WO2013123764A1 - Procédé et dispositif de configuration de connexion transversale optique de bout-à-bout - Google Patents

Procédé et dispositif de configuration de connexion transversale optique de bout-à-bout Download PDF

Info

Publication number
WO2013123764A1
WO2013123764A1 PCT/CN2012/079923 CN2012079923W WO2013123764A1 WO 2013123764 A1 WO2013123764 A1 WO 2013123764A1 CN 2012079923 W CN2012079923 W CN 2012079923W WO 2013123764 A1 WO2013123764 A1 WO 2013123764A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
node
configuration
fiber connection
port
Prior art date
Application number
PCT/CN2012/079923
Other languages
English (en)
Chinese (zh)
Inventor
姚志伟
张德超
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2013123764A1 publication Critical patent/WO2013123764A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]

Definitions

  • the present invention relates to the field of device management of WDM (Wavelength Division Multiplexing) and optical transport network (Optical Transport Network), and specifically relates to a method and apparatus for end-to-end optical cross-connection configuration.
  • WDM Widelength Division Multiplexing
  • Optical Transport Network optical transport network
  • OADM Optical Add-Drop Multiplexer
  • the upper and lower wavelengths of the former are preset.
  • the upper and lower wavelengths and transmission directions of the latter can be dynamically reconfigured according to network requirements, and It does not affect the services that are running on other wavelengths. Obviously, R0ADM is more in line with the needs of network development.
  • optical layer cross-devices use WSS (Wavelength Selective Switching) to control the intersection of optical layers to construct R0ADM nodes.
  • WSS Widelength Selective Switching
  • Multiple WSS devices are used in the nodes, and multi-dimensional connections are formed through optical connections between optical ports.
  • the optical layer cross matrix When scheduling wavelengths between multiple directions, you need to collect optical port information and scheduled wavelength information in multiple directions, and manually configure multiple R0ADM nodes in the unit disk one by one. In the case of complex connections, manual configuration is quite cumbersome and error prone. Summary of the invention
  • the present invention aims to provide an end-to-end optical cross-connect configuration method and apparatus for automatically operating the entire optical channel path sequence to avoid errors in manual memory, parameter collection, and operation. At the same time, reduce network operating costs.
  • the present invention adopts an end-to-end optical cross-connection configuration method, which includes the following steps: S1. Collecting optical layer signal processing unit disks and optical port information of each node in the 0TN network, for each The unit disk and the optical port it has, respectively establish a unit disk management object data set and an optical port management object data set; S2. between the collection nodes, the optical fiber between the source end output optical port and the sink end input optical port Connection information, establishing an optical data connection management object data set between nodes; S3. Collecting optical connection information between the optical node signal processing unit and the output optical port to the input optical port, and establishing a data connection management object data set in the node S4.
  • S101 Search for the unit disk of the optical layer signal processing, collect the unit disk information, classify the unit disk according to the level of the processed optical layer signal, and establish a unit disk object. And a set thereof; for each different unit disk object, retrieving its optical port configuration information; S102. Checking whether the unit disk object is an optical signal processing unit, and if not, directly entering the next unit disk; S103. The definition of the data file in the XML format, the basic configuration data of the optical port is constructed, the state of the connection relationship is initialized, and the optical port management object is established; S104. The optical port is established according to the classification of the unit disk of the optical port and the signal type of the optical port.
  • S105 Save the current optical port information object to the optical port management object data set of the unit disk object, and check whether all optical ports of the current unit disk have been retrieved, and if not, then Into S102, continue to establish the next optical port management object; S106. Unit holding unit disc object to the disc object in the collection, checking all the optical network units the disc layer signal processing has been retrieved whether the current completed, if not, turn into S101, proceeds to the next disk unit.
  • the basic configuration data of the optical port includes the interface number, connection direction, capacity, and name of the optical port.
  • a wavelength configuration is added to an optical port including a transmitting and receiving wavelength, and a mark and an arrangement manner are set for the optical cross-device interface.
  • S201 Collecting optical fiber connection information between nodes in the network, and establishing an optical fiber connection management object between nodes from the source end light emitting port to the sink end light receiving port;
  • S202 Collect basic configuration data of the fiber connection management object;
  • S203 Connect the current inter-node fiber connection The management object is saved to the data collection of the fiber connection management object.
  • the basic configuration data of the optical fiber connection management object includes a fiber optic shelf, a length, a cost, and a mark.
  • the optical fiber connection management object construction process between the nodes is implemented by the topology configuration of the network node, and represents the optical cable from the source node group optical interface to the sink node optical interface.
  • the detailed steps in the S3 are as follows: S301. Collect the optical fiber connection information inside the single network node, and establish the slave source light.
  • the signal processing unit disc outputs the optical port to the intra-node fiber optic connection management object of the input optical port of the next-level optical signal processing unit disk; S302.
  • the basic configuration information of the optical fiber connection management object includes a cost and a dispersion compensation parameter of the optical fiber connection management object.
  • S401 Establish an optical channel management object, collect basic information of the optical channel management object; S402. Search for inter-node fiber connection from the source node to the sink node, and generate an inter-node connection.
  • the optical fiber connection object sequence is saved to the optical fiber connection object sequence set of the optical channel management object; S403.
  • the input optical port retrieves the fiber connection object in the node inside the node where the two optical ports are located, searches for the fiber connection between the two optical ports, generates a sequence of the fiber connection object in the node, and inserts the fiber connection sequence saved to the optical channel object.
  • S404. Check whether the path sequence of the fiber connection object inside the node is successfully found. If the route is successfully found, the fiber connection between the nodes in the next channel of the optical channel management object is processed. If not, the optical channel management object is discarded. End; complete all fiber connections After treatment managing object, the optical path management object data is valid, entering S405; S405 saves the management object light path to the optical channel configuration data set.
  • the basic information of the optical channel management object includes at least a source and sink node, a name, a rate level, and a protection configuration of the optical channel management object.
  • the S402 first processes the inter-node connection by using a fast route search algorithm, and then generates a sequence of the internal fiber connection object of the node and combines it into the existing sequence. It is verified.
  • S501 Select an optical channel object to be detected, obtain the wavelength configuration of the source, sink node, and the optical port, and connect the data between the nodes of the optical channel object. Obtaining the node information that the optical channel passes through, saves it to the node data set, and obtains all the input optical port information that the optical channel passes through the inter-node and intra-fiber connection data, and saves the information to the optical port data set; S502. Retrieve all optical channel data Collecting, selecting a light channel object to be compared; S503.
  • S601. Select an optical channel management object, establish cross configuration data, and obtain wavelength information of the source, sink node, and optical port of the optical channel object as optical crossover.
  • the wavelength configuration parameter; S602. traversing the internal fiber connection sequence of the optical channel, checking whether the optical ports of the optical fiber connection object are wavelength selective devices, and if yes, proceeding to step S603; if not, proceeding to S604; S603.
  • the wavelength selection configuration of the optical port of the connection object connected to the wavelength selective switch device is set to ON corresponding to the optical channel wavelength, so that the optical channel wavelength can pass through the wavelength selection device; S604.
  • Check whether the optical fiber connection object of the node of the optical channel is completely set. If yes, go to step S605. If no, go to step S602 to continue checking the next fiber connection.
  • S605. Set all the optical wavelength selection devices to the unit disk to complete the end-to-end optical cross-connection configuration of the optical channel.
  • the present invention also provides an apparatus for an end-to-end optical cross-connect configuration, comprising: a unit disk and an optical port configuration sub-module for collecting and managing information of the optical signal processing unit in the optical transmission device;
  • the information processing sub-module is used to complete the collection and management of the logical relationship between the optical ports;
  • the end-to-end optical channel processing sub-module is used to complete the optical path search, path information collection, and wavelength collision detection;
  • the optical cross configuration processing sub-module To complete the collection of optical cross-configuration information, configuration parameters are generated and delivered.
  • the unit disk and the optical port configuration sub-module are responsible for loading and saving the unit disk classification, basic information, configuration structure and interface of the optical signal processing unit, and the basic data information of the optical port of each unit disk. Special configuration such as connection status and wavelength, providing various data retrieval and detection analysis.
  • the optical fiber connection information processing sub-module is responsible for loading and saving the configured optical fiber connection information, and configuring the optical fiber connection and the intra-node optical fiber between the nodes through the connected source illumination port and the sink optical port configuration. Connections, cross-connects and common connections with optical cross-configuration devices, and retrieval of individual fiber-optic connection data sequences, and analysis and detection of fiber-optic connection sequences.
  • the end-to-end optical channel processing sub-module is responsible for constructing and managing the optical channel data object set, retrieving the optical channel data object set, and detecting the wavelength conflict.
  • the optical cross-configuration processing sub-module processes the management object inside the node, comprehensively analyzes the optical fiber connection sequence included in the optical channel, and the configuration information of the transmitting and receiving wavelengths of the source and the sink node, and completes the node. Internal wavelength path analysis and processing, resulting in optical cross-configuration, complete communication and configuration management operations with the device.
  • the invention has the advantages that: the method and the device for the end-to-end optical cross-connection configuration, the cumbersome configuration operation required by the manual unit-by-unit disk is simplified, the automation operation of the entire optical channel path sequence is simplified, the manual configuration is avoided, and the configuration is reduced.
  • the network operation cost even if the link passes through many nodes and the direction connection is complicated, the uterus memory, the collection parameters and the operation may generate errors, and the configuration is simple and convenient.
  • FIG. 1 is a general flow chart of a method for configuring an end-to-end optical cross-connection according to an embodiment of the present invention
  • FIG. 2 is a flow chart of collecting optical signal processing unit disks and optical ports thereof in FIG. 1 and classifying processing
  • FIG. 4 is a flow chart of collecting the fiber connection information between nodes and constructing a data set in FIG. 1;
  • FIG. 5 is a flow chart of the optical fiber connection between the optical signal processing unit disks in the collecting node of FIG. 1;
  • FIG. 6 is a flow chart of constructing the optical path object in FIG. 1 and constructing the optical path through the optical fiber connecting object sequence;
  • 7 is a flow chart of the wavelength conflict between the detecting optical channel and other optical channels in the set in FIG. 1;
  • FIG. 8 is a flow chart of generating an optical cross configuration by the optical fiber connecting object sequence included in the optical channel in FIG.
  • FIG. 9 is a structural block diagram of an apparatus for an end-to-end optical cross-connect configuration according to an embodiment of the present invention. detailed description
  • the steps of the method for an end-to-end optical cross-connect configuration of the present invention are as follows:
  • the optical layer connection information between the optical port signal processing unit and the input optical port is outputted, the optical fiber connection management object in the node is established, and the optical fiber connection management object data set is established.
  • the process of collecting the optical signal processing unit disk and its optical port in S1 and classifying the processing is as follows:
  • the hierarchical information data of the optical port and the configuration information data specific to the optical port are established.
  • the wavelength configuration is added to the port containing the transmit and receive wavelengths, and the mark and configuration mode is set for the optical cross-device interface.
  • the unit disk object involved in the above steps includes the optical port object data set under the unit disk, providing a fast retrieval interface, and the optical port object can also retrieve the unit disk and node information.
  • FIG. 3 a static relationship diagram of a unit disk object and an optical port object, the unit disk object includes a name, a category basic attribute, and saves a data set of all optical ports on the unit disk; the optical port object includes a name, a type, and a level.
  • Basic properties, for optical ports that include a specific wavelength configuration, port objects that contain optical cross-parameters, routing parameters, are created by extending subcategories that are used to automatically search and construct end-to-end optical cross-connect parameter sets.
  • step S2 the process of collecting the inter-node fiber connection information and constructing the data set in step S2 is as follows:
  • the current inter-node fiber connection management object is saved, and the current inter-node fiber connection information object is saved to the fiber connection object data set.
  • the fiber connection construction process between the nodes is implemented through the topology configuration of the network nodes.
  • it represents the optical cable from the source node group optical interface to the sink node group optical interface, which can be used to record the relevant parameter information of the optical cable, and can provide the cost parameter required for route search between nodes.
  • step S3 the optical fiber connection process between the optical signal processing unit disks in the node is collected in step S3, and the detailed steps are as follows:
  • the flow of constructing the optical channel object for the step S4 in FIG. 1 and constructing the optical path through the optical fiber connection object sequence is as follows:
  • the inter-node connection can be processed by using a fast route search algorithm.
  • the optical channel path data is not necessarily correct, and is also incomplete.
  • the process of generating the internal connection sequence of the node and combining it into the existing sequence is required. Verify it in .
  • a flow chart for detecting whether there is a wavelength conflict between the optical channel and other optical channels in the set is performed in step S5 in FIG. 1, and the specific steps are as follows:
  • an optical channel object to be detected obtain a wavelength configuration of the source, the sink node, and the optical port, and obtain the node information that the optical channel passes through the inter-node fiber connection data of the optical channel object, and save the node information to the node data set. All the input optical port information that the optical channel passes through the inter-node and intra-node fiber connection data is saved to the optical port data set.
  • the flow of the optical cross-configuration is generated by the optical fiber connection object sequence included in the optical channel in step S6 of FIG. 1, and the specific steps are as follows:
  • the wavelength selection configuration of the optical port connecting the optical fiber connection object to the wavelength selective switching device is set to be on the optical channel wavelength term, so that the optical channel wavelength can pass through the wavelength selection device; obtaining the configuration information of the optical port of the wavelength selection device, Other parameters are required for configuration.
  • step S605 Check whether all the fiber connection objects in the node of the optical channel are set, if yes, go to step S605, if no, go to step S602 to continue checking the next fiber connection.
  • FIG. 9 is a structural block diagram of an apparatus for configuring an end-to-end optical cross-connection according to an embodiment of the present invention.
  • the device for the end-to-end optical cross-connect configuration includes: a unit disk, an optical port configuration sub-module 1, a fiber-optic connection information processing sub-module 2, an end-to-end optical channel processing sub-module 3, and an optical cross-configuration processing sub-module 4.
  • the unit disk and the optical port configuration sub-module 1 are respectively connected to the optical fiber connection information processing sub-module 2 and the end-to-end optical channel processing sub-module 3, the optical fiber connection information processing sub-module 2, the end-to-end optical channel processing sub-module 3, and the optical cross-configuration
  • the processing sub-module 4 has data and interface connections.
  • the unit disk and the optical port configuration sub-module 1 are configured to complete collection and management of information of the optical signal processing unit in the optical transmission device; responsible for loading and saving the unit disk classification, basic information, configuration structure and interface of the optical signal processing unit, each The special configuration of the optical port basic data information, connection status, wavelength, etc. of the unit disk provides various data retrieval and detection analysis.
  • the optical fiber connection information processing sub-module 2 is configured to collect and manage the logical relationship between the optical ports; load and save the configured optical fiber connection information, and configure the optical fibers between the nodes through the connected source light-emitting port and the sink light-receiving port.
  • the end-to-end optical channel processing sub-module 3 is used to complete optical path search, path information collection, and wavelength collision detection; responsible for constructing and managing optical channel data object sets, retrieving optical channel data object sets, and detecting wavelength conflicts.
  • the optical cross-configuration processing sub-module 4 is configured to complete optical cross-configuration information collection, configuration parameter generation and delivery; processing internal management objects, and optical fiber connection sequences and source and sink node transmissions included in the optical channel Comprehensive analysis of optical wavelength configuration information, complete internal wavelength path analysis and processing of the node, generate optical cross-configuration, complete communication and configuration management operations with the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Procédé et dispositif de configuration de connexion transversale optique de bout-à-bout concernent le domaine de la gestion d'équipement de multiplexage par répartition en longueur d'onde (WDM) et de réseau de transport optique (OTN). Le procédé comprend les étapes consistant à : S1 : la collecte et l'établissement d'un ensemble de données de gestion d'objet d'unité de disque et un ensemble de données de gestion d'objet de port optique établies dans un réseau OTN ; S2 : la collecte et l'établissement d'un ensemble de données de gestion d'objet de connexion de fibres optiques inter-nœud ; S3 : la collecte et l'établissement d'un ensemble de données de gestion d'objet de connexion de fibres optiques intra-nœud; S4 :la collecte et l'établissement d'un ensemble de données de gestion d'objet de canal optique ; S5 : par l'intermédiaire d'une analyse de séquence d'objets de connexion de fibre optique et des informations du port optique, la vérification de la production éventuelle d'un conflit de longueurs d'onde au niveau des mêmes longueurs d'onde à des positions de source optique différentes, et si c'est le cas, l'arrêt direct du processus ; S6 : par l'intermédiaire d'une analyse de séquence d'objets de gestion de connexion de fibre optique, la recherche automatique d'un port optique, et des informations de longueur d'onde requises pour la configuration d'une unité de traitement croisée disque multiplexeur à insertion-extraction optique reconfigurable, et l'établissement de données de configuration transversales optiques. Dans ce procédé et ce dispositif, la mémoire humaine est évitée, les paramètres et les erreurs de fonctionnement sont collectées, et par ailleurs, les coûts d'exploitation de réseau sont réduits.
PCT/CN2012/079923 2012-02-20 2012-08-10 Procédé et dispositif de configuration de connexion transversale optique de bout-à-bout WO2013123764A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210037158.7A CN102547494B (zh) 2012-02-20 2012-02-20 一种端到端光交叉连接配置的方法及装置
CN201210037158.7 2012-02-20

Publications (1)

Publication Number Publication Date
WO2013123764A1 true WO2013123764A1 (fr) 2013-08-29

Family

ID=46353237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079923 WO2013123764A1 (fr) 2012-02-20 2012-08-10 Procédé et dispositif de configuration de connexion transversale optique de bout-à-bout

Country Status (3)

Country Link
CN (1) CN102547494B (fr)
MY (1) MY175578A (fr)
WO (1) WO2013123764A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716935B (zh) * 2015-08-11 2020-01-31 华为技术有限公司 一种跨层业务配置的方法和控制器
WO2022268040A1 (fr) * 2021-06-23 2022-12-29 中兴通讯股份有限公司 Procédé de découverte de connexion par fibre optique, dispositif électronique et support d'enregistrement lisible par ordinateur

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547494B (zh) * 2012-02-20 2014-06-18 烽火通信科技股份有限公司 一种端到端光交叉连接配置的方法及装置
CN105721183A (zh) * 2014-12-03 2016-06-29 中兴通讯股份有限公司 信息更新方法、装置及终端
CN105790966B (zh) * 2014-12-18 2020-02-04 中兴通讯股份有限公司 一种节点交叉搜索方法及装置
CN106330705A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 路径计算方法、装置及路径计算单元
CN105024857B (zh) * 2015-07-21 2019-07-19 广州咨元信息科技有限公司 一种以旁路方式对ip网络光功率自动化分析的方法
CN105119818B (zh) * 2015-08-18 2018-08-03 周雪勤 一种在密集波分网络中建立多通道聚合路由的方法和系统
CN105263069B (zh) * 2015-09-01 2017-03-15 周雪勤 一种在密集波分网络中建立光通道路由的方法及装置
CN106452573B (zh) * 2016-08-29 2018-09-18 烽火通信科技股份有限公司 Otn业务信号流矢量图的自动布局方法及系统
CN108462535B (zh) * 2017-02-20 2022-08-30 中兴通讯股份有限公司 一种网元级光层交叉容量管理方法及装置
CN107809687A (zh) * 2017-09-28 2018-03-16 烽火通信科技股份有限公司 一种基于sdn架构的otn光网络设备资源的抽象方法
CN108900350B (zh) * 2018-07-11 2021-03-02 烽火通信科技股份有限公司 一种网管系统中光层业务分层模型配置方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076146A1 (en) * 2000-11-20 2002-06-20 Jds Uniphase Inc. Wavelength-dependent optical signal processing using an angle-to-offset module
CN101459862A (zh) * 2008-11-21 2009-06-17 烽火通信科技股份有限公司 一种g.709连接监测开销的端到端自动配置的方法与装置
CN101459469A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 网元设备的光层业务调度方法及网管控制系统
CN101720050A (zh) * 2010-01-11 2010-06-02 浙江工业大学 用于光突发交换网络核心节点的光交叉连接装置
CN102547494A (zh) * 2012-02-20 2012-07-04 烽火通信科技股份有限公司 一种端到端光交叉连接配置的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076146A1 (en) * 2000-11-20 2002-06-20 Jds Uniphase Inc. Wavelength-dependent optical signal processing using an angle-to-offset module
CN101459469A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 网元设备的光层业务调度方法及网管控制系统
CN101459862A (zh) * 2008-11-21 2009-06-17 烽火通信科技股份有限公司 一种g.709连接监测开销的端到端自动配置的方法与装置
CN101720050A (zh) * 2010-01-11 2010-06-02 浙江工业大学 用于光突发交换网络核心节点的光交叉连接装置
CN102547494A (zh) * 2012-02-20 2012-07-04 烽火通信科技股份有限公司 一种端到端光交叉连接配置的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716935B (zh) * 2015-08-11 2020-01-31 华为技术有限公司 一种跨层业务配置的方法和控制器
WO2022268040A1 (fr) * 2021-06-23 2022-12-29 中兴通讯股份有限公司 Procédé de découverte de connexion par fibre optique, dispositif électronique et support d'enregistrement lisible par ordinateur

Also Published As

Publication number Publication date
MY175578A (en) 2020-07-01
CN102547494B (zh) 2014-06-18
CN102547494A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2013123764A1 (fr) Procédé et dispositif de configuration de connexion transversale optique de bout-à-bout
EP3624369B1 (fr) Procédé et appareil d'adaptation des connexions de fibres pour un multiplexeur à insertion-extraction optique reconfigurable
US9525505B2 (en) Method and apparatus for acquiring internal fiber connection relationship in reconfigurable optical add/drop multiplexer
EP2767017B1 (fr) Procédé et système de gestion de réseau de distribution optique
CN108900350B (zh) 一种网管系统中光层业务分层模型配置方法及系统
US20070206512A1 (en) Network data model and topology discovery method
JP4427463B2 (ja) 光配線切替装置及びその管理制御装置
CN101754060B (zh) 光分插复用系统、光分插复用装置及光路径迂回程序
EP1639757A1 (fr) Base de donnees de reseau optique et plan de redondance optique pouvant etre reroute
CN101459862B (zh) 一种g.709连接监测开销的端到端自动配置的方法与装置
US20040208552A1 (en) Architectural switching arrangement for core optical networks
CN108292951A (zh) 通信系统以及故障处特别指定方法
US8452861B2 (en) Broadcast design for provisioning reconfigurable optical add/drop multiplexer circuits
EP3316496A1 (fr) Réseau optique défini par logiciel
WO2010036267A1 (fr) Systèmes à redondances multiples dans un réseau optique
US8352537B2 (en) Object modeling scheme for next generation network wavelength division multiplexing
US7907549B2 (en) Modeling a ring network using a ring object
CN105263069B (zh) 一种在密集波分网络中建立光通道路由的方法及装置
US20080008102A1 (en) Tracing an optical path of a communication network
CN100563138C (zh) 波分复用系统端到端维护方法
US20070014230A1 (en) Automatically provisioning a network element
CN107888402B (zh) 光复用段弹性组网方法、装置和系统
KR20240016437A (ko) 광섬유 연결 발견 방법, 전자 장치 및 컴퓨터 판독 가능한 저장 매체
CN1267974A (zh) 信号传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869254

Country of ref document: EP

Kind code of ref document: A1