WO2013125278A1 - Fuel injection system - Google Patents

Fuel injection system Download PDF

Info

Publication number
WO2013125278A1
WO2013125278A1 PCT/JP2013/051151 JP2013051151W WO2013125278A1 WO 2013125278 A1 WO2013125278 A1 WO 2013125278A1 JP 2013051151 W JP2013051151 W JP 2013051151W WO 2013125278 A1 WO2013125278 A1 WO 2013125278A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
gas
fuel
gasoline
pulse signal
Prior art date
Application number
PCT/JP2013/051151
Other languages
French (fr)
Japanese (ja)
Inventor
喬士 日平
隆幸 島津
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Publication of WO2013125278A1 publication Critical patent/WO2013125278A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0621Purging of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/266Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the computer being backed-up or assisted by another circuit, e.g. analogue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0242Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel injection system.
  • This application claims priority based on Japanese Patent Application No. 2012-037740 for which it applied to Japan on February 23, 2012, and uses the content here.
  • bi-fuel system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine.
  • liquid fuel such as gasoline
  • gaseous fuel such as compressed natural gas (CNG)
  • CNG compressed natural gas
  • a gasoline pulse (a pulse signal having a pulse width corresponding to a gasoline injection amount and used to drive a gasoline injector) output from an existing ECU that controls the gasoline injection amount is disclosed as a new ECU.
  • a technique for converting a gasoline pulse into a gas pulse having a pulse width suitable for gas fuel (a pulse signal used for driving a gas injector) by this new ECU.
  • Patent Document 2 listed below discloses a technique for performing gas injector clogging prevention control, that is, gas fuel injection by a gas injector when the fuel cut control is being performed and the in-cylinder temperature is lower than the self-ignition temperature of the gas fuel. Has been. Although not disclosed in the following Patent Document 1, in general, when operation with liquid fuel is not performed for a long time, deposits may adhere to the liquid fuel injector and clogging may occur.
  • the in-cylinder temperature is estimated by an arithmetic expression using intake air temperature, cooling water temperature, engine speed, and the like (see paragraph 0049 in Patent Document 2). If added, calculation processing becomes complicated and the load on the CPU becomes heavy.
  • the 1st control apparatus which outputs the 1st pulse signal which prescribes
  • a fuel injection system comprising: a second control device that generates a second pulse signal that defines an energization time of a gaseous fuel injection valve based on the signal and outputs the second pulse signal to the gaseous fuel injection valve; without estimating the in-cylinder temperature
  • An object of the present invention is to prevent clogging of a liquid fuel injection valve.
  • An aspect according to the present invention includes a first control device that outputs a first pulse signal that defines an energization time of a liquid fuel injection valve; and a gaseous fuel injection valve based on the first pulse signal during gaseous fuel injection.
  • a second control device that generates a second pulse signal that defines the energization time of the gas and outputs the second pulse signal to the gaseous fuel injection valve, wherein the second control device provides fuel during the gaseous fuel injection.
  • the second control device returns to the gaseous fuel injection when the number of times of liquid fuel injection by the liquid fuel injection valve reaches a predetermined value by performing the cleaning mode. May be.
  • the second control device may perform the cleaning mode on condition that the engine speed is within a predetermined range after the fuel cut is completed.
  • the second control device generates and terminates the fuel cut based on the presence or absence of the first pulse signal input from the first control device. May be judged.
  • the 2nd control apparatus when the 2nd control apparatus detects generation
  • FIG. 3 is a flowchart showing an injector clogging prevention process performed by a 2nd-ECU 4; 7 is a timing chart showing how the gas pulse signal and the gasoline pulse signal output from the 2nd-ECU 4 during gas operation change due to the injector clogging prevention process.
  • FIG. 1 is a schematic configuration diagram of a fuel injection system A according to the present embodiment.
  • the fuel injection system A is a bi-fuel system that selectively switches between liquid fuel (for example, gasoline) and gaseous fuel (for example, compressed natural gas) and supplies it to a single engine (not shown).
  • a gas fuel supply system 2 a 1st-ECU (Electronic Control Unit) 3, a 2nd-ECU 4, and a fuel changeover switch 5.
  • the liquid fuel supply system 1 includes a gasoline tank 11, a gasoline supply pipe 12, and a gasoline injector 13 (liquid fuel injection valve).
  • the gasoline tank 11 is a corrosion-resistant container that stores gasoline as liquid fuel, and has a built-in pump and regulator (not shown) that sucks the gasoline and sends it to the gasoline supply pipe 12.
  • the gasoline supply pipe 12 is a pipe for delivering gasoline from the gasoline tank 11 to the gasoline injector 13.
  • the gasoline injector 13 is, for example, an electromagnetic valve (for example, a solenoid valve) mounted on the intake pipe so that the injection port is exposed toward the intake port of the engine, and corresponds to a gasoline pulse signal input from the 2nd-ECU 4. A predetermined amount of gasoline is injected.
  • the gaseous fuel supply system 2 includes a gas tank 21, a high pressure gas supply pipe 22, a shutoff valve 23, a regulator 24, a low pressure gas supply pipe 25, a gas injector 26 (gaseous fuel injection valve), and a gas fuel pressure sensor 27. And a gas fuel temperature sensor 28.
  • the gas tank 21 is a high pressure vessel filled with compressed natural gas (CNG) as gaseous fuel.
  • the high-pressure gas supply pipe 22 is a high-pressure pipe for delivering high-pressure gas fuel from the gas tank 21 to the regulator 24.
  • the shut-off valve 23 is an electromagnetic valve inserted in the high-pressure gas supply pipe 22 and opens or closes according to a shut-off valve drive signal input from the 2nd-ECU 4.
  • the regulator 24 is a pressure reducing valve disposed on the downstream side of the shutoff valve 23, and decompresses the high pressure gas fuel supplied from the gas tank 21 to a desired pressure when the shutoff valve 23 is opened to the low pressure gas supply pipe 25. Send it out.
  • the low-pressure gas supply pipe 25 is a low-pressure piping for delivering low-pressure gas fuel from the regulator 24 to the gas injector 26.
  • the gas injector 26 is, for example, an electromagnetic valve mounted on the intake pipe so that the injection port is exposed toward the intake port of the engine. The gas injector 26 injects a predetermined amount of gas fuel according to a gas pulse signal input from the 2nd-ECU 4. To do.
  • the gas fuel pressure sensor 27 detects the internal pressure of the low pressure gas supply pipe 25 (ie, the gas fuel pressure on the low pressure side) from the regulator 24, and outputs a gas fuel pressure signal indicating the detection result to the 2nd-ECU 4. .
  • the gas fuel temperature sensor 28 detects the internal temperature (low pressure gas fuel temperature) of the low pressure gas supply pipe 25 and outputs a gas fuel temperature signal indicating the detection result to the 2nd-ECU 4.
  • the 1st-ECU 3 calculates a gasoline injection amount based on various sensor signals indicating engine operation states input from various sensors (not shown) and is necessary for obtaining the gasoline injection amount.
  • An energization time of the gasoline injector 13 (hereinafter referred to as a gasoline injector energization time) is calculated, and a gasoline pulse signal (first pulse signal) having a pulse width set to the gasoline injector energization time is generated and output to the 2nd-ECU 4 .
  • the 2nd-ECU 4 (second control device) includes a gas fuel pressure signal input from the gas fuel pressure sensor 27, a gas fuel temperature signal input from the gas fuel temperature sensor 28, and a gasoline pulse input from the 1st-ECU 3. Based on the signal and the fuel switching signal input from the fuel switch 5, energization control of the gasoline injector 13, the gas injector 26 and the shutoff valve 23 is performed.
  • the 2nd-ECU 4 When the 2nd-ECU 4 recognizes that gasoline is selected as the fuel to be used based on the fuel switching signal input from the fuel switch 5, the 2nd-ECU 4 shifts to the gasoline injection mode (liquid fuel injection mode) while When it is recognized that the gas is selected, the gas injection mode (gaseous fuel injection mode) is entered.
  • the 2nd-ECU 4 calculates the energization time of the gas injector 26 (hereinafter referred to as gas injector energization time) based on the gasoline pulse signal input from the 1st-ECU 3, and opens the shut-off valve 23 in the gas injection mode.
  • the gas fuel supply from the gas tank 21 to the gas injector 26 is started and a gas pulse signal (second pulse signal) whose pulse width is set to the gas injector energizing time is output to the gas injector 26, while in the gasoline injection mode.
  • a gasoline pulse signal is output to the gasoline injector 13.
  • the fuel change-over switch 5 is a switch that enables the fuel to be changed by a manual operation of the user, and indicates the state of the switch, that is, a fuel that indicates whether gasoline is selected as the fuel to be used or whether gas is selected. A switching signal is output to the 2nd-ECU 4.
  • the 1st-ECU 3 does not depend on the state of the fuel changeover switch 5 (that is, regardless of gasoline operation or gas operation), and each fuel injection timing is based on the engine operation state recognized from various sensor signals.
  • the gasoline injection amount to be injected from the gasoline injector 13 is calculated at the same time, the gasoline injector energization time necessary for obtaining the gasoline injection amount is calculated, and a gasoline pulse signal whose pulse width is set to the gasoline injector energization time is generated. And output to the 2nd-ECU 4.
  • the 2nd-ECU 4 measures the pulse width of the gasoline pulse signal input from the 1st-ECU 3 as described above as the gasoline injector energization time, and uses the gasoline injector energization time as a flow characteristic of the gas injector 26, gas fuel pressure, and gas fuel. By correcting based on the temperature, the gas injector energization time is calculated.
  • the 2nd-ECU 4 In the gas injection mode, the 2nd-ECU 4 generates a gas pulse signal whose pulse width is set to the gas injector energizing time and outputs the gas pulse signal to the gas injector 26 with the shut-off valve 23 opened. Thus, a required amount of gas fuel is injected from the gas injector 26 according to the engine operating state.
  • the 2nd-ECU 4 outputs the gasoline pulse signal input from the 1st-ECU 3 to the gasoline injector 13 as it is in the gasoline injection mode.
  • running state is injected from the gasoline injector 13.
  • the 2nd-ECU 4 performs an injector clogging prevention process shown in the flowchart of FIG. 2 in order to prevent the gasoline injector 13 from clogging. Note that the 2nd-ECU 4 repeatedly performs the injector clogging prevention process shown in FIG. 2 at a constant control cycle.
  • step S1 when the 2nd-ECU 4 starts the injector clogging prevention process, it first determines whether or not the gas operation is currently being performed (whether or not it is in the gas injection mode) (step S1). In step S2, the process proceeds to step S2. On the other hand, in the case of “No”, the present injector clogging prevention process is ended (EXIT).
  • step S1 the 2nd-ECU 4 determines whether the fuel is currently being cut (step S2). If “Yes”, the process proceeds to step S3, while “No”. In this case, the process proceeds to step S5.
  • the output of the gasoline pulse signal by the 1st-ECU 3 stops, so the 2nd-ECU 4 determines whether the fuel is being cut based on the presence or absence of the gasoline pulse signal input from the 1st-ECU 3 ( That is, it is determined whether or not a fuel cut has occurred and ended.
  • the 2nd-ECU 4 determines whether or not the current engine speed is within a predetermined range if “Yes” in the above step S2 (step S3). If “No”, the present injector clogging prevention process is performed. On the other hand, in the case of “Yes”, after the execution of the cleaning mode is permitted, the present injector clogging prevention processing is ended (step S4).
  • a crank pulse signal output from a crank sensor (not shown) (a pulse signal having a period required for the crankshaft to rotate a predetermined angle) is input to the 2nd-ECU 4 (see FIG. 1).
  • the 2nd-ECU 4 calculates the engine speed from this crank pulse signal.
  • the “predetermined range” of the engine speed indicates a speed range in which the gas injection can be safely switched to the gasoline injection.
  • gas / gasoline injection cannot be switched at the same time, and there is a possibility that both injections or missing injections may occur, or a circuit failure may occur due to switching of injected fuel.
  • the injection fuel is not switched at the rotational speed.
  • switching in a lower rotational range than the idling speed may cause instability of combustion, for example, when the idling speed is 600 rpm, the injected fuel is used at an engine speed of 500 rpm or less. Is not switched.
  • the 2nd-ECU 4 determines whether or not the execution of the cleaning mode is permitted in the case of “No” in step S2, that is, when the fuel cut is completed (step S5). On the other hand, the present injector clogging prevention process is terminated, while in the case of “Yes”, the process proceeds to step S6. Then, if “Yes” in step S5, that is, if the execution of the cleaning mode is permitted, the 2nd-ECU 4 determines whether the number of gasoline injections (number of liquid fuel injections) by the gasoline injector 13 has reached a predetermined value. If “No”, the process proceeds to step S7, while if “Yes”, the process proceeds to step S8.
  • the 2nd-ECU 4 outputs the gasoline pulse signal input from the 1st-ECU 3 to the gasoline injector 13 if “No” in step S6, that is, if the number of gasoline injections by the gasoline injector 13 has not reached the predetermined value.
  • a cleaning mode is performed (step S7). Thereby, the gasoline injection by the gasoline injector 13 is implemented, and the deposit adhering to the gasoline injector 13 can be removed (cleaned).
  • the “predetermined value” of the number of gasoline injections is set to the number of times that the deposit adhered to the gasoline injector 13 can be sufficiently removed by the gasoline injection.
  • step S6 that is, when the number of gasoline injections by the gasoline injector 13 reaches a predetermined value, the 2nd-ECU 4 performs gas injection for gas operation (ie, gas injection for gas operation). Returning to the output of the gas pulse signal to the gas injector 26 (step S8). Then, the 2nd-ECU 4 ends the present injector clogging prevention process after completing the permission to perform the cleaning mode (step S9).
  • gas injection for gas operation ie, gas injection for gas operation.
  • the 2nd-ECU 4 detects the occurrence of a fuel cut during gas injection, the engine speed is within a predetermined range after the fuel cut ends (the injection fuel can be switched safely).
  • the cleaning mode is performed on the condition that the number of gasoline injections by the gasoline injector 13 reaches a predetermined value due to the execution of the cleaning mode, the operation returns to the gas injection.
  • FIG. 3 is a timing chart showing how the gas pulse signal and the gasoline pulse signal output from the 2nd-ECU 4 change during the gas operation by such an injector clogging prevention process.
  • the gas pulse signal is output from the 2nd-ECU 4 to the gas injector 26 during the gas operation, but the output of the gas pulse signal stops during the fuel cut, and after the fuel cut ends, the cleaning mode
  • the 2nd-ECU 4 outputs a gasoline pulse signal to the gasoline injector 13 and returns to gas injection when the number of gasoline injections reaches a predetermined value.
  • the cleaning mode is performed after the fuel cut ends, that is, after the output of the gasoline pulse signal by the 1st-ECU 3 is resumed. Since it carries out, cleaning (gasoline injection) of the gasoline injector 13 can be carried out without any problem. Moreover, in this embodiment, since gasoline injection is performed after the end of the fuel cut, it is not necessary to estimate the in-cylinder temperature in order to prevent fuel self-ignition during the fuel cut as in the prior art. Therefore, according to the present embodiment, it is possible to prevent clogging of the gasoline injector 13 without estimating the in-cylinder temperature.
  • this invention is not limited to the said embodiment, Of course, you may change embodiment in the range which does not deviate from the meaning of this invention.
  • the present invention can be applied to a bi-fuel system that selectively switches a gaseous fuel other than CNG and a liquid fuel other than gasoline and supplies the fuel to a single engine.
  • a ... fuel injection system 1 ... liquid fuel supply system, 2 ... gaseous fuel supply system, 3 ... 1st-ECU (first control device), 4 ... 2nd-ECU (second control device), 5 ... fuel changeover switch, 13 ... gasoline injector (liquid fuel injection valve), 26 ... gas injector (gas fuel injection valve)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A fuel injection system comprising a first control device for outputting a first pulse signal stipulating the charging time of a liquid fuel injection valve, and a second control device for generating a second pulse signal stipulating the charging time of a gas fuel injection valve on the basis of the first pulse signal during gas fuel injection and outputting the second pulse signal to the gas fuel injection valve. When the occurrence of a fuel cut is detected during the gas fuel injection, the second control device implements a cleaning mode for outputting the first pulse signal inputted from the first control device to the liquid fuel injection valve after the fuel cut has ended.

Description

燃料噴射システムFuel injection system
 本発明は、燃料噴射システムに関する。
 本願は、2012年2月23日に、日本に出願された特願2012-037740号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fuel injection system.
This application claims priority based on Japanese Patent Application No. 2012-037740 for which it applied to Japan on February 23, 2012, and uses the content here.
 従来から、車両の燃費性能及び環境保護性能を向上させる技術として、ガソリン等の液体燃料と圧縮天然ガス(CNG)等の気体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルシステムが知られている。このバイフューエルシステムは、開発コストを削減するために、既存のガソリン噴射システムに新規のガス噴射システムを増設する形で構築される場合が多い。 Conventionally, as a technology for improving the fuel efficiency and environmental protection performance of a vehicle, there is a bi-fuel system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine. Are known. This bi-fuel system is often constructed by adding a new gas injection system to an existing gasoline injection system in order to reduce development costs.
 下記特許文献1には、ガソリン噴射量を制御する既存ECUから出力されるガソリンパルス(ガソリン噴射量に応じたパルス幅を有し、ガソリンインジェクタを駆動するために使用されるパルス信号)を新規ECUに入力し、この新規ECUによってガソリンパルスからガス燃料に適したパルス幅を有するガスパルス(ガスインジェクタを駆動するために使用されるパルス信号)に変換する技術が開示されている。 In the following Patent Document 1, a gasoline pulse (a pulse signal having a pulse width corresponding to a gasoline injection amount and used to drive a gasoline injector) output from an existing ECU that controls the gasoline injection amount is disclosed as a new ECU. And a technique for converting a gasoline pulse into a gas pulse having a pulse width suitable for gas fuel (a pulse signal used for driving a gas injector) by this new ECU.
 また、バイフューエルシステムでは、液体燃料による運転が長期間継続すると、すなわちガスインジェクタによる運転が長時間行われない場合に、ガスインジェクタにデポジットが付着して詰まりが発生する可能性がある。下記特許文献2には、燃料カット制御中であって且つ筒内温度がガス燃料の自着火温度より低い場合に、ガスインジェクタの詰まり防止制御、すなわちガスインジェクタによるガス燃料噴射を実施する技術が開示されている。なお、下記特許文献1に開示されていないが、一般的に液体燃料による運転が長時間行われない場合に、液体燃料インジェクタにデポジットが付着して詰まりが発生する可能性がある。 Also, in the bi-fuel system, when operation with liquid fuel continues for a long time, that is, when operation with a gas injector is not performed for a long time, deposits may adhere to the gas injector and clogging may occur. Patent Document 2 listed below discloses a technique for performing gas injector clogging prevention control, that is, gas fuel injection by a gas injector when the fuel cut control is being performed and the in-cylinder temperature is lower than the self-ignition temperature of the gas fuel. Has been. Although not disclosed in the following Patent Document 1, in general, when operation with liquid fuel is not performed for a long time, deposits may adhere to the liquid fuel injector and clogging may occur.
日本国特表平6-502472号公報Japanese National Table No. 6-502472 日本国特開2011-220284号公報Japanese Unexamined Patent Publication No. 2011-220284
 上記特許文献2に記載されたインジェクタの詰まり防止技術を、上記特許文献1に記載のシステム構成に適用する場合、開発コスト削減の観点から既存ECUに変更を加えたくはないので、新規ECU側に、燃料カット制御中であって且つ筒内温度が自着火温度より低いという条件を満足するか否かを判断し、その条件を満足する場合にインジェクタの詰まり防止制御を行う機能を設ける必要がある。 When applying the injector clogging prevention technique described in Patent Document 2 to the system configuration described in Patent Document 1, it is not desired to change the existing ECU from the viewpoint of reducing development costs. Therefore, it is necessary to determine whether or not the condition that the fuel cut control is being performed and the in-cylinder temperature is lower than the auto-ignition temperature is satisfied, and if the condition is satisfied, it is necessary to provide a function of performing control to prevent clogging of the injector .
 その場合、燃料カット中においては、既存ECUからガソリンパルスが出力されないので、新規ECUもガスパルスを出力することができず、液体燃料インジェクタによる液体燃料噴射(詰まり防止制御)を実施することができない。また、特許文献2では、吸気温度、冷却水温、エンジン回転数などを用いた演算式によって筒内温度を推定する(特許文献2における段落0049参照)が、そのような演算機能を新規ECU側に追加すると、演算処理の複雑化を招き、CPUの負荷が重くなる。 In that case, since the gasoline pulse is not output from the existing ECU during the fuel cut, the new ECU cannot output the gas pulse, and liquid fuel injection (clogging prevention control) by the liquid fuel injector cannot be performed. Further, in Patent Document 2, the in-cylinder temperature is estimated by an arithmetic expression using intake air temperature, cooling water temperature, engine speed, and the like (see paragraph 0049 in Patent Document 2). If added, calculation processing becomes complicated and the load on the CPU becomes heavy.
 本発明に係る態様は、上述した事情に鑑みてなされたものであり、液体燃料噴射弁の通電時間を規定する第1パルス信号を出力する第1制御装置と、気体燃料噴射時には前記第1パルス信号を基に気体燃料噴射弁の通電時間を規定する第2パルス信号を生成して前記気体燃料噴射弁に出力する第2制御装置とを備える燃料噴射システムにおいて、筒内温度を推定することなく、液体燃料噴射弁の詰まり防止を実現することを目的とする。 The aspect which concerns on this invention is made | formed in view of the situation mentioned above, the 1st control apparatus which outputs the 1st pulse signal which prescribes | regulates the energization time of a liquid fuel injection valve, and the said 1st pulse at the time of gaseous fuel injection A fuel injection system comprising: a second control device that generates a second pulse signal that defines an energization time of a gaseous fuel injection valve based on the signal and outputs the second pulse signal to the gaseous fuel injection valve; without estimating the in-cylinder temperature An object of the present invention is to prevent clogging of a liquid fuel injection valve.
 本発明は、上記目的を達成するために、以下の態様を採用した。
(1)本発明に係る一態様は、液体燃料噴射弁の通電時間を規定する第1パルス信号を出力する第1制御装置と;気体燃料噴射時には前記第1パルス信号を基に気体燃料噴射弁の通電時間を規定する第2パルス信号を生成して前記気体燃料噴射弁に出力する第2制御装置と、を備える燃料噴射システムであって、前記第2制御装置は、前記気体燃料噴射時に燃料カットの発生を検知した場合、前記燃料カットの終了後に前記第1制御装置から入力される前記第1パルス信号を前記液体燃料噴射弁に出力するクリーニングモードを実施する。
The present invention employs the following aspects in order to achieve the above object.
(1) An aspect according to the present invention includes a first control device that outputs a first pulse signal that defines an energization time of a liquid fuel injection valve; and a gaseous fuel injection valve based on the first pulse signal during gaseous fuel injection. A second control device that generates a second pulse signal that defines the energization time of the gas and outputs the second pulse signal to the gaseous fuel injection valve, wherein the second control device provides fuel during the gaseous fuel injection. When the occurrence of a cut is detected, a cleaning mode is implemented in which the first pulse signal input from the first control device is output to the liquid fuel injection valve after the fuel cut is completed.
(2)上記(1)の態様において、前記第2制御装置は、前記クリーニングモードの実施によって前記液体燃料噴射弁による液体燃料噴射回数が所定値に達した場合に、前記気体燃料噴射に復帰してもよい。 (2) In the aspect of (1), the second control device returns to the gaseous fuel injection when the number of times of liquid fuel injection by the liquid fuel injection valve reaches a predetermined value by performing the cleaning mode. May be.
(3)上記(1)または(2)の態様において、前記第2制御装置は、前記燃料カットの終了後にエンジン回転数が所定範囲内であることを条件として前記クリーニングモードを実施してもよい。 (3) In the above aspect (1) or (2), the second control device may perform the cleaning mode on condition that the engine speed is within a predetermined range after the fuel cut is completed. .
(4)上記(1)から(3)いずれかの態様において、前記第2制御装置は、前記第1制御装置から入力される前記第1パルス信号の有無に基づいて前記燃料カットの発生及び終了を判断してもよい。 (4) In any one of the aspects (1) to (3), the second control device generates and terminates the fuel cut based on the presence or absence of the first pulse signal input from the first control device. May be judged.
 本発明に係る態様では、第2制御装置が、気体燃料噴射時に燃料カットの発生を検知した場合、前記燃料カットの終了後、つまり第1制御装置による第1パルス信号の出力が再開した後にクリーニングモードを実施するので、問題なく液体燃料噴射弁のクリーニング(液体燃料噴射)を実施できる。また、本発明に係る態様では、燃料カットの終了後に液体燃料噴射を実施するので、従来技術のように、燃料カット中の燃料自着火を防止するために筒内温度を推定する必要もない。従って、本発明に係る態様によれば、筒内温度を推定することなく、液体燃料噴射弁の詰まり防止を実現することができる。 In the aspect which concerns on this invention, when the 2nd control apparatus detects generation | occurrence | production of the fuel cut at the time of gaseous fuel injection, it is cleaning after the completion | finish of the said fuel cut, ie, the output of the 1st pulse signal by the 1st control apparatus restarted. Since the mode is executed, the liquid fuel injection valve can be cleaned (liquid fuel injection) without any problem. Moreover, in the aspect which concerns on this invention, since liquid fuel injection is implemented after completion | finish of a fuel cut, it is not necessary to estimate in-cylinder temperature in order to prevent fuel self-ignition during a fuel cut unlike the prior art. Therefore, according to the aspect of the present invention, it is possible to prevent clogging of the liquid fuel injection valve without estimating the in-cylinder temperature.
本実施形態に係る燃料噴射システムAの概略構成図である。It is a schematic structure figure of fuel injection system A concerning this embodiment. 2nd-ECU4が実施するインジェクタ詰まり防止処理を示すフローチャートである。3 is a flowchart showing an injector clogging prevention process performed by a 2nd-ECU 4; インジェクタ詰まり防止処理によって、ガス運転時に2nd-ECU4から出力されるガスパルス信号及びガソリンパルス信号がどのように変化するのかを示すタイミングチャートである。7 is a timing chart showing how the gas pulse signal and the gasoline pulse signal output from the 2nd-ECU 4 during gas operation change due to the injector clogging prevention process.
 以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係る燃料噴射システムAの概略構成図である。この燃料噴射システムAは、液体燃料(例えばガソリン)と気体燃料(例えば圧縮天然ガス)とを選択的に切替えて単一エンジン(図示省略)に供給するバイフューエルシステムであり、液体燃料供給系1と、気体燃料供給系2と、1st-ECU(Electronic Control Unit)3と、2nd-ECU4と、燃料切替スイッチ5とから構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a fuel injection system A according to the present embodiment. The fuel injection system A is a bi-fuel system that selectively switches between liquid fuel (for example, gasoline) and gaseous fuel (for example, compressed natural gas) and supplies it to a single engine (not shown). A gas fuel supply system 2, a 1st-ECU (Electronic Control Unit) 3, a 2nd-ECU 4, and a fuel changeover switch 5.
 液体燃料供給系1は、ガソリンタンク11と、ガソリン供給パイプ12と、ガソリンインジェクタ13(液体燃料噴射弁)とから構成されている。ガソリンタンク11は、液体燃料としてガソリンを貯蔵する耐腐食性容器であり、ガソリンを吸い上げてガソリン供給パイプ12へ送出するポンプ及びレギュレータ(図示省略)などを内蔵している。 The liquid fuel supply system 1 includes a gasoline tank 11, a gasoline supply pipe 12, and a gasoline injector 13 (liquid fuel injection valve). The gasoline tank 11 is a corrosion-resistant container that stores gasoline as liquid fuel, and has a built-in pump and regulator (not shown) that sucks the gasoline and sends it to the gasoline supply pipe 12.
 ガソリン供給パイプ12は、ガソリンタンク11からガソリンインジェクタ13へガソリンを配送するための配管である。ガソリンインジェクタ13は、例えばエンジンの吸気ポートに向けて噴射口が露出するように吸気管に装着された電磁弁(例えばソレノイドバルブ等)であり、2nd-ECU4から入力されるガソリンパルス信号に応じて所定量のガソリンを噴射する。 The gasoline supply pipe 12 is a pipe for delivering gasoline from the gasoline tank 11 to the gasoline injector 13. The gasoline injector 13 is, for example, an electromagnetic valve (for example, a solenoid valve) mounted on the intake pipe so that the injection port is exposed toward the intake port of the engine, and corresponds to a gasoline pulse signal input from the 2nd-ECU 4. A predetermined amount of gasoline is injected.
 気体燃料供給系2は、ガスタンク21と、高圧ガス供給パイプ22と、遮断弁23と、レギュレータ24と、低圧ガス供給パイプ25と、ガスインジェクタ26(気体燃料噴射弁)と、ガス燃料圧力センサ27と、ガス燃料温度センサ28とから構成されている。 The gaseous fuel supply system 2 includes a gas tank 21, a high pressure gas supply pipe 22, a shutoff valve 23, a regulator 24, a low pressure gas supply pipe 25, a gas injector 26 (gaseous fuel injection valve), and a gas fuel pressure sensor 27. And a gas fuel temperature sensor 28.
 ガスタンク21は、気体燃料として圧縮天然ガス(CNG)が充填された高耐圧容器である。高圧ガス供給パイプ22は、ガスタンク21からレギュレータ24へ高圧のガス燃料を配送するための高耐圧配管である。遮断弁23は、高圧ガス供給パイプ22に介挿された電磁弁であり、2nd-ECU4から入力される遮断弁駆動信号に応じて開弁或いは閉弁する。 The gas tank 21 is a high pressure vessel filled with compressed natural gas (CNG) as gaseous fuel. The high-pressure gas supply pipe 22 is a high-pressure pipe for delivering high-pressure gas fuel from the gas tank 21 to the regulator 24. The shut-off valve 23 is an electromagnetic valve inserted in the high-pressure gas supply pipe 22 and opens or closes according to a shut-off valve drive signal input from the 2nd-ECU 4.
 レギュレータ24は、遮断弁23の下流側に配置された減圧弁であり、遮断弁23の開弁時にガスタンク21から供給される高圧のガス燃料を所望の圧力まで減圧して低圧ガス供給パイプ25へ送出する。低圧ガス供給パイプ25は、レギュレータ24からガスインジェクタ26へ低圧のガス燃料を配送するための低耐圧配管である。ガスインジェクタ26は、例えばエンジンの吸気ポートに向けて噴射口が露出するように吸気管に装着された電磁弁であり、2nd-ECU4から入力されるガスパルス信号に応じて所定量のガス燃料を噴射する。 The regulator 24 is a pressure reducing valve disposed on the downstream side of the shutoff valve 23, and decompresses the high pressure gas fuel supplied from the gas tank 21 to a desired pressure when the shutoff valve 23 is opened to the low pressure gas supply pipe 25. Send it out. The low-pressure gas supply pipe 25 is a low-pressure piping for delivering low-pressure gas fuel from the regulator 24 to the gas injector 26. The gas injector 26 is, for example, an electromagnetic valve mounted on the intake pipe so that the injection port is exposed toward the intake port of the engine. The gas injector 26 injects a predetermined amount of gas fuel according to a gas pulse signal input from the 2nd-ECU 4. To do.
 ガス燃料圧力センサ27は、レギュレータ24より低圧側、つまり低圧ガス供給パイプ25の内部圧力(低圧側のガス燃料圧力)を検出し、その検出結果を示すガス燃料圧力信号を2nd-ECU4へ出力する。ガス燃料温度センサ28は、低圧ガス供給パイプ25の内部温度(低圧側のガス燃料温度)を検出し、その検出結果を示すガス燃料温度信号を2nd-ECU4へ出力する。 The gas fuel pressure sensor 27 detects the internal pressure of the low pressure gas supply pipe 25 (ie, the gas fuel pressure on the low pressure side) from the regulator 24, and outputs a gas fuel pressure signal indicating the detection result to the 2nd-ECU 4. . The gas fuel temperature sensor 28 detects the internal temperature (low pressure gas fuel temperature) of the low pressure gas supply pipe 25 and outputs a gas fuel temperature signal indicating the detection result to the 2nd-ECU 4.
 1st-ECU3(第1制御装置)は、各種センサ(図示省略)から入力されるエンジン運転状態を示す各種センサ信号に基づいてガソリン噴射量を算出すると共に、そのガソリン噴射量を得るために必要なガソリンインジェクタ13の通電時間(以下、ガソリンインジェクタ通電時間と称す)を算出し、パルス幅がガソリンインジェクタ通電時間に設定されたガソリンパルス信号(第1パルス信号)を生成して2nd-ECU4に出力する。 The 1st-ECU 3 (first control device) calculates a gasoline injection amount based on various sensor signals indicating engine operation states input from various sensors (not shown) and is necessary for obtaining the gasoline injection amount. An energization time of the gasoline injector 13 (hereinafter referred to as a gasoline injector energization time) is calculated, and a gasoline pulse signal (first pulse signal) having a pulse width set to the gasoline injector energization time is generated and output to the 2nd-ECU 4 .
 2nd-ECU4(第2制御装置)は、ガス燃料圧力センサ27から入力されるガス燃料圧力信号と、ガス燃料温度センサ28から入力されるガス燃料温度信号と、1st-ECU3から入力されるガソリンパルス信号と、燃料切替スイッチ5から入力される燃料切替信号とに基づいて、ガソリンインジェクタ13、ガスインジェクタ26及び遮断弁23の通電制御を行う。 The 2nd-ECU 4 (second control device) includes a gas fuel pressure signal input from the gas fuel pressure sensor 27, a gas fuel temperature signal input from the gas fuel temperature sensor 28, and a gasoline pulse input from the 1st-ECU 3. Based on the signal and the fuel switching signal input from the fuel switch 5, energization control of the gasoline injector 13, the gas injector 26 and the shutoff valve 23 is performed.
 この2nd-ECU4は、燃料切替スイッチ5から入力される燃料切替信号を基に使用燃料としてガソリンが選択されていると認識した場合、ガソリン噴射モード(液体燃料噴射モード)に移行する一方、使用燃料としてガスが選択されていると認識した場合、ガス噴射モード(気体燃料噴射モード)に移行する。 When the 2nd-ECU 4 recognizes that gasoline is selected as the fuel to be used based on the fuel switching signal input from the fuel switch 5, the 2nd-ECU 4 shifts to the gasoline injection mode (liquid fuel injection mode) while When it is recognized that the gas is selected, the gas injection mode (gaseous fuel injection mode) is entered.
 2nd-ECU4は、1st-ECU3から入力されるガソリンパルス信号に基づいてガスインジェクタ26の通電時間(以下、ガスインジェクタ通電時間と称す)を算出し、ガス噴射モード時には、遮断弁23を開弁させてガスタンク21からガスインジェクタ26へのガス燃料の供給を開始すると共に、パルス幅がガスインジェクタ通電時間に設定されたガスパルス信号(第2パルス信号)をガスインジェクタ26に出力する一方、ガソリン噴射モード時にはガソリンパルス信号をガソリンインジェクタ13に出力する。 The 2nd-ECU 4 calculates the energization time of the gas injector 26 (hereinafter referred to as gas injector energization time) based on the gasoline pulse signal input from the 1st-ECU 3, and opens the shut-off valve 23 in the gas injection mode. The gas fuel supply from the gas tank 21 to the gas injector 26 is started and a gas pulse signal (second pulse signal) whose pulse width is set to the gas injector energizing time is output to the gas injector 26, while in the gasoline injection mode. A gasoline pulse signal is output to the gasoline injector 13.
 燃料切替スイッチ5は、ユーザの手動操作によって燃料の切替えを可能とするスイッチであり、そのスイッチの状態、つまり使用燃料としてガソリンが選択されているのか、或いはガスが選択されているのかを示す燃料切替信号を2nd-ECU4に出力する。 The fuel change-over switch 5 is a switch that enables the fuel to be changed by a manual operation of the user, and indicates the state of the switch, that is, a fuel that indicates whether gasoline is selected as the fuel to be used or whether gas is selected. A switching signal is output to the 2nd-ECU 4.
 次に、上記のように構成された燃料噴射システムAの動作について詳細に説明する。
1st-ECU3は、エンジン運転中であれば、燃料切替スイッチ5の状態に関係なく(つまりガソリン運転、ガス運転に関係なく)、各種センサ信号から認識したエンジン運転状態を基に毎回の燃料噴射タイミングにおいてガソリンインジェクタ13から噴射すべきガソリン噴射量を算出すると共に、そのガソリン噴射量を得るために必要なガソリンインジェクタ通電時間を算出し、パルス幅がガソリンインジェクタ通電時間に設定されたガソリンパルス信号を生成して2nd-ECU4に出力する。
Next, the operation of the fuel injection system A configured as described above will be described in detail.
When the engine is in operation, the 1st-ECU 3 does not depend on the state of the fuel changeover switch 5 (that is, regardless of gasoline operation or gas operation), and each fuel injection timing is based on the engine operation state recognized from various sensor signals. The gasoline injection amount to be injected from the gasoline injector 13 is calculated at the same time, the gasoline injector energization time necessary for obtaining the gasoline injection amount is calculated, and a gasoline pulse signal whose pulse width is set to the gasoline injector energization time is generated. And output to the 2nd-ECU 4.
 4サイクルエンジンの場合、クランク軸が2回転する間に1回の燃料噴射を実施する必要があるので、クランク軸が2回転する毎に、1st-ECU3から2nd-ECU4へ所定パルス幅のガソリンパルス信号が1回出力されることになる。 In the case of a 4-cycle engine, it is necessary to perform fuel injection once while the crankshaft rotates twice. Therefore, every time the crankshaft rotates twice, a gasoline pulse having a predetermined pulse width is transferred from the 1st-ECU3 to the 2nd-ECU4. A signal is output once.
 2nd-ECU4は、上記のように1st-ECU3から入力されるガソリンパルス信号のパルス幅をガソリンインジェクタ通電時間として測定し、このガソリンインジェクタ通電時間をガスインジェクタ26の流量特性、ガス燃料圧力及びガス燃料温度に基づいて補正することにより、ガスインジェクタ通電時間を算出する。 The 2nd-ECU 4 measures the pulse width of the gasoline pulse signal input from the 1st-ECU 3 as described above as the gasoline injector energization time, and uses the gasoline injector energization time as a flow characteristic of the gas injector 26, gas fuel pressure, and gas fuel. By correcting based on the temperature, the gas injector energization time is calculated.
 そして、2nd-ECU4は、ガス噴射モード時において、遮断弁23を開弁させた状態で、パルス幅がガスインジェクタ通電時間に設定されたガスパルス信号を生成してガスインジェクタ26に出力する。これにより、エンジン運転状態に応じて要求される量のガス燃料がガスインジェクタ26から噴射されることになる。 In the gas injection mode, the 2nd-ECU 4 generates a gas pulse signal whose pulse width is set to the gas injector energizing time and outputs the gas pulse signal to the gas injector 26 with the shut-off valve 23 opened. Thus, a required amount of gas fuel is injected from the gas injector 26 according to the engine operating state.
 一方、2nd-ECU4は、ガソリン噴射モード時には、1st-ECU3から入力されるガソリンパルス信号を、そのままガソリンインジェクタ13に出力する。これにより、エンジン運転状態に応じて要求される量のガソリン燃料がガソリンインジェクタ13から噴射されることになる。 On the other hand, the 2nd-ECU 4 outputs the gasoline pulse signal input from the 1st-ECU 3 to the gasoline injector 13 as it is in the gasoline injection mode. Thereby, the gasoline fuel of the quantity requested | required according to an engine driving | running state is injected from the gasoline injector 13. FIG.
 ここで、ガス燃料運転を長時間続けていると、ガソリンインジェクタ13にデポジット(例えばガス燃料の充填時に使用されるコンプレッサのオイル等)が付着して詰まりが発生する可能性がある。そこで、2nd-ECU4は、ガソリンインジェクタ13の詰まりを防止するために、図2のフローチャートで示されるインジェクタ詰まり防止処理を実施する。なお、2nd-ECU4は、図2に示すインジェクタ詰まり防止処理を、一定の制御周期で繰り返し実施する。 Here, if the gas fuel operation is continued for a long time, deposits (for example, compressor oil used when filling the gas fuel) may adhere to the gasoline injector 13 and clogging may occur. Accordingly, the 2nd-ECU 4 performs an injector clogging prevention process shown in the flowchart of FIG. 2 in order to prevent the gasoline injector 13 from clogging. Note that the 2nd-ECU 4 repeatedly performs the injector clogging prevention process shown in FIG. 2 at a constant control cycle.
 図2に示すように、2nd-ECU4は、インジェクタ詰まり防止処理を開始すると、まず、現在ガス運転中か否か(ガス噴射モードか否か)を判断し(ステップS1)、「Yes」の場合にはステップS2の処理に移行する一方、「No」の場合には今回のインジェクタ詰まり防止処理を終了(EXIT)する。 As shown in FIG. 2, when the 2nd-ECU 4 starts the injector clogging prevention process, it first determines whether or not the gas operation is currently being performed (whether or not it is in the gas injection mode) (step S1). In step S2, the process proceeds to step S2. On the other hand, in the case of “No”, the present injector clogging prevention process is ended (EXIT).
 2nd-ECU4は、上記ステップS1にて「Yes」の場合、現在燃料カット中か否かを判断し(ステップS2)、「Yes」の場合にはステップS3の処理に移行する一方、「No」の場合にはステップS5の処理に移行する。ここで、燃料カット中の場合、1st-ECU3によるガソリンパルス信号の出力が停止するので、2nd-ECU4は、1st-ECU3から入力されるガソリンパルス信号の有無に基づいて燃料カット中か否か(つまり燃料カットの発生及び終了)を判断する。 If “Yes” in step S1, the 2nd-ECU 4 determines whether the fuel is currently being cut (step S2). If “Yes”, the process proceeds to step S3, while “No”. In this case, the process proceeds to step S5. Here, when the fuel cut is in progress, the output of the gasoline pulse signal by the 1st-ECU 3 stops, so the 2nd-ECU 4 determines whether the fuel is being cut based on the presence or absence of the gasoline pulse signal input from the 1st-ECU 3 ( That is, it is determined whether or not a fuel cut has occurred and ended.
 2nd-ECU4は、上記ステップS2にて「Yes」の場合、現在のエンジン回転数が所定範囲内か否かを判断し(ステップS3)、「No」の場合には今回のインジェクタ詰まり防止処理を終了する一方、「Yes」の場合にはクリーニングモードの実施を許可した後、今回のインジェクタ詰まり防止処理を終了する(ステップS4)。ここで、不図示のクランクセンサから出力されるクランクパルス信号(クランク軸が所定角度回転するのに要する時間を1周期とするパルス信号)が2nd-ECU4に入力されており(図1参照)、2nd-ECU4は、このクランクパルス信号からエンジン回転数を算出する。 The 2nd-ECU 4 determines whether or not the current engine speed is within a predetermined range if “Yes” in the above step S2 (step S3). If “No”, the present injector clogging prevention process is performed. On the other hand, in the case of “Yes”, after the execution of the cleaning mode is permitted, the present injector clogging prevention processing is ended (step S4). Here, a crank pulse signal output from a crank sensor (not shown) (a pulse signal having a period required for the crankshaft to rotate a predetermined angle) is input to the 2nd-ECU 4 (see FIG. 1). The 2nd-ECU 4 calculates the engine speed from this crank pulse signal.
 なお、エンジン回転数の「所定範囲」とは、ガス噴射からガソリン噴射へと安全に切替えることができる回転数範囲を指す。例えば、高回転域では、ガス/ガソリン噴射の同時切替えができず、両方噴射、若しくは噴射抜けが発生する虞や、噴射燃料の切替えによる回路故障が発生する虞もあるので、例えば4000rpm以上のエンジン回転数では噴射燃料の切替えは行わない。また、通常、アイドル回転数よりも低回転域での切替えは、燃焼の不安定化を招く可能性があるので、例えばアイドル回転数が600rpmの場合には、500rpm以下のエンジン回転数では噴射燃料の切替えは行わない。 Note that the “predetermined range” of the engine speed indicates a speed range in which the gas injection can be safely switched to the gasoline injection. For example, in the high speed range, gas / gasoline injection cannot be switched at the same time, and there is a possibility that both injections or missing injections may occur, or a circuit failure may occur due to switching of injected fuel. The injection fuel is not switched at the rotational speed. In addition, since switching in a lower rotational range than the idling speed may cause instability of combustion, for example, when the idling speed is 600 rpm, the injected fuel is used at an engine speed of 500 rpm or less. Is not switched.
 また、2nd-ECU4は、上記ステップS2にて「No」の場合、つまり燃料カットが終了した場合、クリーニングモードの実施が許可されているか否かを判断し(ステップS5)、「No」の場合には今回のインジェクタ詰まり防止処理を終了する一方、「Yes」の場合にはステップS6の処理に移行する。
そして、2nd-ECU4は、上記ステップS5にて「Yes」の場合、つまりクリーニングモードの実施が許可されている場合、ガソリンインジェクタ13によるガソリン噴射回数(液体燃料噴射回数)が所定値に達したか否かを判断し(ステップS6)、「No」の場合にはステップS7の処理に移行する一方、「Yes」の場合にはステップS8の処理に移行する。
The 2nd-ECU 4 determines whether or not the execution of the cleaning mode is permitted in the case of “No” in step S2, that is, when the fuel cut is completed (step S5). On the other hand, the present injector clogging prevention process is terminated, while in the case of “Yes”, the process proceeds to step S6.
Then, if “Yes” in step S5, that is, if the execution of the cleaning mode is permitted, the 2nd-ECU 4 determines whether the number of gasoline injections (number of liquid fuel injections) by the gasoline injector 13 has reached a predetermined value. If “No”, the process proceeds to step S7, while if “Yes”, the process proceeds to step S8.
 2nd-ECU4は、上記ステップS6にて「No」の場合、つまりガソリンインジェクタ13によるガソリン噴射回数が所定値に達していない場合、1st-ECU3から入力されるガソリンパルス信号をガソリンインジェクタ13に出力するクリーニングモードを実施する(ステップS7)。これにより、ガソリンインジェクタ13によるガソリン噴射が実施され、ガソリンインジェクタ13に付着したデポジットを除去できる(クリーニングできる)。なお、ガソリン噴射回数の「所定値」は、ガソリン噴射により、十分にガソリンインジェクタ13に付着したデポジットを除去できる程度の回数に設定されている。 The 2nd-ECU 4 outputs the gasoline pulse signal input from the 1st-ECU 3 to the gasoline injector 13 if “No” in step S6, that is, if the number of gasoline injections by the gasoline injector 13 has not reached the predetermined value. A cleaning mode is performed (step S7). Thereby, the gasoline injection by the gasoline injector 13 is implemented, and the deposit adhering to the gasoline injector 13 can be removed (cleaned). The “predetermined value” of the number of gasoline injections is set to the number of times that the deposit adhered to the gasoline injector 13 can be sufficiently removed by the gasoline injection.
 また、2nd-ECU4は、上記ステップS6にて「Yes」の場合、つまりガソリンインジェクタ13によるガソリン噴射回数が所定値に達した場合、クリーニングのためのガソリン噴射からガス運転のためのガス噴射(つまりガスインジェクタ26へのガスパルス信号の出力)に復帰する(ステップS8)。そして、2nd-ECU4は、クリーニングモードの実施許可を終了した後、今回のインジェクタ詰まり防止処理を終了する(ステップS9)。 Further, in the case of “Yes” in the above step S6, that is, when the number of gasoline injections by the gasoline injector 13 reaches a predetermined value, the 2nd-ECU 4 performs gas injection for gas operation (ie, gas injection for gas operation). Returning to the output of the gas pulse signal to the gas injector 26 (step S8). Then, the 2nd-ECU 4 ends the present injector clogging prevention process after completing the permission to perform the cleaning mode (step S9).
 以上のインジェクタ詰まり防止処理をまとめると、2nd-ECU4は、ガス噴射時に燃料カットの発生を検知した場合、燃料カットの終了後にエンジン回転数が所定範囲内であること(安全に噴射燃料の切替えが可能であること)を条件としてクリーニングモードを実施し、このクリーニングモードの実施によってガソリンインジェクタ13によるガソリン噴射回数が所定値に達した場合に、ガス噴射に復帰することになる。 To summarize the above-described injector clogging prevention processing, when the 2nd-ECU 4 detects the occurrence of a fuel cut during gas injection, the engine speed is within a predetermined range after the fuel cut ends (the injection fuel can be switched safely). When the cleaning mode is performed on the condition that the number of gasoline injections by the gasoline injector 13 reaches a predetermined value due to the execution of the cleaning mode, the operation returns to the gas injection.
 図3は、このようなインジェクタ詰まり防止処理によって、ガス運転時に2nd-ECU4から出力されるガスパルス信号及びガソリンパルス信号がどのように変化するのかを示すタイミングチャートである。この図3に示すように、ガス運転中では2nd-ECU4からガスインジェクタ26にガスパルス信号が出力されているが、燃料カット中にはガスパルス信号の出力が停止し、燃料カットの終了後に、クリーニングモードの実施によって2nd-ECU4からガソリンインジェクタ13にガソリンパルス信号が出力され、ガソリン噴射回数が所定値に達した時点でガス噴射に復帰することになる。 FIG. 3 is a timing chart showing how the gas pulse signal and the gasoline pulse signal output from the 2nd-ECU 4 change during the gas operation by such an injector clogging prevention process. As shown in FIG. 3, the gas pulse signal is output from the 2nd-ECU 4 to the gas injector 26 during the gas operation, but the output of the gas pulse signal stops during the fuel cut, and after the fuel cut ends, the cleaning mode As a result, the 2nd-ECU 4 outputs a gasoline pulse signal to the gasoline injector 13 and returns to gas injection when the number of gasoline injections reaches a predetermined value.
 以上のように、本実施形態では、2nd-ECU4が、ガス噴射時に燃料カットの発生を検知した場合、燃料カットの終了後、つまり1st-ECU3によるガソリンパルス信号の出力が再開した後にクリーニングモードを実施するので、問題なくガソリンインジェクタ13のクリーニング(ガソリン噴射)を実施できる。また、本実施形態では、燃料カットの終了後にガソリン噴射を実施するので、従来技術のように、燃料カット中の燃料自着火を防止するために筒内温度を推定する必要もない。従って、本実施形態によれば、筒内温度を推定することなく、ガソリンインジェクタ13の詰まり防止を実現することができる。 As described above, in this embodiment, when the 2nd-ECU 4 detects the occurrence of a fuel cut during gas injection, the cleaning mode is performed after the fuel cut ends, that is, after the output of the gasoline pulse signal by the 1st-ECU 3 is resumed. Since it carries out, cleaning (gasoline injection) of the gasoline injector 13 can be carried out without any problem. Moreover, in this embodiment, since gasoline injection is performed after the end of the fuel cut, it is not necessary to estimate the in-cylinder temperature in order to prevent fuel self-ignition during the fuel cut as in the prior art. Therefore, according to the present embodiment, it is possible to prevent clogging of the gasoline injector 13 without estimating the in-cylinder temperature.
 なお、本発明は上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において実施形態を変更しても良いことは勿論である。例えば、CNG以外の気体燃料とガソリン以外の液体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルシステムにも本発明を適用することができる。 In addition, this invention is not limited to the said embodiment, Of course, you may change embodiment in the range which does not deviate from the meaning of this invention. For example, the present invention can be applied to a bi-fuel system that selectively switches a gaseous fuel other than CNG and a liquid fuel other than gasoline and supplies the fuel to a single engine.
 A…燃料噴射システム、1…液体燃料供給系、2…気体燃料供給系、3…1st-ECU(第1制御装置)、4…2nd-ECU(第2制御装置)、5…燃料切替スイッチ、13…ガソリンインジェクタ(液体燃料噴射弁)、26…ガスインジェクタ(気体燃料噴射弁) A ... fuel injection system, 1 ... liquid fuel supply system, 2 ... gaseous fuel supply system, 3 ... 1st-ECU (first control device), 4 ... 2nd-ECU (second control device), 5 ... fuel changeover switch, 13 ... gasoline injector (liquid fuel injection valve), 26 ... gas injector (gas fuel injection valve)

Claims (4)

  1.  液体燃料噴射弁の通電時間を規定する第1パルス信号を出力する第1制御装置と;
     気体燃料噴射時には前記第1パルス信号を基に気体燃料噴射弁の通電時間を規定する第2パルス信号を生成して前記気体燃料噴射弁に出力する第2制御装置と、を備える燃料噴射システムであって、
     前記第2制御装置は、前記気体燃料噴射時に燃料カットの発生を検知した場合、前記燃料カットの終了後に前記第1制御装置から入力される前記第1パルス信号を前記液体燃料噴射弁に出力するクリーニングモードを実施することを特徴とする燃料噴射システム。
    A first control device that outputs a first pulse signal that defines an energization time of the liquid fuel injection valve;
    A second control device that generates a second pulse signal that defines an energization time of the gaseous fuel injection valve based on the first pulse signal during gaseous fuel injection and outputs the second pulse signal to the gaseous fuel injection valve. There,
    When the second control device detects the occurrence of a fuel cut during the gaseous fuel injection, the second control device outputs the first pulse signal input from the first control device to the liquid fuel injection valve after the fuel cut ends. A fuel injection system that performs a cleaning mode.
  2.  前記第2制御装置は、前記クリーニングモードの実施によって前記液体燃料噴射弁による液体燃料噴射回数が所定値に達した場合に、前記気体燃料噴射に復帰することを特徴とする請求項1に記載の燃料噴射システム。 The said 2nd control apparatus returns to the said gaseous fuel injection, when the frequency | count of the liquid fuel injection by the said liquid fuel injection valve reaches predetermined value by implementation of the said cleaning mode, The said fuel control device is returned to the gaseous fuel injection. Fuel injection system.
  3.  前記第2制御装置は、前記燃料カットの終了後にエンジン回転数が所定範囲内であることを条件として前記クリーニングモードを実施することを特徴とする請求項1または2に記載の燃料噴射システム。 3. The fuel injection system according to claim 1, wherein the second control device performs the cleaning mode on condition that an engine speed is within a predetermined range after the fuel cut is completed.
  4.  前記第2制御装置は、前記第1制御装置から入力される前記第1パルス信号の有無に基づいて前記燃料カットの発生及び終了を判断することを特徴とする請求項1~3のいずれか一項に記載の燃料噴射システム。 The first control device according to any one of claims 1 to 3, wherein the second control device determines the occurrence and end of the fuel cut based on the presence or absence of the first pulse signal input from the first control device. The fuel injection system according to item.
PCT/JP2013/051151 2012-02-23 2013-01-22 Fuel injection system WO2013125278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-037740 2012-02-23
JP2012037740A JP2013174137A (en) 2012-02-23 2012-02-23 Fuel injection system

Publications (1)

Publication Number Publication Date
WO2013125278A1 true WO2013125278A1 (en) 2013-08-29

Family

ID=49005472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051151 WO2013125278A1 (en) 2012-02-23 2013-01-22 Fuel injection system

Country Status (2)

Country Link
JP (1) JP2013174137A (en)
WO (1) WO2013125278A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159196B2 (en) 2013-08-26 2017-07-05 オークマ株式会社 Position controller for identifying low-frequency disturbances

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502472A (en) * 1990-11-20 1994-03-17 ジ エナジー リサーチ アンド ディベロプメント コーポレイション Dual system fuel injection device and method for controlling the device
JP2004239213A (en) * 2003-02-07 2004-08-26 Toyota Motor Corp Fuel supply control device and method of bi-fuel engine
JP2005155501A (en) * 2003-11-26 2005-06-16 Toyota Motor Corp Fuel-injection control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502472A (en) * 1990-11-20 1994-03-17 ジ エナジー リサーチ アンド ディベロプメント コーポレイション Dual system fuel injection device and method for controlling the device
JP2004239213A (en) * 2003-02-07 2004-08-26 Toyota Motor Corp Fuel supply control device and method of bi-fuel engine
JP2005155501A (en) * 2003-11-26 2005-06-16 Toyota Motor Corp Fuel-injection control device of internal combustion engine

Also Published As

Publication number Publication date
JP2013174137A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
US20130000752A1 (en) Shut-off valve fault diagnosis device and fuel supply system
JP5827587B2 (en) Fuel injection system
KR101383751B1 (en) Control method of bi-fuel feed system
CN103502608A (en) Fuel supply control device and control method for engine
JP5637222B2 (en) Control device for internal combustion engine
JP4989281B2 (en) Gas engine fuel supply method and gasoline alternative gas fuel injection control device
JP5856384B2 (en) Fuel supply system and fuel injection control device
WO2013125278A1 (en) Fuel injection system
JP2006329110A (en) Controller for internal combustion engine
JP5801585B2 (en) Fuel injection control system
JP2013130156A (en) Fuel injection system
JP6118238B2 (en) Multi-fuel engine fuel supply system
JP5814776B2 (en) Gas fuel leak detection device
JP5856933B2 (en) Control device for internal combustion engine
KR101312596B1 (en) Fuel supply method for gas engine and fuel injection control apparatus of gasoline substitute gas fuel
JP4841963B2 (en) Engine fuel supply method and fuel supply apparatus
JP5859842B2 (en) Fuel injection system
JP6414522B2 (en) Engine fuel supply system
JP2016217330A (en) Fuel injection controller of internal combustion engine
JP5798055B2 (en) Fuel injection system
JP2006257968A (en) Fuel injection control device for internal combustion engine
WO2017130543A1 (en) Bifuel engine system
JP2016217331A (en) Fuel injection control device of internal combustion engine
JP6233200B2 (en) Fuel supply device for internal combustion engine
JP2014141952A (en) Internal combustion engine fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751524

Country of ref document: EP

Kind code of ref document: A1