WO2013122127A1 - Cellulose composition - Google Patents

Cellulose composition Download PDF

Info

Publication number
WO2013122127A1
WO2013122127A1 PCT/JP2013/053489 JP2013053489W WO2013122127A1 WO 2013122127 A1 WO2013122127 A1 WO 2013122127A1 JP 2013053489 W JP2013053489 W JP 2013053489W WO 2013122127 A1 WO2013122127 A1 WO 2013122127A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
starch
mass
cellulose composition
dispersion
Prior art date
Application number
PCT/JP2013/053489
Other languages
French (fr)
Japanese (ja)
Inventor
一喜 大槻
山崎 有亮
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201380009446.4A priority Critical patent/CN104114037A/en
Priority to JP2013558717A priority patent/JP5978418B2/en
Publication of WO2013122127A1 publication Critical patent/WO2013122127A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D10/00Batters, dough or mixtures before baking
    • A21D10/002Dough mixes; Baking or bread improvers; Premixes
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/18Carbohydrates
    • A21D2/183Natural gums
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/18Carbohydrates
    • A21D2/186Starches; Derivatives thereof
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/18Carbohydrates
    • A21D2/188Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L23/00Soups; Sauces; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • A23L5/32Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation using phonon wave energy, e.g. sound or ultrasonic waves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/08Ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/44Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by shape, structure or physical form
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/52Liquid products; Solid products in the form of powders, flakes or granules for making liquid products ; Finished or semi-finished solid products, frozen granules
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/60Salad dressings; Mayonnaise; Ketchup
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a cellulose composition that can be easily dispersed in an aqueous medium having a high salinity and is excellent in the dispersion stabilizing effect of a non-emulsifying oil.
  • the present invention relates to a cellulose composition that can be suitably used for foods and drinks to which oil is added at a high salinity concentration such as concentrated soup and sauce.
  • the present invention has a light texture with a low density in confectionery such as biscuits, cookies, pretzels, wafers, crackers, sables, and boros that are mainly made from flour, and there are no cracks or chips during production or distribution. Relates to reduced confectionery. Furthermore, it is related with the confectionery which the crispy feeling improved.
  • the present invention relates to a confectionery product with a good standing edge.
  • the present invention is suitable for cookies, biscuits, pretzels and the like that require a light texture with a low density and a light texture.
  • the present invention is a bakery product such as sponge cake, chiffon cake, castella, hot cake, donuts, cheesecake, etc., mainly made from flour, ingredients are not biased during production, and uniformly dispersed after baking, Furthermore, it is related with what has a favorable food texture.
  • the present invention contains a large amount of ingredients such as fruits in large amounts, and is suitable for pound cakes, sponge cakes, chiffon cakes, etc. that require a crispy, refreshing, soft feeling, etc. .
  • a cellulose composite of cellulose and a hydrophilic gum forms a cellulose colloid in an aqueous medium and exhibits good suspension stability. Therefore, food and drink, pharmaceuticals, cosmetics, paints, ceramics, resins, catalysts, etc. It is widely used in the field of industrial articles.
  • Cellulose composites are particularly non-emulsifying oil dispersion stabilizers, suspension stabilizers, stabilizers such as thickening stabilizers, tissue imparting agents, cloudy agents, whiteness improvers, fluidity improvers, polishing agents. It is used as an agent, dietary fiber, oil and fat substitutes, etc.
  • the cellulose composite In the food and drink, in order for the cellulose composite to exhibit the dispersion stabilizing effect of the non-emulsifying oil, the cellulose composite must be present in a sufficiently dispersed state. For example, preferably, when the dispersed cellulose composite is measured with a laser diffraction / scattering particle size distribution analyzer, the average particle diameter is required to be 20 ⁇ m or less.
  • conventional cellulose composites were not sufficiently dispersed by simply adding them to an aqueous medium such as food or drink. Therefore, when the cellulose composite is used for food and drink, a dispersion treatment using a high-pressure homogenizer that can grind the cellulose composite with a strong shearing force or a special equipment such as a high-speed stirrer is necessary.
  • Patent Document 1 discloses an easily dispersible cellulose composite composed of three components of crystalline cellulose, a water-soluble gum, and a water-soluble saccharide.
  • Patent Document 2 discloses a water-dispersible composition obtained by applying mechanical shearing force to crystalline cellulose and starch.
  • Cookies, biscuits, and pretzels are a kind of confectionery that uses flour as a main ingredient, and in particular, those with a light and soft texture and a crispy texture are preferred.
  • confectionery with a light texture generally has a low density and hardness, and thus has a problem that product loss such as cracking and chipping is likely to occur during production and distribution.
  • confectionery with a dense structure is hard and has the advantage of less product loss, but it does not become a confectionery with a light and light texture.
  • the dough is heated after being formed, there is a problem in that the dough sagging due to heating causes the corners (edges) to be rounded and the shape at the time of forming cannot be maintained.
  • Patent Document 3 cellulose, bulge and water-soluble gum are mixed with dough containing flour, foaming component, and water as essential components, thereby improving the stickiness of the dough and for mass production.
  • a bakery product having a uniform weight, improved texture, and suppressed dough aging, and a method for producing the same are disclosed.
  • Patent Document 4 discloses a stick-shaped expanded confectionery manufactured by extruding and extruding using an extruder after blending powdered cellulose into a dough made mainly of cereals, potatoes or beans.
  • Patent Document 5 discloses a bar-shaped baked confectionery obtained by blending powdered cellulose into dough containing ungelatinized powder, chilled water gelatinized powder, saccharides and fats and oils having no gluten forming ability, and molding and baking the powdered cellulose.
  • Sponge cakes and chiffon cakes are a type of bakery product obtained from flour, sugars, eggs, and oils and fats. Is preferred.
  • Patent Document 6 water-insoluble or water-swellable carboxymethyl cellulose and fine cellulose are blended with flour, foaming component, dough containing water as essential components, or dough containing cereal flour and water as essential components.
  • a bakery product that improves the tackiness, has a uniform weight and shape (not ingredients), and has an improved texture in mass production.
  • Patent Document 7 discloses that bread obtained from a dough mixed with a particulate cellulose material contains abundant dietary fiber and has a texture comparable to that of ordinary bread.
  • Patent Document 8 discloses that a castella mixed with a fine cellulose material can be obtained with a small volume reduction after baking, excellent texture, and high long-term storage stability.
  • JP 2008-113572 A International Publication No. 2011-087784 Pamphlet JP 62-22537 A JP 2003-18970 A JP 2003-284501 A Japanese Patent Laid-Open No. 10-262541 JP-A-5-95754 Japanese Patent Laid-Open No. 7-135888
  • Patent Document 1 Since the cellulose composite of Patent Document 1 has a low dispersion stability effect of non-emulsifying oil, it must be used in large quantities when used in food and drink. As a result, there was a problem that the texture (mouth) of foods and drinks containing these became heavy. Further, since the dispersibility is lowered at a high salinity, there is a problem that a sufficient dispersion stabilizing effect of the non-emulsifying oil cannot be exhibited.
  • the cellulose composite of Patent Document 2 Since the cellulose composite of Patent Document 2 has low dispersibility, special equipment such as a high-speed stirrer is required for dispersion treatment in order to use it in foods. Further, like the cellulose composite of Patent Document 1, the dispersibility decreases at a high salinity concentration, so that the dispersion stabilizing effect of the non-emulsifying oil is low in a high salt concentration aqueous medium containing oil and water. Therefore, when using for foods and drinks, it had to be used in large quantities, and there was a problem that the food texture (mouth) of the foods and drinks in which these were blended became heavy.
  • an object of the present invention is to provide a cellulose composition having the following properties. That is, it can be easily dispersed in an aqueous medium having a high salinity, and the dispersion stabilizing effect of non-emulsifying oil is particularly high in foods and drinks containing a large amount of oil. Furthermore, the suspension stabilizing effect which suppresses sedimentation and aggregation of insoluble components in an aqueous medium containing insoluble components is high. Moreover, in the food / beverage products containing much oil, the shape retention effect which maintains the shape of food / beverage products is high.
  • Dispersion stability of non-emulsifying oil means that when oil is dispersed in an aqueous medium, the oil does not separate or aggregate in the aqueous medium without using an emulsifier (without forming micelles). It has a uniform appearance.
  • the dough composition of patent document 3 has only the example of bread, and the confectionery of low density and light texture like this invention is not disclosed. For example, even if a confectionery is made with the composition disclosed in the patent document, the amount of flour is large, so it has a moist feeling, a low density and light texture as in the present invention, and a crispy texture. A textured confectionery cannot be made.
  • this document aims to improve the bundling of the dough in the molding process, and is different from the object of the present invention, which is to reduce the product loss of confectionery with a light texture.
  • Patent Document 4 it is certainly difficult to break by adding cellulose to a low-density confectionery such as an expanded confectionery.
  • a special device called an extruder is essential, and the conditions of temperature and pressure are limited. There is also a problem that the form and texture cannot be determined freely.
  • the hardness of a stick-shaped baked confectionery is increased by using an ungelatinized powder that does not have gluten forming ability, and the confectionery has a crisp and firm texture. Cracking and chipping are reduced.
  • ungelatinized powder having no gluten forming ability is used as in this document, it is impossible to produce a confectionery having a low density and a soft texture as in the present invention.
  • the present invention is a biscuits, cookies, pretzels, wafers, crackers, sables, boros, and other confections that use flour as the main ingredient, while maintaining a low texture and light texture, and cracking and chipping during production and distribution. It is an object to provide a confectionery that is reduced, has a crisp feeling, and has a good product edge. Furthermore, regarding the stabilization of ingredients, the settling of ingredients can certainly be prevented by blending processed starch such as tapioca pregelatinized starch into the dough. However, in order to disperse the ingredients uniformly, it is necessary to add a large amount of modified starch. As a result, the texture of the cake after baking deteriorates, and the original crispy feeling, fresh feeling, and soft feeling of the cake. There was a problem that the food texture such as was impaired.
  • Patent Documents 6 to 8 the addition of a specific cellulosic material to the dough can improve the uniformity and texture of the dough itself.
  • these documents did not describe any means for achieving the blending of ingredients and the uniformity thereof.
  • the present invention contains ingredients with a large specific gravity, such as fruit, in a specific amount, combined with cellulose in a specific ratio, and blended into the dough, so that the ingredients are not unevenly distributed at the time of manufacture and are uniformly dispersed after baking. Furthermore, it aims at providing the bakery product which has favorable food texture, such as a crispy feeling, a refreshing feeling, and a soft feeling.
  • the inventors of the present invention have a cellulose composition in which a cellulose composite having a predetermined storage elastic modulus and a processed starch are blended at a specific mass ratio, have excellent dispersibility in a high salinity aqueous medium, and are non-emulsifying. Excellent oil dispersion stability. Furthermore, the inventors have found that the suspension stabilization effect and the shape retention effect are excellent, and have reached the present invention.
  • the present inventors blended the above-mentioned specific cellulose composition with confectionery mainly composed of flour, so that cracks and chips at the time of production and distribution are maintained while maintaining a light texture with low density. As a result, it was found that a confectionery having a reduced crispness and improved product corners (edges) can be provided, and the present invention has been made.
  • the present inventors contain a specific amount of ingredients such as fruits, in a specific amount, combined with a specific cellulose composition at a specific ratio, and blended into the dough, so that the ingredients are not biased during production,
  • the present inventors have found that a bakery product that is uniformly dispersed after baking and that has a good texture such as a crispy feeling, a fresh feeling, and a soft feeling can be obtained.
  • the configuration of the present invention is as follows. (1) Cellulose and water-soluble polysaccharides and processed starch are dispersed in a 5% by mass sodium chloride aqueous solution to a concentration of 0.01% by mass, subjected to ultrasonic treatment for 2 minutes, and then laser diffraction. / A cellulose composition having a particle size distribution in which a component of 1 ⁇ m or less is 6% or more in a volume frequency histogram measured at a refractive index of 1.04 using a scattering particle size distribution meter.
  • the cellulose and the water-soluble polysaccharide form a cellulose composite in advance, and the storage elastic modulus (G ′) of this 1 mass% aqueous dispersion is 0.1 Pa or more in (1)
  • the cellulose composition as described.
  • the modified starch is an acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphoric acid crosslinked starch, sodium octenyl succinate starch, acetate starch, oxidized starch, hydroxyalkylated phosphate crosslinked starch, hydroxyalkylated starch , Phosphoric acid-crosslinked starch, phosphorylated starch, phosphoric acid monoesterified phosphoric acid-crosslinked starch, starch glycolate sodium, and starch-modified sodium starch alphalyzed, partially The cellulose composition according to any one of (1) to (3), wherein the cellulose composition is at least one selected from an alpha-treated one, a non-alpha-treated one, and a raw starch-derived one.
  • any one of (1) to (4), wherein the processed starch is at least one selected from hydroxypropylated starch, hydroxypropylated phosphate-crosslinked starch, phosphate-crosslinked pregelatinized starch, and pregelatinized starch The cellulose composition described in 1.
  • the water-soluble polysaccharide is at least one selected from xanthan gum, gellan gum, karaya gum, sodium carboxymethylcellulose, and psyllium seed gum.
  • the cellulose composition according to any one of (1) to (7) comprising 40% by mass or more of the cellulose composite.
  • 10 By a method comprising a step of dispersing a cellulose composite and processed starch in an aqueous medium to form a dispersion, a step of homogenizing the dispersion, and a step of drying the homogenized dispersion
  • the cellulose composition according to any one of (1) to (9) which is obtained.
  • Dispersing the cellulose composite and processed starch in an aqueous medium to form a dispersion, homogenizing the dispersion, and drying the homogenized dispersion ( 1) A method for producing a cellulose composition according to any one of (9). (12) The cellulose composition according to any one of (1) to (10) is contained in an amount of 0.1% by mass or more, the salt concentration is 0.1% by mass or more, and a loss tangent of 50 ° C. with respect to 25 ° C. ( A water-based food or drink having a ratio of tan ⁇ ) of 1 or more.
  • the cellulose composition according to any one of (1) to (10) is contained in an amount of 0.1% by mass or more, the sodium chloride and / or potassium chloride concentration is 1% by mass or more, and the oil content is 1 Water-based food and drink containing at least mass%.
  • the present invention it is possible to provide a cellulose composition that can be easily dispersed in an aqueous medium having a high salinity concentration and that is excellent in the dispersion stability of non-emulsifying oil in foods and drinks containing a large amount of oil. Furthermore, the cellulose composition of the present invention is excellent in the suspension stability effect of ingredients and the like in an aqueous medium containing an insoluble component, and can impart shape retention to a semi-solid food containing a large amount of oil.
  • the cellulose composition of the present invention When used in a liquid food or drink to which oil is added at a high salinity concentration such as concentrated soup and sauce, it can provide an oil having excellent dispersion stability, and mayonnaise-like semisolid When used in foods and drinks, products having excellent shape retention can be provided. Furthermore, since the cellulose composition of the present invention can disperse and stabilize a non-emulsifying type oil at a low concentration, foods and drinks to which the cellulose composition is added have excellent oil flavor and light texture. it can. Further, as a more preferred embodiment of the present invention is a confectionery mainly made of flour, while maintaining a low texture and light texture, cracks and chipping during production and distribution are reduced, and the crispness is improved, Can provide confectionery with good product edge.
  • ingredients having a large specific gravity such as fruit are contained in a specific amount, the ingredients are not biased at the time of manufacture, and are uniformly dispersed after baking, and further, a crispy feeling, a refreshing feeling, a soft feeling, etc.
  • a bakery product having a good texture can be provided.
  • the cellulose composition of the present invention contains cellulose and a water-soluble polysaccharide, includes a cellulose composite having a storage elastic modulus (G ′) of 1% by mass of an aqueous dispersion of 0.1 Pa or more and processed starch, and is a cellulose composite. It is a composition in which the mass ratio of the body and processed starch is combined in the range of 5/95 to 90/10.
  • the mass ratio of the cellulose composite and the modified starch is preferably in the range of 5/95 to 80/20.
  • the mass ratio of the cellulose composite and the modified starch is in the range of 5/95 or more, a sufficient level of oil dispersion stability, suspension stability, and shape retention can be obtained. Further, when the mass ratio of the cellulose composite and the modified starch is in the range of 90/10 or less, the dispersibility in an aqueous medium having a high salinity is improved. That is, not only combining cellulose and processed starch without complexing, and if necessary, combining polysaccharides, but also by making a cellulose composition containing a cellulose composite and processed starch in a specific ratio, the above-mentioned desired effect is not achieved. Achieved. When the mass ratio of the cellulose composite and the modified starch is in the range of 80/20 or less (and 5/95 or more), more excellent effects can be obtained in the above points.
  • the cellulose composition of the present invention can be easily dispersed in an aqueous medium having a high salinity by containing the cellulose composite and the modified starch at a specific ratio.
  • This mass ratio has a suitable range depending on the processed starch used, and will be described in detail in the section ⁇ Processed starch> below.
  • ⁇ Dispersibility of cellulose composition> The cellulose composition of the present invention is easily dispersed in an aqueous medium having a high salinity, and has excellent oil dispersion stability.
  • the cellulose composition of the present invention is obtained by dispersing the cellulose composition in an aqueous solution of 5% by mass of sodium chloride so as to have a concentration of 0.01% by mass, and then subjecting it to ultrasonic treatment.
  • a component of 1 ⁇ m or less must be detected by 6% or more. is there.
  • the amount of a component of 1 ⁇ m or less (volume frequency histogram at a refractive index of 1.04) in the above-described measurement is referred to as a fine particle component amount (BS amount).
  • the method for measuring the amount of BS is as follows. First, the cellulose composition of the present invention is weighed and dispersed in a 5% by mass sodium chloride aqueous solution so as to have a concentration of 0.01% by mass. Next, this cellulose composition dispersion was charged in a laser diffraction / scattering particle size distribution analyzer (trade name “LA-910”, manufactured by Horiba, Ltd., flow cell), and subjected to ultrasonic treatment for 2 minutes. The particle size distribution is measured at a refractive index of 1.04. Here, in the obtained volume frequency histogram, the amount of the main BS is measured by calculating the ratio (percentage of the total volume frequency) of particles of 1 ⁇ m or less in the whole.
  • the BS amount is 6% or more, the dispersibility of the cellulose composition becomes good, and the dispersion stability of the non-emulsifying oil becomes high.
  • the preferable range is 7% or more, more preferably 10% or more, and particularly preferably 12% or more.
  • the upper limit is not particularly limited, but a preferable range is 99% or less.
  • content of the cellulose composite in the cellulose composition of this invention is not specifically limited, It is preferable that it is 5 mass% or more with respect to the total amount of this composition.
  • the higher the content of the cellulose composite the better the physical properties such as oil dispersion stability, suspension stability, and shape retention. More preferably, it is 10 mass% or more, More preferably, it is 20 mass% or more, More preferably, it is 30 mass% or more, Most preferably, it is 40 mass% or more, Most preferably, it is 45 mass% or more.
  • the upper limit is not particularly set, but when the content of the cellulose composite is increased, the content of the processed starch is relatively decreased, and the dispersibility of the cellulose composition is decreased. For this reason, a preferable range as an upper limit is 90 mass% or less, and 80 mass% or less is more preferable.
  • the cellulose composite as used in the present invention refers to a cellulose whose surface is coated (complexed) with a water-soluble polysaccharide by chemical bonds such as hydrogen bonds.
  • the water-soluble polysaccharide is exemplified below.
  • cellulose is a naturally derived water-insoluble fibrous material containing cellulose. Examples of raw materials include wood, bamboo, wheat straw, rice straw, cotton, ramie, bagasse, kenaf, beet, squirts, and bacterial cellulose. As a raw material, it is also possible to use one of these natural cellulose materials or a mixture of two or more of them.
  • the average degree of polymerization of the cellulose used in the present invention is preferably a crystalline cellulose of 500 or less.
  • the average degree of polymerization can be measured by a reduced specific viscosity method using a copper ethylenediamine solution specified in the crystalline cellulose confirmation test (3) of “14th revised Japanese pharmacopoeia” (published by Yodogawa Shoten). If the average degree of polymerization is 500 or less, it is preferable because the cellulose-based material is easily subjected to physical treatment such as stirring, pulverization, and grinding in the step of conjugating with the water-soluble polysaccharide and the conjugation is easily promoted.
  • the average degree of polymerization is 300 or less, and still more preferably, the average degree of polymerization is 250 or less.
  • the lower the average degree of polymerization the easier the control of complexing. Therefore, the lower limit is not particularly limited, but a preferred range is 10 or more.
  • a method for controlling the average degree of polymerization include hydrolysis treatment. By the hydrolysis treatment, the depolymerization of the amorphous cellulose inside the cellulose fiber proceeds, and the average degree of polymerization decreases. At the same time, the hydrolysis process removes impurities such as hemicellulose and lignin in addition to the above-described amorphous cellulose, so that the inside of the fiber becomes porous.
  • the cellulose is easily subjected to mechanical treatment, and the cellulose is easily refined.
  • the surface area of the cellulose is increased, and the complexation with the water-soluble polysaccharide can be easily controlled.
  • the method of hydrolysis is not particularly limited, and examples thereof include acid hydrolysis, hydrothermal decomposition, steam explosion, and microwave decomposition. These methods may be used alone or in combination of two or more.
  • an average polymerization is easily performed by adding an appropriate amount of a protonic acid, a carboxylic acid, a Lewis acid, a heteropolyacid, etc. in a state in which a cellulosic material is dispersed in an aqueous medium, and heating while stirring. You can control the degree. Reaction conditions such as temperature, pressure, and time at this time vary depending on the cellulose species, cellulose concentration, acid species, and acid concentration, but are appropriately adjusted so as to achieve the desired average degree of polymerization.
  • a catalyst component such as an acid penetrates into the inside of the cellulose fiber, the hydrolysis is promoted, the amount of the catalyst component to be used is reduced, and the subsequent purification is facilitated.
  • a catalyst component such as an acid penetrates into the inside of the cellulose fiber, the hydrolysis is promoted, the amount of the catalyst component to be used is reduced, and the subsequent purification is facilitated.
  • the cellulose in the cellulose composite used in the present invention preferably has a fine particle shape.
  • the particle shape of cellulose is a high shear homogenizer (trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.) treated with the cellulose composite of the present invention in a pure water suspension at a concentration of 1% by mass.
  • a high-resolution scanning type is obtained by diluting an aqueous dispersion dispersed at a rotational speed of 15,000 rpm ⁇ 5 minutes) with pure water to 0.1 to 0.5% by mass, cast on mica, and air-dried.
  • L / D is preferably less than 20 in terms of suspension stability, more preferably 15 or less, further preferably 10 or less, particularly preferably 5 or less, particularly preferably less than 5, and most preferably 4 or less.
  • water-soluble polysaccharide examples include gum arabic, alginic acid, sodium alginate, calcium alginate, curdlan, carrageenan, caraya gum, agar, xanthan gum, chitin, chitosan, guar gum, psyllium seed gum, Gellan gum, gelatin, tamarind seed gum, dextran, pullulan, HM pectin, LM pectin, locust bean gum, sodium carboxymethylcellulose, carboxymethylcellulose calcium, methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose and the like. These water-soluble polysaccharides may be used in combination of two or more.
  • anionic polysaccharides are preferable from the viewpoint of complexing with cellulose.
  • the anionic polysaccharide used in the present invention is one in which, when dispersed or dissolved in water, a cation is liberated and itself becomes an anion.
  • the cellulose composite of the present invention is more facilitated to be combined with cellulose by using an anionic polysaccharide.
  • a cellulose composition in which this cellulose composite is blended is preferable because the oil dispersion stability effect, suspension stability effect, and shape retention effect are enhanced.
  • anionic polysaccharide the following are preferable from the viewpoint of complexing with cellulose. Examples include alginic acid, sodium alginate, calcium alginate, carrageenan, caraya gum, sodium carboxymethylcellulose, carboxymethylcellulose calcium, xanthan gum, psyllium seed gum, gellan gum, HM pectin, and LM pectin. These anionic polysaccharides may be used in combination of two or more.
  • anionic polysaccharides xanthan gum, gellan gum, karaya gum, sodium carboxymethylcellulose, psyllium seed gum, in order to enhance the oil dispersion stability effect, suspension stability effect, and shape retention effect of the cellulose composition. Is preferred.
  • xanthan gum and gellan gum More preferred are xanthan gum and gellan gum, and most preferred is xanthan gum.
  • mass ratio of cellulose and water-soluble polysaccharide in cellulose composite is preferably 99/1 to 50/50. When the mass ratio falls within this range, it is considered that the cellulose surface in the cellulose composite is sufficiently coated (complexed) with the water-soluble polysaccharide. Therefore, the cellulose composition using this composite tends to have high oil dispersion stabilizing effect, suspension stabilizing effect, and shape retention effect.
  • Xanthan gum is a gum made by fermenting starch such as corn with the bacterium Xanthomonas campestris, and consists of repeating units of glucose 2 molecules, mannose 2 molecules, and glucuronic acid.
  • the xanthan gum used in the present invention includes potassium salts, sodium salts, and calcium salts. If it is a grade which has said structure and can be used with a foodstuff, it can be used without a restriction
  • the mass ratio of cellulose to xanthan gum is preferably 99/1 to 80/20. More preferably, it is 99/1 to 90/10, and still more preferably 96/4 to 92/8.
  • Gellan gum is a polysaccharide produced by a microorganism called Sphingomonas elodea. There are two types of gellan gum, native gellan gum and deacylated gellan gum. In the present invention, any grade can be used as long as it can be used in food.
  • the mass ratio of cellulose to gellan gum is preferably 99/1 to 80/20. More preferably, it is 99/1 to 90/10, and still more preferably 98/2 to 94/6.
  • Psyllium seed gum (sometimes abbreviated as PSG) is a polysaccharide (gum) obtained from the seed coat of a plant of the plant family Planta ovata Forskal. Specific examples include polysaccharides obtained from Isagor and plantago / Obata seed coats.
  • the psyllium seed gum includes a polysaccharide (gum) obtained from the seed coat of the plant of the above-mentioned plantain family (Plantago ovata Forskal), and also includes those containing impurities. .
  • a gum obtained by extracting the polysaccharide with a solvent such as water, a husk whose outer skin has been pulverized, a combination of them, and any of them are included.
  • they may be in any state of powder, lump, cake, or liquid.
  • the chemical structure is a non-cellulose polysaccharide in which the main chain is highly branched as xylan and the side chain is composed of arabinose, xylose, galacturonic acid, and rhamnose.
  • the sugar constituent ratio in the side chain is about 60% by mass of D-xylose, about 20% by mass of L-arabinose, about 10% by mass of L-rhamnose, and about 10% by mass of D-galacturonic acid. These mass ratios are about 5% by mass depending on the PSG raw material and the manufacturing process of PSG.
  • the mass ratio of cellulose to psyllium seed gum is preferably 99/1 to 80/20. More preferably, it is 99/1 to 90/10, and still more preferably 98/2 to 94/6.
  • Karaya gum is a refined sap of a mosquito tree in the family Aoyagi.
  • Commercially available grades include Hand-picked-selected (HPS), Superior No.1, Superior No.2, Superior No.3, and Shifting, based on color tone, bark, and foreign matter ratio (published in Sachishobo 2001) Kunizaki and Sano, “Food polysaccharides” on page 88, see Table 4-4).
  • HPS and Superior No. 1 are preferable for use in the present invention, and HPS is preferable in terms of suspension stability of the complex. In particular, those derived from Sterculia urens in central and northern India are preferred in terms of suspension stability of the complex.
  • the mass ratio of cellulose to Karaya gum is preferably 99/1 to 80/20. More preferably, it is 94/6 to 84/16, and still more preferably 92/8 to 86/14.
  • Carboxymethylcellulose sodium is one in which the hydroxyl group of cellulose is substituted with monochloroacetic acid and has a linear chemical structure in which D-glucose is linked by ⁇ -1,4.
  • CMC-Na is obtained by dissolving pulp (cellulose) with sodium hydroxide solution and etherifying with monochloro acid (or its sodium salt).
  • CMC-Na having a substitution degree and a viscosity adjusted within a specific range from the viewpoint of complexation.
  • the degree of substitution is the degree to which a carboxymethyl group is ether-bonded to a hydroxyl group in cellulose, and is preferably 0.6 to 2.0. If the degree of substitution is in the above range, it is preferable because the dispersibility of CMC-Na is sufficient and the production is easy. More preferably, the degree of substitution is 0.6 to 1.3.
  • the viscosity of CMC-Na is preferably 500 mPa ⁇ s or less, more preferably 200 mPa ⁇ s or less, and further preferably 50 mPa ⁇ s or less in a 1% by mass pure aqueous solution. Particularly preferably, it is 20 mPa ⁇ s or less.
  • the lower the viscosity of CMC-Na the easier it is to combine with cellulose and hydrophilic gum.
  • the lower limit is not particularly set, but a preferable range is 1 mPa ⁇ s or more.
  • the mass ratio of cellulose to CMC-Na is preferably 99/1 to 80/20. More preferably, it is 94/6 to 84/16, and still more preferably 92/8 to 86/14.
  • the cellulose composite used in the present invention may contain a hydrophilic substance in addition to cellulose and a water-soluble polysaccharide for the purpose of enhancing the dispersibility in water.
  • a hydrophilic substance is an organic substance that is highly soluble in cold water and hardly causes viscosity.
  • Hydrophilic polysaccharides such as starch hydrolysates, dextrins, indigestible dextrin, polydextrose, fructooligosaccharides, galactooligosaccharides , Maltooligosaccharides, isomaltooligosaccharides, lactose, maltose, sucrose, oligosaccharides such as ⁇ -, ⁇ -, ⁇ -cyclodextrin, monosaccharides such as glucose, fructose, sorbose, sugar alcohols such as maltitol, sorbit, erythritol Vitamins, collagen, azulene and chitosan are suitable. Two or more kinds of these hydrophilic substances may be combined. Among the above, hydrophilic polysaccharides such as starch hydrolysates, dextrins, indigestible dextrins and polydextrose are preferable in terms of dispersibility, and dextrin is most preferable.
  • the compounding quantity of the hydrophilic substance in a cellulose composite As a preferable range, it is 5 mass% or more, More preferably, it is 10 mass% or more, More preferably, it is 20 mass% or more.
  • the upper limit is preferably 50% by mass or less.
  • the divalent ionic substance generates divalent ions such as calcium and magnesium when dissolved in water, and specific examples include calcium chloride and magnesium chloride.
  • This substance is preferably added before complexing cellulose and anionic polysaccharide.
  • the addition amount of the divalent ionic substance is preferably 0.5% by mass or more in the cellulose composite. More preferably, it is 1 mass% or more, More preferably, it is 3 mass% or more. If the amount of this substance is too high, it affects the taste of foods and drinks to which the cellulose composition is added, so the upper limit is preferably 10% by mass or less.
  • the cellulose composite used in the present invention can be obtained by applying mechanical shearing force to cellulose and water-soluble polysaccharide in the kneading step to make the cellulose finer and complex the polysaccharide on the cellulose surface. Moreover, you may add hydrophilic substances other than a cellulose and water-soluble polysaccharide, another additive, etc. What passed through the above-mentioned process is dried as needed.
  • the cellulose composite used in the present invention may be in any form such as an undried one and a dried one after the mechanical shearing described above.
  • a kneading method using a kneader or the like can be applied.
  • a kneading machine a kneader, an extruder, a planetary mixer, a reiki machine or the like can be used, and it may be a continuous type or a batch type.
  • the temperature at the time of kneading is not particularly limited and may be achieved. However, when heat is generated due to a complexing reaction, friction, or the like at the time of kneading, the kneading may be performed while removing the heat.
  • These models can be used alone, but two or more models can be used in combination. These models may be appropriately selected depending on the viscosity requirements in various applications.
  • the kneading temperature is preferably 0 to 100 ° C., more preferably 90 ° C. or less, particularly preferably 70 ° C. or less, further preferably 60 ° C. or less, and most preferably 50 ° C. or less.
  • slow heating such as jacket cooling and heat dissipation may be devised.
  • the solid content during kneading is preferably 20% by mass or more. Kneading in a semi-solid state where the viscosity of the kneaded material is high is preferable because the kneaded material does not become loose, the kneading energy described below is easily transmitted to the kneaded material, and compounding is promoted.
  • the solid content at the time of kneading is more preferably 30% by mass or more, further preferably 40% by mass or more, and particularly preferably 50% by mass or more.
  • the upper limit is not particularly limited, but the practical range is preferably 90% by mass or less, considering that the kneaded product does not become a crumbly state with a small amount of water and a sufficient kneading effect and a uniform kneading state can be obtained. More preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less. Moreover, in order to make solid content into the said range, as a timing to add water, a required amount may be added before a kneading
  • the kneading energy is defined by the amount of electric power (Wh / kg) per unit mass of the kneaded product.
  • the kneading energy is preferably 20 Wh / kg or more. If the kneading energy is 20 Wh / kg or more, the grindability imparted to the kneaded product is high, and the combination of cellulose and water-soluble polysaccharides, or cellulose, water-soluble polysaccharides, and other water-soluble gums is promoted. The suspension stability of the neutral cellulose composite is improved.
  • the kneading energy is more preferably 50 Wh / kg or more, further preferably 100 Wh / kg or more, particularly preferably 200 Wh / kg or more, more preferably 300 Wh / kg or more, and most preferably 400 Wh / kg. That's it.
  • the equipment becomes industrially excessive and the equipment is overloaded. Is preferably 1000 Wh / kg.
  • the degree of complexation is considered to be the proportion of hydrogen bonds between cellulose and other components.
  • the median diameter of the colloidal cellulose composite contained in the cellulose composite increases.
  • the kneaded product obtained from the above-mentioned kneading step when drying the kneaded product obtained from the above-mentioned kneading step, known methods such as shelf-type drying, spray drying, belt drying, fluidized bed drying, freeze drying, microwave drying, etc. The drying method can be used.
  • a drying step it is preferable that water is not added to the kneaded product, and the solid content concentration in the kneading step is maintained and the dried step is used.
  • the moisture content of the dried cellulose composite is preferably 1 to 20% by mass. By setting the moisture content to 20% by mass or less, problems such as stickiness and rot, and cost problems in transportation and transportation are less likely to occur.
  • the cellulose composite is distributed in the market, it is preferable to pulverize the cellulose composite obtained by drying into a powder form because the powder is easier to handle.
  • spray drying is used as a drying method, drying and pulverization can be performed at the same time, so pulverization is not necessary.
  • a known method such as a cutter mill, a hammer mill, a pin mill, or a jet mill can be used.
  • the degree of pulverization is preferably such that the pulverized product passes through a sieve having an opening of 1 mm. More preferably, it is pulverized to pass through a sieve having an opening of 425 ⁇ m and to have an average particle size (weight average particle size) of 10 to 250 ⁇ m.
  • These dry powders are generally those in which fine particles of the cellulose composite are aggregated to form secondary aggregates. This secondary aggregate can be disintegrated when stirred in water, and can be dispersed in the above-mentioned cellulose composite fine particles.
  • the apparent weight average particle diameter of the secondary agglomerates is determined by sieving 10 g of a sample for 10 minutes using a low-tap type sieve shaker (Sieve Shaker A type manufactured by Hira Kogakusho), JIS standard sieve (Z8801-1987). Can be defined as the cumulative weight 50% particle size in the particle size distribution obtained.
  • a low-tap type sieve shaker Sieve Shaker A type manufactured by Hira Kogakusho
  • JIS standard sieve Z8801-1987
  • the storage elastic modulus (G ′) of the cellulose composite used in the present invention is 0.1 Pa or more.
  • This storage elastic modulus expresses the rheological elasticity of the aqueous dispersion and expresses the degree of complexation between cellulose and water-soluble polysaccharide.
  • the higher the storage elastic modulus the more complex the cellulose and the water-soluble polysaccharide are, and the more rigid the network structure in the aqueous dispersion of the cellulose composite.
  • the cellulose composition of the present invention is easily dispersed in a high salinity aqueous medium by using the cellulose composite having a high storage elastic modulus and promoted complexing, and dispersion of non-emulsifying oil It is excellent in stability and has both suspension stability and shape retention.
  • the storage elastic modulus is a value obtained by dynamic viscoelasticity measurement of an aqueous dispersion (preferably pH 6 to 7) in which a cellulose composite is dispersed at 1% by mass in pure water.
  • the elastic component that holds the stress stored in the network structure of the cellulose composite when the aqueous dispersion is distorted is expressed as a storage elastic modulus.
  • the cellulose composite was subjected to a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7” treatment condition: 15,000 rpm ⁇ 5 minutes). And dispersed in pure water to prepare a 1.0 mass% pure water dispersion. The obtained aqueous dispersion is allowed to stand at room temperature for 3 days. The strain dependence of the stress of this aqueous dispersion was determined using a viscoelasticity measuring device (Rheometric Scientific, Inc., ARES100FRTN1 type, geometry: Double Wall Couette type) (predetermined temperature: 25.0 ° C, angular velocity).
  • the storage elastic modulus in the present invention is a value of 20% strain on the strain-stress curve obtained by the above measurement. The larger the value of the storage elastic modulus, the more elastic the structure of the aqueous dispersion formed by the cellulose composite, indicating that cellulose and water-soluble polysaccharide are highly complexed.
  • the storage elastic modulus of the cellulose composite is preferably 0.5 Pa or more, more preferably 1.0 Pa or more, further preferably 1.3 Pa or more, particularly preferably 1.6 Pa or more, and most preferably 1. 8 Pa or more.
  • the upper limit of the storage elastic modulus of the cellulose composite is not particularly limited, but it is preferably 6.0 Pa or less in consideration of a light texture when the cellulose composition is added to food. It is preferable for the pressure to be 6.0 Pa or less because the texture is light in the amount of the cellulose composition that can provide sufficient oil stability (it varies depending on the food, details will be described later).
  • the volume average particle size is determined by treating the cellulose composite with a pure water suspension at a concentration of 1% by mass, and treating with a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”). : Volume obtained by dispersion at a rotational speed of 15,000 rpm ⁇ 5 minutes) and laser diffraction (manufactured by HORIBA, Ltd., trade name “LA-910”, ultrasonic treatment for 1 minute, refractive index 1.20) It is the cumulative 50% particle size in the frequency particle size distribution.
  • a high shear homogenizer manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”.
  • the volume average particle size of the cellulose composite is 20 ⁇ m or less, the dispersion stability and suspension stability of the cellulose composite are more easily improved.
  • a food containing a cellulose composite is eaten, a smooth texture with no roughness can be provided.
  • the volume average particle diameter is 15 ⁇ m or less, particularly preferably 10 ⁇ m or less, and further preferably 8 ⁇ m or less. Since the dispersion stability and suspension stability of the cellulose composite are more easily improved as the volume average particle size is smaller, the lower limit is not particularly limited, but a preferable range is 0.1 ⁇ m or more.
  • the cellulose composite used in the present invention preferably contains 30% by mass or more of a colloidal cellulose component.
  • the content of the colloidal cellulose component as used herein means that the cellulose composite is made into a pure water suspension at a concentration of 1% by mass, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”).
  • Processing conditions Dispersed at 15,000 rpm ⁇ 5 minutes” and centrifuged (trade name “6800 type centrifuge”, rotor type RA-400, manufactured by Kubota Corporation), processing conditions: centrifugal force 2, 000 rpm (5600 G * G is gravitational acceleration) ⁇ 15 minutes) and is a mass percentage of solid content (including cellulose, hydrophilic gum, and water-soluble gum) remaining in the supernatant after centrifugation.
  • the content of the colloidal cellulose component in the cellulose composite is 30% by mass or more, the dispersion stability and the suspension stability are more easily improved. More preferably, it is 40 mass% or more, Most preferably, it is 50 mass% or more.
  • the size of the colloidal cellulose component is preferably 10 ⁇ m or less, more preferably 5.0 ⁇ m or less, and particularly preferably 1.0 ⁇ m or less.
  • the size referred to here was obtained by centrifuging the supernatant obtained by the above-mentioned laser diffraction method (manufactured by Horiba, Ltd., trade name “LA-910”, ultrasonic treatment for 1 minute, refractive index 1.20).
  • any cellulose composite that can be used in the cellulose composition of the present invention may be used as long as it has undergone the above-described composite process.
  • the cellulose composite used in the present invention can be in any form, such as an undried one and the one subsequently dried, which have undergone the above-described mechanical shearing.
  • the functions of the cellulose complex are further improved by drying, so that it is combined. It is preferable to use a dried product after the process.
  • RC-N30, SP-N50, SC-900, SC-900S, and RC-N81 are preferable, and among them, RC-N30, SP-N50 containing xanthan gum, SC-900 and SC-900S are more preferable. Further, RC-N30 is most preferable from the balance of function and dispersibility.
  • ⁇ Processed starch> The cellulose composition of the present invention contains modified starch. The cellulose composition of the present invention can be easily dispersed in an aqueous medium having a high salinity by containing processed starch.
  • the processed starch used in the cellulose composition of the present invention includes acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl sodium succinate starch, acetate starch, oxidized starch, hydroxyalkylated phosphate crosslinked Starch, hydroxyalkylated starch, phosphoric acid crosslinked starch, phosphorylated starch, phosphoric acid monoesterified phosphoric acid crosslinked starch, starch glycolate sodium, and starch phosphate sodium phosphate are preferred. These can be used in any form of an alpha process, a partially alpha process, and a non-alpha process. Further, acid-treated starch or pregelatinized starch obtained by pregelatinizing raw starch can also be used. The above-mentioned modified starch may be used alone or in combination of two or more.
  • modified starch acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl succinate starch sodium, Acetic acid starch, oxidized starch, hydroxypropylated phosphoric acid cross-linked starch, hydroxypropylated starch, phosphoric acid cross-linked starch, phosphorylated starch and phosphoric acid monoesterified phosphoric acid cross-linked starch), and pregelatinized starch obtained by pre-gelatinizing raw starch preferable.
  • hydroxypropylated phosphate cross-linked starch, hydroxypropylated starch, phosphoric acid cross-linked pregelatinized starch, and pregelatinized starch are more preferable in terms of dispersibility of the cellulose composition, hydroxypropylated starch, hydroxypropylated phosphoric acid Cross-linked starch and phosphate cross-linked pregelatinized starch are more preferred, and hydroxypropylated starch is most preferred.
  • Processed starch ingredients include wheat starch, corn starch, waxy corn starch (waxy corn starch), potato starch, waxy potato starch, tapioca starch, rice starch, glutinous rice starch, sweet potato starch, sago starch, waste starch, etc. Is mentioned.
  • waxy corn starch (waxy corn starch) and tapioca starch are preferable from the viewpoint of dispersibility of the cellulose composition, and waxy corn starch (waxy corn starch) is more preferable.
  • hydroxypropylated starch as used herein means starch obtained by adding a hydroxypropyl group with an ether bond to propylene using, for example, propylene oxide as a drug.
  • hydroxypropylated starch used in foods preferably has a degree of processing (a mass ratio of hydroxypropyl groups in the total mass of the processed starch) of 0.01% to 7.0%.
  • the degree of processing of the hydroxypropylated starch used in the present invention is not particularly limited, but is preferably 1.0% or more and 7.0% or less, and preferably 3.0% or more and 7% from the viewpoint of dispersibility of the cellulose composition. 0.0% or less is preferable, and 5.0% or more and 7.0% or less is most preferable.
  • a commercially available product there is Delica WH (manufactured by Nissho Chemical Co., Ltd.).
  • the mass ratio of the cellulose composite and hydroxypropylated starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and 75/25 to 65/35. Most preferred.
  • ⁇ Hydroxypropylated phosphate cross-linked starch The hydroxypropylated phosphate-crosslinked starch here is esterified with, for example, sodium trimetaphosphate or phosphorus oxychloride as a drug to the starch, and a hydroxypropyl group is added with an ether bond using propylene oxide or the like. Means starch.
  • the degree of substitution in the hydroxypropylated phosphoric acid crosslinked starch is not particularly limited. Absent. For example, as a commercially available product, there is Delica KH (manufactured by Nissho Chemical Co., Ltd.).
  • the mass ratio of the cellulose composite and the hydroxypropylated phosphoric acid crosslinked starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and 75/25 to 65. / 35 is most preferred.
  • ⁇ Phosphate cross-linked pregelatinized starch> means starch that is esterified with, for example, sodium trimetaphosphate or phosphorus oxychloride as a drug and pregelatinized with the above-described method or the like.
  • the degree of substitution in the phosphoric acid crosslinked starch (ratio of the total number of moles of substituted hydroxyl groups in the substituted crosslinked starch to the total number of moles of hydroxyl groups in the unsubstituted crosslinked starch) and the degree of alphalation are particularly limited. It is not a thing.
  • Neobis C-60 manufactured by Nippon Shokuhin Kako Co., Ltd.
  • Neobis C-60 is a commercially available product that can be easily obtained.
  • the mass ratio of the cellulose composite and the phosphate cross-linked pregelatinized starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and 65/35 to 55/45. Is most preferred.
  • ⁇ Alphaized starch> The starch particles start to swell by heat-treating the aqueous medium containing starch or by adding an alkaline salt. Thereafter, the particles disintegrate and finally become a viscous transparent or translucent starch paste. When this paste liquid is immediately dried, a powder that easily swells and dissolves in cold water is obtained. This powder is called pregelatinized starch.
  • the pregelatinized starch used in the present invention is not particularly limited, and any of the pregelatinized starch and the pregelatinized starch may be used.
  • any of the pregelatinized starch and the pregelatinized starch may be used.
  • MH-A manufactured by Nissho Chemical Co., Ltd.
  • the mass ratio of the cellulose composite and pregelatinized starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and most preferably 65/35 to 55/45. .
  • the cellulose composition of the present invention may contain a hydrophilic substance in addition to the cellulose composite and the modified starch for the purpose of enhancing the dispersibility in water.
  • the hydrophilic substance here is an organic substance containing a hydrophilic group other than the cellulose composite and processed starch, and is not particularly limited as long as it can eat and drink.
  • the hydrophilic substance is preferably an organic substance that has high solubility in cold water (for example, water of about 20 ° C.
  • hydrophilic substances include starch hydrolysates, dextrins, indigestible dextrins, polydextrose and other hydrophilic polysaccharides, fructooligosaccharides, galactooligosaccharides, maltooligosaccharides, isomaltoligosaccharides, lactose, maltose, sucrose, ⁇ - Oligosaccharides such as ⁇ - and ⁇ -cyclodextrins, monosaccharides such as glucose, fructose and sorbose, sugar alcohols such as maltitol, sorbit and erythritol, vitamins, collagen, azulene and chitosan are suitable.
  • hydrophilic substances Two or more kinds of these hydrophilic substances may be combined.
  • hydrophilic polysaccharides such as starch hydrolysates, dextrins, indigestible dextrins and polydextrose are preferable in terms of dispersibility, and dextrin is most preferable.
  • the compounding quantity of the hydrophilic substance in a cellulose composition As a preferable range, it is 1 mass% or more, More preferably, it is 10 mass% or more, More preferably, it is 20 mass% or more. The more the hydrophilic substance is, the higher the water dispersibility is. However, since the physical properties of the cellulose composition such as oil dispersion stability, suspension stability, and shape retention are lowered, the upper limit is preferably 59% by mass or less. ⁇ Method for producing cellulose composition> Next, the manufacturing method of the cellulose composition of this invention is demonstrated.
  • a cellulose composite and processed starch are dispersed in an aqueous medium to form a dispersion, followed by a step of homogenizing the dispersion, and It is preferably obtained through a step of drying the homogenized dispersion.
  • the cellulose composite and the processed starch are dispersed and homogenized in a slurry state in order to improve the dispersibility of the cellulose composition.
  • cellulose and processed starch are not excessively complexed, so that a product with good dispersibility can be obtained.
  • Specific manufacturing conditions will be described below.
  • the above cellulose composite and modified starch are dispersed and dissolved in water. In this case, it is desirable to adjust the respective amounts including water so that the solid content concentration including the cellulose composite and the modified starch is 1 to 70% by mass.
  • the solid content concentration is within this range, the handleability of the aqueous dispersion is good, the productivity is high, and the subsequent drying energy load is acceptable. More preferably, it is 3 to 50% by mass, still more preferably 40% by mass or less, particularly preferably 35% by mass or less, and most preferably 30% by mass or less.
  • the dispersion is preferably in a slurry state. Although the state of the dispersion depends on the cellulose composite to be used, the modified starch species, and the mass ratio thereof, it can be said to be a slurry state if it is 35% by mass or less.
  • the order of addition of the cellulose composite, the modified starch, and the hydrophilic substance (if added) is not particularly limited.
  • the preferred order of adding to the aqueous medium is the order of hydrophilic substance, modified starch, and cellulose composite.
  • stirring is performed so as to eliminate the mako-like aggregates (diameter several mm to several cm) visually.
  • a tank in which a stirring blade is set is preferable, and a propeller blade type stirring device, a paddle blade type stirring device, a fiddler blade type stirring device, an anchor blade type stirring device, a helical ribbon blade type stirring device, or the like is used. be able to.
  • line stirring apparatuses such as a static type line mixer and a sanitary pump, other than a tank type.
  • the dispersion temperature is not particularly limited, but is preferably 0 to 60 ° C., more preferably 10 to 50 ° C., and particularly preferably 15 to 40 ° C. in order to suppress excessive complexation between the cellulose composite and the processed starch. .
  • Homogenization process In the production of the cellulose composition of the present invention, it is necessary to go through a step of homogenizing the cellulose composite and the processed starch.
  • the homogenization means a state in which the cellulose composite is dispersed not in the aggregate but in the primary particles.
  • the average particle diameter (median diameter) of the volume frequency to be measured can be defined as a state of 20 ⁇ m or less.
  • the homogenization in the present invention is not limited in the order of addition of raw materials and the addition method as long as the above average particle diameter can be achieved.
  • all components may be mixed to perform batch processing, or each component may be dispersed in water and homogenized for each component, and then all components may be mixed.
  • homogenization For homogenization, use a method of applying high shear with a high-speed stirrer, a method of high-pressure dispersion with a high-pressure homogenizer, a method of homogenizing with a mill using bead-like media, a method of homogenizing with a roll mill, etc. Can do. As long as the homogenization of the present invention can be achieved, the above methods may be combined in any order.
  • a method of applying high shear with a high-speed stirrer and a method of performing high-pressure dispersion with a high-pressure homogenizer can be suitably used.
  • the homogenization concentration and the homogenization temperature can be applied under the same conditions as in the above dispersion step.
  • Homogenization with a high-speed stirrer Homogenization using a high-speed stirrer is achieved by applying high-speed stirring to the dispersion obtained in the dispersion step.
  • the above-described dispersion step can be omitted.
  • High-speed stirring is determined by the peripheral speed of the stirring blade, and the peripheral speed is obtained by the following equation.
  • Peripheral speed (m / s) Agitator blade diameter (m) ⁇ ⁇ (circumferential ratio) ⁇ Agitator blade rotation speed (n / s).
  • the peripheral speed is preferably 5 m / s or more, more preferably 10 m / s or more, and particularly preferably 15 m / s or more.
  • the upper limit of the peripheral speed is not particularly specified, but is preferably 100 m / s or less when assuming industrially used equipment.
  • the treatment time is determined depending on the average particle diameter of the object to be treated, and is not particularly limited, but is preferably 10 minutes or more.
  • high-speed stirrers examples include trade name: TK homogenizer, TK homomixer, TK robotics, TK automixer, lab solution, TK homodisper, hibisdispersix, fill mixer (manufactured by Primix) Devices such as an ace homogenizer, a canki mixer (manufactured by Kansai Kikai Kogyo Co., Ltd.), a super-vibration ⁇ -stirrer (manufactured by Nippon Techno Co., Ltd.) and a home mixer can be used.
  • TK homogenizer trade name: TK homogenizer, TK homomixer, TK robotics, TK automixer, lab solution, TK homodisper, hibisdispersix, fill mixer (manufactured by Primix) Devices such as an ace homogenizer, a canki mixer (manufactured by Kansai Kikai Kogyo Co., Ltd.), a super-vibration ⁇ -sti
  • the above dispersion having a rotation speed of 600 to 13,000 rpm, a pH of 3 to 8, a temperature of 0 to 80 ° C., and a solid content concentration of 10 to 60% It is desirable to process the liquid. Within the range of the number of rotations, the average particle size of the dispersion can be made 20 ⁇ m or less.
  • the rotation speed of the high-speed stirrer is more preferably 2000 to 13,000 rpm, and most preferably 5,000 to 13,000 rpm.
  • Homogenization by a high-pressure homogenizer is to homogenize the dispersion obtained in the dispersion step by applying pressure once, passing through the gap in the apparatus, and using the shearing force when solid particles pass through the gap. .
  • a more preferable range of the pressure is 5 to 100 MPa, and more preferably 10 to 50 MPa.
  • high-pressure homogenizer examples include, for example, trade name: Nanomizer (manufactured by Nanomizer), trade name: Microfluidizer (manufactured by Microfluidic Corporation), trade name: Alite (manufactured by Nirosoavi), trade name:
  • APV homogenizer manufactured by APV
  • manton gorin homogenizer a manton gorin homogenizer. Note that the number of treatments of the high-pressure homogenizer may be one, but the treatment may be performed a plurality of times.
  • a known drying method such as shelf drying, spray drying, belt drying, fluidized bed drying, freeze drying, microwave drying, or the like can be used.
  • the moisture content of the dried cellulose composition is preferably 1 to 20% by mass. By setting the moisture content to 20% or less, problems such as stickiness and rot, and cost problems in transportation and transportation are less likely to occur.
  • the water content is more preferably 15% or less, particularly preferably 10% or less. Further, by setting the water content to 1% or more, dispersibility does not deteriorate due to excessive drying.
  • the moisture content is more preferably 1.5% or more.
  • the dried cellulose composition is preferably pulverized to the extent that it passes through a sieve having an opening of 1 mm. More preferably, pulverization is preferably performed so that the sieve has a mesh size of 425 ⁇ m, and the average particle size (apparent weight average particle size) is 10 to 250 ⁇ m.
  • fine particles of the cellulose composite and modified starch are aggregated to form secondary aggregates. This secondary aggregate is disintegrated when stirred in water and dispersed in the above-mentioned cellulose composite fine particles.
  • the apparent weight average particle size of the secondary agglomerates is determined by sieving 10 g of a sample for 10 minutes using a low-tap type sieve shaker (Sieve Shaker A type manufactured by Hira Kogakusho), JIS standard sieve (Z8801-1987). Is the cumulative weight 50% particle size in the particle size distribution obtained by.
  • Spray drying is a method in which the dispersion obtained through the homogenization step is sprayed in the form of a mist, hot air is applied to the mist, the water is evaporated, and powdered.
  • a method using an atomizer such as a Kessner, a vane, or a pin type, or a spraying method from a two-fluid nozzle, a four-fluid nozzle, or the like can be employed as a dispersion spraying method.
  • the hot air may be either a countercurrent type or a cocurrent type, but the countercurrent type is common in the atomizer method and the countercurrent type in the nozzle method.
  • the drying conditions are not limited.
  • the hot air temperature is preferably operated in the range of an inlet temperature of 100 to 200 ° C. and an outlet temperature of 40 to 99 ° C.
  • the cellulose composition of the present invention is easily dispersed in a high salinity aqueous medium, and is excellent in dispersion stability, suspension stability and shape retention of non-emulsifying oil. Therefore, the cellulose composition is particularly preferably used for an aqueous food or drink having a salt concentration of 0.1% by mass or more.
  • it is preferable to use for the food-drinks which have a sodium chloride and / or potassium chloride density
  • a more preferable salt concentration is 4% by mass or more, a further preferable range is 8% by mass or more, and a particularly preferable range is 12% by mass or more.
  • the most preferable salt concentration is 15% by mass or more, which means that the cellulose composition of the present invention can be easily dispersed even in raw soy sauce.
  • the upper limit of the salt concentration is not particularly limited, but it is preferably 50% by mass or less, and more preferably 30% by mass or less, because when the salt concentration in the food or drink is greatly increased, it becomes difficult to feel sweetness, umami, bitterness, and the like. .
  • the oil concentration in the food or drink is more preferably 5% by mass or more, more preferably 10% by mass or more, particularly preferably 15% by mass or more, and particularly preferably 20% by mass or more. Most preferably, it is 25% by mass or more.
  • the upper limit value of the oil concentration is not particularly limited. However, when the amount of oil increases, the dispersibility of the cellulose composition decreases, so that it is preferably 80% by mass or less, more preferably 50% by mass or less.
  • the addition amount of the cellulose composition in the food and drink depends on the effect required in the final form of the food, but can be exemplified as follows, for example.
  • the cellulose composition of the present invention has a concentration of 0.0.
  • concentration of the cellulose composition in this case is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and more preferably 0%. .6% by mass or more, and most preferably 1.0% by mass or more. Since the stability increases as the amount of the cellulose composition of the present invention increases, the upper limit is not particularly set. However, the range in which a light texture is maintained is 5% by mass or less.
  • Sauce-like foods having a salt concentration of 1 to 10% by mass and an oil concentration of 10 to 30% by mass, with a specific gravity of 1.0 or more and 100 ⁇ m or more of ingredients such as vegetables
  • the concentration of the cellulose composition in this case is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and more preferably 0%. .6% by mass or more, and most preferably 1.0% by mass or more. Since the stability increases as the amount of the cellulose composition of the present invention increases, the upper limit is not particularly set. However, the range in which a light texture is maintained is 5% by mass or less.
  • the cellulose composition is added in an amount of 0.1% by mass or more, the shape retaining property such as cornering when squeezed out from a tube-like container is maintained for a long time.
  • concentration of the cellulose composition in this case is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and more preferably 0%. .6% by mass or more, and most preferably 1.0% by mass or more. Since the stability increases as the amount of the cellulose composition of the present invention increases, the upper limit is not particularly set.
  • the range in which a light texture is maintained is 5% by mass or less.
  • ⁇ Viscoelasticity of aqueous food and drink> The aqueous food or drink containing the cellulose composition of the present invention has the specific viscoelasticity shown below, and therefore has high heat resistance and is preferable because it has the property of easily maintaining a state at high temperatures.
  • This viscoelasticity can be represented by a ratio of a loss tangent (tan ⁇ ) of 50 ° C. to 25 ° C., and if this ratio is 1 or more, the effect of the present application is achieved, which is preferable.
  • the loss tangent is a value obtained by measuring the dynamic viscoelasticity of the aqueous food and drink of the present invention.
  • the loss tangent (tan ⁇ ) includes an elastic component (storage elastic modulus: G ′) that holds the stress stored in the aqueous food and drink when the aqueous dispersion is distorted, and a viscous component (loss elastic modulus: G ′′) is calculated by the following formula.
  • G ′ storage elastic modulus
  • G ′′ viscous component
  • the viscoelasticity of the aqueous composition of the present invention is the ratio of tan ⁇ measured at 25 ° C. and 50 ° C., and is represented by the following formula.
  • this value is 1 or more, it means that the viscosity is increased under heating with respect to normal temperature.
  • the storage elastic modulus and loss elastic modulus were measured using a viscoelasticity measuring device (Rheometric Scientific, Inc., ARES100FRTN1 type, geometry: 25 mm Cone Plate type) (temperature: constant at 25.0 ° C or 50.0 ° C). Constant, angular velocity: 20 rad / sec, distortion: swept within the range of 1 ⁇ 794%, water-based food and drink are slowly charged with a dropper so as not to break the fine structure, and left for 10 minutes, then in Dynamic Strain mode Start measurement).
  • the storage elastic modulus and loss elastic modulus in the present invention are values of 10% strain on the strain-stress curve obtained by the above measurement, and the viscoelasticity of the present invention was measured at each temperature. The loss tangent ratio (tan ⁇ (50 ° C.) / Tan ⁇ (25 ° C.)) is calculated.
  • the upper limit is not particularly set, but a preferable range is 2 or less.
  • the confectionery of the present invention will be specifically described below.
  • the confectionery is classified as a confectionery according to the quality indication standard of the JAS method.
  • confectionery is biscuits, baked confectionery, rice confectionery, oil confectionery, Japanese confectionery, Western confectionery, semi-confectionery, Japanese confectionery, candy, chocolates, chewing gum, candied confectionery, snack confectionery, frozen confectionery, and other confectionery. It is classified into a kind.
  • the confectionery of the present invention is a process of obtaining a mixed dough by mixing raw materials including flour, saccharides, fats and oils and eggs as necessary, a step of forming this mixed dough to obtain a shaped dough, and The water content is reduced to 5% by mass or less by subjecting the shaped dough to steps of baking, oiling, drying under reduced pressure, freeze drying and the like, and they can be prepared by a conventionally known method.
  • a mixer used in a normal confectionery and bread manufacturing process can be used for mixing the dough. Any mixing method may be used as long as the raw materials are mixed substantially uniformly.
  • the present invention it is preferable to prepare by an all-in-mix method capable of mass production.
  • the above-mentioned method depending on the ratio of the blended raw materials, the water content to be added, the mixing and kneading conditions of the dough, baking, oil frying, reduced pressure drying, freeze drying, and the final form, biscuits, baked goods, rice Confectionery, oil confectionery, Japanese confectionery, Western confectionery, half confectionery, snack confectionery can be manufactured.
  • the present invention is suitable for biscuits, baked goods, and snacks that have a light texture and a crisp texture. It is particularly suitable for biscuits and baked goods.
  • ⁇ Baked confectionery> For general consumers, the above-mentioned biscuits and baked confectionery are recognized as equivalent confectionery, so in the present invention, baked confectionery includes both biscuits and baked confectionery in the JAS method.
  • the baked confectionery is obtained by baking a dough mainly made of flour with any known baking conditions and methods.
  • a fixed oven, a continuous oven, a direct oven, a hot air circulation oven, or the like can be used for firing.
  • the firing conditions vary depending on the size of the dough and the target moisture content of the final product, but are generally 3 to 30 minutes of heating in the range of 150 to 300 ° C.
  • shape of confectionery Any shape can be selected as the shape of the confectionery of the present invention.
  • the water content is the ratio of the water contained in the confectionery to the weight of the entire confectionery.
  • the amount of moisture can be measured by a known measurement method. For example, using an infrared moisture meter, the confectionery is first weighed and then maintained at 105 ° C. until there is no change in weight.
  • the weight when there is no change in weight is measured, and the amount of water can be determined from the weight reduced after heating compared to before heating.
  • the water content of the confectionery of the present invention is preferably 5% by mass or less. When the water content is 5% by mass or less, a crisp confectionery is obtained. From the viewpoint of texture, it is more preferably 4% by mass or less, still more preferably 3% by mass or less, and most preferably 2% by mass or less.
  • the lower limit may be 0%.
  • ⁇ Density> The confectionery of the present invention preferably has a density of 0.30 to 1.00 g / cm 3 . When the density falls within this range, the confectionery is light and has a light and light texture.
  • the density (unit: g / cm 3 ) is the mass per unit volume of a confectionery at the time of eating.
  • a confectionery contains ingredients with a minor axis of 0.5 mm or more, it refers to the density of the confectionery excluding the ingredients.
  • the density of the confectionery must be 0.30 to 1.00 g / cm 3 . If the density is less than 0.30 g / cm 3 , the confectionery is too light and unresponsive to eating. On the other hand, when the density exceeds 1.00 g / cm 3 , the confectionery has a structure in which the inside is densely packed, and is not a confectionery with a light and light texture. From the viewpoint of texture, it is more preferably 0.40 to 0.85 g / cm 3 , further preferably 0.50 to 0.80 g / cm 3 , and most preferably 0.60 to 0.70 g. / Cm 3 .
  • the confectionery of the present invention preferably has a maximum load of 0.3 to 5 kgf. When the maximum load falls within this range, it becomes a child that can be eaten sufficiently even by children who are weak in chewing force and the elderly.
  • the load is measured using a test piece having a length of 25 ⁇ 5 mm, a width of 25 ⁇ 5 mm, and a thickness of 10 ⁇ 1 mm.
  • the test piece may be in any state as long as the consumer can eat. If the confectionery is baked confectionery, the state after baking the dough is preferable.
  • the maximum load is a texture analyzer (manufactured by Eiko Seiki Co., Ltd., TA.XT plus type, measuring jig: HDP / 3PB type, temperature: 25.0 ° C., Mode: Measurement Force in Compression, Option: Return to Start, Pres.
  • the maximum load in the present invention is a value with the maximum stress on the time-stress curve obtained by the above measurement. The larger the maximum load value, the harder the confectionery.
  • the maximum load of the confectionery needs 0.3 to 5 kgf. If the maximum load is less than 0.30 kgf, the cake becomes brittle and unresponsive to eating. On the other hand, when the maximum load exceeds 5 kgf, it becomes a hard and crunchy texture, and it is no longer a soft and light textured confectionery. Generally, a confectionery having a maximum load exceeding 5 kgf is sufficiently hard so that cracking and chipping are not a problem, but the texture is poor. From the viewpoint of texture, the maximum load is more preferably 0.5 to 3.5 kgf, still more preferably 1.0 to 3.0 kgf, and most preferably 1.5 to 2.5 kgf. ⁇ Wheat flour>
  • the typical confectionery of the present invention preferably contains flour. It is because it becomes a confectionery with sufficient nutritional value by including flour.
  • cereal flour means gramineous grains (wheat, barley, rye, rice, corn, tef, mackerel), beans (soybean, chickpeas, peas), pseudocereals (buckwheat, amaranthus), potatoes and root vegetables ( It is a powder made by grinding (eg, chestnut, potato, kuzu, tapioca) and nuts (chestnut, acorn).
  • wheat flour or rice flour is preferable for the confectionery of the present invention.
  • ⁇ Wheat flour> Wheat flour is a powder made by grinding wheat.
  • Wheat flour is classified into soft flour, medium flour, strong flour, float flour, whole grain flour, graham flour, semolina flour, etc., depending on the proportion of protein contained therein and the properties of gluten formed. It corresponds to.
  • the amount of flour blended in the confectionery of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 45% by mass or more. The more flour, the better nutritional value is preferable.
  • the upper limit is preferably 86% by mass or less, more preferably 80% by mass or less, and particularly preferably 70% by mass or less, from the viewpoint of texture (a too much flour results in a texture like a moist bread).
  • the strong flour has a protein ratio of 12% or more
  • the medium flour has a protein ratio of 11.9 to 8.6%
  • the weak flour has a protein ratio of 8.5% or less. is there.
  • rice flour is a powder made by grinding rice. As the raw material rice, either sticky rice or sticky rice may be used.
  • rice flour includes: Kaminshin flour, top flour, dango flour, bread rice flour, confectionery rice flour, infant flour, fine powder, glutinous flour, white ball flour, fertilizer flour, Domyoji flour, kumbai flour, oak There are powders.
  • one kind of rice flour may be used, or a mixture of two or more kinds may be used.
  • rice flour having an average particle size of 150 ⁇ m or less and the same size as general wheat flour.
  • the flour used in the present invention it is preferable in terms of processing characteristics and texture to use rice flour containing 30% by mass. More preferably, it is 40% by mass or more, and particularly preferably 45% by mass or more.
  • ⁇ Sugar> A typical confectionery of the present invention is blended with sugars. By including saccharides, sweetness can be imparted and a confectionery tasted by both young and old is obtained.
  • saccharide used in the present invention examples include sucrose, lactose, maltose, glucose (glucose), fructose, invert sugar, starch syrup, powdered starch syrup, reduced malt starch syrup, honey, trehalose, trehalulose, neotrehalose, palatinose, D-xylose.
  • starch hydrolysates, dextrins, sucrose, glucose, and sugar alcohols are preferred in terms of taste.
  • sucrose is preferable.
  • the amount of saccharide to be blended in the confectionery of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more. The more saccharides, the better the sweetness.
  • the upper limit is preferably 50% by mass or less, particularly preferably 40% by mass or less, from the viewpoint of the balance between the taste of sweetness and flour.
  • ⁇ Oil and fat> It is preferable that fats and oils are blended in a typical confectionery of the present invention. By including fats and oils, it becomes a rich confectionery. Examples of the fats and oils used in the present invention include vegetable fats and oils, animal fats and oils, and processed products thereof.
  • fats and oils commercially available fats and oils can be used.
  • examples of such fats and oils include shortening, margarine, butter, lard, soybean oil, rapeseed oil, cottonseed oil, corn oil, sunflower oil, olive oil, safflower oil, palm oil, palm kernel oil and palm oil butter, fresh cream, hardened Fats and oils, transesterified fats and oils, and the like can be given.
  • One or more of these can be used in combination.
  • shortening, butter, fresh cream and the like are preferable in terms of flavor.
  • the amount of fats and oils to be blended in the confectionery of the present invention is preferably 3% by mass or more, more preferably 5% by mass or more, and particularly preferably 12% by mass or more.
  • the upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
  • ⁇ Addition amount of cellulose composition> The confectionery of the present invention preferably contains 0.01% by mass or more of the cellulose composition.
  • the blending amount of the cellulose composition here is calculated from the weight of the composition (not the cellulose content in the composition).
  • the cellulose composition it is preferable to add a large amount of the cellulose composition because a reduction in product loss during production and distribution, an improvement in crispness, and a good edge (edge) standing can be achieved.
  • it is 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more.
  • the upper limit is preferably 5% by mass or less.
  • the confectionery intended in the present invention is generally a process of blending powder raw materials such as flour and sugar with a blended powder, a process of preparing dough by mixing raw materials containing water such as water and eggs with the blended powder, It is manufactured through a step of forming the dough, and a step of processing the formed dough, such as baking, oiling, drying under reduced pressure, and freeze drying. Moreover, as a seasoning, it may be further coated with an aqueous medium such as chocolate.
  • the cellulose composition is blended with the raw material of the powder, mixed with the raw material containing moisture, dusted after molding the dough, baked, oil-dried, vacuum dried, freeze-dried, You may add by any method of mix
  • mixing with other raw materials in the presence of water is preferable because dispersion of cellulose is promoted.
  • a raw material eg, egg
  • it may be mixed in advance and added in a dispersed state.
  • the confectionery of the present invention can have the same configuration as a normal food as long as the effects of the present invention are not affected.
  • an additive material selected from eggs, foaming agents, water, oligosaccharides, proteins, thickeners, ingredients, flavor raw materials, seasonings, fragrances, pigments, emulsifiers and the like may be mixed at a predetermined ratio.
  • eggs used in the present invention those circulated as edible eggs can be used, and it is preferable to use bird eggs.
  • bird eggs include chicken eggs, quail eggs, duck eggs, ostrich eggs, and pigeon eggs, and these can also be used in combination.
  • a raw egg can be used as it is, or a dried processed egg can be used, but it is preferable to use a raw egg in terms of processability.
  • the amount of egg to be blended in the confectionery of the present invention is preferably 3% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more.
  • the upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
  • the confectionery of the present invention is preferably blended with a foaming agent (swelling agent) for the purpose of providing a light texture with a low density.
  • blowing agent any commercially available blowing agent can be used, and one or more of baking powder, baking soda, ammonium bicarbonate, ammonium chloride, magnesium carbonate, alum should be used in combination. Can do. From the viewpoint of taste, baking powder, baking soda, and ammonium bicarbonate are preferable, and baking powder is most preferable.
  • the amount of the foaming agent to be blended in the confectionery of the present invention is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 0.3% by mass or more.
  • a larger amount of the swelling agent is preferable because it provides a lighter texture.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 1% by mass or less from the viewpoint of eating response. Particularly preferred.
  • oligosaccharide examples include fructooligosaccharide, galactooligosaccharide, maltooligosaccharide, isomaltooligosaccharide, dairy oligosaccharide, cellooligosaccharide, xylooligosaccharide, lactulose, ⁇ -, ⁇ , and ⁇ -cyclodextrin.
  • maltooligosaccharides, isomaltooligosaccharides, and dairy oligosaccharides are preferable because of their high taste-improving effect.
  • milk-derived protein such as cow's milk, skim milk powder, whole milk powder, whole fat sweetened condensed milk, skimmed sweetened condensed milk or fresh cream, soybean protein and the like can be used.
  • emulsifier examples include glycerin fatty acid ester (monoglycerin fatty acid ester, diglycerin fatty acid ester, organic acid monoglyceride such as citric acid or lactic acid, polyglycerin fatty acid ester), sucrose fatty acid ester, sorbitan fatty acid ester, Propylene glycol fatty acid ester, lecithin, saponin, polysorbate, stearoyl lactate (sodium, calcium) and the like can be mentioned, but are not limited thereto.
  • glycerin fatty acid ester monoglycerin fatty acid ester, diglycerin fatty acid ester, organic acid monoglyceride such as citric acid or lactic acid, polyglycerin fatty acid ester
  • sucrose fatty acid ester sucrose fatty acid ester
  • sorbitan fatty acid ester sorbitan fatty acid ester
  • Propylene glycol fatty acid ester lecithin, saponin
  • the ingredients may be plant or animal.
  • plant-based ingredients fruits, vegetables, nuts, cereals and the like that have been cut raw and / or those processed by drying, dipping, or the like can be used.
  • Animal ingredients include beef, pork, chicken, or those processed into dried meat, ham, sausage, etc., fish, or those processed into fish sections, sea bream, sausage, etc. What fermented milk, such as cheese, can also be used.
  • ⁇ Flavor ingredients> The confectionery of the present invention may contain a flavor raw material as long as the effects of the present invention are not affected.
  • flavor ingredients include seeds (peanuts, almonds, macadamia nuts, cashew nuts, chestnuts, etc.), beans (red beans, peas, soybeans, etc.), seafood (shrimp, crab, salmon, scallops, octopus, etc.), milk (Milk, fresh cream, condensed milk, whole milk powder, skim milk powder, cheese, yogurt, etc.), vegetables (carrots, tomatoes, onions, peppers, kale, etc.), fruits (strawberry, orange, raisins, apples, kiwi, pineapple) , Plum, banana, fig, peach, none, etc.), beverages (coffee, tea, cocoa, beer, wine, whiskey, shochu, etc.), seasonings (salt, miso, soy sauce, sauce, vinegar, etc.), spices (Pepper, curry powder, cinnamon, etc.).
  • seeds peanuts, almonds, macadamia nuts, cashew nuts, chestnuts, etc.
  • beans red beans, peas, soybeans
  • the form of these raw materials may be any form such as raw, dried product, powder, paste, puree, and liquid.
  • one or more kinds can be used in combination.
  • ⁇ High intensity sweetener> As long as the confectionery of the present invention does not affect the effects of the present invention, saccharin sodium, cyclamate and its salt, acesulfame potassium, thaumatin, aspartame, sucralose, alitame, stevioside contained in stevia extract, etc. Sweeteners and the like may also be added.
  • the bakery product of the present invention will be specifically described below.
  • the bakery product of the present invention is a product obtained by adding water to a raw material containing wheat flour, sugars, and fats, mixing, kneading, baking, or oiling. Specifically, it refers to a pound cake, sponge cake, chiffon cake, castella, hot cake, cheesecake, and donut. Pound cakes, sponge cakes, chiffon cakes, castellas, and cheese cakes are particularly preferred forms that contain ingredients and need to maintain their uniformity.
  • the wheat flour is a powder made by grinding wheat.
  • wheat flours are classified into soft flour, medium flour, strong flour, floating flour, whole wheat flour, graham flour, and semolina flour according to the proportion of protein contained in the flour and the properties of gluten formed, all of which fall under the wheat flour referred to in this application. .
  • strong flour, medium flour, and weak flour are preferable.
  • the strong flour has a protein ratio of 12% or more
  • the medium flour has a protein ratio of 11.9 to 8.6%
  • the weak flour has a protein ratio of 8.5% or less. is there.
  • the amount of flour blended in the bakery product of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less from the viewpoint of productivity (ease of grouping of dough).
  • the saccharides used in the present invention include, for example, sucrose, lactose, maltose, glucose (glucose), fructose, invert sugar, starch syrup, powdered starch syrup, reduced malt starch syrup, honey, trehalose, trehalulose, neotrehalose, palatinose, Examples thereof include saccharides such as D-xylose, starch hydrolyzate, and dextrin; and sugar alcohols such as xylitol, sorbitol, maltitol, and erythritol.
  • High sweetness sweeteners such as stevioside contained in saccharin sodium, cyclamate and salts thereof, acesulfame potassium, thaumatin, aspartame, sucralose, alitame and stevia extract may also be added. Two or more kinds of these saccharides may be combined. Of the above, starch hydrolysates, dextrins, sucrose, glucose, and sugar alcohols are preferred in terms of taste. Of these, sucrose, sugar alcohol, or combinations thereof are preferred.
  • the amount of saccharide to be blended in the bakery product of the present invention is preferably 2% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more.
  • the upper limit is preferably 25% by mass or less, more preferably 20% by mass or less, and particularly preferably 15% by mass or less from the viewpoint of the balance between the taste of sweetness and flour.
  • 1 type, or 2 or more types can be used together from milk fat content, such as butter and fresh cream, vegetable fats and oils, these fractionated fats and oils, hardened fats and oils, transesterified fats and oils.
  • vegetable oils include soybean oil, rapeseed oil, cottonseed oil, corn oil, sunflower oil, olive oil, safflower oil, palm oil, palm kernel oil and coconut oil. Among these, butter and fresh cream are preferable in terms of flavor.
  • the amount of fats and oils to be blended in the bakery product of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
  • ⁇ Egg> As eggs used in the present invention, those circulated as edible eggs can be used, and bird eggs are preferably used. Examples of bird eggs include chicken eggs, quail eggs, duck eggs, ostrich eggs, and pigeon eggs, and these can also be used in combination.
  • chicken eggs in terms of processability and taste.
  • a raw egg can be used as it is, or a dried processed egg can be used, but it is preferable to use a raw egg in terms of processability.
  • the amount of egg to be blended in the bakery product of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
  • the bakery product of the present invention preferably contains an oligosaccharide for the purpose of imparting a rich taste.
  • oligosaccharides By blending oligosaccharides in addition to saccharides, the sweetness of the above-mentioned saccharides (taste immediately after eating) can be mellow, and richness in aftertaste (taste immediately after swallowing) can be imparted.
  • the oligosaccharide include fructooligosaccharide, galactooligosaccharide, maltooligosaccharide, isomaltooligosaccharide, dairy oligosaccharide, cellooligosaccharide, xylooligosaccharide, lactulose, ⁇ -, ⁇ -, and ⁇ -cyclodextrin.
  • maltooligosaccharides, isomaltooligosaccharides, and dairy oligosaccharides are preferable because of their high taste-improving effect.
  • the amount of the oligosaccharide to be blended in the bakery product of the present invention is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more.
  • the upper limit is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 8% by mass or less.
  • the bakery product of the present invention can have the same configuration as that of a normal food as long as the effects of the present invention are not affected. For example, what mixed the additive material selected from water, protein, a thickener, a seasoning, a fragrance
  • milk-derived protein such as cow's milk, skim milk powder, whole milk powder, whole fat sweetened condensed milk, skimmed sweetened condensed milk or fresh cream, soy protein and the like can be used.
  • xanthan gum guar gum, locust bean gum, tragacanth gum, tamarind seed gum, tara gum, curdlan, rumzan gum, gati gum, glucomannan, caraya gum, deacylated gellan gum, native gellan gum, gum arabic, macrohomopsis gum, carrageenan, agar, Gelatin, pectin, curdlan, glucomannan, alginic acid (alginic acid, alginate), various modified and processed starches, CMC, MC, HPC, HPMC, microcrystalline cellulose, fermented cellulose, microfibrous cellulose, dried konjac processed products, etc. Can be mentioned.
  • glycerin fatty acid ester monoglycerin fatty acid ester, diglycerin fatty acid ester, organic acid monoglyceride such as citric acid or lactic acid, polyglycerin fatty acid ester
  • sucrose fatty acid ester sucrose fatty acid ester
  • sorbitan fatty acid ester propylene glycol fatty acid ester
  • lecithin saponin, polysorbate, stearoyl lactate (sodium, calcium) and the like.
  • the bakery product of the present invention has a minor axis of 0.5 mm or more, a major axis / minor axis ratio of 1.0 to 5.0, and contains 1% by mass or more of ingredients having a specific gravity of 1.0 g / mL or more. It is preferable.
  • the tool material is preferably a large one having a minor axis of 0.5 mm or more.
  • the minor axis is the smallest distance among the distances from one surface to the other surface through the center (center of gravity) when an irregular shaped material is used.
  • the minor axis is more preferably 1 mm or more, further preferably 3 mm or more, particularly preferably 5 mm or more, and most preferably 10 mm or more. As an upper limit, it is 30 mm or less.
  • the major axis is the largest in the above measurement method, and the major axis / minor axis ratio is 1.0 to 5.0. In terms of ease of eating, 1.0 to 3.0 is preferable, and 1.0 to 2.0 is more preferable.
  • the specific gravity of the ingredients is 1.0 g / mL or more, and the larger the specific gravity, the better the eating response and the better the volume feeling when chewing with the teeth is preferable.
  • the specific gravity is preferably 1.2 g / mL or more, more preferably 1.3 g / mL or more, particularly preferably 1.5 g / mL or more, and most preferably 1.7 g / mL or more. .
  • 3.0 g / mL or less is preferable.
  • the material that can be used in the present invention may be plant or animal.
  • fruits, vegetables, nuts, grains, etc. which have been cut raw and / or those which have been processed by drying, dipping, etc. can be used.
  • Soaked fruits and vegetables are those soaked in sugar solution such as sugar, soaked in salt water, soaked in vinegar, etc., even if they contain moisture or are dried , Either can be used.
  • sugar solution such as sugar, soaked in salt water, soaked in vinegar, etc.
  • Animal ingredients include beef, pork, chicken, or those processed into dried meat, ham, sausage, etc., fish, or those processed into fish sections, sea bream, sausage, etc. What fermented milk, such as cheese, can also be used.
  • Fruit-based ingredients It is preferable to use fruit-based ingredients in the bakery product of the present invention. By using the fruit, a product with excellent taste can be obtained.
  • the fruit-based ingredients are preferably at least one selected from dried fruits, fruits soaked in sugar solution, and fresh fruits from the viewpoint of ease of processing.
  • the ingredients to be blended in the bakery product of the present invention are preferably dried fruits in terms of ease of processing, texture and taste.
  • the bakery product of this invention needs to contain 1 mass% or more of the above-mentioned ingredients. By blending a large amount of ingredients, a bakery product with excellent texture and taste can be obtained.
  • the bakery product of the present invention preferably contains 0.1% by mass or more of the cellulose composition of the present invention.
  • the blending amount of the cellulose composition is calculated from the weight of the composition (not the cellulose content in the composition). The more the cellulose composition is blended, the better the uniformity of the ingredients.
  • modified starch used in bakery products> In addition to the above-mentioned raw materials, modified starch can be used for the bakery product of the present invention. Processed starch is preferable because it can be used in combination with the cellulose composition because a synergistic effect is obtained in uniform stabilization of ingredients.
  • 0.1 mass% or more is preferable. More preferably, it is 1 mass% or more, More preferably, it is 1.5 mass% or more, Most preferably, it is 2 mass% or more.
  • the texture is impaired, so that it is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • acetylated adipic acid crosslinked starch acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl succinate starch sodium, acetate starch, oxidized starch, hydroxyalkylated phosphate crosslinked starch, Hydroxyalkylated starch, phosphoric acid cross-linked starch, phosphorylated starch, phosphoric acid monoesterified phosphoric acid cross-linked starch, starch sodium glycolate, and sodium starch phosphate ester are preferred. These can be used in any form of an alpha process, a partially alpha process, and a non-alpha process.
  • acid-treated starch or pregelatinized starch obtained by pregelatinizing raw starch can also be used.
  • the above-mentioned modified starch may be used alone or in combination of two or more.
  • those processed with an alpha are preferable because they have a high synergistic effect with the cellulose composition. More preferred is an acetylated oxidized starch, a sodium octenyl succinate starch, an acetate starch, an oxidized starch, a hydroxyalkylated starch, a phosphorylated starch, or a raw starch that has been alphalated.
  • pregelatinized starch obtained by subjecting raw starch to alpha is particularly preferred.
  • Processed starch ingredients include wheat starch, corn starch, waxy corn starch (waxy corn starch), potato starch, waxy potato starch, tapioca starch, rice starch, glutinous rice starch, sweet potato starch, sago starch, waste starch, etc. Is mentioned.
  • the bakery product of the present invention is a raw material containing wheat flour, saccharides, fats and oils, and if necessary, water, mixed, kneaded, baked or oiled, and is a conventionally known method. It is prepared by. In the above method, depending on the ratio of blended raw materials, added moisture content, dough mixing / kneading conditions, baking conditions, final form, pound cake, sponge cake, chiffon cake, castella, hot cake, cheesecake Both donuts can be produced.
  • a pound cake, a sponge cake, a chiffon cake, a castella, and a cheesecake are particularly preferable because the effects of the present invention are increased from the form.
  • ⁇ Pound cake, sponge cake, chiffon cake, castella, cheesecake> For example, a co-standing method to prepare cake dough after whipping all eggs in advance, a separate method to prepare cake dough after dividing the egg into egg white and yolk, whipping the egg white portion into a meringue state, and all raw materials
  • raw materials such as flour, whole eggs, sugars, fats and oils, water, and emulsifiers are mixed together, whipped, foamed, poured into a firing mold, and then fired in an oven. Can be prepared.
  • the whipping step is not necessarily essential, and the degree and method of whipping can be appropriately adjusted using known techniques according to the finally required form.
  • Method for adding cellulose composition In the above production method, the cellulose composition is added at a stage before firing. In particular, mixing with other raw materials in the presence of water is preferable because dispersion of cellulose is promoted. Moreover, when adding an egg or water, you may mix with them previously and may add in the state disperse
  • the sponge cake as referred to in the present invention is a cake dough that is baked into a light sponge with high resilience in an oven using the foamability of melted chicken eggs in the above description.
  • the basic composition of the sponge dough is eggs, sugar, and flour.
  • butter sponges containing fats and oils are also included in the sponge cake of the present invention.
  • the chiffon cake of the present invention is included in the sponge cake of the present invention, and particularly refers to a product that has undergone meringue in the whipping process.
  • the sponge cake of the present invention and the pound cake can be distinguished by the specific gravity of the dough before baking.
  • the specific gravity of the sponge cake dough is preferably 0.3 to 0.69 g / mL, more preferably 0.35 to 0.6 g / mL, and still more preferably 0.4 to 0.55 g / mL. is there.
  • the specific gravity of the dough of the pound cake of the present invention is preferably 0.7 to 1.0 g / mL, more preferably 0.75 to 0.9 g / mL, and still more preferably 0.75 to 0.85 g. / ML.
  • the cellulose composition of the present invention can be used for various foods. For example, various soups, stews, sauces, sauces, dressings and other seasonings, coffee, tea, matcha, cocoa, juice, juices and other favorite beverages, raw milk, processed milk, lactic acid bacteria beverages, soy milk, etc.
  • Beverages including nutritious beverages such as organic beverages, calcium-fortified beverages and dietary fiber-containing beverages, ice creams such as ice cream, ice milk, soft cream, milk shake, sherbet, butter, cheese, yogurt, coffee white Milk, whipping cream, custard cream, pudding and other dairy products, mayonnaise, margarine, spreads, shortening and other dairy products, various kneading spices such as knead and various fillings represented by jam and flower paste , Gel and paste foods containing various types of ann and jelly, , Noodles, pasta, pizza, cereal foods including various premixes, candies, cookies, biscuits, hot cakes, Japanese and Western confectioneries including chocolate, candy, etc. And other livestock products represented by hamburgers, cream croquettes, Chinese annuities, gratin, gyoza and other prepared foods, salted and delicacies such as pickled vegetables, pet foods, and tube-flowing foods.
  • beverages such as organic beverages, calcium-fortified beverages and dietary fiber
  • the cellulose composition of the present invention is a non-emulsifying oil dispersion stabilizer, suspension stabilizer, thickening stabilizer, foam stabilizer, cloudy agent, tissue imparting agent, fluidity improver, It acts as a low calorie base such as a shape-retaining agent, water separation preventing agent, dough modifier, powdered base, dietary fiber base, and fat / oil substitute.
  • a low calorie base such as a shape-retaining agent, water separation preventing agent, dough modifier, powdered base, dietary fiber base, and fat / oil substitute.
  • the effects of the present invention can be exhibited even if the above-mentioned foods have different forms or processing methods at the time of use, such as retort foods, powdered foods, frozen foods, and microwave foods.
  • the cellulose composition of the present invention is used for food, the same equipment as that generally used in the production of each food is used, and in addition to the main raw materials, as needed, a perfume, pH adjuster, What is necessary is just to mix
  • the cellulose composition of the present invention is a non-emulsifying oil easy dispersion stabilizer that can be easily dispersed in a liquid having a high salinity.
  • compositions include printing inks, lubricating oils, antistatic agents, antifogging agents, lubricants, dispersants, deinking agents, and the like.
  • a composition in an aqueous suspension containing a water-insoluble component can maintain a stable dispersion state without causing aggregation, separation, water separation, and sedimentation.
  • the performance as a stabilizer is remarkably improved and the problem of roughness is eliminated by its smooth texture and body feeling, the cellulose composition can be used in a wide range of food applications other than those described above. Is possible.
  • the salt concentration is not particularly defined, but is preferably 1.0 mol / L or less.
  • the salt concentration herein refers to the salt concentration in the aqueous solution obtained after removing the solid content in the paint by centrifugation and / or filtration.
  • -421) is a molar concentration (mol / L) in terms of NaCl (% by mass) measured as NaCl.
  • the pH is not particularly defined, but the pH is preferably from 3.0 to 13.0, more preferably from 4.0 to 12.0. The pH can be measured using a pH meter (pH meter D-50 manufactured by HORIBA) after removing the solid content in the paint by centrifugation and / or filtration.
  • ⁇ Fine particle component of cellulose composition (BS amount)> (1)
  • the cellulose composition of the present invention was weighed and dispersed in a 5% by mass sodium chloride aqueous solution so that the concentration was 0.01% by mass.
  • this cellulose composition dispersion was charged into a laser diffraction / scattering particle size distribution meter (trade name “LA-910”, manufactured by Horiba, Ltd., flow cell), and subjected to ultrasonic treatment for 2 minutes.
  • the particle size distribution was measured at a refractive index of 1.04.
  • the ratio of particles of 1 ⁇ m or less to the whole (percentage of the total volume frequency) was calculated by the following formula.
  • BS amount (%) (volume frequency of particles of 1 ⁇ m or less) / (detected total volume frequency) ⁇ 100
  • ⁇ Evaluation of ramen soup Appearance observation> (Oil dispersion stability) After preparing the prototype soup in a 200 mL tall beaker and leaving it at a predetermined temperature for a predetermined time, the volume ratio of the lightly colored layer (oil layer) generated on the upper part was visually evaluated. ⁇ (excellent): No separation (uniform) ⁇ (Good): Separation is less than 10% ⁇ (Yes): Separation is 10% or more and less than 30% X (No): Separation is 30% or more Percentage.
  • ⁇ Viscoelasticity of aqueous food and drink> (1) The aqueous food and drink obtained in each Example and Comparative Example were heated to a predetermined temperature (25 ° C. or 50 ° C.), and a viscoelasticity measuring device (Rheometric Scientific, Inc., ARES100FRTN1 type, geometry: 25 mm Cone) Plate type). At this time, sweep within a predetermined condition (temperature: 25.0 ° C constant or 50.0 ° C constant, angular velocity: 20 rad / sec, strain: 1 ⁇ 794%, water-based food and drink should have a dropper so as not to break the microstructure. The sample was slowly prepared and allowed to stand for 10 minutes, and then the measurement was started in the Dynamic Strain mode.
  • Example 1 1) Dispersion / Homogenization Step Using a high-speed stirrer (product name: TK Homomixer MARKII, manufactured by PRIMIX), while stirring 1500 g of tap water at 25 ° C. at 2000 rpm, dextrin (product name: SANDEC #, manufactured by Sanwa Starch) 100) was added and stirred for 5 minutes. Thereafter, 25 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH, manufactured by Nissho Chemical Co., Ltd.) was added as processed starch, and the mixture was further stirred for 5 minutes.
  • TK Homomixer MARKII manufactured by PRIMIX
  • concentrated ramen soup was prepared as follows. First, using a propeller stirrer (trade name 3-1 motor manufactured by HEIDON, 1 stage of stirring blade chi-cross type propeller), 96 g of chicken extract (manufactured by JT Foods), 21 g of white pork hot water (manufactured by JT Foods), thick soy sauce 12.6 g (manufactured by Kikkoman), 5.1 g of porcine protein hydrolyzate (manufactured by AP-LP), 2.1 g of niboshi extract (manufactured by JT Foods) and 84 g of pure water were stirred at 75 ° C.
  • a propeller stirrer trade name 3-1 motor manufactured by HEIDON, 1 stage of stirring blade chi-cross type propeller
  • 96 g of chicken extract manufactured by JT Foods
  • 21 g of white pork hot water manufactured by JT Foods
  • thick soy sauce 12.6 g
  • porcine protein hydrolyzate manufactured by AP
  • yakiniku sauce was produced as follows. Using a propeller stirrer (HEIDON product name 3-1 motor, stirring blade chi-cross type propeller 1 stage), 40g thick soy sauce (Kikkoman), 16g sugar, 10g mirin, 9g sesame oil, 5.4g apple vinegar, grated garlic 3 g, 1 g of porcine protein hydrolyzate, 1 g of roasted sesame, 1 g of caramel pigment, 1 g of seasoning, 1.3 g of cellulose composition, 0.03 g of xanthan gum, 0.5 g of enzyme, 0.1 g of black pepper, 4.67 g of pure water Stir at 700 rpm for 2 hours at 85 ° C.
  • the final product had a salt concentration of 6% by mass and an oil content of 10% by mass. This was transferred to a 50 mL plastic container and stored at 25 ° C. for 3 days. After storage, the dripping was vigorously shaken 20 times and allowed to stand, and after 1 minute, the appearance was visually observed (dispersion stability of oil, suspension stability evaluation of roasted sesame). The evaluation results are shown in Table 1.
  • mayonnaise was produced as follows. First, 3 g of xanthan gum, 100 g of egg yolk, and 397 g of pure water were stirred for 5 minutes at 8,000 rpm using a TK homogenizer.
  • a soft mix was produced as follows. First, 160 g of unsalted butter, 600 g of granulated sugar, 400 g of skim milk powder, 120 g of coconut oil, 6 g of emulsifier, 4 g of sodium benzoate, 12 g of cellulose composition A, 2698 g of hot water at 70 ° C. and 58,000 g at 8,000 rpm using a TK homogenizer. Stir for minutes to make a suspension.
  • this liquid was homogenized at a total pressure of 15 MPa by adding a secondary pressure of 5 MPa to a main pressure of 10 MPa using a high-pressure homogenizer (trade name Manton Gorin homogenizer manufactured by APV).
  • the mixture was sterilized at 120 ° C. for 3 seconds and filled in a 250 mL heat-resistant bottle. After storage at 5 ° C. for 1 week, the appearance was visually observed (oil dispersion stability).
  • the evaluation results are shown in Table 1.
  • the salt concentration was 0.1% by mass and the oil content was 6.2% by mass.
  • Example 2 220 g of dextrin (trade name Sandeck # 100, manufactured by Sanwa Starch), 55 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH, manufactured by Nissho Chemical Co., Ltd.), a complex of cellulose and xanthan gum (trade name Theolas RC, manufactured by Asahi Kasei Chemicals)
  • a cellulose composition B was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 225 g.
  • the amount of BS of the obtained cellulose composition B was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 by using the cellulose composition B. The obtained results are shown in Table 1.
  • Example 3 180 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 95 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals)
  • a cellulose composition C was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 225 g.
  • the amount of BS of the obtained cellulose composition C was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition C. The obtained results are shown in Table 1.
  • Example 4 1) Dispersion process Using a propeller stirrer (trade name 3-1 motor BL-600 made by HEIDON, one stage of stirring blade chi-cross type), 125 g of dextrin (trade name SANDEC # 100 made by Sanwa Starch), derived from waxy corn starch Dispersed in the same manner as in Example 1 except that 150 g of hydroxypropylated starch (trade name Delica WH, manufactured by Nissho Chemical Co., Ltd.) and 225 g of a complex of cellulose and xanthan gum (trade name Theorus RC-N30, manufactured by Asahi Kasei Chemicals) were used. A dispersion was obtained.
  • a propeller stirrer trade name 3-1 motor BL-600 made by HEIDON, one stage of stirring blade chi-cross type
  • dextrin trade name SANDEC # 100 made by Sanwa Starch
  • SANDEC # 100 made by Sanwa Starch
  • Example 5 Except for 275 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH manufactured by Nissho Chemical Co., Ltd.) and 225 g of a composite of cellulose and xanthan gum (trade name Theolas RC-N30 manufactured by Asahi Kasei Chemicals) Then, dispersion / homogenization and drying were performed to obtain a cellulose composition E. The amount of BS of the obtained cellulose composition E was measured, and the results are shown in Table 1. Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition E. The obtained results are shown in Table 1.
  • Example 6 285 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 65 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals)
  • a cellulose composition F was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 150 g.
  • the amount of BS of the obtained cellulose composition F was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition F. The obtained results are shown in Table 1.
  • Example 7 215 g of dextrin (trade name Sandek # 100 made by Sanwa Starch), 85 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals)
  • a cellulose composition G was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 200 g.
  • the amount of BS of the obtained cellulose composition G was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition G. The obtained results are shown in Table 1.
  • Example 8 107 g of dextrin (trade name Sandek # 100 made by Sanwa Starch), 118 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a composite of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals)
  • a cellulose composition H was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1, except that -N30) was changed to 275 g.
  • the amount of BS of the obtained cellulose composition H was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition H. The obtained results are shown in Table 1.
  • Example 9 285 g of dextrin (trade name: Sundeck # 100 made by Sanwa Starch), 65 g of phosphate cross-linked pregelatinized starch derived from waxy corn starch (trade name: Neobis C-60 made by Nippon Shokuhin Kako), a complex of cellulose and xanthan gum (manufactured by Asahi Kasei Chemicals)
  • Cellulose composition I was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that the trade name Theorus RC-N30) was changed to 150 g.
  • the amount of BS of the obtained cellulose composition I was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition I. The obtained results are shown in Table 1.
  • Example 10 285 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 65 g of pregelatinized starch derived from waxy corn starch (trade name MH-A made by Nissho Chemical), a composite of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals)
  • a cellulose composition J was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 150 g.
  • the amount of BS of the obtained cellulose composition J was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 by using the cellulose composition J. The obtained results are shown in Table 1.
  • Example 11 285 g of dextrin (trade name SANDEC # 100 made by Sanwa Starch), 65 g of hydroxypropylated phosphoric acid cross-linked starch derived from waxy corn starch (product Delica KH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name made by Asahi Kasei Chemicals)
  • Cellulose composition K was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that 150 g of Theolus RC-N30) was used.
  • the amount of BS of the obtained cellulose composition K was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition K. The obtained results are shown in Table 1.
  • Example 13 1) Manufacture of a composite of cellulose and gellan gum After cutting commercially available DP pulp, it was hydrolyzed in 2.5 mol / L hydrochloric acid at 105 ° C. for 15 minutes, then washed with water and filtered to obtain a wet cake having a solid content of 50% by mass. In the form of cellulose (average degree of polymerization was 220). Next, wet cake-like cellulose, commercially available gellan gum (Saneigen FFI Kelco Gel LT100) as component A, and commercially available dextrin (Sandex Starch # 30 manufactured by Sanwa Starch) as component B are prepared.
  • Planetary Mixer (Shinagawa Co., Ltd.) A 5DM-03-R manufactured by Kogyosho Co., Ltd. and a stirring blade hook type) are introduced so that the mass ratio of cellulose / gellan gum / dextrin is 77/3/20 (mass ratio), and the solid content becomes 45 mass%. So watered. Thereafter, the mixture was kneaded at 126 rpm to obtain a cellulose composite. The kneading energy was controlled by the kneading time of the planetary mixer, and the actually measured value was 390 Wh / kg.
  • the temperature of the kneaded material was directly measured using a thermocouple, and was 20 to 40 ° C. throughout the kneading.
  • This cellulose composite was pelletized with ⁇ 1 mm of a single screw extruder and dried in a 90 ° C. ventilated oven. The dried pellets were pulverized with an ultracentrifugal pulverizer (small pulverizer screen diameter ⁇ 0.75 ⁇ m manufactured by Lecce) and passed through a sieve having an opening of ⁇ 500 ⁇ m.
  • the obtained powder was defined as cellulose composite X (water content 6 mass%).
  • cellulose composition 285 g of dextrin (trade name Sandeck # 100, manufactured by Sanwa Starch), 65 g of hydroxypropylated starch derived from waxy corn starch (trade name, Delica WH, manufactured by Nissho Chemical), a composite of cellulose and gellan gum ( Dispersion in the same manner as in Example 4 except that the above-mentioned cellulose composite X, storage elastic modulus (G ′): 2.5 Pa, volume average particle diameter 7.8 ⁇ m, colloidal component amount 78% by mass was 150 g. / Homogenization and drying were performed to obtain a cellulose composition M. The amount of BS of the obtained cellulose composition M was measured, and the results are shown in Table 1. Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition M. The obtained results are shown in Table 1.
  • Example 14 1) Manufacture of a composite of cellulose and xanthan gum After cutting a commercially available DP pulp, it was hydrolyzed in 2.5 mol / L hydrochloric acid at 105 ° C for 15 minutes, then washed with water and filtered to obtain a wet cake having a solid content of 50% by mass. In the form of cellulose (average degree of polymerization was 220). Next, wet cake-like cellulose, a commercially available xanthan gum (trade name B-stop D-712, manufactured by San-Eigen FFI) as the A component, and a commercially available dextrin (Sandeck # 30, manufactured by Sanwa Starch) as the B component were prepared.
  • This cellulose composite was pelletized, dried, pulverized, and sieved in the same manner as in Example 13 to obtain a cellulose composite Y (water content 6 mass%).
  • 2) Manufacture of cellulose composition 180 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 95 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum ( Dispersion in the same manner as in Example 1 except that the above-mentioned cellulose composite Y, storage elastic modulus (G ′): 0.5 Pa, volume average particle diameter 9.6 ⁇ m, colloidal component amount 56 mass% was 225 g.
  • G ′ storage elastic modulus
  • Example 2 Example 1 except that 480 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH manufactured by Nissho Chemical Co., Ltd.) and 20 g of a composite of cellulose and xanthan gum (trade name Theolas RC-N30 manufactured by Asahi Kasei Chemicals) were used. Then, dispersion / homogenization and drying were performed to obtain a cellulose composition P. The amount of BS of the obtained cellulose composition P was measured, and the results are shown in Table 1. Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition P. The obtained results are shown in Table 1.
  • the cellulose wet cake (which is not a cellulose composite, but since the cellulose wet cake is not complexed with a water-soluble polysaccharide, the storage elastic modulus (G ′) was as low as less than 0.1 Pa) and processed starch.
  • a twin-screw extruder (trade name: KRC kneader, paddle diameter: 2 inches, rotation speed: 100 rpm)
  • the mixture of No. 4 was processed for 4 passes at a feed rate of 8.3 kg / h and milled. It was.
  • this ground product is diluted with distilled water so as to have a solid content of 10% by mass, and stirred for 10 minutes at 25 ° C.
  • the homogenized dispersion was dried in the same manner as in Example 1 to obtain a cellulose composition Q.
  • the amount of BS of the obtained cellulose composition Q was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition Q. The obtained results are shown in Table 1.
  • a cellulose composition was obtained using a cellulose wet cake instead of the cellulose composite.
  • xanthan gum trade name Vistop D-712 manufactured by San-Eigen FFI
  • dextrin trade name Sandeck # 100 manufactured by Sanwa Starch
  • hydroxypropylated starch derived from waxy corn starch trade name WH, manufactured by Nissho Chemical Co., Ltd.
  • the cellulose wet cake (which is not a cellulose composite, but since the cellulose wet cake is not complexed with a water-soluble polysaccharide, the storage elastic modulus (G ′) was as low as less than 0.1 Pa), xanthan gum and
  • the mixture of processed starch was ground, homogenized, and dried in the same manner as in Comparative Example 3 to obtain a cellulose composition R.
  • the amount of BS of the obtained cellulose composition R was measured, and the results are shown in Table 1.
  • the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition R. The obtained results are shown in Table 1.
  • Example 1 the mass ratio between the cellulose composite and the modified starch in the cellulose composition containing 45% by mass of the cellulose composite was examined. Dispersibility was good when the mass ratio of the cellulose composite to the processed starch was 90/10 or more, and the dispersibility improved as the mass ratio of the processed starch increased. However, when the processed starch increases to a mass ratio of cellulose composite and processed starch of 60/40 or more, the dispersibility is good, while the flavor of the concentrated ramen soup is slightly masked and the oil dispersion stability is slightly reduced. .
  • Example 3 the mass ratio of the cellulose composite and processed starch was fixed to 70/30, and the content of the cellulose composite in the cellulose composition was examined in Example 3 and Examples 6-8.
  • the proportion of the cellulose composite increased, the applied physical properties improved while the dispersibility slightly decreased. That is, it has been found that there is a content of the cellulose composite in which both the dispersibility and the applied physical properties are good in the mass ratio of the specific cellulose composite and the modified starch contained in the cellulose composition.
  • Example 6 the type of processed starch contained in the cellulose composition was examined in Example 6 and Examples 9-11. Even when any modified starch was used, the dispersibility of the cellulose composition was good. However, the modified starch used in Examples 9 to 11 reacted with the protein in the concentrated ramen soup, and partial aggregation of the protein occurred.
  • the types of cellulose composites contained in the cellulose composition were examined. Specifically, the types of water-soluble polysaccharides used when forming a complex with cellulose were examined in Example 3 and Examples 12 and 13.
  • the cellulose composition using the cellulose composite compounded with xanthan gum was superior in oil dispersion stability compared to the cellulose composition using the cellulose composite compounded with Karaya gum or gellan gum.
  • Example 14 the effect of the storage elastic modulus G ′ of the cellulose composite on the applied physical properties of the cellulose composition was confirmed. As a result, when the cellulose composite having the same composition was used, the applied physical properties of the obtained cellulose composition were better when the cellulose composite having a high G ′ was used.
  • Comparative Example 1 the dispersibility was low because the mass of processed starch relative to the cellulose composite was insufficient. Therefore, compared with each Example, it was inferior in the point of the dispersion stability of the oil of concentrated ramen soup and yakiniku sauce. Since the ratio of the cellulose composite in a cellulose composition was low, the comparative example 2 was inferior in the point of the dispersion stability of oil, the suspension stability of ingredients, and the shape retention effect compared with each Example. In Comparative Examples 3 and 4, cellulose wet cake and modified starch were ground and used without using the cellulose composite. Therefore, compared with each Example, while being low in dispersibility, it was inferior in the dispersion stability of oil, the suspension stability of ingredients, and the shape retention effect.
  • Comparative Example 5 was composed only of the cellulose composite and the hydrophilic substance and did not contain processed starch, so the dispersibility was low. Compared with each Example, it was inferior in respect of the dispersion stability of the concentrated ramen soup and yakiniku sauce.
  • Flavor extract powder (Fuji Food Industry Co., Ltd.) 14.5% by mass, curry powder (special SB Curry, Sakai Subs Food Co., Ltd.) 10.5% by mass, sorbitol (manufactured by Food Science Co., Ltd.) 14.
  • this mixed powder is sprayed with a spray nozzle diameter of 1.2 mm and a nozzle tip of 1 mm, the spray position is at the top (lower set), and atomized air 40 NL / min, bag filter type: Tetron woven cloth, bag filter wipe-off pressure 0.5 MPa, air supply temperature setting 60 ° C., air volume 0.4-0.7 m 3 / min, binding liquid input rate 20 g / min Granulated with.
  • MP-01 type manufactured by POWREC Co., Ltd.
  • the BS amount of the cellulose composition was 5.9%, the dispersion stability of the concentrated ramen soup oil was x, the protein aggregation was ⁇ , and the flavor was x. Further, the dispersion stability of the roasted oil was x, the suspension stability of the ingredients was x, the shape retention of mayonnaise was o, and the dispersion stability of the soft mix oil was x. Furthermore, as a result of measuring the viscoelasticity of ramen soup and sauce, (tan ⁇ (50 ° C.) / Tan ⁇ (25 ° C.)) was 0.7.
  • the average value of 10 sheets was taken as the density.
  • ⁇ Maximum load> Ten random cookies were selected and their maximum load was measured. Specifically, a texture analyzer (manufactured by Eihiro Seiki Co., Ltd., TA.XT plus type, measuring jig: HDP / 3PB type, temperature: 25.0 ° C., Mode: Measurement Force in Compression, Option: Return to Start, Pre-Test Speed: 1.0 mm / s, Test-Speed: 1.5 mm / s, Post-Test Speed: 10 mm / s, Distance: 5 mm, Trigger Type: Auto 50 g). The average value of 10 sheets was taken as the maximum load.
  • ⁇ Number of cracks generated> Ten random cookies were selected, and the cookies were allowed to fall freely 5 times from a height of 30 cm onto a wooden desk. A case where one piece of cookie was divided into two or more objects each having 5% by mass or more with respect to the total mass of the cookie was defined as cracking. ⁇ (excellent): 0 to 1 sheet has cracks and cracks ⁇ (good): 2 to 3 sheets have cracks and chips Cracking occurs in ⁇ Evaluation of texture> The above cookies were actually eaten by 12 male and female panelists aged 22 to 48 years old, and sensory evaluations were carried out according to the following evaluation criteria. For each of the following textures, a score was assigned on a scale of 0 to 4 points (in increments of 1 point) to obtain an average score.
  • Texture The texture felt when chewing the whole with teeth, compared with the product without added cellulose (Comparative Example 7). Average 3 points or more: ⁇ Same texture as Comparative Example 7 Average 2 points or more, less than 3 points: ⁇ Slightly different texture from Comparative Example 7 Average 1 point or more, less than 2 points: ⁇ Comparative Example 7 and texture Slightly different Average less than 1 point: ⁇ The texture is clearly different from Comparative Example 2 2) Crispy feeling: Crispy texture when chewing the whole with teeth Average: 3 points or more: ⁇ Very excellent Average 2 points or more, 3 Less than point: ⁇ Excellent Average 1 point or more and less than 2 points: ⁇ Inferior average less than 1 point: ⁇ Almost ⁇ Evaluation of cookie corner (edge) standing: Appearance observation> The corners of the four corners of the baked cookies were visually evaluated.
  • Example 15 In the above cookie trial production method, 1386 g of weak flour, 400 g of shortening, 400 g of whole egg, 14 g of baking powder, 599 g of sugar, and cellulose composition C obtained in Example 3 in an amount of 0. A cookie was prototyped with a blend of 05% by mass. Said evaluation was performed about the obtained cookie. The results obtained are shown in Table 2. In Table 2, the cellulose composition C used here is abbreviated as composition C.
  • Example 16 In the trial production method of Example 15, cookies were produced in the same manner except that the blending amount of the cellulose composition C was changed to 0.1% by mass and 597 g of sugar, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
  • Example 17 In the trial production method of Example 15, a cookie was produced in the same manner except that the blending amount of the cellulose composition C was changed to 0.5 mass% and sugar 586 g, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
  • Example 18 In the trial production method of Example 15, cookies were produced in the same manner except that the blending amount of the cellulose composition C was changed to 1.0% by mass and 572 g of sugar, and evaluation was performed in the same manner.
  • Example 19 In the trial production method of Example 15, a cookie was similarly produced and evaluated in the same manner except that the blending amount of the cellulose composition C was 2.5 mass% and sugar was 530 g. The results obtained are shown in Table 2.
  • Example 20 In the trial production method of Example 18, cookies were produced in the same manner, except that 1428 g of flour and no baking powder were added, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
  • Example 21 In the trial production method of Example 20, a cookie was produced in the same manner except that 1176 g of flour and 801 g of sugar were used, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
  • Example 22 In the prototype method of Example 20, a cookie was prototyped and evaluated in the same manner except that the flour was changed to 1008 g and sugar to 980 g. The results obtained are shown in Table 2.
  • Example 23 In the trial production method of Example 18, cookies were produced in the same manner except that 1372 g of weak flour and 28 g of baking powder were used, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
  • Example 24 In the trial production method of Example 18, cookies were produced in the same manner except that 1344 g of soft flour and 56 g of baking powder were used, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
  • Example 3 As a cold water gelatinized powder, ⁇ -crosslinked waxy corn starch (cold water swelling degree 28 ml / g) 178 g, trehalose 324 g, powdered cheese 534 g, “KC Flock 400G” 162 g of powder mixed in the same apparatus as in Example 1 for 1 minute and homogenized Next, a mixture of 113 g of shortening and 3 g of lecithin was added, and further 521 g of water in which 16 g of ammonium carbonate was dissolved was added, and powder was mixed for 1 minute with a vertical cake mixer to prepare a dough.
  • the cookie prepared by heating in the oven at 220 ° C. for 12 minutes was similarly evaluated after being molded in the same manner by the prototype method of Example 1. The results obtained are shown in Table 3.
  • Comparative Example 7 Although the texture was excellent, the number of cracks generated was large and there was almost no crispy feeling. Since Comparative Example 8 had a lower density than Comparative Example 7, the crispness was improved, but there was no cracking reduction effect and the confectionery was different. Since Comparative Example 9 was denser and harder than Comparative Example 7, cracking was improved, but the texture was greatly different. In Comparative Example 10, cracks and cracks were improved compared to Comparative Example 7, but because of excessively low density, the texture was greatly different from that of Comparative Example 7, and the crispy feeling could not be imparted. In Comparative Example 11, cracks were improved compared to Comparative Example 7, but the confectionery became harder, resulting in a confectionery having a significantly different texture from that of Comparative Example 7.
  • Examples 15 to 19 are results obtained by varying the amount of cellulose composition N added. From the result of Table 2, when the addition amount of the cellulose composition increased, crack chipping was suppressed and the crispy feeling was improved. In addition, the chipping of the cellulose composition was suppressed as compared with Comparative Example 7 (no addition of cellulose) even when 0.05% by mass was added. As for the texture, even when compared with Comparative Examples 10 and 11 in which cracking and chipping was suppressed at the Example level, those having good texture were obtained in the Examples. Examples 20 to 22 are the results of shaking the maximum load of the confectionery. As a result, Examples 15 to 19 in which baking powder was blended had a good texture, but the reduction in cracks was inferior in a wide range of maximum loads. Examples 23 and 24 are the results of varying the density of confectionery. As a result, Examples 15 to 19 had good texture, but the reduction of cracks was inferior in a wide range of densities.
  • ⁇ Examples and comparative examples of bakery products> Explains how to make a prototype of a pound cake and how to evaluate various physical properties.
  • ⁇ Raw materials other than the cellulose composition The cellulose composition is described in the section of Examples> 1) Soft flour: Nisshin brand name "Nisshin Flower soft flour” 2) Super white sugar: Made by Mitsui Sugar 3) Maltooligosaccharide: Product name “Fuji Oligo” manufactured by Nippon Shokuhin Kako 4) Processed starch (Tapioca alpha-modified starch): Made by Sanwa Starch “Tapioca Alpha TP-2” 5) Salt: Nippon Salt Manufacturing Product Name “Cooking Salt” 6) Whole Egg: Commercial Egg 7) Butter (Unsalted): Product name “Butter (no salt)” 8) Dried fruit mix: Made by Kojimaya Product name “Dice cut dried fruit” * Kiwi, persimmon, pineapple, papaya, mango, melon, and apple cut into
  • Example 25 Using the cellulose composition C, the amount of the composition was set to 0.3% by mass, and a cake was prototyped and evaluated according to the above-described prototype method. The obtained results are shown in Table 4.
  • Table 4 the cellulose used here was described as the cellulose composition C.
  • Comparative Examples 12 to 14 In order to compare with a conventional cake, in Comparative Example 12, a cake with no addition of cellulose and thickener (modified starch) was made as a trial product. On the other hand, in Comparative Examples 13 and 14, cellulose was not blended, processed starch was blended as a thickener, and a cake was prototyped. The obtained results are shown in Table 4.
  • Comparative Example 12 Although the texture was excellent, the ingredients settled and a uniform product was not obtained.
  • modified starch was added and increased in Comparative Examples 13 and 14, the uniformity of ingredients was improved, but contrary to this, the texture deteriorated (the texture was too moist and the texture of the original cake was (See Comparative Example 12).)
  • An Example is the result obtained by fixing the compounding quantity of a dried fruit to 10 mass%, and mix
  • a cellulose composition that can be easily dispersed in an aqueous medium having a high salinity concentration and that is excellent in the dispersion stabilizing effect of a non-emulsifying oil. Therefore, it can be suitably used for foods and drinks with high salinity and oil added, such as concentrated soup and sauce.
  • a non-emulsifying oil such as concentrated soup and sauce.
  • the density is low and the light texture is maintained, cracking and chipping during production and distribution are reduced, and a crisp feeling is achieved. It is useful because it can improve and provide a confectionery with a good product edge.
  • ingredients having a large specific gravity such as fruit are contained in a specific amount, the ingredients are not biased at the time of manufacture, and are uniformly dispersed after baking, and further, a crispy feeling, a refreshing feeling, a soft feeling, etc. It is useful because it can provide a bakery product having a good texture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Confectionery (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Seasonings (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

[Problem] To provide a cellulose composition which can be easily dispersed in an aqueous medium having a high salt concentration, and which, particularly when used in a food or drink having a high oil content, has a high dispersion stabilizing effect for unemulsified oils, as well as a suspension stabilizing effect and a shape retaining effect. Also, to improve the quality and production suitability of low-density confectionery having a delicate texture, and improve the texture of bakery products using said cellulose composition. [Solution] A cellulose composition including cellulose, a water-soluble polysaccharide, and a modified starch, said cellulose composition having, when dispersed in an aqueous solution of 5 mass% sodium chloride such that the concentration of said cellulose composition therein is 0.01 mass% and subjected to sonication for two minutes, a particle size distribution of 6% or greater of 1-μm or smaller components in an area frequency histogram obtained by measuring using a laser diffraction/scattering particle size distribution analyzer at a refractive index of 1.04.

Description

セルロース組成物Cellulose composition
 本発明は、高塩分濃度の水系媒体で容易に分散することができ、非乳化型の油の分散安定効果に優れるセルロース組成物に関する。本発明は、特に、濃縮スープ、たれ等の高塩分濃度で、油が添加された飲食品に好適に使用できるセルロース組成物に関する。 The present invention relates to a cellulose composition that can be easily dispersed in an aqueous medium having a high salinity and is excellent in the dispersion stabilizing effect of a non-emulsifying oil. In particular, the present invention relates to a cellulose composition that can be suitably used for foods and drinks to which oil is added at a high salinity concentration such as concentrated soup and sauce.
 また、本発明は、穀粉を主原料とする、ビスケット、クッキー、プレッツェル、ウエハース、クラッカー、サブレ、ボーロ等の菓子において、密度が低く軽い食感であり、製造時や流通時の割れや欠けが低減された菓子に関する。更に、サクサク感が向上した菓子に関する。また、製品の角(エッジ)立ちが良い菓子に関する。特に、本発明は、低密度でふわっとした軽い食感で、サクサク感が要求されるクッキー、ビスケット、プレッツェル等に適している。 In addition, the present invention has a light texture with a low density in confectionery such as biscuits, cookies, pretzels, wafers, crackers, sables, and boros that are mainly made from flour, and there are no cracks or chips during production or distribution. Relates to reduced confectionery. Furthermore, it is related with the confectionery which the crispy feeling improved. In addition, the present invention relates to a confectionery product with a good standing edge. In particular, the present invention is suitable for cookies, biscuits, pretzels and the like that require a light texture with a low density and a light texture.
 さらに、本発明は、小麦粉を主原料とするスポンジケーキ、シフォンケーキ、カステラ、ホットケーキ、ドーナッツ、チーズケーキ等のベーカリー製品において、具材が、製造時に偏らず、焼き上がり後に均一に分散し、さらに、良好な食感を有するものに関する。特に、本発明は、フルーツ等の比重の大きい具材を多量に含有し、クリスピー感、さっくり感、ふんわり感等の食感が要求されるパウンドケーキ、スポンジケーキ、シフォンケーキ等に適している。 Furthermore, the present invention is a bakery product such as sponge cake, chiffon cake, castella, hot cake, donuts, cheesecake, etc., mainly made from flour, ingredients are not biased during production, and uniformly dispersed after baking, Furthermore, it is related with what has a favorable food texture. In particular, the present invention contains a large amount of ingredients such as fruits in large amounts, and is suitable for pound cakes, sponge cakes, chiffon cakes, etc. that require a crispy, refreshing, soft feeling, etc. .
 従来、セルロースと親水性ガムとのセルロース複合体は、水系媒体中においてセルロースコロイドを形成し、良好な懸濁安定性を示すため、飲食品、医薬品、化粧品、塗料、セラミックス、樹脂、触媒、その他工業用品等の分野において、広く用いられている。セルロース複合体は、特に、非乳化型の油の分散安定剤、懸濁安定剤、増粘安定剤等の安定剤、組織付与剤、クラウディー剤、白度向上剤、流動性改良剤、研磨剤、食物繊維、油脂代替物質等として用いられる。 Conventionally, a cellulose composite of cellulose and a hydrophilic gum forms a cellulose colloid in an aqueous medium and exhibits good suspension stability. Therefore, food and drink, pharmaceuticals, cosmetics, paints, ceramics, resins, catalysts, etc. It is widely used in the field of industrial articles. Cellulose composites are particularly non-emulsifying oil dispersion stabilizers, suspension stabilizers, stabilizers such as thickening stabilizers, tissue imparting agents, cloudy agents, whiteness improvers, fluidity improvers, polishing agents. It is used as an agent, dietary fiber, oil and fat substitutes, etc.
 飲食品中で、セルロース複合体が、非乳化型油の分散安定効果を発揮するためには、セルロース複合体が、充分に分散された状態で存在しなければならない。例えば、好ましくは、分散後のセルロース複合体をレーザー回折/散乱式粒度分布計で測定した場合には、平均粒子径として20μm以下であることが、求められる。しかし、従来のセルロース複合体は、飲食品等の水系媒体に、投入するだけでは分散が不十分であった。そのため、セルロース複合体を飲食品に用いる場合には、セルロース複合体を、強い剪断力で磨砕できる高圧ホモジナイザーや、高速攪拌機等の特殊な設備を用いた分散処理が必要であった。 In the food and drink, in order for the cellulose composite to exhibit the dispersion stabilizing effect of the non-emulsifying oil, the cellulose composite must be present in a sufficiently dispersed state. For example, preferably, when the dispersed cellulose composite is measured with a laser diffraction / scattering particle size distribution analyzer, the average particle diameter is required to be 20 μm or less. However, conventional cellulose composites were not sufficiently dispersed by simply adding them to an aqueous medium such as food or drink. Therefore, when the cellulose composite is used for food and drink, a dispersion treatment using a high-pressure homogenizer that can grind the cellulose composite with a strong shearing force or a special equipment such as a high-speed stirrer is necessary.
 従って、上述の強剪断の特殊設備を必要とせず、通常のプロペラ攪拌の如く、低剪断で容易に分散するような、セルロース複合体又はセルロース組成物が望まれていた。そこで、低剪断で容易に分散するセルロース複合体又はセルロース組成物について、種々の検討がなされてきた。 Therefore, there has been a demand for a cellulose composite or a cellulose composition that does not require the above-described special equipment for strong shearing and can be easily dispersed with low shearing like ordinary propeller stirring. Thus, various studies have been made on cellulose composites or cellulose compositions that are easily dispersed with low shear.
 特許文献1には、結晶セルロース、水溶性ガム、水溶性糖類の3成分からなる易分散のセルロース複合体が開示されている。 Patent Document 1 discloses an easily dispersible cellulose composite composed of three components of crystalline cellulose, a water-soluble gum, and a water-soluble saccharide.
 特許文献2には、結晶セルロースと澱粉に機械的せん断力を与えることにより得られる水分散性組成物が開示されている。
 また、クッキー、ビスケット、プレッツェルは、穀粉を主原料とする菓子の一種であり、特に、ふわっとした軽い食感で、サクサクした食感のものが好まれている。しかし、軽い食感の菓子は、一般的に密度と硬度が低いため、製造時や流通時に割れや欠け等の製品ロスが生じ易いという問題点があった。一方、内部が密な構造の菓子は、硬いので、製品ロスが少ないという利点はあるが、ふわっとした軽い食感で、サクサク感のある菓子にならない。また、生地を成形後に加熱をすると、加熱による生地のダレが生じるため角(エッジ)が丸くなり、成形時の形状を維持できないという課題があった。
Patent Document 2 discloses a water-dispersible composition obtained by applying mechanical shearing force to crystalline cellulose and starch.
Cookies, biscuits, and pretzels are a kind of confectionery that uses flour as a main ingredient, and in particular, those with a light and soft texture and a crispy texture are preferred. However, confectionery with a light texture generally has a low density and hardness, and thus has a problem that product loss such as cracking and chipping is likely to occur during production and distribution. On the other hand, confectionery with a dense structure is hard and has the advantage of less product loss, but it does not become a confectionery with a light and light texture. Further, when the dough is heated after being formed, there is a problem in that the dough sagging due to heating causes the corners (edges) to be rounded and the shape at the time of forming cannot be maintained.
 従来、穀粉を主原料とする菓子の品質改良については以下の検討がなされてきた。 Conventionally, the following studies have been made on improving the quality of confectionery made mainly from flour.
 特許文献3には、小麦粉、発泡成分、水を必須成分とするドウに、セルロース、水膨性及び水溶性のガム質を混合することで、ドウの粘着性を改善し、大量生産の際に、生地が均一な重量であり、食感が改良され、生地の老化が抑えられたベーカリー製品ないしその製造方法が開示されている。 In Patent Document 3, cellulose, bulge and water-soluble gum are mixed with dough containing flour, foaming component, and water as essential components, thereby improving the stickiness of the dough and for mass production. A bakery product having a uniform weight, improved texture, and suppressed dough aging, and a method for producing the same are disclosed.
 特許文献4には、穀類、いも類、または豆類を主原料とする生地に粉末セルロースを配合した後に、エクストルーダーを用いた押出膨化により製造した、スティック状の膨化菓子が開示されている。 Patent Document 4 discloses a stick-shaped expanded confectionery manufactured by extruding and extruding using an extruder after blending powdered cellulose into a dough made mainly of cereals, potatoes or beans.
 特許文献5には、グルテン形成能を有さない未糊化粉、冷水糊化粉、糖類及び油脂類を含む生地に、粉末セルロースを配合し、成形及び焼成した棒状の焼菓子が開示されている。
 さらに、スポンジケーキ、シフォンケーキは、小麦粉、糖類、卵、油脂から得られるベーカリー製品の一種であり、その生地に、ドライフルーツ、フルーツを洋酒に漬け込んだもの、生のフルーツを配合し、焼成されたものが好まれている。
Patent Document 5 discloses a bar-shaped baked confectionery obtained by blending powdered cellulose into dough containing ungelatinized powder, chilled water gelatinized powder, saccharides and fats and oils having no gluten forming ability, and molding and baking the powdered cellulose. Yes.
Sponge cakes and chiffon cakes are a type of bakery product obtained from flour, sugars, eggs, and oils and fats. Is preferred.
 従来、具材を安定化させる方法としては、加工デンプン等の増粘剤を生地に配合することにより、生地の粘性を高め、焼成時に具材を沈降し難くする方法が慣用されている。 Conventionally, as a method for stabilizing ingredients, a method of increasing the viscosity of the dough by adding a thickener such as modified starch to the dough and making the ingredients difficult to settle during baking has been conventionally used.
 また、これらのベーカリー製品の食感改良については、以下の検討がなされてきた。 In addition, the following studies have been made on improving the texture of these bakery products.
 特許文献6には、小麦粉、発泡成分、水を必須成分とするドウ、又は穀物粉および水を必須成分とするドウに、水不溶性あるいは、水膨潤性のカルボキシメチルセルロースと微細セルロースを配合し、ドウの粘着性を改善し、大量生産の際に、生地が均一な重量、形
状(具材ではない)で、食感が改良されたベーカリー製品が開示されている。
In Patent Document 6, water-insoluble or water-swellable carboxymethyl cellulose and fine cellulose are blended with flour, foaming component, dough containing water as essential components, or dough containing cereal flour and water as essential components. A bakery product that improves the tackiness, has a uniform weight and shape (not ingredients), and has an improved texture in mass production.
 特許文献7には、微粒子セルロース系素材が混合された生地から得られたパンが、食物繊維を豊富に含有し、通常のパンと遜色のない食感を有することが開示されている。 Patent Document 7 discloses that bread obtained from a dough mixed with a particulate cellulose material contains abundant dietary fiber and has a texture comparable to that of ordinary bread.
 特許文献8には、微粒子セルロース系素材が配合されたカステラにおいて、焼成後の体積減少が少なく、食感が優れ、長期保存安定性が高いものが得られることが開示されている。 Patent Document 8 discloses that a castella mixed with a fine cellulose material can be obtained with a small volume reduction after baking, excellent texture, and high long-term storage stability.
特開2008-113572号公報JP 2008-113572 A 国際公開第2011/087784号パンフレットInternational Publication No. 2011-087784 Pamphlet 特開昭62-22537号公報JP 62-22537 A 特開2003-18970号公報JP 2003-18970 A 特開2003-284501号公報JP 2003-284501 A 特開平10-262541号公報Japanese Patent Laid-Open No. 10-262541 特開平5-95754号公報JP-A-5-95754 特開平7-135888号公報Japanese Patent Laid-Open No. 7-135888
 特許文献1のセルロース複合体では、非乳化型の油の分散安定効果が低いため、飲食品に使用する際には大量に用いらなければならない。その結果、これらが配合された飲食品の食感(のみ口)が重くなる問題があった。また、高塩分濃度では分散性が低下するため、十分な非乳化型の油の分散安定効果が発揮できないという課題もあった。 Since the cellulose composite of Patent Document 1 has a low dispersion stability effect of non-emulsifying oil, it must be used in large quantities when used in food and drink. As a result, there was a problem that the texture (mouth) of foods and drinks containing these became heavy. Further, since the dispersibility is lowered at a high salinity, there is a problem that a sufficient dispersion stabilizing effect of the non-emulsifying oil cannot be exhibited.
 特許文献2のセルロース複合体は、分散性が低いので、食品に使用するためには分散処理に高速攪拌機のような特殊な設備が必要である。また、特許文献1のセルロース複合体と同様に、高塩分濃度では分散性が低下するため、油と水を含む高塩濃度の水系媒体において非乳化型の油の分散安定効果が低い。そのため、飲食品に使用する際には大量に用いらなければならず、これらが配合された飲食品の食感(のみ口)が重くなる問題があった。 Since the cellulose composite of Patent Document 2 has low dispersibility, special equipment such as a high-speed stirrer is required for dispersion treatment in order to use it in foods. Further, like the cellulose composite of Patent Document 1, the dispersibility decreases at a high salinity concentration, so that the dispersion stabilizing effect of the non-emulsifying oil is low in a high salt concentration aqueous medium containing oil and water. Therefore, when using for foods and drinks, it had to be used in large quantities, and there was a problem that the food texture (mouth) of the foods and drinks in which these were blended became heavy.
 そこで、本発明は、以下の性質を兼ね備えたセルロース組成物を提供することを課題とする。すなわち、高塩分濃度の水系媒体で容易に分散することができ、特に、油を多量含む飲食品において非乳化型の油の分散安定効果が高い。さらに、不溶性成分を含む水系媒体において不溶性成分の沈降や凝集を抑制する懸濁安定効果が高い。また、油を多く含む飲食品において、飲食品の形状を維持する保形効果が高い。 Therefore, an object of the present invention is to provide a cellulose composition having the following properties. That is, it can be easily dispersed in an aqueous medium having a high salinity, and the dispersion stabilizing effect of non-emulsifying oil is particularly high in foods and drinks containing a large amount of oil. Furthermore, the suspension stabilizing effect which suppresses sedimentation and aggregation of insoluble components in an aqueous medium containing insoluble components is high. Moreover, in the food / beverage products containing much oil, the shape retention effect which maintains the shape of food / beverage products is high.
 ここで、本願明細書における非乳化型の油の分散安定の定義について説明する。「非乳化型の油の分散安定」とは、水系媒体に、油を分散させる際に、乳化剤を用いずに(ミセルを形成させずとも)、水系媒体中で、油が分離、凝集せず、均一な外観を呈することである。
 また、特許文献3のドウ組成物はパンの実施例しかなく、本発明のように低密度で軽い食感の菓子は開示されていない。例え、特該文献に開示されている組成で菓子を作ったとしても、小麦粉の配合量が多いので、モチモチとした食感となり、本発明のような低密度で軽い食感で、サクサクとした食感の菓子を作製することはできない。また、該文献では、成形工程での生地の纏りの向上を目的としており、軽い食感の菓子の製品ロスを減らすこという本発明の目的とは異なる。
Here, the definition of the dispersion stability of the non-emulsifying oil in the present specification will be described. “Dispersion stability of non-emulsifying oil” means that when oil is dispersed in an aqueous medium, the oil does not separate or aggregate in the aqueous medium without using an emulsifier (without forming micelles). It has a uniform appearance.
Moreover, the dough composition of patent document 3 has only the example of bread, and the confectionery of low density and light texture like this invention is not disclosed. For example, even if a confectionery is made with the composition disclosed in the patent document, the amount of flour is large, so it has a moist feeling, a low density and light texture as in the present invention, and a crispy texture. A textured confectionery cannot be made. In addition, this document aims to improve the bundling of the dough in the molding process, and is different from the object of the present invention, which is to reduce the product loss of confectionery with a light texture.
 特許文献4の方法によると、確かに、膨化菓子の如く低密度の菓子にセルロースを添加することで折れ難くなる。しかしながら、該文献の方法では、エクストルーダーという特殊な装置が必須であり、温度、圧力の条件が制限される。また、形態、食感を自由に決定できないという問題があった。 According to the method of Patent Document 4, it is certainly difficult to break by adding cellulose to a low-density confectionery such as an expanded confectionery. However, in the method of this document, a special device called an extruder is essential, and the conditions of temperature and pressure are limited. There is also a problem that the form and texture cannot be determined freely.
 特許文献5の方法によると、グルテン形成能を有さない未糊化粉を使用することで棒状の焼菓子の硬度を大きくしつつ、カリカリとした食感の堅い菓子とすることで、菓子の割れや欠けが低減される。しかし、該文献のように、グルテン形成能を有さない未糊化粉を使用すると、本発明のように密度が低く、ふわっとした食感の菓子を製造することは出来ない。 According to the method of Patent Document 5, the hardness of a stick-shaped baked confectionery is increased by using an ungelatinized powder that does not have gluten forming ability, and the confectionery has a crisp and firm texture. Cracking and chipping are reduced. However, when ungelatinized powder having no gluten forming ability is used as in this document, it is impossible to produce a confectionery having a low density and a soft texture as in the present invention.
 本発明は、穀粉を主原料とする、ビスケット、クッキー、プレッツェル、ウエハース、クラッカー、サブレ、ボーロ等の菓子において、密度が低く軽い食感を維持しながらも、製造時や流通時の割れや欠けが低減され、サクサク感が向上し、製品の角(エッジ)立ちが良い菓子を提供することを課題とする。
 さらに、具材の安定化に関しては、タピオカα化澱粉等の加工デンプンを生地に配合することで、確かに、具材の沈降は防止できる。しかしながら、具材が均一に分散するためには、加工デンプンを多量に配合する必要があり、その結果、焼成後のケーキの食感が悪化し、ケーキ本来のクリスピー感、さっくり感、ふんわり感等の食感が損なわれる問題があった。
The present invention is a biscuits, cookies, pretzels, wafers, crackers, sables, boros, and other confections that use flour as the main ingredient, while maintaining a low texture and light texture, and cracking and chipping during production and distribution. It is an object to provide a confectionery that is reduced, has a crisp feeling, and has a good product edge.
Furthermore, regarding the stabilization of ingredients, the settling of ingredients can certainly be prevented by blending processed starch such as tapioca pregelatinized starch into the dough. However, in order to disperse the ingredients uniformly, it is necessary to add a large amount of modified starch. As a result, the texture of the cake after baking deteriorates, and the original crispy feeling, fresh feeling, and soft feeling of the cake. There was a problem that the food texture such as was impaired.
 また、特許文献6~8の文献では、特定のセルロース系素材を、生地に添加することにより、生地自体の均一性と食感を改良できるものである。しかし、これらの文献には、具材の配合及びその均一性を達成する手段については、全く記載がなかった。 Further, in Patent Documents 6 to 8, the addition of a specific cellulosic material to the dough can improve the uniformity and texture of the dough itself. However, these documents did not describe any means for achieving the blending of ingredients and the uniformity thereof.
 従って、本発明は、フルーツ等の比重の大きい具材を、特定量含有し、セルロースと特定比率で組合せ、生地に配合することで、具材が、製造時に偏らず、焼き上がり後に均一に分散し、さらに、クリスピー感、さっくり感、ふんわり感等の良好な食感を有するベーカリー製品を提供することを目的とする。 Therefore, the present invention contains ingredients with a large specific gravity, such as fruit, in a specific amount, combined with cellulose in a specific ratio, and blended into the dough, so that the ingredients are not unevenly distributed at the time of manufacture and are uniformly dispersed after baking. Furthermore, it aims at providing the bakery product which has favorable food texture, such as a crispy feeling, a refreshing feeling, and a soft feeling.
 本発明者らは、所定の貯蔵弾性率を有するセルロース複合体と、加工澱粉が、特定の質
量比で配合されたセルロース組成物が、高塩分濃度の水系媒体において分散性に優れ、非
乳化型の油の分散安定効果に優れること。更に、懸濁安定効果、保形効果に優れることを
見出し、本発明をなすに至った。
The inventors of the present invention have a cellulose composition in which a cellulose composite having a predetermined storage elastic modulus and a processed starch are blended at a specific mass ratio, have excellent dispersibility in a high salinity aqueous medium, and are non-emulsifying. Excellent oil dispersion stability. Furthermore, the inventors have found that the suspension stabilization effect and the shape retention effect are excellent, and have reached the present invention.
 また、本発明者らは、穀粉を主原料とする菓子に上記の特定のセルロース組成物を配合することで、密度が低く軽い食感を維持したまま、製造時や流通時の割れや欠けが低減され、サクサク感が向上し、製品の角(エッジ)立ちが良い菓子を提供できることを見出し、本発明をなすに至った。 In addition, the present inventors blended the above-mentioned specific cellulose composition with confectionery mainly composed of flour, so that cracks and chips at the time of production and distribution are maintained while maintaining a light texture with low density. As a result, it was found that a confectionery having a reduced crispness and improved product corners (edges) can be provided, and the present invention has been made.
 さらに、本発明者らは、フルーツ等の比重の大きい具材を、特定量含有し、特定のセルロース組成物と特定比率で組合せ、生地に配合することで、具材が、製造時に偏らず、焼き上がり後に均一に分散し、さらに、クリスピー感、さっくり感、ふんわり感等の良好な食感を有するベーカリー製品が得られることを見出し、本発明をなすに至った。 Furthermore, the present inventors contain a specific amount of ingredients such as fruits, in a specific amount, combined with a specific cellulose composition at a specific ratio, and blended into the dough, so that the ingredients are not biased during production, The present inventors have found that a bakery product that is uniformly dispersed after baking and that has a good texture such as a crispy feeling, a fresh feeling, and a soft feeling can be obtained.
 すなわち、本発明の構成は、下記の通りである。
(1)セルロース及び水溶性多糖類と、加工澱粉とを含み、5質量%の塩化ナトリウム水溶液中に0.01質量%濃度となるように分散させ、超音波処理を2分間経た後に、レーザー回折/散乱式粒度分布計を用い、屈折率1.04にて測定される体積頻度ヒストグラムにおいて、1μm以下の成分が6%以上である粒度分布を有する、セルロース組成物。
(2)前記セルロース及び水溶性多糖類が、予めセルロース複合体を形成したものであり、この1質量%の水分散体の貯蔵弾性率(G’)が0.1Pa以上である(1)に記載のセルロース組成物。
(3)前記セルロース複合体と加工澱粉の質量比が5/95~90/10である(1)または(2)に記載のセルロース組成物。
(4)前記加工澱粉が、アセチル化アジピン酸架橋澱粉、アセチル化酸化澱粉、アセチル化リン酸架橋澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉、ヒドロキシアルキル化リン酸架橋澱粉、ヒドロキシアルキル化澱粉、リン酸架橋澱粉、リン酸化澱粉、リン酸モノエステル化リン酸架橋澱粉、澱粉グルコール酸ナトリウム、及び澱粉リン酸エステルナトリウムから選ばれる少なくとも1種の加工澱粉をアルファー化加工したもの、部分的にアルファー化加工したもの、アルファー化加工をしていないもの、及び生澱粉をアルファー化したものから選ばれる少なくとも1種である、(1)~(3)のいずれかに記載のセルロース組成物。
(5)前記加工澱粉が、ヒドロキシプロピル化澱粉、ヒドロキシプロピル化リン酸架橋澱粉、リン酸架橋アルファー化澱粉、アルファー化澱粉から選ばれる1種以上である、(1)~(4)のいずれかに記載のセルロース組成物。
(6)前記セルロース複合体中の、セルロースと水溶性多糖類の質量比が99/1~50/50である、(1)~(5)のいずれかに記載のセルロース組成物。
(7)前記水溶性多糖類が、キサンタンガム、ジェランガム、カラヤガム、カルボキシメチルセルロースナトリウム、及びサイリウムシードガムから選ばれる少なくとも1種である、(1)~(6)のいずれかに記載のセルロース組成物。
(8)前記セルロース複合体を40質量%以上含む、(1)~(7)のいずれかに記載のセルロース組成物。
(9)前記セルロース複合体及び前記加工澱粉に加え、さらに親水性物質を1~59質量%含む、(1)~(8)のいずれかに記載のセルロース組成物。
(10)セルロース複合体と加工澱粉を水系媒体に分散させて、分散液を形成する工程と、この分散液を均質化する工程と、均質化された分散液を乾燥する工程とを含む方法によって得られる、(1)~(9)のいずれかに記載のセルロース組成物。
(11)セルロース複合体と加工澱粉を水系媒体に分散させて、分散液を形成する工程と、この分散液を均質化する工程と、均質化された分散液を乾燥する工程とを含む、(1)~(9)のいずれかに記載のセルロース組成物の製造方法。
(12)(1)~(10)のいずれかに記載のセルロース組成物を0.1質量%以上含有し、 塩分濃度が0.1質量%以上であり、25℃に対する50℃の損失正接(tanδ)の比が1以上である、水性の飲食品。
(13)セルロースを0.1質量%以上含有し、かつ、塩分濃度が0.1質量%以上であり、25℃に対する50℃の損失正接(tanδ)の比が1以上である、水性の飲食品。
(14)(1)~(10)のいずれかに記載のセルロース組成物を0.1質量%以上含有し、かつ、塩化ナトリウム及び/又は塩化カリウム濃度が1質量%以上であり、油分を1質量%以上含む、水性の飲食品。
(15)穀粉、糖類、油脂と、0.01質量%以上の(1)~(10)のいずれかに記載のセルロース組成物を含み、密度が0.30~1.00g/cmであり、最大荷重が0.3~5kgfである菓子。
(16)小麦粉、糖類、油脂を含む原料から得られるベーカリー製品において、短径が0.5mm以上であり、長径/短径比が1.0~5.0であり、比重が1.0g/mL以上の具材を1質量%以上含み、さらに(1)~(10)のいずれかに記載のセルロース組成物を0.1質量%以上含有するベーカリー製品。
That is, the configuration of the present invention is as follows.
(1) Cellulose and water-soluble polysaccharides and processed starch are dispersed in a 5% by mass sodium chloride aqueous solution to a concentration of 0.01% by mass, subjected to ultrasonic treatment for 2 minutes, and then laser diffraction. / A cellulose composition having a particle size distribution in which a component of 1 μm or less is 6% or more in a volume frequency histogram measured at a refractive index of 1.04 using a scattering particle size distribution meter.
(2) The cellulose and the water-soluble polysaccharide form a cellulose composite in advance, and the storage elastic modulus (G ′) of this 1 mass% aqueous dispersion is 0.1 Pa or more in (1) The cellulose composition as described.
(3) The cellulose composition according to (1) or (2), wherein a mass ratio of the cellulose composite to the modified starch is 5/95 to 90/10.
(4) The modified starch is an acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphoric acid crosslinked starch, sodium octenyl succinate starch, acetate starch, oxidized starch, hydroxyalkylated phosphate crosslinked starch, hydroxyalkylated starch , Phosphoric acid-crosslinked starch, phosphorylated starch, phosphoric acid monoesterified phosphoric acid-crosslinked starch, starch glycolate sodium, and starch-modified sodium starch alphalyzed, partially The cellulose composition according to any one of (1) to (3), wherein the cellulose composition is at least one selected from an alpha-treated one, a non-alpha-treated one, and a raw starch-derived one.
(5) Any one of (1) to (4), wherein the processed starch is at least one selected from hydroxypropylated starch, hydroxypropylated phosphate-crosslinked starch, phosphate-crosslinked pregelatinized starch, and pregelatinized starch The cellulose composition described in 1.
(6) The cellulose composition according to any one of (1) to (5), wherein the mass ratio of cellulose to water-soluble polysaccharide in the cellulose composite is 99/1 to 50/50.
(7) The cellulose composition according to any one of (1) to (6), wherein the water-soluble polysaccharide is at least one selected from xanthan gum, gellan gum, karaya gum, sodium carboxymethylcellulose, and psyllium seed gum.
(8) The cellulose composition according to any one of (1) to (7), comprising 40% by mass or more of the cellulose composite.
(9) The cellulose composition according to any one of (1) to (8), further containing 1 to 59% by mass of a hydrophilic substance in addition to the cellulose composite and the processed starch.
(10) By a method comprising a step of dispersing a cellulose composite and processed starch in an aqueous medium to form a dispersion, a step of homogenizing the dispersion, and a step of drying the homogenized dispersion The cellulose composition according to any one of (1) to (9), which is obtained.
(11) Dispersing the cellulose composite and processed starch in an aqueous medium to form a dispersion, homogenizing the dispersion, and drying the homogenized dispersion ( 1) A method for producing a cellulose composition according to any one of (9).
(12) The cellulose composition according to any one of (1) to (10) is contained in an amount of 0.1% by mass or more, the salt concentration is 0.1% by mass or more, and a loss tangent of 50 ° C. with respect to 25 ° C. ( A water-based food or drink having a ratio of tan δ) of 1 or more.
(13) Aqueous food or drink containing 0.1% by mass or more of cellulose, having a salt concentration of 0.1% by mass or more, and a ratio of loss tangent (tan δ) at 50 ° C. to 25 ° C. of 1 or more. Goods.
(14) The cellulose composition according to any one of (1) to (10) is contained in an amount of 0.1% by mass or more, the sodium chloride and / or potassium chloride concentration is 1% by mass or more, and the oil content is 1 Water-based food and drink containing at least mass%.
(15) containing a flour, saccharides, fats and oils and a cellulose composition according to any one of (1) to (10) of 0.01% by mass or more, and having a density of 0.30 to 1.00 g / cm 3 A confectionery with a maximum load of 0.3 to 5 kgf.
(16) In a bakery product obtained from a raw material containing wheat flour, sugars, and fats, the minor axis is 0.5 mm or more, the major axis / minor axis ratio is 1.0 to 5.0, and the specific gravity is 1.0 g / A bakery product containing 1% by mass or more of ingredients of mL or more, and further containing 0.1% by mass or more of the cellulose composition according to any one of (1) to (10).
 本発明により、高塩分濃度の水系媒体で容易に分散することができ、油を多量に含む飲食品において非乳化型の油の分散安定効果に優れるセルロース組成物を提供できる。更に、本発明のセルロース組成物は、不溶性成分を含む水系媒体において具材等の懸濁安定効果に優れ、油を多く含む半固形状食品に保形性を付与できるものである。 According to the present invention, it is possible to provide a cellulose composition that can be easily dispersed in an aqueous medium having a high salinity concentration and that is excellent in the dispersion stability of non-emulsifying oil in foods and drinks containing a large amount of oil. Furthermore, the cellulose composition of the present invention is excellent in the suspension stability effect of ingredients and the like in an aqueous medium containing an insoluble component, and can impart shape retention to a semi-solid food containing a large amount of oil.
 本発明のセルロース組成物を、濃縮スープ、たれ等の高塩分濃度で、油が添加された液状飲食品に使用すると、油の分散安定性に優れたものが提供でき、マヨネーズ様の半固形状飲食品に用いると保形性が優れたものが提供できる。さらに、本発明のセルロース組成物は、低濃度の添加で、非乳化型の油の分散安定が可能なため、これが添加された飲食品は、油の風味に優れ、食感の軽いものを提供できる。
 また、本発明のより好ましい態様としては穀粉を主原料とする菓子であり、密度が低く軽い食感を維持したまま、製造時や流通時の割れや欠けが低減され、サクサク感が向上し、製品の角(エッジ)立ちが良い菓子を提供できる。
 さらに、本発明により、フルーツ等の比重の大きい具材を、特定量含有し、具材が、製造時に偏らず、焼き上がり後に均一に分散し、さらに、クリスピー感、さっくり感、ふんわり感等の良好な食感を有するベーカリー製品を提供できる。
When the cellulose composition of the present invention is used in a liquid food or drink to which oil is added at a high salinity concentration such as concentrated soup and sauce, it can provide an oil having excellent dispersion stability, and mayonnaise-like semisolid When used in foods and drinks, products having excellent shape retention can be provided. Furthermore, since the cellulose composition of the present invention can disperse and stabilize a non-emulsifying type oil at a low concentration, foods and drinks to which the cellulose composition is added have excellent oil flavor and light texture. it can.
Further, as a more preferred embodiment of the present invention is a confectionery mainly made of flour, while maintaining a low texture and light texture, cracks and chipping during production and distribution are reduced, and the crispness is improved, Can provide confectionery with good product edge.
Furthermore, according to the present invention, ingredients having a large specific gravity such as fruit are contained in a specific amount, the ingredients are not biased at the time of manufacture, and are uniformly dispersed after baking, and further, a crispy feeling, a refreshing feeling, a soft feeling, etc. A bakery product having a good texture can be provided.
 本発明について、以下具体的に説明する。
<セルロース組成物>
 本発明のセルロース組成物は、セルロースと水溶性多糖類を含み、1質量%の水分散体の貯蔵弾性率(G’)が0.1Pa以上であるセルロース複合体と加工澱粉を含み、セルロース複合体と加工澱粉の質量比が、5/95~90/10の範囲で組み合わされた組成物である。セルロース複合体と加工澱粉の質量比は、好ましくは5/95~80/20の範囲である。セルロース複合体と加工澱粉の質量比が5/95以上の範囲であることによって、十分なレベルの油の分散安定性、懸濁安定性、保形性が得られる。また、セルロース複合体と加工澱粉の質量比が90/10以下の範囲であることによって、高塩分濃度の水系媒体中での分散性が良好になる。すなわち、複合化を経ないセルロースと加工澱粉、必要に応じて多糖類を組み合わせるのみではなく、セルロース複合体と加工澱粉を特定比率で含むセルロース組成物とすることによって、はじめて上記の所望の効果が達成される。セルロース複合体と加工澱粉の質量比が80/20以下(かつ5/95以上)の範囲である場合には、上記の諸点において、より優れた効果が得られる。
The present invention will be specifically described below.
<Cellulose composition>
The cellulose composition of the present invention contains cellulose and a water-soluble polysaccharide, includes a cellulose composite having a storage elastic modulus (G ′) of 1% by mass of an aqueous dispersion of 0.1 Pa or more and processed starch, and is a cellulose composite. It is a composition in which the mass ratio of the body and processed starch is combined in the range of 5/95 to 90/10. The mass ratio of the cellulose composite and the modified starch is preferably in the range of 5/95 to 80/20. When the mass ratio of the cellulose composite and the modified starch is in the range of 5/95 or more, a sufficient level of oil dispersion stability, suspension stability, and shape retention can be obtained. Further, when the mass ratio of the cellulose composite and the modified starch is in the range of 90/10 or less, the dispersibility in an aqueous medium having a high salinity is improved. That is, not only combining cellulose and processed starch without complexing, and if necessary, combining polysaccharides, but also by making a cellulose composition containing a cellulose composite and processed starch in a specific ratio, the above-mentioned desired effect is not achieved. Achieved. When the mass ratio of the cellulose composite and the modified starch is in the range of 80/20 or less (and 5/95 or more), more excellent effects can be obtained in the above points.
 本発明のセルロース組成物は、セルロース複合体と加工澱粉を特定比率で含むことで、高塩分濃度の水系媒体中で、容易に分散できるようになる。この質量比は、用いる加工澱粉により、好適な範囲が異なるため、以下の<加工澱粉>の項において、詳細に説明する。
<セルロース組成物の分散性>
 本発明のセルロース組成物は、高塩分濃度の水系媒体中で容易に分散し、油の分散安定性に優れるものである。この分散性を達成するためには、本発明のセルロース組成物は、該セルロース組成物を、5質量%の塩化ナトリウムの水溶液中に0.01質量%濃度となるように分散させ、超音波処理を2分間処理した際に、レーザー回折/散乱式粒度分布計で測定される粒度分布(屈折率1.04における体積頻度ヒストグラム)において、1μm以下の成分が6%以上検出されることが必要である。上述の測定における1μm以下の成分の量(屈折率1.04における体積頻度ヒストグラム)のことを、本発明では、微粒子成分量(BS量)と呼ぶ。
The cellulose composition of the present invention can be easily dispersed in an aqueous medium having a high salinity by containing the cellulose composite and the modified starch at a specific ratio. This mass ratio has a suitable range depending on the processed starch used, and will be described in detail in the section <Processed starch> below.
<Dispersibility of cellulose composition>
The cellulose composition of the present invention is easily dispersed in an aqueous medium having a high salinity, and has excellent oil dispersion stability. In order to achieve this dispersibility, the cellulose composition of the present invention is obtained by dispersing the cellulose composition in an aqueous solution of 5% by mass of sodium chloride so as to have a concentration of 0.01% by mass, and then subjecting it to ultrasonic treatment. In the particle size distribution (volume frequency histogram at a refractive index of 1.04) measured by a laser diffraction / scattering particle size distribution meter, a component of 1 μm or less must be detected by 6% or more. is there. In the present invention, the amount of a component of 1 μm or less (volume frequency histogram at a refractive index of 1.04) in the above-described measurement is referred to as a fine particle component amount (BS amount).
 本BS量の測定方法は、以下の通りである。まず、本発明のセルロース組成物を量りとり、0.01質量%濃度となるように、5質量%の塩化ナトリウム水溶液に分散させる。次に、このセルロース組成物の分散液を、レーザー回折/散乱式粒度分布計(堀場製作所(株)製、商品名「LA-910」、フローセル)に仕込み、2分間の超音波処理を行い、屈折率1.04で、粒度分布を測定する。ここで、得られた体積頻度ヒストグラムにおいて、全体に占める1μm以下の粒子の割合(全体積頻度に対する百分率)を算出することで、本BS量が計測される。 The method for measuring the amount of BS is as follows. First, the cellulose composition of the present invention is weighed and dispersed in a 5% by mass sodium chloride aqueous solution so as to have a concentration of 0.01% by mass. Next, this cellulose composition dispersion was charged in a laser diffraction / scattering particle size distribution analyzer (trade name “LA-910”, manufactured by Horiba, Ltd., flow cell), and subjected to ultrasonic treatment for 2 minutes. The particle size distribution is measured at a refractive index of 1.04. Here, in the obtained volume frequency histogram, the amount of the main BS is measured by calculating the ratio (percentage of the total volume frequency) of particles of 1 μm or less in the whole.
 このBS量が、6%以上であると、セルロース組成物の分散性が良好となり、非乳化型の油の分散安定性が高くなる。BS量は、大きいほど、セルロース組成物の機能が高くなるため好ましい。この好ましい範囲としては、7%以上であり、より好ましくは、10%以上、特に好ましくは、12%以上である。上限は特に制限されないが、好ましい範囲としては99%以下である。
<セルロース組成物におけるセルロース複合体の含有量>
 本発明のセルロース組成物におけるセルロース複合体の含有量は、特に限定されないが、この組成物の総量に対して5質量%以上であることが好ましい。セルロース組成物において、セルロース複合体の含有量が高いほど、油の分散安定性、懸濁安定性、保形性等の物性が優れる。より好ましくは10質量%以上、さらに好ましくは20質量%以上、さらに好ましくは30質量%以上、特に好ましくは40質量%以上、最も好ましくは45質量%以上である。上限は特に設定されないが、セルロース複合体の含有量が高くなると、相対的に加工澱粉の含有量が低くなり、セルロース組成物の分散性が低下する。このため、上限として好ましい範囲は90質量%以下であり、80質量%以下がより好ましい。
<セルロース複合体>
 本発明でいうセルロース複合体とは、セルロースの表面が、水素結合等の化学結合により、水溶性多糖類で被覆(複合化)されたセルロースのことをいう。水溶性多糖類は、以下で例示される。
<セルロース>
 本発明において、「セルロース」とは、セルロースを含有する天然由来の水不溶性繊維質物質である。原料としては、木材、竹、麦藁、稲藁、コットン、ラミー、バガス、ケナフ、ビート、ホヤ、バクテリアセルロース等が挙げられる。原料として、これらのうち1種の天然セルロース系物質を使用しても、2種以上を混合したものを使用することも可能である。
<セルロースの平均重合度>
 本発明に用いるセルロースの平均重合度は、500以下の結晶セルロースが好ましい。平均重合度は、「第14改正日本薬局方」(廣川書店発行)の結晶セルロース確認試験(3)に規定される銅エチレンジアミン溶液による還元比粘度法により測定できる。平均重合度が500以下ならば、水溶性多糖類との複合化の工程において、セルロース系物質が攪拌、粉砕、摩砕等の物理処理を受けやすくなり、複合化が促進されやすくなるため好ましい。より好ましくは、平均重合度は300以下、さらに好ましくは、平均重合度は250以下である。平均重合度は、小さいほど複合化の制御が容易になるため、下限は特に制限されないが、好ましい範囲としては10以上である。
<セルロースの加水分解>
 平均重合度を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロース繊維質内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロースや、リグニン等の不純物も、取り除かれるため、繊維質内部が多孔質化する。それにより、混練工程等で、セルロースと水溶性多糖類に機械的せん断力を与える工程において、セルロースが機械処理を受けやすくなり、セルロースが微細化されやすくなる。その結果、セルロースの表面積が高くなり、水溶性多糖類との複合化の制御が容易になる。
When the BS amount is 6% or more, the dispersibility of the cellulose composition becomes good, and the dispersion stability of the non-emulsifying oil becomes high. The larger the amount of BS, the better the function of the cellulose composition. The preferable range is 7% or more, more preferably 10% or more, and particularly preferably 12% or more. The upper limit is not particularly limited, but a preferable range is 99% or less.
<Content of Cellulose Complex in Cellulose Composition>
Although content of the cellulose composite in the cellulose composition of this invention is not specifically limited, It is preferable that it is 5 mass% or more with respect to the total amount of this composition. In the cellulose composition, the higher the content of the cellulose composite, the better the physical properties such as oil dispersion stability, suspension stability, and shape retention. More preferably, it is 10 mass% or more, More preferably, it is 20 mass% or more, More preferably, it is 30 mass% or more, Most preferably, it is 40 mass% or more, Most preferably, it is 45 mass% or more. The upper limit is not particularly set, but when the content of the cellulose composite is increased, the content of the processed starch is relatively decreased, and the dispersibility of the cellulose composition is decreased. For this reason, a preferable range as an upper limit is 90 mass% or less, and 80 mass% or less is more preferable.
<Cellulose composite>
The cellulose composite as used in the present invention refers to a cellulose whose surface is coated (complexed) with a water-soluble polysaccharide by chemical bonds such as hydrogen bonds. The water-soluble polysaccharide is exemplified below.
<Cellulose>
In the present invention, “cellulose” is a naturally derived water-insoluble fibrous material containing cellulose. Examples of raw materials include wood, bamboo, wheat straw, rice straw, cotton, ramie, bagasse, kenaf, beet, squirts, and bacterial cellulose. As a raw material, it is also possible to use one of these natural cellulose materials or a mixture of two or more of them.
<Average degree of polymerization of cellulose>
The average degree of polymerization of the cellulose used in the present invention is preferably a crystalline cellulose of 500 or less. The average degree of polymerization can be measured by a reduced specific viscosity method using a copper ethylenediamine solution specified in the crystalline cellulose confirmation test (3) of “14th revised Japanese pharmacopoeia” (published by Yodogawa Shoten). If the average degree of polymerization is 500 or less, it is preferable because the cellulose-based material is easily subjected to physical treatment such as stirring, pulverization, and grinding in the step of conjugating with the water-soluble polysaccharide and the conjugation is easily promoted. More preferably, the average degree of polymerization is 300 or less, and still more preferably, the average degree of polymerization is 250 or less. The lower the average degree of polymerization, the easier the control of complexing. Therefore, the lower limit is not particularly limited, but a preferred range is 10 or more.
<Hydrolysis of cellulose>
Examples of a method for controlling the average degree of polymerization include hydrolysis treatment. By the hydrolysis treatment, the depolymerization of the amorphous cellulose inside the cellulose fiber proceeds, and the average degree of polymerization decreases. At the same time, the hydrolysis process removes impurities such as hemicellulose and lignin in addition to the above-described amorphous cellulose, so that the inside of the fiber becomes porous. Thereby, in the step of applying mechanical shearing force to cellulose and the water-soluble polysaccharide in a kneading step or the like, the cellulose is easily subjected to mechanical treatment, and the cellulose is easily refined. As a result, the surface area of the cellulose is increased, and the complexation with the water-soluble polysaccharide can be easily controlled.
 加水分解の方法は、特に制限されないが、酸加水分解、熱水分解、スチームエクスプロージョン、マイクロ波分解等が挙げられる。これらの方法は、単独で使用しても、2種以上を併用してもよい。酸加水分解の方法では、セルロース系物質を水系媒体に分散させた状態で、プロトン酸、カルボン酸、ルイス酸、ヘテロポリ酸等を適量加え、攪拌させながら、加温することにより、容易に平均重合度を制御できる。この際の温度、圧力、時間等の反応条件は、セルロース種、セルロース濃度、酸種、酸濃度により異なるが、目的とする平均重合度が達成されるよう適宜調製されるものである。例えば、2質量%以下の鉱酸水溶液を使用し、100℃以上、加圧下で、10分以上セルロースを処理するという条件が挙げられる。この条件のとき、酸等の触媒成分がセルロース繊維内部まで浸透し、加水分解が促進され、使用する触媒成分量が少なくなり、その後の精製も容易になる。
<セルロースの粒子形状(L/D)>
 本発明に用いるセルロース複合体中のセルロースは、微細な粒子状の形状であることが好ましい。セルロースの粒子形状は、本発明のセルロース複合体を、1質量%濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」処理条件:回転数15,000rpm×5分間)で分散させた水分散体を、0.1~0.5質量%に純水で希釈し、マイカ上にキャストし、風乾されたものを、高分解能走査型顕微鏡(SEM)、又は原子間力顕微鏡(AFM)で計測された際に得られる粒子像の長径(L)と短径(D)とした場合の比(L/D)で表され、100個~150個の粒子の平均値として算出される。
The method of hydrolysis is not particularly limited, and examples thereof include acid hydrolysis, hydrothermal decomposition, steam explosion, and microwave decomposition. These methods may be used alone or in combination of two or more. In the acid hydrolysis method, an average polymerization is easily performed by adding an appropriate amount of a protonic acid, a carboxylic acid, a Lewis acid, a heteropolyacid, etc. in a state in which a cellulosic material is dispersed in an aqueous medium, and heating while stirring. You can control the degree. Reaction conditions such as temperature, pressure, and time at this time vary depending on the cellulose species, cellulose concentration, acid species, and acid concentration, but are appropriately adjusted so as to achieve the desired average degree of polymerization. For example, the conditions of processing a cellulose for 10 minutes or more under 100 degreeC or more and pressurization using the mineral acid aqueous solution of 2 mass% or less are mentioned. Under these conditions, a catalyst component such as an acid penetrates into the inside of the cellulose fiber, the hydrolysis is promoted, the amount of the catalyst component to be used is reduced, and the subsequent purification is facilitated.
<Particle shape of cellulose (L / D)>
The cellulose in the cellulose composite used in the present invention preferably has a fine particle shape. The particle shape of cellulose is a high shear homogenizer (trade name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.) treated with the cellulose composite of the present invention in a pure water suspension at a concentration of 1% by mass. A high-resolution scanning type is obtained by diluting an aqueous dispersion dispersed at a rotational speed of 15,000 rpm × 5 minutes) with pure water to 0.1 to 0.5% by mass, cast on mica, and air-dried. 100 particles represented by the ratio (L / D) of the major axis (L) and minor axis (D) of the particle image obtained when measured with a microscope (SEM) or atomic force microscope (AFM) Calculated as the average of ~ 150 particles.
 L/Dは、懸濁安定性の点で20未満が好ましく、15以下がより好ましく、10以下がさらに好ましく、5以下が特に好ましく、5未満が格別に好ましく、4以下が最も好ましい。
<水溶性多糖類>
 本発明に用いるセルロース複合体中の水溶性多糖類としては、例えば、アラビアガム、アルギン酸、アルギン酸ナトリウム、アルギン酸カルシウム、カードラン、カラギーナン、カラヤガム、寒天、キサンタンガム、キチン、キトサン、グアーガム、サイリウムシードガム、ジェランガム、ゼラチン、タマリンドシードガム、デキストラン、プルラン、HMペクチン、LMペクチン、ローカストビーンガム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース等が挙げられる。これらの水溶性多糖類は2種以上を組み合わせてもよい。
L / D is preferably less than 20 in terms of suspension stability, more preferably 15 or less, further preferably 10 or less, particularly preferably 5 or less, particularly preferably less than 5, and most preferably 4 or less.
<Water-soluble polysaccharide>
Examples of the water-soluble polysaccharide in the cellulose composite used in the present invention include gum arabic, alginic acid, sodium alginate, calcium alginate, curdlan, carrageenan, caraya gum, agar, xanthan gum, chitin, chitosan, guar gum, psyllium seed gum, Gellan gum, gelatin, tamarind seed gum, dextran, pullulan, HM pectin, LM pectin, locust bean gum, sodium carboxymethylcellulose, carboxymethylcellulose calcium, methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose and the like. These water-soluble polysaccharides may be used in combination of two or more.
 上述の水溶性ガムの中でも、セルロースとの複合化の点で、陰イオン性の多糖類が好ましい。
<陰イオン性多糖類>
 本発明に用いる陰イオン性の多糖類とは、それを水中で分散又は溶解した際に、陽イオンが遊離し、それ自身が陰イオンとなるものである。本発明のセルロース複合体は、陰イオン性多糖類を用いることで、セルロースとの複合化がより促進される。その結果、このセルロース複合体が配合されたセルロース組成物は、油の分散安定効果、懸濁安定効果、保形効果が高まるため好ましい。
Among the water-soluble gums described above, anionic polysaccharides are preferable from the viewpoint of complexing with cellulose.
<Anionic polysaccharide>
The anionic polysaccharide used in the present invention is one in which, when dispersed or dissolved in water, a cation is liberated and itself becomes an anion. The cellulose composite of the present invention is more facilitated to be combined with cellulose by using an anionic polysaccharide. As a result, a cellulose composition in which this cellulose composite is blended is preferable because the oil dispersion stability effect, suspension stability effect, and shape retention effect are enhanced.
 陰イオン性多糖類としては、セルロースとの複合化の点で、以下のものが好適である。例えば、アルギン酸、アルギン酸ナトリウム、アルギン酸カルシウム、カラギーナン、カラヤガム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、キサンタンガム、サイリウムシードガム、ジェランガム、HMペクチン、LMペクチン等が挙げられる。これらの陰イオン性多糖類は2種以上を組み合わせてもよい。 As the anionic polysaccharide, the following are preferable from the viewpoint of complexing with cellulose. Examples include alginic acid, sodium alginate, calcium alginate, carrageenan, caraya gum, sodium carboxymethylcellulose, carboxymethylcellulose calcium, xanthan gum, psyllium seed gum, gellan gum, HM pectin, and LM pectin. These anionic polysaccharides may be used in combination of two or more.
 さらに、上述の陰イオン性多糖類のなかでも、セルロース組成物の油の分散安定効果、懸濁安定効果、保形効果を高めるためには、キサンタンガム、ジェランガム、カラヤガム、カルボキシメチルセルロースナトリウム、サイリウムシードガムが、好ましい。 Furthermore, among the above-mentioned anionic polysaccharides, xanthan gum, gellan gum, karaya gum, sodium carboxymethylcellulose, psyllium seed gum, in order to enhance the oil dispersion stability effect, suspension stability effect, and shape retention effect of the cellulose composition. Is preferred.
 より好適には、キサンタンガム、ジェランガムであり、最も好適には、キサンタンガムである。
<セルロース複合体におけるセルロースと水溶性多糖類の質量比>
 本発明に用いるセルロース複合体において、セルロースと水溶性多糖類の質量比は、99/1~50/50が好ましい。質量比がこの範囲となることで、セルロース複合体におけるセルロース表面が、水溶性多糖類で充分に被覆(複合化)されると考えられる。従って、この複合体を用いたセルロース組成物は、油の分散安定効果、懸濁安定効果、保形効果が高くなる傾向がある。
More preferred are xanthan gum and gellan gum, and most preferred is xanthan gum.
<Mass ratio of cellulose and water-soluble polysaccharide in cellulose composite>
In the cellulose composite used in the present invention, the mass ratio of cellulose to the water-soluble polysaccharide is preferably 99/1 to 50/50. When the mass ratio falls within this range, it is considered that the cellulose surface in the cellulose composite is sufficiently coated (complexed) with the water-soluble polysaccharide. Therefore, the cellulose composition using this composite tends to have high oil dispersion stabilizing effect, suspension stabilizing effect, and shape retention effect.
 この質量比は、用いる多糖類により、さらに好ましい範囲が異なるため、以下にて詳細に説明する。
<キサンタンガム>
 キサンタンガムとは、トウモロコシなどの澱粉を細菌 Xanthomonas campestrisにより発酵させて作られるガムであり、 グルコース2分子、マンノース2分子、グルクロン酸の繰り返し単位からなるものである。本発明で用いるキサンタンガムにはカリウム塩、ナトリウム塩、カルシウム塩も含まれる。上記の構造を有し、食品で使用できるグレードであれば粘度に制限なく使用できる。
This mass ratio will be described in detail below because the preferred range varies depending on the polysaccharide used.
<Xanthan gum>
Xanthan gum is a gum made by fermenting starch such as corn with the bacterium Xanthomonas campestris, and consists of repeating units of glucose 2 molecules, mannose 2 molecules, and glucuronic acid. The xanthan gum used in the present invention includes potassium salts, sodium salts, and calcium salts. If it is a grade which has said structure and can be used with a foodstuff, it can be used without a restriction | limiting in a viscosity.
 本発明のセルロース複合体に用いる場合は、セルロースとキサンタンガムの質量比は、99/1~80/20が好ましい。より好ましくは99/1~90/10であり、さらに好ましくは96/4~92/8である。
<ジェランガム>
 ジェランガムとは、Sphingomonas elodeaという微生物が産出する多糖類である。ジェランガムは、ネイティブジェランガムと脱アシル型ジェランガムの2種類があるが、本発明では食品で使用できるグレードであれば制限なく使用できる。
When used in the cellulose composite of the present invention, the mass ratio of cellulose to xanthan gum is preferably 99/1 to 80/20. More preferably, it is 99/1 to 90/10, and still more preferably 96/4 to 92/8.
<Gellan gum>
Gellan gum is a polysaccharide produced by a microorganism called Sphingomonas elodea. There are two types of gellan gum, native gellan gum and deacylated gellan gum. In the present invention, any grade can be used as long as it can be used in food.
 ここで、セルロースとジェランガムとの質量比は、99/1~80/20であることが好ましい。より好ましくは、99/1~90/10であり、さらに好ましくは98/2~94/6である。
<サイリウムシードガム>
 サイリウムシードガム(PSGと略称されることもある)とは、オオバコ科の植物(Plantago ovata Forskal)の種子の外皮から得られる多糖類(ガム類)のことである。具体的には、イサゴール、プランタゴ・オバタ種皮から得られる多糖類が挙げられる。
Here, the mass ratio of cellulose to gellan gum is preferably 99/1 to 80/20. More preferably, it is 99/1 to 90/10, and still more preferably 98/2 to 94/6.
<Psyllium seed gum>
Psyllium seed gum (sometimes abbreviated as PSG) is a polysaccharide (gum) obtained from the seed coat of a plant of the plant family Planta ovata Forskal. Specific examples include polysaccharides obtained from Isagor and plantago / Obata seed coats.
 本発明においてサイリウムシードガムは、上記のオオバコ科の植物(Plantago ovata Forskal)の種子の外皮から得られる多糖類(ガム類)を含むものであれば、きょう雑物を含んでいるものも該当する。例えば、当該多糖類を水等の溶媒で抽出されたガムも、外皮を粉砕されたハスクも、それらを組み合わせ処理されたものも、いずれのものも含まれる。また、それらは、粉末状、塊状、ケーク状、液状のいずれの状態であってもよい。 In the present invention, the psyllium seed gum includes a polysaccharide (gum) obtained from the seed coat of the plant of the above-mentioned plantain family (Plantago ovata Forskal), and also includes those containing impurities. . For example, a gum obtained by extracting the polysaccharide with a solvent such as water, a husk whose outer skin has been pulverized, a combination of them, and any of them are included. In addition, they may be in any state of powder, lump, cake, or liquid.
 その化学構造は、非セルロース多糖類において、主鎖がキシランとして高度に枝分かれしており、側鎖がアラビノース、キシロース、ガラクツロン酸、ラムノースからなる構造である。側鎖における、その糖構成比は、D-キシロース約60質量%、L-アラビノース約20質量%、L-ラムノース約10質量%、D-ガラクツロン酸約10質量%である。これらの質量比は、PSGの原料、及びPSGの製造工程により5質量%前後するものである。また、上述の構造を有していれば、粘度を調製するために、酸、キシラナーゼ様の酵素等により加水分解してもよい。 The chemical structure is a non-cellulose polysaccharide in which the main chain is highly branched as xylan and the side chain is composed of arabinose, xylose, galacturonic acid, and rhamnose. The sugar constituent ratio in the side chain is about 60% by mass of D-xylose, about 20% by mass of L-arabinose, about 10% by mass of L-rhamnose, and about 10% by mass of D-galacturonic acid. These mass ratios are about 5% by mass depending on the PSG raw material and the manufacturing process of PSG. Moreover, if it has the above-mentioned structure, in order to adjust a viscosity, you may hydrolyze with an acid, an xylanase-like enzyme, etc.
 ここで、セルロースとサイリウムシードガムとの質量比は、99/1~80/20であることが好ましい。より好ましくは、99/1~90/10であり、さらに好ましくは98/2~94/6である。
<カラヤガム>
 カラヤガムとは、アオギリ科カラヤの木の樹液を精製したもののことである。市販のグレードとしては、色調、樹皮、異物の割合から、Hand-picked-selected(HPS)、Superior No.1、Superior No.2、Superior No.3、Shiftingsがある(株式会社幸書房2001年発行、国崎、佐野著「食品多糖類」88ページ、表4-4参照)。本発明で用いるカラヤガムは食品で使用できるグレードであれば制限なく使用できる。この中でも、本発明に用いるには、HPS、Superior No.1が好ましく、HPSが複合体の懸濁安定性の点で好ましい。特に、中央および北インドのSterculia urens由来のものが、複合体の懸濁安定性の点で好適である。
Here, the mass ratio of cellulose to psyllium seed gum is preferably 99/1 to 80/20. More preferably, it is 99/1 to 90/10, and still more preferably 98/2 to 94/6.
<Kalaya gum>
Karaya gum is a refined sap of a mosquito tree in the family Aoyagi. Commercially available grades include Hand-picked-selected (HPS), Superior No.1, Superior No.2, Superior No.3, and Shifting, based on color tone, bark, and foreign matter ratio (published in Sachishobo 2001) Kunizaki and Sano, “Food polysaccharides” on page 88, see Table 4-4). The Karaya gum used in the present invention can be used without limitation as long as it can be used in food. Among these, HPS and Superior No. 1 are preferable for use in the present invention, and HPS is preferable in terms of suspension stability of the complex. In particular, those derived from Sterculia urens in central and northern India are preferred in terms of suspension stability of the complex.
 ここで、セルロースとカラヤガムとの質量比は、99/1~80/20であることが好ましい。より好ましくは、94/6~84/16であり、さらに好ましくは92/8~86/14である。
<カルボキシメチルセルロースナトリウム>
 カルボキシメチルセルロースナトリウム(CMC-Na)とは、セルロースの水酸基がモノクロロ酢酸で置換されたもので、D-グルコースがβ-1,4結合した直鎖状の化学構造を持つものである。CMC-Naは、パルプ(セルロース)を水酸化ナトリウム溶液で溶かし、モノクロロ酸(或いはそのナトリウム塩)でエーテル化して得られる。
Here, the mass ratio of cellulose to Karaya gum is preferably 99/1 to 80/20. More preferably, it is 94/6 to 84/16, and still more preferably 92/8 to 86/14.
<Carboxymethylcellulose sodium>
Carboxymethylcellulose sodium (CMC-Na) is one in which the hydroxyl group of cellulose is substituted with monochloroacetic acid and has a linear chemical structure in which D-glucose is linked by β-1,4. CMC-Na is obtained by dissolving pulp (cellulose) with sodium hydroxide solution and etherifying with monochloro acid (or its sodium salt).
 特に、置換度と粘度が特定範囲に調製されたCMC-Naを用いることが、複合化の観点から好ましい。置換度とは、セルロース中の水酸基にカルボキシメチル基がエーテル結合した度合いのことであり、0.6~2.0が好ましい。置換度が前記の範囲であれば、CMC-Naの分散性が十分であること、及び製造が容易であることから好ましい。より好ましくは、置換度は0.6~1.3である。またCMC-Naの粘度は、1質量%の純水溶液において、500mPa・s以下が好ましく、200mPa・s以下がより好ましく、50mPa・s以下がさらに好ましい。特に好ましくは、20mPa・s以下である。CMC-Naの粘度が低いほど、セルロース、親水性ガムとの複合化が促進されやすい。下限は特に設定されるものではないが、好ましい範囲としては1mPa・s以上である。 In particular, it is preferable to use CMC-Na having a substitution degree and a viscosity adjusted within a specific range from the viewpoint of complexation. The degree of substitution is the degree to which a carboxymethyl group is ether-bonded to a hydroxyl group in cellulose, and is preferably 0.6 to 2.0. If the degree of substitution is in the above range, it is preferable because the dispersibility of CMC-Na is sufficient and the production is easy. More preferably, the degree of substitution is 0.6 to 1.3. The viscosity of CMC-Na is preferably 500 mPa · s or less, more preferably 200 mPa · s or less, and further preferably 50 mPa · s or less in a 1% by mass pure aqueous solution. Particularly preferably, it is 20 mPa · s or less. The lower the viscosity of CMC-Na, the easier it is to combine with cellulose and hydrophilic gum. The lower limit is not particularly set, but a preferable range is 1 mPa · s or more.
 ここで、セルロースとCMC-Naとの質量比は、99/1~80/20であることが好ましい。より好ましくは、94/6~84/16であり、さらに好ましくは92/8~86/14である。
<セルロース複合体に配合される親水性物質>
 本発明に用いるセルロース複合体は、水への分散性を高める目的で、セルロースと、水溶性多糖類以外に、親水性物質を加えてもよい。親水性物質とは、冷水への溶解性が高く粘性を殆どもたらさない有機物質であり、澱粉加水分解物、デキストリン類、難消化性デキストリン、ポリデキストロース等の親水性多糖類、フラクトオリゴ糖、ガラクトオリゴ糖、マルトオリゴ糖、イソマルトオリゴ糖、乳糖、マルトース、ショ糖、α-、β-、γ-シクロデキストリン等のオリゴ糖類、ブドウ糖、果糖、ソルボース等の単糖類、マルチトール、ソルビット、エリスリトール等の糖アルコール類等、ビタミン類、コラーゲン、アズレン、キトサンが適している。これらの親水性物質は、2種類以上組み合わせてもよい。上述の中でも、澱粉加水分解物、デキストリン類、難消化性デキストリン、ポリデキストロース等の親水性多糖類が分散性の点で好ましく、デキストリンが最も好ましい。
Here, the mass ratio of cellulose to CMC-Na is preferably 99/1 to 80/20. More preferably, it is 94/6 to 84/16, and still more preferably 92/8 to 86/14.
<Hydrophilic substance blended in cellulose composite>
The cellulose composite used in the present invention may contain a hydrophilic substance in addition to cellulose and a water-soluble polysaccharide for the purpose of enhancing the dispersibility in water. A hydrophilic substance is an organic substance that is highly soluble in cold water and hardly causes viscosity. Hydrophilic polysaccharides such as starch hydrolysates, dextrins, indigestible dextrin, polydextrose, fructooligosaccharides, galactooligosaccharides , Maltooligosaccharides, isomaltooligosaccharides, lactose, maltose, sucrose, oligosaccharides such as α-, β-, γ-cyclodextrin, monosaccharides such as glucose, fructose, sorbose, sugar alcohols such as maltitol, sorbit, erythritol Vitamins, collagen, azulene and chitosan are suitable. Two or more kinds of these hydrophilic substances may be combined. Among the above, hydrophilic polysaccharides such as starch hydrolysates, dextrins, indigestible dextrins and polydextrose are preferable in terms of dispersibility, and dextrin is most preferable.
 セルロース複合体における親水性物質の配合量には制限はないが、好ましい範囲としては、5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは20質量%以上である。親水性物質が多いほど水分散性が高まるが、油の分散安定性、懸濁安定性、保形性等のセルロース複合体の物性が低くなるため、上限としては、50質量%以下が好ましい。
<その他添加剤>
 本発明に用いるセルロース複合体に、陰イオン性多糖類を用いる場合には、複合化を進める目的で、二価のイオン性物質を配合してもよい。二価のイオン性物質は、水に溶解した際に、カルシウム、マグネシウム等の二価のイオンを生じるものであり、具体的には、塩化カルシウム、塩化マグネシウム等が例示される。この物質は、セルロースと、陰イオン性多糖類を複合化する前に添加されることが好ましい。二価のイオン性物質の添加量としては、セルロース複合体において、好ましくは0.5質量%以上である。より好ましくは1質量%以上であり、さらに好ましくは3質量%以上である。この物質は、配合量が高すぎると、セルロース組成物を添加された飲食品の味に影響するため、上限としては10質量%以下が好ましい。
<セルロース複合体の製造方法>
 次に、本発明に用いるセルロース複合体の製造方法を説明する。
Although there is no restriction | limiting in the compounding quantity of the hydrophilic substance in a cellulose composite, As a preferable range, it is 5 mass% or more, More preferably, it is 10 mass% or more, More preferably, it is 20 mass% or more. The more the hydrophilic substance is, the higher the water dispersibility is. However, since the physical properties of the cellulose composite such as oil dispersion stability, suspension stability, and shape retention are lowered, the upper limit is preferably 50% by mass or less.
<Other additives>
In the case where an anionic polysaccharide is used in the cellulose composite used in the present invention, a divalent ionic substance may be blended for the purpose of promoting the conjugation. The divalent ionic substance generates divalent ions such as calcium and magnesium when dissolved in water, and specific examples include calcium chloride and magnesium chloride. This substance is preferably added before complexing cellulose and anionic polysaccharide. The addition amount of the divalent ionic substance is preferably 0.5% by mass or more in the cellulose composite. More preferably, it is 1 mass% or more, More preferably, it is 3 mass% or more. If the amount of this substance is too high, it affects the taste of foods and drinks to which the cellulose composition is added, so the upper limit is preferably 10% by mass or less.
<Method for producing cellulose composite>
Next, the manufacturing method of the cellulose composite used for this invention is demonstrated.
 本発明に用いるセルロース複合体は、混練工程においてセルロースと水溶性多糖類に機械的せん断力をあたえ、セルロースを微細化させるとともに、セルロース表面に多糖類を複合化させることによって得られる。また、セルロースと水溶性多糖類以外の親水性物質、及び、その他の添加剤などを添加しても良い。上述の処理を経たものは、必要に応じ、乾燥される。本発明に用いるセルロース複合体は、上述の機械的せん断を経て、未乾燥のもの及びその後乾燥されたもの等、いずれの形態でもよい。 The cellulose composite used in the present invention can be obtained by applying mechanical shearing force to cellulose and water-soluble polysaccharide in the kneading step to make the cellulose finer and complex the polysaccharide on the cellulose surface. Moreover, you may add hydrophilic substances other than a cellulose and water-soluble polysaccharide, another additive, etc. What passed through the above-mentioned process is dried as needed. The cellulose composite used in the present invention may be in any form such as an undried one and a dried one after the mechanical shearing described above.
 機械的せん断力を与えるには、混練機等を用いて混練する方法を適用することができる。混練機は、ニーダー、エクストルーダー、プラネタリーミキサー、ライカイ機等を用いることができ、連続式でもバッチ式でもよい。混練時の温度は、特に限定されず、成り行きでもよいが、こん練の際の複合化反応、摩擦等により発熱する場合にはこれを除熱しながら混練してもよい。これらの機種を単独で使用することも可能であるが、二種以上の機種を組み合わせて用いることも可能である。これらの機種は、種々の用途における粘性要求等により適宜選択すればよい。 In order to give mechanical shearing force, a kneading method using a kneader or the like can be applied. As the kneading machine, a kneader, an extruder, a planetary mixer, a reiki machine or the like can be used, and it may be a continuous type or a batch type. The temperature at the time of kneading is not particularly limited and may be achieved. However, when heat is generated due to a complexing reaction, friction, or the like at the time of kneading, the kneading may be performed while removing the heat. These models can be used alone, but two or more models can be used in combination. These models may be appropriately selected depending on the viscosity requirements in various applications.
 また、混練温度は、低いほど、水溶性多糖類の劣化が抑制され、結果として得られるセルロース複合体の油の分散安定性、懸濁安定性、保形性が高くなるため好ましい。混練温度は、0~100℃が好ましく、90℃以下がより好ましく、70℃以下が特に好ましく、60℃以下がさらに好ましく、50℃以下が最も好ましい。高エネルギー下で、上記の混練温度を維持するに、ジャケット冷却、放熱等の徐熱を工夫してもよい。 Also, the lower the kneading temperature, the better the degradation of the water-soluble polysaccharide, and the higher the dispersion stability, suspension stability, and shape retention of the resulting cellulose composite oil. The kneading temperature is preferably 0 to 100 ° C., more preferably 90 ° C. or less, particularly preferably 70 ° C. or less, further preferably 60 ° C. or less, and most preferably 50 ° C. or less. In order to maintain the kneading temperature under high energy, slow heating such as jacket cooling and heat dissipation may be devised.
 混練時の固形分は、20質量%以上とすることが好ましい。混練物の粘性が高い半固形状態で混練することで、混練物が緩い状態にならず、下記に述べる混練エネルギーが混練物に伝わりやすくなり、複合化が促進されるため好ましい。混練時の固形分は、より好ましくは30質量%以上であり、さらに好ましくは40質量%以上であり、特に好ましくは50質量%以上である。上限は特に限定されないが、混練物が水分量の少ないパサパサな状態にならず、充分な混練効果と均一な混練状態が得られることを考慮して、現実的範囲は90質量%以下が好ましい。より好ましくは70質量%以下であり、さらに好ましくは60質量%以下である。また、固形分を上記範囲とするために、加水するタイミングとしては、混練工程の前に必要量を加水してもよいし、混練工程の途中で加水してもよいし、両方実施しても良い。 The solid content during kneading is preferably 20% by mass or more. Kneading in a semi-solid state where the viscosity of the kneaded material is high is preferable because the kneaded material does not become loose, the kneading energy described below is easily transmitted to the kneaded material, and compounding is promoted. The solid content at the time of kneading is more preferably 30% by mass or more, further preferably 40% by mass or more, and particularly preferably 50% by mass or more. The upper limit is not particularly limited, but the practical range is preferably 90% by mass or less, considering that the kneaded product does not become a crumbly state with a small amount of water and a sufficient kneading effect and a uniform kneading state can be obtained. More preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less. Moreover, in order to make solid content into the said range, as a timing to add water, a required amount may be added before a kneading | mixing process, may be added in the middle of a kneading | mixing process, or both may be implemented. good.
 ここで、混練エネルギーについて説明する。混練エネルギーとは混練物の単位質量当たりの電力量(Wh/kg)で定義するものである。混練エネルギーは、20Wh/kg以上とすることが好ましい。混練エネルギーが20Wh/kg以上であれば、混練物に与える磨砕性が高く、セルロースと水溶性多糖類、又は、セルロース、水溶性多糖類、及びその他水溶性ガム等との複合化が促進され、中性のセルロース複合体の懸濁安定性が向上する。混練エネルギーは、より好ましくは50Wh/kg以上であり、さらに好ましくは100Wh/kg以上であり、特に好ましくは200Wh/kg以上であり、一層好ましくは300Wh/kg以上であり、最も好ましくは400Wh/kg以上である。混練エネルギーは、高い方が、複合化が促進されると考えられるが、混練エネルギーをあまり高くすると、工業的に過大な設備となること、設備に過大な負荷がかかることから、混練エネルギーの上限は1000Wh/kgとするのが好ましい。複合化の程度は、セルロースとその他の成分の水素結合の割合と考えられる。また、セルロース複合体における複合化が進むことで、セルロース複合体に含まれるコロイド状セルロース複合体のメジアン径が大きくなる。 Here, the kneading energy will be described. The kneading energy is defined by the amount of electric power (Wh / kg) per unit mass of the kneaded product. The kneading energy is preferably 20 Wh / kg or more. If the kneading energy is 20 Wh / kg or more, the grindability imparted to the kneaded product is high, and the combination of cellulose and water-soluble polysaccharides, or cellulose, water-soluble polysaccharides, and other water-soluble gums is promoted. The suspension stability of the neutral cellulose composite is improved. The kneading energy is more preferably 50 Wh / kg or more, further preferably 100 Wh / kg or more, particularly preferably 200 Wh / kg or more, more preferably 300 Wh / kg or more, and most preferably 400 Wh / kg. That's it. The higher the kneading energy, the more complex is considered to be promoted. However, if the kneading energy is too high, the equipment becomes industrially excessive and the equipment is overloaded. Is preferably 1000 Wh / kg. The degree of complexation is considered to be the proportion of hydrogen bonds between cellulose and other components. In addition, as the composite in the cellulose composite proceeds, the median diameter of the colloidal cellulose composite contained in the cellulose composite increases.
 本発明のセルロース複合体を得るにあたって、前述の混練工程より得られた混練物を乾燥する場合は、棚段式乾燥、噴霧乾燥、ベルト乾燥、流動床乾燥、凍結乾燥、マイクロウェーブ乾燥等の公知の乾燥方法を用いることができる。混練物を乾燥工程に供する場合には、混練物に水を添加せず、混練工程の固形分濃度を維持して、乾燥工程に供することが好ましい。乾燥後のセルロース複合体の含水率は1~20質量%が好ましい。含水率を20質量%以下とすることで、べたつき、腐敗等の問題や運搬・輸送におけるコストの問題が生じにくくなる。より好ましくは15質量%以下、特に好ましくは10質量%以下である。また、1質量%以上とすることで、過剰乾燥のため分散性が悪化することもない。より好ましくは1.5質量%以上である。セルロース複合体を市場に流通させる場合、その形状は、粉体の方が取り扱い易いので、乾燥により得られたセルロース複合体を粉砕処理して粉体状にすることが好ましい。但し、乾燥方法として噴霧乾燥を用いた場合は、乾燥と粉末化が同時にできるため、粉砕は必要ない。乾燥したセルロース複合体を粉砕する場合、カッターミル、ハンマーミル、ピンミル、ジェットミル等の公知の方法を用いることができる。粉砕する程度は、好ましくは、粉砕処理したものが目開き1mmの篩いを全通する程度である。より好ましくは、目開き425μmの篩いを全通し、かつ、平均粒度(重量平均粒子径)としては10~250μmとなるように粉砕することである。これらの乾燥粉末は、一般的に、セルロース複合体の微粒子が凝集し、二次凝集体を形成しているものである。この二次凝集体は、水中で攪拌すると崩壊し、上述のセルロース複合体微粒子に分散しうる。二次凝集体の見かけの重量平均粒子径は、ロータップ式篩振盪機(平工作所製シーブシェーカーA型)、JIS標準篩(Z8801-1987)を用いて、試料10gを10分間篩分することにより得られた粒度分布における累積重量50%粒径として定義することができる。
<セルロース複合体の貯蔵弾性率>
 次に、本発明のセルロース複合体の貯蔵弾性率(G’)について説明する。
In obtaining the cellulose composite of the present invention, when drying the kneaded product obtained from the above-mentioned kneading step, known methods such as shelf-type drying, spray drying, belt drying, fluidized bed drying, freeze drying, microwave drying, etc. The drying method can be used. When the kneaded product is subjected to a drying step, it is preferable that water is not added to the kneaded product, and the solid content concentration in the kneading step is maintained and the dried step is used. The moisture content of the dried cellulose composite is preferably 1 to 20% by mass. By setting the moisture content to 20% by mass or less, problems such as stickiness and rot, and cost problems in transportation and transportation are less likely to occur. More preferably, it is 15 mass% or less, Most preferably, it is 10 mass% or less. Moreover, by setting it as 1 mass% or more, dispersibility does not deteriorate because of excessive drying. More preferably, it is 1.5 mass% or more. When the cellulose composite is distributed in the market, it is preferable to pulverize the cellulose composite obtained by drying into a powder form because the powder is easier to handle. However, when spray drying is used as a drying method, drying and pulverization can be performed at the same time, so pulverization is not necessary. When the dried cellulose composite is pulverized, a known method such as a cutter mill, a hammer mill, a pin mill, or a jet mill can be used. The degree of pulverization is preferably such that the pulverized product passes through a sieve having an opening of 1 mm. More preferably, it is pulverized to pass through a sieve having an opening of 425 μm and to have an average particle size (weight average particle size) of 10 to 250 μm. These dry powders are generally those in which fine particles of the cellulose composite are aggregated to form secondary aggregates. This secondary aggregate can be disintegrated when stirred in water, and can be dispersed in the above-mentioned cellulose composite fine particles. The apparent weight average particle diameter of the secondary agglomerates is determined by sieving 10 g of a sample for 10 minutes using a low-tap type sieve shaker (Sieve Shaker A type manufactured by Hira Kogakusho), JIS standard sieve (Z8801-1987). Can be defined as the cumulative weight 50% particle size in the particle size distribution obtained.
<Storage elastic modulus of cellulose composite>
Next, the storage elastic modulus (G ′) of the cellulose composite of the present invention will be described.
 本発明に用いるセルロース複合体の貯蔵弾性率(G’)は、0.1Pa以上である。この貯蔵弾性率とは、水分散体のレオロジー的な弾性を表現するものであり、セルロースと水溶性多糖類との複合化の程度を表すものである。この貯蔵弾性率が高いほど、セルロースと水溶性多糖類との複合化が促進され、セルロース複合体の水分散体におけるネットワーク構造が、剛直であることを意味する。本発明のセルロース組成物は、この貯蔵弾性率が高く、複合化が促進されたセルロース複合体を用いることで、高塩分濃度の水系媒体中で、容易に分散し、非乳化型の油の分散安定性に優れ、懸濁安定性と、保形性を兼ね備えるものとなる。 The storage elastic modulus (G ′) of the cellulose composite used in the present invention is 0.1 Pa or more. This storage elastic modulus expresses the rheological elasticity of the aqueous dispersion and expresses the degree of complexation between cellulose and water-soluble polysaccharide. The higher the storage elastic modulus, the more complex the cellulose and the water-soluble polysaccharide are, and the more rigid the network structure in the aqueous dispersion of the cellulose composite. The cellulose composition of the present invention is easily dispersed in a high salinity aqueous medium by using the cellulose composite having a high storage elastic modulus and promoted complexing, and dispersion of non-emulsifying oil It is excellent in stability and has both suspension stability and shape retention.
 本発明において、貯蔵弾性率は、セルロース複合体を1質量%で純水中に分散させた水分散体(好ましくはpH6~7)の動的粘弾性測定により得られる値である。水分散体に歪みを与えた際の、セルロース複合体のネットワーク構造内部に蓄えられた応力を保持する弾性成分が、貯蔵弾性率として表される。 In the present invention, the storage elastic modulus is a value obtained by dynamic viscoelasticity measurement of an aqueous dispersion (preferably pH 6 to 7) in which a cellulose composite is dispersed at 1% by mass in pure water. The elastic component that holds the stress stored in the network structure of the cellulose composite when the aqueous dispersion is distorted is expressed as a storage elastic modulus.
 貯蔵弾性率の測定方法としては、まず、セルロース複合体を、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」処理条件:回転数15,000rpm×5分間)を用いて純水中に分散させ、1.0質量%の純水分散体を調製する。得られた水分散体を3日間室温で静置する。この水分散体の応力の歪み依存性を、粘弾性測定装置(Rheometric Scientific,Inc.製、ARES100FRTN1型、ジオメトリー:Double Wall Couette型)を用い、所定の条件(温度:25.0℃一定、角速度:20rad/秒、歪み:1→794%の範囲で掃引、水分散体は微細構造を壊さないようスポイトを使用して、ゆっくりと仕込み、5分間静置した後に、Dynamic Strainモードで測定を開始する)により測定する。本発明における貯蔵弾性率は、上述の測定で得られた歪み-応力曲線上の、歪み20%の値のことである。この貯蔵弾性率の値が大きいほど、セルロース複合体が形成する水分散体の構造はより弾性的であり、セルロースと水溶性多糖類が高度に複合化していることを表している。 As a method for measuring the storage elastic modulus, first, the cellulose composite was subjected to a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7” treatment condition: 15,000 rpm × 5 minutes). And dispersed in pure water to prepare a 1.0 mass% pure water dispersion. The obtained aqueous dispersion is allowed to stand at room temperature for 3 days. The strain dependence of the stress of this aqueous dispersion was determined using a viscoelasticity measuring device (Rheometric Scientific, Inc., ARES100FRTN1 type, geometry: Double Wall Couette type) (predetermined temperature: 25.0 ° C, angular velocity). : 20 rad / sec, strain: swept within the range of 1 → 794%, the aqueous dispersion was slowly charged with a dropper so as not to break the microstructure, and allowed to stand for 5 minutes, and then measurement was started in the Dynamic Strain mode. )). The storage elastic modulus in the present invention is a value of 20% strain on the strain-stress curve obtained by the above measurement. The larger the value of the storage elastic modulus, the more elastic the structure of the aqueous dispersion formed by the cellulose composite, indicating that cellulose and water-soluble polysaccharide are highly complexed.
 セルロース複合体の貯蔵弾性率は、0.5Pa以上が好ましく、1.0Pa以上がより好ましく、さらに好ましくは1.3Pa以上であり、特に好ましくは1.6Pa以上であり、最も好ましくは、1.8Pa以上である。 The storage elastic modulus of the cellulose composite is preferably 0.5 Pa or more, more preferably 1.0 Pa or more, further preferably 1.3 Pa or more, particularly preferably 1.6 Pa or more, and most preferably 1. 8 Pa or more.
 セルロース複合体の貯蔵弾性率の上限は、特に限定されるものではないが、セルロース組成物を食品に添加した際の軽い食感を勘案すると、6.0Pa以下であることが好ましい。6.0Pa以下であると、油の安定性が充分に得られるセルロース組成物の添加量(食品により異なるが、詳細は後述した)において、食感が軽いため好ましい。
<セルロース複合体の体積平均粒子径>
 本発明に用いるセルロース複合体の体積平均粒子径は、20μm以下であることが好ましい。ここで、該体積平均粒子径は、セルロース複合体を、1質量%濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」処理条件:回転数15,000rpm×5分間)で分散させ、レーザー回折法(堀場製作所(株)製、商品名「LA-910」、超音波処理1分、屈折率1.20)により得られた体積頻度粒度分布における積算50%粒子径のことである。
The upper limit of the storage elastic modulus of the cellulose composite is not particularly limited, but it is preferably 6.0 Pa or less in consideration of a light texture when the cellulose composition is added to food. It is preferable for the pressure to be 6.0 Pa or less because the texture is light in the amount of the cellulose composition that can provide sufficient oil stability (it varies depending on the food, details will be described later).
<Volume average particle diameter of cellulose composite>
The volume average particle diameter of the cellulose composite used in the present invention is preferably 20 μm or less. Here, the volume average particle size is determined by treating the cellulose composite with a pure water suspension at a concentration of 1% by mass, and treating with a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”). : Volume obtained by dispersion at a rotational speed of 15,000 rpm × 5 minutes) and laser diffraction (manufactured by HORIBA, Ltd., trade name “LA-910”, ultrasonic treatment for 1 minute, refractive index 1.20) It is the cumulative 50% particle size in the frequency particle size distribution.
 セルロース複合体の体積平均粒子径が20μm以下であると、セルロース複合体の分散安定性、懸濁安定性がより容易に向上する。また、セルロース複合体を含有する食品を食した際に、ザラツキのない、なめらかな舌触りのものを提供することができる。より好ましくは、体積平均粒子径は15μm以下であり、特に好ましくは10μm以下、さらに好ましくは8μm以下である。体積平均粒子径が小さいほど、セルロース複合体の分散安定性、懸濁安定性がより容易に向上するため、下限は特に制限されないが、好ましい範囲としては0.1μm以上である。
<セルロース複合体のコロイド状成分量>
 さらに、本発明に用いるセルロース複合体は、コロイド状セルロース成分を30質量%以上含有することが好ましい。ここでいうコロイド状セルロース成分の含有量とは、セルロース複合体を、1質量%濃度で純水懸濁液とし、高剪断ホモジナイザー(日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」処理条件:回転数15,000rpm×5分間)で分散させ、遠心分離(久保田商事(株)製、商品名「6800型遠心分離器」ロータータイプRA-400型、処理条件:遠心力2,000rpm(5600G※Gは重力加速度)×15分間)し、遠心後の上澄みに残存する固形分(セルロースと、親水性ガム、水溶性ガムを含む)の質量百分率のことである。セルロース複合体におけるコロイド状セルロース成分の含有量が30質量%以上であると、分散安定性、懸濁安定性がより容易に向上する。より好ましくは、40質量%以上であり、特に好ましくは、50質量%以上である。コロイド状セルロース成分含有量は、多ければ多いほど、分散安定性が高いため、その上限は特に制限されないが、好ましい範囲としては、100質量%以下である。コロイド状セルロース成分の大きさは好ましくは10μm以下であり、より好ましくは5.0μm以下であり、特に好ましくは1.0μm以下である。ここでいう大きさは、上記の遠心後の上澄みを、レーザー回折法(堀場製作所(株)製、商品名「LA-910」、超音波処理1分、屈折率1.20)により得られた体積頻度粒度分布における積算50%粒子径(体積平均粒子径)のことである。
<使用可能なセルロース複合体の例>
 本発明のセルロース組成物に使用可能なセルロース複合体は、上述の複合化工程を経たものであれば、いずれを使用しても良い。具体的には、本発明に用いるセルロース複合体は、上述の機械的せん断を経た、未乾燥のもの及びその後乾燥されたもの等、いずれの形態のものも使用することができる。但し、セルロースと、水溶性多糖類との複合体に関しては、乾燥を経ることで、さらにセルロース複合体の機能(油の分散安定性、懸濁安定性、保形性)が高まるため、複合化工程後に、乾燥されたものを用いることが好ましい。
When the volume average particle size of the cellulose composite is 20 μm or less, the dispersion stability and suspension stability of the cellulose composite are more easily improved. In addition, when a food containing a cellulose composite is eaten, a smooth texture with no roughness can be provided. More preferably, the volume average particle diameter is 15 μm or less, particularly preferably 10 μm or less, and further preferably 8 μm or less. Since the dispersion stability and suspension stability of the cellulose composite are more easily improved as the volume average particle size is smaller, the lower limit is not particularly limited, but a preferable range is 0.1 μm or more.
<Amount of colloidal component of cellulose composite>
Furthermore, the cellulose composite used in the present invention preferably contains 30% by mass or more of a colloidal cellulose component. The content of the colloidal cellulose component as used herein means that the cellulose composite is made into a pure water suspension at a concentration of 1% by mass, and a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”). “Processing conditions: Dispersed at 15,000 rpm × 5 minutes” and centrifuged (trade name “6800 type centrifuge”, rotor type RA-400, manufactured by Kubota Corporation), processing conditions: centrifugal force 2, 000 rpm (5600 G * G is gravitational acceleration) × 15 minutes) and is a mass percentage of solid content (including cellulose, hydrophilic gum, and water-soluble gum) remaining in the supernatant after centrifugation. When the content of the colloidal cellulose component in the cellulose composite is 30% by mass or more, the dispersion stability and the suspension stability are more easily improved. More preferably, it is 40 mass% or more, Most preferably, it is 50 mass% or more. The greater the colloidal cellulose component content, the higher the dispersion stability. Therefore, the upper limit is not particularly limited, but a preferred range is 100% by mass or less. The size of the colloidal cellulose component is preferably 10 μm or less, more preferably 5.0 μm or less, and particularly preferably 1.0 μm or less. The size referred to here was obtained by centrifuging the supernatant obtained by the above-mentioned laser diffraction method (manufactured by Horiba, Ltd., trade name “LA-910”, ultrasonic treatment for 1 minute, refractive index 1.20). The cumulative 50% particle size (volume average particle size) in the volume frequency particle size distribution.
<Examples of usable cellulose composite>
Any cellulose composite that can be used in the cellulose composition of the present invention may be used as long as it has undergone the above-described composite process. Specifically, the cellulose composite used in the present invention can be in any form, such as an undried one and the one subsequently dried, which have undergone the above-described mechanical shearing. However, as for the complex of cellulose and water-soluble polysaccharide, the functions of the cellulose complex (dispersion stability, suspension stability, shape retention) are further improved by drying, so that it is combined. It is preferable to use a dried product after the process.
 市販品で容易に入手が可能なセルロース複合体として、旭化成ケミカルズ社製の商品名セオラス(登録商標)のRC-591(セルロース/CMC-Na=89/11(質量比))、RC-591S(セルロース/CMC-Na=89/11(質量比))、RC-N81(セルロース/カラヤガム/デキストリン=80/10/10(質量比))、RC-N30(セルロース/キサンタンガム/デキストリン=75/5/20(質量比))、SP-N50(セルロース/キサンタンガム/デキストリン=80/10/10(質量比))、SC-900(セルロース/キサンタンガム/CMC-Na/デキストリン/ナタネ油=72/2.8/5/20/0.2(質量比))、SC-900S(セルロース/キサンタンガム/CMC-Na/デキストリン/ナタネ油=72/2.8/5/20/0.2(質量比))が挙げられる。 As commercially available cellulose composites, RC-591 (cellulose / CMC-Na = 89/11 (mass ratio)) manufactured by Asahi Kasei Chemicals Corporation under the trade name Theolas (registered trademark), RC-591S ( Cellulose / CMC-Na = 89/11 (mass ratio)), RC-N81 (cellulose / karaya gum / dextrin = 80/10/10 (mass ratio)), RC-N30 (cellulose / xanthan gum / dextrin = 75/5 / 20 (mass ratio)), SP-N50 (cellulose / xanthan gum / dextrin = 80/10/10 (mass ratio)), SC-900 (cellulose / xanthan gum / CMC-Na / dextrin / rapeseed oil = 72 / 2.8) /5/20/0.2 (mass ratio)), SC-900S (cellulose / xanthan gum / CMC-Na / de) String / rapeseed oil = 72 / 2.8 / 5/20 / 0.2 (weight ratio)) and the like.
 非乳化型の油の分散安定性能に関しては、RC-N30、SP-N50、SC-900、SC-900S、RC-N81が好ましく、その中でも、キサンタンガムが配合されたRC-N30、SP-N50、SC-900、SC-900Sがより好ましい。さらに機能と分散性のバランスから、RC-N30が最も好ましい。
<加工澱粉>
 本発明のセルロース組成物は、加工澱粉を含む。本発明のセルロース組成物は、加工澱粉を含むことで、高塩分濃度の水系媒体中で、容易に分散できるようになる。
Regarding the dispersion stability performance of the non-emulsifying type oil, RC-N30, SP-N50, SC-900, SC-900S, and RC-N81 are preferable, and among them, RC-N30, SP-N50 containing xanthan gum, SC-900 and SC-900S are more preferable. Further, RC-N30 is most preferable from the balance of function and dispersibility.
<Processed starch>
The cellulose composition of the present invention contains modified starch. The cellulose composition of the present invention can be easily dispersed in an aqueous medium having a high salinity by containing processed starch.
 本発明のセルロース組成物に用いられる加工澱粉としては、アセチル化アジピン酸架橋澱粉、アセチル化酸化澱粉、アセチル化リン酸架橋澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉、ヒドロキシアルキル化リン酸架橋澱粉、ヒドロキシアルキル化澱粉、リン酸架橋澱粉、リン酸化澱粉、リン酸モノエステル化リン酸架橋澱粉、澱粉グルコール酸ナトリウム、澱粉リン酸エステルナトリウムが好ましい。これらは、アルファー化加工したもの、部分的にアルファー化加工したもの、アルファー化加工をしていないもののうち、いずれの形態のものでも使用できる。また、酸処理された澱粉、又は生澱粉をアルファー化したアルファー化澱粉も使用できる。上述の加工澱粉は、1種を単独で使用しても、2種以上を併用してもよい。 The processed starch used in the cellulose composition of the present invention includes acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl sodium succinate starch, acetate starch, oxidized starch, hydroxyalkylated phosphate crosslinked Starch, hydroxyalkylated starch, phosphoric acid crosslinked starch, phosphorylated starch, phosphoric acid monoesterified phosphoric acid crosslinked starch, starch glycolate sodium, and starch phosphate sodium phosphate are preferred. These can be used in any form of an alpha process, a partially alpha process, and a non-alpha process. Further, acid-treated starch or pregelatinized starch obtained by pregelatinizing raw starch can also be used. The above-mentioned modified starch may be used alone or in combination of two or more.
 特に飲食品に用いる場合には、厚生労働省令第151号にて定められた11種の加工澱粉(アセチル化アジピン酸架橋澱粉、アセチル化酸化澱粉、アセチル化リン酸架橋澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉、ヒドロキシプロピル化リン酸架橋澱粉、ヒドロキシプロピル化澱粉、リン酸架橋澱粉、リン酸化澱粉及びリン酸モノエステル化リン酸架橋澱粉)、並びに生澱粉をアルファー化したアルファー化澱粉が好ましい。 In particular, when used for food and drink, eleven kinds of modified starch (acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl succinate starch sodium, Acetic acid starch, oxidized starch, hydroxypropylated phosphoric acid cross-linked starch, hydroxypropylated starch, phosphoric acid cross-linked starch, phosphorylated starch and phosphoric acid monoesterified phosphoric acid cross-linked starch), and pregelatinized starch obtained by pre-gelatinizing raw starch preferable.
 上述の中でも、ヒドロキシプロピル化リン酸架橋澱粉、ヒドロキシプロピル化澱粉、リン酸架橋アルファー化澱粉、アルファー化澱粉がセルロース組成物の分散性の点でより好ましく、ヒドロキシプロピル化澱粉、ヒドロキシプロピル化リン酸架橋澱粉、リン酸架橋アルファー化澱粉がさらに好ましく、ヒドロキシプロピル化澱粉が最も好ましい。
<加工澱粉の原料となる澱粉>
 加工澱粉の原料としては、小麦澱粉、トウモロコシ澱粉、モチ種トウモロコシ澱粉(ワキシーコーンスターチ)、馬鈴薯澱粉、モチ種馬鈴薯澱粉、タピオカ澱粉、米澱粉、もち米澱粉、さつまいも澱粉、さご澱粉、くず澱粉等が挙げられる。
Among the above, hydroxypropylated phosphate cross-linked starch, hydroxypropylated starch, phosphoric acid cross-linked pregelatinized starch, and pregelatinized starch are more preferable in terms of dispersibility of the cellulose composition, hydroxypropylated starch, hydroxypropylated phosphoric acid Cross-linked starch and phosphate cross-linked pregelatinized starch are more preferred, and hydroxypropylated starch is most preferred.
<Starch as raw material for processed starch>
Processed starch ingredients include wheat starch, corn starch, waxy corn starch (waxy corn starch), potato starch, waxy potato starch, tapioca starch, rice starch, glutinous rice starch, sweet potato starch, sago starch, waste starch, etc. Is mentioned.
 これらの中でも、セルロース組成物の分散性の点からモチ種トウモロコシ澱粉(ワキシーコーンスターチ)、タピオカ澱粉が好ましく、より好ましくはモチ種トウモロコシ澱粉(ワキシーコーンスターチ)である。
<ヒドロキシプロピル化澱粉>
 ここでのヒドロキシプロピル化澱粉とは、澱粉に対して、例えば薬剤としてプロピレンオキサイドなどを用いてエーテル結合でヒドロキシプロピル基を付加した澱粉を意味する。特に食品に用いられるヒドロキシプロピル化デンプンは、加工度(加工澱粉の全質量に占めるヒドロキシプロピル基の質量比)が0.01%以上7.0%以下のものであることが好ましい。本発明に用いるヒドロキシプロピル化澱粉の加工度は特に限定されるものではないが、セルロース組成物の分散性の点から、1.0%以上7.0%以下が好ましく、3.0%以上7.0%以下が好ましく、5.0%以上7.0%以下が最も好ましい。例えば、市販品で容易に入手可能なものとしてはデリカWH((株)日澱化学製)がある。
Among these, waxy corn starch (waxy corn starch) and tapioca starch are preferable from the viewpoint of dispersibility of the cellulose composition, and waxy corn starch (waxy corn starch) is more preferable.
<Hydroxypropylated starch>
The term “hydroxypropylated starch” as used herein means starch obtained by adding a hydroxypropyl group with an ether bond to propylene using, for example, propylene oxide as a drug. In particular, hydroxypropylated starch used in foods preferably has a degree of processing (a mass ratio of hydroxypropyl groups in the total mass of the processed starch) of 0.01% to 7.0%. The degree of processing of the hydroxypropylated starch used in the present invention is not particularly limited, but is preferably 1.0% or more and 7.0% or less, and preferably 3.0% or more and 7% from the viewpoint of dispersibility of the cellulose composition. 0.0% or less is preferable, and 5.0% or more and 7.0% or less is most preferable. For example, as a commercially available product, there is Delica WH (manufactured by Nissho Chemical Co., Ltd.).
 セルロース複合体と、ヒドロキシプロピル化澱粉との質量比として、より好ましくは、85/15~30/70であり、さらに好ましくは80/20~40/60であり、75/25~65/35が最も好ましい。
<ヒドロキシプロピル化リン酸架橋澱粉>
 ここでのヒドロキシプロピル化リン酸架橋澱粉とは、澱粉に対して、例えば薬剤としてトリメタリン酸ナトリウム又はオキシ塩化リンなどを用いてエステル化し、プロピレンオキサイドなどを用いてエーテル結合でヒドロキシプロピル基を付加した澱粉を意味する。本発明において、ヒドロキシプロピル化リン酸架橋澱粉における置換度(未置換架橋澱粉中の水酸基の全モル数に対する置換架橋澱粉中の置換された水酸基の全モル数の比)は特に限定されるものではない。例えば、市販品で容易に入手可能なものとしてはデリカKH((株)日澱化学製)がある。
The mass ratio of the cellulose composite and hydroxypropylated starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and 75/25 to 65/35. Most preferred.
<Hydroxypropylated phosphate cross-linked starch>
The hydroxypropylated phosphate-crosslinked starch here is esterified with, for example, sodium trimetaphosphate or phosphorus oxychloride as a drug to the starch, and a hydroxypropyl group is added with an ether bond using propylene oxide or the like. Means starch. In the present invention, the degree of substitution in the hydroxypropylated phosphoric acid crosslinked starch (ratio of the total number of hydroxyl groups substituted in the substituted crosslinked starch to the total number of hydroxyl groups in the unsubstituted crosslinked starch) is not particularly limited. Absent. For example, as a commercially available product, there is Delica KH (manufactured by Nissho Chemical Co., Ltd.).
 セルロース複合体と、ヒドロキシプロピル化リン酸架橋澱粉との質量比として、より好ましくは、85/15~30/70であり、さらに好ましくは80/20~40/60であり、75/25~65/35が最も好ましい。
<リン酸架橋アルファー化澱粉>
 ここでのリン酸架橋アルファー化澱粉とは、澱粉に対して、例えば薬剤としてトリメタリン酸ナトリウム又はオキシ塩化リンなどを用いてエステル化し、上記の手法等によりアルファー化した澱粉を意味する。本発明において、リン酸架橋澱粉における置換度(未置換架橋澱粉中の水酸基の全モル数に対する置換架橋澱粉中の置換された水酸基の全モル数の比)やアルファー化の程度は特に限定されるものではない。例えば、市販品で容易に入手可能なものとしてはネオビスC-60((株)日本食品化工製)がある。
The mass ratio of the cellulose composite and the hydroxypropylated phosphoric acid crosslinked starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and 75/25 to 65. / 35 is most preferred.
<Phosphate cross-linked pregelatinized starch>
The phosphate cross-linked pregelatinized starch here means starch that is esterified with, for example, sodium trimetaphosphate or phosphorus oxychloride as a drug and pregelatinized with the above-described method or the like. In the present invention, the degree of substitution in the phosphoric acid crosslinked starch (ratio of the total number of moles of substituted hydroxyl groups in the substituted crosslinked starch to the total number of moles of hydroxyl groups in the unsubstituted crosslinked starch) and the degree of alphalation are particularly limited. It is not a thing. For example, Neobis C-60 (manufactured by Nippon Shokuhin Kako Co., Ltd.) is a commercially available product that can be easily obtained.
 セルロース複合体とリン酸架橋アルファー化澱粉との質量比として、より好ましくは、85/15~30/70であり、さらに好ましくは80/20~40/60であり、65/35~55/45が最も好ましい。
<アルファー化澱粉>
 澱粉を含む水系媒体を加熱処理することや、アルカリ性塩類を添加することで澱粉粒子は膨潤を始める。その後、粒子が崩壊し、最後には粘性を持った透明または半透明の澱粉糊液となる。この糊液を直ちに乾燥すると、冷水で容易に膨潤溶解する粉末が得られる。この粉末をアルファー化澱粉という。本発明に用いるアルファー化澱粉は特に限定されるものではなく、一部がアルファー化したものや、全てアルファー化したもののいずれを用いてもよい。例えば、市販品で容易に入手可能なものとしては製品名MH-A((株)日澱化学製)がある。
The mass ratio of the cellulose composite and the phosphate cross-linked pregelatinized starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and 65/35 to 55/45. Is most preferred.
<Alphaized starch>
The starch particles start to swell by heat-treating the aqueous medium containing starch or by adding an alkaline salt. Thereafter, the particles disintegrate and finally become a viscous transparent or translucent starch paste. When this paste liquid is immediately dried, a powder that easily swells and dissolves in cold water is obtained. This powder is called pregelatinized starch. The pregelatinized starch used in the present invention is not particularly limited, and any of the pregelatinized starch and the pregelatinized starch may be used. For example, as a commercially available product, there is a product name MH-A (manufactured by Nissho Chemical Co., Ltd.).
 セルロース複合体とアルファー化澱粉との質量比として、より好ましくは、85/15~30/70であり、さらに好ましくは80/20~40/60であり、65/35~55/45が最も好ましい。
<セルロース組成物に配合される親水性物質>
 本発明のセルロース組成物は、水への分散性を高める目的で、セルロース複合体と、加工澱粉以外に、親水性物質を加えてもよい。ここでの親水性物質とは、セルロース複合体及び加工澱粉以外の、親水性基を含む有機物質であって、飲食可能なものであれば、特に限定されない。親水性物質としては、冷水(例えば約20℃以下の水)への溶解性が高く、粘性を殆どもたらさない有機物質であることが、好ましい。親水性物質としては、澱粉加水分解物、デキストリン類、難消化性デキストリン、ポリデキストロース等の親水性多糖類、フラクトオリゴ糖、ガラクトオリゴ糖、マルトオリゴ糖、イソマルトオリゴ糖、乳糖、マルトース、ショ糖、α-、β-、γ-シクロデキストリン等のオリゴ糖類、ブドウ糖、果糖、ソルボース等の単糖類、マルチトール、ソルビット、エリスリトール等の糖アルコール類等、ビタミン類、コラーゲン、アズレン、キトサンが適している。これらの親水性物質は、2種類以上組み合わせてもよい。上述の中でも、澱粉加水分解物、デキストリン類、難消化性デキストリン、ポリデキストロース等の親水性多糖類が分散性の点で好ましく、デキストリンが最も好ましい。
The mass ratio of the cellulose composite and pregelatinized starch is more preferably 85/15 to 30/70, still more preferably 80/20 to 40/60, and most preferably 65/35 to 55/45. .
<Hydrophilic substance blended in cellulose composition>
The cellulose composition of the present invention may contain a hydrophilic substance in addition to the cellulose composite and the modified starch for the purpose of enhancing the dispersibility in water. The hydrophilic substance here is an organic substance containing a hydrophilic group other than the cellulose composite and processed starch, and is not particularly limited as long as it can eat and drink. The hydrophilic substance is preferably an organic substance that has high solubility in cold water (for example, water of about 20 ° C. or less) and hardly causes viscosity. Examples of hydrophilic substances include starch hydrolysates, dextrins, indigestible dextrins, polydextrose and other hydrophilic polysaccharides, fructooligosaccharides, galactooligosaccharides, maltooligosaccharides, isomaltoligosaccharides, lactose, maltose, sucrose, α- Oligosaccharides such as β- and γ-cyclodextrins, monosaccharides such as glucose, fructose and sorbose, sugar alcohols such as maltitol, sorbit and erythritol, vitamins, collagen, azulene and chitosan are suitable. Two or more kinds of these hydrophilic substances may be combined. Among the above, hydrophilic polysaccharides such as starch hydrolysates, dextrins, indigestible dextrins and polydextrose are preferable in terms of dispersibility, and dextrin is most preferable.
 セルロース組成物における親水性物質の配合量には制限はないが、好ましい範囲としては、1質量%以上であり、より好ましくは10質量%以上、さらに好ましくは20質量%以上である。親水性物質が多いほど水分散性が高まるが、油の分散安定性、懸濁安定性、保形性等のセルロース組成物の物性が低くなるため、上限としては59質量%以下が好ましい。
<セルロース組成物の製造方法>
 次に、本発明のセルロース組成物の製造方法を説明する。
Although there is no restriction | limiting in the compounding quantity of the hydrophilic substance in a cellulose composition, As a preferable range, it is 1 mass% or more, More preferably, it is 10 mass% or more, More preferably, it is 20 mass% or more. The more the hydrophilic substance is, the higher the water dispersibility is. However, since the physical properties of the cellulose composition such as oil dispersion stability, suspension stability, and shape retention are lowered, the upper limit is preferably 59% by mass or less.
<Method for producing cellulose composition>
Next, the manufacturing method of the cellulose composition of this invention is demonstrated.
 本発明のセルロース組成物は、その製造において、セルロース複合体と加工澱粉とを水系媒体に分散させて、分散液を形成する工程と、それに続き、この分散液を均質化する工程と、さらに、均質化された分散液を乾燥する工程を経て得られることが好ましい。 In the production of the cellulose composition of the present invention, a cellulose composite and processed starch are dispersed in an aqueous medium to form a dispersion, followed by a step of homogenizing the dispersion, and It is preferably obtained through a step of drying the homogenized dispersion.
 ここでセルロース複合体と、加工澱粉が、スラリー状態で、分散、均質化されることが、セルロース組成物の分散性を高める上で好ましい。スラリー状で、均質化することで、セルロースと加工澱粉が、過度に複合化しないため、分散性が良好なものが得られる。具体的な製造条件について、以下に説明する。
<分散工程>
 まず、上記のセルロース複合体と加工澱粉を水に分散溶解させる。その際の、セルロース複合体と加工澱粉等を含む固形分濃度は1~70質量%となるように、水を含めたそれぞれの量を調整することが望ましい。固形分濃度がこの範囲であれば、水分散液の取り扱い性が良好で、生産性が高く、後の乾燥エネルギーの負荷も許容できる範囲である。より好ましくは3~50質量%であり、さらに好ましくは40質量%以下、特に好ましくは35質量%以下であり、最も好ましくは30質量%以下である。上述の理由で、分散液は、スラリー状態とすることが好ましい。分散液の状態は、用いるセルロース複合体と、加工澱粉種、およびそれらの質量比にもよるが、35質量%以下であれば、スラリー状態といえる。
Here, it is preferable that the cellulose composite and the processed starch are dispersed and homogenized in a slurry state in order to improve the dispersibility of the cellulose composition. By homogenizing in the form of a slurry, cellulose and processed starch are not excessively complexed, so that a product with good dispersibility can be obtained. Specific manufacturing conditions will be described below.
<Dispersing process>
First, the above cellulose composite and modified starch are dispersed and dissolved in water. In this case, it is desirable to adjust the respective amounts including water so that the solid content concentration including the cellulose composite and the modified starch is 1 to 70% by mass. If the solid content concentration is within this range, the handleability of the aqueous dispersion is good, the productivity is high, and the subsequent drying energy load is acceptable. More preferably, it is 3 to 50% by mass, still more preferably 40% by mass or less, particularly preferably 35% by mass or less, and most preferably 30% by mass or less. For the reasons described above, the dispersion is preferably in a slurry state. Although the state of the dispersion depends on the cellulose composite to be used, the modified starch species, and the mass ratio thereof, it can be said to be a slurry state if it is 35% by mass or less.
 セルロース複合体と、加工澱粉、(加える場合は)親水性物質の添加順序は、特に制限されない。分散液の均一性を高めるために、水系媒体に投入する好ましい順序は、親水性物質、加工澱粉、セルロース複合体の順である。 The order of addition of the cellulose composite, the modified starch, and the hydrophilic substance (if added) is not particularly limited. In order to improve the uniformity of the dispersion, the preferred order of adding to the aqueous medium is the order of hydrophilic substance, modified starch, and cellulose composite.
 分散工程での攪拌方法には、特に制限がなく、目視でママコ状の凝集物(直径数mm~数cm)がなくなるように攪拌されることが好ましい。 There is no particular limitation on the stirring method in the dispersion step, and it is preferable that stirring is performed so as to eliminate the mamako-like aggregates (diameter several mm to several cm) visually.
 攪拌装置としては、タンクに攪拌翼がセットされたものが好ましく、プロペラ翼式攪拌装置、パドル翼式攪拌装置、ファウドラー翼式攪拌装置、アンカー翼式攪拌装置、ヘリカルリボン翼式攪拌装置等を用いることができる。また、タンク式以外でも、スタティック式のラインミキサー、サニタリーポンプ等のライン攪拌装置を用いてもよい。 As the stirring device, a tank in which a stirring blade is set is preferable, and a propeller blade type stirring device, a paddle blade type stirring device, a fiddler blade type stirring device, an anchor blade type stirring device, a helical ribbon blade type stirring device, or the like is used. be able to. Moreover, you may use line stirring apparatuses, such as a static type line mixer and a sanitary pump, other than a tank type.
 分散温度にも、特に制限はないが、セルロース複合体と、加工澱粉の過度の複合化を抑えるために、0~60℃が好ましく、10~50℃がより好ましく、15~40℃が特に好ましい。
<均質化工程>
 本発明のセルロース組成物の製造においては、セルロース複合体と加工澱粉を均質化する工程を経る必要がある。ここで均質化とは、セルロース複合体が、凝集体ではなく、一次粒子に分散された状態のことである。具体的には、均質化後の分散液において、レーザー回折/散乱式粒度分布計(HORIBA製 商品名LA-910を使用、フローセル中で1分間循環、超音波処理なし、屈折率1.20)で、測定される体積頻度の平均粒子径(メジアン径)が、20μm以下となった状態として定義することができる。
The dispersion temperature is not particularly limited, but is preferably 0 to 60 ° C., more preferably 10 to 50 ° C., and particularly preferably 15 to 40 ° C. in order to suppress excessive complexation between the cellulose composite and the processed starch. .
<Homogenization process>
In the production of the cellulose composition of the present invention, it is necessary to go through a step of homogenizing the cellulose composite and the processed starch. Here, the homogenization means a state in which the cellulose composite is dispersed not in the aggregate but in the primary particles. Specifically, in the dispersion after homogenization, a laser diffraction / scattering particle size distribution analyzer (trade name LA-910 manufactured by HORIBA is used, circulates in a flow cell for 1 minute, no ultrasonic treatment, refractive index 1.20) Thus, the average particle diameter (median diameter) of the volume frequency to be measured can be defined as a state of 20 μm or less.
 本発明における均質化は、上記の平均粒子径が達成できれば、原料の添加順序、添加方法には制限はない。例えば、全ての成分を混合して一括処理を行ってもよいし、各成分を水に分散し、成分ごとに均質化処理を行った後に、全ての成分を混合してもよい。 The homogenization in the present invention is not limited in the order of addition of raw materials and the addition method as long as the above average particle diameter can be achieved. For example, all components may be mixed to perform batch processing, or each component may be dispersed in water and homogenized for each component, and then all components may be mixed.
 均質化の方法は、高速攪拌機で高剪断を与える方法と、高圧ホモジナイザーで高圧分散する方法、ビーズ様のメディアを使用したミルで均質化する方法、ロールミルを用いて均質化する方法等を用いることができる。本発明の均質化が達成できる方法であれば、順不同で、上記の方法を組み合わせてもよい。 For homogenization, use a method of applying high shear with a high-speed stirrer, a method of high-pressure dispersion with a high-pressure homogenizer, a method of homogenizing with a mill using bead-like media, a method of homogenizing with a roll mill, etc. Can do. As long as the homogenization of the present invention can be achieved, the above methods may be combined in any order.
 簡便な工程で、本発明の均質化を達成するには、高速攪拌機で高剪断を与える方法と、高圧ホモジナイザーで高圧分散する方法を、好適に用いることができる。 In order to achieve the homogenization of the present invention in a simple process, a method of applying high shear with a high-speed stirrer and a method of performing high-pressure dispersion with a high-pressure homogenizer can be suitably used.
 ここで均質化濃度、均質化温度は、上述の分散工程と同様の条件が適用できる。
<高速攪拌機による均質化>
 高速攪拌機を用いる均質化は、分散工程で得られた分散液に、高速回転する攪拌を与えることで達成される。均質化に、高速攪拌機を用いる場合には、分散と均質化が一度でできるため、前述の分散工程を省略することも可能である。
Here, the homogenization concentration and the homogenization temperature can be applied under the same conditions as in the above dispersion step.
<Homogenization with a high-speed stirrer>
Homogenization using a high-speed stirrer is achieved by applying high-speed stirring to the dispersion obtained in the dispersion step. In the case of using a high-speed stirrer for homogenization, since the dispersion and homogenization can be performed at once, the above-described dispersion step can be omitted.
 高速攪拌は、攪拌翼の周速で定められ、周速は以下の式で求められる。周速(m/s)=攪拌翼の直径(m) × π(円周率) × 攪拌翼の回転数(n/s)。この周速は、大きいほど、短時間で均質化できるため好ましい。具体的には、周速は、5m/s以上であることが好ましく、より好ましくは10m/s以上であり、特に好ましくは15m/s以上である。周速の上限は特に規定されるものではないが、工業的に使用される機器を想定すると、100m/s以下が望ましい。処理時間は、被処理物の平均粒子径との兼ね合いで決まるものであり、特に制限はないが、10分以上が好ましい。 High-speed stirring is determined by the peripheral speed of the stirring blade, and the peripheral speed is obtained by the following equation. Peripheral speed (m / s) = Agitator blade diameter (m) × π (circumferential ratio) × Agitator blade rotation speed (n / s). The higher the peripheral speed, the better because it can be homogenized in a short time. Specifically, the peripheral speed is preferably 5 m / s or more, more preferably 10 m / s or more, and particularly preferably 15 m / s or more. The upper limit of the peripheral speed is not particularly specified, but is preferably 100 m / s or less when assuming industrially used equipment. The treatment time is determined depending on the average particle diameter of the object to be treated, and is not particularly limited, but is preferably 10 minutes or more.
 ここで使用できる高速攪拌機の例としては、商品名:TKホモジナイザー、TKホモミキサー、TKロボミックス、TKオートミクサー、ラボ・リューション、TKホモディスパー、ハイビスディスパーミックス、フィルミキサー(プライミクス社製)、エースホモジナイザー、カンキミキサー(関西機械工業社製)、超振動α-攪拌機(日本テクノ社製)、家庭用ミキサー等の装置を用いることができる。 Examples of high-speed stirrers that can be used here are: trade name: TK homogenizer, TK homomixer, TK robotics, TK automixer, lab solution, TK homodisper, hibisdispersix, fill mixer (manufactured by Primix) Devices such as an ace homogenizer, a canki mixer (manufactured by Kansai Kikai Kogyo Co., Ltd.), a super-vibration α-stirrer (manufactured by Nippon Techno Co., Ltd.) and a home mixer can be used.
 高速攪拌機として、TKホモミキサーMARKII fモデル(プライミクス社製)を使用する場合、回転数600~13,000rpmで、pH3~8、温度0~80℃及び固形分濃度が10~60%の上記分散液を処理することが望ましい。この回転数の範囲内であれば、分散液の平均粒径を20μm以下とすることができる。高速攪拌機の回転数は、より好ましくは2000~13,000rpmであり、5,000~13,000rpmが最も好ましい。
<高圧ホモジナイザーによる均質化>
 高圧ホモジナイザーによる均質化は、分散工程で得られた分散液を、一旦加圧して、装置内の間隙を通し、固体粒子が間隙を通り抜ける際のせん断力を利用して均質化を行うものである。ここで、本発明における均質化を達成するには、圧力を4~150MPaの範囲で運転することが好ましい。この圧力は、高いほど均質化が進むが、高すぎるとセルロース複合体中のセルロースと多糖類との結合が弱まる。従って、圧力のより好ましい範囲としては、5~100MPaであり、さらに好ましくは10~50MPaである。
When using a TK homomixer MARK II f model (manufactured by Primex) as a high-speed stirrer, the above dispersion having a rotation speed of 600 to 13,000 rpm, a pH of 3 to 8, a temperature of 0 to 80 ° C., and a solid content concentration of 10 to 60% It is desirable to process the liquid. Within the range of the number of rotations, the average particle size of the dispersion can be made 20 μm or less. The rotation speed of the high-speed stirrer is more preferably 2000 to 13,000 rpm, and most preferably 5,000 to 13,000 rpm.
<Homogenization with high-pressure homogenizer>
Homogenization by a high-pressure homogenizer is to homogenize the dispersion obtained in the dispersion step by applying pressure once, passing through the gap in the apparatus, and using the shearing force when solid particles pass through the gap. . Here, in order to achieve homogenization in the present invention, it is preferable to operate at a pressure in the range of 4 to 150 MPa. The higher the pressure is, the more homogenization is. However, when the pressure is too high, the bond between the cellulose and the polysaccharide in the cellulose composite is weakened. Therefore, a more preferable range of the pressure is 5 to 100 MPa, and more preferably 10 to 50 MPa.
 ここで使用できる高圧ホモジナイザーの例としては、例えば、商品名:ナノマイザー(ナノマイザー社製)、商品名:マイクロフルイダイザー(マイクロフルイディスク社製)、商品名:アリート(ニロソアビ社製)、商品名:APVホモジナイザー(APV社製)、マントンゴーリンホモジナイザー等の装置がある。尚、高圧ホモジナイザーの処理回数は1回でよいが、複数回処理してもよい。
<乾燥工程>
 セルロース組成物を市場に流通させる場合、その形状は、粉体の方が取り扱い易いので、上記の均質化後に、乾燥、粉末化されることが好ましい。
Examples of the high-pressure homogenizer that can be used here include, for example, trade name: Nanomizer (manufactured by Nanomizer), trade name: Microfluidizer (manufactured by Microfluidic Corporation), trade name: Alite (manufactured by Nirosoavi), trade name: There are apparatuses such as an APV homogenizer (manufactured by APV) and a manton gorin homogenizer. Note that the number of treatments of the high-pressure homogenizer may be one, but the treatment may be performed a plurality of times.
<Drying process>
When the cellulose composition is distributed in the market, it is preferable that the shape of the cellulose composition is dried and powdered after the homogenization because the powder is easier to handle.
 セルロース組成物を乾燥する方法としては、棚段式乾燥、噴霧乾燥、ベルト乾燥、流動床乾燥、凍結乾燥、マイクロウェーブ乾燥等の公知の乾燥方法を用いることができる。 As a method for drying the cellulose composition, a known drying method such as shelf drying, spray drying, belt drying, fluidized bed drying, freeze drying, microwave drying, or the like can be used.
 乾燥後のセルロース組成物の含水率は、1~20質量%が好ましい。含水率を20%以下とすることで、べたつき、腐敗等の問題や、運搬・輸送におけるコストの問題が生じにくくなる。含水率は、より好ましくは15%以下、特に好ましくは10%以下である。また、含水率を1%以上とすることで、過剰乾燥のため分散性が悪化することもない。含水率は、より好ましくは1.5%以上である。 The moisture content of the dried cellulose composition is preferably 1 to 20% by mass. By setting the moisture content to 20% or less, problems such as stickiness and rot, and cost problems in transportation and transportation are less likely to occur. The water content is more preferably 15% or less, particularly preferably 10% or less. Further, by setting the water content to 1% or more, dispersibility does not deteriorate due to excessive drying. The moisture content is more preferably 1.5% or more.
 乾燥したセルロース組成物は、目開き1mmの篩いを全通する程度に粉末化されることが好ましい。より好ましくは、目開き425μmの篩いを全通し、かつ、平均粒度(見かけの重量平均粒子径)としては10~250μmとなるように粉砕することが好ましい。これらの乾燥粉末は、セルロース複合体と加工澱粉の微粒子が凝集し、二次凝集体を形成しているものである。この二次凝集体は、水中で攪拌すると崩壊し、上述のセルロース複合体微粒子に分散する。二次凝集体の見かけの重量平均粒子径は、ロータップ式篩振盪機(平工作所製シーブシェーカーA型)、JIS標準篩(Z8801-1987)を用いて、試料10gを10分間篩分することにより得られた粒度分布における累積重量50%粒径のことである。 The dried cellulose composition is preferably pulverized to the extent that it passes through a sieve having an opening of 1 mm. More preferably, pulverization is preferably performed so that the sieve has a mesh size of 425 μm, and the average particle size (apparent weight average particle size) is 10 to 250 μm. In these dry powders, fine particles of the cellulose composite and modified starch are aggregated to form secondary aggregates. This secondary aggregate is disintegrated when stirred in water and dispersed in the above-mentioned cellulose composite fine particles. The apparent weight average particle size of the secondary agglomerates is determined by sieving 10 g of a sample for 10 minutes using a low-tap type sieve shaker (Sieve Shaker A type manufactured by Hira Kogakusho), JIS standard sieve (Z8801-1987). Is the cumulative weight 50% particle size in the particle size distribution obtained by.
 乾燥方法として噴霧乾燥を用いた場合は、乾燥と粉末化が同時にできるため、粉砕が必要なく、最も好ましい乾燥方法である。その他の方法で、乾燥したセルロース組成物を粉砕する場合、カッターミル、ハンマーミル、ピンミル、ジェットミル等の公知の方法を用いることができる。
<噴霧乾燥における乾燥条件>
 噴霧乾燥は、均質化工程を経て得られた分散液をミスト状に噴霧して、そのミストに熱風を当てて、水を蒸発させ、粉末化する方法である。本発明においては、分散液の噴霧方法として、ケスナー、ベーン、ピン型等のアトマイザーを用いる方法、二流体ノズル、四流体ノズル等から噴霧する方法を採用できる。また、熱風は、向流式、併流式のいずれでもよいが、アトマイザー法では併流式、ノズル法では向流式が一般的である。
When spray drying is used as a drying method, drying and pulverization can be performed at the same time. When the dried cellulose composition is pulverized by other methods, known methods such as a cutter mill, a hammer mill, a pin mill, and a jet mill can be used.
<Drying conditions in spray drying>
Spray drying is a method in which the dispersion obtained through the homogenization step is sprayed in the form of a mist, hot air is applied to the mist, the water is evaporated, and powdered. In the present invention, as a dispersion spraying method, a method using an atomizer such as a Kessner, a vane, or a pin type, or a spraying method from a two-fluid nozzle, a four-fluid nozzle, or the like can be employed. The hot air may be either a countercurrent type or a cocurrent type, but the countercurrent type is common in the atomizer method and the countercurrent type in the nozzle method.
 上述の粉体水分、粉体粒子径が達成できれば、乾燥条件には制限がない。例えば、熱風温度は、入口温度100~200℃、出口温度40~99℃の範囲で運転することが好ましい。
<高塩分濃度、高油分濃度の食品用途>
 本発明のセルロース組成物は、上述の通り、高塩分濃度の水系媒体中に容易に分散し、非乳化型の油の分散安定性、懸濁安定性、保形性に優れる。そのため、当該セルロース組成物は、特に、塩分濃度が0.1質量%以上の水性の飲食品に用いることが好ましい。また、塩化ナトリウム及び/又は塩化カリウム濃度が1質量%以上であり、油分を1質量%以上含む飲食品に用いることが好ましい。
If the above-mentioned powder moisture and powder particle diameter can be achieved, the drying conditions are not limited. For example, the hot air temperature is preferably operated in the range of an inlet temperature of 100 to 200 ° C. and an outlet temperature of 40 to 99 ° C.
<High salinity and high oil content food applications>
As described above, the cellulose composition of the present invention is easily dispersed in a high salinity aqueous medium, and is excellent in dispersion stability, suspension stability and shape retention of non-emulsifying oil. Therefore, the cellulose composition is particularly preferably used for an aqueous food or drink having a salt concentration of 0.1% by mass or more. Moreover, it is preferable to use for the food-drinks which have a sodium chloride and / or potassium chloride density | concentration of 1 mass% or more, and contain 1 mass% or more of oil components.
 ここで飲食品中の塩分濃度(塩化ナトリウム及び/又は塩化カリウム濃度)は、高いほど、本発明のセルロース組成物の効果が発揮されるため、好ましい。より好ましい塩分濃度としては4質量%以上であり、さらに好ましい範囲としては8質量%以上であり、特に好ましい範囲としては12質量%以上である。最も好ましい塩分濃度としては、15質量%以上であり、これは、本発明のセルロース組成物は、生醤油中でも容易に分散可能であることを意味するものである。塩分濃度の上限値は特に限定されないが、飲食品中の塩分濃度が大きく増えると甘味、旨味、苦味等の味が感じにくくなることから、50質量%以下が好ましく、30質量%以下がより好ましい。 Here, the higher the salt concentration (sodium chloride and / or potassium chloride concentration) in the food or drink, the better the effect of the cellulose composition of the present invention is exhibited. A more preferable salt concentration is 4% by mass or more, a further preferable range is 8% by mass or more, and a particularly preferable range is 12% by mass or more. The most preferable salt concentration is 15% by mass or more, which means that the cellulose composition of the present invention can be easily dispersed even in raw soy sauce. The upper limit of the salt concentration is not particularly limited, but it is preferably 50% by mass or less, and more preferably 30% by mass or less, because when the salt concentration in the food or drink is greatly increased, it becomes difficult to feel sweetness, umami, bitterness, and the like. .
 また、より好ましい飲食品中の油分濃度としては、5質量%以上であり、さらに好ましくは10質量%以上であり、特に好ましくは15質量%以上であり、格段に好ましくは20質量%以上であり、最も好ましくは25質量%以上である。油分濃度の上限値は特に限定されないが、油が多くなるとセルロース組成物の分散性が低下するため、80質量%以下が好ましく、50質量%以下がより好ましい。 Further, the oil concentration in the food or drink is more preferably 5% by mass or more, more preferably 10% by mass or more, particularly preferably 15% by mass or more, and particularly preferably 20% by mass or more. Most preferably, it is 25% by mass or more. The upper limit value of the oil concentration is not particularly limited. However, when the amount of oil increases, the dispersibility of the cellulose composition decreases, so that it is preferably 80% by mass or less, more preferably 50% by mass or less.
 飲食品中のセルロース組成物の添加量は、最終形態の食品において求められる効果によるが、例えば、以下のように例示ができる。 The addition amount of the cellulose composition in the food and drink depends on the effect required in the final form of the food, but can be exemplified as follows, for example.
 例えば、濃縮スープ様の食品(塩分濃度1~10質量%、油分濃度10~30質量%の食品)のような、高塩分、高油分の食品においては、本発明のセルロース組成物は、0.1質量%以上添加することで、油の分散安定性、懸濁安定性が発揮される。この場合のセルロース組成物の濃度は、より好ましくは0.2質量%以上であり、さらに好ましくは0.3質量%以上であり、特に好ましくは0.4質量%以上であり、一層好ましくは0.6質量%以上であり、最も好ましくは1.0質量%以上である。本発明のセルロース組成物の添加量は、多いほど安定性が高まるため、上限は特に設定されないが、軽い食感が維持される範囲としては、5質量%以下である。 For example, in a high salt and high oil content food such as a concentrated soup-like food (food having a salt concentration of 1 to 10% by mass and an oil concentration of 10 to 30% by mass), the cellulose composition of the present invention has a concentration of 0.0. By adding 1% by mass or more, oil dispersion stability and suspension stability are exhibited. The concentration of the cellulose composition in this case is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and more preferably 0%. .6% by mass or more, and most preferably 1.0% by mass or more. Since the stability increases as the amount of the cellulose composition of the present invention increases, the upper limit is not particularly set. However, the range in which a light texture is maintained is 5% by mass or less.
 また、たれ様の食品(塩分濃度1~10質量%、油分濃度10~30質量%であり、野菜のように比重が1.0以上で、100μm以上の大きさの具材成分を0.5質量%以上含むもの)においては、本発明のセルロース組成物は、0.1質量%以上添加することで、油の安定性と、具材の懸濁安定性が発揮される。この場合のセルロース組成物の濃度は、より好ましくは0.2質量%以上であり、さらに好ましくは0.3質量%以上であり、特に好ましくは0.4質量%以上であり、一層好ましくは0.6質量%以上であり、最も好ましくは1.0質量%以上である。本発明のセルロース組成物の添加量は、多いほど安定性が高まるため、上限は特に設定されないが、軽い食感が維持される範囲としては、5質量%以下である。 Sauce-like foods (having a salt concentration of 1 to 10% by mass and an oil concentration of 10 to 30% by mass, with a specific gravity of 1.0 or more and 100 μm or more of ingredients such as vegetables) In the case where the cellulose composition of the present invention is added in an amount of 0.1% by mass or more, the stability of oil and the suspension stability of ingredients are exhibited. The concentration of the cellulose composition in this case is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and more preferably 0%. .6% by mass or more, and most preferably 1.0% by mass or more. Since the stability increases as the amount of the cellulose composition of the present invention increases, the upper limit is not particularly set. However, the range in which a light texture is maintained is 5% by mass or less.
 また、マヨネーズ様の半固形状の食品(塩分濃度1~10質量%、油分濃度10~80質量%であり、必要に応じ、レシチンのような乳化剤を併用されたもの)においては、本発明のセルロース組成物は、0.1質量%以上添加することで、チューブ様の容器から搾り出した際の角立ちのような、保形性が長時間維持される。この場合のセルロース組成物の濃度は、より好ましくは0.2質量%以上であり、さらに好ましくは0.3質量%以上であり、特に好ましくは0.4質量%以上であり、一層好ましくは0.6質量%以上であり、最も好ましくは1.0質量%以上である。本発明のセルロース組成物の添加量は、多いほど安定性が高まるため、上限は特に設定されないが、軽い食感が維持される範囲としては、5質量%以下である。
<水性飲食品の粘弾性>
 本発明のセルロース組成物を含む水性飲食品は、以下に示す特有の粘弾性を有する為、耐熱性が高く、高温下で状態を保ちやすい性質を有するため好ましい。この粘弾性は、25℃に対する50℃の損失正接(tanδ)の比で表すことができ、この比が1以上であると本願の効果が達成されるため好ましい。
In the case of mayonnaise-like semi-solid food (salt concentration of 1 to 10% by mass, oil concentration of 10 to 80% by mass and optionally used in combination with an emulsifier such as lecithin), When the cellulose composition is added in an amount of 0.1% by mass or more, the shape retaining property such as cornering when squeezed out from a tube-like container is maintained for a long time. The concentration of the cellulose composition in this case is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and more preferably 0%. .6% by mass or more, and most preferably 1.0% by mass or more. Since the stability increases as the amount of the cellulose composition of the present invention increases, the upper limit is not particularly set. However, the range in which a light texture is maintained is 5% by mass or less.
<Viscoelasticity of aqueous food and drink>
The aqueous food or drink containing the cellulose composition of the present invention has the specific viscoelasticity shown below, and therefore has high heat resistance and is preferable because it has the property of easily maintaining a state at high temperatures. This viscoelasticity can be represented by a ratio of a loss tangent (tan δ) of 50 ° C. to 25 ° C., and if this ratio is 1 or more, the effect of the present application is achieved, which is preferable.
 ここでいう、損失正接とは、本発明の水性飲食品の動的粘弾性測定により得られる値である。損失正接(tanδ)は、水分散体に歪みを与えた際の、水性飲食品の内部に蓄えられた応力を保持する弾性成分(貯蔵弾性率:G’)と、粘性成分(損失弾性率:G’’)から以下の式で算出される。式:tanδ=G’’/G’’。 Here, the loss tangent is a value obtained by measuring the dynamic viscoelasticity of the aqueous food and drink of the present invention. The loss tangent (tan δ) includes an elastic component (storage elastic modulus: G ′) that holds the stress stored in the aqueous food and drink when the aqueous dispersion is distorted, and a viscous component (loss elastic modulus: G ″) is calculated by the following formula. Formula: tan δ = G ″ / G ″.
 本発明の水性組成物の粘弾性は、25℃と、50℃において、それぞれ測定されたtanδの比をとったものであり、以下の式で表される。式:tanδ(50℃)/tanδ(25℃)。この値が1以上であることは、常温に対し、加熱下で粘性が高くなることを意味し、この粘弾性を達成することで、スープを加熱した際の油の分離を抑制したり、たれを加熱したさいの液だれを抑制したりできる。 The viscoelasticity of the aqueous composition of the present invention is the ratio of tan δ measured at 25 ° C. and 50 ° C., and is represented by the following formula. Formula: tan δ (50 ° C.) / Tan δ (25 ° C.). When this value is 1 or more, it means that the viscosity is increased under heating with respect to normal temperature. By achieving this viscoelasticity, oil separation when the soup is heated is suppressed or dripped. It is possible to suppress dripping of the liquid when heated.
 貯蔵弾性率、損失弾性率は、粘弾性測定装置(Rheometric Scientific,Inc.製、ARES100FRTN1型、ジオメトリー:25mm Cone Plate型)を用い、所定の条件(温度:25.0℃一定または50.0℃一定、角速度:20rad/秒、歪み:1→794%の範囲で掃引、水性飲食品は微細構造を壊さないようスポイトを使用して、ゆっくりと仕込み、10分間静置した後に、Dynamic Strainモードで測定を開始する)により測定する。本発明における貯蔵弾性率、損失弾性率は、上述の測定で得られた歪み-応力曲線上の、歪み10%の値のことであり、本発明の粘弾性は、それぞれの温度で測定された損失正接の比(tanδ(50℃)/tanδ(25℃))で算出される。 The storage elastic modulus and loss elastic modulus were measured using a viscoelasticity measuring device (Rheometric Scientific, Inc., ARES100FRTN1 type, geometry: 25 mm Cone Plate type) (temperature: constant at 25.0 ° C or 50.0 ° C). Constant, angular velocity: 20 rad / sec, distortion: swept within the range of 1 → 794%, water-based food and drink are slowly charged with a dropper so as not to break the fine structure, and left for 10 minutes, then in Dynamic Strain mode Start measurement). The storage elastic modulus and loss elastic modulus in the present invention are values of 10% strain on the strain-stress curve obtained by the above measurement, and the viscoelasticity of the present invention was measured at each temperature. The loss tangent ratio (tan δ (50 ° C.) / Tan δ (25 ° C.)) is calculated.
 この値が大きいほど、加熱下での飲食品の形態安定性が向上するため好ましく、1を超えることがより好ましく、1.2以上がさらに好ましく、1.3以上が特に好ましく、1.5以上が最も好ましい。上限は特に設定されないが、好ましい範囲としては2以下である。 The larger this value, the better the form stability of the food and drink under heating, preferably more than 1, more preferably 1.2 or more, particularly preferably 1.3 or more, 1.5 or more Is most preferred. The upper limit is not particularly set, but a preferable range is 2 or less.
 本発明の菓子について、以下具体的に説明する。
<菓子>
 本発明において、菓子とはJAS法の品質表示基準に従い菓子類に分類されるものである。JAS法において菓子類は、ビスケット類、焼き菓子、米菓、油菓子、和生菓子、洋生菓子、半生菓子、和干菓子、キャンディー類、チョコレート類、チューインガム、砂糖漬菓子、スナック菓子、冷菓、その他の菓子類に分類されている。
<菓子の製法>
 本発明の菓子とは、穀粉、糖類、油脂と、必要に応じ卵等を含む原料を混合して混合済み生地を得る工程、この混合済み生地を成形して、成形済み生地を得る工程、及び成形済み生地を焼成、油ちょう、減圧乾燥、凍結乾燥等に付す工程を経させることにより、水分量を5質量%以下としたもののことであり、それらは従来公知の方法により調製され得る。生地の混合には、縦型、横型等の形状を問わず、通常の菓子およびパンの製造過程で使用されるミキサーが使用できる。原料が実質的に均一に混合されるのであれば、どのような混合方法を用いても良い。本発明では大量生産可能な、オールインミックス法により調製するのが好ましい。上述の方法において、配合原材料の比率、添加される水分率、生地の混合・混練条件、焼成、油ちょう、減圧乾燥、凍結乾燥、及び最終的な形態に応じて、ビスケット類、焼き菓子、米菓、油菓子、和生菓子、洋生菓子、半生菓子、スナック菓子が製造可能である。本発明は、軽い食感で、サクサクした食感であるビスケット類、焼き菓子、スナック菓子類に好適である。特に、ビスケット類、焼き菓子に好適である。
<焼き菓子>
 一般消費者にとって、上記ビスケット類と焼き菓子は同等の菓子として認識されているので、本発明において焼き菓子とは、JAS法における、ビスケット類と焼き菓子の両者を含むものとする。
The confectionery of the present invention will be specifically described below.
<Confectionery>
In the present invention, the confectionery is classified as a confectionery according to the quality indication standard of the JAS method. In the JAS method, confectionery is biscuits, baked confectionery, rice confectionery, oil confectionery, Japanese confectionery, Western confectionery, semi-confectionery, Japanese confectionery, candy, chocolates, chewing gum, candied confectionery, snack confectionery, frozen confectionery, and other confectionery. It is classified into a kind.
<Preparation of confectionery>
The confectionery of the present invention is a process of obtaining a mixed dough by mixing raw materials including flour, saccharides, fats and oils and eggs as necessary, a step of forming this mixed dough to obtain a shaped dough, and The water content is reduced to 5% by mass or less by subjecting the shaped dough to steps of baking, oiling, drying under reduced pressure, freeze drying and the like, and they can be prepared by a conventionally known method. For mixing the dough, regardless of the shape such as a vertical type or a horizontal type, a mixer used in a normal confectionery and bread manufacturing process can be used. Any mixing method may be used as long as the raw materials are mixed substantially uniformly. In the present invention, it is preferable to prepare by an all-in-mix method capable of mass production. In the above-mentioned method, depending on the ratio of the blended raw materials, the water content to be added, the mixing and kneading conditions of the dough, baking, oil frying, reduced pressure drying, freeze drying, and the final form, biscuits, baked goods, rice Confectionery, oil confectionery, Japanese confectionery, Western confectionery, half confectionery, snack confectionery can be manufactured. The present invention is suitable for biscuits, baked goods, and snacks that have a light texture and a crisp texture. It is particularly suitable for biscuits and baked goods.
<Baked confectionery>
For general consumers, the above-mentioned biscuits and baked confectionery are recognized as equivalent confectionery, so in the present invention, baked confectionery includes both biscuits and baked confectionery in the JAS method.
 本発明において焼き菓子とは、穀粉を主原料とする生地を、公知の任意の焼成条件、方法で焼成したものである。焼成には、固定オーブン、連続オーブン、ダイレクトオーブン、熱風循環オーブン等が使用可能である。焼成条件は、生地の大きさや、最終製品の目的水分量によって異なるが、一般的には、150~300℃の範囲において3~30分間の加熱である。
<菓子の形状>
 本発明の菓子の形状としては、任意の形状を選択することが出来る。例えば、立方体、直方体、棒状、円形、球状、円錐状、三角錐状、星形、ある特定の動物や、食物や、乗り物等、通常の菓子の製造で使用できる成形機で製造可能なものであれば、どのような形状でもよい。
<水分量>
 本発明において水分量とは、菓子に含まれる水分の、菓子全体の重量に対する割合のことである。水分量は公知の測定方法で測定することが出来る。例えば、赤外水分計を用いて、まず菓子の重量を測定し、次いで菓子を重量変化がなくなるまで105℃で維持する。重量変化がなくなったときの重量を測定し、加熱前と比較して、加熱後に減少した重量から水分量を決定することが出来る。本発明の菓子の水分量は好ましくは5質量%以下である。水分量が5質量%以下であると、サクサクとした食感の菓子となる。食感の点から、より好ましくは、4質量%以下であり、更に好ましくは3質量%以下であり、最も好ましくは2質量%以下である。下限は、0%であってもよい。
<密度>
 本発明の菓子は密度が0.30~1.00g/cmであることが好ましい。密度が当該範囲に入ることで、食べ応えがあり、ふわっとした軽い食感の菓子となる。
In the present invention, the baked confectionery is obtained by baking a dough mainly made of flour with any known baking conditions and methods. A fixed oven, a continuous oven, a direct oven, a hot air circulation oven, or the like can be used for firing. The firing conditions vary depending on the size of the dough and the target moisture content of the final product, but are generally 3 to 30 minutes of heating in the range of 150 to 300 ° C.
<Shape of confectionery>
Any shape can be selected as the shape of the confectionery of the present invention. For example, a cube, a rectangular parallelepiped, a rod, a circle, a sphere, a cone, a triangle pyramid, a star, a certain animal, a food, a vehicle, or the like that can be manufactured with a molding machine that can be used in the manufacture of ordinary confectionery. Any shape is acceptable.
<Moisture content>
In the present invention, the water content is the ratio of the water contained in the confectionery to the weight of the entire confectionery. The amount of moisture can be measured by a known measurement method. For example, using an infrared moisture meter, the confectionery is first weighed and then maintained at 105 ° C. until there is no change in weight. The weight when there is no change in weight is measured, and the amount of water can be determined from the weight reduced after heating compared to before heating. The water content of the confectionery of the present invention is preferably 5% by mass or less. When the water content is 5% by mass or less, a crisp confectionery is obtained. From the viewpoint of texture, it is more preferably 4% by mass or less, still more preferably 3% by mass or less, and most preferably 2% by mass or less. The lower limit may be 0%.
<Density>
The confectionery of the present invention preferably has a density of 0.30 to 1.00 g / cm 3 . When the density falls within this range, the confectionery is light and has a light and light texture.
 本発明において密度(単位:g/cm)とは、喫食時における菓子1つの単位体積あたりの質量のことである。菓子が、短径0.5mm以上の具材を含む場合、その具材を全て除いた菓子の密度のことを指す。 In the present invention, the density (unit: g / cm 3 ) is the mass per unit volume of a confectionery at the time of eating. When a confectionery contains ingredients with a minor axis of 0.5 mm or more, it refers to the density of the confectionery excluding the ingredients.
 本発明において、菓子の密度は0.30~1.00g/cmが必須である。密度が0.30g/cm未満であると、軽すぎる食感で食べ応えがない菓子となる。他方、密度が1.00g/cmを超えると、内部が密に詰まった構造の菓子となり、ふわっとした軽い食感の菓子ではなくなってしまう。食感の観点から、より好ましくは、0.40~0.85g/cmであり、更に好ましくは0.50~0.80g/cmであり、最も好ましくは、0.60~0.70g/cmである。
<最大荷重>
 本発明の菓子は最大荷重が0.3~5kgfであることが好ましい。最大荷重が当該範囲に入ることで、噛む力が弱い子供や、お年寄りでも充分に喫食可能な菓子となる。
In the present invention, the density of the confectionery must be 0.30 to 1.00 g / cm 3 . If the density is less than 0.30 g / cm 3 , the confectionery is too light and unresponsive to eating. On the other hand, when the density exceeds 1.00 g / cm 3 , the confectionery has a structure in which the inside is densely packed, and is not a confectionery with a light and light texture. From the viewpoint of texture, it is more preferably 0.40 to 0.85 g / cm 3 , further preferably 0.50 to 0.80 g / cm 3 , and most preferably 0.60 to 0.70 g. / Cm 3 .
<Maximum load>
The confectionery of the present invention preferably has a maximum load of 0.3 to 5 kgf. When the maximum load falls within this range, it becomes a child that can be eaten sufficiently even by children who are weak in chewing force and the elderly.
 本発明において荷重は、縦:25±5mm、横:25±5mm、厚み:10±1mmのテストピースを用いて測定する。テストピースは、消費者が喫食可能な状態であれば、どのような状態でもよい。菓子が焼き菓子であれば、生地を焼成後の状態が好ましい。最大荷重は、テクスチャー・アナライザー(英弘精機株式会社製、TA.XT plus型、測定治具:HDP/3PB型、温度:25.0℃、Mode:Mesure Force in Compression、Option:Return to Start,Pre-Test Speed:1.0mm/s,Test-Speed:1.5mm/s,Post-Test Speed:10mm/s,Distance:5mm,Triger Type:Auto 50g)により測定する。本発明における最大荷重は、上述の測定で得られた時間-応力曲線上の、応力が最大の値のことである。この最大荷重の値が大きいほど、菓子が硬い食感であることを表している。 In the present invention, the load is measured using a test piece having a length of 25 ± 5 mm, a width of 25 ± 5 mm, and a thickness of 10 ± 1 mm. The test piece may be in any state as long as the consumer can eat. If the confectionery is baked confectionery, the state after baking the dough is preferable. The maximum load is a texture analyzer (manufactured by Eiko Seiki Co., Ltd., TA.XT plus type, measuring jig: HDP / 3PB type, temperature: 25.0 ° C., Mode: Measurement Force in Compression, Option: Return to Start, Pres. -Test Speed: 1.0 mm / s, Test-Speed: 1.5 mm / s, Post-Test Speed: 10 mm / s, Distance: 5 mm, Trigger Type: Auto 50 g). The maximum load in the present invention is a value with the maximum stress on the time-stress curve obtained by the above measurement. The larger the maximum load value, the harder the confectionery.
 本発明において、菓子の最大荷重は0.3~5kgfが必要である。最大荷重が0.30kgf未満であると、脆く食べ応えがない菓子となる。他方、最大荷重が5kgfを超えると、ガリガリとした硬い食感となり、ふわっとした軽い食感の菓子ではなくなってしまう。一般的には最大荷重が5kgfを超える菓子は、充分に硬いため割れや欠けが問題になるとはないが食感が悪い。最大荷重は食感の観点から、より好ましくは、0.5~3.5kgfであり、更に好ましくは1.0~3.0kgfであり、最も好ましくは、1.5~2.5kgfである。
<穀粉>
 典型的な本発明の菓子には穀粉が配合されることが好ましい。穀粉を含むことで、充分な栄養価を持つ菓子になるからである。
In the present invention, the maximum load of the confectionery needs 0.3 to 5 kgf. If the maximum load is less than 0.30 kgf, the cake becomes brittle and unresponsive to eating. On the other hand, when the maximum load exceeds 5 kgf, it becomes a hard and crunchy texture, and it is no longer a soft and light textured confectionery. Generally, a confectionery having a maximum load exceeding 5 kgf is sufficiently hard so that cracking and chipping are not a problem, but the texture is poor. From the viewpoint of texture, the maximum load is more preferably 0.5 to 3.5 kgf, still more preferably 1.0 to 3.0 kgf, and most preferably 1.5 to 2.5 kgf.
<Wheat flour>
The typical confectionery of the present invention preferably contains flour. It is because it becomes a confectionery with sufficient nutritional value by including flour.
 本発明において、穀粉とは、イネ科穀物(小麦、大麦、ライ麦、米、とうもろこし、テフ、ひえ)、豆類(大豆、ヒヨコマメ、エンドウマメ)、擬穀類(蕎麦、アマランサス)、イモ類・根菜(片栗、馬鈴薯、葛、タピオカ)、木の実(栗、どんぐり)等を挽いて作られた粉末のことである。原料として、これらのうち1種の穀粉を使用しても、2種以上を混合したものを使用してもよい。これらの中でも、本発明の菓子には、小麦粉又は米粉が好ましい。
<小麦粉>
 小麦粉とは、小麦を挽いて作られた粉末のことである。小麦粉は、そこに含まれるタンパク質の割合と形成されるグルテンの性質によって薄力粉、中力粉、強力粉、浮き粉、全粒粉、グラハム粉、セモリナ粉等に分類されるが、いずれも本発明でいう小麦粉に該当する。本発明の菓子に配合する小麦粉の量としては、好ましくは30質量%以上であり、さらに好ましくは40質量%以上であり、特に好ましくは45質量%以上である。小麦粉は多いほど、栄養価に優れるため好ましい。上限は、食感(小麦粉が多すぎるとモチモチとしたパンのような食感となる)の観点で、86質量%以下が好ましく、80質量%以下が好ましく、70質量%以下が特に好ましい。
In the present invention, cereal flour means gramineous grains (wheat, barley, rye, rice, corn, tef, mackerel), beans (soybean, chickpeas, peas), pseudocereals (buckwheat, amaranthus), potatoes and root vegetables ( It is a powder made by grinding (eg, chestnut, potato, kuzu, tapioca) and nuts (chestnut, acorn). Of these, one kind of flour may be used as a raw material, or a mixture of two or more kinds may be used. Among these, wheat flour or rice flour is preferable for the confectionery of the present invention.
<Wheat flour>
Wheat flour is a powder made by grinding wheat. Wheat flour is classified into soft flour, medium flour, strong flour, float flour, whole grain flour, graham flour, semolina flour, etc., depending on the proportion of protein contained therein and the properties of gluten formed. It corresponds to. The amount of flour blended in the confectionery of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 45% by mass or more. The more flour, the better nutritional value is preferable. The upper limit is preferably 86% by mass or less, more preferably 80% by mass or less, and particularly preferably 70% by mass or less, from the viewpoint of texture (a too much flour results in a texture like a moist bread).
 小麦粉の中でも、本発明の菓子には、強力粉、中力粉、薄力粉が好ましい。強力粉は、タンパク質の割合が12%以上のもので、中力粉は、タンパク質の割合が11.9~8.6%のもので、薄力粉は、タンパク質の割合が8.5%以下のものである。特に、本発明で使用される穀粉としては、薄力粉を30質量%以上含むものを用いることが、加工特性、食感の点で好ましい。より好ましくは、40質量%以上であり、特に好ましくは、45質量%以上である。
<米粉>
 ここで、米粉とは、米を挽いて作られた粉末のことである。原料となる米として、うるち米、もち米のどちらを用いても良い。市販で入手可能な米粉としては、上新粉、上用粉、だんご粉、パン用米粉、お菓子用米粉、乳児粉、みじん粉、もち粉、白玉粉、求肥粉、道明寺粉、寒梅粉、落雁粉等がある。これらのうち1種の米粉を使用しても、2種以上を混合したものを使用してもよい。これらの中でも、本発明の菓子には、平均粒子径が150μm以下で、一般的な小麦粉と同等の大きさの米粉を用いるのが好ましい。特に、本発明で使用される穀粉としては、米粉を30質量%含むものを用いることが、加工特性、食感の点で好ましい。より好ましくは、40質量%以上であり、特に好ましくは、45質量%以上である。
<糖類>
 典型的な本発明の菓子には糖類が配合される。糖類を含むことで、甘味が付与でき、老若男女が好む味の菓子となる。
Among wheat flours, strong flour, medium flour and thin flour are preferred for the confectionery of the present invention. The strong flour has a protein ratio of 12% or more, the medium flour has a protein ratio of 11.9 to 8.6%, and the weak flour has a protein ratio of 8.5% or less. is there. In particular, as flour used in the present invention, it is preferable to use a flour containing 30% by mass or more of soft flour in terms of processing characteristics and texture. More preferably, it is 40% by mass or more, and particularly preferably 45% by mass or more.
<Rice flour>
Here, rice flour is a powder made by grinding rice. As the raw material rice, either sticky rice or sticky rice may be used. Commercially available rice flour includes: Kaminshin flour, top flour, dango flour, bread rice flour, confectionery rice flour, infant flour, fine powder, glutinous flour, white ball flour, fertilizer flour, Domyoji flour, kumbai flour, oak There are powders. Among these, one kind of rice flour may be used, or a mixture of two or more kinds may be used. Among these, for the confectionery of the present invention, it is preferable to use rice flour having an average particle size of 150 μm or less and the same size as general wheat flour. In particular, as the flour used in the present invention, it is preferable in terms of processing characteristics and texture to use rice flour containing 30% by mass. More preferably, it is 40% by mass or more, and particularly preferably 45% by mass or more.
<Sugar>
A typical confectionery of the present invention is blended with sugars. By including saccharides, sweetness can be imparted and a confectionery tasted by both young and old is obtained.
 本発明で用いる糖類とは、例えば、ショ糖、乳糖、麦芽糖、ブドウ糖(グルコース)、果糖、転化糖、水飴、粉末水飴、還元麦芽水飴、蜂蜜、トレハロース、トレハルロース、ネオトレハロース、パラチノース、D-キシロース、澱粉加水分解物、デキストリン等の糖類、キシリトール、ソルビトール、マルチトール、エリスリトール等の糖アルコール類をあげることができる。これらの糖類は、2種類以上組み合わせてもよい。上述の中でも、澱粉加水分解物、デキストリン類、ショ糖、グルコ-ス、糖アルコールが味の点で好ましい。これらの中でも、ショ糖が好ましい。本発明の菓子に配合する糖類の量としては、好ましくは10質量%以上であり、さらに好ましくは15質量%以上であり、特に好ましくは20質量%以上である。糖類は多いほど、甘味に優れるため好ましい。上限は、甘味と小麦粉との味のバランスの観点で、50質量%以下が好ましく、40量%以下が特に好ましい。
<油脂>
 典型的な本発明の菓子には油脂が配合されることが好ましい。油脂を含むことで、コクがある菓子となる。本発明で用いる油脂としては、植物性油脂、動物性油脂およびそれらの加工品が例示できる。また、そのような油脂類としては、市販の任意の油脂類が使用できる。当該油脂類の例としては、ショートニング、マーガリン、バター、ラード、大豆油、菜種油、綿実油、コーン油、ひまわり油、オリーブ油、サフラワー油、パーム油、パーム核油及びヤシ油バター、生クリーム、硬化油脂、エステル交換油脂等が挙げられる。この中から1種又は2種以上を併用することができる。これらの中でも、ショートニング、バター、生クリーム等が風味の点で、好ましい。
Examples of the saccharide used in the present invention include sucrose, lactose, maltose, glucose (glucose), fructose, invert sugar, starch syrup, powdered starch syrup, reduced malt starch syrup, honey, trehalose, trehalulose, neotrehalose, palatinose, D-xylose. , Starch hydrolysates, sugars such as dextrin, and sugar alcohols such as xylitol, sorbitol, maltitol, and erythritol. Two or more kinds of these saccharides may be combined. Of the above, starch hydrolysates, dextrins, sucrose, glucose, and sugar alcohols are preferred in terms of taste. Among these, sucrose is preferable. The amount of saccharide to be blended in the confectionery of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more. The more saccharides, the better the sweetness. The upper limit is preferably 50% by mass or less, particularly preferably 40% by mass or less, from the viewpoint of the balance between the taste of sweetness and flour.
<Oil and fat>
It is preferable that fats and oils are blended in a typical confectionery of the present invention. By including fats and oils, it becomes a rich confectionery. Examples of the fats and oils used in the present invention include vegetable fats and oils, animal fats and oils, and processed products thereof. Moreover, as such fats and oils, commercially available fats and oils can be used. Examples of such fats and oils include shortening, margarine, butter, lard, soybean oil, rapeseed oil, cottonseed oil, corn oil, sunflower oil, olive oil, safflower oil, palm oil, palm kernel oil and palm oil butter, fresh cream, hardened Fats and oils, transesterified fats and oils, and the like can be given. One or more of these can be used in combination. Among these, shortening, butter, fresh cream and the like are preferable in terms of flavor.
 本発明の菓子に配合する油脂の量としては、好ましくは3質量%以上であり、さらに好ましくは5質量%以上であり、特に好ましくは12質量%以上である。油脂は多いほど、風味と栄養価が優れるため好ましい。上限は、生産性(生地のまとまり)の観点で、35質量%以下が好ましく、30量%以下がより好ましく、25質量%以下が特に好ましい。
<セルロース組成物の添加量>
 本発明の菓子は、セルロース組成物を0.01質量%以上含むことが好ましい。ここでいうセルロース組成物の配合量は、組成物の重量から算出される(組成物中のセルロース含量ではない)。また、セルロース組成物を多量に配合するほど、製造時や流通時の製品ロス低減、サクサク感の向上、良好な角(エッジ)立ちが達成できるため好ましい。好ましくは、0.1質量%以上であり、より好ましくは、0.5質量%以上であり、特に好ましくは、1質量%以上である。一方で、セルロースを配合しすぎると、菓子に繊維的な、ぼそぼそとした食感が現れる場合があるため、上限は、5質量%以下が好ましい。
<セルロース組成物の添加方法>
 本発明で意図される菓子は、一般的には、穀粉や糖などの粉末原料をブレンド粉とする工程、水や卵等の水分を含む原料を上記ブレンド粉と混合し生地を作製する工程、上記の生地を成形する工程、成形後の生地を焼成、油ちょう、減圧乾燥、凍結乾燥等の処理をする工程を経て製造される。また、風味付けとして、更にチョコレート等の水系媒体でコーティングされることもある。上記の製造工程において、セルロース組成物は、粉末原料と共にブレンドする、水分を含む原料と共に混合する、生地を成形後に粉まぶしをする、焼成、油ちょう、減圧乾燥、凍結乾燥後に粉まぶしをする、水系媒体に配合する、水系媒体でコーティング後に粉まぶしをするのうちの、いずれの方法で添加しても良い。特に、水が存在する段階で、他の原料とともに混合されると、セルロースの分散が促進されるため好ましい。また、水分を多量に含む原料(例えば卵)を添加する際に、予め、それらと混合し、分散された状態で添加してもよい。
<その他原材料>
 本発明の菓子は、前記以外は、本発明の効果に影響を与えない限りにおいて、通常の食品と同様の構成をとることができる。例えば、卵、発泡剤、水、オリゴ糖、タンパク質、増粘剤、具材、風味原料、調味料、香料、色素、乳化剤等より選択された添加材料を、所定の割合で混合してよい。
<卵>
 本発明で用いる卵としては、食用卵として流通しているものを用いることができ、鳥卵を用いることが好ましい。鳥卵としては、鶏卵、ウズラ卵、アヒル卵、ダチョウ卵、ハト卵が挙げられ、これらを組合せて使用することもできる。特に、本発明では、加工性、味の点で鶏卵を用いることが好ましい。卵は、生卵をそのまま用いることも、乾燥された加工卵を用いることもできるが、加工性の点で生卵を用いることが好ましい。
The amount of fats and oils to be blended in the confectionery of the present invention is preferably 3% by mass or more, more preferably 5% by mass or more, and particularly preferably 12% by mass or more. The more fats and oils, the better the flavor and nutritional value. The upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
<Addition amount of cellulose composition>
The confectionery of the present invention preferably contains 0.01% by mass or more of the cellulose composition. The blending amount of the cellulose composition here is calculated from the weight of the composition (not the cellulose content in the composition). In addition, it is preferable to add a large amount of the cellulose composition because a reduction in product loss during production and distribution, an improvement in crispness, and a good edge (edge) standing can be achieved. Preferably, it is 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more. On the other hand, if cellulose is added too much, a fibery and soft texture may appear in the confectionery, so the upper limit is preferably 5% by mass or less.
<Method for adding cellulose composition>
The confectionery intended in the present invention is generally a process of blending powder raw materials such as flour and sugar with a blended powder, a process of preparing dough by mixing raw materials containing water such as water and eggs with the blended powder, It is manufactured through a step of forming the dough, and a step of processing the formed dough, such as baking, oiling, drying under reduced pressure, and freeze drying. Moreover, as a seasoning, it may be further coated with an aqueous medium such as chocolate. In the above production process, the cellulose composition is blended with the raw material of the powder, mixed with the raw material containing moisture, dusted after molding the dough, baked, oil-dried, vacuum dried, freeze-dried, You may add by any method of mix | blending with an aqueous medium and spraying after coating with an aqueous medium. In particular, mixing with other raw materials in the presence of water is preferable because dispersion of cellulose is promoted. In addition, when adding a raw material (eg, egg) containing a large amount of moisture, it may be mixed in advance and added in a dispersed state.
<Other raw materials>
Except for the above, the confectionery of the present invention can have the same configuration as a normal food as long as the effects of the present invention are not affected. For example, an additive material selected from eggs, foaming agents, water, oligosaccharides, proteins, thickeners, ingredients, flavor raw materials, seasonings, fragrances, pigments, emulsifiers and the like may be mixed at a predetermined ratio.
<Egg>
As eggs used in the present invention, those circulated as edible eggs can be used, and it is preferable to use bird eggs. Examples of bird eggs include chicken eggs, quail eggs, duck eggs, ostrich eggs, and pigeon eggs, and these can also be used in combination. In particular, in the present invention, it is preferable to use chicken eggs in terms of processability and taste. As the egg, a raw egg can be used as it is, or a dried processed egg can be used, but it is preferable to use a raw egg in terms of processability.
 本発明の菓子に配合する卵の量としては、好ましくは3質量%以上であり、さらに好ましくは5質量%以上であり、特に好ましくは10質量%以上である。卵は多いほど、風味と栄養価が優れるため好ましい。上限は、生産性(生地のまとまり)の観点で、35質量%以下が好ましく、30量%以下がより好ましく、25質量%以下が特に好ましい。
<発泡剤(膨張剤)>
 本発明の菓子には、低密度で軽い食感にする目的で、発泡剤(膨張剤)を配合することが好ましい。発泡剤(膨張剤)としては、市販の任意の発泡剤が使用可能であり、ベーキングパウダー、重曹、重炭酸アンモニウム、塩化アンモニウム、炭酸マグネシウム、ミョウバンの中から1種又は2種以上を併用することができる。味の観点から好ましくは、ベーキングパウダー、重曹、重炭酸アンモニウムであり、ベーキングパウダーが最も好ましい。
The amount of egg to be blended in the confectionery of the present invention is preferably 3% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more. The more eggs, the better the flavor and nutritional value. The upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
<Foaming agent (swelling agent)>
The confectionery of the present invention is preferably blended with a foaming agent (swelling agent) for the purpose of providing a light texture with a low density. As the blowing agent (swelling agent), any commercially available blowing agent can be used, and one or more of baking powder, baking soda, ammonium bicarbonate, ammonium chloride, magnesium carbonate, alum should be used in combination. Can do. From the viewpoint of taste, baking powder, baking soda, and ammonium bicarbonate are preferable, and baking powder is most preferable.
 本発明の菓子に配合する発泡剤の量としては、好ましくは0.01質量%以上であり、さらに好ましくは0.1質量%以上であり、特に好ましくは0.3質量%以上である。膨張剤が多いほど、軽い食感となるため好ましい。但し、必要以上に膨化をさせると中身がすかすかで食べ応えのない菓子となるので、上限は食べ応えの観点で、10質量%以下が好ましく、5量%以下がより好ましく、1質量%以下が特に好ましい。 The amount of the foaming agent to be blended in the confectionery of the present invention is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 0.3% by mass or more. A larger amount of the swelling agent is preferable because it provides a lighter texture. However, if the contents are swollen more than necessary, the contents become faint and unresponsive to eating, so the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 1% by mass or less from the viewpoint of eating response. Particularly preferred.
 <オリゴ糖及びタンパク質>
 オリゴ糖としては、フラクトオリゴ糖、ガラクトオリゴ糖、マルトオリゴ糖、イソマルトオリゴ糖、乳果オリゴ糖、セロオリゴ糖、キシロオリゴ糖、ラクチュロース、α-、β、γ-シクロデキストリン等が挙げられる。これらの中でも、マルトオリゴ糖、イソマルトオリゴ糖、乳果オリゴ糖は、味質改善効果が高いため好ましい。
<Oligosaccharides and proteins>
Examples of the oligosaccharide include fructooligosaccharide, galactooligosaccharide, maltooligosaccharide, isomaltooligosaccharide, dairy oligosaccharide, cellooligosaccharide, xylooligosaccharide, lactulose, α-, β, and γ-cyclodextrin. Among these, maltooligosaccharides, isomaltooligosaccharides, and dairy oligosaccharides are preferable because of their high taste-improving effect.
 タンパク質としては、通常、牛乳、脱脂粉乳、全脂粉乳、全脂加糖練乳、脱脂加糖練乳或いは生クリームなどの乳由来のタンパク質、大豆タンパク質などを使用することができる。
<増粘剤>
 増粘剤は、本発明の効果に悪影響を及ぼさない限度で添加することができる。例えば、キサンタンガム、グァーガム、ローカストビーンガム、トラガントガム、タマリンドシードガム、タラガム、カードラン、ラムザンガム、ガティガム、グルコマンナン、カラヤガム、脱アシル型ジェランガム、ネイティブ型ジェランガム、アラビアガム、マクロホモプシスガム、カラギーナン、寒天、ゼラチン、ペクチン、カードラン、グルコマンナン、アルギン酸類(アルギン酸、アルギン酸塩)、各種化工・加工澱粉、CMC、MC、HPC、HPMC、微結晶セルロース、発酵セルロース、微小繊維状セルロース、乾燥こんにゃく加工品等を、利用可能なものとして挙げることができる。
<乳化剤>
 本発明に使用できる乳化剤としては、例えば、グリセリン脂肪酸エステル(モノグリセリン脂肪酸エステル、ジグリセリン脂肪酸エステル、クエン酸あるいは乳酸等の有機酸モノグリセリド、ポリグリセリン脂肪酸エステル)、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、レシチン、サポニン、ポリソルベート、ステアロイル乳酸塩(ナトリウム、カルシウム)等を挙げることができるが、これに限定されない。
<具材>
 本発明の菓子は、本発明の効果に影響を与えない限りにおいて、具材を含んでもよい。具材としては、植物性、動物性のいずれのものでもよい。植物性の具材としては、果実、野菜、ナッツ、穀物等を生でカットしたもの、及び/又はそれらを乾燥、浸漬等の加工処理したものを使用することができる。動物性の具材としては、牛肉、豚肉、鶏肉、または、それらを干し肉、ハム、ソーセージ等に加工されたもの、魚肉、または、それらを魚節、カマボコ、ソーセージ等に加工されたもの、チーズ等の乳を発酵したものを用いることもできる。
<風味原料>
 本発明の菓子は、本発明の効果に影響を与えない限りにおいて、風味原料を含んでもよい。風味原料の例としては、種子類(ピーナッツ、アーモンド、マカデミアナッツ、カシューナッツ、栗等)、豆類(小豆、エンドウマメ、大豆等)、魚介類(えび、かに、鮭、ホタテ、たらこ等)、乳類(牛乳、生クリーム、練乳、全粉乳、脱脂粉乳、チーズ、ヨーグルト等)、野菜類(にんじん、トマト、たまねぎ、ピーマン、ケール等)、果実類(イチゴ、オレンジ、レーズン、りんご、キウイ、パイナップル、梅、バナナ、イチジク、モモ、なし等)、嗜好飲料類(コーヒー、紅茶、ココア、ビール、ワイン、ウイスキー、焼酎等)、調味料(食塩、みそ、醤油、ソース、食酢等)、香辛料類(こしょう、カレー粉、シナモン等)が挙げられる。これらの原料の形態は、生、乾燥品、粉末、ペースト、ピューレ、液体等の任意の形態であってよい。菓子に目的とする風味を付与するために、1種又は2種以上を併用することができる。
<高甘味度甘味料>
 本発明の菓子には、本発明の効果に影響を与えない限りにおいて、サッカリンナトリウム、サイクラメート及びその塩、アセスルファムカリウム、ソーマチン、アスパルテーム、スクラロース、アリテーム、ステビア抽出物に含まれるステビオサイドなどの高甘味度甘味料等も添加してもよい。
<栄養剤>
 本発明の菓子には、本発明の効果に影響を与えない限りにおいて、ビタミン、カルシウム、鉄、DHA、EPA、セサミン、ヒアルロン酸、プラセンタエキス、マカ、ウコン、コラーゲン、オルニチン、スクワラン、コエンザイムQ10、ローヤルゼリーの栄養剤を強化することも可能である。
As the protein, milk-derived protein such as cow's milk, skim milk powder, whole milk powder, whole fat sweetened condensed milk, skimmed sweetened condensed milk or fresh cream, soybean protein and the like can be used.
<Thickener>
A thickener can be added as long as the effect of the present invention is not adversely affected. For example, xanthan gum, guar gum, locust bean gum, tragacanth gum, tamarind seed gum, tara gum, curdlan, rumzan gum, gati gum, glucomannan, caraya gum, deacylated gellan gum, native gellan gum, gum arabic, macrohomopsis gum, carrageenan, agar, Gelatin, pectin, curdlan, glucomannan, alginic acid (alginic acid, alginate), various modified and processed starches, CMC, MC, HPC, HPMC, microcrystalline cellulose, fermented cellulose, microfibrous cellulose, dried konjac processed products, etc. Can be listed as available.
<Emulsifier>
Examples of the emulsifier that can be used in the present invention include glycerin fatty acid ester (monoglycerin fatty acid ester, diglycerin fatty acid ester, organic acid monoglyceride such as citric acid or lactic acid, polyglycerin fatty acid ester), sucrose fatty acid ester, sorbitan fatty acid ester, Propylene glycol fatty acid ester, lecithin, saponin, polysorbate, stearoyl lactate (sodium, calcium) and the like can be mentioned, but are not limited thereto.
<Ingredients>
The confectionery of the present invention may contain ingredients as long as the effects of the present invention are not affected. The ingredients may be plant or animal. As plant-based ingredients, fruits, vegetables, nuts, cereals and the like that have been cut raw and / or those processed by drying, dipping, or the like can be used. Animal ingredients include beef, pork, chicken, or those processed into dried meat, ham, sausage, etc., fish, or those processed into fish sections, sea bream, sausage, etc. What fermented milk, such as cheese, can also be used.
<Flavor ingredients>
The confectionery of the present invention may contain a flavor raw material as long as the effects of the present invention are not affected. Examples of flavor ingredients include seeds (peanuts, almonds, macadamia nuts, cashew nuts, chestnuts, etc.), beans (red beans, peas, soybeans, etc.), seafood (shrimp, crab, salmon, scallops, octopus, etc.), milk (Milk, fresh cream, condensed milk, whole milk powder, skim milk powder, cheese, yogurt, etc.), vegetables (carrots, tomatoes, onions, peppers, kale, etc.), fruits (strawberry, orange, raisins, apples, kiwi, pineapple) , Plum, banana, fig, peach, none, etc.), beverages (coffee, tea, cocoa, beer, wine, whiskey, shochu, etc.), seasonings (salt, miso, soy sauce, sauce, vinegar, etc.), spices (Pepper, curry powder, cinnamon, etc.). The form of these raw materials may be any form such as raw, dried product, powder, paste, puree, and liquid. In order to impart the desired flavor to the confectionery, one or more kinds can be used in combination.
<High intensity sweetener>
As long as the confectionery of the present invention does not affect the effects of the present invention, saccharin sodium, cyclamate and its salt, acesulfame potassium, thaumatin, aspartame, sucralose, alitame, stevioside contained in stevia extract, etc. Sweeteners and the like may also be added.
<Nutrient>
In the confectionery of the present invention, vitamin, calcium, iron, DHA, EPA, sesamin, hyaluronic acid, placenta extract, maca, turmeric, collagen, ornithine, squalane, coenzyme Q10, as long as the effects of the present invention are not affected. Royal jelly nutrients can also be strengthened.
 本発明のベーカリー製品について、以下具体的に説明する。
<ベーカリー製品の原料>
 本発明のベーカリー製品とは、小麦粉、糖類、油脂を含む原料に、水を添加し、混合、混練され、焼成、又は油ちょうされたもののことである。具体的には、パウンドケーキ、スポンジケーキ、シフォンケーキ、カステラ、ホットケーキ、チーズケーキ、ドーナッツを指す。特に、具材が配合され、その均一性を保つ必要のあるものとして、パウンドケーキ、スポンジケーキ、シフォンケーキ、カステラ、チーズケーキが、好ましい形態である。
<小麦粉>
 ここで、小麦粉とは、小麦を挽いて作られた粉末のことである。小麦粉のなかでも、それに含まれるタンパク質の割合と形成されるグルテンの性質によって薄力粉、中力粉、強力粉、浮き粉、全粒粉、グラハム粉、セモリナ粉に分類され、いずれも本願でいう小麦粉に該当する。これらの中でも、本発明のベーカリー製品には、強力粉、中力粉、薄力粉が好ましい。強力粉は、タンパク質の割合が12%以上のもので、中力粉は、タンパク質の割合が11.9~8.6%のもので、薄力粉は、タンパク質の割合が8.5%以下のものである。特に、本願では、薄力粉を50質量%含むものを用いることが、加工特性、食感の点で好ましい。より好ましくは、70質量%以上であり、特に好ましくは、85質量%以上である。
The bakery product of the present invention will be specifically described below.
<Ingredients for bakery products>
The bakery product of the present invention is a product obtained by adding water to a raw material containing wheat flour, sugars, and fats, mixing, kneading, baking, or oiling. Specifically, it refers to a pound cake, sponge cake, chiffon cake, castella, hot cake, cheesecake, and donut. Pound cakes, sponge cakes, chiffon cakes, castellas, and cheese cakes are particularly preferred forms that contain ingredients and need to maintain their uniformity.
<Wheat flour>
Here, the wheat flour is a powder made by grinding wheat. Among wheat flours, they are classified into soft flour, medium flour, strong flour, floating flour, whole wheat flour, graham flour, and semolina flour according to the proportion of protein contained in the flour and the properties of gluten formed, all of which fall under the wheat flour referred to in this application. . Among these, for the bakery product of the present invention, strong flour, medium flour, and weak flour are preferable. The strong flour has a protein ratio of 12% or more, the medium flour has a protein ratio of 11.9 to 8.6%, and the weak flour has a protein ratio of 8.5% or less. is there. In particular, in the present application, it is preferable in terms of processing characteristics and texture to use those containing 50% by mass of flour. More preferably, it is 70 mass% or more, Most preferably, it is 85 mass% or more.
 本発明のベーカリー製品に配合する小麦粉の量としては、好ましくは10質量%以上であり、さらに好ましくは15質量%以上であり、特に好ましくは20質量%以上である。小麦粉は多いほど、栄養価に優れるため好ましい。上限は、生産性(生地のまとまりやすさ)の観点で、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が特に好ましい。
<糖類>
 次に、本発明で用いる糖類とは、例えば、ショ糖、乳糖、麦芽糖、ブドウ糖(グルコース)、果糖、転化糖、水飴、粉末水飴、還元麦芽水飴、蜂蜜、トレハロース、トレハルロース、ネオトレハロース、パラチノース、D-キシロース、澱粉加水分解物、デキストリン等の糖類;キシリトール、ソルビトール、マルチトール、エリスリトール等の糖アルコール類をあげることができる。また、サッカリンナトリウム、サイクラメート及びその塩、アセスルファムカリウム、ソーマチン、アスパルテーム、スクラロース、アリテーム、ステビア抽出物に含まれるステビオサイドなどの高甘味度甘味料等も添加してもよい。これらの糖類は、2種類以上組み合わせてもよい。上述の中でも、澱粉加水分解物、デキストリン類、ショ糖、グルコ-ス、糖アルコールが味の点で好ましい。これらの中でも、ショ糖、糖アルコール、またはそれらの組合せが好ましい。
The amount of flour blended in the bakery product of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more. The more flour, the better nutritional value is preferable. The upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less from the viewpoint of productivity (ease of grouping of dough).
<Sugar>
Next, the saccharides used in the present invention include, for example, sucrose, lactose, maltose, glucose (glucose), fructose, invert sugar, starch syrup, powdered starch syrup, reduced malt starch syrup, honey, trehalose, trehalulose, neotrehalose, palatinose, Examples thereof include saccharides such as D-xylose, starch hydrolyzate, and dextrin; and sugar alcohols such as xylitol, sorbitol, maltitol, and erythritol. High sweetness sweeteners such as stevioside contained in saccharin sodium, cyclamate and salts thereof, acesulfame potassium, thaumatin, aspartame, sucralose, alitame and stevia extract may also be added. Two or more kinds of these saccharides may be combined. Of the above, starch hydrolysates, dextrins, sucrose, glucose, and sugar alcohols are preferred in terms of taste. Of these, sucrose, sugar alcohol, or combinations thereof are preferred.
 本発明のベーカリー製品に配合する糖類の量としては、好ましくは2質量%以上であり、さらに好ましくは5質量%以上であり、特に好ましくは10質量%以上である。糖類は多いほど、甘味に優れるため好ましい。上限は、甘味と小麦粉との味のバランスの観点で、25質量%以下が好ましく、20量%以下がより好ましく、15質量%以下が特に好ましい。
<油脂>
 本発明で用いる油脂としては、バター、生クリーム等の乳脂肪分、植物油脂あるいはこれらの分別油脂、硬化油脂、エステル交換油脂等の中から一種又は二種以上を併用することができる。植物油脂の例としては、大豆油、菜種油、綿実油、コーン油、ひまわり油、オリーブ油、サフラワー油、パーム油、パーム核油及びヤシ油等を挙げることができる。これらの中でも、バター、生クリームが、風味の点で、好ましい。
The amount of saccharide to be blended in the bakery product of the present invention is preferably 2% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more. The more saccharides, the better the sweetness. The upper limit is preferably 25% by mass or less, more preferably 20% by mass or less, and particularly preferably 15% by mass or less from the viewpoint of the balance between the taste of sweetness and flour.
<Oil and fat>
As fats and oils used by this invention, 1 type, or 2 or more types can be used together from milk fat content, such as butter and fresh cream, vegetable fats and oils, these fractionated fats and oils, hardened fats and oils, transesterified fats and oils. Examples of vegetable oils include soybean oil, rapeseed oil, cottonseed oil, corn oil, sunflower oil, olive oil, safflower oil, palm oil, palm kernel oil and coconut oil. Among these, butter and fresh cream are preferable in terms of flavor.
 本発明のベーカリー製品に配合する油脂の量としては、好ましくは10質量%以上であり、さらに好ましくは15質量%以上であり、特に好ましくは20質量%以上である。油脂は多いほど、風味と栄養価が優れるため好ましい。上限は、生産性(生地のまとまり)の観点で、35質量%以下が好ましく、30量%以下がより好ましく、25質量%以下が特に好ましい。
<卵>
 本発明で用いる卵とは、食用卵として流通しているものを用いることができ、鳥卵を用いることが好ましい。鳥卵としては、鶏卵、ウズラ卵、アヒル卵、ダチョウ卵、ハト卵が挙げられ、これらを組合せて使用することもできる。特に、本発明では、加工性、味の点で鶏卵を用いることが好ましい。卵は、生卵をそのまま用いることも、乾燥された加工卵を用いることもできるが、加工性の点で生卵を用いることが好ましい。
The amount of fats and oils to be blended in the bakery product of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more. The more fats and oils, the better the flavor and nutritional value. The upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
<Egg>
As eggs used in the present invention, those circulated as edible eggs can be used, and bird eggs are preferably used. Examples of bird eggs include chicken eggs, quail eggs, duck eggs, ostrich eggs, and pigeon eggs, and these can also be used in combination. In particular, in the present invention, it is preferable to use chicken eggs in terms of processability and taste. As the egg, a raw egg can be used as it is, or a dried processed egg can be used, but it is preferable to use a raw egg in terms of processability.
 本発明のベーカリー製品に配合する卵の量としては、好ましくは10質量%以上であり、さらに好ましくは15質量%以上であり、特に好ましくは20質量%以上である。卵は多いほど、風味と栄養価が優れるため好ましい。上限は、生産性(生地のまとまり)の観点で、35質量%以下が好ましく、30量%以下がより好ましく、25質量%以下が特に好ましい。
<オリゴ糖>
 本発明のベーカリー製品には、コク味を付与する目的で、オリゴ糖を配合することが好ましい。糖類に加え、オリゴ糖を配合することで、上記の糖類の先味(食した直後の味)における甘味をまろやかにし、後味(嚥下直後の味)におけるコクを付与できる。オリゴ糖としては、フラクトオリゴ糖、ガラクトオリゴ糖、マルトオリゴ糖、イソマルトオリゴ糖、乳果オリゴ糖、セロオリゴ糖、キシロオリゴ糖、ラクチュロース、α-、β-、γ-シクロデキストリン等が挙げられる。これらの中でも、マルトオリゴ糖、イソマルトオリゴ糖、乳果オリゴ糖は、味質改善効果が高いため好ましい。
The amount of egg to be blended in the bakery product of the present invention is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more. The more eggs, the better the flavor and nutritional value. The upper limit is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less from the viewpoint of productivity (dough unity).
<Oligosaccharide>
The bakery product of the present invention preferably contains an oligosaccharide for the purpose of imparting a rich taste. By blending oligosaccharides in addition to saccharides, the sweetness of the above-mentioned saccharides (taste immediately after eating) can be mellow, and richness in aftertaste (taste immediately after swallowing) can be imparted. Examples of the oligosaccharide include fructooligosaccharide, galactooligosaccharide, maltooligosaccharide, isomaltooligosaccharide, dairy oligosaccharide, cellooligosaccharide, xylooligosaccharide, lactulose, α-, β-, and γ-cyclodextrin. Among these, maltooligosaccharides, isomaltooligosaccharides, and dairy oligosaccharides are preferable because of their high taste-improving effect.
 本発明のベーカリー製品に配合するオリゴ糖の量としては、好ましくは1質量%以上であり、さらに好ましくは3質量%以上であり、特に好ましくは5質量%以上である。オリゴ糖は多いほど、味改善効果が優れるため好ましい。上限は、15質量%以下が好ましく、10量%以下がより好ましく、8質量%以下が特に好ましい。
<その他原材料>
 本発明のベーカリー製品は、前記以外は、本発明の効果に影響を与えない限りにおいて、通常の食品と同様の構成をとることができる。例えば、水、タンパク質、増粘剤、調味料、香料、色素、乳化剤等より選択された添加材料を、所定の割合で混合したものが用いられる。
The amount of the oligosaccharide to be blended in the bakery product of the present invention is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more. The greater the number of oligosaccharides, the better the taste improving effect. The upper limit is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 8% by mass or less.
<Other raw materials>
Except for the above, the bakery product of the present invention can have the same configuration as that of a normal food as long as the effects of the present invention are not affected. For example, what mixed the additive material selected from water, protein, a thickener, a seasoning, a fragrance | flavor, a pigment | dye, an emulsifier, etc. in a predetermined ratio is used.
 タンパク質としては、通常、牛乳、脱脂粉乳、全脂粉乳、全脂加糖練乳、脱脂加糖練乳或いは生クリームなどの乳由来のタンパク質、大豆タンパク質などを使用することができる。 As the protein, milk-derived protein such as cow's milk, skim milk powder, whole milk powder, whole fat sweetened condensed milk, skimmed sweetened condensed milk or fresh cream, soy protein and the like can be used.
 増粘剤としては、本発明の効果に悪影響を及ぼさない限度で添加することができる。例えば、キサンタンガム、グァーガム、ローカストビーンガム、トラガントガム、タマリンドシードガム、タラガム、カードラン、ラムザンガム、ガティガム、グルコマンナン、カラヤガム、脱アシル型ジェランガム、ネイティブ型ジェランガム、アラビアガム、マクロホモプシスガム、カラギーナン、寒天、ゼラチン、ペクチン、カードラン、グルコマンナン、アルギン酸類(アルギン酸、アルギン酸塩)、各種化工・加工澱粉、CMC、MC、HPC、HPMC、微結晶セルロース、発酵セルロース、微小繊維状セルロース、乾燥こんにゃく加工品等を挙げることができる。 As a thickener, it can be added as long as the effect of the present invention is not adversely affected. For example, xanthan gum, guar gum, locust bean gum, tragacanth gum, tamarind seed gum, tara gum, curdlan, rumzan gum, gati gum, glucomannan, caraya gum, deacylated gellan gum, native gellan gum, gum arabic, macrohomopsis gum, carrageenan, agar, Gelatin, pectin, curdlan, glucomannan, alginic acid (alginic acid, alginate), various modified and processed starches, CMC, MC, HPC, HPMC, microcrystalline cellulose, fermented cellulose, microfibrous cellulose, dried konjac processed products, etc. Can be mentioned.
 乳化剤としては、例えば、グリセリン脂肪酸エステル(モノグリセリン脂肪酸エステル、ジグリセリン脂肪酸エステル、クエン酸あるいは乳酸等の有機酸モノグリセリド、ポリグリセリン脂肪酸エステル)、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、レシチン、サポニン、ポリソルベート、ステアロイル乳酸塩(ナトリウム、カルシウム)等を挙げることができる。 Examples of the emulsifier include glycerin fatty acid ester (monoglycerin fatty acid ester, diglycerin fatty acid ester, organic acid monoglyceride such as citric acid or lactic acid, polyglycerin fatty acid ester), sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, Examples include lecithin, saponin, polysorbate, stearoyl lactate (sodium, calcium) and the like.
 また、ビタミン、カルシウム、鉄、DHAの栄養剤等を併用することも可能である。
<具材>
 本発明のベーカリー製品は、短径が0.5mm以上であり、長径/短径比が1.0~5.0であり、比重1.0g/mL以上の具材を1質量%以上含むものであることが好ましい。本具材は、短径が0.5mm以上の大きいものであることが好ましい。
It is also possible to use vitamins, calcium, iron, DHA nutrients and the like together.
<Ingredients>
The bakery product of the present invention has a minor axis of 0.5 mm or more, a major axis / minor axis ratio of 1.0 to 5.0, and contains 1% by mass or more of ingredients having a specific gravity of 1.0 g / mL or more. It is preferable. The tool material is preferably a large one having a minor axis of 0.5 mm or more.
 ここでいう短径とは、不定形の具材を用いた場合に、その一方の表面から、中心(重心)を経て、他方の表面に至る距離のうち、最も小さいもののことである。短径が大きいほど、食べ応え、風味が優れるものとなるため、好ましい。短径は、1mm以上がより好ましく、3mm以上がさらに好ましく、5mm以上が特に好ましく、10mm以上が最も好ましい。上限としては、30mm以下である。 Here, the minor axis is the smallest distance among the distances from one surface to the other surface through the center (center of gravity) when an irregular shaped material is used. The larger the minor axis, the better the eating response and the better the flavor. The minor axis is more preferably 1 mm or more, further preferably 3 mm or more, particularly preferably 5 mm or more, and most preferably 10 mm or more. As an upper limit, it is 30 mm or less.
 長径とは、上記の計測方法において、最も大きいもののことであり、長径/短径比は、1.0~5.0である。食べやすさの点で、1.0~3.0が好ましく、1.0~2.0がより好ましい。 The major axis is the largest in the above measurement method, and the major axis / minor axis ratio is 1.0 to 5.0. In terms of ease of eating, 1.0 to 3.0 is preferable, and 1.0 to 2.0 is more preferable.
 具材の比重は、1.0g/mL以上であり、比重が大きいほど、食べ応えがあり、歯で噛み切る際のボリューム感が良好であるため好ましい。比重は、好ましくは、1.2g/mL以上であり、より好ましくは1.3g/mL以上であり、特に好ましくは1.5g/mL以上であり、最も好ましくは1.7g/mL以上である。具材の均一分布を保つためには、3.0g/mL以下が好ましい。
<具材の種類>
 本発明で使用できる具材としては、植物性、動物性のいずれのものでもよい。
The specific gravity of the ingredients is 1.0 g / mL or more, and the larger the specific gravity, the better the eating response and the better the volume feeling when chewing with the teeth is preferable. The specific gravity is preferably 1.2 g / mL or more, more preferably 1.3 g / mL or more, particularly preferably 1.5 g / mL or more, and most preferably 1.7 g / mL or more. . In order to maintain a uniform distribution of ingredients, 3.0 g / mL or less is preferable.
<Types of ingredients>
The material that can be used in the present invention may be plant or animal.
 植物性の具材としては、果実、野菜、ナッツ、穀物等を、生でカットしたもの、及び/又は、それらを乾燥、浸漬等の加工を施したものを使用することができる。浸漬された果実、野菜とは、砂糖等の糖液に漬けたもの、塩水に漬けたもの、酢に漬けたもの等が該当し、水分を含んでいても、乾燥されたものであっても、いずれも使用することができる。これらの中で、果実を天日等で乾燥したもの、もしくは砂糖漬けにしたのち乾燥された、ドライフルーツを用いることが、加工性の点で好ましい。 As the plant-based ingredients, fruits, vegetables, nuts, grains, etc., which have been cut raw and / or those which have been processed by drying, dipping, etc. can be used. Soaked fruits and vegetables are those soaked in sugar solution such as sugar, soaked in salt water, soaked in vinegar, etc., even if they contain moisture or are dried , Either can be used. Among these, it is preferable in terms of processability to use dried fruits obtained by drying the fruits in the sun or the like, or dried after sugaring.
 動物性の具材としては、牛肉、豚肉、鶏肉、または、それらを干し肉、ハム、ソーセージ等に加工されたもの、魚肉、または、それらを魚節、カマボコ、ソーセージ等に加工されたもの、チーズ等の乳を発酵したものを用いることもできる。
<果実系の具材>
 本発明のベーカリー製品には、果実系の具材を用いることが好ましい。果実を用いることで、味に優れるものが得られる。果実系の具材は、それらの中でも、ドライフルーツ、糖液に漬け込まれたフルーツ、生フルーツから選ばれる一種以上であることが、加工のしやすさの点で、好ましい。
<ドライフルーツ>
 本発明のベーカリー製品に配合する具材は、ドライフルーツが、加工のしやすさ、食感、味の点で、好ましい。ドライフルーツとしては、例えば、レーズン(ブドウ)、フィグ(イチジク)、プルーン、干し柿(カキ)、アンズ(アプリコット)、プラム、ブルーベリー、クランベリー、カーラント(スグリ)、オレンジピール(オレンジの果皮) 、レモンピール(レモンの果皮)、メロン、リンゴ、マンゴー、パパイヤ、バナナ、パイナップル、ナツメ、ナツメヤシ、サンザシ、クコ等のドライフルーツのうち1種以上を用いることができる。
<具材の添加量>
 本発明のベーカリー製品は、上述の具材を1質量%以上含む必要がある。具材を多量に配合することで、ベーカリー製品の食感、味が優れたものが得られる。好ましくは、3質量%以上であり、より好ましくは、5質量%以上であり、さらに好ましくは、10質量%以上であり、特に好ましくは、15質量%以上であり、最も好ましくは、20質量%以上である。具材を入れすぎると、生地とのバランスが崩れ、型崩れを生じ、食感が損なわれるため、上限としては、50質量%以下である。
<セルロース組成物の添加量>
 本発明のベーカリー製品は、本発明のセルロース組成物を0.1質量%以上含むことが好ましい。ここでいうセルロース組成物の配合量は、組成物の重量から算出される(組成物中のセルロース含量ではない)。セルロース組成物を多量に配合するほど、具材の均一性が優れる。好ましくは、0.3質量%以上であり、より好ましくは、0.5質量%以上であり、さらに好ましくは、1質量%以上であり、特に好ましくは、3質量%以上であり、最も好ましくは5質量%以上である。一方で、セルロースを配合しすぎると、ケーキに繊維的な、ぼそぼそとした食感が現れるため、上限は、10質量%以下が好ましい。
<ベーカリー製品に使用する加工澱粉>
 本発明のベーカリー製品には、上述の原材料に加え、加工澱粉を使用することができる。加工澱粉は、セルロース組成物と併用することで、具材の均一安定化において、相乗効果が得られるため好ましい。セルロース組成物と併用した場合の本発明のベーカリー製品への添加量は、0.1質量%以上が好ましい。より好ましくは、1質量%以上であり、さらに好ましくは1.5質量%以上であり、特に好ましくは、2質量%以上である。加工澱粉は、配合しすぎると食感が損なわれるため、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が特に好ましい。
Animal ingredients include beef, pork, chicken, or those processed into dried meat, ham, sausage, etc., fish, or those processed into fish sections, sea bream, sausage, etc. What fermented milk, such as cheese, can also be used.
<Fruit ingredients>
It is preferable to use fruit-based ingredients in the bakery product of the present invention. By using the fruit, a product with excellent taste can be obtained. Among them, the fruit-based ingredients are preferably at least one selected from dried fruits, fruits soaked in sugar solution, and fresh fruits from the viewpoint of ease of processing.
<Dried fruit>
The ingredients to be blended in the bakery product of the present invention are preferably dried fruits in terms of ease of processing, texture and taste. As dried fruits, for example, raisins (grape), figs (ficus), prunes, dried persimmons (oysters), apricots, plums, blueberries, cranberries, currants (currants), orange peels (orange peels), lemon peels One or more of dry fruits such as (lemon peel), melon, apple, mango, papaya, banana, pineapple, jujube, date palm, hawthorn and wolfberry can be used.
<Addition of ingredients>
The bakery product of this invention needs to contain 1 mass% or more of the above-mentioned ingredients. By blending a large amount of ingredients, a bakery product with excellent texture and taste can be obtained. Preferably, it is 3% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, particularly preferably 15% by mass or more, and most preferably 20% by mass. That's it. If too much ingredients are added, the balance with the dough is lost, the shape is lost, and the texture is impaired, so the upper limit is 50% by mass or less.
<Addition amount of cellulose composition>
The bakery product of the present invention preferably contains 0.1% by mass or more of the cellulose composition of the present invention. The blending amount of the cellulose composition here is calculated from the weight of the composition (not the cellulose content in the composition). The more the cellulose composition is blended, the better the uniformity of the ingredients. Preferably, it is 0.3% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, particularly preferably 3% by mass or more, and most preferably It is 5 mass% or more. On the other hand, if too much cellulose is blended, a fibery and soft texture appears in the cake, so the upper limit is preferably 10% by mass or less.
<Processed starch used in bakery products>
In addition to the above-mentioned raw materials, modified starch can be used for the bakery product of the present invention. Processed starch is preferable because it can be used in combination with the cellulose composition because a synergistic effect is obtained in uniform stabilization of ingredients. As for the addition amount to the bakery product of this invention at the time of using together with a cellulose composition, 0.1 mass% or more is preferable. More preferably, it is 1 mass% or more, More preferably, it is 1.5 mass% or more, Most preferably, it is 2 mass% or more. When the processed starch is added too much, the texture is impaired, so that it is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
 ここで、用いることができる加工澱粉としては、アセチル化アジピン酸架橋澱粉、アセチル化酸化澱粉、アセチル化リン酸架橋澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉、ヒドロキシアルキル化リン酸架橋澱粉、ヒドロキシアルキル化澱粉、リン酸架橋澱粉、リン酸化澱粉、リン酸モノエステル化リン酸架橋澱粉、澱粉グルコール酸ナトリウム、澱粉リン酸エステルナトリウムが好ましい。これらは、アルファー化加工したもの、部分的にアルファー化加工したもの、アルファー化加工をしていないもののうち、いずれの形態のものでも使用できる。また、酸処理された澱粉、又は生澱粉をアルファー化したアルファー化澱粉も使用できる。上述の加工澱粉は、1種を単独で使用しても、2種以上を併用してもよい。上述の加工澱粉の中でも、アルファー加工したものが、セルロース組成物との相乗効果が高いため、好ましい。アセチル化酸化澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉、ヒドロキシアルキル化澱粉、リン酸化澱粉、生澱粉のいずれかをアルファー化したものが、さらに好ましい。特に好ましくは、生澱粉をアルファー加工したアルファー化澱粉である。 Here, as the modified starch that can be used, acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl succinate starch sodium, acetate starch, oxidized starch, hydroxyalkylated phosphate crosslinked starch, Hydroxyalkylated starch, phosphoric acid cross-linked starch, phosphorylated starch, phosphoric acid monoesterified phosphoric acid cross-linked starch, starch sodium glycolate, and sodium starch phosphate ester are preferred. These can be used in any form of an alpha process, a partially alpha process, and a non-alpha process. Further, acid-treated starch or pregelatinized starch obtained by pregelatinizing raw starch can also be used. The above-mentioned modified starch may be used alone or in combination of two or more. Among the above-mentioned processed starches, those processed with an alpha are preferable because they have a high synergistic effect with the cellulose composition. More preferred is an acetylated oxidized starch, a sodium octenyl succinate starch, an acetate starch, an oxidized starch, a hydroxyalkylated starch, a phosphorylated starch, or a raw starch that has been alphalated. Particularly preferred is pregelatinized starch obtained by subjecting raw starch to alpha.
 加工澱粉の原料としては、小麦澱粉、トウモロコシ澱粉、モチ種トウモロコシ澱粉(ワキシーコーンスターチ)、馬鈴薯澱粉、モチ種馬鈴薯澱粉、タピオカ澱粉、米澱粉、もち米澱粉、さつまいも澱粉、さご澱粉、くず澱粉等が挙げられる。 Processed starch ingredients include wheat starch, corn starch, waxy corn starch (waxy corn starch), potato starch, waxy potato starch, tapioca starch, rice starch, glutinous rice starch, sweet potato starch, sago starch, waste starch, etc. Is mentioned.
 これらの中でも、セルロース組物との相乗効果の点からモチ種トウモロコシ澱粉(ワキシーコーンスターチ)、タピオカ澱粉が好ましく、より好ましくはタピオカ澱粉である。
<ベーカリー製品の製法>
 本発明のベーカリー製品とは、小麦粉、糖類、油脂と、必要に応じ卵を含む原料に、水を添加し、混合、混練され、焼成、又は油ちょうされたもののことであり、従来公知の方法により調製される。上述の方法において、配合原材料の比率、添加される水分率、生地の混合・混練条件、焼成条件、最終的な形態に応じて、パウンドケーキ、スポンジケーキ、シフォンケーキ、カステラ、ホットケーキ、チーズケーキ、ドーナッツのいずれも製造可能である。この中でも、特に、パウンドケーキ、スポンジケーキ、シフォンケーキ、カステラ、チーズケーキは、その形態から、本発明の効果が大きくなるため好ましい。
<パウンドケーキ、スポンジケーキ、シフォンケーキ、カステラ、チーズケーキ>
 例えば、全卵をあらかじめホイップしてからケーキ生地を調製する共立て法、卵を卵白と卵黄に分け、卵白部分をホイップしメレンゲ状態にしてからケーキ生地を調製する別立て法、そして全ての原材料を一緒にまとめて混合し、ホイップしてケーキ生地を調製するオールインミックス法の3つの方法が知られている。本発明では大量生産可能な、オールインミックス法により調製するのが好ましい。
Among these, waxy corn starch (waxy corn starch) and tapioca starch are preferable from the viewpoint of a synergistic effect with the cellulose assembly, and tapioca starch is more preferable.
<Production method for bakery products>
The bakery product of the present invention is a raw material containing wheat flour, saccharides, fats and oils, and if necessary, water, mixed, kneaded, baked or oiled, and is a conventionally known method. It is prepared by. In the above method, depending on the ratio of blended raw materials, added moisture content, dough mixing / kneading conditions, baking conditions, final form, pound cake, sponge cake, chiffon cake, castella, hot cake, cheesecake Both donuts can be produced. Among these, a pound cake, a sponge cake, a chiffon cake, a castella, and a cheesecake are particularly preferable because the effects of the present invention are increased from the form.
<Pound cake, sponge cake, chiffon cake, castella, cheesecake>
For example, a co-standing method to prepare cake dough after whipping all eggs in advance, a separate method to prepare cake dough after dividing the egg into egg white and yolk, whipping the egg white portion into a meringue state, and all raw materials There are three known all-in-mix methods in which cakes are mixed together and whipped to prepare a cake dough. In the present invention, it is preferable to prepare by an all-in-mix method capable of mass production.
 オールインミックス法では、小麦粉、全卵、糖質、油脂、水、乳化剤等の原材料を一緒にまとめて混合、ホイップして起泡させ焼成型に流し込んだ後、オーブンで焼成するといった加工方法により調製することができる。 In the all-in-mix method, raw materials such as flour, whole eggs, sugars, fats and oils, water, and emulsifiers are mixed together, whipped, foamed, poured into a firing mold, and then fired in an oven. Can be prepared.
 本発明では、ホイップ工程は、かならずしも必須ではなく、最終的に要求される形態に応じて、公知技術を用いて、ホイップの程度、方法は、適宜調整することができる。
<セルロース組成物の添加方法>
 上述の製造方法において、セルロース組成物は、焼成前の段階で添加される。特に、水が存在する段階で、他の原料とともに混合されると、セルロースの分散が促進されるため好ましい。また、卵や、水を添加する際に、予め、それらと混合し、分散された状態で添加してもよい。
<具材の添加方法>
 上述の製造方法において、本発明の具材も、焼成前の段階で添加される。具材とセルロースの添加順序は、前後してもよいが、セルロースが生地に分散された後に添加されることが好ましい。
<スポンジケーキ、パウンドケーキ、シフォンケーキ>
 本発明でいうスポンジケーキは、特に、上述の記載において、溶いた鶏卵の起泡性を利用し、オーブンで弾力に富んだ軽いスポンジ状に焼き上げるケーキ生地の形態をとるもののことである。特に、泡立て工程で、スポンジ生地の基本的な組成は、卵、砂糖、小麦粉であるが、ここでは、油脂を含んだバタースポンジも、本発明のスポンジケーキに含まれる。本発明のシフォンケーキは、本発明のスポンジケーキに含まれ、特に、ホイップ工程において、メレンゲを経たもののことをいう。
In the present invention, the whipping step is not necessarily essential, and the degree and method of whipping can be appropriately adjusted using known techniques according to the finally required form.
<Method for adding cellulose composition>
In the above production method, the cellulose composition is added at a stage before firing. In particular, mixing with other raw materials in the presence of water is preferable because dispersion of cellulose is promoted. Moreover, when adding an egg or water, you may mix with them previously and may add in the state disperse | distributed.
<Method of adding ingredients>
In the manufacturing method described above, the ingredients of the present invention are also added at a stage before firing. The order of addition of the ingredients and cellulose may be mixed, but is preferably added after the cellulose is dispersed in the dough.
<Sponge cake, pound cake, chiffon cake>
The sponge cake as referred to in the present invention is a cake dough that is baked into a light sponge with high resilience in an oven using the foamability of melted chicken eggs in the above description. In particular, in the foaming process, the basic composition of the sponge dough is eggs, sugar, and flour. Here, butter sponges containing fats and oils are also included in the sponge cake of the present invention. The chiffon cake of the present invention is included in the sponge cake of the present invention, and particularly refers to a product that has undergone meringue in the whipping process.
 ここで、本発明のスポンジケーキと、パウンドケーキは、焼成前の生地の比重で区別できる。スポンジケーキの生地の比重は、0.3~0.69g/mLが好ましい、より好ましくは、0.35~0.6g/mLであり、さらに好ましくは、0.4~0.55g/mLである。 Here, the sponge cake of the present invention and the pound cake can be distinguished by the specific gravity of the dough before baking. The specific gravity of the sponge cake dough is preferably 0.3 to 0.69 g / mL, more preferably 0.35 to 0.6 g / mL, and still more preferably 0.4 to 0.55 g / mL. is there.
 本発明のパウンドケーキの生地の比重は、0.7~1.0g/mLが好ましく、より好ましくは、0.75~0.9g/mLであり、さらに好ましくは、0.75~0.85g/mLである。
<その他の食品用途>
 本発明のセルロース組成物は、種々の食品に使用できる。例を挙げると、各種のスープ、シチュー、ソース、タレ、ドレッシング等の調味料類、コーヒー、紅茶、抹茶、ココア、汁粉、ジュース等の嗜好飲料、生乳、加工乳、乳酸菌飲料、豆乳等の乳性飲料、カルシウム強化飲料等の栄養強化飲料及び食物繊維含有飲料等を含む各種の飲料類、アイスクリーム、アイスミルク、ソフトクリーム、ミルクシェーキ、シャーベット等の氷菓類、バター、チーズ、ヨーグルト、コーヒーホワイトナー、ホイッピングクリーム、カスタードクリーム、プリン等の乳製品類、マヨネーズ、マーガリン、スプレッド、ショートニング等の油脂加工食品類、練りがらしに代表される各種練りスパイス、ジャム、フラワーペーストに代表される各種フィリング、各種のアン、ゼリーを含むゲル・ペースト状食品類、パン、麺、パスタ、ピザ、各種プレミックスを含むシリアル食品類、キャンディー、クッキー、ビスケット、ホットケーキ、チョコレート、餅等を含む和・洋菓子類、蒲鉾、ハンペン等に代表される水産練り製品、ハム、ソーセージ、ハンバーグ等に代表される畜産製品、クリームコロッケ、中華用アン、グラタン、ギョーザ等の各種の惣菜類、塩辛、カス漬等の珍味類、ペットフード類、並びに経管流動食類等である。
The specific gravity of the dough of the pound cake of the present invention is preferably 0.7 to 1.0 g / mL, more preferably 0.75 to 0.9 g / mL, and still more preferably 0.75 to 0.85 g. / ML.
<Other food applications>
The cellulose composition of the present invention can be used for various foods. For example, various soups, stews, sauces, sauces, dressings and other seasonings, coffee, tea, matcha, cocoa, juice, juices and other favorite beverages, raw milk, processed milk, lactic acid bacteria beverages, soy milk, etc. Beverages including nutritious beverages such as organic beverages, calcium-fortified beverages and dietary fiber-containing beverages, ice creams such as ice cream, ice milk, soft cream, milk shake, sherbet, butter, cheese, yogurt, coffee white Milk, whipping cream, custard cream, pudding and other dairy products, mayonnaise, margarine, spreads, shortening and other dairy products, various kneading spices such as knead and various fillings represented by jam and flower paste , Gel and paste foods containing various types of ann and jelly, , Noodles, pasta, pizza, cereal foods including various premixes, candies, cookies, biscuits, hot cakes, Japanese and Western confectioneries including chocolate, candy, etc. And other livestock products represented by hamburgers, cream croquettes, Chinese annuities, gratin, gyoza and other prepared foods, salted and delicacies such as pickled vegetables, pet foods, and tube-flowing foods.
 本発明のセルロース組成物は、これらの用途において、非乳化型の油の分散安定剤、懸濁安定剤、増粘安定剤、泡安定剤、クラウディー剤、組織付与剤、流動性改善剤、保形剤、離水防止剤、生地改質剤、粉末化基剤、食物繊維基剤、油脂代替などの低カロリー化基剤として作用するものである。また、上記の食品が、レトルト食品、粉末食品、冷凍食品、電子レンジ用食品等のように形態又は用時調製の加工手法が異なっていても、本発明の効果は発揮される。 In these applications, the cellulose composition of the present invention is a non-emulsifying oil dispersion stabilizer, suspension stabilizer, thickening stabilizer, foam stabilizer, cloudy agent, tissue imparting agent, fluidity improver, It acts as a low calorie base such as a shape-retaining agent, water separation preventing agent, dough modifier, powdered base, dietary fiber base, and fat / oil substitute. In addition, the effects of the present invention can be exhibited even if the above-mentioned foods have different forms or processing methods at the time of use, such as retort foods, powdered foods, frozen foods, and microwave foods.
 本発明のセルロース組成物を食品に使用する場合、各食品の製造で一般に行われている方法と同様の機器を使用して、主原料の他、必要に応じて、香料、pH調整剤、増粘安定剤、塩類、糖類、油脂類、蛋白類、乳化剤、酸味料、色素等と配合して、混合、混練、撹拌、乳化、加熱等の操作を行えばよい。
<食品以外の用途>
 本発明のセルロース組成物は、高塩分濃度の液で容易に分散可能な、非乳化型の油の易分散安定剤である。食品以外にも、シロップ剤、液剤、軟膏等の医薬品、化粧水、乳液、洗浄剤等の化粧品、食品用・工業用洗浄剤及び処理剤原料、家庭用(衣料、台所、住居、食器等)洗剤原料、塗料、顔料、セラミックス、水系ラテックス、乳化(重合)用、農薬用、繊維加工用(精錬剤、染色助剤、柔軟剤、撥水剤)、防汚加工剤、コンクリート用混和剤、印刷インキ用、潤滑油用、帯電防止剤、防曇剤、滑剤、分散剤、脱墨剤等を、当該セルロース組成物の用途として挙げることができる。その中でも、特に、水不溶性成分を含む水系懸濁状態の組成物においては、凝集や分離、離水、沈降を発生させることなく、安定な分散状態を保持することが可能である。また、安定剤としての性能が著しく向上するとともに、その滑らかな舌ざわりとボディ感によりザラツキの問題が解消されるため、当該セルロース組成物は、上記に記載した以外の幅広い食品用途で使用することも可能である。
<工業用途>
 本発明のセルロース組成物は、懸濁安定効果も有しているので、塗料成分の分離、沈降、凝集を防止することに有効である。特に、製造工程及び使用時に成分の分離、沈降、凝集が問題となる電着塗料、上塗り塗料、中塗り塗料、建材用塗料に使用するのが好適である。これらの用途において塩濃度は特に規定されないが、1.0mol/L以下であることが好ましい。ここでの塩濃度とは、上述の塗料中の固形分を、遠心分離及び/又はろ過で除去した後、得られた水溶液中の塩分濃度のことであり、塩分計(ATAGO製デジタル塩分計ES-421)を用いて測定された値(質量%)を、NaClとして換算したモル濃度(mol/L)のことである。また、これらの用途においてpHは特に規定されないが、pHは3.0~13.0が好ましく、4.0~12.0がより好ましい。pHの測定方法としては、上述の塗料中の固形分を、遠心分離及び/又はろ過で除去した後、pH計(HORIBA製 pHメータD-50)を用いて測定できる。
When the cellulose composition of the present invention is used for food, the same equipment as that generally used in the production of each food is used, and in addition to the main raw materials, as needed, a perfume, pH adjuster, What is necessary is just to mix | blend with a viscosity stabilizer, salts, saccharides, fats and oils, protein, an emulsifier, a sour agent, a pigment | dye etc., and to perform operations, such as mixing, kneading | mixing, stirring, emulsification, and heating.
<Applications other than food>
The cellulose composition of the present invention is a non-emulsifying oil easy dispersion stabilizer that can be easily dispersed in a liquid having a high salinity. In addition to foods, pharmaceuticals such as syrups, liquids, ointments, cosmetics such as lotions, emulsions, detergents, raw materials for food and industrial detergents and treatments, household use (clothing, kitchen, dwelling, tableware, etc.) Raw materials for detergents, paints, pigments, ceramics, aqueous latex, for emulsification (polymerization), for agricultural chemicals, for fiber processing (refining agents, dyeing aids, softeners, water repellents), antifouling agents, concrete admixtures, Examples of the use of the cellulose composition include printing inks, lubricating oils, antistatic agents, antifogging agents, lubricants, dispersants, deinking agents, and the like. Among these, in particular, a composition in an aqueous suspension containing a water-insoluble component can maintain a stable dispersion state without causing aggregation, separation, water separation, and sedimentation. Moreover, since the performance as a stabilizer is remarkably improved and the problem of roughness is eliminated by its smooth texture and body feeling, the cellulose composition can be used in a wide range of food applications other than those described above. Is possible.
<Industrial use>
Since the cellulose composition of the present invention also has a suspension stabilizing effect, it is effective for preventing separation, sedimentation, and aggregation of coating components. In particular, it is suitable for use in electrodeposition coatings, top coatings, intermediate coatings, and building material coatings in which separation, sedimentation, and aggregation of components are problematic during the manufacturing process and use. In these applications, the salt concentration is not particularly defined, but is preferably 1.0 mol / L or less. The salt concentration herein refers to the salt concentration in the aqueous solution obtained after removing the solid content in the paint by centrifugation and / or filtration. -421) is a molar concentration (mol / L) in terms of NaCl (% by mass) measured as NaCl. In these applications, the pH is not particularly defined, but the pH is preferably from 3.0 to 13.0, more preferably from 4.0 to 12.0. The pH can be measured using a pH meter (pH meter D-50 manufactured by HORIBA) after removing the solid content in the paint by centrifugation and / or filtration.
 本発明を下記の実施例により説明する。ただし、これらは本発明の範囲を制限するものではない。 The invention is illustrated by the following examples. However, these do not limit the scope of the present invention.
<水性飲食品の実施例、比較例>
 まず、各種物性の評価方法を説明する。
<Examples of water-based foods and beverages, comparative examples>
First, evaluation methods for various physical properties will be described.
<セルロース組成物の微粒子成分(BS量)>
(1)本発明のセルロース組成物を量りとり、0.01質量%濃度となるように、5質量%の塩化ナトリウム水溶液に分散させた。
(2)次に、このセルロース組成物の分散液を、レーザー回折/散乱式粒度分布計(堀場製作所(株)製、商品名「LA-910」、フローセル)に仕込み、2分間の超音波処理を行い、屈折率1.04で、粒度分布を測定した。
(3)ここで、得られた体積頻度ヒストグラムにおいて、全体に占める1μm以下の粒子の割合(全体積頻度に対する百分率)を、以下の式により算出した。BS量(%)=(1μm以下の粒子の体積頻度)/(検出された全体積頻度)×100
<Fine particle component of cellulose composition (BS amount)>
(1) The cellulose composition of the present invention was weighed and dispersed in a 5% by mass sodium chloride aqueous solution so that the concentration was 0.01% by mass.
(2) Next, this cellulose composition dispersion was charged into a laser diffraction / scattering particle size distribution meter (trade name “LA-910”, manufactured by Horiba, Ltd., flow cell), and subjected to ultrasonic treatment for 2 minutes. The particle size distribution was measured at a refractive index of 1.04.
(3) Here, in the obtained volume frequency histogram, the ratio of particles of 1 μm or less to the whole (percentage of the total volume frequency) was calculated by the following formula. BS amount (%) = (volume frequency of particles of 1 μm or less) / (detected total volume frequency) × 100
<ラーメンスープの評価:外観観察>
(油の分散安定性)
 200mLのトールビーカーに、試作したスープを仕込んで、所定時間、所定温度で放置した後に、上部に発生した色が薄い層(油層)の体積率を、目視で評価した。
  ◎(優):分離なし(均一)
  ○(良):分離あり、10%未満
  △(可):分離10%以上30%未満
  ×(不可):分離30%以上
  ※ここで分離を示す%は、全スープの体積に閉める油層の体積百分率である。
(たんぱく質の凝集)
 200mLのトールビーカーに、試作したスープを仕込んで、所定時間、所定温度で放置した後に、側面および底面の色の濃淡(斑点様の色むら)を、目視で評価した。
  ◎(優):色の濃淡なし(均一)
  ○(良):一部に色の濃淡あり
  △(可):一面に色の濃淡あり、さらに沈降を生じている
  ×(不可):全体的に色の濃淡あり、さらに沈降を生じている
(風味)
 調製直後の濃縮スープに熱湯を加え、体積比で3倍希釈した。その直後に、この希釈液とセルロース組成物無添加品とを比較した場合の、油の風味のマスキングの度合いを官能評価した。
  ◎(優):マスキングなし
  ○(良):僅かにマスキングあり
  △(可):明らかにマスキングあり
  ×(不可):油の風味を感じない程度に、マスキングあり
<Evaluation of ramen soup: Appearance observation>
(Oil dispersion stability)
After preparing the prototype soup in a 200 mL tall beaker and leaving it at a predetermined temperature for a predetermined time, the volume ratio of the lightly colored layer (oil layer) generated on the upper part was visually evaluated.
◎ (excellent): No separation (uniform)
○ (Good): Separation is less than 10% △ (Yes): Separation is 10% or more and less than 30% X (No): Separation is 30% or more Percentage.
(Protein aggregation)
A 200 mL tall beaker was charged with the prototype soup and allowed to stand at a predetermined temperature for a predetermined time, and then the side and bottom color shading (spot-like color unevenness) was visually evaluated.
◎ (excellent): No color shading (uniform)
○ (good): color shade in part △ (possible): color shade on one side and further sedimentation × (impossible): overall color shade and further sedimentation ( Flavor)
Hot water was added to the concentrated soup immediately after preparation, and diluted 3 times by volume. Immediately after that, the degree of masking of the flavor of the oil when this diluted solution was compared with the cellulose composition-free product was subjected to sensory evaluation.
◎ (Excellent): No masking ○ (Good): Slightly masked △ (Yes): Clearly masked × (No): Masked to the extent that the oil flavor is not felt
<焼肉のたれの評価:外観観察>
(油の分散安定性)
 50mL容積のプラスチック容器に、試作した焼肉のたれを仕込んで、所定時間、所定温度で保存し、次いで所定の処理を行った後に、上部に発生した色が薄い層(油層)の体積率を、目視で評価した。
  ◎(優):分離なし(均一)
  ○(良):分離あり、5%未満
  △(可):分離5%以上10%未満
  ×(不可):分離10%以上
  ※ここで分離を示す%は、全たれの体積に閉める油層の体積百分率である。
(具材の懸濁安定性)
 50mL容積のプラスチック容器に、試作した焼肉のたれを仕込んで、所定時間、所定温度で保存し、次いで所定の処理を行った後に、底面への具材の沈降(堆積物)を、目視で評価した。
  ◎(優):沈降なし
  ○(良):部分的に薄く沈降
  △(可):一面に薄く沈降
  ×(不可):全体的に濃く沈降
<Evaluation of sagging of yakiniku: appearance observation>
(Oil dispersion stability)
A 50 mL plastic container is filled with the sacrificial yakiniku sauce, stored at a predetermined temperature for a predetermined time, and then subjected to a predetermined treatment, and then the volume ratio of the lightly colored layer (oil layer) generated at the top is determined. Visually evaluated.
◎ (excellent): No separation (uniform)
○ (good): with separation less than 5% △ (possible): separation 5% or more and less than 10% × (not possible): separation 10% or more Percentage.
(Suspension stability of ingredients)
Prepare a prototype of grilled meat sauce in a 50 mL plastic container, store it at a predetermined temperature for a predetermined time, and then perform a predetermined treatment, and then visually evaluate the sedimentation (sediment) of the ingredients on the bottom surface. did.
◎ (Excellent): No sedimentation ○ (Good): Partially thin sedimentation △ (Yes): Thinly settled on one side × (No): Overall dark sedimentation
<マヨネーズの評価:外観観察>
(保形性)
 試作したマヨネーズを、チューブ容器に仕込み、チューブから角が立つように3g搾り出し、1時間後の角立ちを、目視で評価した。
  ◎(優):絞り出し直後の形態をそのまま保持
  ○(良):角の先端が僅かに丸く変形
  △(可):角の先端から中部までが丸く変形
  ×(不可):全体が丸くなり、角がなくなった状態
<Evaluation of mayonnaise: appearance observation>
(Shape retention)
The prototype mayonnaise was charged into a tube container, and 3 g was squeezed out from the tube so that the corner was raised, and the standing after 1 hour was visually evaluated.
◎ (excellent): The shape immediately after squeezing is retained as it is. ○ (good): The tip of the corner is slightly rounded. △ (possible): The corner from the tip to the middle is rounded. Is missing
<ソフトミックスの評価:外観観察>
(油の分散安定性)
 試作したソフトミックスに、所定時間、所定温度で殺菌処理を施し、250mL容積の耐熱瓶に充填し、次いで所定時間、所定温度で保存した後に、上部に発生した色が薄い層(油層)の体積率を、目視で評価した。
  ◎(優):分離なし(均一)
  ○(良):分離あり、2%未満
  △(可):分離2%以上5%未満
  ×(不可):分離5%以上
 ※ここで分離を示す%は、全ソフトミックスの体積に閉める油層の体積百分率である。
<Evaluation of soft mix: appearance observation>
(Oil dispersion stability)
The prototype soft mix is sterilized at a predetermined temperature for a predetermined time, filled in a 250 mL heat-resistant bottle, and then stored at a predetermined temperature for a predetermined time, and then the volume of the lightly colored layer (oil layer) generated at the top The rate was evaluated visually.
◎ (excellent): No separation (uniform)
○ (good): with separation less than 2% △ (possible): separation 2% or more and less than 5% × (not possible): separation 5% or more * The% indicating separation is the oil layer that is closed to the volume of the entire soft mix. It is a volume percentage.
<水性飲食品の粘弾性>
(1) 各実施例、比較例で得られた水性飲食品を所定の温度(25℃または50℃)に加熱し、粘弾性測定装置(Rheometric Scientific,Inc.製、ARES100FRTN1型、ジオメトリー:25mm Cone Plate型)に仕込んだ。この際、所定の条件(温度:25.0℃一定または50.0℃一定、角速度:20rad/秒、歪み:1→794%の範囲で掃引、水性飲食品は微細構造を壊さないようスポイトを使用して、ゆっくりと仕込み、10分間静置した後に、Dynamic Strainモードで測定を開始する)により測定した。
(2) 次に、上述のそれぞれの温度の測定で得られた、歪み-応力曲線上の、歪み10%の貯蔵弾性率(G’)と損失弾性率(G’’)から、損失正接(tanδ)を求め、これらを用いて、損失正接の比(tanδ(50℃)/tanδ(25℃))を算出した。
<Viscoelasticity of aqueous food and drink>
(1) The aqueous food and drink obtained in each Example and Comparative Example were heated to a predetermined temperature (25 ° C. or 50 ° C.), and a viscoelasticity measuring device (Rheometric Scientific, Inc., ARES100FRTN1 type, geometry: 25 mm Cone) Plate type). At this time, sweep within a predetermined condition (temperature: 25.0 ° C constant or 50.0 ° C constant, angular velocity: 20 rad / sec, strain: 1 → 794%, water-based food and drink should have a dropper so as not to break the microstructure. The sample was slowly prepared and allowed to stand for 10 minutes, and then the measurement was started in the Dynamic Strain mode.
(2) Next, from the storage elastic modulus (G ′) and loss elastic modulus (G ″) of strain 10% on the strain-stress curve obtained by measuring each of the above temperatures, the loss tangent ( tan δ) was determined, and the loss tangent ratio (tan δ (50 ° C.) / tan δ (25 ° C.)) was calculated using these values.
[実施例1]
1)分散/均質化工程
 高速攪拌機(プライミクス製 商品名TKホモミキサーMARKII)を用いて、25℃の水道水1500gを2000rpmで攪拌しながら、親水性物質としてデキストリン(三和澱粉製 商品名サンデック#100)を250g加え、5分間攪拌した。その後、加工澱粉として、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を25g加えた後に、更に5分間攪拌した。続いて、セルロース複合体として、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30、組成:セルロース/キサンタンガム/デキストリン=75/5/20(質量比)、貯蔵弾性率(G’):1.0Pa、体積平均粒子径8.6μm、コロイド状成分量65質量%)を225g加えて、12、000rpmで60分間攪拌し、分散液とした。
2)乾燥工程
 この分散液を、スプレードライヤー(東京理科製 商品名SD-1000型)を使用し、フィード速度10g/分で、入口温度160~200℃、出口温度60~80℃の範囲で乾燥させた。得られた乾燥物を、目開き500μmの篩を通過させ、セルロース組成物Aを得た。得られたセルロース組成物AのBS量を測定し、結果を表1に示した。
[Example 1]
1) Dispersion / Homogenization Step Using a high-speed stirrer (product name: TK Homomixer MARKII, manufactured by PRIMIX), while stirring 1500 g of tap water at 25 ° C. at 2000 rpm, dextrin (product name: SANDEC #, manufactured by Sanwa Starch) 100) was added and stirred for 5 minutes. Thereafter, 25 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH, manufactured by Nissho Chemical Co., Ltd.) was added as processed starch, and the mixture was further stirred for 5 minutes. Subsequently, as a cellulose composite, a composite of cellulose and xanthan gum (trade name Theolas RC-N30 manufactured by Asahi Kasei Chemicals, composition: cellulose / xanthan gum / dextrin = 75/5/20 (mass ratio), storage elastic modulus (G ′) : 225 g of 1.0 Pa, volume average particle diameter 8.6 μm, colloidal component amount 65% by mass) and stirred at 12,000 rpm for 60 minutes to obtain a dispersion.
2) Drying process This dispersion is dried at a feed rate of 10 g / min and an inlet temperature of 160 to 200 ° C. and an outlet temperature of 60 to 80 ° C. using a spray dryer (trade name SD-1000, manufactured by Tokyo Science). I let you. The obtained dried product was passed through a sieve having an opening of 500 μm to obtain a cellulose composition A. The amount of BS of the obtained cellulose composition A was measured, and the results are shown in Table 1.
3)濃縮ラーメンスープの試作
 セルロース組成物Aを用いて、次のようにして濃縮ラーメンスープを作成した。
 まず、プロペラ攪拌機(HEIDON製 商品名3-1モーター、攪拌翼カイ十字型プロペラ1段)を用いて、チキンエキス(JTフーズ社製)96g、白豚湯(JTフーズ社製)21g、濃口醤油(キッコーマン製)12.6g、豚蛋白加水分解物(AP-LP社製)5.1g、ニボシエキス(JTフーズ社製)2.1gと純水84gを75℃、500rpmで10分間攪拌した。
 次に、予め混合した、粉末成分(セルロース組成物A4.5g、砂糖6.9g、食塩6g、核酸系調味料1.8g、キサンタンガム0.45g)を加え、500rpmで10分間攪拌し、その後に、精製ラード60gを加え、700rpmで10分間攪拌した。最終品の塩分濃度は3質量%であり、油分が20質量%であった。
 これを、200ml容積のトールビーカーに移し、75℃で2時間保存した後、目視で外観の状態観察(油の分散安定性、たんぱく質の凝集の評価)を行った。評価結果を表1に示した。
3) Trial manufacture of concentrated ramen soup Using the cellulose composition A, concentrated ramen soup was prepared as follows.
First, using a propeller stirrer (trade name 3-1 motor manufactured by HEIDON, 1 stage of stirring blade chi-cross type propeller), 96 g of chicken extract (manufactured by JT Foods), 21 g of white pork hot water (manufactured by JT Foods), thick soy sauce 12.6 g (manufactured by Kikkoman), 5.1 g of porcine protein hydrolyzate (manufactured by AP-LP), 2.1 g of niboshi extract (manufactured by JT Foods) and 84 g of pure water were stirred at 75 ° C. and 500 rpm for 10 minutes.
Next, powder components (4.5 g of cellulose composition A, sugar 6.9 g, salt 6 g, nucleic acid seasoning 1.8 g, xanthan gum 0.45 g) mixed in advance are added and stirred at 500 rpm for 10 minutes, and then Then, 60 g of purified lard was added and stirred at 700 rpm for 10 minutes. The final product had a salt concentration of 3% by mass and an oil content of 20% by mass.
This was transferred to a 200 ml-volume tall beaker and stored at 75 ° C. for 2 hours, and then visually observed for appearance (evaluation of oil dispersion stability and protein aggregation). The evaluation results are shown in Table 1.
 粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.1であった。 As a result of measuring viscoelasticity, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.1.
4)焼肉のたれの試作
 上記のセルロース組成物Aを用いて、次のようにして焼肉のたれを作製した。
 プロペラ攪拌機(HEIDON製 商品名3-1モーター、攪拌翼カイ十字型プロペラ1段)を用いて、濃口醤油(キッコーマン製)40g、砂糖16g、みりん10g、ゴマ油9g、りんご酢5.4g、おろしにんにく3g、豚蛋白加水分解物1g、炒りごま1g、カラメル色素1g、調味料1g、セルロース組成物A1.3g、キサンタンガム0.03g、酵素0.5g、ブラックペッパー0.1g、純水4.67gを85℃で2時間700rpmにて攪拌した。最終品の塩分濃度は6質量%であり、油分が10質量%であった。これを50mL容積のプラスチック容器に移し25℃で3日間保存した。保存後のたれを、上下に激しく20回振盪させた後に静置させ、1分後に目視で外観の状態観察(油の分散安定性、炒りごまの懸濁安定性評価)を行った。評価結果を表1に示した。
4) Trial Production of Yakiniku Sauce Using the above cellulose composition A, yakiniku sauce was produced as follows.
Using a propeller stirrer (HEIDON product name 3-1 motor, stirring blade chi-cross type propeller 1 stage), 40g thick soy sauce (Kikkoman), 16g sugar, 10g mirin, 9g sesame oil, 5.4g apple vinegar, grated garlic 3 g, 1 g of porcine protein hydrolyzate, 1 g of roasted sesame, 1 g of caramel pigment, 1 g of seasoning, 1.3 g of cellulose composition, 0.03 g of xanthan gum, 0.5 g of enzyme, 0.1 g of black pepper, 4.67 g of pure water Stir at 700 rpm for 2 hours at 85 ° C. The final product had a salt concentration of 6% by mass and an oil content of 10% by mass. This was transferred to a 50 mL plastic container and stored at 25 ° C. for 3 days. After storage, the dripping was vigorously shaken 20 times and allowed to stand, and after 1 minute, the appearance was visually observed (dispersion stability of oil, suspension stability evaluation of roasted sesame). The evaluation results are shown in Table 1.
 粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.1であった。 As a result of measuring viscoelasticity, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.1.
5)マヨネーズの試作
 上記のセルロース組成物Aを用いて、次のようにしてマヨネーズを作製した。
 まず、キサンタンガム3g、卵黄100g、純水397gを、TKホモジナイザーを用いて8,000rpmで5分間攪拌した。
5) Trial production of mayonnaise Using the above cellulose composition A, mayonnaise was produced as follows.
First, 3 g of xanthan gum, 100 g of egg yolk, and 397 g of pure water were stirred for 5 minutes at 8,000 rpm using a TK homogenizer.
 次に、サラダ油350g、食塩26g、砂糖9g、からし粉4g、セルロース組成物A20gを、TKホモジナイザーを用いて8,000rpmで5分間攪拌し懸濁液とし、酢酸を用いてpHを4.0に調整した後に、再度同様に攪拌した。この液を、高圧ホモジナイザー(APV製 商品名マントンゴーリンホモジナイザー)を用いて、本圧10MPaに、二次圧5MPaを加え、トータル15MPaにて均質化処理を行った後に、容器(チューブ式絞り器)に充填した。最終品の塩分濃度は3質量%であり、油分が39質量%であった。 Next, 350 g of salad oil, 26 g of salt, 9 g of sugar, 4 g of mustard flour, and 20 g of cellulose composition A were stirred at 8,000 rpm for 5 minutes using a TK homogenizer, and the pH was adjusted to 4.0 using acetic acid. Then, the mixture was again stirred in the same manner. This liquid was homogenized at a total pressure of 15 MPa by adding a secondary pressure of 5 MPa to a main pressure of 10 MPa using a high-pressure homogenizer (manufactured by APV, trade name Manton Gorin homogenizer). Filled. The final product had a salt concentration of 3% by mass and an oil content of 39% by mass.
 5℃で1週間保存した後、容器から絞り出した際の角立ちの評価を行った。評価結果を表1に示した。 After the storage at 5 ° C. for 1 week, the cornering when squeezed out of the container was evaluated. The evaluation results are shown in Table 1.
6)ソフトミックスの試作
 上記のセルロース組成物Aを用いて、次のようにしてソフトミックスを作製した。
 まず、無塩バター160g、グラニュー糖600g、脱脂粉乳400g、ヤシ油120g、乳化剤6g、安息香酸ナトリウム4g、セルロース組成物A12gと、70℃の温水2698gを、TKホモジナイザーを用いて8,000rpmで5分間攪拌し懸濁液とした。
 次に、この液を、高圧ホモジナイザー(APV製 商品名マントンゴーリンホモジナイザー)を用いて、本圧10MPaに、二次圧5MPaを加え、トータル15MPaにて均質化処理を行った後に、UHT殺菌機で120℃、3秒条件で殺菌し250mL容積の耐熱瓶に充填した。5℃で1週間保存した後、目視で外観の状態観察(油の分散安定性)を行った。評価結果を表1に示した。塩分濃度は0.1質量%であり、油分が6.2質量%であった。
6) Trial production of soft mix Using the above cellulose composition A, a soft mix was produced as follows.
First, 160 g of unsalted butter, 600 g of granulated sugar, 400 g of skim milk powder, 120 g of coconut oil, 6 g of emulsifier, 4 g of sodium benzoate, 12 g of cellulose composition A, 2698 g of hot water at 70 ° C. and 58,000 g at 8,000 rpm using a TK homogenizer. Stir for minutes to make a suspension.
Next, this liquid was homogenized at a total pressure of 15 MPa by adding a secondary pressure of 5 MPa to a main pressure of 10 MPa using a high-pressure homogenizer (trade name Manton Gorin homogenizer manufactured by APV). The mixture was sterilized at 120 ° C. for 3 seconds and filled in a 250 mL heat-resistant bottle. After storage at 5 ° C. for 1 week, the appearance was visually observed (oil dispersion stability). The evaluation results are shown in Table 1. The salt concentration was 0.1% by mass and the oil content was 6.2% by mass.
[実施例2]
 デキストリン(三和澱粉製 商品名サンデック#100)を220g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を55g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を225gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Bを得た。得られたセルロース組成物BのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Bを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 2]
220 g of dextrin (trade name Sandeck # 100, manufactured by Sanwa Starch), 55 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH, manufactured by Nissho Chemical Co., Ltd.), a complex of cellulose and xanthan gum (trade name Theolas RC, manufactured by Asahi Kasei Chemicals) A cellulose composition B was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 225 g. The amount of BS of the obtained cellulose composition B was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 by using the cellulose composition B. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.3であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.3.
[実施例3]
 デキストリン(三和澱粉製 商品名サンデック#100)を180g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を95g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を225gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Cを得た。得られたセルロース組成物CのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Cを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 3]
180 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 95 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals) A cellulose composition C was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 225 g. The amount of BS of the obtained cellulose composition C was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition C. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.5であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.5.
[実施例4]
1)分散工程
 プロペラ攪拌機(HEIDON製 商品名3-1モーターBL-600型、攪拌翼カイ十字型一段)を用いて、デキストリン(三和澱粉製 商品名サンデック#100)を125g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を150g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を225gとした以外は、実施例1と同様に、分散し、分散液を得た。
2)均質化工程
 上記で得られた分散液を、高圧ホモジナイザー(APV製 商品名マントンゴーリンホモジナイザー)を用いて、本圧15MPaに、二次圧5MPaを加え、トータル20MPaにて、高圧下で均質化を行った。
3)乾燥工程
 上記で得られた均質化された分散液を、実施例1と同様の方法で乾燥し、セルロース組成物Dを得た。得られたセルロース組成物DのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Dを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 4]
1) Dispersion process Using a propeller stirrer (trade name 3-1 motor BL-600 made by HEIDON, one stage of stirring blade chi-cross type), 125 g of dextrin (trade name SANDEC # 100 made by Sanwa Starch), derived from waxy corn starch Dispersed in the same manner as in Example 1 except that 150 g of hydroxypropylated starch (trade name Delica WH, manufactured by Nissho Chemical Co., Ltd.) and 225 g of a complex of cellulose and xanthan gum (trade name Theorus RC-N30, manufactured by Asahi Kasei Chemicals) were used. A dispersion was obtained.
2) Homogenization step Using a high-pressure homogenizer (manufactured by APV, trade name: Manton Gorin homogenizer), add the secondary pressure 5MPa to the main pressure 15MPa and homogenize the dispersion obtained above at a total pressure of 20MPa under high pressure. Made.
3) Drying step The homogenized dispersion obtained above was dried in the same manner as in Example 1 to obtain a cellulose composition D. The amount of BS of the obtained cellulose composition D was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition D. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.4であった。 As a result of measuring the viscoelasticity of the ramen soup and the sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.4.
[実施例5]
 ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を275g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を225gとした以外は、実施例4と同様に、分散/均質化、乾燥を行い、セルロース組成物Eを得た。得られたセルロース組成物EのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Eを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 5]
Except for 275 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH manufactured by Nissho Chemical Co., Ltd.) and 225 g of a composite of cellulose and xanthan gum (trade name Theolas RC-N30 manufactured by Asahi Kasei Chemicals) Then, dispersion / homogenization and drying were performed to obtain a cellulose composition E. The amount of BS of the obtained cellulose composition E was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition E. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.2であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.2.
[実施例6]
 デキストリン(三和澱粉製 商品名サンデック#100)を285g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を65g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を150gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Fを得た。得られたセルロース組成物FのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Fを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 6]
285 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 65 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals) A cellulose composition F was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 150 g. The amount of BS of the obtained cellulose composition F was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition F. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.1であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.1.
[実施例7]
 デキストリン(三和澱粉製 商品名サンデック#100)を215g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を85g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を200gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Gを得た。得られたセルロース組成物GのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Gを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 7]
215 g of dextrin (trade name Sandek # 100 made by Sanwa Starch), 85 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals) A cellulose composition G was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 200 g. The amount of BS of the obtained cellulose composition G was measured, and the results are shown in Table 1.
In addition, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition G. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.3であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.3.
[実施例8]
 デキストリン(三和澱粉製 商品名サンデック#100)を107g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を118g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を275gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Hを得た。得られたセルロース組成物HのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Hを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 8]
107 g of dextrin (trade name Sandek # 100 made by Sanwa Starch), 118 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a composite of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals) A cellulose composition H was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1, except that -N30) was changed to 275 g. The amount of BS of the obtained cellulose composition H was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition H. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.1であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.1.
[実施例9]
 デキストリン(三和澱粉製 商品名サンデック#100)を285g、ワキシーコーンスターチ由来のリン酸架橋アルファー化澱粉(日本食品化工製 商品名ネオビスC-60)を65g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を150gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Iを得た。得られたセルロース組成物IのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Iを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 9]
285 g of dextrin (trade name: Sundeck # 100 made by Sanwa Starch), 65 g of phosphate cross-linked pregelatinized starch derived from waxy corn starch (trade name: Neobis C-60 made by Nippon Shokuhin Kako), a complex of cellulose and xanthan gum (manufactured by Asahi Kasei Chemicals) Cellulose composition I was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that the trade name Theorus RC-N30) was changed to 150 g. The amount of BS of the obtained cellulose composition I was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition I. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.05であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.05.
[実施例10]
 デキストリン(三和澱粉製 商品名サンデック#100)を285g、ワキシーコーンスターチ由来のアルファー化澱粉(日澱化学製 商品名MH-A)を65g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を150gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Jを得た。得られたセルロース組成物JのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Jを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 10]
285 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 65 g of pregelatinized starch derived from waxy corn starch (trade name MH-A made by Nissho Chemical), a composite of cellulose and xanthan gum (trade name Theolas RC made by Asahi Kasei Chemicals) A cellulose composition J was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that -N30) was changed to 150 g. The amount of BS of the obtained cellulose composition J was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 by using the cellulose composition J. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.05であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.05.
[実施例11]
 デキストリン(三和澱粉製 商品名サンデック#100)を285g、ワキシーコーンスターチ由来のヒドロキシプロピル化リン酸架橋澱粉(日澱化学製 商品デリカKH)を65g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を150gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Kを得た。得られたセルロース組成物KのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Kを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 11]
285 g of dextrin (trade name SANDEC # 100 made by Sanwa Starch), 65 g of hydroxypropylated phosphoric acid cross-linked starch derived from waxy corn starch (product Delica KH made by Nissho Chemical), a complex of cellulose and xanthan gum (trade name made by Asahi Kasei Chemicals) Cellulose composition K was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that 150 g of Theolus RC-N30) was used. The amount of BS of the obtained cellulose composition K was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition K. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.05であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.05.
[実施例12]
 デキストリン(三和澱粉製 商品名サンデック#100)を180g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を95g、セルロースとカラヤガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N81、組成:セルロース/カラヤガム/デキストリン=80/10/10(質量比)、貯蔵弾性率(G’):0.2Pa、体積平均粒子径8.2μm、コロイド状成分量55質量%)を225gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Lを得た。得られたセルロース組成物LのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Lを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 12]
180 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 95 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and karaya gum (trade name Theolas RC made by Asahi Kasei Chemicals) -N81, composition: cellulose / karaya gum / dextrin = 80/10/10 (mass ratio), storage elastic modulus (G ′): 0.2 Pa, volume average particle diameter 8.2 μm, colloidal component amount 55 mass%) Except for using 225 g, dispersion / homogenization and drying were performed in the same manner as in Example 1 to obtain a cellulose composition L. The amount of BS of the obtained cellulose composition L was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition L. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.3であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.3.
[実施例13]
1)セルロースとジェランガムの複合体の製造
 市販DPパルプを裁断後、2.5mol/L塩酸中で105℃、15分間加水分解した後、水洗・濾過を行い、固形分が50質量%のウェットケーク状のセルロースを作製した(平均重合度は220であった)。
 次に、ウェットケーク状のセルロースと、A成分として市販ジェランガム(三栄源FFI製ケルコゲルLT100)、B成分として市販デキストリン(三和澱粉製 サンデック♯30)を用意し、プラネタリーミキサー((株)品川工業所製、5DM-03-R、撹拌羽根はフック型)に、セルロース/ジェランガム/デキストリンの質量比が77/3/20(質量比)となるように投入し、固形分45質量%となるように加水した。
 その後、126rpmで混練し、セルロース複合体を得た。混練エネルギーは、プラネタリーミキサーの混練時間により制御され、実測値は390Wh/kgであった。混練温度は、熱伝対を用いて混練物の温度が直接測定され、混練を通して20~40℃であった。このセルロース複合体は、一軸押出機のφ1mmでペレット化され、90℃の通風オーブン中で乾燥された。乾燥後のペレットは、超遠心式粉砕機(レッチェ製 小型粉砕機 スクリーン径φ0.75μm)で粉砕され、目開きφ500μmの篩を通過された。得られた粉末をセルロース複合体X(水分6質量%)とした。
2)セルロース組成物の製造
 デキストリン(三和澱粉製 商品名サンデック#100)を285g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を65g、セルロースとジェランガムの複合体(上述のセルロース複合体X、貯蔵弾性率(G’):2.5Pa、体積平均粒子径7.8μm、コロイド状成分量78質量%)を150gとした以外は、実施例4と同様に、分散/均質化、乾燥を行い、セルロース組成物Mを得た。得られたセルロース組成物MのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Mを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 13]
1) Manufacture of a composite of cellulose and gellan gum After cutting commercially available DP pulp, it was hydrolyzed in 2.5 mol / L hydrochloric acid at 105 ° C. for 15 minutes, then washed with water and filtered to obtain a wet cake having a solid content of 50% by mass. In the form of cellulose (average degree of polymerization was 220).
Next, wet cake-like cellulose, commercially available gellan gum (Saneigen FFI Kelco Gel LT100) as component A, and commercially available dextrin (Sandex Starch # 30 manufactured by Sanwa Starch) as component B are prepared. Planetary Mixer (Shinagawa Co., Ltd.) A 5DM-03-R manufactured by Kogyosho Co., Ltd. and a stirring blade hook type) are introduced so that the mass ratio of cellulose / gellan gum / dextrin is 77/3/20 (mass ratio), and the solid content becomes 45 mass%. So watered.
Thereafter, the mixture was kneaded at 126 rpm to obtain a cellulose composite. The kneading energy was controlled by the kneading time of the planetary mixer, and the actually measured value was 390 Wh / kg. As for the kneading temperature, the temperature of the kneaded material was directly measured using a thermocouple, and was 20 to 40 ° C. throughout the kneading. This cellulose composite was pelletized with φ1 mm of a single screw extruder and dried in a 90 ° C. ventilated oven. The dried pellets were pulverized with an ultracentrifugal pulverizer (small pulverizer screen diameter φ0.75 μm manufactured by Lecce) and passed through a sieve having an opening of φ500 μm. The obtained powder was defined as cellulose composite X (water content 6 mass%).
2) Manufacture of cellulose composition 285 g of dextrin (trade name Sandeck # 100, manufactured by Sanwa Starch), 65 g of hydroxypropylated starch derived from waxy corn starch (trade name, Delica WH, manufactured by Nissho Chemical), a composite of cellulose and gellan gum ( Dispersion in the same manner as in Example 4 except that the above-mentioned cellulose composite X, storage elastic modulus (G ′): 2.5 Pa, volume average particle diameter 7.8 μm, colloidal component amount 78% by mass was 150 g. / Homogenization and drying were performed to obtain a cellulose composition M. The amount of BS of the obtained cellulose composition M was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition M. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.3であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.3.
[実施例14]
1)セルロースとキサンタンガムの複合体の製造
 市販DPパルプを裁断後、2.5mol/L塩酸中で105℃、15分間加水分解した後、水洗・濾過を行い、固形分が50質量%のウェットケーク状のセルロースを作製した(平均重合度は220であった)。
 次に、ウェットケーク状のセルロースと、A成分として市販キサンタンガム(三栄源FFI製 商品名ビストップD-712)、B成分として市販デキストリン(三和澱粉製 サンデック♯30)を用意し、プラネタリーミキサー((株)品川工業所製、5DM-03-R、撹拌羽根はフック型)に、セルロース/キサンタンガム/デキストリンの質量比が75/5/20(質量比)となるように投入し、固形分52質量%となるように加水した。
 その後、126rpmで混練し、セルロース複合体を得た。混練エネルギーは、プラネタリーミキサーの混練時間により制御され、実測値は30Wh/kgであった。混練温度
は、熱伝対を用いて混練物の温度が直接測定され、混練を通して20~60℃であった。このセルロース複合体は、実施例13と同様にペレット化、乾燥、粉砕、篩い分けを行い、セルロース複合体Y(水分6質量%)とした。
2)セルロース組成物の製造
 デキストリン(三和澱粉製 商品名サンデック#100)を180g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を95g、セルロースとキサンタンガムの複合体(上述のセルロース複合体Y、貯蔵弾性率(G’):0.5Pa、体積平均粒子径9.6μm、コロイド状成分量56質量%)を225gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Nを得た。得られたセルロース組成物NのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Nを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Example 14]
1) Manufacture of a composite of cellulose and xanthan gum After cutting a commercially available DP pulp, it was hydrolyzed in 2.5 mol / L hydrochloric acid at 105 ° C for 15 minutes, then washed with water and filtered to obtain a wet cake having a solid content of 50% by mass. In the form of cellulose (average degree of polymerization was 220).
Next, wet cake-like cellulose, a commercially available xanthan gum (trade name B-stop D-712, manufactured by San-Eigen FFI) as the A component, and a commercially available dextrin (Sandeck # 30, manufactured by Sanwa Starch) as the B component were prepared. (Shinagawa Kogyo Co., Ltd., 5DM-03-R, stirring blade hook type) was added so that the mass ratio of cellulose / xanthan gum / dextrin was 75/5/20 (mass ratio), and the solid content Water was added to 52% by mass.
Thereafter, the mixture was kneaded at 126 rpm to obtain a cellulose composite. The kneading energy was controlled by the kneading time of the planetary mixer, and the actually measured value was 30 Wh / kg. Regarding the kneading temperature, the temperature of the kneaded material was directly measured using a thermocouple, and was 20 to 60 ° C. throughout the kneading. This cellulose composite was pelletized, dried, pulverized, and sieved in the same manner as in Example 13 to obtain a cellulose composite Y (water content 6 mass%).
2) Manufacture of cellulose composition 180 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), 95 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum ( Dispersion in the same manner as in Example 1 except that the above-mentioned cellulose composite Y, storage elastic modulus (G ′): 0.5 Pa, volume average particle diameter 9.6 μm, colloidal component amount 56 mass% was 225 g. / Homogenization and drying were performed to obtain a cellulose composition N. The amount of BS of the obtained cellulose composition N was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition N. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は1.3であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 1.3.
[比較例1]
 デキストリン(三和澱粉製 商品名サンデック#100)を263.2g、ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を11.8g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を225gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Oを得た。得られたセルロース組成物OのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Oを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Comparative Example 1]
263.2 g of dextrin (trade name SANDEC # 100 made by Sanwa Starch), 11.8 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH made by Nissho Chemical), a complex of cellulose and xanthan gum (manufactured by Asahi Kasei Chemicals) Cellulose composition O was obtained by carrying out dispersion / homogenization and drying in the same manner as in Example 1 except that 225 g of the trade name Theorus RC-N30) was used. The amount of BS of the obtained cellulose composition O was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition O. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は0.9であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 0.9.
[比較例2]
 ワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名デリカWH)を480g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30)を20gとした以外は、実施例1と同様に、分散/均質化、乾燥を行い、セルロース組成物Pを得た。得られたセルロース組成物PのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Pを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Comparative Example 2]
Example 1 except that 480 g of hydroxypropylated starch derived from waxy corn starch (trade name Delica WH manufactured by Nissho Chemical Co., Ltd.) and 20 g of a composite of cellulose and xanthan gum (trade name Theolas RC-N30 manufactured by Asahi Kasei Chemicals) were used. Then, dispersion / homogenization and drying were performed to obtain a cellulose composition P. The amount of BS of the obtained cellulose composition P was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition P. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は0.7であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 0.7.
[比較例3]
 以下の方法で、セルロース複合体ではなく、セルロースウェットケークを用いて、セルロース組成物を得た。
 市販DPパルプを裁断後、2.5mol/L塩酸中で105℃、15分間加水分解した後、水洗・濾過を行い、ウェットケーク状のセルロースを作製した(平均重合度は220であった)。このウェットケーク861gと、タピオカ由来のヒドロキシプロピル化リン酸架橋澱粉(王子コーンスターチ製 商品名てんじん)を257g、セルロースと加工澱粉の固形分による質量比で、60/40になるように調整した。続いて、上記セルロースウエットケーク(セルロース複合体ではないが、セルロースウェットケークは、水溶性多糖類と複合化していないため貯蔵弾性率(G’)は0.1Pa未満と低かった。)と加工澱粉の混合物を二軸式エクストルーダー(栗本鉄工所製 商品名KRCニーダー、パドル径2インチ、回転数100rpm)を使用し、8.3kg/hの送り量で、4パス処理し、摩砕を行った。
 次に、この摩砕物を、蒸留水で、固形分10質量%になるように希釈し、高速攪拌機(プライミクス製 商品名TKホモミキサーMARKII)を用いて、25℃で、10分間攪拌した後、高圧ホモジナイザー(APV製 商品名マントンゴーリンホモジナイザー)を用いて、本圧17MPaにて、高圧下で均質化を行った。
[Comparative Example 3]
In the following method, a cellulose composition was obtained using a cellulose wet cake instead of the cellulose composite.
After the commercial DP pulp was cut, it was hydrolyzed in 2.5 mol / L hydrochloric acid at 105 ° C. for 15 minutes, then washed with water and filtered to produce wet cake-like cellulose (average polymerization degree was 220). The wet cake 861 g and tapioca-derived hydroxypropylated phosphate cross-linked starch (trade name Tenjin, manufactured by Oji Cornstarch) were adjusted to 60/40 in a mass ratio of cellulose and processed starch based on the solid content. Subsequently, the cellulose wet cake (which is not a cellulose composite, but since the cellulose wet cake is not complexed with a water-soluble polysaccharide, the storage elastic modulus (G ′) was as low as less than 0.1 Pa) and processed starch. Using a twin-screw extruder (trade name: KRC kneader, paddle diameter: 2 inches, rotation speed: 100 rpm), the mixture of No. 4 was processed for 4 passes at a feed rate of 8.3 kg / h and milled. It was.
Next, this ground product is diluted with distilled water so as to have a solid content of 10% by mass, and stirred for 10 minutes at 25 ° C. using a high-speed stirrer (trade name: TK Homomixer MARKII, manufactured by Primics) Using a high-pressure homogenizer (manufactured by APV, trade name: Menton Gorin homogenizer), homogenization was performed under high pressure at a main pressure of 17 MPa.
 均質化された分散液を、実施例1と同様に、乾燥し、セルロース組成物Qを得た。得られたセルロース組成物QのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Qを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
The homogenized dispersion was dried in the same manner as in Example 1 to obtain a cellulose composition Q. The amount of BS of the obtained cellulose composition Q was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition Q. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は0.8であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 0.8.
[比較例4]
 以下の方法で、セルロース複合体ではなく、セルロースウェットケークを用いて、セルロース組成物を得た。
 比較例3と同様に得られたウェットケークを用いて、粉末状の原料として、キサンタンガム(三栄源FFI製 商品名ビストップD-712)と、デキストリン(三和澱粉製 商品名サンデック♯100)と、加工澱粉としてワキシーコーンスターチ由来のヒドロキシプロピル化澱粉(日澱化学製 商品名WH)を加え、最終的な組成が、実施例3と同様になるように原料を調製した。
[Comparative Example 4]
In the following method, a cellulose composition was obtained using a cellulose wet cake instead of the cellulose composite.
Using the wet cake obtained in the same manner as in Comparative Example 3, as a powdery raw material, xanthan gum (trade name Vistop D-712 manufactured by San-Eigen FFI) and dextrin (trade name Sandeck # 100 manufactured by Sanwa Starch) were used. Then, hydroxypropylated starch derived from waxy corn starch (trade name WH, manufactured by Nissho Chemical Co., Ltd.) was added as a processed starch, and the raw material was prepared so that the final composition was the same as in Example 3.
 続いて、上記セルロースウエットケーク(セルロース複合体ではないが、セルロースウェットケークは、水溶性多糖類と複合化していないため貯蔵弾性率(G’)は0.1Pa未満と低かった。)、キサンタンガム及び加工澱粉の混合物を、比較例3と同様に、摩砕、均質化、乾燥を経て、セルロース組成物Rを得た。得られたセルロース組成物RのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Rを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
Subsequently, the cellulose wet cake (which is not a cellulose composite, but since the cellulose wet cake is not complexed with a water-soluble polysaccharide, the storage elastic modulus (G ′) was as low as less than 0.1 Pa), xanthan gum and The mixture of processed starch was ground, homogenized, and dried in the same manner as in Comparative Example 3 to obtain a cellulose composition R. The amount of BS of the obtained cellulose composition R was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition R. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は0.8であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 0.8.
[比較例5]
 デキストリン(三和澱粉製 商品名サンデック#100)を248g、セルロースとキサンタンガムの複合体(旭化成ケミカルズ製 商品名セオラスRC-N30、組成:セルロース/キサンタンガム/デキストリン=75/5/20(質量比)、貯蔵弾性率(G’):1.0Pa、体積平均粒子径8.6μm、コロイド状成分量65質量%)を202gとした以外は、実施例4と同様に、分散/均質化、乾燥を行い、セルロース組成物Sを得た。得られたセルロース組成物SのBS量を測定し、結果を表1に示した。
 また、セルロース組成物Sを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を表1に示した。
[Comparative Example 5]
248 g of dextrin (trade name Sandeck # 100 made by Sanwa Starch), a composite of cellulose and xanthan gum (trade name Theolas RC-N30 made by Asahi Kasei Chemicals, composition: cellulose / xanthan gum / dextrin = 75/5/20 (mass ratio), Dispersion / homogenization and drying were carried out in the same manner as in Example 4 except that the storage elastic modulus (G ′) was 1.0 Pa, the volume average particle diameter was 8.6 μm, and the colloidal component amount was 65% by mass. Cellulose composition S was obtained. The amount of BS of the obtained cellulose composition S was measured, and the results are shown in Table 1.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 using the cellulose composition S. The obtained results are shown in Table 1.
 ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は0.9であった。 As a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 0.9.
 理論に拘束されるつもりはないが、上記実施例及び比較例で得られた結果について、以下で考察する。 Although not intending to be bound by theory, the results obtained in the above examples and comparative examples will be discussed below.
 セルロース複合体を45質量%含むセルロース組成物における、セルロース複合体と加工澱粉の質量比を実施例1~5で検討した。セルロース複合体と加工澱粉の質量比が90/10以上に加工澱粉が多いと分散性が良好であり、加工澱粉の質量比が増えるにつれて分散性が向上した。しかし、セルロース複合体と加工澱粉の質量比が60/40以上に加工澱粉が増えると分散性が良好な一方で、濃縮ラーメンスープの風味が僅かにマスキングされ、油の分散安定性もやや低下した。 In Examples 1 to 5, the mass ratio between the cellulose composite and the modified starch in the cellulose composition containing 45% by mass of the cellulose composite was examined. Dispersibility was good when the mass ratio of the cellulose composite to the processed starch was 90/10 or more, and the dispersibility improved as the mass ratio of the processed starch increased. However, when the processed starch increases to a mass ratio of cellulose composite and processed starch of 60/40 or more, the dispersibility is good, while the flavor of the concentrated ramen soup is slightly masked and the oil dispersion stability is slightly reduced. .
 次に、セルロース複合体と加工澱粉の質量比を70/30に固定し、セルロース組成物中のセルロース複合体の含有量を実施例3及び実施例6~8で検討した。セルロース複合体の割合が増えるに従い、応用物性が良好になる一方で分散性がやや低下した。即ち、セルロース組成物中に含まれる、特定のセルロース複合体と加工澱粉の質量比において、分散性と応用物性が共に良好な、セルロース複合体の含有量が存在することが判明した。 Next, the mass ratio of the cellulose composite and processed starch was fixed to 70/30, and the content of the cellulose composite in the cellulose composition was examined in Example 3 and Examples 6-8. As the proportion of the cellulose composite increased, the applied physical properties improved while the dispersibility slightly decreased. That is, it has been found that there is a content of the cellulose composite in which both the dispersibility and the applied physical properties are good in the mass ratio of the specific cellulose composite and the modified starch contained in the cellulose composition.
 その次に、セルロース組成物中に含まれる加工澱粉の種類を、実施例6及び実施例9~11で検討した。いずれの加工澱粉を用いた場合にも、セルロース組成物の分散性は良好であった。しかし、実施例9~11で使用した加工澱粉は濃縮ラーメンスープ中のたんぱく質と反応し、たんぱく質の部分的な凝集が発生した。 Next, the type of processed starch contained in the cellulose composition was examined in Example 6 and Examples 9-11. Even when any modified starch was used, the dispersibility of the cellulose composition was good. However, the modified starch used in Examples 9 to 11 reacted with the protein in the concentrated ramen soup, and partial aggregation of the protein occurred.
 続いて、セルロース組成物中に含まれるセルロース複合体の種類を検討した。具体的には、セルロースと複合体を形成する際に使用する水溶性多糖類の種類を、実施例3及び実施例12、13で検討した。特に、キサンタンガムと複合化したセルロース複合体を用いたセルロース組成物が、カラヤガムやジェランガムと複合化したセルロース複合体を用いたセルロース組成物に比べて、油の分散安定性に優れていた。 Subsequently, the types of cellulose composites contained in the cellulose composition were examined. Specifically, the types of water-soluble polysaccharides used when forming a complex with cellulose were examined in Example 3 and Examples 12 and 13. In particular, the cellulose composition using the cellulose composite compounded with xanthan gum was superior in oil dispersion stability compared to the cellulose composition using the cellulose composite compounded with Karaya gum or gellan gum.
 続いて、実施例14ではセルロース複合体の貯蔵弾性率G’がセルロース組成物の応用物性に与える影響を確認した。その結果、同組成のセルロース複合体を用いた場合には、G’が高いセルロース複合体を用いた方が、得られるセルロース組成物の応用物性が良好であった。 Subsequently, in Example 14, the effect of the storage elastic modulus G ′ of the cellulose composite on the applied physical properties of the cellulose composition was confirmed. As a result, when the cellulose composite having the same composition was used, the applied physical properties of the obtained cellulose composition were better when the cellulose composite having a high G ′ was used.
 比較例1は、セルロース複合体に対する加工澱粉の質量が不足しているため、分散性が低かった。そのため、各実施例と比較して、濃縮ラーメンスープ及び焼肉のたれの油の分散安定性の点で劣っていた。比較例2はセルロース組成物中のセルロース複合体の割合が低いため、各実施例と比較して、油の分散安定性、具材の懸濁安定性、保形効果の点で劣っていた。比較例3、4はセルロース複合体を用いずに、セルロースウエットケークと加工澱粉を磨砕して用いた。そのため、各実施例と比較して、分散性が低いと共に、油の分散安定性、具材の懸濁安定性、保形効果の点で劣っていた。比較例5は、セルロース複合体と親水性物質のみからなり加工澱粉を含まないため分散性が低かった。各実施例と比較して濃縮ラーメンスープ及び焼肉のたれの油の分散安定性の点で劣っていた。 In Comparative Example 1, the dispersibility was low because the mass of processed starch relative to the cellulose composite was insufficient. Therefore, compared with each Example, it was inferior in the point of the dispersion stability of the oil of concentrated ramen soup and yakiniku sauce. Since the ratio of the cellulose composite in a cellulose composition was low, the comparative example 2 was inferior in the point of the dispersion stability of oil, the suspension stability of ingredients, and the shape retention effect compared with each Example. In Comparative Examples 3 and 4, cellulose wet cake and modified starch were ground and used without using the cellulose composite. Therefore, compared with each Example, while being low in dispersibility, it was inferior in the dispersion stability of oil, the suspension stability of ingredients, and the shape retention effect. Comparative Example 5 was composed only of the cellulose composite and the hydrophilic substance and did not contain processed starch, so the dispersibility was low. Compared with each Example, it was inferior in respect of the dispersion stability of the concentrated ramen soup and yakiniku sauce.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[比較例6]
香味エキスパウダー(富士食品工業(株)製)14.5質量%、カレー粉(特製エスビーカレー、ヱスビー食品(株)製)10.5質量%、ソルビトール(物産フードサイエンス(株)製)14.0質量%、オニオンパウダー(池田糖化工業(株)製)3.0質量%、食塩(KSL、(株)日本海水製)3.0質量%、加工澱粉(スウェリージェル700、王子コーンスターチ(株)製)15.0質量%、キサンタンガム(サンエース、三栄源エフエフ・エフ・アイ(株)製)0.1質量%、セルロース組成物S(比較例5参照)3.0質量%、部分アルファー化澱粉(PCS FC-30、旭化成ケミカルズ(株)製)5.0質量%、微結晶セルロース(セオラス UF-F702、旭化成ケミカルズ(株)製)3.9質量%の割合で粉体として800gをビニール袋に入れ、3分間混合した。この混合粉体を流動層造粒乾燥装置((株)パウレック製、MP-01型)を用いて、スプレーノズル径1.2mm、ノズル先端1mm出し、スプレー位置はトップ(下段セット)、アトマイズ空気量40NL/分、バグフィルター種はテトロン織布、バグフィルター払い落とし圧力0.5MPa、給気温度設定60℃、風量0.4~0.7m/分、結合液投入速度20g/分の条件で造粒した。なお、混合粉体を造粒する際の結合液としては、ラード(精製ラード、ミヨシ油脂(株)製)20質量%を50℃に加温し、溶融させた液体を噴霧後、造粒された混合粉体を排気温度が40℃になるまで給気を継続した。造粒された混合粉体は給気終了まで良好な流動性を示した。さらに、目開き:1400μmの篩で篩過して粗大粒子を取り除き、セルロース組成物Tを得た。粗大粒子の割合は11.6%であった。
 また、セルロース組成物Tを用いて、実施例1と同様に、応用物性の評価を行った。得られた結果を以下に示す。
[Comparative Example 6]
Flavor extract powder (Fuji Food Industry Co., Ltd.) 14.5% by mass, curry powder (special SB Curry, Sakai Subs Food Co., Ltd.) 10.5% by mass, sorbitol (manufactured by Food Science Co., Ltd.) 14. 0% by mass, 3.0% by mass of onion powder (manufactured by Ikeda Sugar Chemical Co., Ltd.), 3.0% by mass of salt (KSL, manufactured by Nihonkaisui Co., Ltd.), modified starch (Swelly Gel 700, Oji Corn Starch Co., Ltd.) )) 15.0% by mass, xanthan gum (San Ace, Saneigen FFI Co., Ltd.) 0.1% by mass, cellulose composition S (see Comparative Example 5) 3.0% by mass, partially alpha-ized A powder (PCS FC-30, manufactured by Asahi Kasei Chemicals Co., Ltd.) 5.0 mass%, microcrystalline cellulose (Theolas UF-F702, manufactured by Asahi Kasei Chemicals Co., Ltd.) 3.9 mass% The 800g plastic bag Te, and mixed for 3 minutes. Using a fluidized bed granulator / dryer (MP-01 type, manufactured by POWREC Co., Ltd.), this mixed powder is sprayed with a spray nozzle diameter of 1.2 mm and a nozzle tip of 1 mm, the spray position is at the top (lower set), and atomized air 40 NL / min, bag filter type: Tetron woven cloth, bag filter wipe-off pressure 0.5 MPa, air supply temperature setting 60 ° C., air volume 0.4-0.7 m 3 / min, binding liquid input rate 20 g / min Granulated with. In addition, as a binding liquid at the time of granulating the mixed powder, 20% by mass of lard (refined lard, manufactured by Miyoshi Oil & Fats Co., Ltd.) is heated to 50 ° C., sprayed with a molten liquid, and granulated. The mixed powder was continuously supplied until the exhaust temperature reached 40 ° C. The granulated mixed powder showed good fluidity until the end of air supply. Further, the sieve was sieved with a 1400 μm sieve to remove coarse particles, and a cellulose composition T was obtained. The proportion of coarse particles was 11.6%.
Moreover, the applied physical properties were evaluated in the same manner as in Example 1 by using the cellulose composition T. The obtained results are shown below.
 セルロース組成物のBS量は、5.9%であり、濃縮ラーメンスープの油の分散安定性は×、たんぱく質の凝集は○、風味は×であった。また、焼き肉のたれの油の分散安定性は×、具材の懸濁安定性は×、マヨネーズの保形性は○、ソフトミックスの油の分散安定性は×であった。さらに、ラーメンスープ、たれの粘弾性を測定した結果、(tanδ(50℃)/tanδ(25℃))は0.7であった。 The BS amount of the cellulose composition was 5.9%, the dispersion stability of the concentrated ramen soup oil was x, the protein aggregation was ◯, and the flavor was x. Further, the dispersion stability of the roasted oil was x, the suspension stability of the ingredients was x, the shape retention of mayonnaise was o, and the dispersion stability of the soft mix oil was x. Furthermore, as a result of measuring the viscoelasticity of ramen soup and sauce, (tan δ (50 ° C.) / Tan δ (25 ° C.)) was 0.7.
<菓子の実施例、比較例>
 まず、クッキーの試作方法、各種物性の評価方法を説明する。
<セルロース組成物以外の原材料 (セルロース組成物は、実施例の項に記載。)>
1)薄力粉:日清製 商品名「日清フラワー薄力小麦粉」
2)砂糖:日新製糖製 商品名「粉糖NZ-1」
3)全卵:市販の鶏卵
4)ショートニング:日清製 商品名「とっても便利なショートニング」
5)ベーキングパウダー:日清製 商品名「ベーキングパウダー」
<クッキーの試作方法>
 使用機器:KANTO MIXER HPi-20M、バタービーターフック
1)まず、ショートニングと砂糖を合わせて、混合した。(248rpm×1分、451rpm×1分)
2)次に、全卵を2回に分けて入れ、混合した (451rpm×40秒)。
3)薄力粉とベーキングパウダーとセルロースを入れ、混合した(136rpm×1分×3回)。
4)生地を密封し、冷蔵保管した(12~24時間)。
5)生地を4mm厚にのばし、25mm×25mmにカットした。
6)生地をオーブンで焼成した(170℃:5分→天板の前後入れ替え→170℃:4分)。
7)室温で祖熱を取り、評価に用いた。
<密度>
 無作為に10枚のクッキーを選択し、各々の密度を算出した。10枚の平均値を密度とした。
<最大荷重>
 無作為に10枚のクッキーを選択し、各々の最大荷重を測定した。具体的には、テクスチャー・アナライザー(英弘精機株式会社製、TA.XT plus型、測定治具:HDP/3PB型、温度:25.0℃、Mode:Mesure Force in Compression、Option:Return to Start,Pre-Test
 Speed:1.0mm/s,Test-Speed:1.5mm/s,Post-Test Speed:10mm/s,Distance:5mm,Triger Type:Auto 50g)により測定した。10枚の平均値を最大荷重とした。
<割れ欠け発生枚数>
 無作為に10枚のクッキーを選択し、クッキーを木製の机に30cmの高さから5回自由落下させた。1枚のクッキーが、クッキーの全質量に対して、いずれかが5質量%以上を有する2つ以上の物体に分割した場合を割れ欠けが発生したと定義した。
  ◎(優):0~1枚で割れ欠けが発生
  ○(良):2~3枚で割れ欠けが発生
  △(可):4~5枚で割れ欠けが発生
  ×(不可):6枚以上で割れ欠けが発生
<食感評価>
 22歳から48歳の男女12名のパネラーにより、上記のクッキーを実際に食してもらい、以下の評価基準で官能評価を実施した。以下の各食感について、0~4点(1点刻み)で点数をつけ、平均点を求めた。
1)食感:セルロース無添加品(比較例7)と比較した、歯で全体を噛んだ際に、感じる食感。
  平均3点以上     : ◎ 比較例7と同じ食感
  平均2点以上、3点未満: ○ 比較例7と食感が僅かに異なる
  平均1点以上、2点未満: △ 比較例7と食感が少し異なる
  平均1点未満     : × 比較例7と食感が明確に異なる
2)サクサク感:歯で、全体を噛む際のサクサクした食感
  平均3点以上     : ◎ 非常に優れる
  平均2点以上、3点未満: ○ 優れる
  平均1点以上、2点未満: △ 劣る
  平均1点未満     : × ほとんどなし
<クッキーの角(エッジ)立ちの評価:外観観察>
 焼成後のクッキーの四隅の角立ちを、目視で評価した。
  ◎(優):全て焼成前の形態をそのまま保持
  ○(良):1つの角の先端が丸く変形
  △(可):2~3つの角の先端が丸く変形
  ×(不可):全体が丸くなり、角がなくなった状態
<Examples of confectionery, comparative examples>
First, we will explain how to prototype cookies and how to evaluate various physical properties.
<Raw materials other than the cellulose composition (The cellulose composition is described in the Examples section.)>
1) Soft flour: Nisshin brand name "Nisshin Flower soft flour"
2) Sugar: Made by Nissin Sugar Co., Ltd. Trade name “Fructose NZ-1”
3) Whole eggs: Commercial eggs 4) Shortening: Made by Nissin The trade name “Very convenient shortening”
5) Baking powder: Nissin brand name “Baking Powder”
<Prototype method for cookies>
Equipment used: KANTO MIXER HPi-20M, butterbeater hook 1) First, shortening and sugar were combined and mixed. (248 rpm x 1 minute, 451 rpm x 1 minute)
2) Next, the whole egg was added in two portions and mixed (451 rpm × 40 seconds).
3) Soft flour, baking powder and cellulose were added and mixed (136 rpm × 1 minute × 3 times).
4) The dough was sealed and stored refrigerated (12-24 hours).
5) The dough was stretched to a thickness of 4 mm and cut into 25 mm × 25 mm.
6) The dough was baked in an oven (170 ° C .: 5 minutes → replacement of the top and bottom plates → 170 ° C .: 4 minutes).
7) Taking anther fever at room temperature and using for evaluation.
<Density>
Ten random cookies were selected and the density of each was calculated. The average value of 10 sheets was taken as the density.
<Maximum load>
Ten random cookies were selected and their maximum load was measured. Specifically, a texture analyzer (manufactured by Eihiro Seiki Co., Ltd., TA.XT plus type, measuring jig: HDP / 3PB type, temperature: 25.0 ° C., Mode: Measurement Force in Compression, Option: Return to Start, Pre-Test
Speed: 1.0 mm / s, Test-Speed: 1.5 mm / s, Post-Test Speed: 10 mm / s, Distance: 5 mm, Trigger Type: Auto 50 g). The average value of 10 sheets was taken as the maximum load.
<Number of cracks generated>
Ten random cookies were selected, and the cookies were allowed to fall freely 5 times from a height of 30 cm onto a wooden desk. A case where one piece of cookie was divided into two or more objects each having 5% by mass or more with respect to the total mass of the cookie was defined as cracking.
◎ (excellent): 0 to 1 sheet has cracks and cracks ○ (good): 2 to 3 sheets have cracks and chips Cracking occurs in <Evaluation of texture>
The above cookies were actually eaten by 12 male and female panelists aged 22 to 48 years old, and sensory evaluations were carried out according to the following evaluation criteria. For each of the following textures, a score was assigned on a scale of 0 to 4 points (in increments of 1 point) to obtain an average score.
1) Texture: The texture felt when chewing the whole with teeth, compared with the product without added cellulose (Comparative Example 7).
Average 3 points or more: ◎ Same texture as Comparative Example 7 Average 2 points or more, less than 3 points: ○ Slightly different texture from Comparative Example 7 Average 1 point or more, less than 2 points: △ Comparative Example 7 and texture Slightly different Average less than 1 point: × The texture is clearly different from Comparative Example 2 2) Crispy feeling: Crispy texture when chewing the whole with teeth Average: 3 points or more: ◎ Very excellent Average 2 points or more, 3 Less than point: ○ Excellent Average 1 point or more and less than 2 points: △ Inferior average less than 1 point: × Almost <Evaluation of cookie corner (edge) standing: Appearance observation>
The corners of the four corners of the baked cookies were visually evaluated.
◎ (excellent): All the shapes before firing are kept as it is. ○ (good): The tip of one corner is rounded. △ (possible): The tip of two or three corners is rounded. × (not possible): The whole is rounded. , The corner is gone
[実施例15]
 上記のクッキーの試作方法において、薄力粉を1386g、ショートニングを400g、全卵を400g、ベーキングパウダーを14g、砂糖を599g、実施例3で得られたセルロース組成物Cを全仕込み量2800gに対し0.05質量%配合し、クッキーを試作した。得られたクッキーについて、上記の評価を行った。得られた結果を、表2に示す。なお、表2では、ここで用いたセルロース組成物Cを、組成物Cと略記した。
[Example 15]
In the above cookie trial production method, 1386 g of weak flour, 400 g of shortening, 400 g of whole egg, 14 g of baking powder, 599 g of sugar, and cellulose composition C obtained in Example 3 in an amount of 0. A cookie was prototyped with a blend of 05% by mass. Said evaluation was performed about the obtained cookie. The results obtained are shown in Table 2. In Table 2, the cellulose composition C used here is abbreviated as composition C.
[実施例16]
 実施例15の試作方法において、セルロース組成物Cの配合量を0.1質量%、砂糖597gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例17]
 実施例15の試作方法において、セルロース組成物Cの配合量を0.5質量%、砂糖586gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例18]
 実施例15の試作方法において、セルロース組成物Cの配合量を1.0質量%、砂糖572gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例19]
 実施例15の試作方法において、セルロース組成物Cの配合量を2.5質量%、砂糖530gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例20]
 実施例18の試作方法において、薄力粉を1428g、ベーキングパウダーを無添加にした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例21]
 実施例20の試作方法において、薄力粉を1176g、砂糖を801gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例22]
 実施例20の試作方法において、薄力粉を1008g、砂糖を980gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例23]
 実施例18の試作方法において、薄力粉を1372g、ベーキングパウダー28gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[実施例24]
 実施例18の試作方法において、薄力粉を1344g、ベーキングパウダー56gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表2に示す。
[Example 16]
In the trial production method of Example 15, cookies were produced in the same manner except that the blending amount of the cellulose composition C was changed to 0.1% by mass and 597 g of sugar, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
[Example 17]
In the trial production method of Example 15, a cookie was produced in the same manner except that the blending amount of the cellulose composition C was changed to 0.5 mass% and sugar 586 g, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
[Example 18]
In the trial production method of Example 15, cookies were produced in the same manner except that the blending amount of the cellulose composition C was changed to 1.0% by mass and 572 g of sugar, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
[Example 19]
In the trial production method of Example 15, a cookie was similarly produced and evaluated in the same manner except that the blending amount of the cellulose composition C was 2.5 mass% and sugar was 530 g. The results obtained are shown in Table 2.
[Example 20]
In the trial production method of Example 18, cookies were produced in the same manner, except that 1428 g of flour and no baking powder were added, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
[Example 21]
In the trial production method of Example 20, a cookie was produced in the same manner except that 1176 g of flour and 801 g of sugar were used, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
[Example 22]
In the prototype method of Example 20, a cookie was prototyped and evaluated in the same manner except that the flour was changed to 1008 g and sugar to 980 g. The results obtained are shown in Table 2.
[Example 23]
In the trial production method of Example 18, cookies were produced in the same manner except that 1372 g of weak flour and 28 g of baking powder were used, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
[Example 24]
In the trial production method of Example 18, cookies were produced in the same manner except that 1344 g of soft flour and 56 g of baking powder were used, and evaluation was performed in the same manner. The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[比較例7]
 実施例18の試作方法において、砂糖を600g、セルロースを無添加にした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表3に示す。
[比較例8]
 比較例7の試作方法において、薄力粉を1372g、砂糖を571g、ベーキングパウダーを56gにした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表3に示す。
[比較例9]
 比較例7の試作方法において、薄力粉を1008g、砂糖を1008g、ベーキングパウダーを無添加にした以外は、同様にクッキーを試作し、同様に評価を行った。得られた結果を、表3に示す。
[比較例10]
 米粉1372g、えんどう豆1372g、「KCフロック400G」56gを混合した。この原料を2軸エクストルーダーに供給し、同時に混合物の水分含量を18重量%になるように加水量を調整し、バレル温度90℃、ダイ温度150℃、フィード量270kg/hr、圧力30~50kg/cmで加圧加熱処理を行い膨化物を得た。この膨化物を押し出し速度の1.2倍の速度でけん引し、得られたスティック状膨化物の直径に対して20倍になるような長さになるように切断した。その後乾燥機を用いて水分値を1.5%以下にし、作製したスティック状膨化物を同様に評価した。得られた結果を、表3に示す。
[比較例11]
 タピオカ澱粉由来のアセチル澱粉744gおよび馬鈴薯澱粉696gを用いた。冷水糊化粉としてα架橋ワキシーコーンスターチ(冷水膨潤度28ml/g)178g、トレハロース324g、粉末チーズ534g、「KCフロック400G」を162gを実施例1と同様の装置で1分間粉体混合し均一化した、次に、ショートニング113g、レシチン3gを混合したものを加え、さらに炭酸アンモニウム16gを溶解した水521g加えながら縦型のケーキミキサーで1分間粉体混合し生地を作製した。以下、実施例1の試作方法で同様に成形後、オーブンを用いて220℃で12分間加熱により作製したクッキーを同様に評価した。得られた結果を、表3に示す。
[Comparative Example 7]
In the trial production method of Example 18, a cookie was produced in the same manner except that 600 g of sugar and cellulose were not added, and evaluation was performed in the same manner. The results obtained are shown in Table 3.
[Comparative Example 8]
In the trial production method of Comparative Example 7, a cookie was produced in the same manner and evaluated in the same manner except that 1372 g of weak flour, 571 g of sugar and 56 g of baking powder were used. The results obtained are shown in Table 3.
[Comparative Example 9]
In the prototype method of Comparative Example 7, cookies were prototyped in the same manner and evaluated in the same manner except that 1008 g of weak flour, 1008 g of sugar and no baking powder were added. The results obtained are shown in Table 3.
[Comparative Example 10]
1372 g of rice flour, 1372 g of peas, and 56 g of “KC Flock 400G” were mixed. This raw material is supplied to a twin screw extruder, and at the same time, the amount of water is adjusted so that the water content of the mixture becomes 18% by weight, barrel temperature 90 ° C., die temperature 150 ° C., feed amount 270 kg / hr, pressure 30-50 kg. A pressure heat treatment was performed at / cm 2 to obtain an expanded product. The expanded product was pulled at a speed that was 1.2 times the extrusion speed, and was cut to a length that would be 20 times the diameter of the resulting stick-shaped expanded product. Thereafter, the moisture value was reduced to 1.5% or less using a dryer, and the produced stick-like expanded products were similarly evaluated. The results obtained are shown in Table 3.
[Comparative Example 11]
744 g of acetyl starch derived from tapioca starch and 696 g of potato starch were used. As a cold water gelatinized powder, α-crosslinked waxy corn starch (cold water swelling degree 28 ml / g) 178 g, trehalose 324 g, powdered cheese 534 g, “KC Flock 400G” 162 g of powder mixed in the same apparatus as in Example 1 for 1 minute and homogenized Next, a mixture of 113 g of shortening and 3 g of lecithin was added, and further 521 g of water in which 16 g of ammonium carbonate was dissolved was added, and powder was mixed for 1 minute with a vertical cake mixer to prepare a dough. Hereinafter, the cookie prepared by heating in the oven at 220 ° C. for 12 minutes was similarly evaluated after being molded in the same manner by the prototype method of Example 1. The results obtained are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例7は、食感が優れるものの、割れ欠けの発生枚数が多く、サクサク感がほとんどなかった。比較例8は、比較例7に対して低密度であるため、サクサク感は向上したが、割れ欠け低減効果はなく、食感も異なる菓子となった。比較例9は、比較例7に対して高密度で硬いため、割れ欠けは向上したが、食感が大きく異なる菓子となった。比較例10は、比較例7に対して割れ欠けは向上したが、過剰に低密度になるために、比較例7に対して食感が大きく異なり、サクサク感も付与できていない。比較例11は、比較例7に対して割れ欠けは向上したが、菓子が硬くなることで、比較例7に対して食感が大きく異なる菓子となった。
 実施例15~19は、セルロース組成物Nの添加量を振って得られた結果である。表2の結果から、セルロース組成物の添加量が増えると、割れ欠けが抑制され、サクサク感が向上した。また、セルロース組成物は、0.05質量%の添加でも、比較例7(セルロース無添加)に対し、割れ欠けが抑制された。食感については、実施例レベルに割れ欠けが抑制された比較例10、11と比較しても、実施例では食感が良好なものが得られた。
 実施例20~22は、菓子の最大荷重を振った結果である。その結果、ベーキングパウダーを配合した実施例15~19が良好な食感であるが、広範囲の最大荷重において割れ欠けの低減は遜色ない結果であった。
 実施例23、24は、菓子の密度を振った結果である。その結果、実施例15~19が良好食感であるが、広範囲の密度において割れ欠けの低減は遜色ない結果であった。
In Comparative Example 7, although the texture was excellent, the number of cracks generated was large and there was almost no crispy feeling. Since Comparative Example 8 had a lower density than Comparative Example 7, the crispness was improved, but there was no cracking reduction effect and the confectionery was different. Since Comparative Example 9 was denser and harder than Comparative Example 7, cracking was improved, but the texture was greatly different. In Comparative Example 10, cracks and cracks were improved compared to Comparative Example 7, but because of excessively low density, the texture was greatly different from that of Comparative Example 7, and the crispy feeling could not be imparted. In Comparative Example 11, cracks were improved compared to Comparative Example 7, but the confectionery became harder, resulting in a confectionery having a significantly different texture from that of Comparative Example 7.
Examples 15 to 19 are results obtained by varying the amount of cellulose composition N added. From the result of Table 2, when the addition amount of the cellulose composition increased, crack chipping was suppressed and the crispy feeling was improved. In addition, the chipping of the cellulose composition was suppressed as compared with Comparative Example 7 (no addition of cellulose) even when 0.05% by mass was added. As for the texture, even when compared with Comparative Examples 10 and 11 in which cracking and chipping was suppressed at the Example level, those having good texture were obtained in the Examples.
Examples 20 to 22 are the results of shaking the maximum load of the confectionery. As a result, Examples 15 to 19 in which baking powder was blended had a good texture, but the reduction in cracks was inferior in a wide range of maximum loads.
Examples 23 and 24 are the results of varying the density of confectionery. As a result, Examples 15 to 19 had good texture, but the reduction of cracks was inferior in a wide range of densities.
<ベーカリー製品の実施例、比較例>
 パウンドケーキの試作方法、各種物性の評価方法を説明する。
<セルロース組成物以外の原材料 ※セルロース組成物は、実施例の項に記載>
1)薄力粉:日清製 商品名「日清フラワー薄力小麦粉」
2)上白糖:三井製糖製 商品名「スプーン印上白糖」
3)マルトオリゴ糖:日本食品化工製 商品名「フジオリゴ」
4)加工デンプン(タピオカα化デンプン):三和澱粉製 商品名「タピオカアルファーTP-2」
5)食塩:日本食塩製造製 商品名「クッキングソルト」
6)全卵:市販の鶏卵
7)バター(無塩):明治製 商品名「バター(食塩不使用)」
8)ドライフルーツミックス:小島屋製 商品名「ダイスカットドライフルーツ」
  ※キウイ・苺・パイナップル・パパイア・マンゴー・メロン・りんごをダイス状にカットし、砂糖液に漬け込み、乾燥されたもの。
  ※実測の短径=3mm~10mm、長径/短径比=1~3、比重(平均)1.4g/mL
9)バニラエッセンス:明治屋製 商品名「バニラエッセンス」
<Examples and comparative examples of bakery products>
Explains how to make a prototype of a pound cake and how to evaluate various physical properties.
<Raw materials other than the cellulose composition * The cellulose composition is described in the section of Examples>
1) Soft flour: Nisshin brand name "Nisshin Flower soft flour"
2) Super white sugar: Made by Mitsui Sugar
3) Maltooligosaccharide: Product name “Fuji Oligo” manufactured by Nippon Shokuhin Kako
4) Processed starch (Tapioca alpha-modified starch): Made by Sanwa Starch “Tapioca Alpha TP-2”
5) Salt: Nippon Salt Manufacturing Product Name “Cooking Salt”
6) Whole Egg: Commercial Egg 7) Butter (Unsalted): Product name “Butter (no salt)”
8) Dried fruit mix: Made by Kojimaya Product name “Dice cut dried fruit”
* Kiwi, persimmon, pineapple, papaya, mango, melon, and apple cut into dice, soaked in sugar solution, and dried.
* Measured minor axis = 3 to 10 mm, major axis / minor axis ratio = 1 to 3, specific gravity (average) 1.4 g / mL
9) Vanilla Essence: Made by Meijiya Product name “Vanilla Essence”
<パウンドケーキの試作方法:全量500gで試作>
1)まず、表4の処方において、※印で記載した粉体類を予めポリ袋中で3分間混合し、金属製のボウルに投入した。
2)次に、全卵を加え、プラスチック製のヘラで混ぜ、溶かし、10分間、室温で生地を寝かせた。ここに、溶かしバター、ドライフルーツ、バニラエッセンスを加えて、さらに10分間、同様に混ぜた。ここで、実施例25、比較例12~14の焼成前の生地の比重は、0.75~0.85g/mLであった。
3)金属性のパウンド型に平らになるように400gを入れ、オーブンで、170℃で40分間焼成した。※断面形状は、約7cm角。
4)焼きあがったケーキは、約2cmの厚みにカットして、評価に用いた。
<Prototype method of pound cake: trial production with total amount of 500 g>
1) First, in the formulations shown in Table 4, the powders indicated by * were previously mixed in a plastic bag for 3 minutes and put into a metal bowl.
2) Next, the whole egg was added, mixed and melted with a plastic spatula, and the dough was laid for 10 minutes at room temperature. To this was added melted butter, dried fruit and vanilla essence, and the mixture was further mixed for 10 minutes. Here, the specific gravity of the dough before firing in Example 25 and Comparative Examples 12 to 14 was 0.75 to 0.85 g / mL.
3) 400 g was put in a metallic compound mold so as to be flat, and baked in an oven at 170 ° C. for 40 minutes. * The cross-sectional shape is about 7cm square.
4) The baked cake was cut into a thickness of about 2 cm and used for evaluation.
<具材の均一性>
1)無作為に12カットのケーキを選択し、断面に存在する全具材の数を目視で計測した。また、ケーキの底面から、上面の距離を計測し、中央から上部に存在する具材の数を計測した。上記で計測した具材の数量より、以下の式で均一性を算出した。
   具材の均一性(%)=((上部に存在する具材数)/(全具材数))×100
<Uniformity of ingredients>
1) A 12-cut cake was selected at random, and the number of all ingredients present in the cross section was visually measured. Moreover, the distance of the upper surface was measured from the bottom face of the cake, and the number of ingredients existing in the upper part from the center was measured. From the quantity of the ingredients measured above, the uniformity was calculated by the following formula.
Uniformity of ingredients (%) = ((number of ingredients present in the upper part) / (total number of ingredients)) × 100
<食感評価>
 22歳から48歳の男女12名のパネラーにより、上記のケーキを実際に食し、以下の評価基準で官能評価を実施した。以下の各食感について、0~4点(1点刻み)で点数をつけ、平均点を求めた。
1)クリスピー感: 前歯で、クラスト部分を噛む際のサクサクした食感
  平均3点以上     : ◎ 非常に優れる
             (セルロース、加工デンプン(増粘剤)無添加と遜色なし)
  平均2点以上、3点未満: ○ 優れる
  平均1点以上、2点未満: △ 劣る
  平均1点未満     : × ほとんどなし(食感がモチモチしすぎている)
2)さっくり感: 前歯で、クラム部分の噛みきりやすさ
  平均3点以上     : ◎ 非常に優れる
             (セルロース、加工デンプン(増粘剤)無添加と遜色なし)
  平均2点以上、3点未満: ○ 優れる
  平均1点以上、2点未満: △ 劣る
  平均1点未満     : × ほとんどなし(食感がモチモチしすぎている)
3)ふんわり感: 奥歯で、全体を噛む際の軽いふんわりした食感
  平均3点以上     : ◎ 非常に優れる
             (セルロース、加工デンプン(増粘剤)無添加と遜色なし)
  平均2点以上、3点未満: ○ 優れる
  平均1点以上、2点未満: △ 劣る
  平均1点未満     : × ほとんどなし(食感がモチモチしすぎている)
4)ざらつき感: 飲み込む際の舌に感じる、ざらざらした感触
  平均3点以上     : ◎ なし
  平均2点以上、3点未満: ○ ほとんどなし
  平均1点以上、2点未満: △ 少し感じる
  平均1点未満     : × 感じる
<Food texture evaluation>
The above cake was actually eaten by twelve male and female panelists aged 22 to 48 years old, and sensory evaluation was performed according to the following evaluation criteria. For each of the following textures, a score was assigned on a scale of 0 to 4 points (in increments of 1 point) to obtain an average score.
1) Crispy sensation: Crispy texture when crusted with front teeth Average 3 or more points: ◎ Excellent (No addition of cellulose and modified starch (thickener) and no discoloration)
Average 2 points or more and less than 3 points: ○ Excellent Average 1 point or more and less than 2 points: △ Inferior Average less than 1 point: × Almost none (the texture is too sticky)
2) Rough feeling: Ease of biting the crumb on the front teeth Average 3 or more points: ◎ Excellent (No addition of cellulose and modified starch (thickener) and no discoloration)
Average 2 points or more and less than 3 points: ○ Excellent Average 1 point or more and less than 2 points: △ Inferior Average less than 1 point: × Almost none (the texture is too sticky)
3) Soft feeling: Light texture when chewing the whole with the back teeth Average 3 or more points: ◎ Excellent (No addition of cellulose and modified starch (thickener) and no discoloration)
Average 2 points or more and less than 3 points: ○ Excellent Average 1 point or more and less than 2 points: △ Inferior Average less than 1 point: × Almost none (the texture is too sticky)
4) Roughness: Rough feel on the tongue when swallowing Average 3 points or more: ◎ None Average 2 points or more, less than 3 points: ○ Almost None Average 1 point or more, Less than 2 points: △ Feel a little less than average 1 point : × Feel
[実施例25]
 セルロース組成物Cを用い、その配合量を0.3質量%として、上記の試作方法に従ってケーキを試作し、評価を行った。得られた結果を、表4に示す。なお、表4では、ここで用いたセルロースを、セルロース組成物Cと記載した。
[比較例12~14]
 従来のケーキと比較するために、比較例12では、セルロース、増粘剤(加工デンプン)を無添加のケーキを試作した。それに対し、比較例13、14では、セルロースを配合せず、増粘剤として加工澱粉を配合し、ケーキを試作した。
 得られた結果を、表4に示す。
[Example 25]
Using the cellulose composition C, the amount of the composition was set to 0.3% by mass, and a cake was prototyped and evaluated according to the above-described prototype method. The obtained results are shown in Table 4. In Table 4, the cellulose used here was described as the cellulose composition C.
[Comparative Examples 12 to 14]
In order to compare with a conventional cake, in Comparative Example 12, a cake with no addition of cellulose and thickener (modified starch) was made as a trial product. On the other hand, in Comparative Examples 13 and 14, cellulose was not blended, processed starch was blended as a thickener, and a cake was prototyped.
The obtained results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例12は、食感が優れるものの、具材は沈降し、均一なものは得られなかった。それに対し、比較例13、14で、加工デンプンを配合、増量すると、具材の均一性は向上したが、それに反し、食感が悪化した(食感がモチモチしすぎ、本来のケーキの食感(比較例12参照)ではなくなった。)。
 実施例は、ドライフルーツの配合量を10質量%に固定し、セルロース組成物を配合して得られた結果である。表4の結果から、セルロース組成物を配合すると、具材の均一性が向上し、比較例12(セルロース、加工デンプン無添加)に対し、具材の均一性が向上した。食感については、実施例レベルに、具材の均一性が向上した比較例13、14(加工デンプン配合)と比較して、食感が良好なものが得られた。
In Comparative Example 12, although the texture was excellent, the ingredients settled and a uniform product was not obtained. On the other hand, when modified starch was added and increased in Comparative Examples 13 and 14, the uniformity of ingredients was improved, but contrary to this, the texture deteriorated (the texture was too moist and the texture of the original cake was (See Comparative Example 12).)
An Example is the result obtained by fixing the compounding quantity of a dried fruit to 10 mass%, and mix | blending a cellulose composition. From the result of Table 4, when a cellulose composition was mix | blended, the uniformity of the ingredient improved and the uniformity of the ingredient improved with respect to the comparative example 12 (a cellulose and modified starch no addition). With respect to the texture, compared with Comparative Examples 13 and 14 (modified starch blended) in which the uniformity of ingredients was improved at the Example level, the texture was good.
 本発明により、高塩分濃度の水系媒体で容易に分散することができ、非乳化型の油の分散安定効果に優れるセルロース組成物を提供できる。そのため、特に、濃縮スープ、たれ等の、高塩分濃度で、油が添加された飲食品に好適に使用できる。
 また、本発明により、ビスケット、クッキー、プレッツェル、ウエハース、クラッカー、サブレ、ボーロ等の菓子において、密度が低く軽い食感を維持し、製造時や流通時の割れや欠けが低減され、サクサク感が向上し、製品の角(エッジ)立ちが良い菓子を提供することができるため、有用である。
 さらに、本発明により、フルーツ等の比重の大きい具材を、特定量含有し、具材が、製造時に偏らず、焼き上がり後に均一に分散し、さらに、クリスピー感、さっくり感、ふんわり感等の良好な食感を有するベーカリー製品を提供できるため、有用である。
According to the present invention, it is possible to provide a cellulose composition that can be easily dispersed in an aqueous medium having a high salinity concentration and that is excellent in the dispersion stabilizing effect of a non-emulsifying oil. Therefore, it can be suitably used for foods and drinks with high salinity and oil added, such as concentrated soup and sauce.
In addition, according to the present invention, in confectionery such as biscuits, cookies, pretzels, wafers, crackers, sables, bolo, etc., the density is low and the light texture is maintained, cracking and chipping during production and distribution are reduced, and a crisp feeling is achieved. It is useful because it can improve and provide a confectionery with a good product edge.
Furthermore, according to the present invention, ingredients having a large specific gravity such as fruit are contained in a specific amount, the ingredients are not biased at the time of manufacture, and are uniformly dispersed after baking, and further, a crispy feeling, a refreshing feeling, a soft feeling, etc. It is useful because it can provide a bakery product having a good texture.

Claims (16)

  1.  セルロース及び水溶性多糖類と、加工澱粉とを含み、5質量%の塩化ナトリウム水溶液中に0.01質量%濃度となるように分散させ、超音波処理を2分間経た後に、レーザー回折/散乱式粒度分布計を用い、屈折率1.04にて測定される体積頻度ヒストグラムにおいて、1μm以下の成分が6%以上である粒度分布を有する、セルロース組成物。 Cellulose and water-soluble polysaccharides and processed starch are dispersed in a 5% by weight sodium chloride aqueous solution to a concentration of 0.01% by weight, subjected to ultrasonic treatment for 2 minutes, and then laser diffraction / scattering type A cellulose composition having a particle size distribution in which a component of 1 μm or less is 6% or more in a volume frequency histogram measured using a particle size distribution meter at a refractive index of 1.04.
  2.  前記セルロース及び水溶性多糖類が、予めセルロース複合体を形成したものであり、この1質量%の水分散体の貯蔵弾性率(G’)が0.1Pa以上である請求項1に記載のセルロース組成物。 The cellulose according to claim 1, wherein the cellulose and the water-soluble polysaccharide form a cellulose composite in advance, and the storage elastic modulus (G ′) of the 1 mass% aqueous dispersion is 0.1 Pa or more. Composition.
  3.  前記セルロース複合体と加工澱粉の質量比が5/95~90/10である請求項1または2に記載のセルロース組成物。 The cellulose composition according to claim 1 or 2, wherein a mass ratio of the cellulose composite to the processed starch is 5/95 to 90/10.
  4.  前記加工澱粉が、アセチル化アジピン酸架橋澱粉、アセチル化酸化澱粉、アセチル化リン酸架橋澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉、ヒドロキシアルキル化リン酸架橋澱粉、ヒドロキシアルキル化澱粉、リン酸架橋澱粉、リン酸化澱粉、リン酸モノエステル化リン酸架橋澱粉、澱粉グルコール酸ナトリウム、及び澱粉リン酸エステルナトリウムから選ばれる少なくとも1種の加工澱粉をアルファー化加工したもの、部分的にアルファー化加工したもの、アルファー化加工をしていないもの、及び生澱粉をアルファー化したものから選ばれる少なくとも1種である、請求項1~3のいずれか一項に記載のセルロース組成物。 The modified starch is acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl sodium succinate starch, acetate starch, oxidized starch, hydroxyalkylated phosphate crosslinked starch, hydroxyalkylated starch, phosphoric acid At least one processed starch selected from cross-linked starch, phosphorylated starch, phosphoric acid monoesterified phosphoric acid cross-linked starch, starch sodium glycolate, and starch starch sodium phosphate, partially alphalized The cellulose composition according to any one of claims 1 to 3, wherein the cellulose composition is at least one selected from the group consisting of a non-pregelatinized product, a non-pregelatinized product and a raw starch.
  5.  前記加工澱粉が、ヒドロキシプロピル化澱粉、ヒドロキシプロピル化リン酸架橋澱粉、リン酸架橋アルファー化澱粉、アルファー化澱粉から選ばれる1種以上である、請求項1~4のいずれか一項に記載のセルロース組成物。 The processed starch according to any one of claims 1 to 4, wherein the modified starch is at least one selected from hydroxypropylated starch, hydroxypropylated phosphate-crosslinked starch, phosphate-crosslinked pregelatinized starch, and pregelatinized starch. Cellulose composition.
  6.  前記セルロース複合体中の、セルロースと水溶性多糖類の質量比が99/1~50/50である、請求項1~5のいずれか一項に記載のセルロース組成物。 The cellulose composition according to any one of claims 1 to 5, wherein a mass ratio of cellulose to water-soluble polysaccharide in the cellulose composite is 99/1 to 50/50.
  7.  前記水溶性多糖類が、キサンタンガム、ジェランガム、カラヤガム、カルボキシメチルセルロースナトリウム、及びサイリウムシードガムから選ばれる少なくとも1種である、請求項1~6のいずれか一項に記載のセルロース組成物。 The cellulose composition according to any one of claims 1 to 6, wherein the water-soluble polysaccharide is at least one selected from xanthan gum, gellan gum, karaya gum, sodium carboxymethylcellulose, and psyllium seed gum.
  8.  前記セルロース複合体を40質量%以上含む、請求項1~7のいずれか一項に記載のセルロース組成物。 The cellulose composition according to any one of claims 1 to 7, comprising 40% by mass or more of the cellulose composite.
  9.  前記セルロース複合体及び前記加工澱粉に加え、さらに親水性物質を1~59質量%含む、請求項1~8のいずれか一項に記載のセルロース組成物。 The cellulose composition according to any one of claims 1 to 8, further comprising 1 to 59% by mass of a hydrophilic substance in addition to the cellulose composite and the processed starch.
  10.  セルロース複合体と加工澱粉を水系媒体に分散させて、分散液を形成する工程と、この分散液を均質化する工程と、均質化された分散液を乾燥する工程とを含む方法によって得られる、請求項1~9のいずれか一項に記載のセルロース組成物。 Obtained by a method comprising dispersing a cellulose composite and processed starch in an aqueous medium to form a dispersion, homogenizing the dispersion, and drying the homogenized dispersion. The cellulose composition according to any one of claims 1 to 9.
  11.  セルロース複合体と加工澱粉を水系媒体に分散させて、分散液を形成する工程と、この分散液を均質化する工程と、均質化された分散液を乾燥する工程とを含む、請求項1~9のいずれか一項に記載のセルロース組成物の製造方法。 The method includes the steps of dispersing the cellulose composite and the modified starch in an aqueous medium to form a dispersion, homogenizing the dispersion, and drying the homogenized dispersion. The method for producing a cellulose composition according to any one of 9.
  12.  請求項1~10のいずれか一項に記載のセルロース組成物を0.1質量%以上含有し、塩分濃度が0.1質量%以上であり、25℃に対する50℃の損失正接(tanδ)の比が1以上である、水性の飲食品。 A cellulose composition according to any one of claims 1 to 10 is contained in an amount of 0.1% by mass or more, a salt concentration is 0.1% by mass or more, and a loss tangent (tan δ) of 50 ° C. with respect to 25 ° C. A water-based food or drink having a ratio of 1 or more.
  13.  セルロースを0.1質量%以上含有し、かつ、塩分濃度が0.1質量%以上であり、25℃に対する50℃の損失正接(tanδ)の比が1以上である、水性の飲食品。 Water-based food and drink, containing 0.1% by mass or more of cellulose, having a salt concentration of 0.1% by mass or more, and a ratio of loss tangent (tan δ) at 50 ° C. to 25 ° C. of 1 or more.
  14.  請求項1~10のいずれか一項に記載のセルロース組成物を0.1質量%以上含有し、かつ、塩化ナトリウム及び/又は塩化カリウム濃度が1質量%以上であり、油分を1質量%以上含む、水性の飲食品。 The cellulose composition according to any one of claims 1 to 10 is contained in an amount of 0.1% by mass or more, the sodium chloride and / or potassium chloride concentration is 1% by mass or more, and the oil content is 1% by mass or more. Including water-based food and drink.
  15.  穀粉、糖類、油脂と、0.01質量%以上の請求項1~10のいずれか一項に記載のセルロース組成物を含み、密度が0.30~1.00g/cmであり、最大荷重が0.3~5kgfである菓子。 It includes flour, saccharides, fats and oils, and the cellulose composition according to any one of claims 1 to 10 in an amount of 0.01% by mass or more, the density is 0.30 to 1.00 g / cm 3 , and the maximum load A confectionery having a weight of 0.3 to 5 kgf.
  16.  小麦粉、糖類、油脂を含む原料から得られるベーカリー製品において、短径が0.5mm以上であり、長径/短径比が1.0~5.0であり、比重が1.0g/mL以上の具材を1質量%以上含み、さらに請求項1~10のいずれか一項に記載のセルロース組成物を0.1質量%以上含有するベーカリー製品。 In a bakery product obtained from raw materials containing flour, saccharides and fats, the minor axis is 0.5 mm or more, the major axis / minor axis ratio is 1.0 to 5.0, and the specific gravity is 1.0 g / mL or more. A bakery product containing 1% by mass or more of ingredients and further containing 0.1% by mass or more of the cellulose composition according to any one of claims 1 to 10.
PCT/JP2013/053489 2012-02-14 2013-02-14 Cellulose composition WO2013122127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380009446.4A CN104114037A (en) 2012-02-14 2013-02-14 Cellulose composition
JP2013558717A JP5978418B2 (en) 2012-02-14 2013-02-14 Cellulose composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-029701 2012-02-14
JP2012029701 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013122127A1 true WO2013122127A1 (en) 2013-08-22

Family

ID=48984236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053489 WO2013122127A1 (en) 2012-02-14 2013-02-14 Cellulose composition

Country Status (4)

Country Link
JP (1) JP5978418B2 (en)
CN (2) CN107252082A (en)
TW (1) TWI514969B (en)
WO (1) WO2013122127A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226103A (en) * 2012-04-26 2013-11-07 Asahi Kasei Chemicals Corp Bakery product
JP2015074736A (en) * 2013-10-10 2015-04-20 旭化成ケミカルズ株式会社 Cellulose composite
JP2015126707A (en) * 2013-12-27 2015-07-09 ハウス食品株式会社 Non-fried meat seasoning
WO2016167269A1 (en) * 2015-04-17 2016-10-20 旭化成株式会社 Cellulose composite
WO2016166798A1 (en) * 2015-04-13 2016-10-20 旭化成株式会社 Cellulose composite
JP2017012053A (en) * 2015-06-30 2017-01-19 三栄源エフ・エフ・アイ株式会社 Meat-containing confectionery-like processed food
JP2017012165A (en) * 2015-06-30 2017-01-19 三栄源エフ・エフ・アイ株式会社 Rice-cake like eat-texture desert
JP2017035036A (en) * 2015-08-11 2017-02-16 キユーピー株式会社 Acidic emulsion seasoning
US20170087176A1 (en) * 2015-09-29 2017-03-30 Johnson & Johnson Consumer Inc. Composition for dust particle reduction
WO2017082299A1 (en) * 2015-11-13 2017-05-18 旭化成株式会社 Method for producing ceramic green body molded article and ceramic molded article
JP2017153461A (en) * 2016-03-04 2017-09-07 旭化成株式会社 Potato-containing snack and method for producing the same
WO2017150389A1 (en) * 2016-02-29 2017-09-08 グリコ栄養食品株式会社 Food composition containing starch
JP2018059126A (en) * 2018-01-19 2018-04-12 旭化成株式会社 Cellulose composite
WO2019039478A1 (en) * 2017-08-24 2019-02-28 株式会社Mizkan Holdings Liquid or semisolid emulsion seasoning, method for manufacturing same and flavor improving method
WO2019155929A1 (en) * 2018-02-08 2019-08-15 長瀬産業株式会社 Fiber-reinforced resin composition and production method therefor
CN111466521A (en) * 2020-04-16 2020-07-31 滁州润泰清真食品有限公司 Crispy bread crumbs and preparation method thereof
JPWO2019194085A1 (en) * 2018-04-03 2021-01-07 旭化成株式会社 Cellulose powder
JPWO2019207907A1 (en) * 2018-04-27 2021-05-13 株式会社J−オイルミルズ Food composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106974265A (en) * 2016-01-19 2017-07-25 江苏恒瑞医药股份有限公司 A kind of enteral nutritional composition
CN107144675B (en) * 2017-04-06 2019-11-08 杭州娃哈哈科技有限公司 A kind of beverage network structure detection system, devices and methods therefor
CN108713706B (en) * 2018-04-13 2022-03-04 陕西怡萱农业科技有限公司 Processing method of dried persimmon
TWI711388B (en) * 2019-07-26 2020-12-01 香港商唐芯生技有限公司 High-fiber combined noodle product with low glycemic index and preparation method thereof
CN112337192B (en) * 2020-09-16 2021-12-07 齐鲁工业大学 Efficient filtering material containing foaming coating and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222537A (en) * 1985-07-22 1987-01-30 旭化成株式会社 Dough composition
JP2008113572A (en) * 2006-11-01 2008-05-22 Asahi Kasei Chemicals Corp Easy dispersion stabilizer
WO2011087784A2 (en) * 2009-12-22 2011-07-21 Fmc Corporation Water-dispersible compositions for food applications
JP2012000104A (en) * 2010-05-18 2012-01-05 Asahi Kasei Chemicals Corp Oil and fat-containing granular food

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR820001412B1 (en) * 1978-12-14 1982-08-09 무라모도 마고도 Composite
JP3693385B2 (en) * 1995-06-16 2005-09-07 旭化成ケミカルズ株式会社 Water dispersible composition
JP4390376B2 (en) * 1999-09-17 2009-12-24 株式会社Adeka Oil-in-water emulsified chocolate and composite food using the same
CN100360604C (en) * 2003-04-23 2008-01-09 中国科学院广州化学研究所 Water dispersible nanometer avicel, its prep.and colloid therefrom
CN100584218C (en) * 2004-04-05 2010-01-27 Fmc有限公司 MCC/hydrocolloid stabilizers and edible compositions comprising the same
JP2008048602A (en) * 2004-12-06 2008-03-06 Asahi Kasei Chemicals Corp Thickening agent comprising water-dispersible cellulose and at least one kind of polysaccharide
KR101202887B1 (en) * 2008-06-09 2012-11-19 아사히 가세이 케미칼즈 가부시키가이샤 Composition containing crystalline cellulose composite
CN101480234A (en) * 2009-02-05 2009-07-15 王顺余 Stabilizing agent prescription of starch or fibre beverage
BR112012024773B1 (en) * 2010-03-31 2020-01-21 Asahi Kasei Chemicals Corp cellulose composite, food and drink containing it, and process for producing a cellulose composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222537A (en) * 1985-07-22 1987-01-30 旭化成株式会社 Dough composition
JP2008113572A (en) * 2006-11-01 2008-05-22 Asahi Kasei Chemicals Corp Easy dispersion stabilizer
WO2011087784A2 (en) * 2009-12-22 2011-07-21 Fmc Corporation Water-dispersible compositions for food applications
JP2012000104A (en) * 2010-05-18 2012-01-05 Asahi Kasei Chemicals Corp Oil and fat-containing granular food

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226103A (en) * 2012-04-26 2013-11-07 Asahi Kasei Chemicals Corp Bakery product
JP2015074736A (en) * 2013-10-10 2015-04-20 旭化成ケミカルズ株式会社 Cellulose composite
JP2015126707A (en) * 2013-12-27 2015-07-09 ハウス食品株式会社 Non-fried meat seasoning
US11242446B2 (en) 2015-04-13 2022-02-08 Asahi Kasei Kabushiki Kaisha Cellulose composite
WO2016166798A1 (en) * 2015-04-13 2016-10-20 旭化成株式会社 Cellulose composite
WO2016167269A1 (en) * 2015-04-17 2016-10-20 旭化成株式会社 Cellulose composite
US10492510B2 (en) 2015-04-17 2019-12-03 Asahi Kasei Kabushiki Kaisha Cellulose composite
JPWO2016167269A1 (en) * 2015-04-17 2017-11-02 旭化成株式会社 Cellulose composite
JP2017012165A (en) * 2015-06-30 2017-01-19 三栄源エフ・エフ・アイ株式会社 Rice-cake like eat-texture desert
JP2017012053A (en) * 2015-06-30 2017-01-19 三栄源エフ・エフ・アイ株式会社 Meat-containing confectionery-like processed food
JP2017035036A (en) * 2015-08-11 2017-02-16 キユーピー株式会社 Acidic emulsion seasoning
US20170087176A1 (en) * 2015-09-29 2017-03-30 Johnson & Johnson Consumer Inc. Composition for dust particle reduction
US10980827B2 (en) * 2015-09-29 2021-04-20 Johnson & Johnson Consumer Inc. Composition for dust particle reduction
JPWO2017082299A1 (en) * 2015-11-13 2018-08-16 旭化成株式会社 Ceramic body molded body and method for producing ceramic body
WO2017082299A1 (en) * 2015-11-13 2017-05-18 旭化成株式会社 Method for producing ceramic green body molded article and ceramic molded article
JPWO2017150389A1 (en) * 2016-02-29 2018-12-20 グリコ栄養食品株式会社 Food composition containing starch
WO2017150389A1 (en) * 2016-02-29 2017-09-08 グリコ栄養食品株式会社 Food composition containing starch
JP6998297B2 (en) 2016-02-29 2022-01-18 グリコ栄養食品株式会社 Food composition containing starch
JP2017153461A (en) * 2016-03-04 2017-09-07 旭化成株式会社 Potato-containing snack and method for producing the same
WO2019039478A1 (en) * 2017-08-24 2019-02-28 株式会社Mizkan Holdings Liquid or semisolid emulsion seasoning, method for manufacturing same and flavor improving method
JP6539792B1 (en) * 2017-08-24 2019-07-03 株式会社Mizkan Holdings Liquid or semi-solid emulsified seasoning, method for producing the same, method for improving flavor
JP2019162135A (en) * 2017-08-24 2019-09-26 株式会社Mizkan Holdings Emulsified seasoning in liquid or semi-solid state, manufacturing method thereof, and method for improving flavor
US11412767B2 (en) 2017-08-24 2022-08-16 Mizkan Holdings Co., Ltd. Liquid or semi-solid emulsion seasoning, method for manufacturing same and flavor improving method
JP2018059126A (en) * 2018-01-19 2018-04-12 旭化成株式会社 Cellulose composite
WO2019155929A1 (en) * 2018-02-08 2019-08-15 長瀬産業株式会社 Fiber-reinforced resin composition and production method therefor
JPWO2019155929A1 (en) * 2018-02-08 2021-01-28 長瀬産業株式会社 Fiber reinforced resin composition and its manufacturing method
JP6994520B2 (en) 2018-02-08 2022-02-04 長瀬産業株式会社 Fiber reinforced resin composition and its manufacturing method
JPWO2019194085A1 (en) * 2018-04-03 2021-01-07 旭化成株式会社 Cellulose powder
JPWO2019207907A1 (en) * 2018-04-27 2021-05-13 株式会社J−オイルミルズ Food composition
JP7312744B2 (en) 2018-04-27 2023-07-21 株式会社J-オイルミルズ food composition
CN111466521A (en) * 2020-04-16 2020-07-31 滁州润泰清真食品有限公司 Crispy bread crumbs and preparation method thereof

Also Published As

Publication number Publication date
CN104114037A (en) 2014-10-22
TW201336426A (en) 2013-09-16
JP5978418B2 (en) 2016-08-24
TWI514969B (en) 2016-01-01
CN107252082A (en) 2017-10-17
JPWO2013122127A1 (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP5978418B2 (en) Cellulose composition
EP3542646B1 (en) Seaweed-based powder
US6495190B1 (en) Cellulose-containing composite
JP4738165B2 (en) Water-soluble dietary fiber-containing composition and method for producing the same
WO2013022090A1 (en) Highly functional cellulose composite
TWI604006B (en) Cellulose complex
JP5955147B2 (en) Gelling agent
JP3874560B2 (en) Fine cellulose-containing composite
US7544379B2 (en) Composite containing fine cellulose
JP4117818B2 (en) Disintegrating cellulose-containing food composition
JP2000316507A (en) Dietary fiber-reinforced noodle
JP3830112B2 (en) Cellulose-containing composite
JP3506936B2 (en) Cellulose-containing composite
JP6215526B2 (en) Confectionery containing cellulose
JP2016123388A (en) Multilayer laminate comprising dough composition, and layered food
JP6596262B2 (en) Fried confectionery
JP6101433B2 (en) Bakery products
JP2017184621A (en) Semi-solid food having thick

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749777

Country of ref document: EP

Kind code of ref document: A1