WO2013123764A1 - End-to-end optical cross connection configuration method and device - Google Patents
End-to-end optical cross connection configuration method and device Download PDFInfo
- Publication number
- WO2013123764A1 WO2013123764A1 PCT/CN2012/079923 CN2012079923W WO2013123764A1 WO 2013123764 A1 WO2013123764 A1 WO 2013123764A1 CN 2012079923 W CN2012079923 W CN 2012079923W WO 2013123764 A1 WO2013123764 A1 WO 2013123764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- node
- configuration
- fiber connection
- port
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 466
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000013307 optical fiber Substances 0.000 claims abstract description 77
- 238000012545 processing Methods 0.000 claims abstract description 60
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 238000007726 management method Methods 0.000 claims description 107
- 239000000835 fiber Substances 0.000 claims description 84
- 238000001514 detection method Methods 0.000 claims description 10
- 230000010365 information processing Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000010845 search algorithm Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims description 2
- 238000007689 inspection Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0256—Optical medium access at the optical channel layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
Definitions
- the present invention relates to the field of device management of WDM (Wavelength Division Multiplexing) and optical transport network (Optical Transport Network), and specifically relates to a method and apparatus for end-to-end optical cross-connection configuration.
- WDM Widelength Division Multiplexing
- Optical Transport Network optical transport network
- OADM Optical Add-Drop Multiplexer
- the upper and lower wavelengths of the former are preset.
- the upper and lower wavelengths and transmission directions of the latter can be dynamically reconfigured according to network requirements, and It does not affect the services that are running on other wavelengths. Obviously, R0ADM is more in line with the needs of network development.
- optical layer cross-devices use WSS (Wavelength Selective Switching) to control the intersection of optical layers to construct R0ADM nodes.
- WSS Widelength Selective Switching
- Multiple WSS devices are used in the nodes, and multi-dimensional connections are formed through optical connections between optical ports.
- the optical layer cross matrix When scheduling wavelengths between multiple directions, you need to collect optical port information and scheduled wavelength information in multiple directions, and manually configure multiple R0ADM nodes in the unit disk one by one. In the case of complex connections, manual configuration is quite cumbersome and error prone. Summary of the invention
- the present invention aims to provide an end-to-end optical cross-connect configuration method and apparatus for automatically operating the entire optical channel path sequence to avoid errors in manual memory, parameter collection, and operation. At the same time, reduce network operating costs.
- the present invention adopts an end-to-end optical cross-connection configuration method, which includes the following steps: S1. Collecting optical layer signal processing unit disks and optical port information of each node in the 0TN network, for each The unit disk and the optical port it has, respectively establish a unit disk management object data set and an optical port management object data set; S2. between the collection nodes, the optical fiber between the source end output optical port and the sink end input optical port Connection information, establishing an optical data connection management object data set between nodes; S3. Collecting optical connection information between the optical node signal processing unit and the output optical port to the input optical port, and establishing a data connection management object data set in the node S4.
- S101 Search for the unit disk of the optical layer signal processing, collect the unit disk information, classify the unit disk according to the level of the processed optical layer signal, and establish a unit disk object. And a set thereof; for each different unit disk object, retrieving its optical port configuration information; S102. Checking whether the unit disk object is an optical signal processing unit, and if not, directly entering the next unit disk; S103. The definition of the data file in the XML format, the basic configuration data of the optical port is constructed, the state of the connection relationship is initialized, and the optical port management object is established; S104. The optical port is established according to the classification of the unit disk of the optical port and the signal type of the optical port.
- S105 Save the current optical port information object to the optical port management object data set of the unit disk object, and check whether all optical ports of the current unit disk have been retrieved, and if not, then Into S102, continue to establish the next optical port management object; S106. Unit holding unit disc object to the disc object in the collection, checking all the optical network units the disc layer signal processing has been retrieved whether the current completed, if not, turn into S101, proceeds to the next disk unit.
- the basic configuration data of the optical port includes the interface number, connection direction, capacity, and name of the optical port.
- a wavelength configuration is added to an optical port including a transmitting and receiving wavelength, and a mark and an arrangement manner are set for the optical cross-device interface.
- S201 Collecting optical fiber connection information between nodes in the network, and establishing an optical fiber connection management object between nodes from the source end light emitting port to the sink end light receiving port;
- S202 Collect basic configuration data of the fiber connection management object;
- S203 Connect the current inter-node fiber connection The management object is saved to the data collection of the fiber connection management object.
- the basic configuration data of the optical fiber connection management object includes a fiber optic shelf, a length, a cost, and a mark.
- the optical fiber connection management object construction process between the nodes is implemented by the topology configuration of the network node, and represents the optical cable from the source node group optical interface to the sink node optical interface.
- the detailed steps in the S3 are as follows: S301. Collect the optical fiber connection information inside the single network node, and establish the slave source light.
- the signal processing unit disc outputs the optical port to the intra-node fiber optic connection management object of the input optical port of the next-level optical signal processing unit disk; S302.
- the basic configuration information of the optical fiber connection management object includes a cost and a dispersion compensation parameter of the optical fiber connection management object.
- S401 Establish an optical channel management object, collect basic information of the optical channel management object; S402. Search for inter-node fiber connection from the source node to the sink node, and generate an inter-node connection.
- the optical fiber connection object sequence is saved to the optical fiber connection object sequence set of the optical channel management object; S403.
- the input optical port retrieves the fiber connection object in the node inside the node where the two optical ports are located, searches for the fiber connection between the two optical ports, generates a sequence of the fiber connection object in the node, and inserts the fiber connection sequence saved to the optical channel object.
- S404. Check whether the path sequence of the fiber connection object inside the node is successfully found. If the route is successfully found, the fiber connection between the nodes in the next channel of the optical channel management object is processed. If not, the optical channel management object is discarded. End; complete all fiber connections After treatment managing object, the optical path management object data is valid, entering S405; S405 saves the management object light path to the optical channel configuration data set.
- the basic information of the optical channel management object includes at least a source and sink node, a name, a rate level, and a protection configuration of the optical channel management object.
- the S402 first processes the inter-node connection by using a fast route search algorithm, and then generates a sequence of the internal fiber connection object of the node and combines it into the existing sequence. It is verified.
- S501 Select an optical channel object to be detected, obtain the wavelength configuration of the source, sink node, and the optical port, and connect the data between the nodes of the optical channel object. Obtaining the node information that the optical channel passes through, saves it to the node data set, and obtains all the input optical port information that the optical channel passes through the inter-node and intra-fiber connection data, and saves the information to the optical port data set; S502. Retrieve all optical channel data Collecting, selecting a light channel object to be compared; S503.
- S601. Select an optical channel management object, establish cross configuration data, and obtain wavelength information of the source, sink node, and optical port of the optical channel object as optical crossover.
- the wavelength configuration parameter; S602. traversing the internal fiber connection sequence of the optical channel, checking whether the optical ports of the optical fiber connection object are wavelength selective devices, and if yes, proceeding to step S603; if not, proceeding to S604; S603.
- the wavelength selection configuration of the optical port of the connection object connected to the wavelength selective switch device is set to ON corresponding to the optical channel wavelength, so that the optical channel wavelength can pass through the wavelength selection device; S604.
- Check whether the optical fiber connection object of the node of the optical channel is completely set. If yes, go to step S605. If no, go to step S602 to continue checking the next fiber connection.
- S605. Set all the optical wavelength selection devices to the unit disk to complete the end-to-end optical cross-connection configuration of the optical channel.
- the present invention also provides an apparatus for an end-to-end optical cross-connect configuration, comprising: a unit disk and an optical port configuration sub-module for collecting and managing information of the optical signal processing unit in the optical transmission device;
- the information processing sub-module is used to complete the collection and management of the logical relationship between the optical ports;
- the end-to-end optical channel processing sub-module is used to complete the optical path search, path information collection, and wavelength collision detection;
- the optical cross configuration processing sub-module To complete the collection of optical cross-configuration information, configuration parameters are generated and delivered.
- the unit disk and the optical port configuration sub-module are responsible for loading and saving the unit disk classification, basic information, configuration structure and interface of the optical signal processing unit, and the basic data information of the optical port of each unit disk. Special configuration such as connection status and wavelength, providing various data retrieval and detection analysis.
- the optical fiber connection information processing sub-module is responsible for loading and saving the configured optical fiber connection information, and configuring the optical fiber connection and the intra-node optical fiber between the nodes through the connected source illumination port and the sink optical port configuration. Connections, cross-connects and common connections with optical cross-configuration devices, and retrieval of individual fiber-optic connection data sequences, and analysis and detection of fiber-optic connection sequences.
- the end-to-end optical channel processing sub-module is responsible for constructing and managing the optical channel data object set, retrieving the optical channel data object set, and detecting the wavelength conflict.
- the optical cross-configuration processing sub-module processes the management object inside the node, comprehensively analyzes the optical fiber connection sequence included in the optical channel, and the configuration information of the transmitting and receiving wavelengths of the source and the sink node, and completes the node. Internal wavelength path analysis and processing, resulting in optical cross-configuration, complete communication and configuration management operations with the device.
- the invention has the advantages that: the method and the device for the end-to-end optical cross-connection configuration, the cumbersome configuration operation required by the manual unit-by-unit disk is simplified, the automation operation of the entire optical channel path sequence is simplified, the manual configuration is avoided, and the configuration is reduced.
- the network operation cost even if the link passes through many nodes and the direction connection is complicated, the uterus memory, the collection parameters and the operation may generate errors, and the configuration is simple and convenient.
- FIG. 1 is a general flow chart of a method for configuring an end-to-end optical cross-connection according to an embodiment of the present invention
- FIG. 2 is a flow chart of collecting optical signal processing unit disks and optical ports thereof in FIG. 1 and classifying processing
- FIG. 4 is a flow chart of collecting the fiber connection information between nodes and constructing a data set in FIG. 1;
- FIG. 5 is a flow chart of the optical fiber connection between the optical signal processing unit disks in the collecting node of FIG. 1;
- FIG. 6 is a flow chart of constructing the optical path object in FIG. 1 and constructing the optical path through the optical fiber connecting object sequence;
- 7 is a flow chart of the wavelength conflict between the detecting optical channel and other optical channels in the set in FIG. 1;
- FIG. 8 is a flow chart of generating an optical cross configuration by the optical fiber connecting object sequence included in the optical channel in FIG.
- FIG. 9 is a structural block diagram of an apparatus for an end-to-end optical cross-connect configuration according to an embodiment of the present invention. detailed description
- the steps of the method for an end-to-end optical cross-connect configuration of the present invention are as follows:
- the optical layer connection information between the optical port signal processing unit and the input optical port is outputted, the optical fiber connection management object in the node is established, and the optical fiber connection management object data set is established.
- the process of collecting the optical signal processing unit disk and its optical port in S1 and classifying the processing is as follows:
- the hierarchical information data of the optical port and the configuration information data specific to the optical port are established.
- the wavelength configuration is added to the port containing the transmit and receive wavelengths, and the mark and configuration mode is set for the optical cross-device interface.
- the unit disk object involved in the above steps includes the optical port object data set under the unit disk, providing a fast retrieval interface, and the optical port object can also retrieve the unit disk and node information.
- FIG. 3 a static relationship diagram of a unit disk object and an optical port object, the unit disk object includes a name, a category basic attribute, and saves a data set of all optical ports on the unit disk; the optical port object includes a name, a type, and a level.
- Basic properties, for optical ports that include a specific wavelength configuration, port objects that contain optical cross-parameters, routing parameters, are created by extending subcategories that are used to automatically search and construct end-to-end optical cross-connect parameter sets.
- step S2 the process of collecting the inter-node fiber connection information and constructing the data set in step S2 is as follows:
- the current inter-node fiber connection management object is saved, and the current inter-node fiber connection information object is saved to the fiber connection object data set.
- the fiber connection construction process between the nodes is implemented through the topology configuration of the network nodes.
- it represents the optical cable from the source node group optical interface to the sink node group optical interface, which can be used to record the relevant parameter information of the optical cable, and can provide the cost parameter required for route search between nodes.
- step S3 the optical fiber connection process between the optical signal processing unit disks in the node is collected in step S3, and the detailed steps are as follows:
- the flow of constructing the optical channel object for the step S4 in FIG. 1 and constructing the optical path through the optical fiber connection object sequence is as follows:
- the inter-node connection can be processed by using a fast route search algorithm.
- the optical channel path data is not necessarily correct, and is also incomplete.
- the process of generating the internal connection sequence of the node and combining it into the existing sequence is required. Verify it in .
- a flow chart for detecting whether there is a wavelength conflict between the optical channel and other optical channels in the set is performed in step S5 in FIG. 1, and the specific steps are as follows:
- an optical channel object to be detected obtain a wavelength configuration of the source, the sink node, and the optical port, and obtain the node information that the optical channel passes through the inter-node fiber connection data of the optical channel object, and save the node information to the node data set. All the input optical port information that the optical channel passes through the inter-node and intra-node fiber connection data is saved to the optical port data set.
- the flow of the optical cross-configuration is generated by the optical fiber connection object sequence included in the optical channel in step S6 of FIG. 1, and the specific steps are as follows:
- the wavelength selection configuration of the optical port connecting the optical fiber connection object to the wavelength selective switching device is set to be on the optical channel wavelength term, so that the optical channel wavelength can pass through the wavelength selection device; obtaining the configuration information of the optical port of the wavelength selection device, Other parameters are required for configuration.
- step S605 Check whether all the fiber connection objects in the node of the optical channel are set, if yes, go to step S605, if no, go to step S602 to continue checking the next fiber connection.
- FIG. 9 is a structural block diagram of an apparatus for configuring an end-to-end optical cross-connection according to an embodiment of the present invention.
- the device for the end-to-end optical cross-connect configuration includes: a unit disk, an optical port configuration sub-module 1, a fiber-optic connection information processing sub-module 2, an end-to-end optical channel processing sub-module 3, and an optical cross-configuration processing sub-module 4.
- the unit disk and the optical port configuration sub-module 1 are respectively connected to the optical fiber connection information processing sub-module 2 and the end-to-end optical channel processing sub-module 3, the optical fiber connection information processing sub-module 2, the end-to-end optical channel processing sub-module 3, and the optical cross-configuration
- the processing sub-module 4 has data and interface connections.
- the unit disk and the optical port configuration sub-module 1 are configured to complete collection and management of information of the optical signal processing unit in the optical transmission device; responsible for loading and saving the unit disk classification, basic information, configuration structure and interface of the optical signal processing unit, each The special configuration of the optical port basic data information, connection status, wavelength, etc. of the unit disk provides various data retrieval and detection analysis.
- the optical fiber connection information processing sub-module 2 is configured to collect and manage the logical relationship between the optical ports; load and save the configured optical fiber connection information, and configure the optical fibers between the nodes through the connected source light-emitting port and the sink light-receiving port.
- the end-to-end optical channel processing sub-module 3 is used to complete optical path search, path information collection, and wavelength collision detection; responsible for constructing and managing optical channel data object sets, retrieving optical channel data object sets, and detecting wavelength conflicts.
- the optical cross-configuration processing sub-module 4 is configured to complete optical cross-configuration information collection, configuration parameter generation and delivery; processing internal management objects, and optical fiber connection sequences and source and sink node transmissions included in the optical channel Comprehensive analysis of optical wavelength configuration information, complete internal wavelength path analysis and processing of the node, generate optical cross-configuration, complete communication and configuration management operations with the device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
An end-to-end optical cross connection configuration method and device relate to the field of WDM and OTN equipment management. The method comprises the steps: S1: performing collection and establishing a unit disk management object data set and an optical port management object data set in an OTN network; S2: performing collection and establishing an inter-node optical fiber connection management object data set; S3: performing collection and establishing an intra-node optical fiber connection management object data set; S4: performing collection and establishing an optical channel management object data set; S5: through analysis of an optical fiber connection object sequence and optical port information, checking to see whether a wavelength conflict occurs at the same wavelengths at different optical source positions, and if yes, directly ending the process; S6: through analysis of an optical fiber connection management object sequence, automatically searching for the optical port and wavelength information required for configuration of a reconfigurable optical add-drop multiplexer cross processing unit disk, and establishing optical cross configuration data. In the method and device, human memorization is avoided, parameters and errors in operation are collected, and meanwhile, the network operating cost is reduced.
Description
一种端到端光交叉连接配置的方法及装置 技术领域 Method and device for end-to-end optical cross-connect configuration
本发明涉及 WDM (Wavelength Division Multiplexing , 波分复用)、 0ΤΝ (Optical Transport Network, 光送网络)设备管理领域, 具体来讲是一种端 到端光交叉连接配置的方法及装置。 背景技术 The present invention relates to the field of device management of WDM (Wavelength Division Multiplexing) and optical transport network (Optical Transport Network), and specifically relates to a method and apparatus for end-to-end optical cross-connection configuration. Background technique
光传输网络中, WDM技术已经得到了广泛的应用, 同时, 随着数据业务的不 断增长, 对网络动态分配资源的要求不断提高。在这种情况下, 需要能够在光层 动态分配波长、 光纤等资源的智能光传输设备。 OADM (Optical Add-Drop Multiplexer , 光分插复用器)是实现智能光层的重要节点设备, 它可以分为 FOADM ( Fixed Optical Add-Drop Multiplexer , 固定分插复用) 和 R0ADM In the optical transmission network, WDM technology has been widely used. At the same time, as the data service continues to grow, the requirements for dynamically allocating resources to the network are constantly increasing. In this case, an intelligent optical transmission device capable of dynamically allocating resources such as wavelengths and optical fibers in the optical layer is required. OADM (Optical Add-Drop Multiplexer) is an important node device for implementing intelligent optical layer. It can be divided into FOADM (Fixed Optical Add-Drop Multiplexer) and R0ADM.
( Reconfigurable Optical Add-Drop Multiplexer, 可重构分插复用) 两类。 前者的上、下路波长是预先设定的, 重配时需要更改设备的物理连接结构, 必须 停止业务传送;后者的上、下路波长、传送方向可以根据网络需求进行动态重配, 而且不影响其他波长上正在运行的业务, 显然, R0ADM更符合网络发展的需要。 (Reconfigurable Optical Add-Drop Multiplexer, reconfigurable add/drop multiplexing). The upper and lower wavelengths of the former are preset. When reconfiguring, the physical connection structure of the device needs to be changed, and the service transmission must be stopped. The upper and lower wavelengths and transmission directions of the latter can be dynamically reconfigured according to network requirements, and It does not affect the services that are running on other wavelengths. Obviously, R0ADM is more in line with the needs of network development.
目前的光层交叉设备多采用 WSS (Wavelength Selective Switching, 波长 选择开关)控制光层交叉的方式来构造 R0ADM节点,节点中使用了多个 WSS器件, 并通过光端口之间的光纤连接来形成多维的光层交叉矩阵。对多个方向之间的波 长调度时, 需要采集多方向连接的光端口信息和调度的波长信息, 并通过人工将 多个 R0ADM节点在单元盘中逐个完成配置, 当链路经过节点多、方向连接复杂的 情况下, 人工配置相当繁琐并且容易出错。 发明内容 At present, optical layer cross-devices use WSS (Wavelength Selective Switching) to control the intersection of optical layers to construct R0ADM nodes. Multiple WSS devices are used in the nodes, and multi-dimensional connections are formed through optical connections between optical ports. The optical layer cross matrix. When scheduling wavelengths between multiple directions, you need to collect optical port information and scheduled wavelength information in multiple directions, and manually configure multiple R0ADM nodes in the unit disk one by one. In the case of complex connections, manual configuration is quite cumbersome and error prone. Summary of the invention
针对现有技术中存在的缺陷,本发明的目的在于提供一种端到端光交叉连接 配置的方法及装置, 对整个光通道路径序列进行自动化操作, 避免人工记忆、 收 集参数和操作产生的错误, 同时降低网络运营成本。 In view of the deficiencies in the prior art, the present invention aims to provide an end-to-end optical cross-connect configuration method and apparatus for automatically operating the entire optical channel path sequence to avoid errors in manual memory, parameter collection, and operation. At the same time, reduce network operating costs.
为达到以上目的,本发明采取一种端到端光交叉连接配置的方法,包括如下 步骤: S1.收集 0TN网络中各个节点的光层信号处理单元盘、 光端口信息, 对每
个单元盘及其所具有的光端口, 分别建立单元盘管理对象数据集合、光端口管理 对象数据集合; S2.收集节点之间, 从源端输出光端口到宿端输入光端口之间的 光纤连接信息, 建立节点间光纤连接管理对象数据集合; S3.收集节点内部, 光 层信号处理单元之间,输出光端口到输入光端口之间的光纤连接信息, 建立节点 内光纤连接管理对象数据集合; S4.收集从源端光转发单元盘输出光端口到宿端 光转发单元盘输入光端口之间的光纤连接对象序列, 建立光通道管理对象集合; S5.通过不同光通道管理对象之间的光纤连接对象序列和光端口信息分析, 检查 不同光源位置的相同波长是否经过同一光端口而形成波长冲突,若有冲突, 直接 结束; S6.通过对单个光通道管理对象所包含的光纤连接管理对象序列的先后关 系、光端口信息的分析, 自动查找可重构分插复用光交叉处理单元盘配置所需的 光端口、 波长信息, 建立光交叉配置数据。 To achieve the above objective, the present invention adopts an end-to-end optical cross-connection configuration method, which includes the following steps: S1. Collecting optical layer signal processing unit disks and optical port information of each node in the 0TN network, for each The unit disk and the optical port it has, respectively establish a unit disk management object data set and an optical port management object data set; S2. between the collection nodes, the optical fiber between the source end output optical port and the sink end input optical port Connection information, establishing an optical data connection management object data set between nodes; S3. Collecting optical connection information between the optical node signal processing unit and the output optical port to the input optical port, and establishing a data connection management object data set in the node S4. Collecting a sequence of optical fiber connection objects from the optical output port of the source optical forwarding unit to the input optical port of the optical forwarding unit of the sink, establishing an optical channel management object set; S5. managing objects between different optical channels Optical fiber connection object sequence and optical port information analysis, checking whether the same wavelength of different light source positions passes through the same optical port to form a wavelength conflict, and if there is a conflict, directly ends; S6. By managing the sequence of the optical fiber connection management object included in the single optical channel management object Instance relationship, analysis of optical port information, automatic search reconfigurable Cross-multiplexed optical inserted optical port wavelength information processing unit required for the disc configuration, establishes an optical cross configuration data.
在上述技术方案的基础上, S1中的详细步骤如下: S101.查找光层信号处理 的单元盘, 收集单元盘信息, 对单元盘按照其所处理光层信号的层次进行分类, 建立单元盘对象及其集合;对于每个不同的单元盘对象,检索其光端口配置信息; S102.检查所述单元盘对象是否为光信号处理单元, 若否, 直接进入下一个单元 盘; S103.通过读取 XML格式数据文件的定义, 构造光端口的基本配置数据, 初 始化其连接关系状态, 建立光端口管理对象; S104.根据光端口所在单元盘的分 类、光端口所连接的信号类型, 建立光端口所在层次信息数据和光端口特有的配 置信息数据; S105.将当前光端口信息对象, 保存到单元盘对象的光端口管理对 象数据集合,检查当前单元盘所有光端口是否已经检索完成,若否,则转入 S102, 继续建立下一个光端口管理对象; S106.将当前单元盘对象保存到单元盘对象集 合中, 检查当前网络中所有光层信号处理的单元盘是否已经检索完成, 若否, 转 入 S101 , 继续处理下一个单元盘。 Based on the above technical solution, the detailed steps in S1 are as follows: S101. Search for the unit disk of the optical layer signal processing, collect the unit disk information, classify the unit disk according to the level of the processed optical layer signal, and establish a unit disk object. And a set thereof; for each different unit disk object, retrieving its optical port configuration information; S102. Checking whether the unit disk object is an optical signal processing unit, and if not, directly entering the next unit disk; S103. The definition of the data file in the XML format, the basic configuration data of the optical port is constructed, the state of the connection relationship is initialized, and the optical port management object is established; S104. The optical port is established according to the classification of the unit disk of the optical port and the signal type of the optical port. Level information data and configuration information data specific to the optical port; S105. Save the current optical port information object to the optical port management object data set of the unit disk object, and check whether all optical ports of the current unit disk have been retrieved, and if not, then Into S102, continue to establish the next optical port management object; S106. Unit holding unit disc object to the disc object in the collection, checking all the optical network units the disc layer signal processing has been retrieved whether the current completed, if not, turn into S101, proceeds to the next disk unit.
在上述技术方案的基础上,所述构造光端口的基本配置数据包括光端口的接 口号、 连接方向、 容量、 名称。 Based on the foregoing technical solution, the basic configuration data of the optical port includes the interface number, connection direction, capacity, and name of the optical port.
在上述技术方案的基础上, 所述 S103中, 对于包含发送、 接收波长的光端 口增加波长配置, 对于光交叉器件接口设置其标记以及配置方式。 Based on the above technical solution, in S103, a wavelength configuration is added to an optical port including a transmitting and receiving wavelength, and a mark and an arrangement manner are set for the optical cross-device interface.
在上述技术方案的基础上, S2中的详细步骤如下: S201.收集网络中节点之 间的光纤连接信息,建立从源端发光端口到宿端收光端口的节点间光纤连接管理 对象; S202.收集光纤连接管理对象的基本配置数据; S203.将当前节点间光纤连
接管理对象保存到光纤连接管理对象的数据集合中。 Based on the above technical solution, the detailed steps in S2 are as follows: S201. Collecting optical fiber connection information between nodes in the network, and establishing an optical fiber connection management object between nodes from the source end light emitting port to the sink end light receiving port; S202. Collect basic configuration data of the fiber connection management object; S203. Connect the current inter-node fiber connection The management object is saved to the data collection of the fiber connection management object.
在上述技术方案的基础上,所述光纤连接管理对象的基本配置数据包括光纤 架、 长度、 代价、 标记。 Based on the foregoing technical solution, the basic configuration data of the optical fiber connection management object includes a fiber optic shelf, a length, a cost, and a mark.
在上述技术方案的基础上,所述节点间的光纤连接管理对象构建过程,通过 网络节点的拓扑结构配置来实现,它表示从源节点群路光接口到宿节点群路光接 口的光缆,用来记录光缆的相关参数信息,提供节点间路由搜索时所需的代价参 在上述技术方案的基础上, S3中的详细步骤如下: S301.收集单个网络节点 内部的光纤连接信息,建立从源光信号处理单元盘输出光端口到下一层次光信号 处理单元盘的输入光端口的节点内光纤连接管理对象; S302.收集光纤连接管理 对象基本配置信息,若是连接到光交叉连接配置器件的光纤, 则根据所连接的光 交叉连接单元盘配置项生成对应的配置数据和配置接口; S303.将当前的节点内 部光纤连接管理对象保存到光纤连接管理对象数据集合中。 On the basis of the above technical solution, the optical fiber connection management object construction process between the nodes is implemented by the topology configuration of the network node, and represents the optical cable from the source node group optical interface to the sink node optical interface. To record the relevant parameter information of the optical cable and provide the cost required for the route search between the nodes, the detailed steps in the S3 are as follows: S301. Collect the optical fiber connection information inside the single network node, and establish the slave source light. The signal processing unit disc outputs the optical port to the intra-node fiber optic connection management object of the input optical port of the next-level optical signal processing unit disk; S302. Collects the basic configuration information of the optical fiber connection management object, and if it is connected to the optical fiber of the optical cross-connect configuration device, Then, corresponding configuration data and a configuration interface are generated according to the connected optical cross-connect unit disk configuration item; S303. The current node internal optical fiber connection management object is saved in the fiber connection management object data set.
在上述技术方案的基础上,所述光纤连接管理对象基本配置信息包括光纤连 接管理对象的代价、 色散补偿参数。 Based on the foregoing technical solution, the basic configuration information of the optical fiber connection management object includes a cost and a dispersion compensation parameter of the optical fiber connection management object.
在上述技术方案的基础上, S4中的详细步骤如下: S401.建立光通道管理对 象, 收集光通道管理对象的基本信息; S402.查找从源节点到宿节点的节点间光 纤连接, 生成节点间光纤连接对象序列,保存到光通道管理对象的光纤连接对象 序列集合; S403.检索光通道管理对象的光纤连接对象序列集合, 检查前一个节 点间光纤连接对象的输出光端口和后一个光纤连接对象的输入光端口,在上述两 个光端口所在节点内部检索节点内光纤连接对象,查找两个光端口之间的光纤连 接,生成节点内光纤连接对象序列,插入保存到光通道对象的光纤连接序列集合; S404.检查是否成功找到节点内部的光纤连接对象路径序列, 若成功找到, 则对 光通道管理对象中下一段节点间光纤连接进行处理,若未成功找到, 则丢弃该光 通道管理对象并结束; 完成所有光纤连接管理对象处理后, 该光通道管理对象数 据为有效, 进入 S405 ; S405.保存该光通道管理对象到光通道配置数据集合。 Based on the above technical solution, the detailed steps in S4 are as follows: S401. Establish an optical channel management object, collect basic information of the optical channel management object; S402. Search for inter-node fiber connection from the source node to the sink node, and generate an inter-node connection. The optical fiber connection object sequence is saved to the optical fiber connection object sequence set of the optical channel management object; S403. Searching the optical channel connection object sequence set of the optical channel management object, and checking the output optical port of the optical connection object between the previous node and the subsequent optical connection object The input optical port retrieves the fiber connection object in the node inside the node where the two optical ports are located, searches for the fiber connection between the two optical ports, generates a sequence of the fiber connection object in the node, and inserts the fiber connection sequence saved to the optical channel object. S404. Check whether the path sequence of the fiber connection object inside the node is successfully found. If the route is successfully found, the fiber connection between the nodes in the next channel of the optical channel management object is processed. If not, the optical channel management object is discarded. End; complete all fiber connections After treatment managing object, the optical path management object data is valid, entering S405; S405 saves the management object light path to the optical channel configuration data set.
在上述技术方案的基础上,所述光通道管理对象的基本信息至少包括光通道 管理对象的源宿节点、 名称、 速率级别、 保护配置。 Based on the foregoing technical solution, the basic information of the optical channel management object includes at least a source and sink node, a name, a rate level, and a protection configuration of the optical channel management object.
在上述技术方案的基础上, 所述 S402中先通过快速的路由搜索算法处理节 点间连接,然后生成节点内部光纤连接对象序列并组合到现有序列中的过程中对
其进行验证。 Based on the foregoing technical solution, the S402 first processes the inter-node connection by using a fast route search algorithm, and then generates a sequence of the internal fiber connection object of the node and combines it into the existing sequence. It is verified.
在上述技术方案的基础上, S5中的详细步骤如下: S501.选择一个待检测的 光通道对象, 获取源、 宿节点发、 收光端口的波长配置, 通过光通道对象的节点 间光纤连接数据获取光通道所经过的节点信息,保存到节点数据集合,通过节点 间、节点内光纤连接数据获取光通道所经过的所有输入光端口信息,保存到光端 口数据集合; S502.检索全部光通道数据集合,选择一个进行比较的光通道对象; S503.检查进行比较的光通道源节点的发、 收光端口波长配置, 是否与待检测光 通道源节点的发、 收光端口波长一致; 进行比较的光通道宿节点的发、 收光端口 的波长配置,是否与待检测光通道宿节点的发、收光端口的波长一致;若不一致, 则转入 S506 ; 若全部一致, 则转入 S504继续。 S504.通过进行比较的光通道的 节点间连接的光纤连接数据获取光通道所经过的节点信息,检查节点信息是否与 待检测的光通道所经过的节点有相同项,若是,则转入 S505 ,若否,则转入 S506 ; S505.检查进行比较的光通道对象的节点间、 节点内光纤连接数据, 检查每一个 光纤连接数据对象的输入光端口是否在待检测光通道的所有输入光端口信息数 据集合中,若是, 则判定待检测光通道在该输入光端口与进行比较的光通道存在 波长冲突, 结束; 若否, 则进入 S506。 S506.检查是否所有的光通道对象均进行 了比较?若均进行了比较, 进入 S507 , 若没有全部检查完毕, 则进入步骤 S502 , 检查下一个光通道。 S507.判定待检测的光通道数据与集合中其他光通道数据不 存在波长冲突。 Based on the above technical solution, the detailed steps in S5 are as follows: S501. Select an optical channel object to be detected, obtain the wavelength configuration of the source, sink node, and the optical port, and connect the data between the nodes of the optical channel object. Obtaining the node information that the optical channel passes through, saves it to the node data set, and obtains all the input optical port information that the optical channel passes through the inter-node and intra-fiber connection data, and saves the information to the optical port data set; S502. Retrieve all optical channel data Collecting, selecting a light channel object to be compared; S503. Checking whether the wavelength configuration of the transmitting and receiving ports of the optical channel source node to be compared is consistent with the wavelength of the transmitting and receiving ports of the source node of the optical channel to be detected; The wavelength configuration of the transmitting and receiving ports of the optical channel sink node is consistent with the wavelength of the transmitting and receiving ports of the optical channel sink node to be detected; if not, the process proceeds to S506; if all are consistent, the process proceeds to S504 to continue. S504. Acquire, by using the fiber connection data of the inter-node connection of the optical channel of the comparison, the node information that the optical channel passes through, and check whether the node information has the same item as the node through which the optical channel to be detected passes, and if yes, transfer to S505. If no, go to S506; S505. Check the inter-node and intra-node fiber connection data of the optical channel object being compared, and check whether the input optical port of each fiber connection data object is in the input optical port information of the optical channel to be detected. In the data set, if yes, it is determined that the optical channel to be detected has a wavelength conflict with the optical channel to be compared at the input optical port, and ends; if not, the process proceeds to S506. S506. Check if all optical channel objects are compared? If all comparisons are made, the process proceeds to S507. If not all the inspections are completed, the process proceeds to step S502 to check the next optical channel. S507. It is determined that the optical channel data to be detected does not have a wavelength conflict with other optical channel data in the set.
在上述技术方案的基础上, S6中的详细步骤如下: S601.选择一个光通道管 理对象, 建立交叉配置数据, 获取该光通道对象的源、 宿节点发、 收光端口的波 长信息作为光交叉的波长配置参数; S602.遍历光通道的节点内部光纤连接序列, 检查光纤连接对象的两端光端口是否是波长选择器件, 若是, 则进入步骤 S603 , 若否, 则进入 S604; S603.将光纤连接对象连接在波长选择开关器件上的光端口 的波长选择配置对应光通道波长项设置为开,使光通道波长可以通过波长选择器 件; S604.检查光通道的节点内部光纤连接对象是否全部设置完毕, 若是, 则进 入步骤 S605 , 若否, 则进入步骤 S602 , 继续检查下一条光纤连接; S605.将所有 的光波长选择器件配置设置到单元盘, 完成光通道的端到端光交叉连接配置。 Based on the above technical solution, the detailed steps in S6 are as follows: S601. Select an optical channel management object, establish cross configuration data, and obtain wavelength information of the source, sink node, and optical port of the optical channel object as optical crossover. The wavelength configuration parameter; S602. traversing the internal fiber connection sequence of the optical channel, checking whether the optical ports of the optical fiber connection object are wavelength selective devices, and if yes, proceeding to step S603; if not, proceeding to S604; S603. The wavelength selection configuration of the optical port of the connection object connected to the wavelength selective switch device is set to ON corresponding to the optical channel wavelength, so that the optical channel wavelength can pass through the wavelength selection device; S604. Check whether the optical fiber connection object of the node of the optical channel is completely set. If yes, go to step S605. If no, go to step S602 to continue checking the next fiber connection. S605. Set all the optical wavelength selection devices to the unit disk to complete the end-to-end optical cross-connection configuration of the optical channel.
本发明还提供一种端到端光交叉连接配置的装置, 包括: 单元盘、光端口配 置子模块,用来完成光传送设备中光信号处理单元信息的收集管理; 光纤连接信
息处理子模块,用来完成光端口之间逻辑关系的收集管理; 端到端光通道处理子 模块, 用来完成光通路搜索、 通路信息收集、 波长冲突检测; 光交叉配置处理子 模块, 用来完成光交叉配置信息收集, 配置参数生成和下发。 The present invention also provides an apparatus for an end-to-end optical cross-connect configuration, comprising: a unit disk and an optical port configuration sub-module for collecting and managing information of the optical signal processing unit in the optical transmission device; The information processing sub-module is used to complete the collection and management of the logical relationship between the optical ports; the end-to-end optical channel processing sub-module is used to complete the optical path search, path information collection, and wavelength collision detection; the optical cross configuration processing sub-module To complete the collection of optical cross-configuration information, configuration parameters are generated and delivered.
在上述技术方案的基础上, 所述单元盘、光端口配置子模块, 负责加载和保 存光信号处理单元的单元盘分类、基本信息、配置结构和接口, 每种单元盘的光 端口基本数据信息、连接状态、波长等特殊配置, 提供各种数据的检索和检测分 析。 On the basis of the foregoing technical solutions, the unit disk and the optical port configuration sub-module are responsible for loading and saving the unit disk classification, basic information, configuration structure and interface of the optical signal processing unit, and the basic data information of the optical port of each unit disk. Special configuration such as connection status and wavelength, providing various data retrieval and detection analysis.
在上述技术方案的基础上,所述光纤连接信息处理子模块负责加载和保存配 置的光纤连接信息,通过连接的源发光端口和宿收光端口配置, 分类构造节点间 的光纤连接和节点内光纤连接、 有连接光交叉配置器件的交叉连接和普通连接, 还检索各个光纤连接数据序列, 并实现光纤连接序列的分析和检测。 Based on the foregoing technical solution, the optical fiber connection information processing sub-module is responsible for loading and saving the configured optical fiber connection information, and configuring the optical fiber connection and the intra-node optical fiber between the nodes through the connected source illumination port and the sink optical port configuration. Connections, cross-connects and common connections with optical cross-configuration devices, and retrieval of individual fiber-optic connection data sequences, and analysis and detection of fiber-optic connection sequences.
在上述技术方案的基础上,所述端到端光通道处理子模块, 负责构造和管理 光通道数据对象集合, 检索光通道数据对象集合以及检测波长冲突。 Based on the above technical solution, the end-to-end optical channel processing sub-module is responsible for constructing and managing the optical channel data object set, retrieving the optical channel data object set, and detecting the wavelength conflict.
在上述技术方案的基础上,光交叉配置处理子模块, 处理节点内部的管理对 象, 对光通道所包含的光纤连接序列以及源、宿端节点的发、 收光波长配置信息 综合分析, 完成节点内部波长路径分析和处理, 产生光交叉配置, 完成与设备之 间的通信和配置管理操作。 On the basis of the foregoing technical solution, the optical cross-configuration processing sub-module processes the management object inside the node, comprehensively analyzes the optical fiber connection sequence included in the optical channel, and the configuration information of the transmitting and receiving wavelengths of the source and the sink node, and completes the node. Internal wavelength path analysis and processing, resulting in optical cross-configuration, complete communication and configuration management operations with the device.
本发明的有益效果在于: 通过端到端光交叉连接配置的方法及装置,将需要 人工逐个单元盘进行的繁琐配置操作,简化成对整个光通道路径序列的自动化操 作, 避免人工完成配置, 降低网络运营成本, 即使再链路经过节点多、 方向连接 复杂的情况下, 也可以子宫记忆、 收集参数和操作产生错误, 配置简单方便。 附图说明 The invention has the advantages that: the method and the device for the end-to-end optical cross-connection configuration, the cumbersome configuration operation required by the manual unit-by-unit disk is simplified, the automation operation of the entire optical channel path sequence is simplified, the manual configuration is avoided, and the configuration is reduced. The network operation cost, even if the link passes through many nodes and the direction connection is complicated, the uterus memory, the collection parameters and the operation may generate errors, and the configuration is simple and convenient. DRAWINGS
图 1 为本发明实施例端到端光交叉连接配置的方法总体流程图; 图 2为图 1中收集光信号处理单元盘及其光端口并进行分类处理的流程图; 图 3为图 1中单元盘对象和光端口对象的静态关系图。 1 is a general flow chart of a method for configuring an end-to-end optical cross-connection according to an embodiment of the present invention; FIG. 2 is a flow chart of collecting optical signal processing unit disks and optical ports thereof in FIG. 1 and classifying processing; FIG. A static relationship diagram of a cell disk object and an optical port object.
图 4为图 1收集节点间光纤连接信息并构造数据集合的流程图; 4 is a flow chart of collecting the fiber connection information between nodes and constructing a data set in FIG. 1;
图 5为图 1中收集节点内光信号处理单元盘之间的光纤连接流程图; 图 6为图 1中构造光通道对象并通过光纤连接对象序列构造光通路路径的流 程图;
图 7为图 1中检测光通道与集合内其他光通道否存在波长冲突的流程图; 图 8为图 1 中通过光通道包含的光纤连接对象序列生成光交叉配置的流程 图; 5 is a flow chart of the optical fiber connection between the optical signal processing unit disks in the collecting node of FIG. 1; FIG. 6 is a flow chart of constructing the optical path object in FIG. 1 and constructing the optical path through the optical fiber connecting object sequence; 7 is a flow chart of the wavelength conflict between the detecting optical channel and other optical channels in the set in FIG. 1; FIG. 8 is a flow chart of generating an optical cross configuration by the optical fiber connecting object sequence included in the optical channel in FIG.
图 9为本发明实施例端到端光交叉连接配置的装置结构框图。 具体实施方式 FIG. 9 is a structural block diagram of an apparatus for an end-to-end optical cross-connect configuration according to an embodiment of the present invention. detailed description
以下结合附图及实施例对本发明作进一步详细说明。 The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
如图 1所示, 本发明一种端到端光交叉连接配置的方法的步骤如下: As shown in FIG. 1, the steps of the method for an end-to-end optical cross-connect configuration of the present invention are as follows:
51.收集 0TN网络中各个节点的光层信号处理单元盘、光端口信息,通过 XML 格式的数据文件对每一种光信号处理单元盘及其所包含的光端口进行定义,在定 义光端口特性时通过单元盘所处理的光信号层次区分光端口的配置信息;依次对 每个单元盘及其所具有的光端口建立管理对象, 并建立单元盘、光端口管理对象 数据集合。 51. Collect optical layer signal processing unit disk and optical port information of each node in the 0TN network, and define each optical signal processing unit disk and the optical port included therein by using an XML format data file to define optical port characteristics. The optical signal processed by the unit disk is used to distinguish the configuration information of the optical port; the management object is established for each unit disk and the optical port it has, and the unit disk and the optical port management object data set are established.
52.收集 0TN网络中节点之间, 从源端输出光端口到宿端输入光端口之间的 光纤连接信息, 按照规则建立节点间光纤连接管理对象, 并建立光纤连接管理对 象数据集合。 52. Collect the optical fiber connection information between the nodes in the 0TN network, from the source output optical port to the sink input optical port, establish an inter-node fiber connection management object according to the rule, and establish a fiber connection management object data set.
53.收集节点内部, 光层信号处理单元之间输出光端口到输入光端口之间的 光纤连接信息, 建立节点内光纤连接管理对象, 并建立光纤连接管理对象数据集 合。 53. Inside the collection node, the optical layer connection information between the optical port signal processing unit and the input optical port is outputted, the optical fiber connection management object in the node is established, and the optical fiber connection management object data set is established.
54.收集从源端光转发单元盘输出光端口到宿端光转发单元盘输入光端口之 间的光纤连接对象序列, 建立光通道管理对象, 并建立光通道管理对象集合。 54. Collect a fiber connection object sequence from the source optical forwarding unit disk output optical port to the sink end optical forwarding unit disk input optical port, establish an optical channel management object, and establish an optical channel management object set.
55.通过不同光通道管理对象之间的光纤连接对象序列和光端口信息分析, 检查不同光源位置的相同波长是否经过同一光端口而形成波长冲突, 若有冲突, 直接结束, 若无冲突, 进入 S6。 55. Through the optical fiber connection object sequence and optical port information analysis between different optical channel management objects, check whether the same wavelength of different light source positions pass through the same optical port to form a wavelength conflict, if there is a conflict, directly end, if there is no conflict, enter S6 .
56.通过对单个光通道管理对象所包含的光纤连接管理对象序列的先后关 系、光端口信息的分析, 自动查找可重构分插复用光交叉处理单元盘配置所需的 光端口、 波长信息, 建立光交叉配置数据。 56. Automatically search for optical ports and wavelength information required for reconfigurable add/drop multiplexed optical cross processing unit disk configuration by analyzing the sequence relationship of optical fiber connection management object sequences and optical port information included in a single optical channel management object. , Establish optical cross configuration data.
如图 2所示, 为 S1中收集光信号处理单元盘及其光端口并进行分类处理的 流程, 具体步骤如下: As shown in Figure 2, the process of collecting the optical signal processing unit disk and its optical port in S1 and classifying the processing is as follows:
S101.查找光层信号处理的单元盘, 收集单元盘信息, 对单元盘按照其所处
理光层信号的层次进行分类, 建立单元盘对象及其集合; 对于每个不同的单元盘 对象, 检索其光端口配置信息。 S101. Find a unit disk of the optical layer signal processing, collect unit disk information, and follow the unit disk according to the location The levels of the layering signals are classified, and the unit disk objects and their collections are established; for each different unit disk object, the optical port configuration information is retrieved.
5102.检查所述单元盘对象是否为光信号处理单元, 若否, 直接进入下一个 单元盘, 转入 S101。 5102. Check whether the unit disk object is an optical signal processing unit. If not, go directly to the next unit disk and transfer to S101.
5103.通过读取 XML格式数据文件的定义, 构造光端口的接口号、连接方向、 容量、 名称等基本配置数据, 初始化其连接关系状态, 建立光端口管理对象。 5103. By reading the definition of the data file in the XML format, construct basic configuration data such as the interface number, connection direction, capacity, and name of the optical port, initialize the connection relationship state, and establish an optical port management object.
5104.根据光端口所在单元盘的分类、 光端口所连接的信号类型, 建立光端 口所在层次信息数据和光端口特有的配置信息数据。对于包含发送、接收波长的 端口增加波长配置, 对于光交叉器件接口设置其标记以及配置方式。 5104. According to the classification of the unit disk where the optical port is located and the signal type to which the optical port is connected, the hierarchical information data of the optical port and the configuration information data specific to the optical port are established. The wavelength configuration is added to the port containing the transmit and receive wavelengths, and the mark and configuration mode is set for the optical cross-device interface.
5105.将当前光端口信息对象, 保存到单元盘对象的光端口管理对象数据集 合, 检查当前单元盘所有光端口是否已经检索完成, 若否, 则转入 S102, 继续 建立下一个光端口管理对象; 若已经检索完成, 进入 S106。 5105. Save the current optical port information object to the optical port management object data set of the unit disk object, check whether all the optical ports of the current unit disk have been retrieved, and if not, proceed to S102 to continue to establish the next optical port management object. If the search has been completed, go to S106.
5106.将当前单元盘对象, 保存到单元盘对象集合中, 检查当前网络中所有 光层信号处理的单元盘是否已经检索完成, 若否, 转入 S101 , 继续处理下一个 单元盘; 若是, 则结束。 5106. Save the current unit disk object to the unit disk object set, check whether the unit disk of all optical layer signal processing in the current network has been retrieved, and if not, go to S101 and continue processing the next unit disk; if yes, End.
上述步骤中所涉及的单元盘对象包含该单元盘下的光端口对象数据集合,提 供快捷的检索接口, 同时光端口对象也可以检索其所在单元盘以及节点信息。如 图 3所示, 单元盘对象和光端口对象的静态关系图, 单元盘对象包含名称、类别 基本属性, 并保存该单元盘上所有光端口的数据集合; 光端口对象包含名称、类 型、 层次的基本属性, 对于包括含特定波长配置的光端口, 包含光交叉参数、 路 由参数的端口对象,通过扩展子类别来创建, 这些扩展信息用于自动搜索和构造 端到端光交叉连接参数集合。 The unit disk object involved in the above steps includes the optical port object data set under the unit disk, providing a fast retrieval interface, and the optical port object can also retrieve the unit disk and node information. As shown in FIG. 3, a static relationship diagram of a unit disk object and an optical port object, the unit disk object includes a name, a category basic attribute, and saves a data set of all optical ports on the unit disk; the optical port object includes a name, a type, and a level. Basic properties, for optical ports that include a specific wavelength configuration, port objects that contain optical cross-parameters, routing parameters, are created by extending subcategories that are used to automatically search and construct end-to-end optical cross-connect parameter sets.
如图 4所示,为步骤 S2中收集节点间光纤连接信息并构造数据集合的流程, 其具体步骤如下: As shown in FIG. 4, the process of collecting the inter-node fiber connection information and constructing the data set in step S2 is as follows:
5201.收集网络中节点之间的光纤连接信息, 建立从源端发光端口到宿端收 光端口的节点间光纤连接管理对象。 5201. Collect optical fiber connection information between nodes in the network, and establish an optical fiber connection management object between nodes from the source end light emitting port to the sink end light receiving port.
5202.收集光纤连接对象的光纤架、 长度、 代价、 标记等基本配置数据。 5202. Collect basic configuration data such as fiber frame, length, cost, and mark of the fiber connection object.
5203.将当前节点间光纤连接管理对象, 保存当前节点间光纤连接信息对象 到光纤连接对象数据集合。 5203. The current inter-node fiber connection management object is saved, and the current inter-node fiber connection information object is saved to the fiber connection object data set.
上述步骤中,节点间的光纤连接构建过程通过网络节点的拓扑结构配置来实
现, 它表示从源节点群路光接口到宿节点群路光接口的光缆, 可以用来记录光缆 的相关参数信息, 可提供节点间路由搜索时所需的代价参量。 In the above steps, the fiber connection construction process between the nodes is implemented through the topology configuration of the network nodes. Now, it represents the optical cable from the source node group optical interface to the sink node group optical interface, which can be used to record the relevant parameter information of the optical cable, and can provide the cost parameter required for route search between nodes.
如图 5所示, 为步骤 S3中收集节点内光信号处理单元盘之间的光纤连接流 程, 详细步骤如下: As shown in FIG. 5, the optical fiber connection process between the optical signal processing unit disks in the node is collected in step S3, and the detailed steps are as follows:
5301.收集单个网络节点内部的光纤连接信息, 建立从源光信号处理单元盘 输出光端口到下一层次光信号处理单元盘的输入光端口的节点内光纤连接管理 对象。所述内部光纤连接信息区别于外部连接, 因为生成光通道路径时需要分别 对外部、 内部数据进行处理, 可以加快处理响应, 同时, 将有光交叉连接的光纤 连接对象区别出来可以记录和光交叉的配置参数、方向等有关的数据, 以便在生 成相关配置数据时使用。 5301. Collect fiber connection information inside a single network node, and establish an intra-node fiber connection management object from the source optical signal processing unit disk output optical port to the input optical port of the next layer optical signal processing unit disk. The internal fiber connection information is different from the external connection. Because the external channel and the internal data need to be processed separately when the optical channel path is generated, the processing response can be speeded up, and at the same time, the optical fiber connection object with the optical cross connection can be distinguished and can be recorded and optically intersected. Configure data about parameters, directions, etc., to be used when generating related configuration data.
5302.收集光纤连接管理对象的代价、 色散补偿参数等基本配置信息, 若是 连接到光交叉连接配置器件的光纤,则根据所连接的光交叉连接单元盘配置项生 成对应的配置数据和配置接口。 5302. Collect basic configuration information such as the cost of the fiber connection management object and the dispersion compensation parameter. If the fiber is connected to the optical cross-connect configuration device, the corresponding configuration data and the configuration interface are generated according to the connected optical cross-connect unit disk configuration item.
5303.将当前的节点内部光纤连接管理对象保存到光纤连接管理对象数据集 合中。 5303. Save the current node internal fiber connection management object to the fiber connection management object data set.
如图 6所示, 为图 1中步骤 S4构造光通道对象并通过光纤连接对象序列构 造光通路路径的流程, 其具体步骤如下: As shown in FIG. 6, the flow of constructing the optical channel object for the step S4 in FIG. 1 and constructing the optical path through the optical fiber connection object sequence is as follows:
5401.建立光通道管理对象, 收集光通道管理对象的源宿节点、 名称、 速率 级别、 保护配置等基本信息。 5401. Establish an optical channel management object, and collect basic information such as source and sink nodes, name, rate level, and protection configuration of the optical channel management object.
5402.查找从源节点到宿节点的节点间光纤连接, 生成节点间光纤连接对象 序列, 保存到光通道管理对象的光纤连接对象序列集合。先处理节点间连接, 可 以使用快速的路由搜索算法来处理, 这时的光通道通路数据并不一定正确, 也是 不完整的,需要在下面生成节点内部连接序列并组合到现有序列中的过程中对其 进行验证。 5402. Search for the inter-node fiber connection from the source node to the sink node, generate a sequence of inter-node fiber connection objects, and save the sequence of the fiber connection object sequence to the optical channel management object. First, the inter-node connection can be processed by using a fast route search algorithm. At this time, the optical channel path data is not necessarily correct, and is also incomplete. The process of generating the internal connection sequence of the node and combining it into the existing sequence is required. Verify it in .
5403.检索光通道管理对象的光纤连接对象序列集合, 检查前一个节点间光 纤连接对象的输出光端口和后一个光纤连接对象的输入光端口,在上述两个光端 口所在节点内部检索节点内光纤连接对象, 查找两个光端口之间的光纤连接, 生 成节点内光纤连接对象序列, 插入保存到光通道对象的光纤连接序列集合。 5403. Searching the optical fiber connection object sequence set of the optical channel management object, checking the output optical port of the optical connection object between the previous node and the input optical port of the subsequent optical connection object, and searching for the intra-node optical fiber inside the node where the two optical ports are located Connect the object, find the fiber connection between the two optical ports, generate a sequence of fiber connection objects in the node, and insert a set of fiber connection sequences saved to the optical channel object.
5404.检查是否成功找到节点内部的光纤连接对象路径序列, 若成功找到, 则对光通道管理对象中下一段节点间光纤连接进行处理,若未成功找到, 则丢弃
该光通道管理对象并结束; 完成所有光纤连接管理对象处理后, 该光通道管理对 象数据为有效, 进入 S405; 5404. Check whether the path sequence of the fiber connection object inside the node is successfully found. If the route is successfully found, the fiber connection between the nodes in the next segment of the optical channel management object is processed. If not found, the device discards. The optical channel management object is terminated; after all the fiber connection management object processing is completed, the optical channel management object data is valid, and the process proceeds to S405;
S405.保存该光通道管理对象到光通道配置数据集合。 S405. Save the optical channel management object to the optical channel configuration data set.
如图 7所示, 为图 1中步骤 S5检测光通道与集合内其他光通道否存在波长 冲突的流程图, 具体步骤如下: As shown in FIG. 7, a flow chart for detecting whether there is a wavelength conflict between the optical channel and other optical channels in the set is performed in step S5 in FIG. 1, and the specific steps are as follows:
5501.选择一个待检测的光通道对象, 获取源、 宿节点发、 收光端口的波长 配置,通过光通道对象的节点间光纤连接数据获取光通道所经过的节点信息,保 存到节点数据集合,通过节点间、节点内光纤连接数据获取光通道所经过的所有 输入光端口信息, 保存到光端口数据集合。 5501. Select an optical channel object to be detected, obtain a wavelength configuration of the source, the sink node, and the optical port, and obtain the node information that the optical channel passes through the inter-node fiber connection data of the optical channel object, and save the node information to the node data set. All the input optical port information that the optical channel passes through the inter-node and intra-node fiber connection data is saved to the optical port data set.
5502.检索全部光通道数据集合, 选择一个进行比较的光通道对象。 5502. Retrieve all optical channel data sets and select a light channel object for comparison.
5503.检查进行比较的光通道源节点的发、 收光端口波长配置, 是否与待检 测光通道源节点的发、 收光端口波长一致; 进行比较的光通道宿节点的发、 收光 端口的波长配置, 是否与待检测光通道宿节点的发、 收光端口的波长一致; 由于 此处只有全部一致或全部不一致的情况发生, 则若不一致, 则转入 S506, 若全 部一致, 进入 S504。 5503. Check whether the wavelength configuration of the transmitting and receiving ports of the optical channel source node to be compared is consistent with the wavelength of the transmitting and receiving ports of the source node of the optical channel to be detected; and comparing the transmitting and receiving ports of the optical channel sink node for comparison. The wavelength configuration is the same as the wavelength of the transmitting and receiving ports of the optical channel sink node to be detected. If only all of them are consistent or all of them are inconsistent, if they do not match, then go to S506. If all are consistent, go to S504.
5504.通过进行比较的光通道的节点间连接的光纤连接数据获取光通道所经 过的节点信息,检查节点信息是否与待检测的光通道所经过的节点有相同项,若 是, 则转入 S505, 若否, 则转入 S506。 5504. Obtain the node information that the optical channel passes through the fiber connection data of the inter-node connection of the optical channel that is compared, and check whether the node information has the same item as the node through which the optical channel to be detected passes, and if yes, go to S505. If no, go to S506.
5505.检查进行比较的光通道对象的节点间、 节点内光纤连接数据, 检查每 一个光纤连接数据对象的输入光端口是否在待检测光通道的所有输入光端口信 息数据集合中,若是, 则判定待检测光通道在该输入光端口与进行比较的光通道 存在波长冲突, 结束; 若否, 则进入 S506。 5505. Check the inter-node and intra-node fiber connection data of the optical channel object to be compared, check whether the input optical port of each fiber connection data object is in all the input optical port information data sets of the optical channel to be detected, and if so, determine The optical channel to be detected has a wavelength conflict with the optical channel to be compared at the input optical port, and ends; if not, the process proceeds to S506.
5506.检查是否所有的光通道对象均进行了比较? 若均进行了比较, 进入 S507, 若没有全部检查完毕, 转入步骤 S502, 进入下一个光通道。 5506. Check if all optical channel objects are compared? If they are all compared, go to S507. If not all the checks are completed, go to step S502 to enter the next optical channel.
5507.则判定待检测的光通道数据与集合中其他光通道数据不存在波长冲 突。 5507. It is determined that there is no wavelength conflict between the optical channel data to be detected and other optical channel data in the set.
如图 8所示, 为图 1中步骤 S6通过光通道包含的光纤连接对象序列生成光 交叉配置的流程, 具体步骤如下: As shown in FIG. 8, the flow of the optical cross-configuration is generated by the optical fiber connection object sequence included in the optical channel in step S6 of FIG. 1, and the specific steps are as follows:
S601.选择一个光通道管理对象, 建立交叉配置数据, 获取该光通道对象的 源、 宿节点发、 收光端口的波长信息作为光交叉的波长配置参数。
5602.遍历光通道的节点内部光纤连接序列, 检查光纤连接对象的两端光端 口是否是波长选择器件, 若是, 则进入步骤 S603, 若否, 则进入 S604。 S601. Select an optical channel management object, establish cross-configuration data, and obtain wavelength information of the source, the sink node, and the optical port of the optical channel object as wavelength configuration parameters of the optical cross. 5602. Traverse the internal fiber connection sequence of the optical channel, and check whether the optical ports at both ends of the optical fiber connection object are wavelength selective devices. If yes, go to step S603, if no, go to S604.
5603.将光纤连接对象连接在波长选择开关器件上的光端口的波长选择配置 对应光通道波长项设置为开,使光通道波长可以通过波长选择器件; 获取波长选 择器件光端口的配置信息, 对所需其他参数进行配置。 5603. The wavelength selection configuration of the optical port connecting the optical fiber connection object to the wavelength selective switching device is set to be on the optical channel wavelength term, so that the optical channel wavelength can pass through the wavelength selection device; obtaining the configuration information of the optical port of the wavelength selection device, Other parameters are required for configuration.
5604.检查光通道的节点内部光纤连接对象是否全部设置完毕, 若是, 则进 入步骤 S605, 若否, 则进入步骤 S602, 继续检查下一条光纤连接。 5604. Check whether all the fiber connection objects in the node of the optical channel are set, if yes, go to step S605, if no, go to step S602 to continue checking the next fiber connection.
5605.将所有的光波长选择器件配置设置到单元盘, 完成光通道的端到端光 交叉连接配置。 如图 9所示, 为本发明实施例端到端光交叉连接配置的装置结构框图。所述 端到端光交叉连接配置的装置包括: 单元盘、 光端口配置子模块 1, 光纤连接信 息处理子模块 2, 端到端光通道处理子模块 3, 以及光交叉配置处理子模块 4。 单元盘、光端口配置子模块 1分别连接光纤连接信息处理子模块 2和端到端光通 道处理子模块 3, 光纤连接信息处理子模块 2、 端到端光通道处理子模块 3、 光 交叉配置处理子模块 4有数据和接口连接。 5605. Set all optical wavelength selection device configurations to the unit disk to complete the end-to-end optical cross-connection configuration of the optical channel. FIG. 9 is a structural block diagram of an apparatus for configuring an end-to-end optical cross-connection according to an embodiment of the present invention. The device for the end-to-end optical cross-connect configuration includes: a unit disk, an optical port configuration sub-module 1, a fiber-optic connection information processing sub-module 2, an end-to-end optical channel processing sub-module 3, and an optical cross-configuration processing sub-module 4. The unit disk and the optical port configuration sub-module 1 are respectively connected to the optical fiber connection information processing sub-module 2 and the end-to-end optical channel processing sub-module 3, the optical fiber connection information processing sub-module 2, the end-to-end optical channel processing sub-module 3, and the optical cross-configuration The processing sub-module 4 has data and interface connections.
所述单元盘、 光端口配置子模块 1, 用来完成光传送设备中光信号处理单元 信息的收集管理; 负责加载和保存光信号处理单元的单元盘分类、基本信息、配 置结构和接口,每种单元盘的光端口基本数据信息、连接状态、波长等特殊配置, 提供各种数据的检索和检测分析。 光纤连接信息处理子模块 2, 用来完成光端口 之间逻辑关系的收集管理; 负责加载和保存配置的光纤连接信息,通过连接的源 发光端口和宿收光端口配置, 分类构造节点间的光纤连接和节点内光纤连接、有 连接光交叉配置器件的交叉连接和普通连接,还检索各个光纤连接数据序列, 并 实现光纤连接序列的分析和检测。 端到端光通道处理子模块 3, 用来完成光通路 搜索、 通路信息收集、 波长冲突检测; 负责构造和管理光通道数据对象集合, 检 索光通道数据对象集合以及检测波长冲突。 光交叉配置处理子模块 4, 用来完成 光交叉配置信息收集, 配置参数生成和下发; 处理节点内部的管理对象, 对光通 道所包含的光纤连接序列以及源、 宿端节点的发、 收光波长配置信息综合分析, 完成节点内部波长路径分析和处理,产生光交叉配置, 完成与设备之间的通信和 配置管理操作。 The unit disk and the optical port configuration sub-module 1 are configured to complete collection and management of information of the optical signal processing unit in the optical transmission device; responsible for loading and saving the unit disk classification, basic information, configuration structure and interface of the optical signal processing unit, each The special configuration of the optical port basic data information, connection status, wavelength, etc. of the unit disk provides various data retrieval and detection analysis. The optical fiber connection information processing sub-module 2 is configured to collect and manage the logical relationship between the optical ports; load and save the configured optical fiber connection information, and configure the optical fibers between the nodes through the connected source light-emitting port and the sink light-receiving port. Connection and intra-node fiber connection, cross-connection and common connection with connected optical cross-configuration devices, and retrieval of each fiber connection data sequence, and analysis and detection of fiber connection sequences. The end-to-end optical channel processing sub-module 3 is used to complete optical path search, path information collection, and wavelength collision detection; responsible for constructing and managing optical channel data object sets, retrieving optical channel data object sets, and detecting wavelength conflicts. The optical cross-configuration processing sub-module 4 is configured to complete optical cross-configuration information collection, configuration parameter generation and delivery; processing internal management objects, and optical fiber connection sequences and source and sink node transmissions included in the optical channel Comprehensive analysis of optical wavelength configuration information, complete internal wavelength path analysis and processing of the node, generate optical cross-configuration, complete communication and configuration management operations with the device.
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不
脱离本发明原理的前提下,还可以做出若干改进和润饰, 这些改进和润饰也视为 本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人 员公知的现有技术。
The present invention is not limited to the above embodiments, and is not known to those skilled in the art Many modifications and refinements can be made without departing from the principles of the invention, and such modifications and refinements are also considered to be within the scope of the invention. The contents not described in detail in the present specification belong to the prior art well known to those skilled in the art.
Claims
1. 一种端到端光交叉连接配置的方法, 其特征在于, 包括如下步骤: A method for an end-to-end optical cross-connect configuration, comprising the steps of:
51.收集 0TN网络中各个节点的光层信号处理单元盘、 光端口信息, 对每个 单元盘及其所具有的光端口, 分别建立单元盘管理对象数据集合、光端口管理对 象数据集合; 51. Collect optical layer signal processing unit disk and optical port information of each node in the 0TN network, and establish a unit disk management object data set and an optical port management object data set for each unit disk and the optical port it has;
52.收集节点之间, 从源端输出光端口到宿端输入光端口之间的光纤连接信 息, 建立节点间光纤连接管理对象数据集合; 52. Between the collection nodes, the optical fiber connection information between the output optical port and the sink input optical port is established, and the data connection management object data set between the nodes is established;
53.收集节点内部, 光层信号处理单元之间输出光端口到输入光端口之间的 光纤连接信息, 建立节点内光纤连接管理对象数据集合; 53. Inside the collection node, the optical layer connection information between the optical port and the input optical port is outputted between the optical layer signal processing units, and the data connection management object data set in the node is established;
54.收集从源端光转发单元盘输出光端口到宿端光转发单元盘输入光端口之 间的光纤连接对象序列, 建立光通道管理对象集合; 54. Collect a fiber connection object sequence from the source optical forwarding unit disk output optical port to the sink end optical forwarding unit disk input optical port, and establish an optical channel management object set;
55.通过不同光通道管理对象之间的光纤连接对象序列和光端口信息分析, 检查不同光源位置的相同波长是否经过同一光端口而形成波长冲突, 若有冲突, 直接结束; 55. Through the optical fiber connection object sequence and optical port information analysis between different optical channel management objects, check whether the same wavelength of different light source positions pass through the same optical port to form a wavelength conflict, and if there is a conflict, directly terminate;
56.通过对单个光通道管理对象所包含的光纤连接管理对象序列的先后关 系、光端口信息的分析, 自动查找可重构分插复用光交叉处理单元盘配置所需的 光端口、 波长信息, 建立光交叉配置数据。 56. Automatically search for optical ports and wavelength information required for reconfigurable add/drop multiplexed optical cross processing unit disk configuration by analyzing the sequence relationship of optical fiber connection management object sequences and optical port information included in a single optical channel management object. , Establish optical cross configuration data.
2. 如权利要求 1所述的一种端到端光交叉连接配置的方法, 其特征在于, S1中的详细步骤如下: 2. A method of end-to-end optical cross-connect configuration according to claim 1, wherein the detailed steps in S1 are as follows:
5101.查找光层信号处理的单元盘, 收集单元盘信息, 对单元盘按照其所处 理光层信号的层次进行分类, 建立单元盘对象及其集合; 对于每个不同的单元盘 对象, 检索其光端口配置信息; 5101. Search for the unit disk of the optical layer signal processing, collect the unit disk information, classify the unit disk according to the level of the processed optical layer signal, and establish a unit disk object and a set thereof; for each different unit disk object, retrieve the same Optical port configuration information;
5102.检查所述单元盘对象是否为光信号处理单元, 若否, 直接进入下一个 单元盘; 5102. Check whether the unit disk object is an optical signal processing unit, and if not, directly enter the next unit disk;
5103.通过读取 XML格式数据文件的定义, 构造光端口的基本配置数据, 初 始化其连接关系状态, 建立光端口管理对象; 5103. By reading the definition of the data file in the XML format, constructing basic configuration data of the optical port, initializing the connection relationship state, and establishing an optical port management object;
5104.根据光端口所在单元盘的分类、 光端口所连接的信号类型, 建立光端 口所在层次信息数据和光端口特有的配置信息数据; 5104. Establishing hierarchical information data of the optical port and configuration information data specific to the optical port according to the classification of the unit disk in which the optical port is located and the signal type to which the optical port is connected;
5105.将当前光端口信息对象, 保存到单元盘对象的光端口管理对象数据集 合, 检查当前单元盘所有光端口是否已经检索完成, 若否, 则转入 S102, 继续 建立下一个光端口管理对象; 5105. Save the current optical port information object to the optical port management object data set of the unit disk object If yes, check whether all the optical ports of the current unit disk have been retrieved, and if not, proceed to S102 to continue to establish the next optical port management object;
S106.将当前单元盘对象保存到单元盘对象集合中, 检查当前网络中所有光 层信号处理的单元盘是否已经检索完成, 若否, 转入 S101 , 继续处理下一个单 元盘。 S106. Save the current unit disk object to the unit disk object set, check whether the unit disk of all optical layer signal processing in the current network has been retrieved, and if not, transfer to S101 to continue processing the next unit disk.
3. 如权利要求 2所述的一种端到端光交叉连接配置的方法, 其特征在于: 所述构造光端口的基本配置数据包括光端口的接口号、 连接方向、 容量、 名称。 The method for configuring an end-to-end optical cross-connect according to claim 2, wherein: the basic configuration data of the optical port includes an interface number, a connection direction, a capacity, and a name of the optical port.
4. 如权利要求 2所述的一种端到端光交叉连接配置的方法, 其特征在于: 所述 S103中, 对于包含发送、 接收波长的光端口增加波长配置, 对于光交叉器 件接口设置其标记以及配置方式。 The method of claim 2, wherein in the S103, the wavelength configuration is increased for the optical port including the transmitting and receiving wavelengths, and the optical cross device interface is configured. Mark and configuration.
5. 如权利要求 1所述的一种端到端光交叉连接配置的方法, 其特征在于, S2中的详细步骤如下: 5. The method of an end-to-end optical cross-connect configuration according to claim 1, wherein the detailed steps in S2 are as follows:
5201.收集网络中节点之间的光纤连接信息, 建立从源端发光端口到宿端收 光端口的节点间光纤连接管理对象; 5201. Collecting optical fiber connection information between nodes in the network, and establishing an optical fiber connection management object between the nodes from the source end light emitting port to the sink end light receiving port;
5202.收集光纤连接管理对象的基本配置数据; 5202. Collect basic configuration data of the optical fiber connection management object;
5203.将当前节点间光纤连接管理对象保存到光纤连接管理对象的数据集合 中。 5203. Save the current inter-node fiber connection management object to the data collection of the fiber connection management object.
6. 如权利要求 5所述的一种端到端光交叉连接配置的方法, 其特征在于: 所述光纤连接管理对象的基本配置数据包括光纤架、 长度、 代价、 标记。 6. The method of claim 5, wherein the basic configuration data of the optical fiber connection management object comprises a fiber optic shelf, a length, a cost, and a label.
7. 如权利要求 5所述的一种端到端光交叉连接配置的方法, 其特征在于: 所述节点间的光纤连接管理对象构建过程, 通过网络节点的拓扑结构配置来实 现, 它表示从源节点群路光接口到宿节点群路光接口的光缆,用来记录光缆的相 关参数信息, 提供节点间路由搜索时所需的代价参量。 The method for configuring an end-to-end optical cross-connect according to claim 5, wherein: the optical fiber connection management object construction process between the nodes is implemented by a topology configuration of the network node, which represents The optical cable of the source node group optical interface to the optical interface of the sink node group is used to record the relevant parameter information of the optical cable, and provides the cost parameter required for the route search between nodes.
8. 如权利要求 1所述的一种端到端光交叉连接配置的方法, 其特征在于, S3中的详细步骤如下: 8. The method of claim 1, wherein the detailed steps in S3 are as follows:
5301.收集单个网络节点内部的光纤连接信息, 建立从源光信号处理单元盘 输出光端口到下一层次光信号处理单元盘的输入光端口的节点内光纤连接管理 对象; 5301. Collecting optical fiber connection information inside a single network node, and establishing an intra-node optical fiber connection management object from the source optical signal processing unit disk output optical port to the input optical port of the next-level optical signal processing unit disk;
5302.收集光纤连接管理对象基本配置信息, 若是连接到光交叉连接配置器 件的光纤,则根据所连接的光交叉连接单元盘配置项生成对应的配置数据和配置 接口; 5302. Collect basic configuration information of the optical fiber connection management object. If the optical fiber is connected to the optical cross-connect configuration device, generate corresponding configuration data and configuration according to the connected optical cross-connect unit disk configuration item. Interface
S303.将当前的节点内部光纤连接管理对象保存到光纤连接管理对象数据集 合中。 S303. Save the current node internal optical fiber connection management object to the fiber connection management object data set.
9. 如权利要求 8所述的一种端到端光交叉连接配置的方法, 其特征在于: 所述光纤连接管理对象基本配置信息包括光纤连接管理对象的代价、色散补偿参 数。 9. The method according to claim 8, wherein the basic configuration information of the optical fiber connection management object includes a cost and a dispersion compensation parameter of the optical fiber connection management object.
10. 如权利要求 1所述的一种端到端光交叉连接配置的方法, 其特征在于, S4中的详细步骤如下: 10. The method of an end-to-end optical cross-connect configuration according to claim 1, wherein the detailed steps in S4 are as follows:
5401.建立光通道管理对象, 收集光通道管理对象的基本信息; 5401. Establish an optical channel management object, and collect basic information of the optical channel management object;
5402.查找从源节点到宿节点的节点间光纤连接, 生成节点间光纤连接对象 序列, 保存到光通道管理对象的光纤连接对象序列集合; 5402. Search for the inter-node fiber connection from the source node to the sink node, generate a sequence of inter-node fiber connection objects, and save the sequence of the fiber connection object sequence to the optical channel management object;
5403.检索光通道管理对象的光纤连接对象序列集合, 检查前一个节点间光 纤连接对象的输出光端口和后一个光纤连接对象的输入光端口,在上述两个光端 口所在节点内部检索节点内光纤连接对象, 查找两个光端口之间的光纤连接, 生 成节点内光纤连接对象序列, 插入保存到光通道对象的光纤连接序列集合; 5403. Searching the optical fiber connection object sequence set of the optical channel management object, checking the output optical port of the optical connection object between the previous node and the input optical port of the subsequent optical connection object, and searching for the intra-node optical fiber inside the node where the two optical ports are located Connect the object, find the fiber connection between the two optical ports, generate a sequence of fiber connection objects in the node, and insert a set of fiber connection sequences saved to the optical channel object;
5404.检查是否成功找到节点内部的光纤连接对象路径序列, 若成功找到, 则对光通道管理对象中下一段节点间光纤连接进行处理,若未成功找到, 则丢弃 该光通道管理对象并结束; 完成所有光纤连接管理对象处理后, 该光通道管理对 象数据为有效, 进入 S405; 5404. Check whether the path sequence of the fiber connection object inside the node is successfully found. If the path is successfully found, the fiber connection between the nodes in the next channel of the optical channel management object is processed. If not, the optical channel management object is discarded and ends. After all the optical fiber connection management object processing is completed, the optical channel management object data is valid, and the process proceeds to S405;
5405.保存该光通道管理对象到光通道配置数据集合。 5405. Save the optical channel management object to the optical channel configuration data set.
11. 如权利要求 10所述的一种端到端光交叉连接配置的方法, 其特征在于: 所述光通道管理对象的基本信息至少包括光通道管理对象的源宿节点、名称、速 率级别、 保护配置。 The method for configuring an end-to-end optical cross-connect according to claim 10, wherein: the basic information of the optical channel management object includes at least a source and sink node of an optical channel management object, a name, a rate level, Protect the configuration.
12. 如权利要求 10所述的一种端到端光交叉连接配置的方法, 其特征在于: 所述 S402中先通过快速的路由搜索算法处理节点间连接, 然后生成节点内部光 纤连接对象序列并组合到现有序列中的过程中对其进行验证。 12. The method of claim 10, wherein: in S402, a fast route search algorithm is used to process an inter-node connection, and then a sequence of internal fiber connection objects of the node is generated and Validate it in the process of combining it into an existing sequence.
13. 如权利要求 1所述的一种端到端光交叉连接配置的方法, 其特征在于, S5中的详细步骤如下: 13. The method of an end-to-end optical cross-connect configuration according to claim 1, wherein the detailed steps in S5 are as follows:
S501.选择一个待检测的光通道对象, 获取源、 宿节点发、 收光端口的波长 配置,通过光通道对象的节点间光纤连接数据获取光通道所经过的节点信息,保 存到节点数据集合,通过节点间、节点内光纤连接数据获取光通道所经过的所有 输入光端口信息, 保存到光端口数据集合; S501. Select an optical channel object to be detected, obtain a wavelength configuration of the source, the sink node, and the optical port, and obtain the node information that the optical channel passes through the optical fiber connection data of the optical channel object. Stored in the node data set, and obtains all the input optical port information that the optical channel passes through the inter-node and intra-fiber connection data, and saves the information to the optical port data set;
5502.检索全部光通道数据集合, 选择一个进行比较的光通道对象; 5502. Retrieve all optical channel data sets, and select a light channel object to be compared;
5503.检查进行比较的光通道源节点的发、 收光端口波长配置, 是否与待检 测光通道源节点的发、 收光端口波长一致; 进行比较的光通道宿节点的发、 收光 端口的波长配置, 是否与待检测光通道宿节点的发、 收光端口的波长一致; 若不 一致, 则转入 S506; 若全部一致, 则转入 S504继续。 5503. Check whether the wavelength configuration of the transmitting and receiving ports of the optical channel source node to be compared is consistent with the wavelength of the transmitting and receiving ports of the source node of the optical channel to be detected; and comparing the transmitting and receiving ports of the optical channel sink node for comparison. The wavelength configuration is consistent with the wavelength of the transmitting and receiving ports of the optical channel sink node to be detected; if not, the process proceeds to S506; if all are consistent, the process proceeds to S504 to continue.
5504.通过进行比较的光通道的节点间连接的光纤连接数据获取光通道所经 过的节点信息,检查节点信息是否与待检测的光通道所经过的节点有相同项,若 是, 则转入 S505, 若否, 则转入 S506; 5504. Obtain the node information that the optical channel passes through the fiber connection data of the inter-node connection of the optical channel that is compared, and check whether the node information has the same item as the node through which the optical channel to be detected passes, and if yes, go to S505. If no, go to S506;
5505.检查进行比较的光通道对象的节点间、 节点内光纤连接数据, 检查每 一个光纤连接数据对象的输入光端口是否在待检测光通道的所有输入光端口信 息数据集合中,若是, 则判定待检测光通道在该输入光端口与进行比较的光通道 存在波长冲突, 结束; 若否, 则进入 S506。 5505. Check the inter-node and intra-node fiber connection data of the optical channel object to be compared, check whether the input optical port of each fiber connection data object is in all the input optical port information data sets of the optical channel to be detected, and if so, determine The optical channel to be detected has a wavelength conflict with the optical channel to be compared at the input optical port, and ends; if not, the process proceeds to S506.
5506.检查是否所有的光通道对象均进行了比较? 若均进行了比较, 进入 S507, 若没有全部检查完毕, 则进入步骤 S502, 检查下一个光通道。 5506. Check if all optical channel objects are compared? If all comparisons are made, the process proceeds to S507. If not all the inspections are completed, the process proceeds to step S502 to check the next optical channel.
5507.判定待检测的光通道数据与集合中其他光通道数据不存在波长冲突。 5507. It is determined that the optical channel data to be detected does not have a wavelength conflict with other optical channel data in the set.
14. 如权利要求 1所述的一种端到端光交叉连接配置的方法, 其特征在于, S6中的详细步骤如下: 14. The method of an end-to-end optical cross-connect configuration according to claim 1, wherein the detailed steps in S6 are as follows:
5601.选择一个光通道管理对象, 建立交叉配置数据, 获取该光通道对象的 源、 宿节点发、 收光端口的波长信息作为光交叉的波长配置参数; 5601. Select an optical channel management object, establish cross-configuration data, and obtain wavelength information of the source, the sink node, and the optical port of the optical channel object as wavelength configuration parameters of the optical crossover;
5602.遍历光通道的节点内部光纤连接序列, 检查光纤连接对象的两端光端 口是否是波长选择器件, 若是, 则进入步骤 S603, 若否, 则进入 S604; 5602. traversing the internal optical fiber connection sequence of the optical channel, checking whether the optical port of the optical fiber connection object is a wavelength selection device, if yes, proceeding to step S603, if not, proceeding to S604;
5603.将光纤连接对象连接在波长选择开关器件上的光端口的波长选择配置 对应光通道波长项设置为开, 使光通道波长可以通过波长选择器件; 5603. The wavelength selection configuration of the optical port connecting the optical fiber connection object to the wavelength selective switching device is set to be the corresponding optical channel wavelength term, so that the optical channel wavelength can pass through the wavelength selection device;
5604.检查光通道的节点内部光纤连接对象是否全部设置完毕, 若是, 则进 入步骤 S605, 若否, 则进入步骤 S602, 继续检查下一条光纤连接; 5604. Check whether all the optical fiber connection objects in the node of the optical channel are set, if yes, go to step S605, if no, go to step S602 to continue checking the next fiber connection;
5605.将所有的光波长选择器件配置设置到单元盘, 完成光通道的端到端光 交叉连接配置。 5605. Set all optical wavelength selection device configurations to the unit disk to complete the end-to-end optical cross-connection configuration of the optical channel.
15. 一种端到端光交叉连接配置的装置, 其特征在于包括: 单元盘、光端口配置子模块,用来完成光传送设备中光信号处理单元信息的 收集管理; 15. An apparatus for an end-to-end optical cross-connect configuration, comprising: The unit disk and the optical port configuration sub-module are used to collect and manage information of the optical signal processing unit in the optical transmission device;
光纤连接信息处理子模块, 用来完成光端口之间逻辑关系的收集管理; 端到端光通道处理子模块, 用来完成光通路搜索、通路信息收集、波长冲突 检测; The optical fiber connection information processing sub-module is used to collect and manage the logical relationship between the optical ports; the end-to-end optical channel processing sub-module is used to complete optical path search, path information collection, and wavelength collision detection;
光交叉配置处理子模块,用来完成光交叉配置信息收集,配置参数生成和下 发。 The optical cross-configuration sub-module is used to collect optical cross-configuration information and configure parameter generation and delivery.
16. 如权利要求 15所述的一种端到端光交叉连接配置的装置,其特征在于: 所述单元盘、光端口配置子模块,负责加载和保存光信号处理单元的单元盘分类、 基本信息、 配置结构和接口, 每种单元盘的光端口基本数据信息、 连接状态、 波 长等特殊配置, 提供各种数据的检索和检测分析。 The apparatus of claim 15 , wherein the unit disk and the optical port configuration sub-module are responsible for loading and storing the unit disk classification of the optical signal processing unit, and the basic Information, configuration structure and interface, special configuration of optical port basic data information, connection status, wavelength, etc. of each unit disk, providing various data retrieval and detection analysis.
17. 如权利要求 15所述的一种端到端光交叉连接配置的装置,其特征在于: 所述光纤连接信息处理子模块负责加载和保存配置的光纤连接信息,通过连接的 源发光端口和宿收光端口配置, 分类构造节点间的光纤连接和节点内光纤连接、 有连接光交叉配置器件的交叉连接和普通连接, 还检索各个光纤连接数据序列, 并实现光纤连接序列的分析和检测。 17. The apparatus of claim 15, wherein: the fiber optic connection information processing sub-module is responsible for loading and saving the configured fiber optic connection information through the connected source illumination port and The optical port configuration of the sink, the fiber connection between the nodes of the classification structure and the fiber connection in the node, the cross connection and the common connection of the connected optical cross configuration device, the data sequence of each fiber connection are also retrieved, and the analysis and detection of the fiber connection sequence are realized.
18. 如权利要求 15所述的一种端到端光交叉连接配置的装置,其特征在于: 所述端到端光通道处理子模块, 负责构造和管理光通道数据对象集合,检索光通 道数据对象集合以及检测波长冲突。 18. An apparatus for end-to-end optical cross-connect configuration according to claim 15, wherein: said end-to-end optical channel processing sub-module is responsible for constructing and managing an optical channel data object set and retrieving optical channel data. Object collection and detection wavelength conflicts.
19. 如权利要求 15所述的一种端到端光交叉连接配置的装置,其特征在于: 光交叉配置处理子模块, 处理节点内部的管理对象,对光通道所包含的光纤连接 序列以及源、宿端节点的发、 收光波长配置信息综合分析, 完成节点内部波长路 径分析和处理, 产生光交叉配置, 完成与设备之间的通信和配置管理操作。 19. The apparatus of claim 15, wherein: the optical cross-configuration processing sub-module processes the management object inside the node, the optical fiber connection sequence and the source included in the optical channel. Comprehensive analysis of the transmit and receive wavelength configuration information of the sink node, complete analysis and processing of the internal wavelength path of the node, generate optical cross-configuration, and complete communication and configuration management operations with the device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210037158.7A CN102547494B (en) | 2012-02-20 | 2012-02-20 | Method and device for peer-to-peer optical cross connection configuration |
CN201210037158.7 | 2012-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013123764A1 true WO2013123764A1 (en) | 2013-08-29 |
Family
ID=46353237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/079923 WO2013123764A1 (en) | 2012-02-20 | 2012-08-10 | End-to-end optical cross connection configuration method and device |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102547494B (en) |
MY (1) | MY175578A (en) |
WO (1) | WO2013123764A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106716935B (en) * | 2015-08-11 | 2020-01-31 | 华为技术有限公司 | cross-layer service configuration method and controller |
WO2022268040A1 (en) * | 2021-06-23 | 2022-12-29 | 中兴通讯股份有限公司 | Optical fiber connection discovery method, electronic device, and computer readable storage medium |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102547494B (en) * | 2012-02-20 | 2014-06-18 | 烽火通信科技股份有限公司 | Method and device for peer-to-peer optical cross connection configuration |
CN105721183A (en) * | 2014-12-03 | 2016-06-29 | 中兴通讯股份有限公司 | Information update method, device and terminal |
CN105790966B (en) * | 2014-12-18 | 2020-02-04 | 中兴通讯股份有限公司 | Node cross search method and device |
CN106330705A (en) * | 2015-06-30 | 2017-01-11 | 中兴通讯股份有限公司 | Path computation method and device and path computation element (PCE) |
CN105024857B (en) * | 2015-07-21 | 2019-07-19 | 广州咨元信息科技有限公司 | A method of with bypass mode to IP network optical power automated analysis |
CN105119818B (en) * | 2015-08-18 | 2018-08-03 | 周雪勤 | A kind of method and system for establishing channel aggregate routing in dense wavelength division network |
CN105263069B (en) * | 2015-09-01 | 2017-03-15 | 周雪勤 | A kind of method and device for setting up optical channel route in dense wavelength division network |
CN106452573B (en) * | 2016-08-29 | 2018-09-18 | 烽火通信科技股份有限公司 | The autoplacement method and system of OTN service signal stray arrow spirograms |
CN108462535B (en) * | 2017-02-20 | 2022-08-30 | 中兴通讯股份有限公司 | Network element level optical layer cross capacity management method and device |
CN107809687A (en) * | 2017-09-28 | 2018-03-16 | 烽火通信科技股份有限公司 | A kind of abstract method of the OTN optical network device resources based on SDN frameworks |
CN108900350B (en) * | 2018-07-11 | 2021-03-02 | 烽火通信科技股份有限公司 | Configuration method and system for optical layer service layered model in network management system |
CN115334378B (en) * | 2022-08-05 | 2024-08-27 | 中科计算技术西部研究院 | All-optical network system, device and control method for resource pooling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020076146A1 (en) * | 2000-11-20 | 2002-06-20 | Jds Uniphase Inc. | Wavelength-dependent optical signal processing using an angle-to-offset module |
CN101459862A (en) * | 2008-11-21 | 2009-06-17 | 烽火通信科技股份有限公司 | Method and apparatus for end-to-end automatic configuring G.709 connection monitoring overhead |
CN101459469A (en) * | 2007-12-14 | 2009-06-17 | 华为技术有限公司 | Optical layer scheduling method for network element and network management control system |
CN101720050A (en) * | 2010-01-11 | 2010-06-02 | 浙江工业大学 | Optical cross connection device for core nodes of optical burst switching network |
CN102547494A (en) * | 2012-02-20 | 2012-07-04 | 烽火通信科技股份有限公司 | Method and device for peer-to-peer optical cross connection configuration |
-
2012
- 2012-02-20 CN CN201210037158.7A patent/CN102547494B/en active Active
- 2012-08-10 WO PCT/CN2012/079923 patent/WO2013123764A1/en active Application Filing
- 2012-08-10 MY MYPI2013702312A patent/MY175578A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020076146A1 (en) * | 2000-11-20 | 2002-06-20 | Jds Uniphase Inc. | Wavelength-dependent optical signal processing using an angle-to-offset module |
CN101459469A (en) * | 2007-12-14 | 2009-06-17 | 华为技术有限公司 | Optical layer scheduling method for network element and network management control system |
CN101459862A (en) * | 2008-11-21 | 2009-06-17 | 烽火通信科技股份有限公司 | Method and apparatus for end-to-end automatic configuring G.709 connection monitoring overhead |
CN101720050A (en) * | 2010-01-11 | 2010-06-02 | 浙江工业大学 | Optical cross connection device for core nodes of optical burst switching network |
CN102547494A (en) * | 2012-02-20 | 2012-07-04 | 烽火通信科技股份有限公司 | Method and device for peer-to-peer optical cross connection configuration |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106716935B (en) * | 2015-08-11 | 2020-01-31 | 华为技术有限公司 | cross-layer service configuration method and controller |
WO2022268040A1 (en) * | 2021-06-23 | 2022-12-29 | 中兴通讯股份有限公司 | Optical fiber connection discovery method, electronic device, and computer readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN102547494A (en) | 2012-07-04 |
MY175578A (en) | 2020-07-01 |
CN102547494B (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013123764A1 (en) | End-to-end optical cross connection configuration method and device | |
EP3624369B1 (en) | Method and apparatus for matching fiber connections for roadm service | |
US9525505B2 (en) | Method and apparatus for acquiring internal fiber connection relationship in reconfigurable optical add/drop multiplexer | |
EP2767017B1 (en) | Method and system for managing optical distribution network | |
CN108900350B (en) | Configuration method and system for optical layer service layered model in network management system | |
US20070206512A1 (en) | Network data model and topology discovery method | |
EP1583390A2 (en) | Optical connection switching apparatus and management control unit thereof | |
WO2005002142A1 (en) | Optical network database and optical reroutable redundancy scheme | |
CN101459862B (en) | Method and apparatus for end-to-end automatic configuring G.709 connection monitoring spending | |
JP5121687B2 (en) | Optical branch multiplexing system and optical branch multiplexing apparatus | |
US20090034975A1 (en) | Methods and apparatuses for handling multiple failures in an optical network | |
CN108292951A (en) | Method is specified at communication system and failure | |
US20040208552A1 (en) | Architectural switching arrangement for core optical networks | |
US8452861B2 (en) | Broadcast design for provisioning reconfigurable optical add/drop multiplexer circuits | |
US20040247317A1 (en) | Method and apparatus for a network database in an optical network | |
EP3316496A1 (en) | Software defined optical network | |
WO2020011162A1 (en) | Service processing method, control device, and storage device | |
WO2010036267A1 (en) | Multiple redundancy schemes in an optical network | |
US8352537B2 (en) | Object modeling scheme for next generation network wavelength division multiplexing | |
US7907549B2 (en) | Modeling a ring network using a ring object | |
CN105263069B (en) | A kind of method and device for setting up optical channel route in dense wavelength division network | |
CN100563138C (en) | Method for maintaining terminal-to-terminal in WDM system | |
US20070014230A1 (en) | Automatically provisioning a network element | |
KR20240016437A (en) | Fiber optic connection discovery methods, electronic devices and computer-readable storage media | |
CN107888402B (en) | Optical multiplexing section elastic networking method, device and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12869254 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12869254 Country of ref document: EP Kind code of ref document: A1 |