WO2013123767A1 - 一种变电站双规约监控系统及其方法 - Google Patents

一种变电站双规约监控系统及其方法 Download PDF

Info

Publication number
WO2013123767A1
WO2013123767A1 PCT/CN2012/080759 CN2012080759W WO2013123767A1 WO 2013123767 A1 WO2013123767 A1 WO 2013123767A1 CN 2012080759 W CN2012080759 W CN 2012080759W WO 2013123767 A1 WO2013123767 A1 WO 2013123767A1
Authority
WO
WIPO (PCT)
Prior art keywords
protocol
new
data
old
monitoring
Prior art date
Application number
PCT/CN2012/080759
Other languages
English (en)
French (fr)
Inventor
夏友斌
潘文虎
李宗�
张弋茂
任水华
黄学庆
朱明�
夏民
宋铭敏
李涛
周启扬
章莉
Original Assignee
安徽省电力公司芜湖供电公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽省电力公司芜湖供电公司, 国家电网公司 filed Critical 安徽省电力公司芜湖供电公司
Priority to CA2854201A priority Critical patent/CA2854201C/en
Publication of WO2013123767A1 publication Critical patent/WO2013123767A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the invention relates to a Chinese patent application filed on February 24, 2012 by the Chinese Patent Office, the application number is 201210043116.4, and the invention name is "a substation dual-scheduled monitoring system and method thereof" Priority is hereby incorporated by reference in its entirety.
  • the invention relates to the field of power transmission monitoring, and more particularly to a monitoring system, a system working method and a system modification method thereof used in intelligent transformation of a substation. Background technique
  • the communication protocol needs to be upgraded, involving the parallel operation of the new and old monitoring systems.
  • today's substation adopts the IEC103 protocol access control layer network.
  • the intelligent communication interface is modified for the interval layer measurement and control device.
  • the measurement and control device after the establishment will be connected to the new intelligent station control layer network with IEC61850 protocol.
  • the current transformation method is shown in Figure 1, which is connected to two sets of monitoring systems respectively.
  • the new protocol uses a new monitoring system. Use an old monitoring system.
  • Such substation intelligent transformation scheme has three shortcomings. First, the old and new monitoring systems are operated side by side during the transformation process, which greatly increases the monitoring burden of the operating personnel and the system risk of the reconstruction project.
  • the technical problem to be solved by the invention is to realize a monitoring system, a monitoring method, and a transformation method for the parallel operation of the old and new monitoring systems in the intelligent transformation process of the substation.
  • the technical solution adopted by the present invention is: a dual-station monitoring system for a substation, the old stipulations of the station control layer, the B network are respectively connected with the old statute standard measurement and control protection device, and the new stipulations of the station control layer A, B
  • the network is connected with the new protocol standard measurement and control protection device.
  • the monitoring background server is equipped with four Ethernet ports and is connected to the new and old protocols A and B networks to receive the data of the new and old standard measurement and control protection devices. Standard processing data.
  • a monitoring method for a substation dual protocol monitoring system :
  • Step 1 The monitoring background server receives the data of the new and old protocols A and B;
  • Step 2 The server determines whether the data is old protocol data, and if yes, proceeds to the next step, if otherwise, determines whether it is new protocol data, if yes, proceeds to the next step, if otherwise determines to be invalid data, discards it;
  • Step 3 Determine whether the data address is valid. If it is valid to enter the next step, if it is invalid, it is determined to be invalid data and discarded.
  • Step 4 The server receives the data and processes the data according to the corresponding protocol
  • Step 5 The server implements the station control layer interlocking according to the data.
  • a method for intelligently transforming a substation using a dual-protocol monitoring system :
  • Step 1 Build a new protocol for the station control layer A, B network and the new standard measurement and control protection device, and connect the new standard measurement and control protection device to the new protocol A and B networks;
  • Step 2 Connect the dual-protocol monitoring background server to the new and old protocol A and B networks respectively;
  • Step 3 Monitor the background server in the dual protocol, and synchronize the new and old protocols to run synchronously; Step 4.
  • the new protocol standard measurement and control protection device is completely After replacing the old statute standard measurement and control protection device, the old standard A and B networks are removed.
  • Step 5 The dual-protocol monitoring background server only accesses the new protocol and the B network, and is used as an ordinary single-protocol monitoring background server.
  • the invention has the advantages that compared with the existing substation intelligent transformation scheme, the scheme effectively solves a series of problems arising from the parallel operation of the old and new monitoring systems in the substation intelligent transformation process.
  • the monitoring and back-end supporting the dual-protocol can synchronously receive and process the data of all new and old equipments in the substation.
  • the operating personnel can monitor and control the whole station equipment independently through the monitoring and back-end supporting the dual-protocol. Transition requirements during the transformation process.
  • the integrity of the data provides the necessary conditions for the interlocking of the station control layer, and the substation is solved by setting a perfect logic lock at the station control layer.
  • the monitoring system realizes the seamless docking of the IEC61850 standard and the IEC103 protocol.
  • the equipment is modified, only the simple specification category setting is required, and the secondary model of the equipment in the substation monitoring system can be updated. The update ensures the accuracy of the database and the picture during the transformation process, avoiding human error in the transformation.
  • Figure 1 is a schematic diagram of a network that does not adopt a dual-protocol monitoring system for intelligent transformation of a substation
  • Figure 2 is a schematic diagram of a network using a dual-protocol monitoring system for intelligent transformation of a substation
  • Figure 3 is a schematic diagram of the structure of a dual-protocol monitoring system
  • Figure 4 is a flow chart of the dual protocol monitoring system. detailed description
  • the substation automation system consists of a station control layer and a bay level in functional logic.
  • the station control layer is composed of a main computer and an operator station, a telecontrol communication device, an engineering station, an integrated data platform, a protection and fault recording information management substation, and the like; the separation layer is monitored and controlled by the monitoring system, and the relay protection is performed.
  • the system consists of secondary subsystems such as system, fault recording system and metering system. It is connected to the primary system equipment through the control cable, and directly accesses the station control layer network through the network interface to realize communication with the station control layer equipment.
  • the substation dual-protocol monitoring system has a monitoring background, that is, the workstations used by the substation operators to monitor and change the operation mode of the primary equipment in the station.
  • the server in the working background has four Ethernet ports, two of which are The old protocol A and B networks of the access station control layer, the other two interfaces access the new and old protocols A and B networks, the old rules are about IEC103 protocol, the new rules are about IEC61850, and the four Ethernets of the dual protocol background server
  • the port is respectively connected to the original station control layer IEC103 protocol network and the new station control layer IEC61850 network A network, B network, synchronous receiving data of all measurement and control devices in the station, thereby avoiding the network equipment of IEC103 protocol communication and the network equipment of IEC61850 protocol communication Due to communication regulations The data is inconsistent and cannot communicate directly with each other.
  • the new protocol of the station control layer A and B networks are MMS networks, and the high-speed redundant network with double-star topology is adopted.
  • the communication protocol adopts the IEC61850 standard.
  • the above-mentioned measurement and control protection device comprises a measurement and control device, that is, a device for collecting remote signal telemetry data of a primary device and a secondary device in a substation and controlling and regulating some or all of the devices at one time, and a protection device, that is, a substation for The current parameters such as current and impedance are analyzed and calculated to calculate the secondary equipment for protection tripping and reclosing.
  • Step 1 The monitoring background server receives the data of the new and old protocols A and B;
  • Step 2 The server determines whether the data is old protocol data, and if yes, proceeds to the next step, if otherwise, determines whether it is new protocol data, if yes, proceeds to the next step, if otherwise determines to be invalid data, discards it;
  • Step 3 Determine whether the data address is valid. If it is valid to enter the next step, if it is invalid, it is determined to be invalid data and discarded.
  • Step 4 The server receives the data and processes the data according to the corresponding protocol, and performs simple protocol category setting on the modified device to complete the update of the secondary model of the device in the substation monitoring system.
  • Step 5 The server implements the station control layer interlocking according to the data.
  • the server can shield the user from the difference between the data source (the data from the new protocol A, B, or the data from the old protocol, the B network), and the new station data and the old station data can be realized.
  • Station station control layer interlocking thus providing users with a unique and complete application gallery interface.
  • the communication processing performance of the monitoring system and the bay level device was verified. It is found that because the monitoring system frequently establishes a communication connection with the equipment that has not been modified but has been modeled according to the IEC61850 protocol, resulting in the data not being refreshed, after discussion, the addresses of all the devices are all set to invalid addresses, and then the transformation is performed. The adjustment avoids the possibility that the monitoring system will not operate correctly due to intelligent transformation.
  • Step 1 Construct the new protocol A and B network of the station control layer and the new standard measurement and control protection device, and connect the new standard measurement and control protection device to the new protocol A and B networks;
  • Step 2 Connect the dual-protocol monitoring background server to the new and old protocol A and B networks respectively;
  • Step 3 Monitor the background server in the dual protocol, and synchronize the new and old protocols to run synchronously; Step 4.
  • the new protocol standard measurement and control protection device is completely After replacing the old statute standard measurement and control protection device, the old metric A and B networks are removed.
  • Step 5 After the transition period, the dual-protocol monitoring background server only accesses the new protocol VIII and B networks, and is used as an ordinary single-protocol monitoring background server.
  • 500kV system Since the 500kV system primary equipment operating circuit does not have a complete electrical lock, the operating circuit must ensure a complete logic lockout.
  • the busbar interval interlocking function is suspended, and the logic locking function of the busbar isolation switch is realized by the station control layer logic blocking function. After all the transformation is completed, the busbar interval layer interlocking function is restored, and the whole station spacing layer interlocking is restored. Integrity.
  • the 220kV power distribution unit uses GIS (Gas Insulated Switchgear) equipment.
  • GIS Gas Insulated Switchgear
  • the primary equipment operation loop sets a complete electrical lockout, and the station control layer logic lockout can completely realize the blocking logic of the interval layer during the transformation process, so it is allowed.
  • the logic blocking function of the measurement and control device is removed during the transition process. After the measurement and control device is changed into the intelligent station control layer network one by one, the logic locking function of the measuring and controlling device of the busbar isolating switch is restored, and after the busbar interval measuring and controlling device is completely connected, the logic locking function of the measuring and controlling device of the busbar grounding switch is restored.
  • Main transformer three-side isolating switch and grounding switch main transformer three-side grounding switch sets complete electrical blocking
  • the 500kV side grounding switch is set to the main transformer 500kV side without pressure lock, the 220kV grounding switch is equipped with the live display device), but the main transformer three-side isolating switch is not set with the electrical locking between the grounding switches on each side, the main transformer power failure transformation process
  • the station control layer logic lock provided by the dual protocol background contains all the lock logic, which guarantees the complete logic lock function.
  • the system can always synchronize the data of all measurement and control devices in the receiving station.
  • the operators directly monitor and control the whole station equipment through the new intelligent monitoring system, which is alleviated?
  • the operation personnel can realize the monitoring and control of the whole station equipment through the operator station of the new intelligent station control layer to meet the transition requirements in the station control layer transformation process.
  • the new dual-protocol monitoring system can synchronize the data of all the monitoring and control devices in the receiving station, and the data integrity guarantees the realization of the station-controlled interlocking, which makes up for the security vulnerabilities of the whole station blocking function during the engineering transformation.
  • the monitoring system realizes the seamless docking of the IEC61850 standard and the IEC103 protocol.
  • the intelligent transformation process only the simple specification category setting of the modified equipment is required, and the secondary model of the equipment in the substation monitoring system can be updated.
  • the model is updated by the program to ensure the accuracy of the library during the transformation process and avoid human error in the transformation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种变电站双规约监控系统及其方法,站控层的老规约A、B网分别与老规约标准测控保护装置连接,站控层的新规约A、B网分别与新规约标准测控保护装置连接,监控后台服务器设有四个以太网口并分别接入新老规约A、B网,接收新、老规约标准测控保护装置的数据,同时分别按照新老规约标准处理数据。该系统兼容IEC61850规约和IEC103规约设备通讯,并且智能化监控系统使得数据完整,通过站控层联闭锁实现全站的防误闭锁功能,同时实现了新老规约标准的无缝对接。

Description

一种变电站欢规约监控系统及其方法 本申请要求于 2012 年 2 月 24 日提交中国专利局、 申请号为 201210043116.4、发明名称为 "一种变电站双规约监控系统及其方法"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及变电监控领域, 更具体说涉及一种变电站智能化改造时使用的 监控系统、 系统工作方法及其系统改造方法。 背景技术
在运行变电站进行智能化改造时, 需要对通讯规约进行升级, 牵涉到新老 两套监控系统的并列运行。 例如现如今变电站采用 IEC103规约接入站控层网 络, 在改造时对间隔层测控装置进行智能化通信接口改造, ?丈造后的测控装置 将以 IEC61850规约接入新的智能化站控层网络运行, 目前的改造方法如图 1 所示, 分别接入两套监控系统, 新规约使用新的监控系统, 老规约使用老的监 控系统。 这样的变电站智能化改造方案具有三个缺点,一是在改造过程中新老 监控系统并列运行, 大大增加了运行人员的监控负担和改造工程的系统风险; 二是在某些仅依靠间隔层的逻辑闭锁来实现防误闭锁功能的变电站智能化改 造过程中, 由于设备之间规约不一致无法直接通讯, 导致部分有联闭锁关联的 测控装置间无法相互交换数据,从而改造过程中间隔层测控装置无法实现完善 的逻辑闭锁, 使变电站失去了防误闭锁功能; 三是改造过程中, 针对改造的设 备需要废除原有 IEC103规约的二次模型, 并新建 IEC61850规约的模型, 相 关的数据库内容和监控画面关联都需要重新手动调整,每个间隔的操作量都非 常大, 均依靠人工调整难以避免发生错误关联, 不仅延长了工期, 而且错误的 关联会成为安全隐患, 可能导致误控其他运行设备, 引起系统事故。 发明内容
本发明所要解决的技术问题是实现一种变电站智能化改造过程中新老监 控系统并列运行的监控系统、 监控方法, 以及改造方法。 为了实现上述目的, 本发明采用的技术方案为: 一种变电站双规约监控系 统, 站控层的老规约八、 B网分别与老规约标准测控保护装置连接, 站控层的 新规约 A、 B网分别与新规约标准测控保护装置连接, 监控后台服务器设有四 个以太网口并分别接入新老规约 A、 B网接收新、 老规约标准测控保护装置的 数据, 同时分别按照新老规约标准处理数据。
一种变电站双规约监控系统的监控方法:
步骤 1、 监控后台服务器接收到新老规约 A、 B网上的数据;
步骤 2、 服务器进行判断数据是否为老规约数据, 若是则进入下一步, 若 否则判断是否为新规约数据, 若是则进入下一步, 若否则判定为无效数据将其 丢弃;
步骤 3、 判断数据地址是否有效, 若有效进入下一步, 若无效则判定为无 效数据将其丟弃;
步骤 4、 服务器接收数据并按照相应规约处理数据;
步骤 5、 服务器根据数据实现站控层联闭锁。
一种利用双规约监控系统进行变电站智能化改造的方法:
步骤 1、 构建站控层新规约 A、 B网以及新规约标准测控保护装置, 并将 新规约标准测控保护装置接入新规约 A、 B网;
步骤 2、 将双规约监控后台服务器分别接入新、 老规约 A、 B网; 步骤 3、 双规约监控后台服务器工作, 新、 老规约同步运行进行过渡; 步骤 4、 新规约标准测控保护装置完全替代老规约标准测控保护装置后, 拆除老规约标 A、 B网。
步骤 5、 双规约监控后台服务器仅接入新规约 、 B网, 作为普通的单规 约监控后台服务器使用。
本发明的优点在于与现有的变电站智能化改造方案相比,该方案有效解决 了变电站智能化改造过程中新老监控系统并列运行所产生的一系列问题。 首 先, 支持双规约的监控后台能同步接收和处理变电站内所有新老设备的数据, 整个工程过渡期间,运行人员即可单独通过支持双规约的监控后台实现对全站 设备的监视和控制, 满足改造过程中的过渡要求。 其次, 数据的完整性给站控 层的联闭锁提供了必要的条件,通过在站控层设置完善的逻辑闭锁解决了变电 站在智能化改造过程中失去防误闭锁功能的问题,保障了变电站智能化改造工 程的安全性。 最后, 该监控系统实现了 IEC61850标准和 IEC103规约的无缝 对接, 改造设备时只需要进行简单的规约类别设置后, 即可完成该设备在变电 站监控系统中二次模型的更新, 由程序进行模型的更新, 确保了改造过程中数 据库和画面的准确性, 避免了改造中的人为因素错误。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发 明的实施例一并用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1为未采用双规约监控系统进行变电站智能化改造的网络示意图; 图 2为采用双规约监控系统进行变电站智能化改造的网络示意图; 图 3为双规约监控系统结构示意图;
图 4为双规约监控系统流程图。 具体实施方式
以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述的 优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
变电站自动化系统在功能逻辑上由站控层和间隔层组成。其中站控层由主 计算机兼操作员站、 远动通信装置、 工程师站、 一体化数据平台、 保护和故障 录波信息管理子站等功能站构成;间隔层由监控系统测控装置、继电保护系统、 故障录波系统、计量系统等二次子系统组成, 通过控制电缆与一次系统设备连 接, 通过网络接口直接接入站控层网络, 实现与站控层设备通信。
参见图 3可知, 变电站双规约监控系统设有一个监控后台, 即变电运行人 员用以监视和改变站内一次设备运行方式的工作站,工作后台的服务器设有四 个以太网口, 其中两个接口接入站控层的老规约 A、 B网, 另两个接口接入新 老规约 A、 B网, 以老规约为 IEC103规约, 新规约为 IEC61850为例, 双规约 后台服务器的 4个以太网口分别接入原站控层 IEC103规约网络和新建站控层 IEC61850网络的 A网、 B网, 同步接收站内所有测控装置的数据, 从而避免 了 IEC103规约通讯的网络设备和 IEC61850规约通讯的网络设备由于通讯规 约不一致, 相互间无法直接通讯, 导致部分有联闭锁关联的测控装置间无法相 互交换数据,由于新建双规约监控系统服务器可以同步接收站内所有测控装置 的数据, 其数据完整性保障了站控层联闭锁的实现, 弥补了工程改造期间整站 闭锁功能不完善的安全漏洞。
站控层新规约 A、 B网为 MMS网络, 采用双星型拓朴结构的高速冗余网 络, 通信规约采用 IEC61850标准。 上述测控保护装置包括测控装置, 即变电 站内用以采集一次设备、二次设备的遥信遥测数据并对一次的部分或全部设备 进行控制和调节的装置, 以及保护装置, 即变电站内用以对电流、 阻抗等电网 参数分析计算进行保护跳闸、 重合闸等保护动作的二次设备装置。
如图 4所示, 上述双规约监控系统的后台服务器监控方法:
步骤 1、 监控后台服务器接收到新老规约 A、 B网上的数据;
步骤 2、 服务器进行判断数据是否为老规约数据, 若是则进入下一步, 若 否则判断是否为新规约数据, 若是则进入下一步, 若否则判定为无效数据将其 丢弃;
步骤 3、 判断数据地址是否有效, 若有效进入下一步, 若无效则判定为无 效数据将其丢弃;
步骤 4、 服务器接收数据并按照相应规约处理数据, 对改造设备进行简单 的规约类别设置, 完成该设备在变电站监控系统中二次模型的更新。
步骤 5、 服务器根据数据实现站控层联闭锁。
按照上述方法, 服务器就可以对用户屏蔽数据来源(来自新规约 A、 B的 数据, 还是来自老规约八、 B网的数据)不同导致的差异, 对新站数据和老站 数据均可实现全站站控层联闭锁,从而提供给用户唯一的、 完善的应用图库界 面。
通过对智能化监控系统进行网络流量试验和网络压力试验,对监控系统与 间隔层设备的通讯处理性能进行了验证。由此发现由于监控系统频繁地与尚未 改造但已经按 IEC61850规约建模的设备建立通讯连接, 导致数据不刷新的情 况,经过讨论将此部分设备的地址全部置成无效地址,等改造过后再进行调整, 避免了现场出现由于智能化改造发生监控系统运行不正确的可能性。
如图 2所示利用双规约监控系统进行变电站智能化改造的方法: 步骤 1、 构建站控层新规约 A、 B网以及新规约标准测控保护装置, 并将 新规约标准测控保护装置接入新规约 A、 B网;
步骤 2、 将双规约监控后台服务器分别接入新、 老规约 A、 B网; 步骤 3、 双规约监控后台服务器工作, 新、 老规约同步运行进行过渡; 步骤 4、 新规约标准测控保护装置完全替代老规约标准测控保护装置后, 拆除老规约 A、 B网。
步骤 5、 在过渡期之后, 双规约监控后台服务器仅接入新规约八、 B网, 作为普通的单规约监控后台服务器使用。
相应电气设备改造方案如下:
500kV系统: 由于 500kV 系统一次设备操作回路没有设置完整的电气闭 锁, 操作回路必须确保完整的逻辑闭锁功能。 在改造阶段, 暂停母线间隔层联 闭锁功能,依靠站控层逻辑闭锁功能实现母线隔离开关的逻辑闭锁功能,待全 部改造完成后,恢复母线间隔层联闭锁功能,恢复全站间隔层联闭锁的完整性。
220kV系统: 220kV配电装置釆用了 GIS ( Gas Insulated Switchgear )设备, 一次设备操作回路设置了完整的电气闭锁,且在改造过程中站控层逻辑闭锁可 以完全实现间隔层的闭锁逻辑,所以允许改造过渡过程中退出测控装置的逻辑 闭锁功能。 测控装置逐个改接入智能化站控层网络后, 恢复母线隔离开关的测 控装置逻辑闭锁功能, 母线间隔测控装置全部改接完成后, 恢复母线接地开关 的测控装置逻辑闭锁功能。
主变三侧隔离开关和接地开关:主变三侧接地开关设置了完整的电气闭锁
(500kV侧接地开关设置了主变 500kV侧无压闭锁, 220kV接地开关设置了带 电显示装置),但主变三侧隔离开关没有设置与各侧接地开关之间的电气闭锁, 主变停电改造过程中, 双规约后台提供的站控层逻辑闭锁中包含所有闭锁逻 辑, 保证了完整的逻辑闭锁功能。
兼容 IEC61850和 IEC103规约, 在改造的整个过程中, 该系统始终能够 同步接收站内所有测控装置的数据,运行人员直接通过新建智能监控系统实现 对全站设备的监视和控制, 减轻了?文造期间变电站的运行监控压力。
在整个工程过渡期间 ,运行人员可单独通过新建智能站控层的操作员站实 现对全站设备的监视和控制, 满足站控层改造过程中的过渡要求。 同时, 由于 新建双规约监控系统可以同步接收站内所有测控装置的数据,其数据完整性保 障了站控层联闭锁的实现,弥补了工程改造期间整站闭锁功能不完善的安全漏 洞。
该监控系统实现了 IEC61850标准和 IEC103规约的无缝对接, 在智能化 改造过程中只需要对改造设备进行简单的规约类别设置后 ,即可完成该设备在 变电站监控系统中二次模型的更新, 由程序进行模型的更新, 从而确保了改造 过程中图库的准确性, 避免了改造中的人为因素错误。
最后应说明的是: 以上仅为本发明的优选实施例而已, 并不用于限制本发 明,尽管参照前述实施例对本发明进行了详细的说明, 对于本领域的技术人员 来说, 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部 分技术特征进行等同替换。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种变电站双规约监控系统, 站控层的老规约 A、 B 网分别与老规约 标准测控保护装置连接, 其特征在于: 站控层的新规约 、 B网分别与新规约 标准测控保护装置连接,监控后台服务器设有四个以太网口, 所述四个以太网 口分别接入所述老规约八、 B网和所述新规约八、 B网, 用于接收所述老规约 标准测控保护装置和所述新规约标准测控保护装置的数据,同时按照老规约标 准处理所述老规约标准测控保护装置的数据,按照新规约标准处理所述新规约 标准测控保护装置的数据。
2、 一种基于权利要求 1所述的变电站双规约监控系统的监控方法, 其特 征在于:
步骤 1、 监控后台服务器接收到老规约 A、 B网和新规约 A、 B网上的数 据;
步骤 2、 监控后台服务器进行判断数据是否为老规约数据, 若是则执行步 骤 3 , 若否则判断是否为新规约数据, 若是则执行步骤 3 , 若否则判定为无效 数据将其丟弃;
步骤 3、 判断数据地址是否有效, 若有效执行步骤 4, 若无效则判定为无 效数据将其丢弃;
步骤 4、 监控后台服务器接收数据, 如果所述数据为老规约数据, 则按照 老规约标准处理所述老规约数据, 如果所述数据为新规约数据, 则按照新规约 标准处理所述新规约数据;
步骤 5、 监控后台服务器根据数据实现站控层联闭锁。
3、 一种利用双规约监控系统进行变电站智能化改造的方法, 其特征在于: 步骤 1、 构建站控层新规约 A、 B网以及新规约标准测控保护装置, 并将 新规约标准测控保护装置接入新规约 A、 B网; 步骤 2、 将双规约监控后台服务器分别接入老规约 A、 B网和新规约 A、 B网;
步骤 3、 双规约监控后台服务器工作, 接入老规约 A、 B网的老规约标准 测控保护装置与接入新规约 A、 B网的新规约标准测控保护装置同步运行进行 过渡;
步骤 4、 新规约标准测控保护装置完全替代老规约标准测控保护装置后, 拆除老规约 A、 B网。
步骤 5、 双规约监控后台服务器仅接入新规约 、 B网, 作为普通的单规 约监控后台服务器使用。
PCT/CN2012/080759 2012-02-24 2012-08-30 一种变电站双规约监控系统及其方法 WO2013123767A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2854201A CA2854201C (en) 2012-02-24 2012-08-30 Transformer substation dual-protocol monitoring system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210043116.4 2012-02-24
CN2012100431164A CN102570618A (zh) 2012-02-24 2012-02-24 一种变电站双规约监控系统及其方法

Publications (1)

Publication Number Publication Date
WO2013123767A1 true WO2013123767A1 (zh) 2013-08-29

Family

ID=46415324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080759 WO2013123767A1 (zh) 2012-02-24 2012-08-30 一种变电站双规约监控系统及其方法

Country Status (3)

Country Link
CN (1) CN102570618A (zh)
CA (1) CA2854201C (zh)
WO (1) WO2013123767A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340851A (zh) * 2016-09-14 2017-01-18 国网福建省电力有限公司 一种适用于t接小水电线路的重合闸回路
CN111030867A (zh) * 2019-12-18 2020-04-17 国网山西省电力公司电力科学研究院 基于拨码开关的通讯采集装置和通讯协议免配置方法
CN111490936A (zh) * 2020-04-09 2020-08-04 南京南瑞继保电气有限公司 一种基于通讯链路管理的iec61850冗余设备接入方法和系统
CN112311891A (zh) * 2020-11-03 2021-02-02 国网智能科技股份有限公司 一种变电站在线智能巡视云边协同系统及方法
CN114884769A (zh) * 2022-06-14 2022-08-09 南京南瑞水利水电科技有限公司 一种双通信协议冗余通信系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570618A (zh) * 2012-02-24 2012-07-11 安徽省电力公司芜湖供电公司 一种变电站双规约监控系统及其方法
CN102868218A (zh) * 2012-09-04 2013-01-09 昆山市万丰制衣有限责任公司 常规变电站进行智能化改造中监控系统改造的过渡方法
CN102983627B (zh) * 2012-10-19 2015-05-27 上海市电力公司 常规变电站进行智能化改造监控系统改造过程的过渡方法
CN104052633B (zh) * 2014-05-29 2017-12-01 国家电网公司 智能站61850与远动104规约集成测试方法
CN104065667A (zh) * 2014-07-03 2014-09-24 国电南瑞科技股份有限公司 一种基于单元映射法变电站间隔层防误闭锁的网络规约互转方法
CN108400908B (zh) * 2018-02-11 2021-05-11 国网江苏省电力有限公司电力科学研究院 变电站监控信息自动验收方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201368904Y (zh) * 2009-03-06 2009-12-23 深圳市双合电脑系统股份有限公司 一种电力系统实时动态监测与记录装置
CN101719696A (zh) * 2009-12-21 2010-06-02 中国电力科学研究院 一种应用于数字化变电站的集中式母线保护装置及方法
US20100204843A1 (en) * 2007-07-30 2010-08-12 Abb Research Ltd. Distribution controller
CN201666918U (zh) * 2010-04-19 2010-12-08 国电南京自动化股份有限公司 智能变电站电能表
CN201766417U (zh) * 2010-09-13 2011-03-16 广东电网公司茂名供电局 保护、测控和合并单元一体化装置
CN102164058A (zh) * 2011-05-13 2011-08-24 北京航空航天大学 基于iec61850标准变电站通信网络与系统测试方法
CN102570618A (zh) * 2012-02-24 2012-07-11 安徽省电力公司芜湖供电公司 一种变电站双规约监控系统及其方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1931012B1 (en) * 2006-12-07 2009-11-04 ABB Research Ltd. Method and device for monitoring digital signals generated in power electric meters working in substation automation system
CN101951026B (zh) * 2010-08-27 2012-07-25 广东电网公司茂名供电局 双机测控装置的主备在线切换方法
CN102227122B (zh) * 2011-06-22 2013-11-06 北京四方继保自动化股份有限公司 平台无关规约模块系统
CN202696271U (zh) * 2012-02-24 2013-01-23 安徽省电力公司芜湖供电公司 一种变电站双规约监控系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204843A1 (en) * 2007-07-30 2010-08-12 Abb Research Ltd. Distribution controller
CN201368904Y (zh) * 2009-03-06 2009-12-23 深圳市双合电脑系统股份有限公司 一种电力系统实时动态监测与记录装置
CN101719696A (zh) * 2009-12-21 2010-06-02 中国电力科学研究院 一种应用于数字化变电站的集中式母线保护装置及方法
CN201666918U (zh) * 2010-04-19 2010-12-08 国电南京自动化股份有限公司 智能变电站电能表
CN201766417U (zh) * 2010-09-13 2011-03-16 广东电网公司茂名供电局 保护、测控和合并单元一体化装置
CN102164058A (zh) * 2011-05-13 2011-08-24 北京航空航天大学 基于iec61850标准变电站通信网络与系统测试方法
CN102570618A (zh) * 2012-02-24 2012-07-11 安徽省电力公司芜湖供电公司 一种变电站双规约监控系统及其方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340851A (zh) * 2016-09-14 2017-01-18 国网福建省电力有限公司 一种适用于t接小水电线路的重合闸回路
CN106340851B (zh) * 2016-09-14 2019-04-19 国网福建省电力有限公司 一种适用于t接小水电线路的重合闸回路
CN111030867A (zh) * 2019-12-18 2020-04-17 国网山西省电力公司电力科学研究院 基于拨码开关的通讯采集装置和通讯协议免配置方法
CN111030867B (zh) * 2019-12-18 2022-09-23 国网山西省电力公司电力科学研究院 基于拨码开关的通讯采集装置和通讯协议免配置方法
CN111490936A (zh) * 2020-04-09 2020-08-04 南京南瑞继保电气有限公司 一种基于通讯链路管理的iec61850冗余设备接入方法和系统
CN111490936B (zh) * 2020-04-09 2022-05-17 南京南瑞继保电气有限公司 一种基于通讯链路管理的iec61850冗余设备接入方法和系统
CN112311891A (zh) * 2020-11-03 2021-02-02 国网智能科技股份有限公司 一种变电站在线智能巡视云边协同系统及方法
CN114884769A (zh) * 2022-06-14 2022-08-09 南京南瑞水利水电科技有限公司 一种双通信协议冗余通信系统

Also Published As

Publication number Publication date
CA2854201A1 (en) 2013-08-29
CN102570618A (zh) 2012-07-11
CA2854201C (en) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2013123767A1 (zh) 一种变电站双规约监控系统及其方法
US10209753B2 (en) Intelligent power server applied to protection and control system for intelligent substation
EP3301783B1 (en) Protection and control system for intelligent substation based on industrial internet architecture
CN105070157B (zh) 一种馈线自动化仿真培训系统
CN105811584B (zh) 一种常规变电站智能化改造方法
CN105914890B (zh) 一种变电站自动化控制系统
CN105006892B (zh) 一种基于嵌入式arm和多通信协议的配电网智能馈线终端
CN103425847B (zh) 基于电网调度防误系统的线路预判改造系统及其工作方法
CN104467183A (zh) 一种区域电网在调控一体模式下调度防误系统
CN113364120B (zh) 智能变电站控制过程校核方法、装置、设备及存储介质
CN103023147A (zh) 基于cim数据模型的电力主站及变电站遥视联动方法
CN102983627B (zh) 常规变电站进行智能化改造监控系统改造过程的过渡方法
CN105141037A (zh) 一种储能监控系统
CN110213387A (zh) 电力设备监测方法及系统
CN104701979A (zh) 一种保护测控集成装置和保护测控方法
CN204697087U (zh) 一种新型高压直流输电系统远动数据传输系统
CN102708256B (zh) 一种变电站五防闭锁功能标准化设计方法
CN112702384B (zh) 一种基于iec 61850/iec cim标准模型的装置即插即用实现方法
CN105024454A (zh) 变电站二次设备监控系统
CN104467182B (zh) 一种站控层设备不停电遥控系统及方法
CN205178643U (zh) 保护测控集成装置
CN203840058U (zh) 变电站二次设备监控系统
CN202696271U (zh) 一种变电站双规约监控系统
CN204168002U (zh) 一种变电站远程控制系统
Adhikary et al. Implementation aspects of substation automation systems based on IEC 61850

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2854201

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868994

Country of ref document: EP

Kind code of ref document: A1