WO2013122302A1 - Method for fixing strontium and composition for same - Google Patents

Method for fixing strontium and composition for same Download PDF

Info

Publication number
WO2013122302A1
WO2013122302A1 PCT/KR2012/008750 KR2012008750W WO2013122302A1 WO 2013122302 A1 WO2013122302 A1 WO 2013122302A1 KR 2012008750 W KR2012008750 W KR 2012008750W WO 2013122302 A1 WO2013122302 A1 WO 2013122302A1
Authority
WO
WIPO (PCT)
Prior art keywords
strontium
vibrio
contaminated water
microorganisms
nodules
Prior art date
Application number
PCT/KR2012/008750
Other languages
French (fr)
Korean (ko)
Inventor
노열
강서구
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2013122302A1 publication Critical patent/WO2013122302A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/36Separation by biological methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for fixing strontium and a composition therefor, and more particularly, to a method for biologically fixing dissolved strontium in contaminated water using microorganisms derived from red blood nodules and a composition therefor.
  • Radioactive strontium is a radionuclide that can be released into the environment due to nuclear weapon testing and nuclear power depletion. More than 90% of the total is deposited on the hydroxyapatite structure of bone and acts on the DNA of bone and bone marrow cells for a long time. It is known to be a radiotoxic radionuclide that causes dizziness and leukemia.
  • the nucleus element When the nucleus element is in an ionic state, it easily flows into the groundwater in the form of anions or cations, and some microorganisms cause a reaction to reduce and precipitate or adsorb ionized metal ions, and to deposit the metal ions under the ground water in solid form. Precipitate.
  • Academia studying the treatment of high-level nuclear waste using these microorganisms has been evaluated to play an important role in preventing the spread of high-level nuclear materials stored underground for hundreds of thousands of years. Although studies have been conducted to sequester carbon dioxide and metal ions using coal ash, few studies have been conducted on the fixation of strontium in an ionic state using microorganisms.
  • one aspect of the present invention comprises the steps of enrichment culture of red blood cells nodules; And treating the concentrated cultured microorganisms in contaminated water and reacting the same, thereby fixing the dissolved strontium in the contaminated water with strontium carbonate minerals.
  • another aspect of the present invention comprises a concentrated culture of the microorganisms derived from red algae as an active ingredient, and dissolved strontium fixing composition in contaminated water for fixing the dissolved strontium in contaminated water with strontium carbonate mineral to provide.
  • Biological strontium immobilization method of the present invention has the advantage that the fixing process is simple and environmentally friendly compared to chemical strontium immobilization technology. Further, the effectiveness in terms of recycling of resources, because it is possible to immobilize the strontium rapidly even at room temperature is sufficient to be applied to the industrial field, strontium are to be finally fixed in the form of strontium thiazol nitro (strontianite, SrCO 3) Have
  • FIG. 1 is a photograph of red nodules collected from Seogwang-ri coast of Udo, Bukjeju-gun, Jeju Island.
  • Figure 3 is a phylogenetic diagram showing the results of 16S rRNA-DGGE analysis of the microorganisms present in the enrichment culture of the blush-derived microorganisms.
  • Figure 4 is a photograph showing the process and the result of the production of strontium carbonate mineral by the enrichment culture of the microorganisms derived from blush nodules.
  • Figure 5 is a graph showing the results of XRD analysis of the strontium carbonate mineral produced by the enrichment culture of the blush-derived microorganisms.
  • FIG. 6 is a graph and a graph showing the results of SEM-EDS analysis of strontium carbonate minerals produced by the enrichment culture of red blood cell nodules.
  • One aspect of the present invention comprises the steps of enriching cultures of the algae-derived microbes; And fixing the dissolved strontium in the contaminated water with strontium carbonate mineral strontianite (SrCO 3 ) by treating and reacting the concentrated cultured microorganisms with contaminated water.
  • strontium carbonate mineral strontianite SrCO 3
  • Method for fixing the dissolved strontium in contaminated water of the present invention comprises the steps of: 1) enrichment culture of the erythroid-derived microorganisms; And 2) fixing the dissolved strontium in the contaminated water with strontium carbonate minerals by treating and reacting the microorganism enriched in step 1) with contaminated water.
  • Thickening culture of the blush-derived microorganisms of step 1) is the step of collecting 1 ') flushed nodules; And 2 ') the red nodule collected in step 1') was treated with D-1 medium (Sanchez-Roman et al., 2009 / Sanchez-Roman et al., 2011), MH (Mueller-Hinton) medium (Rodroguez-Valera). et al., 1981) and Saline medium (Chahal et al., 2011) is carried out by a culture method comprising the step of culturing in any one medium selected from the group consisting of aerobic environment.
  • the composition of the medium as described above is shown in Table 1 below.
  • Table 1 Composition of D-1 Medium Composition of MH Medium Composition of Saline Badge ingredient content ingredient content ingredient content yeast extract 1.0% yeast extract 1.0% Nutrient broth 3 g / L proteose peptone 0.5% proteose peptone 0.5% NH 4 Cl 10 g / L glucose 0.1% glucose 0.1% NaHCO 3 2.12 g / L NaCl 3.5% NaCl 2.5-20% NaCl 0.85% CaCl2 ⁇ 2H2O 25 g / L
  • the red nodule of step 1 ') is a collection of autogenous minerals formed by precipitation of calcium carbonate, which is the main component of calcite, by red algae growing while calcite, which is a carbonate mineral, is precipitated in cells or between cell walls.
  • the red nod means a nodule formed by precipitation of calcium carbonate by red algae.
  • the calcium carbonate constituting the red nodules is precipitated by the biological metabolism of the red algae, which is derived from carbonate minerals such as calcite which are present around the red algae.
  • the carbonate mineral may be produced by a variety of causes, one of the causes may be generated by the metabolism of carbonate mineral-producing microorganisms, the microorganisms that produce such a carbonate mineral may be present in the flushing nodules. Therefore, the redness nodule used in step 1 ') is a source of the carbonate-generating microorganisms.
  • the flushing nodules of step 1 ') include carbonate mineral producing microorganisms.
  • the carbonate mineral-producing microorganism is Proteus mirabilis , Marinobacterium coralalii , which combines dissolved metal cations in water, more preferably strontium cations, with carbonate anions or hydrogen carbonate anions to form carbonate minerals during metabolism.
  • Marinobacterium coralli including a variety of microorganisms that contribute to the formation of carbonate minerals inhabiting blush nodules.
  • the red nodule of step 1 ') is collected to have a size of 3 cm to 10 cm, and the red nodule is more preferably collected to have a size of 5 cm to 7 cm, but is not limited thereto. If the size of the flushing nodules is less than 3 cm, there is a problem that the absolute number of carbonate-producing microorganisms is less. If the size of the flushing nodules is greater than 10 cm, the number of carbonate-producing microorganisms present per unit area of the flushing nodules, that is, the production of carbonates Since there is a problem that the density of the microorganism is lowered, there is a problem in that it takes a long time to enrich the microorganism in the step 2 ').
  • carbonate mineral-producing microorganisms were enriched using red algae nodules collected from 5 cm to 7 cm in size from Seogwang-ri coast in Udo, Bukjeju-gun, Jeju Island (see FIG. 2).
  • the medium of step 2 ') may be used without limitation as long as it is a medium used for enriching culture of carbonate-producing microorganisms, but D-1 medium, MH medium, Saline medium, and the like may be used.
  • a medium is suitable for the growth of microorganisms because it contains yeast extract and proteose peptone or nutrient broth necessary for the growth of carbonate-producing microorganisms. It is suitable for growing microbes in the ocean.
  • calcium cation, magnesium cation or strontium cation is added to the medium of step 2 ').
  • calcium cations, magnesium cations, or strontium cations which are used to fix CO 3 2- as carbonate minerals during biological metabolism. It is preferable to add the same cation to the medium.
  • the addition of the calcium cation, magnesium cation or strontium cation is preferably added calcium salt, magnesium salt or strontium salt, and the addition of the calcium cation, magnesium cation or strontium cation is composed of calcium acetate, magnesium acetate and strontium acetate. It is more preferred to add any one or two or more mixtures selected from the group, but is not limited thereto.
  • Red algae nodules derived from the island of Udo, Jeju Island which are used in specific embodiments of the present invention, are mainly formed in the shallow water environment of the main islands, and the red algae have been reported to be formed by red algae.
  • the mechanism by which the material acting as the nucleus forming the redness nodule is not known. Accordingly, the present inventors determined that the microorganisms present in the red nodules could form calcium carbonate that could serve as the first nucleus in the formation of the red nodules. Therefore, aerobic conditions similar to those of the local environment where red nodules were formed were formed to enrich and culture microorganisms in the red nodules.
  • red algae nodules were placed in D-1 medium. After injecting a mixture of calcium acetate and magnesium acetate, the culture was cultured under aerobic conditions for 7 days to obtain a thickening culture of microorganisms derived from red algae.
  • Vibrio find fun tea kusu (Vibrio alginolyticus) of said step 2), Vibrio Owen Shi (Vibrio owensii), Vibrio Cui (Vibrio xuii), Vibrio block nipi kusu (Vibrio vulnificus), Vibrio flat ruby Alice (Vibrio fluvialis), Vibrio four races (Vibrio nereis), Proteus Mira Billy's (Proteus mirabilis), Marino tumefaciens Coral riyi (Marinobacterium coralli), Bago Caucus platform Ruby Alice (Vagococcus fluvialis), Puerto earthy Te Solarium PERE Four Martens (Fusobacterium perfoetens , Tindallia californiensis , Arcobacter marinus , Parabacteroides gordonii , and Prolixibacter
  • the microorganism is Vibrio alginolitis ( Vib rio alginolyticus , Vibrio owensii , Vibrio xuii , Vibrio vulnificus , Vibrio fluvialis , Vibrio nereis , Proteus mirabilis Proteus mirabilis ) and Marinobacterium coralli ( Marinobacterium coralli ) more preferably include any one or more selected from the group consisting of, but not limited to.
  • 16S rRNA-DGGE analysis was carried out to confirm the diversity of the iron-reducing microorganisms present in the enrichment culture of the blush-derived microorganisms, Proteus mirabilis and Marinobacterium coral.
  • the contaminated water of step 2) means water in which strontium is excessively caused by artificial industrial activity, and is seawater or fresh water in which strontium to be fixed is dissolved.
  • Strontium to be fixed may be dissolved and present in the form of strontium cations (Sr 2+ ) in the seawater or fresh water.
  • the contaminated water may have various anions in addition to strontium.
  • the anion may be a carbonate anion (CO 3 2- ) or a hydrogen carbonate anion (HCO 3 ⁇ ), but is not limited thereto.
  • the carbonate anion or hydrogen carbonate anion binds to the strontium cation present in the contaminated water and is fixed in the form of strontium carbonate mineral strontianite.
  • the binding of the anion and the cation is biological Promoted by metabolism
  • the treatment of step 2) is to inject the microorganism enriched in the flushing nodules derived in step 1) into the contaminated water, the enrichment culture of the microorganisms derived from the blush nodules is 0.5 w / v relative to the total volume of the contaminated water It is preferred to inject at a concentration of% to 1.5 w / v%.
  • the thickening culture is injected at a concentration lower than 0.5 w / v% with respect to the total volume of the contaminated water, there is a problem that it takes a long time to fix the dissolved strontium in the contaminated water.
  • the treatment of step 2) may be performed in addition to the concentrated culture of step 1) in addition to the concentrated culture of the step 1) of the carbonate anion (CO 3 2- ) or hydrogen carbonate anion (HCO 3 ⁇ ).
  • the carbonate anion (CO 3 2- ) or hydrogen carbonate anion in order to make this more smooth since the strontium cation in the contaminated water is not easily fixed to the carbonate mineral which will supply the - (HCO 3).
  • the supply of the carbonate anion or the hydrogen carbonate anion is preferably performed by treating carbonate or hydrogen carbonate, but is not limited thereto.
  • step 2) is performed by the microorganisms in which the blush-derived microorganisms in the thickening culture of step 1) are injected into the contaminated water to perform biological metabolism, thereby dissolving the dissolved strontium in the contaminated water in the form of strontium carbonate mineral strontium carbonate.
  • the blush-derived microorganisms in the thickening culture are aerobic microorganisms, it is preferable to proceed under aerobic conditions in which oxygen is sufficiently supplied.
  • the microorganisms derived from the blush nodules in the thickening culture form strontium carbonate mineral strontite by combining dissolved strontium cations with carbonate anions or hydrogen carbonate anions through biological metabolism, and in water in the form of strotianite Secure dissolved strontium.
  • the reaction is preferably carried out for 7 days at room temperature, atmospheric pressure conditions. The reaction is fixed to carbonate at a faster rate through the complex interaction of various microorganisms contained in the thickening culture.
  • the carbonate mineral of step 2) may be strontium carbonate mineral strontianite (SrCO 3 ), but when the concentration of calcium cations or magnesium cations is higher than that of strontium cations in the contaminated water, calcium carbonate or carbonate A calcite composed of magnesium forms carbonate minerals.
  • 1.0 w / v% of the blush nodules microbial enrichment culture was added to the contaminated water with 100 mmol of strontium-acetate and incubated for 7 days, after 4 days in the Erlenmeyer flask As the turbidity increased, white precipitates began to form, and it was confirmed that a considerable amount of precipitates were observed after 7 days (see FIG. 4).
  • XRD analysis of the precipitate the peak of the d (104) was determined to be strotianite measured by 3.52 kPa (see Fig. 5), SEM-EDS analysis, the precipitate is a spherical strontite Observation was possible (see FIG. 6).
  • Another aspect of the present invention provides a composition for fixation of dissolved strontium in contaminated water comprising a concentrated culture of microorganisms derived from red blood nodule as an active ingredient, and fixing dissolved strontium in contaminated water in the form of strontium carbonate mineral strontiumite. do.
  • Dissolved strontium immobilization composition in contaminated water of the present invention comprises a thickening culture of the microorganisms derived from blush nodule as an active ingredient.
  • composition for fixing the dissolved strontium in the contaminated water is a composition used in the strontium fixing method described in detail in the " 1. Strontium fixing method”. Therefore, the description of the method of using the composition uses the description of " 1. How to fix the strontium ", and will be described below only the other properties of the composition of the present invention.
  • the red algae used in the preparation of the composition also includes carbonate mineral producing microorganisms, and the red algae-derived microorganisms are proteus which combines dissolved metal cations in water with carbonate anions or hydrogen carbonate anions to form carbonate minerals during metabolism. It refers to a variety of microorganisms that contribute to the formation of carbonate minerals while inhabiting red nodules including Proteus mirabilis and Marinobacterium coralli .
  • the thickening culture can be prepared by the thickening culture method of the microorganisms derived from the blush nodules described in detail in the " 1. strontium fixing method ", more preferably the steps 1 ') and 2') It can be prepared by a thickening culture method comprising.
  • the concentrated culture is brioche find fun tea kusu (Vibrio alginolyticus), Vibrio Owen Shi (Vibrio owensii), Vibrio Cui (Vibrio xuii), Vibrio block nipi kusu (Vibrio vulnificus), Vibrio flat ruby Alice (Vibrio fluvialis), Vibrio Yes Vibrio nereis , Proteus mirabilis , Marinobacterium coralli , Vagococcus fluvialis , Fusobacterium perfoetens , Tyndalia One or more selected from the group consisting of Tindallia californiensis , Arcobacter marinus , Parabacteroides gordonii , and Prolixibacter bellariivorans It may include a microorganism, but is not limited thereto.
  • 16S rRNA-DGGE analysis was carried out to confirm the diversity of the iron-reducing microorganisms present in the enrichment culture of the blush-derived microorganisms, Proteus mirabilis and Marinobacterium coral.
  • Microorganisms of various species have been identified including Lii ( Marinobacterium coralli ) (see Figure 3).
  • the composition may further include a carbonate anion (CO 3 2- ) or a hydrogen carbonate anion (HCO 3 ⁇ ) in the thickening culture of the microorganism derived from the red blood nodules.
  • a carbonate anion (CO 3 2- ) or a hydrogen carbonate anion (HCO 3 ⁇ ) in the thickening culture of the microorganism derived from the red blood nodules.
  • the carbonate anion (CO 3 2- ) or hydrogen carbonate anion in order to make this more smooth since the strontium cation in the contaminated water is not easily fixed to the carbonate mineral As (HCO 3 ⁇ ) is supplied it may be included by adding carbonate or hydrogen carbonate to the composition.
  • the contaminated water refers to water in which strontium metal is excessively caused by artificial industrial activity, and is seawater or fresh water in which strontium to be fixed is dissolved.
  • Strontium to be fixed may be dissolved and present in the form of strontium cations (Sr 2+ ) in the seawater or fresh water.
  • the contaminated water may have various anions in addition to strontium.
  • the anion may be a carbonate anion (CO 3 2- ) or a hydrogen carbonate anion (HCO 3 ⁇ ), but is not limited thereto.
  • the carbonate anion or hydrogen carbonate anion binds to the strontium cation present in the contaminated water and is fixed in the form of strontium carbonate mineral strontianite (SrCO 3 ), in which the binding of the anion and the cation is flushed. It is promoted by the biological metabolism of nodules-derived microorganisms. Various microorganisms in the thickening culture included in the composition can more effectively promote the binding of the anion and cation through a complex interaction.
  • the microorganisms derived from the blush nodules in the thickening cultures contained in the composition undergo biological metabolism in the contaminated water to fix dissolved strontium in the contaminated water in the form of strontium carbonate minerals,
  • the strontium carbonate mineral may be strontianite.
  • 1.0 w / v% of the blush nodules microbial enrichment culture was added to the contaminated water with 100 mmol of strontium-acetate and incubated for 7 days, after 4 days in the Erlenmeyer flask As the turbidity increased, white precipitates began to form, and it was confirmed that a considerable amount of precipitates were observed after 7 days (see FIG. 4).
  • XRD analysis of the precipitate the peak of the d (104) was determined to be strotianite measured by 3.52 kPa (see Fig. 5), SEM-EDS analysis, the precipitate is a spherical strontite Observation was possible (see FIG. 6).
  • ICP-AES inductively coupled plasma-atomic emission spectrometry
  • the seawater around Jeju Island's Udo Island was found to be between about acidic and neutral at an average of 5 to 8 (Table 2).
  • the concentration of calcium ions (Ca 2+ ) in the seawater around Jeju-do was about 400 mg / l (Table 3).
  • the red algae of the size of 5 cm to 7 cm present in seawater were collected by hand using a low tide near a beach near Seogwang-ri west of Udo, Jeju Island (FIG. 1).
  • Flushing nodules collected in Example ⁇ 1-2> were ground using Agate and Mortar. 5 g of the pulverized product of the red blood nodule was injected into a 500 ml Erlenmeyer flask bottle containing 100 ml of D-1 medium having the composition shown in Table 1 above, and the inlet of the Erlenmeyer flask was blocked with a sponge capable of introducing oxygen and carbon dioxide. After culturing for 7 days at room temperature and atmospheric pressure in sunlight, carbonate-producing microorganisms were enriched (FIG. 2). The D-1 medium used for the enrichment culture of the carbonate-producing microorganism was used after autoclaving at 121 ° C. for 20 minutes.
  • 9F 5'-GAG TTT GAT CCT GGC TCA G-3 '
  • 1542R 5'-AGA AAG GAG GTG ATC CAG CC-3'
  • PCR amplification products were subjected to 1% agarose gel electrophoresis, stained with EtBr (ethidium bromide), and then PCR product generation was confirmed.
  • the PCR product was amplified again using a primer with a GC clamp, and then subjected to Denaturing Gradient Gel Electrophoresis (DGGE). The band on the DGGE was extracted and subjected to sequencing.
  • DGGE Denaturing Gradient Gel Electrophoresis
  • Such microorganisms are expected to play a role in the production of red nodules.
  • a nodule is formed by a mechanism in which dissolved strontium in water is fixed by binding with a carbonate anion or hydrogen carbonate anion in water by the metabolism of such microorganisms, in particular carbonate-producing microorganisms, and a strontium carbonate mineral is formed. It seems to be.
  • the formation process of the strontium carbonate mineral is determined that the various microorganisms as described above are fixed to the carbonate at a faster rate through a complex interaction.
  • Example culture Culture enriched in the Example ⁇ 2-1> in a 500 ml Erlenmeyer flask bottle containing 100 ml of autoclaved D-1 medium having the composition shown in Table 1 (hereinafter, referred to as "enrichment culture”).
  • Enrichment culture was inoculated at a concentration of 1 w / v% based on the volume of the medium, and 100 mmol of Sr-acetate was added to block the inlet of the Erlenmeyer flask with a sponge that can inject sunlight and carbon dioxide into the sunlight.
  • the beach was reacted for 7 days at room temperature and laboratory pressure.
  • Example ⁇ 3-1> In order to analyze the geochemical and mineralogical characteristics of the precipitate produced in Example ⁇ 3-1>, XRD and SEM-EDS analysis were performed. After the precipitate produced for the above analysis was separated using a centrifuge, the precipitate was dried at room temperature and then subjected to XRD, XRF and SEM-EDS on the dried precipitate.
  • Example ⁇ 3-1> is fixed in the form of strontium carbonate mineral strontianite, using the enrichment culture of Example ⁇ 2-1>. It was confirmed that the microorganisms derived from red nodules can fix the dissolved strontium in water with strontium carbonate minerals using the principle of metabolism.

Abstract

The present invention relates to a method for biologically fixing the dissolved strontium in contaminated water by means of rhodolith-derived microorganisms. The present invention provides a method for fixing the dissolved strontium in contaminated water, comprising: a step of enrichment culturing the rhodolith-derived microorganisms; and a step of treating the contaminated water with the enrichment cultured microorganisms to enable the microorganisms to react with the contaminated water, thus fixing the dissolved strontium in the contaminated water as a strontium carbonate mineral. The method for biologically fixing the strontium according to the present invention is advantageous in that it employs more simple and eco-friendly processes as compared to technologies for chemically fixing strontium. The method of the present invention fixes strontium at a high rate at room temperature, and is thus sufficient to be applied to an industrial field. The method of the present invention enables strontium to be finally fixed in the form of strontianite, and thus is effective in terms of recycling of resources.

Description

스트론튬 고정 방법 및 이를 위한 조성물Strontium fixation method and composition for same
본 발명은 스트론튬의 고정 방법 및 이를 위한 조성물에 관한 것으로, 보다 구체적으로는 홍조단괴 유래 미생물을 이용하여 오염수 내의 용존 스트론튬을 생물학적으로 고정시키는 방법 및 이를 위한 조성물에 관한 것이다.The present invention relates to a method for fixing strontium and a composition therefor, and more particularly, to a method for biologically fixing dissolved strontium in contaminated water using microorganisms derived from red blood nodules and a composition therefor.
지구 온난화 문제와 더불어 최근 일본에서 발생한 원자력 발전소 사고 이후, 방사성 물질에 의한 환경오염과 그로 인한 인체오염이 심각한 사회문제로 대두되고 있다. 방사성 스트론튬은 핵무기 시험과 원자력 발전 사로로 인하여 환경 중으로 유출 가능한 핵종으로서, 전체의 90 % 이상이 뼈의 수산화인회석(hydroxyapatite) 구조에 침착되어 장기간 존재하면서 뼈와 골수 세포의 DNA에 작용하여 암, 백혈구 감소증, 백혈병 등을 유발시키는 방사독성이 강한 핵종으로 알려져 있다.In addition to the problem of global warming, after the recent nuclear power plant accidents in Japan, environmental pollution by radioactive materials and human pollution has become a serious social problem. Radioactive strontium is a radionuclide that can be released into the environment due to nuclear weapon testing and nuclear power depletion. More than 90% of the total is deposited on the hydroxyapatite structure of bone and acts on the DNA of bone and bone marrow cells for a long time. It is known to be a radiotoxic radionuclide that causes dizziness and leukemia.
일본 원전사고의 등급이 체르노빌 사태와 같은 최악의 수준인 7단계로 오르면서 체르노빌 때 등장했던 방사능 불질이 후쿠시마 주변 토양과 식물에서 나타나고 있다. 일본의 원전사고로 인하여 후쿠시마현 나미에정에서 2점, 이타테촌에서 1점의 토양 샘플을 채취, 분석한 결과 스트로튬-90은 최대 토양 1 kg당 32 베크렐이 검출되었고, 반감기가 50일인 스트론튬-89의 경우 최대 260 베크렐이 검출되었다. 과거 40여년간 선진 각국의 많은 과학자들은 방사선 장애의 예방 약재를 비롯하여 방사성 동위원소의 체내 오염에 대한 배설 촉진제, 장해의 회복을 위한 치료제 등 주로 의과학적 방법을 꾸준하게 연구하여 왔으나, 뚜렷한 성과를 내지 못하고 있는 실정이다.As the level of the Japanese nuclear accident rises to the seventh worst level, such as the Chernobyl crisis, radiological debris that appeared in Chernobyl is appearing in the soil and plants around Fukushima. Due to a nuclear accident in Japan, two soil samples from Namie-cho, Fukushima Prefecture and one point from Itate-son were analyzed. As a result, strontium-90 detected 32 becquerels per kg of soil and had a half-life of 50 days. For 89, up to 260 becquerels were detected. In the past 40 years, many scientists from developed countries have been steadily researching medical methods such as preventive medicines for radiation disorders, excretion accelerators for radioactive isotopes, and treatments for recovery from disorders. It is true.
핵종원소는 이온 상태로 존재하게 되면 음이온이나 양이온의 상태로 쉽게 지하수로 흘러들어 퍼지게 되는데, 일부 미생물들은 이온화 금속이온을 환원 및 침전, 또는 흡착시키는 반응을 일으키고, 금속이온을 고체 형태로 지하수 아래에 침전시킨다. 이러한 미생물들을 이용한 고준위 핵폐기물의 처리를 연구하는 학계에서는 수십만년 동안 지하에 저장되는 고준위 핵물질의 확산을 막는데 중요한 역할을 할 것으로 평가해 왔고, 최근에는 금속이온 환원 미생물과 금속이 다량 함유된 석탄회를 이용하여 이산화탄소 및 금속이온을 격리하는 연구가 진행된 바 있으나, 미생물을 이용하여 이온 상태로 존재하는 스트론튬의 고정에 관한 연구는 거의 이루어지지 않고 있는 실정이다.When the nucleus element is in an ionic state, it easily flows into the groundwater in the form of anions or cations, and some microorganisms cause a reaction to reduce and precipitate or adsorb ionized metal ions, and to deposit the metal ions under the ground water in solid form. Precipitate. Academia studying the treatment of high-level nuclear waste using these microorganisms has been evaluated to play an important role in preventing the spread of high-level nuclear materials stored underground for hundreds of thousands of years. Although studies have been conducted to sequester carbon dioxide and metal ions using coal ash, few studies have been conducted on the fixation of strontium in an ionic state using microorganisms.
본 발명의 목적은 반응속도가 증가된 효율적인 스트론튬 고정 방법 및 이를 위한 조성물을 제공하는 것이다.It is an object of the present invention to provide an efficient strontium fixation method with increased reaction rate and a composition therefor.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 홍조단괴 유래 미생물을 농화배양하는 단계; 및 상기 농화배양된 미생물을 오염수에 처리하고 반응시킴으로써, 오염수 내의 용존 스트론튬을 스트론튬 탄산염광물로 고정시키는 단계를 포함하는 오염수 내 용존 스트론튬의 고정 방법을 제공한다.In order to achieve the above object, one aspect of the present invention comprises the steps of enrichment culture of red blood cells nodules; And treating the concentrated cultured microorganisms in contaminated water and reacting the same, thereby fixing the dissolved strontium in the contaminated water with strontium carbonate minerals.
또한, 상기 목적을 달성하기 위하여 본 발명의 다른 측면은 홍조단괴 유래 미생물들의 농화배양물을 유효성분으로 포함하고, 오염수 내 용존 스트론튬을 스트론튬 탄산염광물로 고정시키는 오염수 내 용존 스트론튬 고정용 조성물을 제공한다.In addition, in order to achieve the above object, another aspect of the present invention comprises a concentrated culture of the microorganisms derived from red algae as an active ingredient, and dissolved strontium fixing composition in contaminated water for fixing the dissolved strontium in contaminated water with strontium carbonate mineral to provide.
본 발명의 생물학적 스트론튬 고정 방법은 화학적 스트론튬 고정화 기술에 비하여 그 고정 공정이 간결하고 친환경적인 장점이 있다. 또한, 상온에서도 빠른 속도로 스트론튬을 고정화할 수 있어 산업현장에 적용되기에 충분하며, 스트론튬이 최종적으로 스트론티아나이트(strontianite, SrCO3)의 형태로 고정되기 때문에 자원의 재활용이라는 측면에서도 효용성을 가진다. Biological strontium immobilization method of the present invention has the advantage that the fixing process is simple and environmentally friendly compared to chemical strontium immobilization technology. Further, the effectiveness in terms of recycling of resources, because it is possible to immobilize the strontium rapidly even at room temperature is sufficient to be applied to the industrial field, strontium are to be finally fixed in the form of strontium thiazol nitro (strontianite, SrCO 3) Have
다만, 본 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 제주도 북제주군 우도의 서광리 해안에서 채취된 홍조단괴의 사진이다.FIG. 1 is a photograph of red nodules collected from Seogwang-ri coast of Udo, Bukjeju-gun, Jeju Island.
도 2는 제주도 북제주군 우도의 서광리 해안에서 채취된 홍조단괴를 X-선 회절 분석(X-ray Diffraction, XRD)한 결과를 나타낸 그래프이다.2 is a graph showing the results of X-ray diffraction analysis (X-ray diffraction, XRD) of the red nodules collected from the Seogwangni coast of Udo, Jeju Island, North Jeju Island.
도 3은 홍조단괴 유래 미생물의 농화배양물 내에 존재하는 미생물들의 16S rRNA-DGGE 분석 결과를 나타내는 계통분석도이다.Figure 3 is a phylogenetic diagram showing the results of 16S rRNA-DGGE analysis of the microorganisms present in the enrichment culture of the blush-derived microorganisms.
도 4는 홍조단괴 유래 미생물의 농화배양물에 의하여 스트론튬 탄산염광물이 생성되는 과정 및 결과를 나타내는 사진이다.Figure 4 is a photograph showing the process and the result of the production of strontium carbonate mineral by the enrichment culture of the microorganisms derived from blush nodules.
도 5는 홍조단괴 유래 미생물의 농화배양물에 의하여 생성된 스트론튬 탄산염광물을 XRD로 분석한 결과를 나타낸 그래프이다.Figure 5 is a graph showing the results of XRD analysis of the strontium carbonate mineral produced by the enrichment culture of the blush-derived microorganisms.
도 6은 홍조단괴 유래 미생물의 농화배양물에 의하여 생성된 스트론튬 탄산염광물을 SEM-EDS로 분석한 결과를 나타낸 그림 및 그래프이다.FIG. 6 is a graph and a graph showing the results of SEM-EDS analysis of strontium carbonate minerals produced by the enrichment culture of red blood cell nodules.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
1. One. 스트론튬의 고정 방법Method of Fixing Strontium
본 발명의 일 측면은 홍조단괴 유래 미생물을 농화배양하는 단계; 및 상기 농화배양된 미생물을 오염수에 처리하고 반응시킴으로써, 오염수 내의 용존 스트론튬을 스트론튬 탄산염광물인 스트론티아나이트(strontianite, SrCO3)로 고정시키는 단계를 포함하는 오염수 내 용존 스트론튬의 고정 방법을 제공한다.One aspect of the present invention comprises the steps of enriching cultures of the algae-derived microbes; And fixing the dissolved strontium in the contaminated water with strontium carbonate mineral strontianite (SrCO 3 ) by treating and reacting the concentrated cultured microorganisms with contaminated water. To provide.
본 발명의 오염수 내 용존 스트론튬의 고정 방법은 1)홍조단괴 유래 미생물을 농화배양하는 단계; 및 2)상기 단계 1)에서 농화배양된 미생물을 오염수에 처리하고 반응시킴으로써, 오염수 내의 용존 스트론튬을 스트론튬 탄산염광물로 고정시키는 단계를 포함한다.Method for fixing the dissolved strontium in contaminated water of the present invention comprises the steps of: 1) enrichment culture of the erythroid-derived microorganisms; And 2) fixing the dissolved strontium in the contaminated water with strontium carbonate minerals by treating and reacting the microorganism enriched in step 1) with contaminated water.
상기 단계 1)의 상기 홍조단괴 유래 미생물의 농화배양은 1’)홍조단괴를 채취하는 단계; 및 2’)상기 단계 1’)에서 채취된 홍조단괴를 D-1 배지(Sanchez-Roman et al., 2009/Sanchez-Roman et al., 2011), MH(Mueller-Hinton) 배지(Rodroguez-Valera et al., 1981) 및 살린(Saline) 배지(Chahal et al., 2011)로 구성되는 군에서 선택되는 어느 하나의 배지에 넣고 호기적 환경에서 배양하는 단계를 포함하는 배양방법에 의하여 수행된다. 상기와 같은 배지의 조성은 하기 표 1과 같다.Thickening culture of the blush-derived microorganisms of step 1) is the step of collecting 1 ') flushed nodules; And 2 ') the red nodule collected in step 1') was treated with D-1 medium (Sanchez-Roman et al., 2009 / Sanchez-Roman et al., 2011), MH (Mueller-Hinton) medium (Rodroguez-Valera). et al., 1981) and Saline medium (Chahal et al., 2011) is carried out by a culture method comprising the step of culturing in any one medium selected from the group consisting of aerobic environment. The composition of the medium as described above is shown in Table 1 below.
표 1
D-1 배지의 조성 MH 배지의 조성 Saline 배지의 조성
성분 함량 성분 함량 성분 함량
yeast extract 1.0 % yeast extract 1.0 % Nutrient broth 3 g/L
proteose peptone 0.5 % proteose peptone 0.5 % NH4Cl 10 g/L
glucose 0.1 % glucose 0.1 % NaHCO3 2.12 g/L
NaCl 3.5 % NaCl 2.5 - 20 % NaCl 0.85 %
CaCl2·2H2O 25 g/L
Table 1
Composition of D-1 Medium Composition of MH Medium Composition of Saline Badge
ingredient content ingredient content ingredient content
yeast extract 1.0% yeast extract 1.0% Nutrient broth 3 g / L
proteose peptone 0.5% proteose peptone 0.5% NH 4 Cl 10 g / L
glucose 0.1% glucose 0.1% NaHCO 3 2.12 g / L
NaCl 3.5% NaCl 2.5-20% NaCl 0.85%
CaCl2 · 2H2O 25 g / L
상기 단계 1’)의 홍조단괴는 세포 내 혹은 세포벽 사이에 탄산염광물인 방해석을 침전시키면서 자라는 홍조류에 의하여 방해석의 주성분인 탄산칼슘이 침전되어 형성된 자생광물의 집합체이다. 즉, 상기 홍조단괴는 홍조류에 의해서 탄산칼슘이 침전되어 형성된 단괴(nodule)를 의미한다. 상기 홍조단괴를 구성하는 탄산칼슘은 홍조류의 생물학적 대사에 의하여 침전되는데, 상기 탄산칼슘은 홍조류 주위에 존재하는 방해석과 같은 탄산염광물에서 유래한다. 상기 탄산염광물은 다양한 원인에 의하여 생성된 것일 수 있지만, 그 중 한 가지 원인으로 탄산염광물 생성 미생물의 대사에 의하여 생성될 수 있고, 이러한 탄산염광물을 생성하는 미생물은 상기 홍조단괴에도 존재할 수 있다. 따라서, 상기 단계 1’)에서 이용되는 홍조단괴는 탄산염광물 생성 미생물의 근원(source)이 된다. The red nodule of step 1 ') is a collection of autogenous minerals formed by precipitation of calcium carbonate, which is the main component of calcite, by red algae growing while calcite, which is a carbonate mineral, is precipitated in cells or between cell walls. In other words, the red nod means a nodule formed by precipitation of calcium carbonate by red algae. The calcium carbonate constituting the red nodules is precipitated by the biological metabolism of the red algae, which is derived from carbonate minerals such as calcite which are present around the red algae. The carbonate mineral may be produced by a variety of causes, one of the causes may be generated by the metabolism of carbonate mineral-producing microorganisms, the microorganisms that produce such a carbonate mineral may be present in the flushing nodules. Therefore, the redness nodule used in step 1 ') is a source of the carbonate-generating microorganisms.
상기 단계 1’)의 홍조단괴는 탄산염광물 생성 미생물을 포함한다. 상기 탄산염광물 생성 미생물은 대사과정에서 수중의 용존 금속 양이온, 더욱 바람직하게는 스트론튬 양이온을 탄산 음이온 또는 탄산수소 음이온과 결합시켜 탄산염광물을 형성하는 프로테우스 미라빌리스(Proteus mirabilis), 마리노박테리움 코랄리이(Marinobacterium coralli)을 비롯한 홍조단괴에 서식하면서 탄산염광물 형성에 기여하는 다양한 미생물을 모두 포함한다.The flushing nodules of step 1 ') include carbonate mineral producing microorganisms. The carbonate mineral-producing microorganism is Proteus mirabilis , Marinobacterium coralalii , which combines dissolved metal cations in water, more preferably strontium cations, with carbonate anions or hydrogen carbonate anions to form carbonate minerals during metabolism. ( Marinobacterium coralli ), including a variety of microorganisms that contribute to the formation of carbonate minerals inhabiting blush nodules.
상기 단계 1’)의 홍조단괴는 크기가 3 ㎝ 내지 10 ㎝인 것을 채취하는 것이 바람직하고, 상기 홍조단괴는 크기가 5 ㎝ 내지 7 ㎝인 것을 채취하는 것이 더욱 바람직하나, 이에 한정되지 아니한다. 상기 홍조단괴의 크기가 3 ㎝ 보다 작으면 상기 탄산염 생성 미생물의 절대적인 수가 적은 문제가 있고, 상기 홍조단괴의 크기가 10 ㎝ 보다 크면 상기 홍조단괴의 단위 면적당 존재하는 탄산염 생성 미생물의 수, 즉 탄산염 생성 미생물의 밀도가 낮아지는 문제가 있기 때문에 상기 단계 2’)에서 미생물을 농화배양하는 시간이 오래 걸리는 문제가 있다. 본 발명의 구체적인 실시예에서는 제주도 북제주군 우도의 서광리 해안에서 채취된 크기가 5 ㎝ 내지 7 ㎝인 홍조단괴를 이용하여 탄산염광물 생성 미생물을 농화배양하였다(도 2 참조).It is preferable that the red nodule of step 1 ') is collected to have a size of 3 cm to 10 cm, and the red nodule is more preferably collected to have a size of 5 cm to 7 cm, but is not limited thereto. If the size of the flushing nodules is less than 3 cm, there is a problem that the absolute number of carbonate-producing microorganisms is less. If the size of the flushing nodules is greater than 10 cm, the number of carbonate-producing microorganisms present per unit area of the flushing nodules, that is, the production of carbonates Since there is a problem that the density of the microorganism is lowered, there is a problem in that it takes a long time to enrich the microorganism in the step 2 '). In a specific embodiment of the present invention, carbonate mineral-producing microorganisms were enriched using red algae nodules collected from 5 cm to 7 cm in size from Seogwang-ri coast in Udo, Bukjeju-gun, Jeju Island (see FIG. 2).
상기 단계 2’)의 배지는 탄산염 생성 미생물을 농화배양하는데 이용되는 배지라면 제한되지 않고 이용될 수 있으나, D-1 배지, MH 배지, 살린(Saline) 배지 등이 이용될 수 있다. 상기와 같은 배지는 탄산염 생성 미생물의 성장에 필요한 효모추출물(yeast extract)과 프로테오스 펩톤(proteose-peptone) 또는 영양 배지(nutrient broth)를 포함하고 있기 때문에, 미생물의 성장에 적합하며, NaCl이 포함되어 있어 바다에서 서식하는 미생물이 성장하기에 적합하다.The medium of step 2 ') may be used without limitation as long as it is a medium used for enriching culture of carbonate-producing microorganisms, but D-1 medium, MH medium, Saline medium, and the like may be used. Such a medium is suitable for the growth of microorganisms because it contains yeast extract and proteose peptone or nutrient broth necessary for the growth of carbonate-producing microorganisms. It is suitable for growing microbes in the ocean.
상기 단계 2’)의 배지에는 칼슘 양이온, 마그네슘 양이온 또는 스트론튬 양이온이 첨가된 것이 바람직하다. 홍조단괴 내에 존재하는 미생물들 중 탄산염광물의 생성에 관여하는 미생물을 농화배양하기 위해서, 상기 미생물들이 생물학적 대사 과정에서 CO3 2-를 탄산염광물로 고정하기 위해 이용하는 칼슘 양이온, 마그네슘 양이온 또는 스트론튬 양이온 등과 같은 양이온을 배지에 첨가하는 것이 바람직하다. 상기 칼슘 양이온, 마그네슘 양이온 또는 스트론튬 양이온의 첨가는 칼슘염, 마그네슘염 또는 스트론튬염을 첨가하는 것이 바람직하고, 상기 칼슘 양이온, 마그네슘 양이온 또는 스트론튬 양이온의 첨가는 칼슘 아세테이트, 마그네슘 아세테이트 및 스트론튬 아세테이트로 구성되는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 첨가하는 것이 더욱 바람직하나, 이에 한정되지 아니한다.It is preferable that calcium cation, magnesium cation or strontium cation is added to the medium of step 2 '). In order to enrich and culture microorganisms involved in the production of carbonate minerals among the microorganisms present in the red algae, calcium cations, magnesium cations, or strontium cations which are used to fix CO 3 2- as carbonate minerals during biological metabolism. It is preferable to add the same cation to the medium. The addition of the calcium cation, magnesium cation or strontium cation is preferably added calcium salt, magnesium salt or strontium salt, and the addition of the calcium cation, magnesium cation or strontium cation is composed of calcium acetate, magnesium acetate and strontium acetate. It is more preferred to add any one or two or more mixtures selected from the group, but is not limited thereto.
상기 단계 2’)의 배양은 홍조단괴가 존재하는 해양환경과 유사한 호기적 환경에서 수행된다. 본 발명의 구체적인 실시예에서 이용한 제주도 우도 유래의 홍조단괴는 주도 우도의 천해환경에서 주로 형성되어 존재하는데, 상기 홍조단괴는 홍조류에 의하여 형성되었다고 보고된 바 있다. 그러나, 상기 홍조단괴를 형성하는 핵의 역할을 하는 물질이 형성되는 메카니즘에 관하여는 밝혀진 바가 없다. 이에, 본 발명자들은 홍조단괴 내에 존재하는 미생물들이 홍조단괴 형성 과정에서 최초 핵의 역할을 할 수 있는 탄산칼슘을 형성할 수 있을 것으로 판단하였다. 따라서, 홍조단괴가 형성될 수 있는 지역의 환경과 유사한 호기성 조건을 형성하여 홍조단괴 내의 미생물을 농화배양하였다.Cultivation of step 2 ') is performed in an aerobic environment similar to the marine environment in which the red nodules are present. Red algae nodules derived from the island of Udo, Jeju Island, which are used in specific embodiments of the present invention, are mainly formed in the shallow water environment of the main islands, and the red algae have been reported to be formed by red algae. However, the mechanism by which the material acting as the nucleus forming the redness nodule is not known. Accordingly, the present inventors determined that the microorganisms present in the red nodules could form calcium carbonate that could serve as the first nucleus in the formation of the red nodules. Therefore, aerobic conditions similar to those of the local environment where red nodules were formed were formed to enrich and culture microorganisms in the red nodules.
본 발명의 구체적인 실시예에서는 제주도 북제주군 우도의 서광리 해안에서 채취된 홍조단괴를 아게이트(Agate)와 몰타르(Mortar)를 이용하여 분쇄한 후, 분쇄된 홍조단괴 약 5 g을 D-1 배지에 넣고, 칼슘 아세테이트 및 마그네슘 아세테이트 혼합물를 주입한 후에 7일 동안 호기성 조건 하에서 배양하여 홍조단괴 유래 미생물의 농화배양물을 수득하였다.In a specific embodiment of the present invention, after the red algae collected from the Seogwang-ri coast of Udo, Jeju-do, Jeju-do, pulverized using Agate and Mortar, about 5 g of the red algae nodules were placed in D-1 medium. After injecting a mixture of calcium acetate and magnesium acetate, the culture was cultured under aerobic conditions for 7 days to obtain a thickening culture of microorganisms derived from red algae.
상기 단계 2)의 농화배양된 미생물은 비브리오 알기놀리티쿠스(Vibrio alginolyticus), 비브리오 오웬시이(Vibrio owensii), 비브리오 쿠이(Vibrio xuii), 비브리오 블니피쿠스(Vibrio vulnificus), 비브리오 플루비알리스(Vibrio fluvialis), 비브리오 네레이스(Vibrio nereis), 프로테우스 미라빌리스(Proteus mirabilis), 마리노박테리움 코랄리이(Marinobacterium coralli), 바고코커스 플루비알리스(Vagococcus fluvialis), 푸소박테리움 페르포에텐스(Fusobacterium perfoetens), 틴달리아 캘리포그니엔시스(Tindallia californiensis), 아르코박터 마리누스(Arcobacter marinus), 파라박테로이데스 고르도니이(Parabacteroides gordonii) 및 프로릭시박터 벨라리이보란스(Prolixibacter bellariivorans)로 구성된 군에서 선택되는 어느 하나 이상의 미생물을 포함할 수 있고, 상기 미생물은 비브리오 알기놀리티쿠스(Vibrio alginolyticus), 비브리오 오웬시이(Vibrio owensii), 비브리오 쿠이(Vibrio xuii), 비브리오 블니피쿠스(Vibrio vulnificus), 비브리오 플루비알리스(Vibrio fluvialis), 비브리오 네레이스(Vibrio nereis), 프로테우스 미라빌리스(Proteus mirabilis) 및 마리노박테리움 코랄리이(Marinobacterium coralli)로 구성된 군에서 선택되는 어느 하나 이상의 미생물을 포함하는 것이 더욱 바람직하나 이에 한정되지 아니한다. 본 발명의 구체적인 실시예에서 상기 홍조단괴 유래 미생물의 농화배양물 내에 존재하는 철환원미생물의 다양성을 확인하기 위하여 16S rRNA-DGGE 분석을 실시한 결과, 프로테우스 미라빌리스(Proteus mirabilis) 및 마리노박테리움 코랄리이(Marinobacterium coralli)를 비롯한 다양한 종의 탄산염광물 침전 미생물이 확인되었다(도 3 참조).Thickening the cultured microorganism is Vibrio find fun tea kusu (Vibrio alginolyticus) of said step 2), Vibrio Owen Shi (Vibrio owensii), Vibrio Cui (Vibrio xuii), Vibrio block nipi kusu (Vibrio vulnificus), Vibrio flat ruby Alice (Vibrio fluvialis), Vibrio four races (Vibrio nereis), Proteus Mira Billy's (Proteus mirabilis), Marino tumefaciens Coral riyi (Marinobacterium coralli), Bago Caucus platform Ruby Alice (Vagococcus fluvialis), Puerto earthy Te Solarium PERE Four Martens (Fusobacterium perfoetens , Tindallia californiensis , Arcobacter marinus , Parabacteroides gordonii , and Prolixibacter bellariivorans . It may include any one or more microorganisms selected, the microorganism is Vibrio alginolitis ( Vib rio alginolyticus , Vibrio owensii , Vibrio xuii , Vibrio vulnificus , Vibrio fluvialis , Vibrio nereis , Proteus mirabilis Proteus mirabilis ) and Marinobacterium coralli ( Marinobacterium coralli ) more preferably include any one or more selected from the group consisting of, but not limited to. In a specific embodiment of the present invention, 16S rRNA-DGGE analysis was carried out to confirm the diversity of the iron-reducing microorganisms present in the enrichment culture of the blush-derived microorganisms, Proteus mirabilis and Marinobacterium coral. Various species of carbonate mineral precipitation microorganisms, including Lii ( Marinobacterium coralli ), have been identified (see Figure 3).
상기 단계 2)의 오염수는 인위적 산업활동에 의해 과다하게 유발된 스트론튬이 용해된 물을 의미하는 것으로, 고정 대상이 되는 스트론튬이 용해되어 있는 해수 또는 담수이다. 상기 고정 대상이 되는 스트론튬은 용해되어 상기 해수 또는 담수 중에서 스트론튬 양이온(Sr2+)의 형태로 존재할 수 있다. 상기 오염수에는 스트론튬 외에도 다양한 음이온이 존재할 수 있다. 특히, 상기 음이온은 탄산 음이온(CO3 2-) 또는 탄산수소 음이온(HCO3 -)일 수 있으나, 이에 한정되지 아니한다. 상기 탄산 음이온 또는 탄산수소 음이온은 상기 오염수 내에 존재하는 스트론튬 양이온과 결합하여 스트론튬 탄산염광물인 스트론티아나이트의 형태로 고정되는데, 본 발명에서는 상기 음이온과 양이온의 결합이 홍조단괴 유래의 미생물의 생물학적 대사에 의해서 촉진된다.The contaminated water of step 2) means water in which strontium is excessively caused by artificial industrial activity, and is seawater or fresh water in which strontium to be fixed is dissolved. Strontium to be fixed may be dissolved and present in the form of strontium cations (Sr 2+ ) in the seawater or fresh water. The contaminated water may have various anions in addition to strontium. In particular, the anion may be a carbonate anion (CO 3 2- ) or a hydrogen carbonate anion (HCO 3 ), but is not limited thereto. The carbonate anion or hydrogen carbonate anion binds to the strontium cation present in the contaminated water and is fixed in the form of strontium carbonate mineral strontianite. In the present invention, the binding of the anion and the cation is biological Promoted by metabolism
상기 단계 2)의 처리는 상기 오염수에 상기 단계 1)에서 농화배양된 홍조단괴 유래 미생물을 주입하는 것으로, 상기 홍조단괴 유래 미생물의 농화배양물은 상기 오염수의 전체 부피에 대하여 0.5 w/v% 내지 1.5 w/v%의 농도로 주입되는 것이 바람직하다. 상기 농화배양물이 상기 오염수의 전체 부피에 대하여 0.5 w/v% 보다 낮은 농도로 주입되면, 오염수 내 용존 스트론튬이 고정되는데 오랜 시간이 소요되는 문제가 있다. 또한 상기 농화배양물이 상기 오염수의 전체 부피에 대하여 1.5 w/v% 보다 높은 농도로 주입되면, 상기 농화배양물 내의 과잉 미생물의 호흡에 의해 용존 산소의 농도가 낮아져 오염수가 혐기성 환경이 되고, 결국에는 부패하게 되는 문제가 있다. 따라서, 오염수에 처리되는 미생물의 양을 적절하게 조절하는 것이 매우 중요한 바, 상기 농화배양물의 농도를 적절히 조절하여 처리할 필요가 있다.The treatment of step 2) is to inject the microorganism enriched in the flushing nodules derived in step 1) into the contaminated water, the enrichment culture of the microorganisms derived from the blush nodules is 0.5 w / v relative to the total volume of the contaminated water It is preferred to inject at a concentration of% to 1.5 w / v%. When the thickening culture is injected at a concentration lower than 0.5 w / v% with respect to the total volume of the contaminated water, there is a problem that it takes a long time to fix the dissolved strontium in the contaminated water. In addition, when the thickening culture is injected at a concentration higher than 1.5 w / v% relative to the total volume of the contaminated water, the concentration of dissolved oxygen is lowered by the respiration of excess microorganisms in the thickening culture, contaminated water becomes an anaerobic environment, In the end there is a problem of corruption. Therefore, it is very important to appropriately control the amount of microorganisms treated in contaminated water, and it is necessary to appropriately control the concentration of the thickening culture.
상기 단계 2)의 처리는 상기 오염수에 상기 단계 1)의 농화배양물과 함께 추가적으로 탄산 음이온(CO3 2-) 또는 탄산수소 음이온(HCO3 -)의 주입이 병행될 수 있다. 특히, 오염수 내 탄산 음이온 또는 탄산수소 음이온의 농도가 낮은 경우, 오염수 내의 스트론튬 양이온이 탄산염광물로 쉽게 고정되지 않기 때문에 이를 보다 원활하게 하기 위하여 상기 탄산 음이온(CO3 2-) 또는 탄산수소 음이온(HCO3 -)을 공급해 주는 것이다. 상기 탄산 음이온 또는 탄산수소 음이온의 공급은 탄산염 또는 탄산수소염을 처리함으로써 수행되는 것이 바람직하나, 이에 한정되지 아니한다.The treatment of step 2) may be performed in addition to the concentrated culture of step 1) in addition to the concentrated culture of the step 1) of the carbonate anion (CO 3 2- ) or hydrogen carbonate anion (HCO 3 ). In particular, when the concentration of carbonate anion or hydrogen carbonate anion in the contaminated water is low, the carbonate anion (CO 3 2- ) or hydrogen carbonate anion in order to make this more smooth since the strontium cation in the contaminated water is not easily fixed to the carbonate mineral which will supply the - (HCO 3). The supply of the carbonate anion or the hydrogen carbonate anion is preferably performed by treating carbonate or hydrogen carbonate, but is not limited thereto.
상기 단계 2)의 반응은 주입된 상기 단계 1)의 농화배양물 내 홍조단괴 유래 미생물이 상기 오염수 내에서 생물학적 대사를 진행하여 오염수 내의 용존 스트론튬을 스트론튬 탄산염광물인 스트론티아나이트의 형태로 고정하는 과정으로서, 상기 농화배양물 내의 홍조단괴 유래 미생물이 호기성 미생물인 바, 산소가 충분히 공급되는 호기성 조건에서 진행되는 것이 바람직하다. 즉, 상기 농화배양물 내 홍조단괴 유래 미생물들은 생물학적 대사를 통해 용존 스트론튬 양이온을 탄산 음이온 또는 탄산수소 음이온과 결합시킴으로써 스트론튬 탄산염광물인 스트론티아나이트를 형성하고, 상기 스트론티아나이트의 형태로 수중 용존 스트론튬을 고정한다. 또한, 상기 반응은 상온, 상압의 조건에서 7일 동안 진행되는 것이 바람직하다. 상기 반응은 상기 농화배양물 내에 포함된 다양한 미생물들의 복합적인 상호작용을 통하여 보다 빠른 속도로 탄산염으로 고정한다.The reaction of step 2) is performed by the microorganisms in which the blush-derived microorganisms in the thickening culture of step 1) are injected into the contaminated water to perform biological metabolism, thereby dissolving the dissolved strontium in the contaminated water in the form of strontium carbonate mineral strontium carbonate. As a process of fixation, since the blush-derived microorganisms in the thickening culture are aerobic microorganisms, it is preferable to proceed under aerobic conditions in which oxygen is sufficiently supplied. In other words, the microorganisms derived from the blush nodules in the thickening culture form strontium carbonate mineral strontite by combining dissolved strontium cations with carbonate anions or hydrogen carbonate anions through biological metabolism, and in water in the form of strotianite Secure dissolved strontium. In addition, the reaction is preferably carried out for 7 days at room temperature, atmospheric pressure conditions. The reaction is fixed to carbonate at a faster rate through the complex interaction of various microorganisms contained in the thickening culture.
상기 단계 2)의 탄산염광물은 스트론튬 탄산염광물인 스트론티아나이트(strontianite, SrCO3)일 수 있으나, 상기 오염수 내에 스트론튬 양이온의 농도 보다 칼슘 양이온 또는 마그네슘 양이온의 농도가 상대적으로 높으면 탄산칼슘 또는 탄산 마그네슘으로 구성되는 방해석으로 탄산염광물이 생성된다.The carbonate mineral of step 2) may be strontium carbonate mineral strontianite (SrCO 3 ), but when the concentration of calcium cations or magnesium cations is higher than that of strontium cations in the contaminated water, calcium carbonate or carbonate A calcite composed of magnesium forms carbonate minerals.
본 발명의 바람직한 실시예에서는 1.0 w/v%의 홍조단괴 유래 미생물 농화배양물을 100 mmol의 스트론튬-아세테이트와 함께 오염수에 첨가하여 7일 동안 배양한 결과, 4일이 경과하면서부터 삼각플라스크 내의 탁도가 증가하면서 먼저 하얀 침전물이 생성되기 시작하였고, 7일이 경과하면서 부터는 상당량의 침전물이 관찰됨을 확인하였다(도 4 참조). 또한, 상기 침전물의 XRD 분석 결과, d(104) 피크는 3.52 Å으로 측정되어 스트론티아나이트인 것으로 확인되었고(도 5 참조), SEM-EDS 분석 결과, 상기 침전물이 구형의 스트론티아나이트를 관찰할 수 있었다(도 6 참조).In a preferred embodiment of the present invention, 1.0 w / v% of the blush nodules microbial enrichment culture was added to the contaminated water with 100 mmol of strontium-acetate and incubated for 7 days, after 4 days in the Erlenmeyer flask As the turbidity increased, white precipitates began to form, and it was confirmed that a considerable amount of precipitates were observed after 7 days (see FIG. 4). In addition, XRD analysis of the precipitate, the peak of the d (104) was determined to be strotianite measured by 3.52 kPa (see Fig. 5), SEM-EDS analysis, the precipitate is a spherical strontite Observation was possible (see FIG. 6).
2. 2. 스트론튬의 고정용 조성물Composition for Fixing Strontium
본 발명의 다른 측면은 홍조단괴 유래 미생물들의 농화배양물을 유효성분으로 포함하고, 오염수 내 용존 스트론튬을 스트론튬 탄산염광물인 스트론티아나이트의 형태로 고정시키는 오염수 내 용존 스트론튬 고정용 조성물을 제공한다.Another aspect of the present invention provides a composition for fixation of dissolved strontium in contaminated water comprising a concentrated culture of microorganisms derived from red blood nodule as an active ingredient, and fixing dissolved strontium in contaminated water in the form of strontium carbonate mineral strontiumite. do.
본 발명의 오염수 내 용존 스트론튬 고정용 조성물은 홍조단괴 유래 미생물들의 농화배양물을 유효성분으로 포함한다.Dissolved strontium immobilization composition in contaminated water of the present invention comprises a thickening culture of the microorganisms derived from blush nodule as an active ingredient.
상기 오염수 내 용존 스트론튬 고정용 조성물은 상기 "1. 스트론튬의 고정 방법"에서 구체적으로 설명된 스트론튬 고정 방법에 이용되는 조성물이다. 따라서, 상기 조성물의 이용 방법에 대한 설명은 상기 "1. 스트론튬의 고정 방법 "의 설명을 원용하고, 이하에서는 본 발명의 조성물에 대한 다른 특성만을 설명하도록 한다. The composition for fixing the dissolved strontium in the contaminated water is a composition used in the strontium fixing method described in detail in the " 1. Strontium fixing method". Therefore, the description of the method of using the composition uses the description of " 1. How to fix the strontium ", and will be described below only the other properties of the composition of the present invention.
상기 조성물의 제조에 이용되는 홍조단괴는 상기 "1. 스트론튬의 고정 방법 "에서 구체적으로 설명된 바와 동일하다. 따라서, 상기 조성물의 제조에 이용되는 홍조단괴 또한 탄산염광물 생성 미생물을 포함하고, 상기 홍조단괴 유래 미생물은 대사과정에서 수중의 용존 금속 양이온을 탄산 음이온 또는 탄산수소 음이온과 결합시켜 탄산염광물을 형성하는 프로테우스 미라빌리스(Proteus mirabilis), 마리노박테리움 코랄리이(Marinobacterium coralli)을 비롯한 홍조단괴에 서식하면서 탄산염광물 형성에 기여하는 다양한 미생물을 의미한다.Flushing nodule used in the preparation of the composition is the same as described in detail in " 1. Method of Fixing Strontium ". Therefore, the red algae used in the preparation of the composition also includes carbonate mineral producing microorganisms, and the red algae-derived microorganisms are proteus which combines dissolved metal cations in water with carbonate anions or hydrogen carbonate anions to form carbonate minerals during metabolism. It refers to a variety of microorganisms that contribute to the formation of carbonate minerals while inhabiting red nodules including Proteus mirabilis and Marinobacterium coralli .
*상기 농화배양물은 상기 "1. 스트론튬의 고정 방법 "에서 구체적으로 설명된 홍조단괴 유래 미생물의 농화배양 방법에 의하여 제조될 수 있으며, 보다 바람직하게는 상기 단계 1’) 및 단계 2’)를 포함하는 농화배양 방법에 의하여 제조될 수 있다. 상기 농화배양물은 브리오 알기놀리티쿠스(Vibrio alginolyticus), 비브리오 오웬시이(Vibrio owensii), 비브리오 쿠이(Vibrio xuii), 비브리오 블니피쿠스(Vibrio vulnificus), 비브리오 플루비알리스(Vibrio fluvialis), 비브리오 네레이스(Vibrio nereis), 프로테우스 미라빌리스(Proteus mirabilis), 마리노박테리움 코랄리이(Marinobacterium coralli), 바고코커스 플루비알리스(Vagococcus fluvialis), 푸소박테리움 페르포에텐스(Fusobacterium perfoetens), 틴달리아 캘리포그니엔시스(Tindallia californiensis), 아르코박터 마리누스(Arcobacter marinus), 파라박테로이데스 고르도니이(Parabacteroides gordonii) 및 프로릭시박터 벨라리이보란스(Prolixibacter bellariivorans)로 구성된 군에서 선택되는 어느 하나 이상의 미생물을 포함할 수 있으나, 이에 한정되지 아니한다. 본 발명의 구체적인 실시예에서 상기 홍조단괴 유래 미생물의 농화배양물 내에 존재하는 철환원미생물의 다양성을 확인하기 위하여 16S rRNA-DGGE 분석을 실시한 결과, 프로테우스 미라빌리스(Proteus mirabilis) 및 마리노박테리움 코랄리이(Marinobacterium coralli)를 비롯한 다양한 종의 미생물이 확인되었다(도 3 참조).* The thickening culture can be prepared by the thickening culture method of the microorganisms derived from the blush nodules described in detail in the " 1. strontium fixing method ", more preferably the steps 1 ') and 2') It can be prepared by a thickening culture method comprising. The concentrated culture is brioche find fun tea kusu (Vibrio alginolyticus), Vibrio Owen Shi (Vibrio owensii), Vibrio Cui (Vibrio xuii), Vibrio block nipi kusu (Vibrio vulnificus), Vibrio flat ruby Alice (Vibrio fluvialis), Vibrio Yes Vibrio nereis , Proteus mirabilis , Marinobacterium coralli , Vagococcus fluvialis , Fusobacterium perfoetens , Tyndalia One or more selected from the group consisting of Tindallia californiensis , Arcobacter marinus , Parabacteroides gordonii , and Prolixibacter bellariivorans It may include a microorganism, but is not limited thereto. In a specific embodiment of the present invention, 16S rRNA-DGGE analysis was carried out to confirm the diversity of the iron-reducing microorganisms present in the enrichment culture of the blush-derived microorganisms, Proteus mirabilis and Marinobacterium coral. Microorganisms of various species have been identified including Lii ( Marinobacterium coralli ) (see Figure 3).
상기 조성물은 상기 홍조단괴 유래 미생물의 농화배양물에 탄산 음이온(CO3 2-) 또는 탄산수소 음이온(HCO3 -)을 추가적으로 포함할 수 있다. 특히, 오염수 내 탄산 음이온 또는 탄산수소 음이온의 농도가 낮은 경우, 오염수 내의 스트론튬 양이온이 탄산염광물로 쉽게 고정되지 않기 때문에 이를 보다 원활하게 하기 위하여 상기 탄산 음이온(CO3 2-) 또는 탄산수소 음이온(HCO3 -)을 공급해 주는 것으로서, 상기 조성물에 탄산염 또는 탄산수소염을 추가함으로써 포함될 수 있다. The composition may further include a carbonate anion (CO 3 2- ) or a hydrogen carbonate anion (HCO 3 ) in the thickening culture of the microorganism derived from the red blood nodules. In particular, when the concentration of carbonate anion or hydrogen carbonate anion in the contaminated water is low, the carbonate anion (CO 3 2- ) or hydrogen carbonate anion in order to make this more smooth since the strontium cation in the contaminated water is not easily fixed to the carbonate mineral As (HCO 3 ) is supplied, it may be included by adding carbonate or hydrogen carbonate to the composition.
상기 오염수는 인위적 산업활동에 의해 과다하게 유발된 스트론튬 금속이 용해된 물을 의미하는 것으로, 고정 대상이 되는 스트론튬이 용해되어 있는 해수 또는 담수이다. 상기 고정 대상이 되는 스트론튬은 용해되어 상기 해수 또는 담수 중에서 스트론튬 양이온(Sr2+)의 형태로 존재할 수 있다. 상기 오염수에는 스트론튬 외에도 다양한 음이온이 존재할 수 있다. 특히, 상기 음이온은 탄산 음이온(CO3 2-) 또는 탄산수소 음이온(HCO3 -)일 수 있으나, 이에 한정되지 아니한다. 상기 탄산 음이온 또는 탄산수소 음이온은 상기 오염수 내에 존재하는 스트론튬 양이온과 결합하여 스트론튬 탄산염광물인 스트론티아나이트(strontianite, SrCO3)의 형태로 고정되는데, 본 발명에서는 상기 음이온과 양이온의 결합이 홍조단괴 유래의 미생물의 생물학적 대사에 의해서 촉진된다. 상기 조성물에 포함된 농화배양물 내 다양한 미생물들은 복합적인 상호작용을 통하여 상기 음이온과 양이온의 결합을 보다 효과적으로 촉진할 수 있다.The contaminated water refers to water in which strontium metal is excessively caused by artificial industrial activity, and is seawater or fresh water in which strontium to be fixed is dissolved. Strontium to be fixed may be dissolved and present in the form of strontium cations (Sr 2+ ) in the seawater or fresh water. The contaminated water may have various anions in addition to strontium. In particular, the anion may be a carbonate anion (CO 3 2- ) or a hydrogen carbonate anion (HCO 3 ), but is not limited thereto. The carbonate anion or hydrogen carbonate anion binds to the strontium cation present in the contaminated water and is fixed in the form of strontium carbonate mineral strontianite (SrCO 3 ), in which the binding of the anion and the cation is flushed. It is promoted by the biological metabolism of nodules-derived microorganisms. Various microorganisms in the thickening culture included in the composition can more effectively promote the binding of the anion and cation through a complex interaction.
상기 조성물이 상기 오염수 내에 처리되면, 상기 조성물에 포함된 농화배양물 내 홍조단괴 유래 미생물이 상기 오염수 내에서 생물학적 대사를 진행하여 오염수 내의 용존 스트론튬을 스트론튬 탄산염광물의 형태로 고정하게 되고, 상기 스트론튬 탄산염광물은 스트론티아나이트일 수 있다. When the composition is treated in the contaminated water, the microorganisms derived from the blush nodules in the thickening cultures contained in the composition undergo biological metabolism in the contaminated water to fix dissolved strontium in the contaminated water in the form of strontium carbonate minerals, The strontium carbonate mineral may be strontianite.
본 발명의 바람직한 실시예에서는 1.0 w/v%의 홍조단괴 유래 미생물 농화배양물을 100 mmol의 스트론튬-아세테이트와 함께 오염수에 첨가하여 7일 동안 배양한 결과, 4일이 경과하면서부터 삼각플라스크 내의 탁도가 증가하면서 먼저 하얀 침전물이 생성되기 시작하였고, 7일이 경과하면서 부터는 상당량의 침전물이 관찰됨을 확인하였다(도 4 참조). 또한, 상기 침전물의 XRD 분석 결과, d(104) 피크는 3.52 Å으로 측정되어 스트론티아나이트인 것으로 확인되었고(도 5 참조), SEM-EDS 분석 결과, 상기 침전물이 구형의 스트론티아나이트를 관찰할 수 있었다(도 6 참조).In a preferred embodiment of the present invention, 1.0 w / v% of the blush nodules microbial enrichment culture was added to the contaminated water with 100 mmol of strontium-acetate and incubated for 7 days, after 4 days in the Erlenmeyer flask As the turbidity increased, white precipitates began to form, and it was confirmed that a considerable amount of precipitates were observed after 7 days (see FIG. 4). In addition, XRD analysis of the precipitate, the peak of the d (104) was determined to be strotianite measured by 3.52 kPa (see Fig. 5), SEM-EDS analysis, the precipitate is a spherical strontite Observation was possible (see FIG. 6).
이하, 본 발명을 실시예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다.However, the following examples are only for better understanding of the present invention, and the present invention is not limited to the following examples.
[실시예 1]Example 1
홍조단괴의 채취 및 분석Collection and Analysis of Red Nodules
<1-1> <1-1> 우도 주변 해수의 특성 분석Characterization of Seawater around Udo Island
제주도 우도 각 해변 해수의 화학적 특성을 알아보기 위하여 pH를 측정하고, ICP-AES(inductively coupled plasma-atomic emission spectrometry) 분석을 실시하였다. 해수의 pH는 약 50 ㎖의 해수시료를 채취한 다음, Orion pH meter를 이용하여 측정하였다. 상기 pH meter는 pH가 각각 4, 7, 10인 용액으로 pH를 측정한 후 보정하여, 해수의 pH를 측정하였다. 해수 내 존재하는 양이온의 양을 측정하기 위하여 해수시료를 채취한 후에 침전물이 형성되지 않도록 질산을 1 ㎖를 추가한 후에 기초과학지원연구원 서울분소에 분석을 의뢰하여 측정하였다.In order to investigate the chemical characteristics of seawater at each beach in Udo, Jeju Island, pH was measured and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis was performed. The pH of seawater was measured by using an Orion pH meter after collecting about 50 ml of seawater sample. The pH meter was calibrated after measuring the pH in a solution of pH 4, 7, 10, respectively, to measure the pH of seawater. In order to measure the amount of cations present in seawater, 1 ml of nitric acid was added to prevent the formation of sediments after seawater samples were collected.
pH 측정 결과, 제주도 우도 주변 해수는 평균적으로 5 내지 8 정도로 약산성과 중성 사이인 것으로 측정되었다(표 2). 또한 ICP-AES 분석 결과, 제주도 우도 주변 해수 내의 칼슘 이온(Ca2+) 농도는 약 400 ㎎/ℓ인 것으로 측정되었다(표 3).As a result of the pH measurement, the seawater around Jeju Island's Udo Island was found to be between about acidic and neutral at an average of 5 to 8 (Table 2). In addition, as a result of ICP-AES analysis, the concentration of calcium ions (Ca 2+ ) in the seawater around Jeju-do was about 400 mg / l (Table 3).
일반적으로 탄산염 광물인 방해석(CaCO3)이 염기성 환경(pH= 9.3 내지 9.8) 및 높은 포화도(Saturation Index = 1 내지 1.4)(포화도란, Ca와 CO3 2-의 농도가 높아 화학적으로 CaCO3가 침전될 수 있는 농도를 의미한다.)의 상온 조건에서 화학적으로 형성된다는 점을 고려할 때, 제주도 우도 해변 중, 서쪽 서광리 해빈에서 발견되는 홍조단괴는 화학적인 작용이 아닌 다른 생성원인에 의하여 형성되었음을 알 수 있다.In general the carbonate minerals in the calcite (CaCO 3) is a basic environment (pH = 9.3 to 9.8) and high saturation (Saturation Index = 1 to 1.4) (degree of saturation is, Ca and CO 3 2- concentrations higher chemically CaCO 3 of Considering that it is chemically formed at room temperature conditions, it is known that redness nodules found at Seogwang-ri beach in West Seogwi-ri, Jeju Island, were formed by other causes than chemical action. Able to know.
표 2
제주도 우도 주변 해수의 pH 측정 결과
위치 pH
걸벌레 해빈(동쪽) 7
서광리 해빈(서쪽) 8
돌칸이 해빈(남쪽) 7
하고수동 해빈(북쪽) 5
TABLE 2
PH measurement results of seawater around Jeju Island, Udo
location pH
Beetle Beach (East) 7
Seogwang-ri Beach (West) 8
Dolkan Beach (South) 7
Hago manual beach (north) 5
표 3
제주도 우도 주변 해수의 ICP-AES 측정 결과
단위: ㎎/ℓ
원소 걸벌레 해빈(동쪽) 서광리 해빈(서쪽) 하고수동 해빈(북쪽)
Si < 0.01 0.34 < 0.01
Sr 6.25 6.25 6.31
Ca 406.7 396.1 405.8
Mg 1,264 1,225 1,239
K 393.2 380.3 378.7
Na 10340 10240 10270
S 877.5 873.6 910.7
Cl 21550 19540 19970
TABLE 3
ICP-AES measurement result of seawater around Udo, Jeju Island
Unit: mg / l
element Beetle Beach (East) Seogwang-ri Beach (West) Hago manual beach (north)
Si <0.01 0.34 <0.01
Sr 6.25 6.25 6.31
Ca 406.7 396.1 405.8
Mg 1,264 1,225 1,239
K 393.2 380.3 378.7
Na 10340 10240 10270
S 877.5 873.6 910.7
Cl 21550 19540 19970
<1-2> <1-2> 홍조단괴의 채취Collection of Flush Nodules
제주도 우도 서쪽 서광리 해빈 근처에서 간조 때를 이용하여 해수 안에 존재하는 크기 5 ㎝ 내지 7 ㎝의 홍조단괴를 손으로 직접 채취하였다(도 1).The red algae of the size of 5 cm to 7 cm present in seawater were collected by hand using a low tide near a beach near Seogwang-ri west of Udo, Jeju Island (FIG. 1).
[실시예 2]Example 2
홍조단괴 유래 미생물의 농화배양 및 분석Thickening Culture and Analysis of Bacterium-derived Bacteria
<2-1> <2-1> 홍조단괴 유래 미생물의 농화배양 방법Thickening and Culture Method of Red Nodules Derived Microorganisms
상기 실시예 <1-2>에서 채취한 홍조단괴를 Agate와 Mortar를 이용하여 분쇄하였다. 상기 홍조단괴의 분쇄물 5 g을 상기 표 1과 같은 조성의 D-1 배지 100 ㎖가 담긴 500 ㎖의 삼각 플라스크병에 주입하고, 산소와 이산화탄소의 유입이 가능한 스펀지로 삼각플라스크의 입구를 막은 후에 햇빛이 비치는 상온 및 상압의 실험실 조건에서 7일 동안 배양하여, 탄산염 생성 미생물을 농화배양하였다(도 2). 상기 탄산염 생성 미생물의 농화배양에 이용된 D-1 배지는 121 ℃에서 20분 동안 고압멸균한 다음 이용하였다.Flushing nodules collected in Example <1-2> were ground using Agate and Mortar. 5 g of the pulverized product of the red blood nodule was injected into a 500 ml Erlenmeyer flask bottle containing 100 ml of D-1 medium having the composition shown in Table 1 above, and the inlet of the Erlenmeyer flask was blocked with a sponge capable of introducing oxygen and carbon dioxide. After culturing for 7 days at room temperature and atmospheric pressure in sunlight, carbonate-producing microorganisms were enriched (FIG. 2). The D-1 medium used for the enrichment culture of the carbonate-producing microorganism was used after autoclaving at 121 ° C. for 20 minutes.
<2-2> <2-2> 홍조단괴 유래 탄산염 생성 미생물의 농화배양물에 대한 분석Analysis of Thickening Culture of Carbonate Producing Microorganisms from Red Nodules
상기 실시예 <2-1>에서 농화배양한 홍조단괴 유래 탄산염 생성 미생물의 농화배양물 내에 존재하는 철환원미생물의 다양성을 확인하기 위하여 농화배양된 미생물에서 핵산을 추출한 후 PCR을 이용하여 16S rRNA 분석을 실시하였다. 추출된 미생물의 핵산 1 ㎕를 주형으로 하여 universal primer로 알려진 9F (5'-GAG TTT GAT CCT GGC TCA G-3'), 1542R (5'-AGA AAG GAG GTG ATC CAG CC-3') 프라이머, 0.1 ㎕의 Taq 폴리머라제(Taq polymerase) (5 unit/㎕, TAKARA), 2 ㎕의 10X PCR 버퍼 및 1.6 ㎕의 dNTP의 반응 혼합물 20 ㎕를 만들어 세균의 16S rRNA의 일부를 PCR로 증폭하였다. PCR 증폭 산물은 1% 아가로즈 젤 전기영동(Agarose gel electrophrosis)시킨 뒤 EtBr(ethidium bromide)로 염색(stain)한 다음, PCR 산물의 생성여부를 확인하였다. 상기 PCR 산물은 다시 GC 클램프(clamp)가 붙은 프라이머를 이용하여 증폭한 후, DGGE(Denaturing Gradient Gel Electrophoresis)를 실시하였다. 상기 DGGE상의 밴드(band)를 추출하여 염기서열 분석을 수행하였다.16S rRNA analysis using PCR after extracting nucleic acid from the enriched microorganism to confirm the diversity of the iron-reducing microorganism present in the enriched culture of the blush-derived carbonate-producing microorganisms enriched in Example <2-1> Was carried out. 9F (5'-GAG TTT GAT CCT GGC TCA G-3 '), 1542R (5'-AGA AAG GAG GTG ATC CAG CC-3') primer, known as universal primer, 20 μl of a reaction mixture of 0.1 μl of Taq polymerase (5 unit / μl, TAKARA), 2 μl of 10 × PCR buffer and 1.6 μl of dNTP was made to amplify a portion of the bacterial 16S rRNA by PCR. PCR amplification products were subjected to 1% agarose gel electrophoresis, stained with EtBr (ethidium bromide), and then PCR product generation was confirmed. The PCR product was amplified again using a primer with a GC clamp, and then subjected to Denaturing Gradient Gel Electrophoresis (DGGE). The band on the DGGE was extracted and subjected to sequencing.
그 결과, 프로테우스 미라빌리스(Proteus mirabilis) 및 마리노박테리움 코랄리이(Marinobacterium coralli)를 비롯하여, 비브리오 알기놀리티쿠스(Vibrio alginolyticus), 비브리오 오웬시이(Vibrio owensii), 비브리오 쿠이(Vibrio xuii), 비브리오 블니피쿠스(Vibrio vulnificus), 비브리오 플루비알리스(Vibrio fluvialis), 비브리오 네레이스(Vibrio nereis), 바고코커스 플루비알리스(Vagococcus fluvialis), 푸소박테리움 페르포에텐스(Fusobacterium perfoetens), 틴달리아 캘리포그니엔시스(Tindallia californiensis), 아르코박터 마리누스(Arcobacter marinus), 파라박테로이데스 고르도니이(Parabacteroides gordonii) 및 프로릭시박터 벨라리이보란스(Prolixibacter bellariivorans) 등, 총 234 종의 미생물이 확인되었다(도 3).As a result, Proteus Mira Billy's (Proteus mirabilis) and Marino tumefaciens Coral riyi (Marinobacterium coralli) the well, Vibrio find fun tee Syracuse (Vibrio alginolyticus), Vibrio Owen Shi (Vibrio owensii), Vibrio Cuiaba (Vibrio xuii), Vibrio Vibrio vulnificus , Vibrio fluvialis , Vibrio nereis , Vagococcus fluvialis , Fusobacterium perfoetens , Tyndalia A total of 234 microorganisms were identified, including Tindallia californiensis , Arcobacter marinus , Parabacteroides gordonii , and Prolixibacter bellariivorans . (Fig. 3).
상기와 같은 미생물들은 홍조단괴의 생성에 한 역할을 하였을 것으로 예측된다. 즉, 상기와 같은 홍조단괴는 상기와 같은 미생물들, 특히 탄산염 생성 미생물들의 대사에 의하여 수중의 용존 스트론튬이 수중의 탄산 음이온 또는 탄산수소 음이온과 결합하여 고정되고 스트론튬 탄산염광물이 형성되는 메커니즘에 의해 형성되는 것으로 판단된다. 또한, 이러한 스트론튬 탄산염광물의 형성 과정은 상기와 같은 다양한 미생물들은 복합적인 상호작용을 통하여 보다 빠른 속도로 탄산염으로 고정하는 것으로 판단된다.Such microorganisms are expected to play a role in the production of red nodules. In other words, such a nodule is formed by a mechanism in which dissolved strontium in water is fixed by binding with a carbonate anion or hydrogen carbonate anion in water by the metabolism of such microorganisms, in particular carbonate-producing microorganisms, and a strontium carbonate mineral is formed. It seems to be. In addition, the formation process of the strontium carbonate mineral is determined that the various microorganisms as described above are fixed to the carbonate at a faster rate through a complex interaction.
[실시예 3]Example 3
수중 용존 스트론튬의 고정 및 스트론튬 탄산염광물의 합성Fixation of Dissolved Strontium in Water and Synthesis of Strontium Carbonate Minerals
<3-1> <3-1> 수중 용존 스트론튬의 고정 및 스트론튬 탄산염광물의 합성Fixation of Dissolved Strontium in Water and Synthesis of Strontium Carbonate Minerals
표 1과 같은 조성의 고압멸균한 D-1 배지 100 ㎖가 담긴 500 ㎖의 삼각 플라스크병에 상기 실시예 <2-1>에서 농화배양한 배양물(이하, '농화배양물'이라 한다.)을 상기 배지의 부피를 기준으로 1 w/v%의 농도로 접종한 후, 100 mmol의 Sr-아세테이트를 첨가하여 햇빛이 비치는 산소와 이산화탄소의 유입이 가능한 스펀지로 삼각플라스크의 입구를 막은 후에 햇빛이 비치는 상온 및 상압의 실험실 조건에서 7일 동안 반응시켰다.Culture enriched in the Example <2-1> in a 500 ml Erlenmeyer flask bottle containing 100 ml of autoclaved D-1 medium having the composition shown in Table 1 (hereinafter, referred to as "enrichment culture"). Was inoculated at a concentration of 1 w / v% based on the volume of the medium, and 100 mmol of Sr-acetate was added to block the inlet of the Erlenmeyer flask with a sponge that can inject sunlight and carbon dioxide into the sunlight. The beach was reacted for 7 days at room temperature and laboratory pressure.
그 결과, 4일이 경과하면서부터 삼각플라스크 내의 탁도가 증가하면서 가장 먼저 하얀 침전물이 생성되기 시작하였고, 7일이 경과하면서 부터는 상당량의 침전물이 관찰되었다(도 4).As a result, as the turbidity in the Erlenmeyer flask was increased after 4 days, white precipitates began to form, and a considerable amount of precipitate was observed after 7 days (Fig. 4).
<3-2> <3-2> 생성된 침전물의 지화학적 및 광물학적 특성 분석Geochemical and Mineralogical Characterization of the Formed Sediments
상기 실시예 <3-1>에서 생성된 침전물의 지화학적 및 광물학적 특성을 분석하기 위하여, XRD 및 SEM-EDS 분석을 실시하였다. 상기와 같은 분석을 위하여 생성된 침전물을 원심분리기를 이용하여 분리한 후에, 침전물을 상온에서 건조한 후에 건조된 침전물에 대하여 XRD, XRF 및 SEM-EDS을 실시하였다.In order to analyze the geochemical and mineralogical characteristics of the precipitate produced in Example <3-1>, XRD and SEM-EDS analysis were performed. After the precipitate produced for the above analysis was separated using a centrifuge, the precipitate was dried at room temperature and then subjected to XRD, XRF and SEM-EDS on the dried precipitate.
생성된 침전물의 XRD 분석 결과, d(104) 피크는 3.52 Å으로 측정되어 스트론티아나이트인 것으로 확인되었다(도 5). 또한 SEM-EDS 분석 결과, 상기 침전물이 구형의 스트론티아나이트를 관찰할 수 있었다(도 6).As a result of XRD analysis of the resulting precipitate, the peak of d (104) was measured to be 3.52 mm 3 and found to be strotianite (FIG. 5). In addition, SEM-EDS analysis showed that the precipitate was spherical Strontianite (Fig. 6).
상기와 같은 결과로부터, 상기 실시예 <3-1>에서 생성된 침전물은 스트론튬 탄산염광물인 스트론티아나이트의 형태로 고정됨을 알 수 있고, 상기 실시예 <2-1>의 농화배양물을 이용하여 홍조단괴 유래 미생물들이 대사에 의해 홍조단괴를 형성하는 원리를 이용하여 수중의 용존 스트론튬을 스트론튬 탄산염광물로 고정시킬 수 있음을 확인하였다.From the above results, it can be seen that the precipitate produced in Example <3-1> is fixed in the form of strontium carbonate mineral strontianite, using the enrichment culture of Example <2-1>. It was confirmed that the microorganisms derived from red nodules can fix the dissolved strontium in water with strontium carbonate minerals using the principle of metabolism.
상기에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실시예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.In the above described exemplary embodiments of the present invention by way of example, the scope of the present invention is not limited only to the specific embodiments as described above, those skilled in the art to the scope described in the claims of the present invention It will be possible to change accordingly.

Claims (6)

  1. 홍조단괴 유래 미생물을 농화배양하는 단계; 및Enriching the redness nodules-derived microorganisms; And
    상기 농화배양된 미생물을 오염수에 처리하고 호기성 조건에서 반응시키는 단계를 포함하고,Treating the enriched microorganisms with contaminated water and reacting under aerobic conditions;
    상기 오염수 내 용존 스트론튬은 스트론튬 탄산염광물인 스트론티아나이트(strontianite, SrCO3)로 고정되는 것인 오염수 내 용존 스트론튬의 고정 방법.The dissolved strontium in the contaminated water is fixed with strontium carbonate mineral strontiumite (strontianite, SrCO 3 ) is a method of fixing the dissolved strontium in contaminated water.
  2. 제1항에 있어서, 상기 미생물을 농화배양하는 단계는According to claim 1, wherein the step of enriching the microorganism
    홍조단괴를 채취하는 단계; 및Harvesting redness nodules; And
    상기 채취된 홍조단괴를 칼슘염 또는 마그네슘염이 포함된 D-1 배지, MH 배지 및 살린(Saline) 배지로 구성되는 군에서 선택되는 어느 하나의 배지에 넣고 호기적 환경에서 배양하는 단계를 포함하는 것을 특징으로 하는 오염수 내 용존 스트론튬의 고정 방법.And the step of culturing in an aerobic environment by putting the sampled flushing nodules into any one medium selected from the group consisting of calcium salt or magnesium salt, D-1 medium, MH medium and Saline medium. Method for fixing dissolved strontium in contaminated water, characterized in that.
  3. 제2항에 있어서, 상기 칼슘염 또는 마그네슘염은 칼슘 아세테이트, 마그네슘 아세테이트, 및 칼슘아세테이트와 마그네슘 아세테이트의 혼합물로 구성되는 군에서 선택되는 적어도 어느 하나인 것을 특징으로 하는 오염수 내 용존 스트론튬의 고정 방법.The method of claim 2, wherein the calcium salt or magnesium salt is at least one selected from the group consisting of calcium acetate, magnesium acetate, and a mixture of calcium acetate and magnesium acetate. .
  4. 제1항에 있어서, 상기 농화배양된 미생물은 상기 오염수의 전체 부피에 대하여 0.5 w/v% 내지 1.5 w/v%의 농도로 처리되는 것을 특징으로 하는 오염수 내 용존 스트론튬의 고정 방법.The method of claim 1, wherein the enriched microorganism is treated at a concentration of 0.5 w / v% to 1.5 w / v% based on the total volume of the contaminated water.
  5. 홍조단괴 유래 미생물들의 농화배양물을 유효성분으로 포함하고, 오염수 내 용존 스트론튬을 스트론튬 탄산염광물인 스트론티아나이트(strontianite, SrCO3)로 고정시키는 오염수 내 용존 스트론튬 고정용 조성물.A composition for immobilizing dissolved strontium in contaminated water, which contains a concentrated culture of red blood nodule-derived microorganisms as an active ingredient, and fixes the dissolved strontium in contaminated water with strontium carbonate mineral strontianite (SrCO 3 ).
  6. 제5항에 있어서, 상기 홍조단괴 유래 미생물의 농화배양물은 비브리오 알기놀리티쿠스(Vibrio alginolyticus), 비브리오 오웬시이(Vibrio owensii), 비브리오 쿠이(Vibrio xuii), 비브리오 블니피쿠스(Vibrio vulnificus), 비브리오 플루비알리스(Vibrio fluvialis), 비브리오 네레이스(Vibrio nereis), 프로테우스 미라빌리스(Proteus mirabilis), 마리노박테리움 코랄리이(Marinobacterium coralli), 바고코커스 플루비알리스(Vagococcus fluvialis), 푸소박테리움 페르포에텐스(Fusobacterium perfoetens), 틴달리아 캘리포그니엔시스(Tindallia californiensis), 아르코박터 마리누스(Arcobacter marinus), 파라박테로이데스 고르도니이(Parabacteroides gordonii) 및 프로릭시박터 벨라리이보란스(Prolixibacter bellariivorans)로 구성된 군에서 선택되는 적어도 어느 하나의 미생물을 포함하는 것을 특징으로 하는 오염수 내 용존 스트론튬 고정용 조성물.The method of claim 5, wherein the flushing nodules concentrated cultures Vibrio know the derived microorganism fun tea kusu (Vibrio alginolyticus), Vibrio Owen Shi (Vibrio owensii), Vibrio Cui (Vibrio xuii), Vibrio block nipi kusu (Vibrio vulnificus), Vibrio fluvialis , Vibrio nereis , Proteus mirabilis , Marinobacterium coralli , Vagococcus fluvialis , Fusobacterium Fusobacterium perfoetens , Tindallia californiensis , Arcobacter marinus , Parabacteroides gordonii and Proxibacter bellaibivorans bellariivorans) to five characterized in that it comprises at least one of the microorganisms selected from the group consisting of Dissolved strontium be fixed composition.
PCT/KR2012/008750 2012-02-14 2012-10-24 Method for fixing strontium and composition for same WO2013122302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120015034A KR101384454B1 (en) 2012-02-14 2012-02-14 Method for fixing strontium and composition therefor
KR10-2012-0015034 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013122302A1 true WO2013122302A1 (en) 2013-08-22

Family

ID=48984396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008750 WO2013122302A1 (en) 2012-02-14 2012-10-24 Method for fixing strontium and composition for same

Country Status (2)

Country Link
KR (1) KR101384454B1 (en)
WO (1) WO2013122302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477703A (en) * 2021-07-30 2021-10-08 西南科技大学 Method for remedying strontium-polluted soil by combining pasture, forage grass and microorganism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688305B1 (en) * 2015-01-30 2016-12-20 서강대학교산학협력단 Composition and method for removing radionuclide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014380A (en) * 1998-07-03 2000-01-18 Nissui Pharm Co Ltd Concentration of microbial cell and microbial cell concentrating reagent
JP2004035347A (en) * 2002-07-04 2004-02-05 Japan Science & Technology Corp Method for preparing strontium carbonate, and non-birefringent optical resin material and optical element
JP2011045331A (en) * 2009-08-28 2011-03-10 Life Engineering International:Kk New microorganism and method for producing carbonate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014380A (en) * 1998-07-03 2000-01-18 Nissui Pharm Co Ltd Concentration of microbial cell and microbial cell concentrating reagent
JP2004035347A (en) * 2002-07-04 2004-02-05 Japan Science & Technology Corp Method for preparing strontium carbonate, and non-birefringent optical resin material and optical element
JP2011045331A (en) * 2009-08-28 2011-03-10 Life Engineering International:Kk New microorganism and method for producing carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477703A (en) * 2021-07-30 2021-10-08 西南科技大学 Method for remedying strontium-polluted soil by combining pasture, forage grass and microorganism

Also Published As

Publication number Publication date
KR101384454B1 (en) 2014-05-07
KR20130093422A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
Brandt et al. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA)
Lloyd et al. Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis
CN108516617A (en) A kind of method of sewage water denitrification processing system middle-high density anaerobic ammonium oxidizing bacteria enrichment
CN104357035B (en) Biological bactericide for preventing and controlling SRB (sulfate reducing bacteria) in high-temperature water body and SRB inhibition method of bactericide
Wang et al. Response characteristics of nitrifying bacteria and archaea community involved in nitrogen removal and bioelectricity generation in integrated tidal flow constructed wetland-microbial fuel cell
Hernández-del Amo et al. Effects of high nitrate input in the denitrification-DNRA activities in the sediment of a constructed wetland under varying C/N ratios
CN102268386B (en) Ammonia oxidizing bacteria, separation method thereof and application thereof
CN1869199A (en) A strain denitrogen paracoccus and its culturing method and application
CN114749479B (en) Method for repairing arsenic-containing gold tailings by utilizing plant-microorganism combination
Zhang et al. Characteristics and influencing factors of microbial community in heavy metal contaminated soil under silicon fertilizer and biochar remediation
CN102268387B (en) Ammonia oxidizing bacteria, and separation method and application thereof
WO2013122302A1 (en) Method for fixing strontium and composition for same
CN112980723B (en) High-arsenic-resistant thiocyanide degradation strain and application thereof
CN102660485A (en) Strain of copper-resistant bacteria and application thereof
Rouatt et al. Influence of light on bacterial flora of roots
Wang et al. Trophic strategy of diverse methanogens across a river-to-sea gradient
Ercole et al. Deposition of calcium carbonate in karst caves: role of bacteria in Stiffe's cave
CN113151063B (en) Citrobacter freundii AS11 and application thereof in sewage treatment
CN106148218A (en) Aquatic product photosynthetic bacteria Tiny ecosystem and application thereof
CN112619615A (en) Preparation method of biochar-microorganism composite material and method for treating tailing wastewater
KR101384465B1 (en) Method for fixing carbon dioxide and composition therefor
CN102464406A (en) Method for realizing denitrification of anaerobic ammonium oxidation by utilizing constructed wetland
KR101290299B1 (en) Microbial agents using bamboo active carbon as a biocarrier
WO2014073739A1 (en) Water purifying soil ball with improved hardness and number of microorganisms
Hietanen et al. No sign of denitrification in a Baltic Sea cyanobacterial bloom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868547

Country of ref document: EP

Kind code of ref document: A1