置を行う処置具3が進退移動可能に取り付けられる。
[Ultrasonic probe]
The ultrasonic probe 2 has a main body portion 11 formed in a tubular shape, a sensor portion 12 built in the main body portion 11, and a drive shaft 13 (see FIG. 2). A treatment tool 3 for performing treatment on a living body is attached to the ultrasonic probe 2 so as to be movable back and forth.
 処置具3としては、例えば、生体における処置対象部位の組織を採取する生検デバイスや、処置対象部位の位置をマーキング、さらに/あるいは生検デバイスをガイドするガイドワイヤや、スタイレット等が挙げられる。 Examples of the treatment tool 3 include a biopsy device that collects tissue of a treatment target site in a living body, a guide wire that marks the position of the treatment target site, and / or guides the biopsy device, a stylet, and the like. .
 本体部11は、細長い略円筒状に形成されており、その両端は閉じている。なお、本体部11の形状は、略円筒状に限定されるものではなく、例えば角筒状や軸方向と直交する方向で切断した断面が楕円状の形状等のその他各種の形状を適用することができる。本体部11における軸方向の先端部、すなわち生体に挿入される側は、生体の管腔内に挿入し易くするために略半球状に形成されている。また、本体部11は、管腔の屈曲に応じて屈曲するために可撓性を有している。 The main body 11 is formed in an elongated and substantially cylindrical shape, and both ends thereof are closed. Note that the shape of the main body 11 is not limited to a substantially cylindrical shape, and various other shapes such as a rectangular tube shape or an elliptical cross section cut in a direction orthogonal to the axial direction are applied. can. The front end of the main body 11 in the axial direction, that is, the side to be inserted into the living body is formed in a substantially hemispherical shape so as to be easily inserted into the lumen of the living body. Further, the main body 11 has flexibility in order to bend according to the bending of the lumen.
 本体部11における基端部側には、挿入口14が形成され、本体部11における先端部側には、突出口15が形成されている。この挿入口14と突出口15は、挿通孔16を介して連通される。そして、本体部11には、挿入口14から処置具3が挿入される。挿入口14に挿入した処置具3は、挿通孔16を挿通する。また、挿通孔16に挿通された処置具3の先端部は、突出口15から本体部11の外部に突出する。 An insertion port 14 is formed on the base end side of the main body 11, and a projection port 15 is formed on the front end side of the main body 11. The insertion port 14 and the projection port 15 communicate with each other through the insertion hole 16. Then, the treatment instrument 3 is inserted into the main body 11 from the insertion port 14. The treatment tool 3 inserted into the insertion port 14 is inserted through the insertion hole 16. Further, the distal end portion of the treatment instrument 3 inserted through the insertion hole 16 protrudes from the protrusion port 15 to the outside of the main body portion 11.
 以下、本体部11の軸方向を第1の方向Xとし、第1の方向Xと処置具3が突出する方向で形成される平面内において第1の方向Xと直交する方向を第2の方向Yとして説明する。 Hereinafter, the axial direction of the main body 11 is defined as the first direction X, and the direction orthogonal to the first direction X in the plane formed by the first direction X and the direction in which the treatment instrument 3 protrudes is the second direction. described as Y.
 図2に示すように、本体部11には、処置具3の突出角度θを調節する突出角度調節機構17が設けられている。突出角度調節機構17は、調節片21と、操作ワイヤ22と、付勢部材23と、不図示の調節駆動部とを有している。 As shown in FIG. 2, the main body 11 is provided with a protrusion angle adjusting mechanism 17 that adjusts the protrusion angle θ of the treatment instrument 3. The protrusion angle adjustment mechanism 17 includes an adjustment piece 21, an operation wire 22, an urging member 23, and an adjustment drive unit (not shown).
 調節片21は、処置具3に当接することで、処置具3の先端部を曲げて処置具3における突出口15からの突出角度を調節するものである。調節片21は、舌片状に形成され、突出口15における本体部11の先端部側に配置される。この調節片21における突出口15側の一端には、支軸24が取り付けられている。また、調節片21は、支軸24によって本体部11に回動可能に支持される。そして、調節片21は、第1の方向X及び第2の方向Yで形成される平面に沿って回動する。 The adjusting piece 21 adjusts the protrusion angle of the treatment tool 3 from the protrusion 15 by bending the tip of the treatment tool 3 by contacting the treatment tool 3. The adjustment piece 21 is formed in the shape of a tongue piece, and is arranged on the distal end side of the main body portion 11 in the protruding port 15. A support shaft 24 is attached to one end of the adjustment piece 21 on the protruding port 15 side. Further, the adjustment piece 21 is rotatably supported by the main body 11 by the support shaft 24. Then, the adjustment piece 21 rotates along a plane formed by the first direction X and the second direction Y.
 また、調節片21における本体部11の先端部と反対側の当接面21aに処置具3が当接する。そして、図2に示す初期状態では、調節片21の当接面21aは、第2の方向Yに沿って立設し、突出口15の開口及び挿通孔16が延在する方向(第1の方向X)に対して直交している。 Also, the treatment instrument 3 comes into contact with the contact surface 21a on the opposite side of the tip of the main body 11 in the adjustment piece 21. In the initial state shown in FIG. 2, the contact surface 21 a of the adjustment piece 21 is erected along the second direction Y, and the direction in which the opening of the protrusion 15 and the insertion hole 16 extend (first It is orthogonal to the direction X).
 調節片21における支軸24が設けられた一端と反対側の他端には、付勢部材23が取り付けられている。付勢部材23は、引っ張りコイルばねから形成されている。付勢部材23は、調節片21の他端に固定され、調節片21の他端を常に本体部11の先端側に付勢している。 A biasing member 23 is attached to the other end of the adjustment piece 21 opposite to the end where the support shaft 24 is provided. The urging member 23 is formed from a tension coil spring. The urging member 23 is fixed to the other end of the adjustment piece 21, and always urges the other end of the adjustment piece 21 toward the distal end side of the main body 11.
 また、調節片21の他端には、操作ワイヤ22が取り付けられている。操作ワイヤ22は、本体部11が延在する第1の方向Xに沿って進退移動可能に設けられている。操作ワイヤ22における調節片21と反対側の端部は、調節駆動部に接続されている。 Further, an operation wire 22 is attached to the other end of the adjustment piece 21. The operation wire 22 is provided so as to be movable back and forth along the first direction X in which the main body 11 extends. The end of the operation wire 22 opposite to the adjustment piece 21 is connected to the adjustment drive unit.
 調節駆動部を駆動させて操作ワイヤ22を本体部11の軸方向の基端部側に操作する(引っ張る)と、付勢部材23の付勢力に抗して、調節片21の他端が突出口15に近づく方向に調節片21が回動する(図7参照)。すなわち、調節片21は、第1の方向Xに対して傾斜する。 When the adjustment drive unit is driven and the operation wire 22 is operated (pulled) toward the proximal end in the axial direction of the main body 11, the other end of the adjustment piece 21 protrudes against the urging force of the urging member 23. The adjustment piece 21 rotates in a direction approaching the mouth 15 (see FIG. 7). That is, the adjustment piece 21 is inclined with respect to the first direction X.
 また、調節駆動部の駆動を停止して操作ワイヤ22の引っ張りを緩めると、付勢部材23の付勢力により、調節片21の他端が突出口15から離れる方向に調節片21が回動する。このように、調節片21を回動操作することにより、処置具3が突出口15から突出する角度(以下、「突出角度」という。)が調節される。 Further, when the drive of the adjustment drive unit is stopped and the pulling of the operation wire 22 is loosened, the adjustment piece 21 rotates in a direction in which the other end of the adjustment piece 21 is separated from the projecting port 15 by the urging force of the urging member 23. . Thus, by rotating the adjustment piece 21, the angle at which the treatment instrument 3 protrudes from the protrusion 15 (hereinafter referred to as “protrusion angle”) is adjusted.
 なお、本例では、突出角度調節機構17の調節片21を舌片状に形成した例を説明したが、これに限定するものではない。例えば、調節片21を処置具3が貫通する管状に形成してもよい。調節片21を管状に形成した場合、調節片21の筒孔が突出口15の開口と連通するように調節片21を配置することが好ましい。 In addition, although the example which formed the adjustment piece 21 of the protrusion angle adjustment mechanism 17 in the shape of a tongue piece was demonstrated in this example, it is not limited to this. For example, you may form the adjustment piece 21 in the tubular shape which the treatment tool 3 penetrates. When the adjustment piece 21 is formed in a tubular shape, it is preferable to arrange the adjustment piece 21 so that the cylindrical hole of the adjustment piece 21 communicates with the opening of the protruding port 15.
 また、本体部11の先端部には、信号を送受信するセンサ部12が回転可能に設けられている。センサ部12は、本体部11に設けた突出口15よりも本体部11の先端部側に配置されている。このセンサ部12は、第2の方向Yにおいて本体部11の軸中心よりも突出口15から離れる方向に偏倚して設けられている。なお、センサ部12を設ける位置は、軸中心から偏倚した位置に限定されるものではない。例えば、センサ部12を本体部11の軸中心に配置してもよく、センサ部12を設ける位置は、特に限定されるものではない。 Also, a sensor unit 12 that transmits and receives signals is rotatably provided at the tip of the main body unit 11. The sensor unit 12 is disposed closer to the distal end side of the main body 11 than the protrusion 15 provided in the main body 11. The sensor unit 12 is provided so as to be biased in a direction away from the projecting port 15 with respect to the axis direction of the main body unit 11 in the second direction Y. The position where the sensor unit 12 is provided is not limited to the position deviated from the axis center. For example, the sensor unit 12 may be arranged at the axial center of the main body unit 11, and the position where the sensor unit 12 is provided is not particularly limited.
 センサ部12は、生体へ超音波を発信させる略円柱状の超音波振動子と、生体から反射した反射超音波信号を受信する受信子とから構成されている。すなわち、本例の断層画像取得装置1は、生体内の断層画像を超音波画像として取得する装置である。このセンサ部12には、ドライブシャフト13が取り付けられている。 The sensor unit 12 includes a substantially cylindrical ultrasonic transducer that transmits ultrasonic waves to a living body, and a receiver that receives a reflected ultrasonic signal reflected from the living body. That is, the tomographic image acquisition apparatus 1 of this example is an apparatus that acquires a tomographic image in a living body as an ultrasound image. A drive shaft 13 is attached to the sensor unit 12.
 ドライブシャフト13は、本体部11をその先端部から基端部にわたって挿通している。このドライブシャフト13は、本体部11における軸方向の基端部に設けられたモータドライブユニット8(図3参照)に接続されている。モータドライブユニット8が駆動することで、その回転力がドライブシャフト13を介してセンサ部12に伝達される。そして、センサ部12は、第1の方向Xを回転中心として回転する。これにより、本例の断層画像取得装置1は、本体部11の側面部周り、すなわち第1の方向Xと直交する方向に360度の範囲の走査範囲を有する。 The drive shaft 13 is inserted through the main body portion 11 from the distal end portion to the proximal end portion. The drive shaft 13 is connected to a motor drive unit 8 (see FIG. 3) provided at the proximal end portion of the main body portion 11 in the axial direction. When the motor drive unit 8 is driven, the rotational force is transmitted to the sensor unit 12 via the drive shaft 13. The sensor unit 12 rotates about the first direction X as a rotation center. Thereby, the tomographic image acquisition apparatus 1 of this example has a scanning range of 360 degrees around the side surface of the main body 11, that is, in a direction orthogonal to the first direction X.
 なお、本例では、センサ部12を回転させて360度の範囲で超音波画像を取得する例を説明したが、これに限定されるものではない。例えば、センサ部12を回転させなくてもよく、あるいは超音波振動子を円弧状に配列し、360度以下の範囲で超音波画像を取得するようにしてもよい。すなわち、本発明は、処置対象部位M1を含む生体内の断層画像を取得できればよい。 In this example, the example in which the ultrasonic image is acquired in the range of 360 degrees by rotating the sensor unit 12 has been described, but the present invention is not limited to this. For example, the sensor unit 12 may not be rotated, or ultrasonic transducers may be arranged in an arc shape to acquire an ultrasonic image within a range of 360 degrees or less. That is, the present invention only needs to acquire an in-vivo tomographic image including the treatment target region M1.
[ガイドシース]
 図1に示すように、超音波プローブ2は、ガイドシース6に挿入した状態で使用される。ガイドシース6は、両端が開口したチューブ状に形成されて、可撓性を有している。このガイドシース6は、超音波プローブ2を気管支N1の中枢部まで案内し、超音波プローブ2の挿入を支持するためのものである。
[Guide sheath]
As shown in FIG. 1, the ultrasonic probe 2 is used while being inserted into a guide sheath 6. The guide sheath 6 is formed in a tube shape with both ends open and has flexibility. The guide sheath 6 is for guiding the ultrasonic probe 2 to the central part of the bronchus N1 and supporting the insertion of the ultrasonic probe 2.
 ガイドシース6における軸方向の先端部には、伸縮性を有し、膨縮可能なバルーン6aが設けられている。ガイドシース6を生体の管腔内に挿入した状態でバルーン6aを膨らませると、バルーン6aは、管腔の壁面に密着する(図5参照)。 A balloon 6 a that has elasticity and can be inflated and contracted is provided at the distal end of the guide sheath 6 in the axial direction. When the balloon 6a is inflated with the guide sheath 6 inserted into the lumen of the living body, the balloon 6a comes into close contact with the wall surface of the lumen (see FIG. 5).
 なお、本例では、バルーン6aをガイドシース6に設けた例を説明したが、これに限定されるものではなく、バルーン6aを超音波プローブ2における本体部11の先端部に設けてもよい。すなわち、バルーン6aは、超音波プローブ2及びガイドシース6のうち少なくとも一方に設けられていればよい。 In addition, although the example which provided the balloon 6a in the guide sheath 6 was demonstrated in this example, it is not limited to this, You may provide the balloon 6a in the front-end | tip part of the main-body part 11 in the ultrasonic probe 2. FIG. That is, the balloon 6 a may be provided on at least one of the ultrasonic probe 2 and the guide sheath 6.
 さらに、センサ部12の周囲を囲むように、本体部11の側面部にバルーン6aを設けてもよい。この場合は、バルーン6a内には、超音波振動を伝達可能な液体が注入される。 Further, a balloon 6 a may be provided on the side surface of the main body 11 so as to surround the sensor unit 12. In this case, a liquid capable of transmitting ultrasonic vibration is injected into the balloon 6a.
[断層画像取得装置の制御系]
 次に、上述した構成を有する断層画像取得装置1の制御系について図3を参照して説明する。
 図3は、断層画像取得装置1の制御系を示すブロック図である。
[Control system of tomographic image acquisition device]
Next, a control system of the tomographic image acquisition apparatus 1 having the above-described configuration will be described with reference to FIG.
FIG. 3 is a block diagram showing a control system of the tomographic image acquisition apparatus 1.
 図3に示すように、画像診断部7は、制御部31と、画像表示部32とから構成されている。制御部31は、角度調節信号送受信部33と、超音波信号送受信部34と、モータ制御回路35と、信号処理部36とを有している。 As shown in FIG. 3, the image diagnosis unit 7 includes a control unit 31 and an image display unit 32. The control unit 31 includes an angle adjustment signal transmission / reception unit 33, an ultrasonic signal transmission / reception unit 34, a motor control circuit 35, and a signal processing unit 36.
 角度調節信号送受信部33は、超音波プローブ2における突出角度調節機構17に接続されている。また、角度調節信号送受信部33は、信号処理部36に接続されている。この角度調節信号送受信部33は、信号処理部36によって算出された角度調節信号を受信する。また、角度調節信号送受信部33は、受信した角度調節信号を突出角度調節機構17に送信する。そして、突出角度調節機構17は、受信した角度調節信号に基づいて調節駆動部を駆動し、調節片21(図2参照)の角度を調節する。 The angle adjustment signal transmission / reception unit 33 is connected to the protrusion angle adjustment mechanism 17 in the ultrasonic probe 2. Further, the angle adjustment signal transmitting / receiving unit 33 is connected to the signal processing unit 36. The angle adjustment signal transmission / reception unit 33 receives the angle adjustment signal calculated by the signal processing unit 36. Further, the angle adjustment signal transmission / reception unit 33 transmits the received angle adjustment signal to the protrusion angle adjustment mechanism 17. And the protrusion angle adjustment mechanism 17 drives the adjustment drive part based on the received angle adjustment signal, and adjusts the angle of the adjustment piece 21 (refer FIG. 2).
 さらに、角度調節信号送受信部33は、突出角度調節機構17から調節片21(図2参照)の角度情報を受信し、信号処理部36に送信している。 Furthermore, the angle adjustment signal transmission / reception unit 33 receives angle information of the adjustment piece 21 (see FIG. 2) from the protrusion angle adjustment mechanism 17 and transmits it to the signal processing unit 36.
 超音波信号送受信部34は、超音波プローブ2のセンサ部12と信号処理部36に接続されている。なお、超音波信号送受信部34は、後述するロータリージョイント41を経由し、ドライブシャフト13を介してセンサ部12に接続される。この超音波信号送受信部34は、信号処理部36から超音波発振信号を受信し、受信した超音波発振信号をセンサ部12に送信する。そして、センサ部12は、超音波信号送受信部34からの超音波発振信号に基づいて超音波振動子を発振させる。 The ultrasonic signal transmission / reception unit 34 is connected to the sensor unit 12 and the signal processing unit 36 of the ultrasonic probe 2. The ultrasonic signal transmitting / receiving unit 34 is connected to the sensor unit 12 via the drive shaft 13 via a rotary joint 41 described later. The ultrasonic signal transmission / reception unit 34 receives an ultrasonic oscillation signal from the signal processing unit 36 and transmits the received ultrasonic oscillation signal to the sensor unit 12. The sensor unit 12 oscillates the ultrasonic transducer based on the ultrasonic oscillation signal from the ultrasonic signal transmission / reception unit 34.
 また、超音波信号送受信部34には、センサ部12の受信子が受信した反射超音波信号がセンサ部12から送られる。そして、超音波信号送受信部34は、受信した反射超音波信号を信号処理部36に送信する。この信号処理部36は、画像表示部32に接続されている。 Also, the reflected ultrasonic signal received by the receiver of the sensor unit 12 is sent from the sensor unit 12 to the ultrasonic signal transmitting / receiving unit 34. Then, the ultrasonic signal transmitting / receiving unit 34 transmits the received reflected ultrasonic signal to the signal processing unit 36. The signal processing unit 36 is connected to the image display unit 32.
 また、信号処理部36は、モータ制御回路35を介してモータドライブユニット8に接続されている。モータドライブユニット8は、ロータリージョイント41と、回転駆動装置42とを有している。 Further, the signal processing unit 36 is connected to the motor drive unit 8 through the motor control circuit 35. The motor drive unit 8 includes a rotary joint 41 and a rotation drive device 42.
 回転駆動装置42は、ロータリージョイント41を介して超音波プローブ2のドライブシャフト13に接続される。回転駆動装置42は、ラジアル走査モータ43と、エンコーダ部44とを有している。 The rotation drive device 42 is connected to the drive shaft 13 of the ultrasonic probe 2 via the rotary joint 41. The rotation drive device 42 includes a radial scanning motor 43 and an encoder unit 44.
 ラジアル走査モータ43は、モータ制御回路35を介して信号処理部36から送られた回転信号に基づいて回転駆動する。そして、ラジアル走査モータ43の回転力は、ロータリージョイント41を介して超音波プローブ2のドライブシャフト13及びセンサ部12に伝達される。また、ラジアル走査モータ43の回転情報は、エンコーダ部44によって検出される。エンコーダ部44は、検出したラジアル走査モータ43の回転情報を、モータ制御回路35を介して信号処理部36に送信する。 The radial scanning motor 43 is driven to rotate based on a rotation signal sent from the signal processing unit 36 via the motor control circuit 35. The rotational force of the radial scanning motor 43 is transmitted to the drive shaft 13 and the sensor unit 12 of the ultrasonic probe 2 via the rotary joint 41. Further, the rotation information of the radial scanning motor 43 is detected by the encoder unit 44. The encoder unit 44 transmits the detected rotation information of the radial scanning motor 43 to the signal processing unit 36 via the motor control circuit 35.
 信号処理部36は、センサ部12が受信した反射超音波画像信号と、エンコーダ部44から受信したラジアル走査モータ43の回転情報に基づいて超音波断層画像を生成する。そして、信号処理部36が生成した超音波断層画像は、画像表示部32に表示される。 The signal processing unit 36 generates an ultrasonic tomographic image based on the reflected ultrasonic image signal received by the sensor unit 12 and the rotation information of the radial scanning motor 43 received from the encoder unit 44. The ultrasonic tomographic image generated by the signal processing unit 36 is displayed on the image display unit 32.
 なお、本例では断層画像取得装置として超音波振動子を有する超音波プローブ、いわゆる超音波内視鏡装置を適用した例を説明したが、これに限定されるものではない。断層画像取得装置としては、例えば、生体へ光を照射する光照射部と、生体から反射した光を受光する受光部から構成されたセンサ部を設け、光の干渉を用いた光干渉断層装置(Optical Coherent Tomography:OCT)を適用してもよい。すなわち、断層画像取得装置としては、生体内の断層画像を取得できる装置であればよい。 In addition, although the example which applied the ultrasonic probe which has an ultrasonic transducer | vibrator, what is called an ultrasonic endoscope apparatus was demonstrated as a tomographic image acquisition apparatus in this example, it is not limited to this. As the tomographic image acquisition apparatus, for example, an optical coherence tomography apparatus (provided with a light irradiating unit that irradiates light to a living body and a light receiving unit that receives light reflected from the living body and using light interference) Optical Coherent Tomography (OCT) may be applied. In other words, the tomographic image acquisition apparatus may be any apparatus that can acquire a tomographic image in a living body.
[断層画像取得装置の動作例]
 次に、図4~図7を参照して本例の断層画像取得装置1の動作例について説明する。
 図4は、超音波プローブ2を生体内に挿入した状態を示す説明図である。なお図4ではガイドシース6を削除して示している。図5は、超音波プローブ2の先端部を処置対象部位の近傍まで挿入した状態を示す側面図である。図6は、画像診断部7の画像表示部32に表示される断層画像の一例を示す図、図7は、処置具3を処置対象部位に穿刺した状態を示す断面図である。
[Operation example of tomographic image acquisition device]
Next, an example of the operation of the tomographic image acquisition apparatus 1 of this example will be described with reference to FIGS.
FIG. 4 is an explanatory diagram showing a state in which the ultrasonic probe 2 is inserted into the living body. In FIG. 4, the guide sheath 6 is omitted. FIG. 5 is a side view showing a state in which the distal end portion of the ultrasonic probe 2 is inserted to the vicinity of the treatment target site. 6 is a diagram illustrating an example of a tomographic image displayed on the image display unit 32 of the image diagnostic unit 7, and FIG. 7 is a cross-sectional view illustrating a state where the treatment tool 3 is punctured into a treatment target site.
 なお、本例では、患者Rにおける肺Qの気管支N1に超音波プローブ2を挿入する例について説明する。 In this example, an example in which the ultrasound probe 2 is inserted into the bronchus N1 of the lung Q in the patient R will be described.
 まず、図4に示すように、患者Rの口腔Pから生体の一例を示す肺Qの気管支N1に超音波プローブ2を挿入する。このとき、超音波プローブ2は、図1及び図5に示すようにガイドシース6の筒孔内を挿通する。 First, as shown in FIG. 4, the ultrasonic probe 2 is inserted from the oral cavity P of the patient R into the bronchus N1 of the lung Q showing an example of a living body. At this time, the ultrasonic probe 2 is inserted through the cylindrical hole of the guide sheath 6 as shown in FIGS.
 次に、図5に示すように、ガイドシース6の先端に設けられたバルーン6aを膨らまし、バルーン6aを気管支N1の壁面に密着させる。これにより、バルーン6aより先の気管支N1の末梢が閉塞される。次に、バルーン6aよりも気管支N1の末梢側に超音波伝達媒体である液体を注入する。注入される液体としては、例えば生理食塩水が挙げられる。 Next, as shown in FIG. 5, the balloon 6a provided at the distal end of the guide sheath 6 is inflated, and the balloon 6a is brought into close contact with the wall surface of the bronchus N1. Thereby, the periphery of the bronchi N1 ahead of the balloon 6a is occluded. Next, a liquid that is an ultrasonic transmission medium is injected into the distal side of the bronchi N1 from the balloon 6a. Examples of the liquid to be injected include physiological saline.
 気管支N1の末梢側が液体で満たされることで、超音波の伝搬を阻害する空気層を除去することができる。これにより、超音波プローブ2によって鮮明な超音波画像を取得することが可能となる。 The air layer that obstructs the propagation of ultrasonic waves can be removed by filling the peripheral side of the bronchi N1 with liquid. As a result, a clear ultrasonic image can be acquired by the ultrasonic probe 2.
 次に、処置対象部位M1、いわゆる結節が発見された箇所まで超音波プローブ2を挿入する。なお、液体を注入してから超音波プローブ2を処置対象部位M1まで挿入した例を説明したが、超音波プローブ2を処置対象部位M1まで挿入してから液体を注入してもよい。 Next, the ultrasonic probe 2 is inserted up to the treatment target site M1, that is, a location where a so-called nodule is found. In addition, although the example which inserted the ultrasonic probe 2 to the treatment target site | part M1 after inject | pouring the liquid was demonstrated, you may inject | pour a liquid after inserting the ultrasonic probe 2 to the treatment target site | part M1.
 次に、センサ部12を駆動させ、気管支N1内から反射された反射超音波信号を受信する。そして、センサ部12は、受信した反射超音波信号を画像診断部7の制御部31に送信する。このとき、モータドライブユニット8が駆動することで、センサ部12及びドライブシャフト13は、第1の方向Xを中心に回転する(図7参照)。このセンサ部12の回転情報は、エンコーダ部44から制御部31に送られる。 Next, the sensor unit 12 is driven to receive the reflected ultrasonic signal reflected from the bronchus N1. Then, the sensor unit 12 transmits the received reflected ultrasonic signal to the control unit 31 of the image diagnostic unit 7. At this time, when the motor drive unit 8 is driven, the sensor unit 12 and the drive shaft 13 rotate around the first direction X (see FIG. 7). The rotation information of the sensor unit 12 is sent from the encoder unit 44 to the control unit 31.
 制御部31は、反射超音波信号とセンサ部12の回転情報から超音波断層画像を生成する。生成された超音波断層画像は、画像表示部32に表示される。これにより、本体部11の側面部周り、すなわち第1の方向Xと直交する方向に360度の範囲の超音波画像を取得することができる。 The control unit 31 generates an ultrasonic tomographic image from the reflected ultrasonic signal and the rotation information of the sensor unit 12. The generated ultrasonic tomographic image is displayed on the image display unit 32. Thereby, an ultrasonic image in a range of 360 degrees around the side surface of the main body 11, that is, in a direction orthogonal to the first direction X can be acquired.
 そして、超音波プローブ2によって得られる超音波画像上に処置対象部位M1を捉えるように超音波プローブ2の位置を調節する。超音波画像上に処置対象部位M1を捉えると、画像診断部7の画像表示部32には、例えば図6に示すように、超音波プローブ2の本体部11の断面画像と、気管支N1内の断層画像からなる超音波画像が表示される。 Then, the position of the ultrasonic probe 2 is adjusted so that the treatment target site M1 is captured on the ultrasonic image obtained by the ultrasonic probe 2. When the treatment target region M1 is captured on the ultrasonic image, the image display unit 32 of the image diagnosis unit 7 displays a cross-sectional image of the main body 11 of the ultrasonic probe 2 and the bronchi N1 as shown in FIG. 6, for example. An ultrasonic image including a tomographic image is displayed.
 ここで、センサ部12は、第2の方向Yにおいて本体部11の軸心から偏倚した位置、すなわち第2の方向Yにおいて突出口15から離反する配置されている。これにより、断面が略円形をなす本体部11において、処置具3が突出する突出口15の位置を容易に判別することができる。そして、術者は、突出口15が第2の方向Yにおいて処置対象部位M1側を向くように超音波プローブ2を回転させる。 Here, the sensor unit 12 is disposed at a position deviated from the axis of the main body unit 11 in the second direction Y, that is, away from the projecting port 15 in the second direction Y. Thereby, in the main-body part 11 whose cross section is substantially circular, the position of the projection port 15 from which the treatment tool 3 projects can be easily determined. Then, the surgeon rotates the ultrasonic probe 2 so that the protruding port 15 faces the treatment target site M1 side in the second direction Y.
 また、本体部11における突出口15が設けられた側、すなわち処置具3が突出する位置を示すマークPを画像表示部32に表示させてもよい。この場合、センサ部12を本体部11の軸心に設けても、突出口15の位置を容易に判別することができる。 Further, the image display unit 32 may display a mark P indicating the side of the main body 11 where the protrusion 15 is provided, that is, the position where the treatment instrument 3 protrudes. In this case, even if the sensor unit 12 is provided at the axial center of the main body unit 11, the position of the protruding port 15 can be easily determined.
 次に、術者は、表示された超音波画像から処置を行う処置対象部位M1を指定し、処置対象部位M1の位置情報を画像診断部7(図3参照)に入力する。画像診断部7の制御部31は、入力された位置情報に基づいて、本体部11の側面部の外壁から処置対象部位M1の中心部までの第2の方向Yの距離Dを計測する。 Next, the surgeon designates a treatment target part M1 to be treated from the displayed ultrasonic image, and inputs position information of the treatment target part M1 to the image diagnosis unit 7 (see FIG. 3). Based on the input position information, the control unit 31 of the image diagnostic unit 7 measures the distance D in the second direction Y from the outer wall of the side surface of the main body 11 to the central part of the treatment target site M1.
 なお、本例では、処置対象部位M1を術者が指定する例を説明したが、制御部31が自動的に超音波画像から処置対象部位M1を探索し、距離Dを計測するようにしてもよい。また、処置対象部位M1を指定した際に、第1の方向Xと処置具3が突出する方向で形成される平面A内(図6参照)に処置対象部位M1が位置していない場合、制御部31は、超音波プローブ2を回転させる必要がある旨を画像表示部32に表示させてもよい。 In this example, the example in which the operator designates the treatment target part M1 has been described. However, the control unit 31 may automatically search the treatment target part M1 from the ultrasonic image and measure the distance D. good. Further, when the treatment target part M1 is designated, the control is performed when the treatment target part M1 is not located in the plane A (see FIG. 6) formed in the first direction X and the direction in which the treatment tool 3 protrudes. The unit 31 may display on the image display unit 32 that the ultrasonic probe 2 needs to be rotated.
 また、図5に示すように、センサ部12から処置具3が突出する突出口15までの第1の方向Xの距離Lは、常に一定である。なお、この距離Lの情報は、予め制御部31に設定されている。 Further, as shown in FIG. 5, the distance L in the first direction X from the sensor unit 12 to the projection port 15 from which the treatment instrument 3 projects is always constant. The information on the distance L is set in the control unit 31 in advance.
 そして、制御部31は、距離Dと距離Lから処置具3を突出させる突出角度θを算出する。この突出角度θは、例えば次の式1から算出することができる。
[式1] tanθ=D/L
And the control part 31 calculates protrusion angle (theta) which makes the treatment tool 3 protrude from the distance D and the distance L. FIG. This protrusion angle θ can be calculated from the following equation 1, for example.
[Formula 1] tan θ = D / L
 次に、制御部31は、算出した突出角度θに基づいて角度調節信号を生成し、生成した角度調節信号を突出角度調節機構17に送信する。そして、図7に示すように、突出角度調節機構17は、受信した角度調節信号に基づいて調節駆動部を駆動する。調節駆動部が駆動することで、操作ワイヤ22が調節駆動部に引っ張られる。操作ワイヤ22が引っ張られることで、調節片21は、付勢部材23の付勢力に抗して、支軸24を中心に回動する。これにより、調節片21の角度が調節される。 Next, the control unit 31 generates an angle adjustment signal based on the calculated protrusion angle θ, and transmits the generated angle adjustment signal to the protrusion angle adjustment mechanism 17. And as shown in FIG. 7, the protrusion angle adjustment mechanism 17 drives an adjustment drive part based on the received angle adjustment signal. When the adjustment drive unit is driven, the operation wire 22 is pulled by the adjustment drive unit. By pulling the operation wire 22, the adjustment piece 21 rotates around the support shaft 24 against the urging force of the urging member 23. Thereby, the angle of the adjustment piece 21 is adjusted.
 なお、調節片21の当接面21aにおける第1の方向Xに対する傾斜角度が算出した突出角度θよりも小さい場合は、操作ワイヤ22を引っ張る力を緩める。すると、付勢部材23の付勢力により、調節片21は、支軸24を中心に上述した方向と反対方向に回動する。これにより、調節片21の当接面21aの第1の方向Xに対する傾斜角度が大きくなる。 In addition, when the inclination angle with respect to the 1st direction X in the contact surface 21a of the adjustment piece 21 is smaller than the calculated protrusion angle (theta), the force pulling the operation wire 22 is loosened. Then, due to the urging force of the urging member 23, the adjustment piece 21 rotates about the support shaft 24 in the direction opposite to the above-described direction. Thereby, the inclination angle with respect to the 1st direction X of the contact surface 21a of the adjustment piece 21 becomes large.
 また、本体部11の側面部の外壁から処置対象部位M1の中心部までの距離Dを計測した例を説明したが、これに限定されるものではない。 Moreover, although the example which measured the distance D from the outer wall of the side part of the main-body part 11 to the center part of treatment object part M1 was demonstrated, it is not limited to this.
 例えば、図5に示すように、制御部31は、本体部11の側面部の外壁から処置対象部位M1における処置可能な下限位置までの第2の方向Yの下限距離D1と、本体部11の側面部の外壁から処置対象部位M1における処置可能な上限位置までの第2の方向Yの上限距離D2を計測する。そして、計測した下限距離D1及び上限距離D2と、距離Lから突出角度範囲θ1~θ2を算出してもよい。このように、突出角度θに範囲をもたせることで、突出角度調節機構17による角度調節の精度を低く設定することができる。 For example, as illustrated in FIG. 5, the control unit 31 includes the lower limit distance D1 in the second direction Y from the outer wall of the side surface of the main body 11 to the lower limit position where treatment is possible in the treatment target site M1, and the The upper limit distance D2 in the second direction Y from the outer wall of the side surface portion to the upper limit position at which treatment is possible in the treatment target site M1 is measured. Then, the protrusion angle range θ1 to θ2 may be calculated from the measured lower limit distance D1 and upper limit distance D2 and the distance L. In this way, by providing a range for the protrusion angle θ, the accuracy of angle adjustment by the protrusion angle adjusting mechanism 17 can be set low.
 次に、処置具3を超音波プローブ2の挿入口14に挿入する。なお、超音波プローブ2を気管支N1及びガイドシース6に挿入する際に、処置具3を予め超音波プローブ2の挿通孔に挿通させていてもよい。 Next, the treatment instrument 3 is inserted into the insertion port 14 of the ultrasonic probe 2. Note that when the ultrasonic probe 2 is inserted into the bronchi N1 and the guide sheath 6, the treatment tool 3 may be inserted through the insertion hole of the ultrasonic probe 2 in advance.
 そして、処置具3は、調節片21の当接面21aに当接することで曲げられ、その進行方向が調節される。そのため、処置具3の先端部は、突出口15から突出角度θで突出する。ここで、処置具3の突出角度θは、処置具3が確実に処置対象部位M1に到達するように設定されている。よって、さらに処置具3を気管支N1内に挿入すると、処置具3の先端部は、処置対象部位M1に達する。処置具3が処置対象部位M1に達していることを断層画像上にて確認することにより、本例の断層画像取得装置1の動作が完了する。 And the treatment tool 3 is bent by coming into contact with the contact surface 21a of the adjustment piece 21, and its traveling direction is adjusted. Therefore, the distal end portion of the treatment instrument 3 protrudes from the protrusion port 15 at a protrusion angle θ. Here, the protrusion angle θ of the treatment instrument 3 is set so that the treatment instrument 3 reliably reaches the treatment target site M1. Therefore, when the treatment tool 3 is further inserted into the bronchi N1, the distal end portion of the treatment tool 3 reaches the treatment target site M1. By confirming on the tomographic image that the treatment tool 3 has reached the treatment target site M1, the operation of the tomographic image acquisition apparatus 1 of this example is completed.
 本例の断層画像取得装置1によれば、センサ部12が取得した超音波画像から制御部31が自動的に処置具3の突出角度θを算出している。そのため、術者の力量に影響されることなく、最適な処置具3の突出角度θを自動的に設定することができる。 According to the tomographic image acquisition apparatus 1 of this example, the control unit 31 automatically calculates the protrusion angle θ of the treatment instrument 3 from the ultrasonic image acquired by the sensor unit 12. Therefore, the optimal protrusion angle θ of the treatment instrument 3 can be automatically set without being affected by the ability of the operator.
 また、人の目ではなく、制御部31によって本体部11と処置対象部位M1との正確な距離を計測しているため、処置具3の突出角度θをより正確に設定することができる。これにより、処置具3の到達部位が処置対象部位M1からずれることを抑制することができる。 Further, since the accurate distance between the main body 11 and the treatment target site M1 is measured by the control unit 31 instead of the human eye, the projection angle θ of the treatment tool 3 can be set more accurately. Thereby, it can control that the arrival part of treatment implement 3 shifts from treatment object part M1.
 さらに、算出した突出角度θに基づいて自動的に突出角度調節機構を操作している。これにより、本体部11の先端部の位置や姿勢を変えることなく、処置具3の突出角度を変更することができ、作業の簡易化を図ることが可能となる。 Furthermore, the protrusion angle adjustment mechanism is automatically operated based on the calculated protrusion angle θ. Thereby, the protrusion angle of the treatment tool 3 can be changed without changing the position and posture of the distal end portion of the main body 11, and the work can be simplified.
<2.第2の実施の形態例>
 次に、本発明の第2の実施の形態例にかかる断層画像取得装置について図8を参照して説明する。
 図8は、第2の実施の形態例にかかる断層画像取得装置における要部を示す断面図である。
<2. Second Embodiment>
Next, a tomographic image acquisition apparatus according to a second exemplary embodiment of the present invention will be described with reference to FIG.
FIG. 8 is a cross-sectional view showing the main part of the tomographic image acquisition apparatus according to the second embodiment.
 この第2の実施の形態例にかかる断層画像取得装置51と、第1の実施の形態例にかかる断層画像取得装置1が異なる点は、超音波プローブにおける突出角度調節機構の構成である。そのため、ここでは、突出角度調節機構について説明し、断層画像取得装置1と共通する部分には同一の符号を付して重複した説明を省略する。 The difference between the tomographic image acquisition apparatus 51 according to the second embodiment and the tomographic image acquisition apparatus 1 according to the first embodiment is the configuration of the protrusion angle adjustment mechanism in the ultrasonic probe. Therefore, here, the protrusion angle adjusting mechanism will be described, and the same reference numerals are given to the portions common to the tomographic image acquisition apparatus 1, and the redundant description will be omitted.
 図8に示すように、断層画像取得装置51における超音波プローブ52には、突出角度調節機構57が設けられている。突出角度調節機構57は、調節片61と、第1の操作ワイヤ62と、第2の操作ワイヤ63と、支軸64と、不図示の調節駆動部とを有している。 As shown in FIG. 8, the ultrasonic probe 52 in the tomographic image acquisition apparatus 51 is provided with a protrusion angle adjusting mechanism 57. The protrusion angle adjustment mechanism 57 includes an adjustment piece 61, a first operation wire 62, a second operation wire 63, a support shaft 64, and an adjustment drive unit (not shown).
 調節片61は、舌片状に形成され、突出口15における本体部11の先端部側に配置されている。調節片61における突出口15側の一端には、第1の操作ワイヤ62が取り付けられている。そして、調節片61における一端と反対側の他端には、第2の操作ワイヤ63が取り付けられている。 The adjustment piece 61 is formed in the shape of a tongue piece, and is disposed on the distal end side of the main body 11 in the protruding port 15. A first operation wire 62 is attached to one end of the adjustment piece 61 on the protruding port 15 side. A second operation wire 63 is attached to the other end of the adjustment piece 61 opposite to the one end.
 また、調節片61における一端と他端の中間部には、支軸64が設けられている。調節片61は、支軸64によって本体部11に回動可能に支持されている。そして、調節片61は、第1の方向X及び第2の方向Yで係止される平面に沿って回動する。 Further, a support shaft 64 is provided at an intermediate portion between one end and the other end of the adjustment piece 61. The adjustment piece 61 is rotatably supported on the main body 11 by a support shaft 64. Then, the adjustment piece 61 rotates along a plane that is locked in the first direction X and the second direction Y.
 第1の操作ワイヤ62及び第2の操作ワイヤ63は、本体部11が延在する第1の方向Xに沿って進退移動可能に配置されている。この第1の操作ワイヤ62及び第2の操作ワイヤ63における調節片61と反対側の端部には、調節駆動部が接続する。 The first operation wire 62 and the second operation wire 63 are arranged to be movable back and forth along the first direction X in which the main body 11 extends. An adjustment drive unit is connected to the end of the first operation wire 62 and the second operation wire 63 opposite to the adjustment piece 61.
 第1の操作ワイヤ62を引っ張り、第2の操作ワイヤ63を緩めると、調節片61は、支軸64を中心に回動する。この第2の実施の形態例では、調節片61の当接面61aにおける第1の方向Xとの角度が大きくなる。すなわち、調節片61は、当接面61aが第1の方向Xと直交する方向に回動する。 When the first operation wire 62 is pulled and the second operation wire 63 is loosened, the adjustment piece 61 rotates around the support shaft 64. In the second embodiment, the angle with the first direction X on the contact surface 61a of the adjustment piece 61 is increased. That is, the adjustment piece 61 rotates in a direction in which the contact surface 61 a is orthogonal to the first direction X.
 また、第2の操作ワイヤ63を引っ張り、第1の操作ワイヤ62を緩めると、調節片61は、支軸64を中心に上述した方向と反対方向に回動する。この第2の実施の形態例では、調節片61の当接面61aにおける第1の方向Xとの角度が小さくなる。すなわち、調節片61は、当接面61aが第1の方向Xに対して平行となる方向に回動する。 Further, when the second operation wire 63 is pulled and the first operation wire 62 is loosened, the adjustment piece 61 rotates about the support shaft 64 in the direction opposite to the above-described direction. In the second embodiment, the angle of the contact surface 61a of the adjustment piece 61 with the first direction X is small. That is, the adjustment piece 61 rotates in a direction in which the contact surface 61 a is parallel to the first direction X.
 その他の構成は、上述した第1の実施の形態例にかかる断層画像取得装置1と同様であるため、それらの説明は省略する。このような突出角度調節機構57を有する断層画像取得装置51によっても、上述した第1の実施の形態例にかかる断層画像取得装置1と同様の作用及び効果を得ることができる。 Other configurations are the same as those of the tomographic image acquisition apparatus 1 according to the first embodiment described above, and thus the description thereof is omitted. Also by the tomographic image acquisition apparatus 51 having such a protrusion angle adjusting mechanism 57, the same operation and effect as the tomographic image acquisition apparatus 1 according to the first embodiment described above can be obtained.
<3.第3の実施の形態例>
 次に、本発明の第3の実施の形態例にかかる断層画像取得装置について図9を参照して説明する。
 図9は、第3の実施の形態例にかかる断層画像取得装置の概略構成図である。
<3. Third Embodiment>
Next, a tomographic image acquisition apparatus according to a third exemplary embodiment of the present invention will be described with reference to FIG.
FIG. 9 is a schematic configuration diagram of a tomographic image acquisition apparatus according to the third embodiment.
 この第3の実施の形態例にかかる断層画像取得装置71と、第1の実施の形態例にかかる断層画像取得装置1が異なる点は、超音波プローブにおける本体部に設けた挿入口の位置である。そのため、ここでは、超音波プローブについて説明し、断層画像取得装置1と共通する部分には同一の符号を付して重複した説明を省略する。 The difference between the tomographic image acquisition apparatus 71 according to the third embodiment and the tomographic image acquisition apparatus 1 according to the first embodiment is the position of the insertion port provided in the main body of the ultrasonic probe. is there. Therefore, here, the ultrasonic probe will be described, and the same reference numerals are given to portions common to the tomographic image acquisition apparatus 1, and duplicate description will be omitted.
 図9に示すように、断層画像取得装置71における超音波プローブ72は、本体部81と、本体部81に内蔵されたセンサ部12とを有している。本体部81の先端部におけるセンサ部12の近傍には、処置具3が突出する突出口85が形成されている。 As shown in FIG. 9, the ultrasonic probe 72 in the tomographic image acquisition apparatus 71 has a main body portion 81 and a sensor portion 12 built in the main body portion 81. In the vicinity of the sensor portion 12 at the distal end portion of the main body portion 81, a protruding port 85 from which the treatment instrument 3 protrudes is formed.
 また、本体部81における突出口85の近傍には、処置具3を挿入する挿入口84が設けられている。挿入口84は、突出口85よりも本体部81の軸方向の基端部側に形成されている。そして、挿入口84と突出口85は、挿通孔86を介して連通している。また、第3の実施の形態例にかかる超音波プローブ72の挿通孔86は、第1の実施の形態例にかかる超音波プローブ2の挿通孔16よりも短く設定される。そして、本体部81における先端部のみに処置具3が挿通する。 Also, an insertion port 84 for inserting the treatment instrument 3 is provided in the vicinity of the projection port 85 in the main body 81. The insertion port 84 is formed closer to the proximal end side in the axial direction of the main body 81 than the projection port 85. The insertion port 84 and the projection port 85 communicate with each other through the insertion hole 86. Further, the insertion hole 86 of the ultrasonic probe 72 according to the third embodiment is set shorter than the insertion hole 16 of the ultrasonic probe 2 according to the first embodiment. Then, the treatment tool 3 is inserted only into the distal end portion of the main body portion 81.
 この第3の実施の形態例にかかる断層画像取得装置71によれば、処置具3が挿通する挿通孔86の長さを短くすることができるため、処置具3を残して超音波プローブ72を抜去する作業を容易に行うことができる。また、第1の実施の形態例にかかる断層画像取得装置1に用いられる処置具3に比べて、第3の実施の形態例にかかる断層画像取得装置71に用いられる処置具3の長さを短くすることができる。 According to the tomographic image acquisition apparatus 71 according to the third embodiment, since the length of the insertion hole 86 through which the treatment tool 3 is inserted can be shortened, the ultrasonic probe 72 is left with the treatment tool 3 left. The extraction work can be easily performed. In addition, the length of the treatment tool 3 used in the tomographic image acquisition apparatus 71 according to the third embodiment is smaller than that of the treatment tool 3 used in the tomographic image acquisition apparatus 1 according to the first embodiment. Can be shortened.
 なお、第3の実施の形態例にかかる断層画像取得装置71では、処置具3を超音波プローブ72に挿入してから、超音波プローブ72を生体内に挿入することが好ましい。 In the tomographic image acquisition apparatus 71 according to the third embodiment, it is preferable that the ultrasonic probe 72 is inserted into the living body after the treatment instrument 3 is inserted into the ultrasonic probe 72.
 その他の構成は、上述した第1の実施の形態例にかかる断層画像取得装置1と同様であるため、それらの説明は省略する。このような超音波プローブ72を有する断層画像取得装置71によっても、上述した第1の実施の形態例にかかる断層画像取得装置1と同様の作用及び効果を得ることができる。 Other configurations are the same as those of the tomographic image acquisition apparatus 1 according to the first embodiment described above, and thus the description thereof is omitted. Also by the tomographic image acquisition apparatus 71 having such an ultrasonic probe 72, the same operation and effect as the tomographic image acquisition apparatus 1 according to the first embodiment described above can be obtained.
<4.第4の実施の形態例>
 次に、本発明の第4の実施の形態例にかかる断層画像取得装置について図10A及び図10Bを参照して説明する。
 図10A及び図10Bは、第4の実施の形態例にかかる断層画像取得装置の断面図である。
<4. Fourth Embodiment>
Next, a tomographic image acquisition apparatus according to a fourth exemplary embodiment of the present invention will be described with reference to FIGS. 10A and 10B.
10A and 10B are cross-sectional views of a tomographic image acquisition apparatus according to the fourth embodiment.
 この第4の実施の形態例にかかる断層画像取得装置301が、第1の実施の形態例にかかる断層画像取得装置1と異なる点は、超音波プローブの本体部に対してセンサ部が脱着可能な点である。そのため、ここでは、超音波プローブの本体部及びセンサ部について説明し、断層画像取得装置1と共通する部分には同一の符号を付して重複した説明を省略する。 The tomographic image acquisition apparatus 301 according to the fourth embodiment is different from the tomographic image acquisition apparatus 1 according to the first embodiment in that the sensor unit can be attached to and detached from the main body of the ultrasonic probe. such is the point. Therefore, here, the main body part and the sensor part of the ultrasonic probe will be described, the same reference numerals are given to the parts common to the tomographic image acquisition apparatus 1, and the duplicate description will be omitted.
 図10A及び図10Bに示すように、第4の実施の形態例にかかる断層画像取得装置301の本体部311には、突出角度調節機構17が設けられ、かつ処置具3が挿通する挿通孔16と、第1のセンサ部312及び第2のセンサ部313が脱着可能に挿入される挿入孔314が形成されている。挿入孔314は、本体部311をその軸方向に沿って貫通している。そのため、本体部311の軸方向の先端は、挿入孔314の開口が形成されている。 As shown in FIGS. 10A and 10B, the main body portion 311 of the tomographic image acquisition apparatus 301 according to the fourth embodiment is provided with the protrusion angle adjusting mechanism 17 and the insertion hole 16 through which the treatment instrument 3 is inserted. In addition, an insertion hole 314 into which the first sensor portion 312 and the second sensor portion 313 are detachably inserted is formed. The insertion hole 314 penetrates the main body 311 along the axial direction. Therefore, an opening of the insertion hole 314 is formed at the tip of the main body portion 311 in the axial direction.
 図10Aに示すように、第1のセンサ部312は、例えばカメラからなり、本体部311の軸方向の前方を視認可能なセンサである。第1のセンサ部312は、屈曲可能な挿入部材312aの軸方向の先端に取り付けられる。 As shown in FIG. 10A, the first sensor unit 312 is a sensor that is made of, for example, a camera and can visually recognize the front of the main body unit 311 in the axial direction. The first sensor unit 312 is attached to the distal end of the bendable insertion member 312a in the axial direction.
 図10Bに示すように、第2のセンサ部313は、生体へ超音波を発信させる超音波振動子と、生体から反射した反射超音波信号を受信する受信子とから構成されている。この第2のセンサ部313によって生体内の断層画像を超音波画像として取得することができる。また、第2のセンサ部313は、第1のセンサ部312と同様に、屈曲可能な挿入部材313aの軸方向の先端に取り付けられる。 As shown in FIG. 10B, the second sensor unit 313 includes an ultrasonic transducer that transmits an ultrasonic wave to a living body and a receiver that receives a reflected ultrasonic signal reflected from the living body. The second sensor unit 313 can acquire an in-vivo tomographic image as an ultrasonic image. Similarly to the first sensor portion 312, the second sensor portion 313 is attached to the distal end of the bendable insertion member 313a in the axial direction.
 さらに、本体部311と第2のセンサ部313には、第2のセンサ部313を挿入孔314の所定の位置で固定する固定機構315が設けられている。固定機構315は、本体部311の挿入孔314に設けられた本体側磁石315aと、第2のセンサ部313に設けられたセンサ側磁石315bとから構成される。本体側磁石315aとセンサ側磁石315bが互いの磁力により引き合うことで、第2のセンサ部313は、挿入孔314の所定の位置に吸着固定される。 Furthermore, the main body 311 and the second sensor unit 313 are provided with a fixing mechanism 315 that fixes the second sensor unit 313 at a predetermined position of the insertion hole 314. The fixing mechanism 315 includes a main body side magnet 315 a provided in the insertion hole 314 of the main body portion 311 and a sensor side magnet 315 b provided in the second sensor portion 313. The main body side magnet 315a and the sensor side magnet 315b are attracted and fixed to a predetermined position of the insertion hole 314 by attracting each other by the magnetic force.
 なお、固定機構315として本体部311及び第2のセンサ部313ともに磁石を設けた例を説明したが、これに限定されるものではない。例えば、本体部311と第2のセンサ部313のうち少なくとも一方に磁石を設け、本体部311と第2のセンサ部313のうち他方に鉄等からなる強磁性体を設けてもよい。 In addition, although the example which provided the magnet for both the main-body part 311 and the 2nd sensor part 313 was demonstrated as the fixing mechanism 315, it is not limited to this. For example, at least one of the main body portion 311 and the second sensor portion 313 may be provided with a magnet, and the other of the main body portion 311 and the second sensor portion 313 may be provided with a ferromagnetic material made of iron or the like.
 次に、この第4の実施の形態例にかかる断層画像取得装置301の動作例について説明する。
 まず、図10Aに示すように、本体部311の挿入孔314に前方を視認可能なセンサである第1のセンサ部312を用いて挿入する。次に、第1のセンサ部312からの画像情報を用いて本体部311を生体内における目的の部位まで誘導する。
Next, an operation example of the tomographic image acquisition apparatus 301 according to the fourth embodiment will be described.
First, as shown to FIG. 10A, it inserts in the insertion hole 314 of the main-body part 311 using the 1st sensor part 312 which is a sensor which can visually recognize the front. Next, the main body 311 is guided to a target site in the living body using image information from the first sensor unit 312.
 本体部311が生体内における目的の部位まで到達した後、挿入孔314から第1のセンサ部312を引き抜く。次に、生体内の断層画像を取得する第2のセンサ部313を挿入孔に挿入する。そして、本体側磁石315aとセンサ側磁石315bを吸着固定させる。これより、第2のセンサ部313を挿入孔314における所定の位置に固定することができる。 After the main body 311 reaches the target site in the living body, the first sensor unit 312 is pulled out from the insertion hole 314. Next, the 2nd sensor part 313 which acquires a tomographic image in a living body is inserted in an insertion hole. Then, the main body side magnet 315a and the sensor side magnet 315b are attracted and fixed. Thus, the second sensor unit 313 can be fixed at a predetermined position in the insertion hole 314.
 なお、その他の構成は、上述した第1の実施の形態例にかかる断層画像取得装置1と同様であるため、それらの説明は省略する。このような本体部311を有する断層画像取得装置301によっても、上述した第1の実施の形態例にかかる断層画像取得装置1と同様の作用及び効果を得ることができる。 Since the other configuration is the same as that of the tomographic image acquisition apparatus 1 according to the first embodiment described above, description thereof is omitted. Also by the tomographic image acquisition apparatus 301 having such a main body 311, the same operations and effects as those of the tomographic image acquisition apparatus 1 according to the first embodiment described above can be obtained.
[変形例]
 次に、第4の実施の形態例にかかる断層画像取得装置301の固定機構の変形例について図11A及び図11Bを参照して説明する。なお、ここでは、固定機構について説明し、第4の実施の形態例にかかる断層画像取得装置301と共通する部分には同一の符号を付して重複した説明を省略する。
 図11A及び図11Bは、第4の実施の形態例にかかる断層画像取得装置301の固定機構の変形例を示す図である。
[Modification]
Next, a modified example of the fixing mechanism of the tomographic image acquisition apparatus 301 according to the fourth embodiment will be described with reference to FIGS. 11A and 11B. Here, the fixing mechanism will be described, and portions common to the tomographic image acquisition apparatus 301 according to the fourth embodiment are denoted by the same reference numerals, and redundant description is omitted.
FIG. 11A and FIG. 11B are diagrams showing a modification of the fixing mechanism of the tomographic image acquisition apparatus 301 according to the fourth embodiment.
 図11A及び図11Bに示すように、固定機構315Bは、本体部311Bの挿入孔314Bに設けられた係合突起316と、係合突起316と係合溝317とから構成されている。係合溝317は、第2のセンサ部313Bに設けられている。係合突起316は、挿入孔314Bの壁面から半径中心方向に向けて突出している。係合突起316と係合溝317が係合することで、第2のセンサ部313Bは、挿入孔314Bにおける所定の位置に固定される。 As shown in FIGS. 11A and 11B, the fixing mechanism 315B includes an engaging protrusion 316 provided in the insertion hole 314B of the main body 311B, an engaging protrusion 316, and an engaging groove 317. The engagement groove 317 is provided in the second sensor unit 313B. The engagement protrusion 316 protrudes from the wall surface of the insertion hole 314B toward the radial center. When the engagement protrusion 316 and the engagement groove 317 are engaged, the second sensor portion 313B is fixed at a predetermined position in the insertion hole 314B.
 なお、この変形例では、第1のセンサ部には、係合溝317を設けていない。そのため、第1のセンサ部は、挿入孔314Bにおける係合突起316が設けられた位置では固定されない。しかしながら、第1のセンサ部に係合溝317を設け、第2のセンサ部313Bと同じ位置で固定するようにしてもよい。 In this modification, the engagement groove 317 is not provided in the first sensor unit. Therefore, the first sensor portion is not fixed at the position where the engagement protrusion 316 is provided in the insertion hole 314B. However, the engaging groove 317 may be provided in the first sensor unit and fixed at the same position as the second sensor unit 313B.
 また、第1のセンサ部を第2のセンサ部313Bよりも挿入孔314Bにおける軸方向の先端側へ挿入させる場合、第1のセンサ部の直径を第2のセンサ部313Bの直径よりも十分に小さくし、係合突起316と干渉しない大きさに設定してもよい。 In addition, when the first sensor unit is inserted closer to the distal end side in the axial direction in the insertion hole 314B than the second sensor unit 313B, the diameter of the first sensor unit is sufficiently larger than the diameter of the second sensor unit 313B. You may make it small and set to the magnitude | size which does not interfere with the engagement protrusion 316. FIG.
 また、第4の実施の形態例では、第2のセンサ部313、313Bを挿入孔314、314Bに直接固定した例を説明したが、これに限定されるものではない。例えば、筒孔内に第2のセンサ部を収容する筒状部材を備え、筒状部材に固定機構を設けてもよい。この筒状部材の筒孔内で第2のセンサ部をその軸方向周りに回転可能に支持できるようにしてもよい。 In the fourth embodiment, the example in which the second sensor portions 313 and 313B are directly fixed to the insertion holes 314 and 314B has been described. However, the present invention is not limited to this. For example, a cylindrical member that accommodates the second sensor portion in the cylindrical hole may be provided, and a fixing mechanism may be provided on the cylindrical member. You may enable it to support the 2nd sensor part rotatably in the axial direction within the cylinder hole of this cylindrical member.
 なお、本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。例えば、上述した実施の形態例では、本体部を挿入する生体として気管支を適用した例を説明したが、本体部を挿入する生体は気管支に限定されるものではない。例えば、大腸や小腸、食道等の消化器系や尿道などの泌尿器系の管腔、あるいは血管等のその他各部の生体の処置に適用できるものである。 The present invention is not limited to the embodiment described above and shown in the drawings, and various modifications can be made without departing from the scope of the invention described in the claims. For example, in the above-described embodiment, the example in which the bronchus is applied as the living body into which the main body portion is inserted has been described. However, the living body into which the main body portion is inserted is not limited to the bronchi. For example, it can be applied to the treatment of living bodies in the digestive system such as the large intestine, the small intestine, the esophagus, the urinary system such as the urinary tract, and the other parts such as blood vessels.
 さらに、処置具が突出する突出口を本体部に一つだけ設けた例を説明したが、これに限定されるものではなく、突出口を本体部に複数設けてもよい。これにより、複数の処置具を断層画像下で同時に使用することができる。そして、複数の突出口の全てに突出角度調節機構を設けてもよく、あるいは複数の突出口のうち少なくとも一つの突出口に突出角度調節機構を設けてもよい。 Furthermore, although the example which provided only one protrusion port which a treatment tool protrudes in the main-body part was demonstrated, it is not limited to this, You may provide multiple protrusion ports in a main-body part. Thereby, a plurality of treatment tools can be used simultaneously under a tomographic image. And a protrusion angle adjustment mechanism may be provided in all of the plurality of protrusions, or a protrusion angle adjustment mechanism may be provided in at least one of the plurality of protrusions.
 1,51,71,301…断層画像取得装置、 2,52,72…超音波プローブ、 3…処置具、 6…ガイドシース、 6a…バルーン、 7…画像診断部、 8…モータドライブユニット(回転駆動ユニット)、 11,81,311,311B…本体部、 12…センサ部、 13…ドライブシャフト、 14,84…挿入口、 15,85…突出口、 16,86…挿通孔、 17,57…突出角度調節機構、 21,61…調節片、 21a,61a…当接面、 22…操作ワイヤ、 23…付勢部材、 24,64…支軸、 31…制御部、 32…画像表示部、 33…角度調節信号送受信部、 34…超音波信号送受信部、 35…モータ制御回路、 36…信号処理部、 41…ロータリージョイント、 42…回転駆動装置、 43…ラジアル走査モータ、 44…エンコーダ部、 62…第1の操作ワイヤ、 63…第2の操作ワイヤ、 312…第1のセンサ部、 313,313B…第2のセンサ部、 315,315B…固定機構、 D…距離、 D1…下限距離、 D2…上限距離、 L…距離、 M1…処置対象部位、 θ…突出角度 1, 51, 71, 301 ... Tomographic image acquisition device, 2, 52, 72 ... Ultrasonic probe, 3 ... Treatment instrument, 6 ... Guide sheath, 6a ... Balloon, 7 ... Image diagnostic unit, 8 ... Motor drive unit (Rotation drive) Unit), 11, 81, 311, 311B ... body part, 12 ... sensor part, 13 ... drive shaft, 14, 84 ... insertion port, 15, 85 ... projection port, 16, 86 ... insertion hole, 17, 57 ... projection Angle adjustment mechanism, 21, 61 ... adjustment piece, 21a, 61a ... abutment surface, 22 ... operation wire, 23 ... biasing member, 24, 64 ... spindle, 31 ... control part, 32 ... image display part, 33 ... Angle adjustment signal transmission / reception unit, 34 ... ultrasonic signal transmission / reception unit, 35 ... motor control circuit, 36 ... signal processing unit, 41 ... rotary joint, 42 ... rotation Moving device, 43 ... radial scanning motor, 44 ... encoder unit, 62 ... first operation wire, 63 ... second operation wire, 312 ... first sensor unit, 313, 313B ... second sensor unit, 315 315B: Fixing mechanism, D: Distance, D1: Lower limit distance, D2: Upper limit distance, L: Distance, M1: Treatment target site, θ: Projection angle

Claims (10)

  1.  生体内に挿入される管状の本体部と、
     前記本体部における前記生体内に挿入される先端部に設けられ、前記生体へ信号を送受信するセンサ部と、
     前記本体部に設けられ、前記生体における処置対象部位に対して処置を行う処置具が挿入される挿入口と、
     前記本体部に設けられ、前記本体部に挿入された前記処置具の先端部を突出させる突出口と、
     前記突出口に設けられ、前記処置具の突出角度を調節する突出角度調節機構と、
     前記センサ部が受信した信号に基づいて断層画像を生成し、生成した前記断層画像に基づいて前記突出角度調節機構を操作する制御部と、
     を備えた断層画像取得装置。
    A tubular main body inserted into the living body;
    A sensor unit that is provided at a distal end of the main body unit that is inserted into the living body, and that transmits and receives signals to and from the living body;
    An insertion port provided in the main body, into which a treatment tool for performing treatment on a treatment target site in the living body is inserted;
    A projecting port provided in the main body portion and projecting a distal end portion of the treatment instrument inserted into the main body portion;
    A protrusion angle adjusting mechanism that is provided in the protrusion and adjusts the protrusion angle of the treatment instrument;
    A control unit that generates a tomographic image based on a signal received by the sensor unit and operates the protrusion angle adjustment mechanism based on the generated tomographic image;
    A tomographic image acquisition apparatus.
  2.  前記制御部は、
     前記断層画像から前記本体部と前記処置対象部位との距離を計測し、
     計測した前記本体部と前記処置対象部位との距離と、予め設定された前記センサ部と前記突出口との距離から、前記突出角度を算出する
     請求項1に記載の断層画像取得装置。
    The controller is
    Measure the distance between the main body and the treatment target site from the tomographic image,
    The tomographic image acquisition apparatus according to claim 1, wherein the projection angle is calculated from the measured distance between the main body unit and the treatment target site and a preset distance between the sensor unit and the projection port.
  3.  前記制御部は、
     前記本体部から前記処置対象部位における処置可能な下限位置までの下限距離と、
     前記本体部から前記処置対象部位における処置可能な上限位置までの上限距離と、を計測し、
     計測した前記下限距離及び前記上限距離と、予め設定された前記センサ部と前記突出口との距離から、前記突出角度の範囲を算出する
     請求項1に記載の断層画像取得装置。
    The controller is
    A lower limit distance from the main body part to a lower limit position at which treatment is possible at the treatment target site; and
    Measuring the upper limit distance from the main body part to the upper limit position where treatment is possible in the treatment target site,
    The tomographic image acquisition apparatus according to claim 1, wherein the range of the protrusion angle is calculated from the measured lower limit distance and the upper limit distance, and a preset distance between the sensor unit and the protrusion.
  4.  前記突出角度調節機構は、
     前記本体部における前記突出口の近傍に回動可能に設けられ、前記処置具が当接する調節片と、
     前記制御部からの信号に応じて前記調節片を回動させる調節駆動部と、有する
     請求項1に記載の断層画像取得装置。
    The protrusion angle adjusting mechanism is
    An adjustment piece that is rotatably provided in the vicinity of the projecting opening in the main body, and the treatment tool abuts on.
    The tomographic image acquisition apparatus according to claim 1, further comprising: an adjustment drive unit that rotates the adjustment piece according to a signal from the control unit.
  5.  前記センサ部を前記本体部の軸方向周りに回転させる回転駆動ユニットを設けた
     請求項1に記載の断層画像取得装置。
    The tomographic image acquisition apparatus according to claim 1, further comprising a rotation drive unit that rotates the sensor unit around an axial direction of the main body unit.
  6.  前記センサ部は、前記生体へ超音波を発信する超音波振動子と、前記生体から反射した前記超音波を受信する受信子とから構成される
     請求項1に記載の断層画像取得装置。
    The tomographic image acquisition apparatus according to claim 1, wherein the sensor unit includes an ultrasonic transducer that transmits ultrasonic waves to the living body and a receiver that receives the ultrasonic waves reflected from the living body.
  7.  前記センサ部は、前記生体へ光を照射する光照射部と、前記生体から反射した前記光を受光する受光部とから構成される
     請求項1に記載の断層画像取得装置。
    The tomographic image acquisition apparatus according to claim 1, wherein the sensor unit includes a light irradiation unit that irradiates light to the living body and a light receiving unit that receives the light reflected from the living body.
  8.  前記処置具は、ガイドワイヤである
     請求項1に記載の断層画像取得装置。
    The tomographic image acquisition apparatus according to claim 1, wherein the treatment tool is a guide wire.
  9.  前記本体部は、前記センサ部が脱着可能に挿入される挿入孔を有する
     請求項1に記載の断層画像取得装置。
    The tomographic image acquisition apparatus according to claim 1, wherein the main body has an insertion hole into which the sensor unit is detachably inserted.
  10.  前記本体部及び前記センサ部には、前記センサ部を所定の位置で脱着可能に固定する固定機構が設けられている
     請求項9に記載の断層画像取得装置。
    The tomographic image acquisition apparatus according to claim 9, wherein the main body part and the sensor part are provided with a fixing mechanism that detachably fixes the sensor part at a predetermined position.
PCT/JP2013/053892 2012-02-24 2013-02-18 Tomographic image acquisition device WO2013125493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012038698 2012-02-24
JP2012-038698 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125493A1 true WO2013125493A1 (en) 2013-08-29

Family

ID=49005678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053892 WO2013125493A1 (en) 2012-02-24 2013-02-18 Tomographic image acquisition device

Country Status (1)

Country Link
WO (1) WO2013125493A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158646A (en) * 1980-05-09 1981-12-07 Olympus Optical Co Ultrasonic diagnostic apparatus
JPS6216744A (en) * 1985-07-16 1987-01-24 株式会社島津製作所 Ultrasonic diagnostic apparatus
JPH0759776A (en) * 1993-08-23 1995-03-07 Aloka Co Ltd Ultrasonic probe for body cavity
JP2004033485A (en) * 2002-07-03 2004-02-05 Olympus Corp Ultrasonic probe
JP2009005769A (en) * 2007-06-26 2009-01-15 Olympus Medical Systems Corp Ultrasonic probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158646A (en) * 1980-05-09 1981-12-07 Olympus Optical Co Ultrasonic diagnostic apparatus
JPS6216744A (en) * 1985-07-16 1987-01-24 株式会社島津製作所 Ultrasonic diagnostic apparatus
JPH0759776A (en) * 1993-08-23 1995-03-07 Aloka Co Ltd Ultrasonic probe for body cavity
JP2004033485A (en) * 2002-07-03 2004-02-05 Olympus Corp Ultrasonic probe
JP2009005769A (en) * 2007-06-26 2009-01-15 Olympus Medical Systems Corp Ultrasonic probe

Similar Documents

Publication Publication Date Title
JP4581036B2 (en) Ultrasound endoscope system, ultrasound probe, and ultrasound endoscope
US9295455B2 (en) Biopsy system and biopsy method
JP5629043B1 (en) Biopsy system
JP4309683B2 (en) Ultrasound observation system
US10441132B2 (en) Method of controlling endoscopes, and endoscope system
JP2006081900A (en) Radio determination for direction of endoscope
JP5489418B2 (en) Ultrasonic probe hood and ultrasonic probe
JP2001224595A (en) Ultrasonic probe for microscopic operation
JP2010142422A (en) Optical probe and optical observation apparatus
JP2001104333A (en) Surgery support device
JP7073460B2 (en) Medical device for ultrasound imaging
CN111093536A (en) Sensor-guided instrument with penetration feature
JP2017121485A (en) Optical registration of rotary sinuplasty cutter
JP4698355B2 (en) Ultrasonic diagnostic equipment
WO2013125493A1 (en) Tomographic image acquisition device
CN112236069A (en) Surgical navigation system with automatically driven endoscope
WO2014045677A1 (en) Biopsy needle and biopsy system
JP2008018257A (en) Medical instrument
JP2014176429A (en) Trans-body cavity cauterization device
JPH08126644A (en) Ultrasonic endoscope
CN208591069U (en) Collapsible hysteroscope ultrasonic probe
JP6778028B2 (en) Medical system and ultrasonic diagnostic equipment
WO2013146503A1 (en) Treatment instrument
JP2664631B2 (en) Ultrasonic probe
JP3374607B2 (en) Ultrasound inspection device inserted endoscopically

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP