WO2013122365A1 - Method for forming patterns using laser etching - Google Patents

Method for forming patterns using laser etching Download PDF

Info

Publication number
WO2013122365A1
WO2013122365A1 PCT/KR2013/001090 KR2013001090W WO2013122365A1 WO 2013122365 A1 WO2013122365 A1 WO 2013122365A1 KR 2013001090 W KR2013001090 W KR 2013001090W WO 2013122365 A1 WO2013122365 A1 WO 2013122365A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
laser
etching
pattern
electrode
Prior art date
Application number
PCT/KR2013/001090
Other languages
French (fr)
Korean (ko)
Inventor
정광춘
이인숙
최정아
Original Assignee
주식회사 잉크테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 잉크테크 filed Critical 주식회사 잉크테크
Priority to CN201380019806.9A priority Critical patent/CN104246974B/en
Publication of WO2013122365A1 publication Critical patent/WO2013122365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Definitions

  • the present invention relates to a method for manufacturing a conductive micropattern electrode using a laser, and more particularly, to uniformly arrange metal nanowires, to form a low-resistance conductive layer, and to form a protective film using an insulating polymer on the conductive electrode layer. There is a characteristic of protecting the electrode film.
  • by using the technology of forming a conductive micropattern electrode by changing the laser power it is possible to solve the problem of inherent visibility of the transparent electrode, and there is an effect that can realize excellent pattern resolution and fine linewidth.
  • Fine patterns of these metal thin films are usually formed through vacuum deposition and photolithography of the thin film.
  • a dry film or a photoresist was applied to the surface of the conductive material in order to form a fine pattern circuit, irradiated with ultraviolet (UV), cured, and then developed using a developer.
  • UV ultraviolet
  • a method of forming a fine pattern to be implemented using a chemical corrosion solution is capable of high resolution patterning, but there is a disadvantage in that an excess amount of chemical waste is discharged due to expensive equipment, complicated production processes, and repeated etching processes.
  • 10-0833017 discloses a high resolution pattern forming method using a direct pattern method.
  • US Patent Publication No. 20060057502 discloses a metal dispersion composed of metal particles having a particle diameter of 0.5 nm to 200 nm, a dispersant and a solvent to a substrate, partially irradiating a laser beam having a wavelength of 300 nm to 550 nm, and sintering the metal particles.
  • the method of forming a conductive circuit using laser curing is described in which the substrate is washed to remove the metal dispersion in the portion not irradiated with the laser, thereby forming the conductive circuit in the form irradiated with the laser beam.
  • the Republic of Korea Patent No. 2003-0004534 (the wavelength of the laser beam is 200 nm to 400 nm, preferably a patent to be eaten using a laser to which the laser Neodymium (Nd 3+ ) is added, the shorter the wavelength of the laser beam, Multi-photon absorption (MPB) increases the intensity of the laser compared to long-wavelength lasers, making it more effective for etching ITO films.
  • MPB is the number of photons that make up the laser beam.
  • the above-mentioned prior art is known various methods for forming a fine pattern electrode using a laser, and describes a method of easily etching a transparent electrode using high energy of a short wavelength band, but can solve the visibility problem of the transparent electrode. It has no disadvantages.
  • An object of the present invention is a method for manufacturing a conductive micropattern electrode
  • the present invention relates to a method for manufacturing a conductive micropattern electrode using a laser, more specifically, to form a low resistance conductive layer by uniformly arranging metal nanowires
  • a protective film using an insulating polymer is formed on the conductive electrode layer to protect the conductive electrode film.
  • by using the technology of forming a conductive micropattern electrode by changing the laser power it is possible to solve the problem of inherent visibility of the transparent electrode, and there is an effect that can realize excellent pattern resolution and fine linewidth.
  • the present invention forming a metal nanowire layer on a substrate; Forming a protective layer on the metal metal nanowire layer; Etching the metal nanowire layer on which the protective layer is formed with a laser beam to form a pattern, wherein the non-etching surface is a conductive pattern, and the etching surface forms a non-conductive surface while the metal nanowire is broken by the laser beam. It provides a pattern forming method using a laser etching comprising the step of.
  • the method for manufacturing a conductive micropattern electrode according to the present invention is characterized by uniformly arranging metal nanowires to form a low resistance conductive electrode layer, and forming a protective film using an insulating polymer on the conductive electrode layer to protect the conductive electrode film. have.
  • a conductive micropattern electrode by changing the laser power, it is possible to solve the problem of inherent visibility of the transparent electrode, and there is an effect that can realize excellent pattern resolution and fine linewidth.
  • FIG. 1 is a microobservation photograph of forming a conductive electrode layer using a metal nanowire on an insulating substrate and coating a protective layer for protecting the electrode layer thereon, and then irradiating a laser to form a micropattern electrode.
  • Comparative Examples 1, 1 and 2 form a conductive electrode layer on the insulating substrate by using a metal nanowire and coating a protective film layer for protecting the electrode layer thereon, and then laser as in Comparative Examples 1, 1 and 2 Is a process chart of forming a fine pattern electrode by irradiating.
  • Pattern forming method using a laser etching forming a metal nanowire layer on a substrate; Forming a protective layer on the metal metal nanowire layer; Etching the metal nanowire layer on which the protective layer is formed with a laser beam to form a pattern, wherein the non-etching surface is a conductive pattern, and the etching surface forms a non-conductive surface while the metal nanowire is broken by the laser beam. Characterized in that it comprises a step.
  • the base material is polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyether sulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), polycarbonate (PC), and polyarylate (PAR) may be one or more plastic films or glass substrates.
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polyethernaphthalate
  • PES polyether sulfone
  • nylon ylon
  • PTFE polytetrafluoroethylene
  • PEEK polyether ether ketone
  • PC polycarbonate
  • PAR polyarylate
  • the metal nanowire layer may be formed by applying a metal nanowire coating solution in which metal nanowires are dispersed in a solvent.
  • the metal nanowire coating liquid may further include at least one additive selected from a dispersant, a binder, a surfactant, a wetting agent, and a leveling agent.
  • the metal nanowire layer may include spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade and dispensing, inkjet printing, It may be formed by a method selected from among offset printing, screen printing, pad printing, gravure printing, flexography printing, stencil printing, and imprinting methods.
  • the protective layer may be formed of a thermosetting resin or a UV curable resin.
  • a gas medium or a solid-state medium may be used.
  • the gas medium may be selected from He-Ne, CO 2 , Ar, and Excimer lasers, and the solid-state medium may include Nd: YAG, Nd: YVO 4, and Ytterbium fiber. You can choose from.
  • the laser beam wavelength may be 300 to 2000 nm
  • the laser beam frequency may be soft etching of 100 to 1000 kHz. This soft etching can be used to form a non-conductive surface by disconnecting the metal wires of the etching surface.
  • the pattern is a conductive transparent electrode pattern, to form a transparent electrode, the present invention can be used, but is not necessarily limited thereto.
  • the method of manufacturing a conductive micropattern electrode using a laser comprises the steps of: 1 forming a uniform conductive metal nanowire layer on various substrates, 2 forming a variety of optically transparent and insulating polymer layers on the conductive transparent electrode 3 Irradiating a laser directly on the surface of the conductive film to form a fine pattern electrode.
  • a uniform metal nanowire layer can be formed on various substrates.
  • Substrates used in the present invention are polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyethersulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), poly Plastic films or glass substrates such as ether ether ketone (PEEK), polycarbonate (PC), polyarylate (PAR), and the like may be used, but are not limited thereto.
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polyethernaphthalate
  • PES polyethersulfone
  • nylon ylon
  • PTFE polytetrafluoroethylene
  • PEEK ether ether ketone
  • PC polycarbonate
  • PAR polyarylate
  • the substrate may be selectively used according to the characteristics of the substrate according to the heat treatment temperature described below.
  • the conductive metal nanowires used in the step of forming the conductive layer disperse the metal nanowires in a solvent, and additives such as a dispersant, a binder, a surfactant, a wetting agent, a leveling agent, and the like. Etc. can be included.
  • the binder resin used for the conductive metal nanowires is preferably excellent in adhesion to various substrates.
  • the materials that can be used are organic polymer materials such as polypropylene, polycarbonate, polyacrylate, polymethyl methacrylate, cellulose acetate, polyvinyl chloride, polyurethane, polyester, alkyd resin, epoxy resin, peoxy resin, melamine resin , Phenol resins, phenol modified alkyd resins, epoxy modified alkyd resins, vinyl modified alkyd resins, silicone modified alkyd resins, acrylic melamine resins, polyisocyanate resins, epoxy ester resins, and the like. Do not.
  • solvents that can be used include alcohols such as ethanol, isopropanol and butanol, glycols such as ethylene glycol and glycerin, ethyl acetate, butyl acetate, Acetates such as methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate, methylcerosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, ethers such as dioxane, methyl ethyl ketone, acetone, dimethyl Formamides, ketones such as 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin oil, hydrocarbons such as mineral splits, aromatics such as benzene, toluene, xylene, and chloroform, methylene
  • a known general film forming method may be used, and it does not need to be particularly limited in accordance with the features of the present invention.
  • spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade and dispensing, inkjet printing, offset printing, Screen printing, pad printing, gravure printing, flexography printing, stencil printing, imprinting methods and the like can be selected and used.
  • the conductive layer formation thickness is preferably 1.0 micron or less, more preferably 0.05 micron or more and 0.5 micron or less.
  • the thickness of the conductive layer needs to be adjusted depending on the line width to be implemented and the required resistance conditions. It is preferable to proceed to 80-200 degreeC drying of a conductive layer normally, and it is possible in the temperature range in which a base material does not deform
  • various polymer layers are formed on the electrode layer in order to protect the conductive electrode layer, improve the optical properties, and improve the reliability of the electrode such as heat resistance, chemical resistance, and flex resistance, including adhesion.
  • the material used for a protective film is a thermosetting type and a UV curing type.
  • the polymer is dissolved using a solvent, and alcohols, ketones, ethers, acetates, aromatic solvents and the like can be used as the solvent.
  • a known general film forming method may be used, and it does not need to be particularly limited in accordance with the features of the present invention.
  • drying of the protective film layer is preferably carried out for 1 to 10 minutes at 80 ⁇ 200 °C in the hot air oven, in the case of UV curing type, after drying 1 to 10 minutes at 80 ⁇ 200 °C in hot air oven, and then in the UV curing equipment Curing at 1000 ⁇ 2000mJ.
  • a fine pattern electrode can be formed by directly irradiating a laser on the surface of the conductive film.
  • a method of forming a fine pattern electrode in a state in which the conductive electrode layer is formed on the various substrates with a uniform thickness and the protective film layer is uniformly formed on the electrode layer is used, and a line width of various sizes can be formed according to the wavelength of the laser beam.
  • the line width of a fine pattern can be realized up to the minimum line width that can be directly patterned by the laser beam.
  • the minimum line width can be up to submicrometers and the maximum line width can be up to several hundred micrometers.
  • the micropattern may be formed by using an optical diffraction element or a mask in part to advantageously adjust the shape of the beam to the micropattern.
  • the most important technique in the process of forming a fine pattern on the conductive electrode layer including the protective film layer is to solve the problem of visibility regardless of the fine pattern line width to realize the index matching.
  • a soft laser etching process should be performed by appropriately adjusting the wavelength and laser energy of the laser used.
  • the laser medium that can be used is Gas, Solid-state, etc. Specifically, He-Ne, CO 2 , Ar, Excimer laser, etc. may be used as the gas medium, and Nd: YAG, Nd as the solid-state medium. YVO4, Ytterbium fiber, etc. may be used.
  • the wavelength of the laser beam may be selected and used, such as 1.06um, 532nm, 355nm, 266nm, and 248nm.
  • the use frequency is suitably about 100-1000 kHz, and in the case of soft etching which solves the visibility problem, 300 kHz or more and 600 kHz or less are preferable.
  • conductive floats generated while forming a fine pattern by irradiating a laser can be removed by suction while air blowing while simultaneously irradiating a laser.
  • a separate washing and air blowing process may be added.
  • the present invention when using a conductive substrate coated with ITO, CNT, conductive polymer, etc., it is possible to change the method of patterning by irradiating a laser. Specifically, after forming an electrode film layer coated using metal nanowires on the conductive oxide, the conductive metal film, and the conductive polymer substrate, only the conductive electrode layer may be patterned to a fine line width by irradiating a laser, The conductive substrate can be simultaneously patterned to a fine line width using a laser. The line widths of the conductive substrate and the conductive layer may be the same or may be patterned differently in some cases.
  • Metal nanowires and additives of various weight ratios were added to pure water to uniformly disperse the mixture, and sufficiently mixed to prepare metal nanowire inks for transparent electrodes.
  • the conductive electrode thin film is coated on a variety of substrate films by a bar coating method, and dried in a hot air oven at a temperature range of 80-130 ° C. for 1-10 minutes.
  • Various substrates impart a hydrophilic group through a pretreatment process so that an electrode ink made of a water solvent is uniformly coated.
  • a protective film layer is prepared by coating a protective film solution of various types of thermosetting type and UV curing type on the prepared conductive electrode by the above-described coating method. Coating the protective film solution on the conductive electrode by spin coating to dry for 1-10 minutes in a 120 °C hot air oven, or UV type is cured to 1000-1500mJ in a UV curing machine. Electrical characteristics of the conductive electrode coated with the protective layer is different depending on the ratio of the metal nanowires, specifically, in the range of 100-300 ⁇ / ⁇ . In addition, the optical properties are in the range of 89-91% total light transmittance, 1-3% haze, the optical properties are different depending on the choice of solvent.
  • a protective film is formed in the same manner as in Preparation Example 2.
  • an IR laser manufactured from Iotechnics
  • Iotechnics with a wavelength of 300-1064 nm was directly irradiated on the surface of the electrode layer at a frequency of 100 kHz and a pulse width of 1-50 ns. See Figure 2)
  • a protective film is formed in the same manner as in Preparation Example 2.
  • an IR laser manufactured from Iotechnics
  • Iotechnics with a wavelength of 300-1064 nm was directly irradiated on the surface of the electrode layer at a frequency of 400 kHz and a pulse width of 1-50 ns.
  • a protective film is formed in the same manner as in Preparation Example 2.
  • an IR laser manufactured from Iotechnics
  • Iotechnics with a wavelength of 300-1064 nm was directly irradiated on the surface of the electrode layer at a frequency of 550 kHz and a pulse width of 1-50 ns.
  • Example 1 (Before Etching) 89-90% 1-3% 100-300 ⁇ / ⁇ Transparency Preparation Example 2 (Before Etching) 89-90% 1-3% 100-300 ⁇ / ⁇ Transparent, uniform After laser etching wavelength frequency Pulse width Etching Surface State Comparative Example 1 1064 nm 100 kHz 50 ns Wire completely removed Example 1 1064 nm 400 kHz 50 ns Wire remaining Example 2 1064 nm 550 kHz 50 ns Wire remaining
  • the present invention by using the technology of forming the conductive micropattern electrode by changing the laser power, it is possible to solve the problem of intrinsic visibility of the transparent electrode and to realize the excellent pattern resolution and the fine line width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a method for manufacturing the fine pattern of a conductive metal wire transparent electrode having superior index matching properties using various laser powers. More particularly, the method for manufacturing the fine pattern of a conductive metal wire transparent electrode includes: (1) forming a uniform conductive metal nanowire on various base materials; (2) forming various polymer layers, which are optically transparent and have insulating properties, on the conductive transparent electrode; and (3) directly irradiating the surface of a conductive film with a laser in order to form a fine pattern electrode. Thus, the method for manufacturing a conductive pattern electrode includes: uniformly arranging metal nanowires to form a conductive layer having low resistance; and forming a protection film using an insulating polymer on the conductive electrode layer to protect the conductive electrode layer. Also, when such technology for forming the conductive fine pattern electrode is used, the laser power may be varied in order to address the chronic visibility problems of the transparent electrode and to achieve superior pattern resolution and fine line width.

Description

레이저 에칭을 이용한 패턴 형성 방법Pattern Forming Method Using Laser Etching
본 발명은 레이저를 이용한 전도성 미세패턴 전극 제조 방법에 관한 것으로, 보다 상세하게는 금속 나노와이어를 균일하게 배열하여, 저저항의 전도성층을 형성하고, 전도성 전극층 위에 절연 폴리머를 이용한 보호막을 형성시켜 전도성 전극 막을 보호하는 특징이 있다. 또한 레이저 파워를 변화시켜 전도성 미세패턴 전극 형성하는 이 기술을 이용하면, 투명전극의 고질적인 시인성 문제를 해결할 수 있고, 우수한 패턴 해상도와 미세선폭을 구현 할 수 있는 효과가 있다.The present invention relates to a method for manufacturing a conductive micropattern electrode using a laser, and more particularly, to uniformly arrange metal nanowires, to form a low-resistance conductive layer, and to form a protective film using an insulating polymer on the conductive electrode layer. There is a characteristic of protecting the electrode film. In addition, by using the technology of forming a conductive micropattern electrode by changing the laser power, it is possible to solve the problem of inherent visibility of the transparent electrode, and there is an effect that can realize excellent pattern resolution and fine linewidth.
일반적으로 디스플레이 또는 트랜지스터 등의 전자 소자들은 공통적으로, 전극 또는 배선(metalization lines)용 금속 박막의 미세 패턴을 필요로 한다. 이들 금속 박막의 미세 패턴은 통상적으로, 박막의 진공 증착과 포토리소그라피 공정을 거쳐 형성된다. 기재에 도전성 소재를 증착 한 후, 미세패턴 회로를 형성하기 위해 드라이 필름(Dry Film) 또는 감광액을 도전성 소재 표면에 도포한 다음, 자외선(UV)을 조사 하여 경화 시킨 후, 현상액을 이용하여 현상하고, 이어서 화학 부식액을 이용하여 구현 하고자하는 미세패턴을 형성하는 방법이다. 포토리소그라피 공정은 고해상도(resolution)의 패터닝이 가능하지만, 고가의 장비, 복잡한 생산 공정, 에칭공정의 반복으로 인해 과량의 화학 폐기물의 배출되는 단점이 있다. 또한 최근에는 플렉서블 전자소자의 도래와 더불어 저온에서 대면적화가 가능한 패터닝 공정의 중요성이 제기되고 있으며, 고비용, 고온공정으로 대표되는 기존의 포토리소그라피 공정을 대체하는 대안을 찾고자 하는 많은 연구 개발이 진행되고 있다. 예를 들어, 잉크젯 프린팅, 그라비아 옵셋 프린팅, 리버스 옵셋, 나노 임프린팅 등이 있다. 이와 같은 방식들은 다이렉트 패터닝 방식이라는 장점이 있고, 일부 상당한 기술적 진보를 보이기도 하였으나, 해상도 및 신뢰성, 생산 공정속도의 한계로 인해 여전히 포토리소그라피 공정을 대체하지 못하는 실정이다.In general, electronic devices such as displays or transistors commonly require a fine pattern of a metal thin film for electrodes or metalization lines. Fine patterns of these metal thin films are usually formed through vacuum deposition and photolithography of the thin film. After depositing the conductive material on the substrate, a dry film or a photoresist was applied to the surface of the conductive material in order to form a fine pattern circuit, irradiated with ultraviolet (UV), cured, and then developed using a developer. Next, a method of forming a fine pattern to be implemented using a chemical corrosion solution. The photolithography process is capable of high resolution patterning, but there is a disadvantage in that an excess amount of chemical waste is discharged due to expensive equipment, complicated production processes, and repeated etching processes. In addition, with the advent of flexible electronic devices, the importance of the patterning process that can be large-scaled at low temperatures has been raised, and many research and development efforts are being made to find alternatives to the existing photolithography processes represented by high cost and high temperature processes. have. Examples include ink jet printing, gravure offset printing, reverse offset, nano imprinting and the like. Although these methods have the advantage of direct patterning and have made some significant technological advances, they still cannot replace photolithography due to limitations in resolution, reliability, and production process speed.
최근 상기 기술된 문제점을 개선하기 위해, 레이저를 이용해 직접 미세패턴을 형성 하는 연구가 진행되고 있다. 박막 패턴 프린팅에 레이저를 사용한 연구는 J. Bohanddy 등에 의해 처음 제시 되었다. 실리콘 기판 위에 Cu 박막을 증착시키고, excimer 펄스레이저 (파장:195nm)를 조사하여, 실리콘 기판위에 수십 um 선폭의 line 패턴을 형성할 수 있다고 보고하였다. 그 외에도 레이저을 이용해 미세 패턴을 형성하는 여러 방법의 기술이 공개 되었다. 대한민국 등록특허 10-299185에는 레이저빔을 이용하여, 절연체 기판에 전도성 패턴을 형성하는 장치 및 그 방법이 기술되고 있고, 대한민국 등록특허 10-0833017에는, 직접 패턴법을 이용한 고해상도 패턴 형성 밥법이 공개 되어 있다. 또한 미국특허공개공보 제20060057502호에는, 입경이 0.5nm∼200nm의 금속 미립자와 분산제 및 용매로 이루어지는 금속 분산액을 기판에 도포하고, 파장 300nm∼550nm의 레이저 빔을 부분적으로 조사하여, 금속 미립자를 소결한 후, 기판을 세척하여 레이저를 조사하지 않은 부분의 금속 분산액을 제거하여, 레이저 빔을 조사한 형태대로 도전성 회로를 형성하는, 레이저 경화를 이용한 도전성 회로 형성방법에 대하여 기술하고 있다. 또한, 대한민국 등록특허 2003-0004534 (레이저 빔의 파장 200 nm 내지 400 nm 이며, 바람직하게는 상기 레이저 Neodymium (Nd 3+) 이온이 첨가된 레이저 사용하여 식가하는 특허, 레이저 빔의 파장이 짧을수록, MPB (Multi Photon Absorption)에 의해서 장파장대 레이저에 비해 레이저의 세기가 증대하여, ITO 막을 식각하는 데 더욱 효과적 임, MPB란 레이저 빔을 구성하는 광자(Photon)이 에너지가 증대함에 따라 그 개수가 증가하여 필름의 흡수되는 광자도 증가하여 효율적인 식각이 가능해지는 현상을 말한다) 및 10-2009-0015410 (터치패널용 투명전극 가공용 다이나믹 포커싱 레이서 식각시스템에 관한 특허, 400 nm 이하의 자외선 파장영역의 레이저 비임을 이용함으로써 흡수율을 높여 ITO 도전막의 열 흡수율을 증가시킬 수 있고, MPA (Multi Photon Absorption) 효과에 의해서 레이저 빔의 세기를 증대시킨다)에는, 레이저를 이용하여 터치패널용 투명전극을 식각하는 방법에 대해 기술하고 있다.Recently, in order to improve the above-described problems, researches for forming a micro pattern directly using a laser have been conducted. A study using lasers for printing thin film patterns was first presented by J. Bohanddy et al. By depositing a thin Cu film on a silicon substrate and irradiating an excimer pulsed laser (wavelength: 195 nm), it has been reported that a line pattern having a line width of several tens of um can be formed on the silicon substrate. In addition, several techniques for forming fine patterns using lasers have been disclosed. Korean Patent No. 10-299185 discloses an apparatus and method for forming a conductive pattern on an insulator substrate using a laser beam, and Republic of Korea Patent No. 10-0833017 discloses a high resolution pattern forming method using a direct pattern method. have. In addition, US Patent Publication No. 20060057502 discloses a metal dispersion composed of metal particles having a particle diameter of 0.5 nm to 200 nm, a dispersant and a solvent to a substrate, partially irradiating a laser beam having a wavelength of 300 nm to 550 nm, and sintering the metal particles. After that, the method of forming a conductive circuit using laser curing is described in which the substrate is washed to remove the metal dispersion in the portion not irradiated with the laser, thereby forming the conductive circuit in the form irradiated with the laser beam. In addition, the Republic of Korea Patent No. 2003-0004534 (the wavelength of the laser beam is 200 nm to 400 nm, preferably a patent to be eaten using a laser to which the laser Neodymium (Nd 3+ ) is added, the shorter the wavelength of the laser beam, Multi-photon absorption (MPB) increases the intensity of the laser compared to long-wavelength lasers, making it more effective for etching ITO films. MPB is the number of photons that make up the laser beam. To increase the number of photons absorbed by the film, which enables efficient etching.) And 10-2009-0015410 (Patent for Dynamic Focusing Racer Etching System for Processing Transparent Electrodes for Touch Panels) By increasing the absorption rate, the heat absorption rate of the ITO conductive film can be increased, and the MPA (Multi Photon Absorption) effect can be used to Increase the intensity) describes a method of etching a transparent electrode for a touch panel using a laser.
상술한 종래기술은, 레이저를 이용하여 미세패턴 전극을 형성하는 다양한 방법을 공지하며, 단파장대의 고에너지를 이용하여 손쉽게 투명전극을 식각하는 방법에 대해 기술하고 있지만, 투명전극의 시인성 문제를 해결할 수 없는 단점을 갖고 있다.The above-mentioned prior art is known various methods for forming a fine pattern electrode using a laser, and describes a method of easily etching a transparent electrode using high energy of a short wavelength band, but can solve the visibility problem of the transparent electrode. It has no disadvantages.
본 발명의 목적은 전도성 미세패턴 전극 제조 방법에 있어서, 본 발명은 레이저를 이용한 전도성 미세패턴 전극 제조 방법에 관한 것으로, 보다 상세하게는 금속 나노와이어를 균일하게 배열하여, 저저항의 전도성층을 형성하고, 전도성 전극층 위에 절연 폴리머를 이용한 보호막을 형성시켜 전도성 전극 막을 보호하는 특징이 있다. 또한 레이저 파워를 변화시켜 전도성 미세패턴 전극 형성하는 이 기술을 이용하면, 투명전극의 고질적인 시인성 문제를 해결할 수 있고, 우수한 패턴 해상도와 미세선폭을 구현 할 수 있는 효과가 있다. An object of the present invention is a method for manufacturing a conductive micropattern electrode, the present invention relates to a method for manufacturing a conductive micropattern electrode using a laser, more specifically, to form a low resistance conductive layer by uniformly arranging metal nanowires In addition, a protective film using an insulating polymer is formed on the conductive electrode layer to protect the conductive electrode film. In addition, by using the technology of forming a conductive micropattern electrode by changing the laser power, it is possible to solve the problem of inherent visibility of the transparent electrode, and there is an effect that can realize excellent pattern resolution and fine linewidth.
본 발명은, 기재 상에, 금속 나노 와이어 층을 형성하는 단계; 상기 금속 금속 나노 와이어 층 상에 보호층을 형성하는 단계; 레이저 빔으로 상기 보호층이 형성된 상기 금속 나노 와이어층을 에칭하여 패턴을 형성하는 단계로서, 비에칭면은 전도성 패턴으로, 에칭면은 상기 레이저 빔에 의해 금속 나노 와이어가 끊기면서 비전도성 면을 형성하는 단계를 포함하는 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법을 제공한다.The present invention, forming a metal nanowire layer on a substrate; Forming a protective layer on the metal metal nanowire layer; Etching the metal nanowire layer on which the protective layer is formed with a laser beam to form a pattern, wherein the non-etching surface is a conductive pattern, and the etching surface forms a non-conductive surface while the metal nanowire is broken by the laser beam. It provides a pattern forming method using a laser etching comprising the step of.
본 발명에 의한 전도성 미세패턴 전극 제조방법은, 금속 나노와이어를 균일하게 배열하여, 저저항의 전도성 전극 층을 형성하고, 그 전도성 전극층 위에 절연성 폴리머를 이용한 보호막을 형성시켜 전도성 전극 막을 보호하는 특징이 있다. 또한 레이저 파워를 변화시켜 전도성 미세패턴 전극 형성하는 이 기술을 이용하면, 투명전극의 고질적인 시인성 문제를 해결할 수 있고, 우수한 패턴 해상도와 미세선폭을 구현 할 수 있는 효과가 있다.The method for manufacturing a conductive micropattern electrode according to the present invention is characterized by uniformly arranging metal nanowires to form a low resistance conductive electrode layer, and forming a protective film using an insulating polymer on the conductive electrode layer to protect the conductive electrode film. have. In addition, by using the technology of forming a conductive micropattern electrode by changing the laser power, it is possible to solve the problem of inherent visibility of the transparent electrode, and there is an effect that can realize excellent pattern resolution and fine linewidth.
도 1는 절연성 기재에 금속 나노와이어를 사용하여 전도성 전극 층을 형성하고 그 위에 전극 층을 보호하기 위한 보호막 층을 코팅한 후, 레이저를 조사하여 미세패턴 전극을 형성하는 미세관찰 사진이다.FIG. 1 is a microobservation photograph of forming a conductive electrode layer using a metal nanowire on an insulating substrate and coating a protective layer for protecting the electrode layer thereon, and then irradiating a laser to form a micropattern electrode.
도 2 및 도 3은 절연성 기재에 금속 나노와이어를 사용하여 전도성 전극 층을 형성하고 그 위에 전극 층을 보호하기 위한 보호막 층을 코팅한 후, 비교예 1, 실시예 1 및 실시예 2와 같이 레이저를 조사하여 미세패턴 전극을 형성하는 공정도이다. 2 and 3 form a conductive electrode layer on the insulating substrate by using a metal nanowire and coating a protective film layer for protecting the electrode layer thereon, and then laser as in Comparative Examples 1, 1 and 2 Is a process chart of forming a fine pattern electrode by irradiating.
본 발명에 따른 레이저 에칭을 이용한 패턴 형성방법은, 기재 상에, 금속 나노 와이어 층을 형성하는 단계; 상기 금속 금속 나노 와이어 층 상에 보호층을 형성하는 단계; 레이저 빔으로 상기 보호층이 형성된 상기 금속 나노 와이어층을 에칭하여 패턴을 형성하는 단계로서, 비에칭면은 전도성 패턴으로, 에칭면은 상기 레이저 빔에 의해 금속 나노 와이어가 끊기면서 비전도성 면을 형성하는 단계를 포함하는 것을 특징으로 한다.Pattern forming method using a laser etching according to the present invention, forming a metal nanowire layer on a substrate; Forming a protective layer on the metal metal nanowire layer; Etching the metal nanowire layer on which the protective layer is formed with a laser beam to form a pattern, wherein the non-etching surface is a conductive pattern, and the etching surface forms a non-conductive surface while the metal nanowire is broken by the laser beam. Characterized in that it comprises a step.
상기 기재는, 폴리이미드(PI), 폴리에틸렌텔레프탈레이트(PET), 폴리에텔렌나프탈레이트(PEN), 폴리에테르술폰(PES), 나일론(Nylon), 폴리테트라플로우로에틸렌(PTFE), 폴리에테르에테르케톤(PEEK), 폴리카보네이트 (PC), 및 폴리아릴레이트(PAR) 중에서 선택된 1종 이상의 플라스틱 필름 또는 유리 기판일 수 있다. The base material is polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyether sulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), polycarbonate (PC), and polyarylate (PAR) may be one or more plastic films or glass substrates.
상기 금속 나노 와이어층은, 금속 나노 와이어를 용매에 분산시킨 금속 나노와이어 코팅액을 도포하여 형성될 수 있다. The metal nanowire layer may be formed by applying a metal nanowire coating solution in which metal nanowires are dispersed in a solvent.
상기 금속 나노 와이어 코팅액은, 분산제, 바인더, 계면활성제(surfactant), 습윤제(wetting agent), 및 레벨링(levelling)제 중에서 선택된 1종 이상의 첨가제를 더 포함할 수 있다. The metal nanowire coating liquid may further include at least one additive selected from a dispersant, a binder, a surfactant, a wetting agent, and a leveling agent.
상기 금속 나노 와이어층은, 스핀(spin) 코팅, 롤(roll) 코팅, 스프레이 코팅, 딥(dip) 코팅, 플로(flow) 코팅, 닥터 블레이드(doctor blade)와 디스펜싱(dispensing), 잉크젯 프린팅, 옵셋 프린팅, 스크린 프린팅, 패드(pad) 프린팅, 그라비아 프린팅, 플렉소(flexography) 프린팅, 스텐실 프린팅, 및 임프린팅(imprinting) 방법 중에서 선택된 방법으로 형성할 수 있다.The metal nanowire layer may include spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade and dispensing, inkjet printing, It may be formed by a method selected from among offset printing, screen printing, pad printing, gravure printing, flexography printing, stencil printing, and imprinting methods.
상기 보호층은, 열 경화성 수지 또는 UV 경화성 수지로 형성될 수 있다.The protective layer may be formed of a thermosetting resin or a UV curable resin.
상기 레이저 빔으로 에칭하는 단계에서는, 가스(Gas) 매질 또는 솔리드-스테이트(Solid-state) 매질을 사용할 수 있다.In the etching with the laser beam, a gas medium or a solid-state medium may be used.
상기 가스(Gas) 매질로는 He-Ne, CO2, Ar, 및 Excimer 레이저 중에서 선택하여 사용하며, 상기 솔리드-스테이트(Solid-state) 매질로는, Nd:YAG, Nd:YVO4, 및 Ytterbium fiber 중에서 선택하여 사용할 수 있다.The gas medium may be selected from He-Ne, CO 2 , Ar, and Excimer lasers, and the solid-state medium may include Nd: YAG, Nd: YVO 4, and Ytterbium fiber. You can choose from.
상기 레이저 빔으로 에칭하는 단계에서는, 상기 레이저 빔 파장은 300~2000nm이고, 상기 레이저 빔 주파수는 100~1000 kHz인 소프트 에칭을 수행할 수 있다. 이러한 소프트 에칭을 이용하여 에칭면의 금속 와이어의 연결을 끊어 비전도성 면으로 형성할 수 있다. In the etching of the laser beam, the laser beam wavelength may be 300 to 2000 nm, and the laser beam frequency may be soft etching of 100 to 1000 kHz. This soft etching can be used to form a non-conductive surface by disconnecting the metal wires of the etching surface.
상기 패턴은 전도성 투명 전극 패턴으로, 투명 전극을 형성하는데, 본 발명을 사용할 수 있으나, 반드시 이로 한정되는 것은 아니다. The pattern is a conductive transparent electrode pattern, to form a transparent electrode, the present invention can be used, but is not necessarily limited thereto.
이하, 단계별로 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail in stages.
본 발명에 따른 레이저를 이용한 전도성 미세패턴 전극 제조 방법은 ① 다양한 기재 위에 균일한 전도성 금속 나노와이어 층을 형성하는 단계, ② 전도성 투명전극 위에 광학적으로 투명하고 절연성을 갖는 다양한 폴리머 층을 형성하는 단계 ③ 전도성막 표면에 레이저를 직접 조사하여 미세패턴 전극을 형성하는 단계를 포함한다.The method of manufacturing a conductive micropattern electrode using a laser according to the present invention comprises the steps of: ① forming a uniform conductive metal nanowire layer on various substrates, ② forming a variety of optically transparent and insulating polymer layers on the conductive transparent electrode ③ Irradiating a laser directly on the surface of the conductive film to form a fine pattern electrode.
① 다양한 기재 위에 균일한 금속 나노와이어 층을 형성할 수 있다.① A uniform metal nanowire layer can be formed on various substrates.
본 발명에 사용되는 기재는 폴리이미드(PI), 폴리에틸렌텔레프탈레이트(PET), 폴리에텔렌나프탈레이트(PEN), 폴리에테르술폰(PES), 나일론(Nylon), 폴리테트라플로우로에틸렌(PTFE), 폴리에테르에테르케톤(PEEK), 폴리카보네이트 (PC), 폴리아릴레이트(PAR) 등과 같은 플라스틱 필름이나 유리 기판 등을 사용 할 수 있으며, 이에 한정되지는 않는다. 또한 상기 비전도성 기재 외에 ITO, CNT, 전도성 폴리머 등이 코팅되어 있는 상기의 모든 기재를 사용 할 수 있다. 기재는 후술되는 열처리온도에 따라 기재의 특성에 맞게 선택적으로 사용될 수 있다.Substrates used in the present invention are polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyethersulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), poly Plastic films or glass substrates such as ether ether ketone (PEEK), polycarbonate (PC), polyarylate (PAR), and the like may be used, but are not limited thereto. In addition to the non-conductive substrate, all of the above substrates coated with ITO, CNT, conductive polymers, etc. may be used. The substrate may be selectively used according to the characteristics of the substrate according to the heat treatment temperature described below.
본 발명에서 전도성층을 형성하는 단계에서 사용하는 전도성 금속 나노와이어는 금속 나노와이어를 용매에 분산시키고, 분산제, 바인더, 계면활성제(surfactant), 습윤제(wetting agent), 레벨링(levelling)제 등과 같은 첨가제 등을 포함 시킬 수 있다.In the present invention, the conductive metal nanowires used in the step of forming the conductive layer disperse the metal nanowires in a solvent, and additives such as a dispersant, a binder, a surfactant, a wetting agent, a leveling agent, and the like. Etc. can be included.
상기 전도성 금속 나노와이어에 사용되는 바인더 수지는 다양한 기재와의 부착력이 우수한 것이 바람직하다. 이에 사용 가능한 물질은 유기고분자 물질로서 폴리프로필렌, 폴리카보네이트, 폴리아크릴레이트, 폴리메틸메타아크릴레이트, 셀룰로즈아세테이트, 폴리비닐클로라이드, 폴리우레탄, 폴리에스테르, 알키드 수지, 에폭시 수지, 페옥시 수지, 멜라민 수지, 페놀 수지, 페놀 변성 알키드 수지, 에폭시 변성 알키드 수지, 비닐 변성 알키드 수지, 실리콘 변성 알키드 수지, 아크릴 멜라민 수지, 폴리 이소시아네이트 수지, 에폭시 에스테르 수지 등을 예로 들 수 있으며 본 발명에 부합된다면 이에 한정되지는 않는다.The binder resin used for the conductive metal nanowires is preferably excellent in adhesion to various substrates. The materials that can be used are organic polymer materials such as polypropylene, polycarbonate, polyacrylate, polymethyl methacrylate, cellulose acetate, polyvinyl chloride, polyurethane, polyester, alkyd resin, epoxy resin, peoxy resin, melamine resin , Phenol resins, phenol modified alkyd resins, epoxy modified alkyd resins, vinyl modified alkyd resins, silicone modified alkyd resins, acrylic melamine resins, polyisocyanate resins, epoxy ester resins, and the like. Do not.
또한 전도성 전극 층을 균일한 박막으로 형성하기 위해, 용매가 필요하며 이때 사용할 수 있는 용매로는 물 이외에 에탄올, 이소프로판올, 부탄올 같은 알코올류, 에틸렌글리콜, 글리세린과 같은 글리콜류, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트와 같은 아세테이트류, 메틸세로솔브, 부틸셀로솔브, 디에틸에테르, 테트하히드로퓨란, 디옥산과 같은 에테르류, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈과 같은 케톤류, 헥산, 헵탄, 도데칸, 파라핀 오일, 미네랄 스프릿과 같은 탄화수소계, 벤전, 톨루엔, 자일렌과 같은 방향족, 그리고 클로로포름이나 메틸렌클로라이드, 카본테트라클로라이드와 같은 할로겐 치환 용매, 아세토니트릴, 디메틸술폭사이드 또는 이들의 혼합용매 등을 사용할 수 있다.In addition, in order to form the conductive electrode layer into a uniform thin film, a solvent is required, and solvents that can be used include alcohols such as ethanol, isopropanol and butanol, glycols such as ethylene glycol and glycerin, ethyl acetate, butyl acetate, Acetates such as methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate, methylcerosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, ethers such as dioxane, methyl ethyl ketone, acetone, dimethyl Formamides, ketones such as 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin oil, hydrocarbons such as mineral splits, aromatics such as benzene, toluene, xylene, and chloroform, methylene chloride, carbon Halogen substituted solvents such as tetrachloride, acetonitrile, dimethyl sulfoxide or mixtures thereof And the like can be used.
상기 다양한 기재에 전도성 전극 층을 형성하는 방법은 공지된 일반적인 막 형성 방법이 사용될 수 있으며, 본 발명의 특징에 부합하는 경우 특별히 제한할 필요는 없다. 예를 들면, 스핀(spin) 코팅, 롤(roll) 코팅, 스프레이 코팅, 딥(dip) 코팅, 플로(flow) 코팅, 닥터 블레이드(doctor blade)와 디스펜싱(dispensing), 잉크젯 프린팅, 옵셋 프린팅, 스크린 프린팅, 패드(pad) 프린팅, 그라비아 프린팅, 플렉소(flexography) 프린팅, 스텐실 프린팅, 임프린팅(imprinting) 방법 등에서 선택하여 사용하는 것이 가능하다.As a method of forming the conductive electrode layer on the various substrates, a known general film forming method may be used, and it does not need to be particularly limited in accordance with the features of the present invention. For example, spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade and dispensing, inkjet printing, offset printing, Screen printing, pad printing, gravure printing, flexography printing, stencil printing, imprinting methods and the like can be selected and used.
상기 전도층 형성 두께는 1.0마이크론 이하, 보다 좋게는 0.05마이크론 이상 0.5 마이크론 이하가 바람직하다. 전도층의 두께는 구현하고자 하는 선폭 및 요구 저항 조건에 따라 조절이 필요하다. 전도층 건조는 보통 80~200℃로 진행하는 것이 바람직하고 기재가 변형되지 않은 온도 범위에서는 가능하다.The conductive layer formation thickness is preferably 1.0 micron or less, more preferably 0.05 micron or more and 0.5 micron or less. The thickness of the conductive layer needs to be adjusted depending on the line width to be implemented and the required resistance conditions. It is preferable to proceed to 80-200 degreeC drying of a conductive layer normally, and it is possible in the temperature range in which a base material does not deform | transform.
② 전도성 투명전극 위에 광학적으로 투명하고 절연성을 갖는 다양한 폴리머 층을 형성할 수 있다.② It is possible to form various polymer layers that are optically transparent and insulating on the conductive transparent electrode.
본 발명에서는, 전도성 전극 층을 보호하고, 광학적 특성을 개선하며, 부착력을 비롯하여 내열성, 내화학성, 내굴곡성 등 전극의 신뢰성을 향상시키기 위해서, 전극 층 위에 다양한 폴리머 층을 형성시킨다. 보호막에 사용하는 물질은 열경화 타입 및 UV 경화 타입이 있다. 이 폴리머는 용매를 사용하여 녹이며, 용매로는 알콜류, 케톤류, 이서류(Ether), 아세테이트류, 아로마틱 솔벤트 등을 사용할 수 있다. 상기 전도성 전극 층 위에 보호막 층을 형성하는 방법으로는 공지된 일반적인 막 형성 방법이 사용될 수 있으며, 본 발명의 특징에 부합하는 경우 특별히 제한할 필요는 없다. 예를 들면, 스핀(spin) 코팅, 롤(roll) 코팅, 스프레이 코팅, 딥(dip) 코팅, 플로(flow) 코팅, 닥터 블레이드(doctor blade)와 디스펜싱(dispensing), 잉크젯 프린팅, 옵셋 프린팅, 스크린 프린팅, 패드(pad) 프린팅, 그라비아 프린팅, 플렉소(flexography) 프린팅, 스텐실 프린팅, 임프린팅(imprinting) 방법 등에서 선택하여 사용하는 것이 가능하다. 보호막 층의 건조는 열풍오븐의 경우, 80~200℃로 1~10분 진행하는 것이 바람직하고, UV 경화타입의 경우, 열풍오븐에서 80~200℃로 1~10분 건조한 후, UV 경화 장비에서 1000~2000mJ로 경화시킨다.In the present invention, various polymer layers are formed on the electrode layer in order to protect the conductive electrode layer, improve the optical properties, and improve the reliability of the electrode such as heat resistance, chemical resistance, and flex resistance, including adhesion. The material used for a protective film is a thermosetting type and a UV curing type. The polymer is dissolved using a solvent, and alcohols, ketones, ethers, acetates, aromatic solvents and the like can be used as the solvent. As a method of forming a protective film layer on the conductive electrode layer, a known general film forming method may be used, and it does not need to be particularly limited in accordance with the features of the present invention. For example, spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade and dispensing, inkjet printing, offset printing, Screen printing, pad printing, gravure printing, flexography printing, stencil printing, imprinting methods and the like can be selected and used. Drying of the protective film layer is preferably carried out for 1 to 10 minutes at 80 ~ 200 ℃ in the hot air oven, in the case of UV curing type, after drying 1 to 10 minutes at 80 ~ 200 ℃ in hot air oven, and then in the UV curing equipment Curing at 1000 ~ 2000mJ.
③ 전도성막 표면에 레이저를 직접 조사하여 미세패턴 전극을 형성할 수 있다.③ A fine pattern electrode can be formed by directly irradiating a laser on the surface of the conductive film.
본 발명에서, 다양한 기재 위에 전도성 전극 층이 균일한 두께로 형성되고, 그 전극 층 위에 보호막 층이 균일하게 형성된 상태에서 미세패턴 전극을 형성하는 방법을 제시한다. 보호막 층 물질 및 전도성 전극 층 물질을 충분히 기화시키거나 분해할 수 있는 에너지를 가지는 레이저 빔을 사용하며, 레이저 빔의 파장에 따라 다양한 크기의 선폭을 형성할 수 있다. 미세패턴의 선폭은 일반적으로 레이저 빔으로 직접 패턴 할 수 있는 최소 선폭까지 구현 가능하고, 레이저 장비에 따라서는 최소 선폭은 서브마이크로미터까지, 최대 선폭은 수백 마이크로미터까지 가능하다. 또한 레이저 빔의 출력 에너지를 조절하면 미세패턴의 형상을 자유롭게 조절할 수 있다. 레이저 빔 사용 시, 빔의 모양을 미세패턴에 유리하게 조절하기 위하여 광학회절소자나 마스크를 부분적으로 사용하여 미세패턴을 형성할 수 있다.In the present invention, a method of forming a fine pattern electrode in a state in which the conductive electrode layer is formed on the various substrates with a uniform thickness and the protective film layer is uniformly formed on the electrode layer. A laser beam having an energy capable of sufficiently vaporizing or decomposing the protective layer material and the conductive electrode layer material is used, and a line width of various sizes can be formed according to the wavelength of the laser beam. In general, the line width of a fine pattern can be realized up to the minimum line width that can be directly patterned by the laser beam. Depending on the laser equipment, the minimum line width can be up to submicrometers and the maximum line width can be up to several hundred micrometers. In addition, by adjusting the output energy of the laser beam it is possible to freely adjust the shape of the fine pattern. When using a laser beam, the micropattern may be formed by using an optical diffraction element or a mask in part to advantageously adjust the shape of the beam to the micropattern.
본 발명에서, 보호막 층을 포함한 전도성 전극 층에 미세 패턴을 형성하는 공정에서 가장 핵심이 되는 기술은, 미세 패턴 선폭에 관계없이 시인성의 문제를 해결하여 Index matching을 실현하는 데에 있다. 그를 위해서는 사용하는 레이저의 파장 및 레이저 에너지를 적절히 조절하여 소프트한 레이저 에칭공정을 실시해야 한다. 사용 할 수 있는 레이저 매질은 Gas , Solid-state 등이며, 구체적으로 설명하면 Gas 매질로는 He-Ne, CO2, Ar, Excimer 레이저 등이 사용될 수 있고 Solid-state 매질로는 Nd:YAG, Nd:YVO4, Ytterbium fiber 등이 사용될 수 있다. 구현하고자 하는 선폭이나 에칭 물질의 종류, 소프트한 에칭의 정도 등에 따라, 레이저 빔의 파장은 1.06um, 532nm, 355nm, 266nm, 248nm 등의 파장을 선택하여 사용 할 수 있다. 레이저 에칭 변수 중 주파수를 조절하여 레이저 에너지를 조절할 수 있고 (Pulse energy, E(J)=Peak Power(W)/Frequency(Hz)), 그 주파수에 따라 레이저 에너지가 변하므로 시인성에도 차이가 발생한다. 사용 주파수는 100-1000 kHz 정도가 적절하며, 시인성 문제를 해결하는 소프트 에칭의 경우는 300 kHz 이상 600 kHz 이하가 바람직하다. 또한 레이저를 조사하여 미세패턴을 형성하면서 발생하는 전도성 부유물은 레이저를 조사하면서 동시에 Air blowing 하면서 suction으로 깨끗하게 제거 할 수 있다. 경우에 따라서는 미세 패턴 형성 후 별도의 세척 및 Air blowing 공정을 추가 할 수 있다.In the present invention, the most important technique in the process of forming a fine pattern on the conductive electrode layer including the protective film layer is to solve the problem of visibility regardless of the fine pattern line width to realize the index matching. For that purpose, a soft laser etching process should be performed by appropriately adjusting the wavelength and laser energy of the laser used. The laser medium that can be used is Gas, Solid-state, etc. Specifically, He-Ne, CO 2 , Ar, Excimer laser, etc. may be used as the gas medium, and Nd: YAG, Nd as the solid-state medium. YVO4, Ytterbium fiber, etc. may be used. Depending on the line width to be implemented, the type of etching material, and the degree of soft etching, the wavelength of the laser beam may be selected and used, such as 1.06um, 532nm, 355nm, 266nm, and 248nm. The laser energy can be controlled by adjusting the frequency among the laser etching parameters (Pulse energy, E (J) = Peak Power (W) / Frequency (Hz)), and the laser energy varies according to the frequency, so there is a difference in visibility. . The use frequency is suitably about 100-1000 kHz, and in the case of soft etching which solves the visibility problem, 300 kHz or more and 600 kHz or less are preferable. In addition, conductive floats generated while forming a fine pattern by irradiating a laser can be removed by suction while air blowing while simultaneously irradiating a laser. In some cases, after the fine pattern is formed, a separate washing and air blowing process may be added.
또한 본 발명에서 ITO, CNT, 전도성 고분자 등이 코팅된 전도성 기재를 사용 할 경우, 레이저를 조사하여 패터닝 하는 방법을 변경할 수 있다. 구체적으로 설명하면, 전도성 산화물, 전도성 금속막 및 전도성 고분자 기재 위에 금속 나노와이어를 사용하여 코팅한 전극막 층을 형성 한 후, 레이저를 조사하여 전도성 전극층만 미세선폭으로 패턴닝 할 수도 있고 전도성 전극층과 전도성 기재를 동시에 레이저를 이용하여 미세선폭으로 패턴닝 할 수 있다. 전도성 기재와 전도층의 선폭은 동일할 수도 있고 경우에 따라서 다르게 패턴닝 할 수도 있다.In the present invention, when using a conductive substrate coated with ITO, CNT, conductive polymer, etc., it is possible to change the method of patterning by irradiating a laser. Specifically, after forming an electrode film layer coated using metal nanowires on the conductive oxide, the conductive metal film, and the conductive polymer substrate, only the conductive electrode layer may be patterned to a fine line width by irradiating a laser, The conductive substrate can be simultaneously patterned to a fine line width using a laser. The line widths of the conductive substrate and the conductive layer may be the same or may be patterned differently in some cases.
이하에서는, 실시예를 통해 본 발명에 대해 더욱 구체적으로 설명하기로 하나, 이로 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited thereto.
제조예 1(금속 나노 와이어층 형성)Preparation Example 1 (metal nanowire layer formation)
순수한 물에 다양한 중량비의 금속 나노와이어와 첨가제를 첨가하여 균일하게 분산시키고, 충분히 믹싱 하여, 투명전극용 금속 나노와이어 잉크를 제조하였다. 제조된 금속 나노와이어 잉크를 사용하여 다양한 기재필름 위에 바 코팅 방법으로 전도성 전극 박막을 코팅하고, 열풍 오븐에서 80-130℃ 온도 범위로 1-10분간 건조시킨다. 다양한 기재는 전처리 공정을 통해 친수성기를 부여하여 물 용매로 이루어진 전극 잉크가 균일하게 코팅되도록 한다.Metal nanowires and additives of various weight ratios were added to pure water to uniformly disperse the mixture, and sufficiently mixed to prepare metal nanowire inks for transparent electrodes. Using the prepared metal nanowire ink, the conductive electrode thin film is coated on a variety of substrate films by a bar coating method, and dried in a hot air oven at a temperature range of 80-130 ° C. for 1-10 minutes. Various substrates impart a hydrophilic group through a pretreatment process so that an electrode ink made of a water solvent is uniformly coated.
제조예 2(보호층 형성)Preparation Example 2 (protective layer formation)
제조된 전도성 전극 위에 다양한 농도의 열경화 타입 및 UV 경화 타입의 보호막 용액을 상기 제시된 코팅법으로 코팅하여 보호막 층을 제조한다. 도전성 전극 위에 보호막 용액을 스핀 코팅방법으로 코팅하여 120℃ 열풍 오븐에서 1-10분간 건조시키거나, UV 타입은 UV 경화기에서 1000-1500mJ로 경화시키는 작업을 거친다. 보호막 층이 코팅된 도전성 전극의 전기적 특성은 금속 나노와이어의 비율에 따라 차이가 있으며, 구체적으로는 100-300 Ω/□ 범위에 있다. 또한 광학적 특성은 전광투과율이 89-91%, 헤이즈가 1-3% 범위 내에 있으며, 용매의 선택에 따라 광학적 특성에 차이가 발생한다.A protective film layer is prepared by coating a protective film solution of various types of thermosetting type and UV curing type on the prepared conductive electrode by the above-described coating method. Coating the protective film solution on the conductive electrode by spin coating to dry for 1-10 minutes in a 120 ℃ hot air oven, or UV type is cured to 1000-1500mJ in a UV curing machine. Electrical characteristics of the conductive electrode coated with the protective layer is different depending on the ratio of the metal nanowires, specifically, in the range of 100-300 Ω / □. In addition, the optical properties are in the range of 89-91% total light transmittance, 1-3% haze, the optical properties are different depending on the choice of solvent.
비교예 1Comparative Example 1
제조예 1과 같은 방법으로 제조한 전도성 전극 층 위에, 제조예 2와 같은 방법으로 보호막을 형성한다. 전극 표면에 미세 패턴을 형성하기 위해, 300-1064 nm 파장의 IR 레이저 (제조사; 이오테크닉스)를 주파수 100 kHz, pulse width 1-50 ns로 전극 층 표면에 직접 조사하여 미세 패턴을 구현하였다.(도 2참조)On the conductive electrode layer prepared in the same manner as in Preparation Example 1, a protective film is formed in the same manner as in Preparation Example 2. In order to form a fine pattern on the electrode surface, an IR laser (manufacturer; Iotechnics) with a wavelength of 300-1064 nm was directly irradiated on the surface of the electrode layer at a frequency of 100 kHz and a pulse width of 1-50 ns. See Figure 2)
실시예 2Example 2
제조예 1과 같은 방법으로 제조한 전도성 전극 층 위에, 제조예 2와 같은 방법으로 보호막을 형성한다. 전극 표면에 미세 패턴을 형성하기 위해, 300-1064 nm 파장의 IR 레이저 (제조사; 이오테크닉스)를 주파수 400 kHz, pulse width 1-50 ns로 전극 층 표면에 직접 조사하여 미세 패턴을 구현하였다.(도 3 참조)On the conductive electrode layer prepared in the same manner as in Preparation Example 1, a protective film is formed in the same manner as in Preparation Example 2. In order to form a fine pattern on the electrode surface, an IR laser (manufacturer; Iotechnics) with a wavelength of 300-1064 nm was directly irradiated on the surface of the electrode layer at a frequency of 400 kHz and a pulse width of 1-50 ns. 3)
실시예 3Example 3
제조예 1과 같은 방법으로 제조한 전도성 전극 층 위에, 제조예 2와 같은 방법으로 보호막을 형성한다. 전극 표면에 미세 패턴을 형성하기 위해, 300-1064 nm 파장의 IR 레이저 (제조사; 이오테크닉스)를 주파수 550 kHz, pulse width 1-50 ns로 전극 층 표면에 직접 조사하여 미세 패턴을 구현하였다.(도 3참조)On the conductive electrode layer prepared in the same manner as in Preparation Example 1, a protective film is formed in the same manner as in Preparation Example 2. In order to form a fine pattern on the electrode surface, an IR laser (manufacturer; Iotechnics) with a wavelength of 300-1064 nm was directly irradiated on the surface of the electrode layer at a frequency of 550 kHz and a pulse width of 1-50 ns. 3)
표 1
전도성 전극 제조 투과율 헤이즈 면저항 코팅면 상태
제조예 1(에칭 전) 89-90% 1-3% 100-300 Ω/□ 투명
제조예 2(에칭 전) 89-90% 1-3% 100-300 Ω/□ 투명, 균일
레이저 에칭 후 파장 주파수 Pulse width 에칭면 상태
비교예 1 1064 nm 100 kHz 50 ns 와이어 완전 제거
실시예 1 1064 nm 400 kHz 50 ns 와이어 잔존
실시예 2 1064 nm 550 kHz 50 ns 와이어 잔존
Table 1
Conductive electrode manufacturers Transmittance Haze Sheet resistance Coated surface condition
Preparation Example 1 (Before Etching) 89-90% 1-3% 100-300 Ω / □ Transparency
Preparation Example 2 (Before Etching) 89-90% 1-3% 100-300 Ω / □ Transparent, uniform
After laser etching wavelength frequency Pulse width Etching Surface State
Comparative Example 1 1064 nm 100 kHz 50 ns Wire completely removed
Example 1 1064 nm 400 kHz 50 ns Wire remaining
Example 2 1064 nm 550 kHz 50 ns Wire remaining
이와 같이 본 발명에 따르면 레이저 파워를 변화시켜 전도성 미세패턴 전극 형성하는 이 기술을 이용하면, 투명전극의 고질적인 시인성 문제를 해결할 수 있고, 우수한 패턴 해상도와 미세선폭을 구현 할 수 있는 효과가 있다.As described above, according to the present invention, by using the technology of forming the conductive micropattern electrode by changing the laser power, it is possible to solve the problem of intrinsic visibility of the transparent electrode and to realize the excellent pattern resolution and the fine line width.

Claims (10)

  1. 기재 상에, 금속 나노 와이어 층을 형성하는 단계;Forming a metal nanowire layer on the substrate;
    상기 금속 금속 나노 와이어 층 상에 보호층을 형성하는 단계;Forming a protective layer on the metal metal nanowire layer;
    레이저 빔으로 상기 보호층이 형성된 상기 금속 나노 와이어층을 에칭하여 패턴을 형성하는 단계로서, 비에칭면은 전도성 패턴으로, 에칭면은 상기 레이저 빔에 의해 금속 나노 와이어가 끊기면서 비전도성 면을 형성하는 단계를 포함하는 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법.Etching the metal nanowire layer on which the protective layer is formed with a laser beam to form a pattern, wherein the non-etching surface is a conductive pattern, and the etching surface forms a non-conductive surface while the metal nanowire is broken by the laser beam. Pattern forming method using a laser etching comprising the step of.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 기재는, 폴리이미드(PI), 폴리에틸렌텔레프탈레이트(PET), 폴리에텔렌나프탈레이트(PEN), 폴리에테르술폰(PES), 나일론(Nylon), 폴리테트라플로우로에틸렌(PTFE), 폴리에테르에테르케톤(PEEK), 폴리카보네이트 (PC), 및 폴리아릴레이트(PAR) 중에서 선택된 1종 이상의 플라스틱 필름 또는 유리 기판인 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법.The base material is polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyether sulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), polycarbonate (PC), polyarylate (PAR) is a pattern forming method using laser etching, characterized in that at least one plastic film or glass substrate.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 금속 나노 와이어층은, 금속 나노 와이어를 용매에 분산시킨 금속 나노와이어 코팅액을 도포하여 형성된 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법.The metal nanowire layer is a pattern forming method using laser etching, characterized in that formed by coating a metal nanowire coating liquid in which the metal nanowires are dispersed in a solvent.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 금속 나노 와이어 코팅액은, 분산제, 바인더, 계면활성제(surfactant), 습윤제(wetting agent), 및 레벨링(levelling)제 중에서 선택된 1종 이상의 첨가제를 더 포함하는 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법. The metal nanowire coating liquid may further include at least one additive selected from a dispersant, a binder, a surfactant, a wetting agent, and a leveling agent. .
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 금속 나노 와이어층은, 스핀(spin) 코팅, 롤(roll) 코팅, 스프레이 코팅, 딥(dip) 코팅, 플로(flow) 코팅, 닥터 블레이드(doctor blade)와 디스펜싱(dispensing), 잉크젯 프린팅, 옵셋 프린팅, 스크린 프린팅, 패드(pad) 프린팅, 그라비아 프린팅, 플렉소(flexography) 프린팅, 스텐실 프린팅, 및 임프린팅(imprinting) 방법 중에서 선택된 방법으로 형성하는 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법.The metal nanowire layer may include spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade and dispensing, inkjet printing, Method for forming a pattern using laser etching, characterized in that formed by a method selected from offset printing, screen printing, pad printing, gravure printing, flexography printing, stencil printing, and imprinting (imprinting) method.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 보호층은, 열 경화성 수지 또는 UV 경화성 수지로 형성된 것을 특징을로 하는 레이저 에칭을 이용한 패턴 형성방법.The protective layer is formed of a thermosetting resin or UV curable resin, characterized in that the pattern forming method using laser etching.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 레이저 빔으로 에칭하는 단계에서는, 가스(Gas) 매질 또는 솔리드-스테이트(Solid-state) 매질을 사용하는 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법.In the etching of the laser beam, a gas (Gas) medium or a solid-state (Solid-state) medium, characterized in that the pattern forming method using laser etching.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 가스(Gas) 매질로는 He-Ne, CO2, Ar, 및 Excimer 레이저 중에서 선택하여 사용하며,The gas medium is selected from He-Ne, CO 2 , Ar, and Excimer laser,
    상기 솔리드-스테이트(Solid-state) 매질로는, Nd:YAG, Nd:YVO4, 및 Ytterbium fiber 중에서 선택하여 사용하는 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성 방법.The solid-state medium, the pattern forming method using a laser etching, characterized in that for use selected from Nd: YAG, Nd: YVO4, and Ytterbium fiber.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 레이저 빔으로 에칭하는 단계에서는, 상기 레이저 빔 파장은 300~2000nm이고, 상기 레이저 빔 주파수는 100~1000 kHz인 소프트 에칭을 수행하는 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법.In the step of etching with the laser beam, the laser beam wavelength is 300 ~ 2000nm, the laser beam frequency is a pattern forming method using a laser etching, characterized in that for performing a soft etching of 100 ~ 1000 kHz.
  10. 청구항 1 내지 청구항 9 중 어느 한 항에 있어서, The method according to any one of claims 1 to 9,
    상기 패턴은 전도성 투명 전극 패턴인 것을 특징으로 하는 레이저 에칭을 이용한 패턴 형성방법.The pattern is a pattern forming method using a laser etching, characterized in that the conductive transparent electrode pattern.
PCT/KR2013/001090 2012-02-13 2013-02-12 Method for forming patterns using laser etching WO2013122365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380019806.9A CN104246974B (en) 2012-02-13 2013-02-12 Utilize the pattern formation method of laser-induced thermal etching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0014419 2012-02-13
KR1020120014419A KR101442727B1 (en) 2012-02-13 2012-02-13 Metho for forming patter used by laser etching

Publications (1)

Publication Number Publication Date
WO2013122365A1 true WO2013122365A1 (en) 2013-08-22

Family

ID=48984439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001090 WO2013122365A1 (en) 2012-02-13 2013-02-12 Method for forming patterns using laser etching

Country Status (3)

Country Link
KR (1) KR101442727B1 (en)
CN (1) CN104246974B (en)
WO (1) WO2013122365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543061B2 (en) 2014-10-03 2020-01-28 3M Innovative Properties Company Methods for managing the scattering of incident light and articles created therefrom

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485858B1 (en) * 2014-03-24 2015-01-27 한국기계연구원 Method of patterning a transparent electrode metal nanowires and a transparent electrode patterned metal nanowires thereby
KR101591305B1 (en) * 2014-08-27 2016-02-03 한국항공대학교산학협력단 Method for manufacturing nanofluids containing carbon nanotubes
CN106324922A (en) * 2016-08-29 2017-01-11 贵州乾萃科技有限公司 Method for quickly manufacturing functional electrode layer with needed shape on substrate
US10782578B2 (en) 2016-12-27 2020-09-22 Lg Chem, Ltd. Method for forming wire portion of liquid crystal chromic device and liquid crystal chromic device
CN107122074B (en) * 2017-03-28 2023-10-24 安徽精卓光显技术有限责任公司 Manufacturing method of touch panel
KR102371678B1 (en) 2017-06-12 2022-03-07 삼성디스플레이 주식회사 Metal nanowire electrode and manufacturing method of the same
KR102112271B1 (en) * 2018-01-25 2020-05-18 한국기계연구원 Apparatus for printing electrode and method for printing electrode
CN109160488A (en) * 2018-08-27 2019-01-08 浙江大学 The method of electron beam/ion beam focusing etching and micro-imaging is carried out on nonconductive substrate
CN112908520B (en) * 2018-10-30 2023-01-24 苏州诺菲纳米科技有限公司 Etching method of silver nanowire, transparent conductive electrode and preparation method of transparent conductive electrode
KR102181868B1 (en) * 2020-06-24 2020-11-23 국민대학교산학협력단 Method for Forming Micro Pattern on Surface of Wire
KR102487098B1 (en) * 2020-12-17 2023-01-09 충남대학교산학협력단 Patterning method of electrode having metal nanowire
CN113793718B (en) * 2021-08-23 2024-01-09 湖南兴威新材料有限公司 Thin film electrode and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838344B1 (en) * 2007-03-28 2008-06-17 연세대학교 산학협력단 Method for patterning nanoparticles by pulsed laser
WO2010018733A1 (en) * 2008-08-11 2010-02-18 コニカミノルタホールディングス株式会社 Transparent electrode, organic electroluminescent element, and method for producing transparent electrode
KR20100047879A (en) * 2007-08-27 2010-05-10 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Laser patterning of a carbon nanotube layer
JP2011086413A (en) * 2009-10-13 2011-04-28 Nissha Printing Co Ltd Transparent conductive film for display electrode
US20110214728A1 (en) * 2010-03-04 2011-09-08 Guardian Industries Corp. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
KR101069582B1 (en) * 2009-12-28 2011-10-05 전자부품연구원 A cathode electrode having carbon nanotube in an electrical field emission device and a fabrication method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405977B1 (en) * 2001-12-06 2003-11-14 엘지전자 주식회사 Method for manufacturing nano wire
KR100691276B1 (en) * 2005-08-25 2007-03-12 삼성전기주식회사 Nanowire light emitting device and method of fabricating the same
JP5635981B2 (en) * 2008-06-09 2014-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. Improved CNT / topcoat process
KR101734282B1 (en) * 2009-10-01 2017-05-12 경기대학교 산학협력단 Planar Light Source Device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838344B1 (en) * 2007-03-28 2008-06-17 연세대학교 산학협력단 Method for patterning nanoparticles by pulsed laser
KR20100047879A (en) * 2007-08-27 2010-05-10 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Laser patterning of a carbon nanotube layer
WO2010018733A1 (en) * 2008-08-11 2010-02-18 コニカミノルタホールディングス株式会社 Transparent electrode, organic electroluminescent element, and method for producing transparent electrode
JP2011086413A (en) * 2009-10-13 2011-04-28 Nissha Printing Co Ltd Transparent conductive film for display electrode
KR101069582B1 (en) * 2009-12-28 2011-10-05 전자부품연구원 A cathode electrode having carbon nanotube in an electrical field emission device and a fabrication method thereof
US20110214728A1 (en) * 2010-03-04 2011-09-08 Guardian Industries Corp. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543061B2 (en) 2014-10-03 2020-01-28 3M Innovative Properties Company Methods for managing the scattering of incident light and articles created therefrom

Also Published As

Publication number Publication date
KR20130092857A (en) 2013-08-21
KR101442727B1 (en) 2014-09-23
CN104246974A (en) 2014-12-24
CN104246974B (en) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2013122365A1 (en) Method for forming patterns using laser etching
US20220154025A1 (en) Method for forming patterned electrically conductive transparent coating including fused metal nanowires
US9236162B2 (en) Transparent conductive ink and transparent conductive pattern forming method
EP2828861B1 (en) Mixtures, methods and compositions pertaining to conductive materials
US10470301B2 (en) Method for manufacturing conductive pattern and conductive pattern formed substrate
US10487222B2 (en) Conductive transparent coating for rigid and flexible substrates
KR20130002320A (en) Photosensitive ink compositions and transparent conductors and method of using the same
KR20090042980A (en) Uv-photopolymerizable composition for producing organic conductive layers, patterns or prints
US20210047533A1 (en) Photonic sintered nanoink, photonic sintering method, and conductive nanostructure
DE102016225051A1 (en) INTERMEDIATE COMPOSITION FOR ELECTRONIC PRINTING
US20140255661A1 (en) Process for producing patterned coatings
TWI821513B (en) Thin flexible double sided structures with transparent conductive layers
WO2016052878A1 (en) Metal nanowire and graphene oxide-based transparent electrode using combined light source, and method for manufacturing same
WO2014175544A1 (en) Transparent electrode and manufacturing method therefor
KR20160020230A (en) Manufacturing method of transparent electrod and transparent electrod laminate
KR101911136B1 (en) Conductive Cu ink mixed with two different sizes Cu nanoparticles and preparation of Cu electrode using the same
CN111830618A (en) Laminate body
CN113773545B (en) Preparation method of fully flexible printable and patterned electrode
US9269478B2 (en) Transparent conductive film-preparing method and transparent film prepared therefrom
KR20160061810A (en) Conductive layer and transparent conductors comprising the conductive layer and method of producing the transparent conductors
KR101908604B1 (en) Manufacturing method for transparent electrode panel using composite solution of CNT and graphene, and transparent electrode panel prepared by the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748688

Country of ref document: EP

Kind code of ref document: A1