WO2013122067A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2013122067A1
WO2013122067A1 PCT/JP2013/053304 JP2013053304W WO2013122067A1 WO 2013122067 A1 WO2013122067 A1 WO 2013122067A1 JP 2013053304 W JP2013053304 W JP 2013053304W WO 2013122067 A1 WO2013122067 A1 WO 2013122067A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
photoelectric conversion
hole
conversion element
substrate
Prior art date
Application number
PCT/JP2013/053304
Other languages
French (fr)
Japanese (ja)
Inventor
剛人 辻
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013122067A1 publication Critical patent/WO2013122067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion element. More specifically, the present invention relates to a photoelectric conversion element utilizing a through hole.
  • a common structure as a thin film solar cell is a so-called monolithic structure in which a plurality of unit cells are connected in series for integration.
  • unit cells are individualized by separating an electrode layer or the like by patterning or scribing about three times, and the unit cells are connected in series.
  • a solar cell having through holes connecting both surfaces of a substrate or the like has been proposed (for example, Patent Document 1).
  • a method of forming a series connection of unit cells through a through hole formed in a substrate which is represented by a SCAF structure (Series Connection through Apertures Formed on Film, FIG. 1), has also been put to practical use.
  • the back electrode formed in the back which is a field of a substrate opposite to a light-receiving side is used. That is, in a unit cell, one of two electrodes such as a transparent electrode and a back electrode sandwiching the photoelectric conversion layer formed on the light receiving surface is connected to a back electrode serving as a wiring provided on the back.
  • the back electrode extends to the back of the substrate and is connected to the other electrode of another unit cell disposed next to the light receiving surface.
  • a first through hole referred to as a current collection hole
  • a second through hole referred to as a connection hole penetrating the substrate are used.
  • the structure of the photoelectric conversion element of a SCAF structure is shown by the perspective view in FIG.
  • Japanese Patent Laid-Open No. 2002-208718 International Publication No. WO 2007/106756 Pamphlet Japanese Patent Application Publication No. 2009-529805
  • a transparent electrode is disposed on the surface of the light receiving surface on the positive electrode side, and the generated current is collected by this transparent electrode.
  • the photoelectric conversion element 700 is formed by dividing each photoelectric conversion element as a laminate by scribe lines or separation lines SL1 and SL2. Have.
  • Each unit cell 710 includes a back surface electrode 712, a photoelectric conversion layer 714, and a transparent electrode 716, and is connected in series by the back surface electrode 720.
  • the layer of the transparent electrode 716 and the layer of the back electrode 720 on the back surface of the substrate 701 are in contact with each other, and the current from the transparent electrode 716 is transmitted to the back electrode 720.
  • the transparent conductive material 716 a conductive oxide, that is, an In-based oxide such as ITO (tin-doped indium oxide) or a Zn-based oxide material such as AZO (aluminium-doped zinc oxide) is used. Therefore, the electrical resistance of the transparent conductive material 716 is larger than that of metal, and energy loss which is lost as Joule heat until reaching the first through hole 730 becomes a problem. This energy loss also affects the solar cell characteristics as a reduction of the fill factor. The energy loss is also a problem because the transparent electrode 716 is the current path of the entire series connection of the unit cells 710.
  • the path for transferring power from the transparent electrode 716 to the back surface of the substrate 701 through the first through holes 730 is necessarily a current path gradually concentrated toward the first through holes 730.
  • the current generated by the photoelectric conversion layer 714 is also added, so the current density near the first through hole 730 increases dramatically.
  • FIG. 1 (b) the state of the current is schematically displayed by a white arrow. This concentration of current generates Joule heat locally, leading to a local temperature rise. If the substrate 701 in the vicinity of the first through holes 730 and a sealing material (not shown) for sealing the photoelectric conversion element 700 can not withstand the heat, irreversible damage of these members may be caused.
  • One countermeasure against these problems is to increase the number of first through holes 730 formed. Accordingly, it is not impossible to distribute the current to the plurality of first through holes 730. However, increasing the first through holes 730 may cause new problems. When the first through holes 730 are increased, for example, the area of the power generation area decreases, which adversely affects the power generation function. In addition, when the number of the first through holes 730 is increased, the probability that the mechanical strength of the substrate 701 decreases or the leak due to an unexpected current path due to the first through holes 730 itself increases.
  • the higher the type of photoelectric conversion element the higher the current density at which power is generally generated.
  • the amount of current per unit area of the power generation area that is, the current density J op is approximately 10 mA / cm 2 during the power generation operation.
  • compound solar cells including CIGS [Cu (In, Ga) Se2] called chalcopyrite-based are also known.
  • the current density J op in that case reaches about 25 mA / cm 2 or so. With such a type in which the current is about three times as large, the above-mentioned problem of the current concentration in the through hole may be more serious.
  • the present invention has been made to solve at least one of the above-mentioned problems.
  • the present invention contributes to the realization of a photoelectric conversion element in which the Joule heat in the vicinity of a through hole such as a current collection hole is suppressed by reducing the electric resistance in the vicinity of the current collection hole that collects generated current from a transparent conductive film. .
  • the inventor of the present application solves at least some of the above problems by adopting a specific configuration for reducing the electrical resistance in the vicinity of the current collection holes (first through holes). I found that.
  • the present invention is a photoelectric conversion element in which a plurality of unit cells connected in series with each other are formed on one surface of a piece of insulating substrate, and each unit cell is A back surface electrode formed on the one surface of the substrate, a photoelectric conversion layer formed on the surface of the back surface electrode, and a transparent electrode formed on the surface of the photoelectric conversion layer Through the first through hole formed on the other surface of the substrate and electrically connected to the transparent electrode of one unit cell through the first through hole penetrating through the substrate, and through the second through hole penetrating through the substrate.
  • the unit cell further includes a plurality of back electrodes separated from one another electrically connected to the back electrode of another unit cell, wherein the plurality of unit cells are separated by the transparent electrode and the back electrode belonging to each unit cell.
  • the first The unit cell is electrically connected through the through hole and the second through hole, whereby each unit cell is connected in series by the back electrode, the transparent electrode is formed in contact with the surface of the transparent electrode, and the first There is provided a photoelectric conversion element comprising a metal conductor having a linear portion extending from a through hole.
  • the photoelectric conversion layer is an arbitrary layer that generates electric power by light, and typically, a thin film of silicon or silicon germanium such as amorphous or microcrystalline (hereinafter referred to as “silicon-based thin film”) or a compound such as CIGS It contains a system thin film.
  • silicon-based thin film silicon or silicon germanium such as amorphous or microcrystalline
  • CIGS CIGS
  • any aspect of the present invention it is possible to produce a photoelectric conversion element that reduces Joule heat (resistance loss) generated due to the electrical resistance of the transparent conductive film.
  • FIG. 3A is a plan view of one surface (light receiving surface) side
  • FIG. 3B is a plan view of the other surface (rear surface) side.
  • FIG. 4 (a) shows a unit cell in a conventional photoelectric conversion device of the SCAF structure
  • FIG. 4 (b) and 4 (c) show unit cells in the photoelectric conversion device of the improved SCAF structure according to an embodiment of the present invention. Indicates It is a top view showing alignment of a unit cell of a photoelectric conversion element of the improved SCAF structure in one embodiment of the present invention.
  • 5 is a flow chart illustrating a process of manufacturing an improved SCAF structured photoelectric conversion device according to an embodiment of the present invention. It is an enlarged view which shows the structure of the 1st through-hole vicinity of the photoelectric conversion element of the improved SCAF structure in one embodiment of this invention.
  • Fig.7 (a) is a top view of 1st through-hole vicinity
  • FIG.7 (b) is a schematic sectional drawing which shows the structure of 1st through-hole vicinity.
  • FIGS. 8 (a) and 8 (b) show the overlap of the membrane inside the first through hole of the conventional SCAF structure and the improved SCAF structure of an embodiment of the present invention, respectively. It is a schematic sectional drawing which shows the structure inside the 2nd through-hole of a photoelectric conversion element.
  • FIGS. 9 (a) and 9 (b) show the overlap of the membranes on the inner wall surface 42 of the second through hole of the conventional SCAF structure and the improved SCAF structure of the embodiment of the present invention, respectively.
  • FIG. 2 is a partially broken perspective view showing a schematic structure of an example of the improved SCAF structure photoelectric conversion element 100 in the present embodiment.
  • FIG. 3 is a plan view showing the configuration of the photoelectric conversion element 100. As shown in FIG. In the photoelectric conversion element 100 provided in the present embodiment, as shown in FIG. 2 and FIG. 3, a plurality of unit cells 10 connected in series are formed on one surface 1 a of a piece of insulating substrate 1. It is done. For example, a substrate of a plastic film can be employed as the substrate 1.
  • Each unit cell 10 is formed on the back surface electrode 12 formed on one surface 1 a of the substrate 1, the photoelectric conversion layer 14 formed on the surface of the back surface electrode 12, and the surface of the photoelectric conversion layer And the transparent electrode 16. That is, in the operation of each unit cell 10, the power generated by the photoelectric conversion layer 14 by the light transmitted through the transparent electrode 16 is taken out by the back electrode 12 and the transparent electrode 16.
  • a plurality of back electrodes 20 are formed on the other surface 1 b of the substrate 1.
  • the back electrodes 20 are separated from each other so as to be unit areas corresponding to the unit cells 10.
  • the back electrode 20 included in the photoelectric conversion element 100 is electrically connected to the transparent electrode 16 of one unit cell (for example, unit cell 10 i ) through a first through hole 30 penetrating the substrate 1.
  • the back electrode 20 is also electrically connected to the back electrode 12 of another unit cell (for example, unit cell 10 i + 1 ) through a second through hole 40 penetrating the substrate 1.
  • the transparent electrodes 16 and the back surface electrodes 12 belonging to each unit cell 10i are respectively different from the back electrodes 20 different from each other. It is electrically connected through the first through hole and the second through hole.
  • the unit cells 10 are connected in series by the back electrodes 20.
  • the unit cell 10 and the back surface electrode 20 which are located in the both ends of the said serial connection since it is the structure which takes out electric power out of the photoelectric conversion element 100, it is not necessarily produced in this way.
  • the connection with the back electrode 20 is established to only one of the transparent electrode 16 or the back electrode 12 of the terminal unit cell 10 or a configuration in which the back electrode 20 is connected to only one unit cell 10 Will be adopted.
  • the 1st through-hole 30 penetrates not only the board
  • the second through hole 40 penetrates the back electrode 12 in addition to the substrate 1.
  • the conductor 50 in contact with the surface of the transparent electrode 16 is further formed. And the conductor 50 is provided with the linear part 52 extended from the 1st through-hole 30 (FIG. 2 and FIG. 3).
  • the photoelectric conversion element 100 having the above structure has several technical advantages in the operation or fabrication of the photoelectric conversion element.
  • the current flowing through the transparent electrode 716 is charged to the back electrode 720.
  • the current path of the transparent electrode 716 is as short as possible to transmit the current to the back electrode 720, and the current is distributed to as many first through holes 730 as possible, and the current per one first through hole 730 is distributed. It was designed to reduce the amount.
  • the conductive resistance function of the conductor 50 particularly the linear portion 52, reduces the effective resistance value of the transparent electrode 16. .
  • the reduction of the power generation area by the first through hole 30 is prevented, and the operational advantage of preventing the reduction of the energy loss, ie, the curvilinear factor is also provided
  • the advantage that a hot spot phenomenon becomes difficult to generate arises also.
  • the resistance of the transparent electrode 716 in the current path concentrated in the first through hole 730 becomes a problem.
  • the linear portion 52 of the conductor 50 is formed to extend from the first through hole 30. Therefore, the current flows through the linear portion 52 rather than the transparent electrode 16 and reaches the first through hole 30. Therefore, a local temperature rise in the vicinity of the first through hole 30 can be suppressed, and the hot spot phenomenon is avoided.
  • the linear portion 52 extends from the first through hole 30 typically means that the linear portion 52 starts from the first through hole 30, forms a continuous body, and follows the path thereof It is connected seamlessly and reaches the other part of the transparent electrode 16.
  • the protuberance 52 extends from the first through hole 30.
  • the linear portion 52 includes an element portion that forms a linear path by a portion or combination that forms a generally linear path.
  • the linear portion 52 plays a role even if, for example, minute fractures are formed.
  • a flexible substrate may be adopted as the substrate 1 to cause bending with a small radius of curvature, or cracks may occur for some reason such as thermal expansion.
  • the material of the conductor 50 is intentionally patterned to form a chain-like path in anticipation of the occurrence of the cracks.
  • typical examples of the linear portion 52 include those having a generally linear shape. As long as the linear portion 52 is formed in contact with the transparent electrode 16 having a certain degree of conductivity, the role of lowering the resistance value of the transparent electrode 16 is realized even if there is a fractured portion. .
  • the number of first through holes 30 can be reduced without degrading the characteristics of the photoelectric conversion element, so the processing time of the first through holes 30 can be reduced. Can be shortened.
  • the through holes are formed by mechanical punching, the processing time can be shortened by reducing the number of times of punching.
  • the miniaturization of the mold used is possible. This also makes it possible to reduce the device cost. Further, even in the case of processing using a laser, it is possible to shorten the possible time by reducing the number of irradiations and to reduce the cost of the apparatus accordingly.
  • the back electrode 720 is formed over a wide area in accordance with the current collection holes (first through holes) being distributed over the wide area of the light receiving surface. There is a need to. In order to form the back electrode 720, it is necessary to reduce the area as much as possible, since it is necessary to form an electrode film for that purpose and to process it for patterning. Therefore, as a preferable configuration in the present embodiment, in the photoelectric conversion element 100, as shown in FIGS.
  • an electrode non-formed area 60 ((abbreviated as “Electrode Non-Existent Area 60, hereinafter“ ENEA 60 ”)
  • the ENEA 60 in this embodiment is a region where the back electrode 20 is not formed on the other surface 1b of the substrate 1.
  • Fig. 3 (a) is the one surface 1a (light receiving surface) side
  • Fig. 3 (b) is a plan view of the other surface 1b (rear surface) side
  • the ENEA 60 is drawn as a surface to which the other surface 1b of the substrate 1 is exposed.
  • the ENEA 60 has the other corresponding to the area (for example, the power generation area 18) of one surface 1a on which a plurality of unit cells 10 are formed. It is formed so as to occupy at least a part of the region on the side of the surface 1b, and as shown in FIG. On the side, it extends to at least a part of the area corresponding to ENEA 60.
  • Such a configuration of the photoelectric conversion element 100 makes it possible to reduce the number or the surface density of the first through holes 30 by the conductor 50. In the photoelectric conversion element 100 capable of reducing the number of the first through holes 30, it is possible to provide the ENEA 60 by limiting the area of the back electrode 20.
  • the first advantage is that the provision of the ENEA 60 limits the range in which the back electrode 20 is formed, and reduces the resources required to produce the photoelectric conversion element 100. More specifically, when the layer of the back electrode 20 is formed by sputtering, for example, the amount of use can be reduced by miniaturizing the target. In addition, since the electrode size of the sputtering apparatus can be miniaturized, the miniaturization of the apparatus and the reduction of energy at the time of film formation can also be achieved.
  • the second advantage is that the time for processing can be reduced.
  • Providing the ENEA 60 to limit the range of the back electrode 20 shortens the patterning distance of the laser scribing process for forming, for example, the separation line SL2 (FIG. 3B) for dividing the back electrode 20.
  • the processing time of the scribing process can be shortened.
  • the risk of short circuit between adjacent back electrodes 20 is also reduced. This is because shortening the patterning distance reduces the probability of causing a leak. Furthermore, it is also possible to reduce the risk of damage to the back electrode during back surface processing that may occur due to variations in patterning conditions.
  • FIG. 4 is a plan view showing the structure of the transparent electrode in the improved SCAF photoelectric conversion element of this embodiment.
  • FIG. 4A shows a unit cell 710 in the photoelectric conversion element 700 of the conventional SCAF structure
  • FIGS. 4B and 4C show a unit cell 10 in the photoelectric conversion element 100 of the present embodiment.
  • FIG. 5 is a top view which shows the sequence of the unit cell 10 of the photoelectric conversion element 100 of the improved SCAF structure in the photoelectric conversion element 100 of this embodiment. It is explanatory drawing which expands and shows the structure of the transparent electrode in a photoelectric conversion element.
  • the plurality of unit cells 10 are divided into strips extending in one direction, and the unit cells are arranged in the width direction of the strips.
  • each unit cell is drawn by a strip extending in the vertical direction of the paper surface.
  • the plurality of back electrodes 20 are divided into the back electrodes 20 on the other surface 1 b of the substrate 1 so as to be aligned in the direction in which the unit cells 10 i and 10 i + 1 are arranged in the plurality of unit cells 10. ( Figure 3).
  • the unit cell 710 (FIG. 4A) of the conventional photoelectric conversion element 700, the current collected by the transparent electrode 716 having a large electric resistance flows, and another unit cell 710 included in the photoelectric conversion element 700.
  • the current from the source also has to pass through the transparent electrode 716. Therefore, a large number of first through holes 730 are formed.
  • the photoelectric conversion element 100 (FIGS. 4B and 4C) of the present embodiment, at least a part of the linear portion 52 of the conductor 50 is in the longitudinal direction of the strip of the transparent electrode 16, that is, photoelectric conversion It extends in the vertical direction on the sheet of FIG. 4 of the element 100. For this reason, even if the number of first through holes 30 is reduced, a current path passing not only through the transparent electrode 16 but also through the conductor 50 is established. That is, the electrical resistance of the transparent electrode 16 does not substantially increase. Furthermore, as shown in FIG.
  • an ENEA 60 is formed on the other surface 1b of the substrate 1 and from the first through hole 30 to reach a region corresponding to the ENEA 60 on the side of one surface 1a. It can also be configured to extend. For that purpose, for example, as clearly shown in FIG. 4C, a device such as increasing the number of linear portions 52 is effective. Besides this, adjustment such as lowering the electric resistance of the conductor 50 by adjusting the material and film thickness of the conductor 50 is also effective.
  • a typical ENEA 60 in the photoelectric conversion element 100 has a direction in which a plurality of unit cells 10 are arranged, that is, a strip-like width direction (upper and lower in FIG. Direction).
  • the ENEA 60 extends in the direction in which the strip-shaped unit cells 10 i and 10 i + 1 are arranged.
  • the linear portion 52 is oriented to extend in the longitudinal direction of the strip shape as shown in FIG. 4 (c).
  • the photoelectric conversion element 100 through one unit cell 10 i transparent electrode 16 and the back electrode 12 belongs to is in the vicinity of both end portions 10E1 and 10E2 of the strip, the first through hole 30 and the second through hole 40, They are electrically connected to the back electrodes 20 different from one another.
  • the ENEA 60 is a region of the other surface 1 b corresponding to a region extending in the width direction of the strip across the plurality of unit cells 10 in the longitudinal direction central portion of the strip of each of the plurality of unit cells 10.
  • the connection by the first through holes 30 and the second through holes 40 is realized at each of the both ends 10E1 and 10E2 of the strip. Is also possible. Then, the electrical resistance connecting the unit cells 10 can be kept small while the advantage of providing the ENEA 60, that is, the shape of the back electrode 20 is reduced.
  • each unit cell 10 i is provided with a plurality of first through holes 30, and one linear portion 52 of the conductor 50 is one unit cell. At least two of the first through holes 30 in the range of 10 i are formed to be connected. In this configuration, the collected current and the currents from other unit cells are distributed among the plurality of first through holes 30 connected by the linear portions 52 in accordance with the resistance value of each path. In addition, even if any failure occurs in any of the first through holes 30, the other first through holes 30 connected by the route of the linear portion 52 become redundant paths, so the failure is directly related to the power generation performance. Adverse effects are less likely to occur.
  • the generated current is distributed among the plurality of first through holes 30 connected by the linear portion 52. For this reason, it is possible to prevent in advance the situation in which the current is concentrated in the individual first through holes 30 due to the distribution of the electromotive force to cause the hot spot phenomenon.
  • the linear portion 52 of the conductor 50 in the photoelectric conversion element 100 has a plurality of linear portions extending from the first through hole 30 in a plurality of directions on one surface 1 a.
  • the conductor 50 is most typically one component as a main component, such as a layer formed by patterning a silver paste by screen printing and then curing the silver paste and forming it as a metal. . That is, the conductor 50 may contain components other than metals, such as a binder component.
  • a layer of a conductor mainly composed of any kind of metal that can be patterned can be adopted as the conductor 50.
  • the same effect can be achieved by adopting deposition of a thin metal layer with a suitable mask, adhesion with a conductive adhesive of a patterned metal foil, or the like.
  • a conductive material such as carbon paste for the conductor 50.
  • a forming method or a material in which the conductor 50 can be formed on the inner wall surface 32 is employed.
  • FIG. 6 is a flowchart showing steps of manufacturing the improved SCAF photoelectric conversion element in the present embodiment.
  • FIG. 7, FIG. 8 (b), and FIG.9 (b) which the cross-section of the photoelectric conversion element 100 clearly shows are also referred to suitably.
  • an insulating film substrate is adopted as a substrate 1 for producing the photoelectric conversion element 100.
  • a polyimide film having a thickness of about 50 ⁇ m is used as a substrate 1 for producing the photoelectric conversion element 100.
  • Other examples of the material of the substrate that can be adopted include other insulating plastic films such as PET, PEN, PES, acryl, aramid and the like.
  • an opening 44 for the second through hole 40 (connection hole) is formed in the substrate 1.
  • an opening 44 is provided at a predetermined position of the substrate 1 by a punching die (punch) (connection hole forming step S102).
  • degassing processing S104 is performed to remove the gas released from the polyimide film of the material of the substrate 1.
  • the degassing process S104 may be performed either before or after the connection hole forming process S102. For example, it is also preferable to add a degassing process (not shown) before the connection hole forming step S102 in the flow of FIG.
  • a layer to be the back surface electrode 12 is formed on one surface 1a of the substrate 1 (back surface electrode layer forming step S106), and then the other surface 1b of the surface of the substrate 1 and the layer on the substrate 1 side of the back surface electrode 20
  • the first connection wiring layer 22 is formed (first connection wiring layer forming step S108).
  • the layer to be the back electrode 12 is formed by sputtering, for example, silver (Ag) to a film thickness of 200 nm. Also, as a material of the first connection wiring layer 22, for example, the same Ag as the layer to be the back electrode 12 is adopted.
  • metals such as an Ag alloy, aluminum (Al), and an alloy thereof can be used as the material of the layer serving as the back surface electrode 12 and the first connection wiring layer 22.
  • the film etc. which consist of a multilayer structure of a metal layer and a transparent electrode layer can also be used for the layer used as the back surface electrode 12.
  • the film formation method for forming the layer to be the back electrode 12 and the first connection wiring layer 22 is not limited to the sputtering method, and vacuum deposition, spray film formation, printing, coating, and plating may be employed. You can also.
  • the formation range of the first connection wiring layer 22 is limited to a region other than the ENEA 60.
  • the timing and processing conditions of the degassing process such as the degassing process S104 should be changed. Is possible.
  • the layer to be the back surface electrode 12 formed on one surface 1a of the substrate 1 and the other surface 1b formed on the other surface 1b of the substrate 1 The layers of the first connection wiring layer 22 overlap directly on or near the inner wall surface of the second through hole 40 (connection hole), and are electrically connected to each other (FIG. 9B).
  • the first surface patterning step S110 is performed, and at that time, the first connection wiring layer 22 formed on one surface 1a (first surface) of the substrate 1 is separated. It separates with SL1. Thereafter, an opening 34 (FIG. 8 (b)) for the first through hole 30 (current collecting hole) is formed in the substrate 1 using a punching die different from the case of the second through hole 40 (current collecting hole Formation step S112). At this time, not only the substrate 1 but also the layer to be the back electrode 12 and the first connection wiring layer 22 which are formed on the substrate 1 at that stage are formed.
  • a photoelectric conversion layer 14 such as a semiconductor layer is formed on one surface 1a side of the substrate 1 (semiconductor layer forming step S114).
  • this photoelectric conversion layer 14 for example, an n layer, an i layer and a silicon (Si) layer of an nip structure in which an n layer, an i layer and ap layer of amorphous silicon are arranged from the substrate 1 side are formed.
  • a coupled plasma CVD (Chemical Vapor Deposition) method is used.
  • the film-forming method at the time of forming the photoelectric converting layer 14 in this embodiment is not specifically limited.
  • the photoelectric conversion layer 14 may be a photoelectric conversion layer in which microcrystalline Si is used for the i layer, or a multijunction in which an nip structure of amorphous Si and an nip structure of microcrystalline Si are stacked. It may be a type (tandem type) photoelectric conversion layer.
  • the constituent material of the n layer and the p layer it is also possible to modify the present embodiment so as to use an alloy such as amorphous SiO.
  • SiO, amorphous Si, or a microcrystalline Si layer as an interface layer or a tunnel junction layer in order to make various technical improvements.
  • the other device for improving the processing efficiency of a film-forming process is also useful.
  • a roll-to-roll system in which a film is continuously formed while continuously transporting the substrate 1 can be adopted as a preferable process for the present embodiment.
  • a method (stepping roll method) is also implemented, which operates so as to repeat the transport mode and the film formation mode, and causes the substrate to be in a stopped state in the film formation mode. It can be adopted as a preferred process of form.
  • a transparent conductive material is further deposited on the side of one surface 1a of the substrate 1 as a layer to be the transparent electrode 16 (transparent conductive layer forming step S116) .
  • the transparent conductive material is not deposited in the range by providing a mask in the range in which the second through holes 40 are provided among both end portions of the photoelectric conversion layer, that is, both ends 10E1 and 10E2. Make it As a result, in this range, the photoelectric conversion layer 14 is exposed (FIG. 2, FIG. 3 (a), FIG. 9 (b)). Thus, the transparent electrode 16 is not formed in the region of the second through hole 40.
  • transparent conductive materials can be used as the transparent conductive material for the layer to be the transparent electrode 16 of the present embodiment, and the material is not particularly limited.
  • This transparent conductive material is typically any one or a combination of transparent conductive materials of metal oxides such as ITO, SnO 2 , TiO 2 , ZnO, IZO (In 2 O 3 -ZnO, registered trademark), etc. (Laminate or mixture) is selected.
  • RF sputtering, DC sputtering, a printing method, a coating method, etc. are employable as a film-forming method of transparent conductive layer formation process S116.
  • a layer of the second connection wiring layer 24 which forms the back electrode 20 together with the first connection wiring layer 22 is formed on the entire surface of the other surface 1 b of the substrate 1 (second connection wiring layer forming step S118).
  • a low resistance conductive layer such as a metal material such as nickel is formed.
  • the layer to be the transparent electrode 16 formed on one surface 1a of the substrate 1 and the layer of the second connection wiring layer 24 formed on the other surface 1b of the substrate 1 (1) They are directly superposed on or near the inner wall surface of the through hole 30 and electrically connected to each other (FIG. 8 (b)). Since the second connection wiring layer 24 is formed to be in contact with the first connection wiring layer 22 on the other surface 1b of the substrate 1, these connection wiring layers on the other surface 1b are connected to each other and electrically Are layers for the back electrode 20 as an integrated connection wiring layer.
  • Conductor 50 is formed on the surface of the layer to be transparent electrode 16 on one surface 1a side of substrate 1 after the second connection wiring layer formation step S118 so that a predetermined pattern is formed (conductivity Body layer forming step S120).
  • a metal material such as silver (Ag) can be adopted.
  • a film having a multilayer structure using a metal material such as Ag alloy, Al, Cu, Ti or the like.
  • a conductive film containing fine powder or fine particles of these metals for example, a conductive film formed of silver paste can also be adopted.
  • the factors considered in selecting the material of the conductor 50 are that patterning is easy and that the conductivity is high, deterioration occurs during the expected period of use of the product (module) of the solar cell. There is no such thing.
  • the linear portion 52 and the border portion 54 are also formed as a part of the conductor 50.
  • materials with low conductivity such as carbon paste are also applicable.
  • patterning method used in conductor layer formation process S120 It supplements regarding the patterning method used in conductor layer formation process S120.
  • Various methods can be adopted for the patterning used in the present embodiment.
  • the screen printing method described above is a preferred example thereof.
  • an inkjet printing method, a patterning process by vapor deposition using a metal mask, a dispenser drawing, a film transfer and the like can also be adopted.
  • the photoelectric conversion layer 14 has the same shape as the back electrode 12.
  • the transparent electrode 16 is not formed in the vicinity of the second through hole 40, but the vicinity of the separation line SL1 is divided at the same position as the back surface electrode.
  • the unit cell 10 is formed by stacking the back electrode 12, the photoelectric conversion layer 14 (semiconductor layer), and the transparent electrode 16 in this order except for the vicinity of the connection hole 2 at the end in the shape surrounded by the separation line SL1. Be done.
  • the preliminary patterning process is performed, for example, at any stage after the back surface electrode layer forming process S106 and before the semiconductor layer forming process S114. Also in this preliminary patterning process, it is the position of the separation line SL1 that is patterned so as to separate the back electrode layer 6.
  • laser processing is performed on the side of the other surface 1b (second surface) of the substrate 1 of the substrate 1 at the position of the separation line SL2 (second surface patterning step S124).
  • the second surface patterning step S124 the second connection wiring layer 24 and the first connection wiring layer 22 are simultaneously separated.
  • the mechanical scribing method by the metal blade can also be employ
  • the conductive layer forming step S120 is performed in the order prior to the first surface patterning step S122 and the second surface patterning step S124, the conductive layer forming step S120 is patterned on the first surface It is also possible to carry out between the step S122 and the second surface patterning step S124 or to carry out the conductor layer forming step S120 after completing the first surface patterning step S122 and the second surface patterning step S124.
  • FIG. 7 is an enlarged view showing a structure in the vicinity of the first through hole 30 in the photoelectric conversion element 100 of the improved SCAF structure in the present embodiment.
  • FIG. 7 (a) is a plan view seen from one surface 1a side in the vicinity of the first through hole 30, and
  • the conductor 50 covers a position of the surface of the transparent electrode 16 at which the opening 34 of the first through hole 30 is bordered. That is, as shown in FIG. 7, in the unit cell 10, the edge of the first through hole 30 of the first through hole 30 penetrating the substrate 1, the back electrode 12, the photoelectric conversion layer 14, and the transparent electrode 16 is an edge. A border 54 is formed to be taken. Such a configuration of the rim portion 54 is particularly effective in suppressing the generation of Joule heat due to the high current density caused by the current concentration on the transparent electrode 16 in the vicinity of the first through hole 30. Therefore, it becomes possible to suppress a local temperature rise in the vicinity of the first through hole 30, and is useful in the configuration of the photoelectric conversion element 100 of the present embodiment.
  • FIG. 8 is a schematic cross-sectional view showing the structure inside the first through hole of the photoelectric conversion element.
  • FIGS. 8 (a) and 8 (b) show the overlap of the membranes on the inner wall of the first through hole, respectively, of the conventional SCAF structure and of the improved SCAF structure according to an embodiment of the invention It is.
  • FIG. 9 is a schematic sectional drawing which shows the structure inside the 2nd through-hole of a photoelectric conversion element.
  • FIGS. 9 (a) and 9 (b) show the overlap of the membranes on the inner wall of the second through hole, respectively with the conventional SCAF structure and the improved SCAF structure of the embodiment of the present invention is there.
  • the layer of the back electrode 720 and the layer of the transparent electrode 716 extend on the inner wall surface 732 of the first through hole 730 Electrical continuity is established in the region (indicated by the symbol “716/724”) where they contact each other on the inner wall surface 732.
  • the current path is shown by the outline arrow on the inner wall surface on the right side of the paper surface of FIG. 8A.
  • region 716/724 does not always always have a sufficient current path on inner wall surface 732 due to factors such as manufacturing variations. Even if it is assumed that the electric resistance value of the transparent electrode 716 is sufficiently low, as shown in FIG.
  • FIG. 4 (a) from the state where a large number of first through holes 730 are disposed, FIG. 4 (b) or (c)
  • the number (area density) per unit area of the first through holes 30 is reduced by reducing the number of the first through holes 30 as in the photoelectric conversion element 100 of the present embodiment shown in FIG. It is necessary to improve the reliability of the first through hole 30 as the conduction path.
  • the probability of breakage due to the hot spot phenomenon is reduced by forming the linear portion 52 of the conductor 50 in contact with the transparent electrode 16, the situation in which the current is still concentrated in the first through hole 30 Is maintained.
  • One direct improvement in such a case is to widen the inner diameter of the first through hole 30 and increase the peripheral length of the first through hole 30 to enlarge the conductive region. However, the improvement will reduce the power generation area.
  • a device is employed to improve the reliability of conduction of each first through hole 30 using the conductor 50 (FIG. 8).
  • the conductor 50 is disposed on at least a part of the inner wall surface 32 of the first through hole 30 in which each of the back electrode 20 and the transparent electrode 16 extends.
  • the conductor 50 is in contact with both the back electrode 20 and the transparent electrode 16 on the inner wall surface 32 and functions to establish or enhance an electrical path. Adopting such a configuration makes it possible to improve the reliability of conduction in the first through holes 30.
  • the conductor 50 on the inner wall surface 32 may be disposed so as to close the opening 34 of the first through hole 30.
  • the conductor 50 can be formed using a conductive paste by a method such as screen printing. That is, the size of the first through hole 30 is often about 1 mm to 5 mm in diameter, and the thickness of the substrate 1 is typically less than 1 mm. Therefore, even when the first through hole 30 at the time of forming the conductor 50 is in the same state as the first through hole 730 (FIG. 8A), the first through hole 30 passes through the other side of the substrate 1.
  • the conductor 50 can also be formed on the inner wall surface 32 to such an extent that it reaches the surface 1b side or protrudes to the other surface 1b side.
  • FIG. 9 is a schematic cross-sectional view showing the structure inside the second through hole of the photoelectric conversion element.
  • FIGS. 9 (a) and (b) show the overlap of the film on the inner wall surface of the second through hole in the photoelectric conversion element in the conventional SCAF structure and the improved SCAF structure of the embodiment of the present invention, respectively.
  • the connection between the back surface electrode 712 and the back surface electrode 720 (the first connection wiring layer 722 and the second connection wiring layer 724) in the second through holes 740 in the conventional photoelectric conversion element 700 is the same as that of the second through holes 740.
  • each of the back electrode 20 and the back electrode 12 extends to at least a part of the inner wall surface 42 of the second through hole 40, and the conductor 50 Preferably, an electrical path is established or enhanced in contact with both the back electrode 20 and the back electrode 12 on the inner wall surface 42 of the through hole 40. Also in this case, the conductor 50 may be disposed to fill the inside of the second through hole 40. In addition, the arrangement of the conductor 50 in the second through hole 40 also has no particular difficulty in preparation.
  • photoelectric conversion element 100 of the present embodiment is merely an example. Therefore, photoelectric conversion element 100 of this embodiment is not limited to what was mentioned above, A various change or improvement can be given.
  • the electrode reduced area is formed to occupy the area of the same or similar shape as the ENEA 60 on the other surface 1 b of the substrate 1. That is, the electrode reduced area is formed in at least a part of the area on the side of the other surface 1 b corresponding to the area in which the plurality of unit cells are formed.
  • the back electrode 20 is formed of a laminated film of a plurality of metal layers such as the first connection wiring layer 22 and the second connection wiring layer 24 described above. In that case, the electrode reduction region is a region where at least one of the electrode layers of the laminated film forming the back electrode 20 is not formed.
  • the electrode reduction region is different from the ENEA 60.
  • the linear portion 52 provided in the conductor 50 is at least a part of the region corresponding to the electrode reduction region on the side of one surface 1a of the substrate 1 It extends to Even with such a configuration, the same advantages as the advantage that manufacturing becomes possible due to the resource saving of the photoelectric conversion element 100 provided with the above-described ENEA 60 are realized at least to some extent.
  • the photoelectric conversion element adopting a planar arrangement in which the first through holes 30 are not disposed in the electrode reduction region is, for example, to suppress the erosion of the power generation area by the first through holes 30. It is a further preferred configuration.
  • the pattern formed as the conductor 50 can also be various patterns.
  • the typical example of the pattern of the conductor 50 formed by screen printing is illustrated below.
  • the extending direction of the linear portion 52 may be any of vertical, horizontal, and diagonal directions in the plane of the one surface 1a. As described above, in one typical example, at least a portion of the linear portion 52 extends in the longitudinal direction of the strip of the transparent electrode 16 from the first through hole 30 to the ENEA 60 on the side of one surface 1 a of the substrate 1. It has reached the corresponding area. At this time, the plurality of unit cells 10 are divided into strips extending in one direction, and the unit cells are arranged in the width direction of the strips.
  • having a plurality of linear portions extending from the first through hole 30 in a plurality of directions means, for example, that the directions extending from the first through hole 30 are different by 180 degrees from each other. It is typical to have linear portions 52 of a plurality of orientations specified by angles, such as different orientations. Other than that, the linear part 52 includes one having a branched structure such as a trunk, a branch, and a twig like a branch of a tree.
  • the shape of the linear portion 52 of the conductor 50 of the present embodiment can be appropriately deformed and adjusted so as to satisfy the electrical requirements, the optical requirements, the mechanical requirements, and the manufacturing requirements.
  • the substantial resistance of the transparent electrode 16 can be reduced as the number of the linear portions 52 is large, the line width is large, and the film thickness is large.
  • the ratio of blocking light passing through the transparent electrode 16 can be reduced.
  • the substrate 1 is formed on a flexible substrate and the photoelectric conversion element 100 is desired to have flexibility, it is considered that the smaller the film thickness, the less the influence of the flexibility.
  • the width of the linear portion 52 is generally wide, formation is easy.
  • the range of the border 54 is also appropriately adjusted.
  • the border 54 is wide, it is possible to improve the performance from the electrical side.
  • the light shielding by the border 54 reduces the power generation area.
  • each of the 50 parts is formed by one process.
  • the conductor 50 is a conductor such as a metal substantially having an electrical path, it can also be formed by combining those partially formed by a plurality of treatments.
  • the function of establishing or enhancing the electrical path on the inner wall surface 32 of the first through hole 30 and the inner wall surface 42 of the second through hole 40 has been described.
  • the establishment of the electrical path by the conductor 50 and the enhancement of the electrical path are not necessarily limited to the establishment of the electrical path without conduction at all by the conductor 50 alone.
  • Conductor 50 establishes an electrical path or enhances an electrical path as long as it functions to obviously or potentially reduce a defect in which the electrical path is stochastically incomplete due to a factor such as a variation during mass production. To perform the function.
  • the type of photoelectric conversion element employed in the photoelectric conversion element 100 of the present embodiment is not particularly limited. That is, the material of the photoelectric conversion layer 14 is a silicon (Si) layer of an nip structure in which the n layer, i layer, and p layer of the amorphous silicon described above in the column of the manufacturing method are disposed from the substrate 1 side. It is typical.
  • Another typical example is a compound solar cell including CIGS [Cu (In, Ga) Se2] called chalcopyrite as a material of the photoelectric conversion layer 14.
  • the method of manufacturing the photoelectric conversion element 100, in particular, the back electrode layer forming step S106 to the transparent conductive layer forming step S116 are as follows.
  • a layer to be the back surface electrode 12 on the surface of one surface 1a of the substrate 1 is formed of molybdenum (Mo).
  • Mo molybdenum
  • the first connection wiring layer formation step S108, the first surface patterning step S110, and the current collection hole formation step S112 are performed.
  • the p-type CIGS absorption layer and the buffer layer are formed in this order as the photoelectric conversion layer 14 in the layer of Mo to be the back surface electrode 12 formed at that time (semiconductor layer forming step S114).
  • the transparent conductive layer formation process S116 which forms the transparent electrode 16 is implemented.
  • the transparent electrode corresponding to the transparent electrode 16 is a laminate of a high resistance transparent electrode layer and a low resistance transparent electrode layer.
  • the p-type CIGS absorption layer is expressed by, for example, Cu (In 1-x Ga x ) Se 2 by an element such as Cu, In, Ga, and Se (copper, indium, gallium, selenium) and the like. is there.
  • the composition is adjusted between Cu and (In + Ga) so as to be a p-type conductivity type.
  • the material of the buffer layer may be selected CdS, ZnS, ZnO, ZnOH, ZnSe, ZnIn 2 Se 4, In 2 S 3, a ZnMgO.
  • the current is larger in the CIGS solar cell than in the silicon thin film photoelectric conversion element.
  • the reduction of the resistance of the transparent electrode 16 by adopting the conductor 50 of the present embodiment and the reduction of resistance and improvement of the reliability of series connection through the first through holes 30 or the second through holes 40 are more useful. It is.
  • CIGS solar cells generally have the property of being insensitive to vacuum. That is, even if the degree of vacuum of the environment is deteriorated during the film forming process of forming the back electrode 12, the adverse effect on the performance of the photoelectric conversion element 100 after formation is slight compared to the case of the silicon based thin film solar cell.
  • substrate 1 by the back surface electrode 20 mentioned above is not high, and the combination with arrange
  • the photoelectric conversion element of the present invention can be used for any device that generates electric power by light such as sunlight.
  • photoelectric conversion element 1 substrate 1b one surface 1a other surface 10 unit cells 10E1 and 10E2 both ends 12 back surface electrode 14 photoelectric conversion layer 16 transparent electrode 20 back surface electrode 22 first connection wiring layer 24 second connection wiring layer 30 first Through hole 32 inner wall surface 34 opening 40 second through hole 42 inner wall surface 44 opening 50 conductor 52 linear portion 54 edge portion 60 electrode non-forming area (ENEA) SL1, SL2 separation line

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a photoelectric conversion element that minimizes Joule heating near a through-hole. One embodiment of the present invention provides a photoelectric conversion element (100) in which a plurality of unit cells (10) are formed on one surface (1a) of an insulating substrate (1). The other surface (1b) thereof is provided with a plurality of backside electrodes (20) that connect the unit cells to each other in series. Each unit cell is provided with an underside electrode (12), a photoelectric conversion layer (14), and a transparent electrode (16). Each such transparent electrode is provided with a conductor (50) that is formed in contact with the surface of said transparent electrode and has linear sections (52) that extend from a first through-hole (30).

Description

光電変換素子Photoelectric conversion element
 本発明は光電変換素子に関する。さらに詳細には本発明は、貫通孔を利用する光電変換素子に関する。 The present invention relates to a photoelectric conversion element. More specifically, the present invention relates to a photoelectric conversion element utilizing a through hole.
 近年、太陽光により発電する太陽電池すなわち光電変換素子が作製されている。なかでも、製造時に使用される材料が少なく、フレキシブルかつ軽量な光電変換素子である薄膜系太陽電池が注目されている。薄膜系太陽電池の構造として一般的なものは、複数の単位セルを直列接続し集積化するモノリシック構造と呼ばれるものである。このモノリシック構造においては、3回程度のパターニングまたはスクライブ処理により電極層などを分離することにより、単位セルを個別化し、その単位セルを直列接続している。また、薄膜系太陽電池の別構造として、基板などの両面を繋ぐ貫通孔を有する太陽電池が提案されている(例えば特許文献1)。さらに、SCAF構造(Series Connection through Apertures Formed on Film、図1)に代表される、基板に空けた貫通孔を通じ各ユニットセルの直列接続を形成する手法も実用化されている。 BACKGROUND In recent years, solar cells that generate electric power by sunlight, that is, photoelectric conversion elements have been manufactured. In particular, thin film solar cells, which are flexible and lightweight photoelectric conversion elements with few materials used at the time of manufacture, are attracting attention. A common structure as a thin film solar cell is a so-called monolithic structure in which a plurality of unit cells are connected in series for integration. In this monolithic structure, unit cells are individualized by separating an electrode layer or the like by patterning or scribing about three times, and the unit cells are connected in series. Further, as another structure of the thin film solar cell, a solar cell having through holes connecting both surfaces of a substrate or the like has been proposed (for example, Patent Document 1). Furthermore, a method of forming a series connection of unit cells through a through hole formed in a substrate, which is represented by a SCAF structure (Series Connection through Apertures Formed on Film, FIG. 1), has also been put to practical use.
 SCAF構造の太陽電池では、受光面側とは逆の基板の面である背面に形成した背面電極を利用する。つまり、ある単位セルにおいて、受光面に形成し光電変換層を挟む透明電極と裏面電極などの二つの電極のうちの一方の電極が、背面に設けた配線となる背面電極に接続される。その背面電極は、基板の背面を延びており、受光面において隣に配置された別の単位セルにおける他方の電極に接続される。受光面と背面との間で導通を確立するためには、基板を貫通する第1貫通孔(集電孔と呼ぶ)と第2貫通孔(接続孔と呼ぶ)が利用される。図1に、SCAF構造の光電変換素子の構成を斜視図により示している。 In the solar cell of a SCAF structure, the back electrode formed in the back which is a field of a substrate opposite to a light-receiving side is used. That is, in a unit cell, one of two electrodes such as a transparent electrode and a back electrode sandwiching the photoelectric conversion layer formed on the light receiving surface is connected to a back electrode serving as a wiring provided on the back. The back electrode extends to the back of the substrate and is connected to the other electrode of another unit cell disposed next to the light receiving surface. In order to establish conduction between the light receiving surface and the back surface, a first through hole (referred to as a current collection hole) and a second through hole (referred to as a connection hole) penetrating the substrate are used. The structure of the photoelectric conversion element of a SCAF structure is shown by the perspective view in FIG.
 上記以外の集電構造として、メタルラップスルー(Metal Wrap Through; MWT)バックコンタクトセルと呼ばれる絶縁層に形成した貫通孔を通し発電した電流を裏面の金属箔で収集する構造も提案されている(例えば、特許文献2)。 As a current collection structure other than the above, a structure has also been proposed in which the current generated through the through holes formed in the insulating layer called Metal Wrap Through (MWT) back contact cell is collected by the metal foil on the back surface ( For example, Patent Document 2).
特開2002-208718号公報Japanese Patent Laid-Open No. 2002-208718 国際公開第WO2007/106756号パンフレット(特表2009-529805号公報)International Publication No. WO 2007/106756 Pamphlet (Japanese Patent Application Publication No. 2009-529805)
 従来のSCAF構造の光電変換素子においては、図1に示すとおり、正極側となる受光面の表面に透明電極を配置し、発電された電流をこの透明電極により集電する。具体的には、図1(a)に全体像を示すように、光電変換素子700は、積層体としての光電変換素子をスクライブラインまたは分離線SL1およびSL2により区切って形成した各単位セル710を備えている。各単位セル710は、裏面電極712、光電変換層714、および透明電極716を備えており、背面電極720により直列接続されている。第1貫通孔730の内壁面では、透明電極716の層と基板701の背面の背面電極720の層とが互いに接触しており、透明電極716からの電流が背面電極720に伝達される。 In a conventional photoelectric conversion element of SCAF structure, as shown in FIG. 1, a transparent electrode is disposed on the surface of the light receiving surface on the positive electrode side, and the generated current is collected by this transparent electrode. Specifically, as shown in the entire image in FIG. 1A, the photoelectric conversion element 700 is formed by dividing each photoelectric conversion element as a laminate by scribe lines or separation lines SL1 and SL2. Have. Each unit cell 710 includes a back surface electrode 712, a photoelectric conversion layer 714, and a transparent electrode 716, and is connected in series by the back surface electrode 720. In the inner wall surface of the first through hole 730, the layer of the transparent electrode 716 and the layer of the back electrode 720 on the back surface of the substrate 701 are in contact with each other, and the current from the transparent electrode 716 is transmitted to the back electrode 720.
 しかし、この透明導電716には導電性酸化物、すなわちITO(スズドープインジウム酸化物)などのIn系酸化物や、AZO(アルミニウムドープ酸化亜鉛)などのZn系酸化物材料が使用される。したがって、透明導電716の電気抵抗は金属に比べて大きく、第1貫通孔730に到達するまでのジュール熱として失われるエネルギー損失が問題となる。このエネルギー損失は、曲線因子(Fill Factor)の低下としても太陽電池特性に影響する。このエネルギー損失が問題となるのは、透明電極716が単位セル710の直列接続全体の電流経路となっているためでもある。しかも、透明電極716から第1貫通孔730を通じ基板701の背面に電力を伝える経路(図1(b))は、必然的に、第1貫通孔730に向かって次第に集中する電流経路である。第1貫通孔730に向かうにつれ、光電変換層714により発電された電流もさらに追加されるため、第1貫通孔730付近における電流密度は飛躍的に増大してゆく。図1(b)には、その電流の様子を模式的に白抜き矢印により表示している。この電流の集中は、ジュール熱を局所的に生成させ、局所的な温度上昇をもたらす。そして、第1貫通孔730付近の基板701や、光電変換素子700を封じる封止材(図示しない)がその熱に耐えきれなくなると、これら部材の不可逆的な損傷に至る場合もある。 However, as the transparent conductive material 716, a conductive oxide, that is, an In-based oxide such as ITO (tin-doped indium oxide) or a Zn-based oxide material such as AZO (aluminium-doped zinc oxide) is used. Therefore, the electrical resistance of the transparent conductive material 716 is larger than that of metal, and energy loss which is lost as Joule heat until reaching the first through hole 730 becomes a problem. This energy loss also affects the solar cell characteristics as a reduction of the fill factor. The energy loss is also a problem because the transparent electrode 716 is the current path of the entire series connection of the unit cells 710. Moreover, the path for transferring power from the transparent electrode 716 to the back surface of the substrate 701 through the first through holes 730 (FIG. 1B) is necessarily a current path gradually concentrated toward the first through holes 730. As the current passes through the first through hole 730, the current generated by the photoelectric conversion layer 714 is also added, so the current density near the first through hole 730 increases dramatically. In FIG. 1 (b), the state of the current is schematically displayed by a white arrow. This concentration of current generates Joule heat locally, leading to a local temperature rise. If the substrate 701 in the vicinity of the first through holes 730 and a sealing material (not shown) for sealing the photoelectric conversion element 700 can not withstand the heat, irreversible damage of these members may be caused.
 さらに、第1貫通孔730の内壁面では、透明導電膜716の層と背面電極720の層との接触によりさらに集中した電流が伝達されるため、電流の集中とそれに伴う発熱がさらに顕著になる。つまり、第1貫通孔730の内壁面における透明導電膜716の層と背面電極720の層との接触部を高い信頼性で形成できなければ、生産後、または設置後の電気特性の不良にもつながりかねない。 Furthermore, on the inner wall surface of the first through hole 730, a further concentrated current is transmitted by the contact between the layer of the transparent conductive film 716 and the layer of the back electrode 720, so concentration of current and accompanying heat generation become more remarkable. . That is, if the contact portion between the layer of the transparent conductive film 716 and the layer of the back electrode 720 on the inner wall surface of the first through hole 730 can not be formed with high reliability, the electrical characteristics may also be defective after production or installation. It may be connected.
 これらの課題に対する一つの対策が、第1貫通孔730の形成数を増加させることである。これにより、電流を多数の第1貫通孔730に分配することも不可能ではない。しかし、第1貫通孔730を増加させると新たな問題が生じかねない。第1貫通孔730を増やすと、例えば、発電領域の面積が減少するために発電機能に悪影響が生じる。それに加えて、第1貫通孔730を増やすと、基板701の機械的強度が低下したり、第1貫通孔730自体による不測の電流パスに伴うリークを誘発したりする確率も高まる。 One countermeasure against these problems is to increase the number of first through holes 730 formed. Accordingly, it is not impossible to distribute the current to the plurality of first through holes 730. However, increasing the first through holes 730 may cause new problems. When the first through holes 730 are increased, for example, the area of the power generation area decreases, which adversely affects the power generation function. In addition, when the number of the first through holes 730 is increased, the probability that the mechanical strength of the substrate 701 decreases or the leak due to an unexpected current path due to the first through holes 730 itself increases.
 類似の事情、特に貫通孔内壁面における課題やその形成数による改善は、第2貫通孔740についても成り立つ。図1(c)に示すように、第2貫通孔740においては、背面電極720からの電流が基板701の受光面に位置する裏面電極712に伝達する。図1(c)の白抜き矢印もその電流の経路を模式的に示すものである。背面電極720も裏面電極712も通常は金属により形成されていることから、ジュール熱の生成は、第1貫通孔730ほどには深刻ではない。しかし、この電流も第2貫通孔740の内壁面に集中して流れることから類似の問題を生じさせ、形成数によりその問題が緩和される。そして形成数を増加させることによる新たな問題を避けがたいことも同様である。 The similar situation, in particular, the problem due to the problem on the inner wall surface of the through hole and the improvement due to the number of formation thereof also hold for the second through hole 740. As shown in FIG. 1C, in the second through hole 740, the current from the back electrode 720 is transmitted to the back electrode 712 located on the light receiving surface of the substrate 701. The white arrow in FIG. 1C also schematically shows the path of the current. Since the back electrode 720 and the back electrode 712 are usually made of metal, the generation of Joule heat is not as serious as the first through holes 730. However, a similar problem arises from the fact that this current also flows intensively on the inner wall surface of the second through hole 740, and the problem is alleviated by the number of formation. And the same is true for the new problems caused by increasing the number of formations.
 しかも、光電変換素子は、高性能なタイプであるほど、一般には発電される電流密度が高くなる。例えば、アモルファスシリコン太陽電池であれば、発電動作の際に、発電領域の単位面積あたりの電流量すなわち電流密度Jopが、約10mA/cm程度となる。さらに電流密度が高まるタイプの光電変換素子として、カルコパイライト系と呼ばれるCIGS[Cu(In,Ga)Se2]をはじめとする化合物太陽電池も知られている。その場合の電流密度Jopは、約25mA/cm程度にも達する。このような、電流が3倍程度となるタイプのものでは上述した貫通孔への電流集中のもたらす課題はより深刻なものとなりかねない。 Moreover, the higher the type of photoelectric conversion element, the higher the current density at which power is generally generated. For example, in the case of an amorphous silicon solar cell, the amount of current per unit area of the power generation area, that is, the current density J op is approximately 10 mA / cm 2 during the power generation operation. Furthermore, as a photoelectric conversion element of a type in which current density is increased, compound solar cells including CIGS [Cu (In, Ga) Se2] called chalcopyrite-based are also known. The current density J op in that case reaches about 25 mA / cm 2 or so. With such a type in which the current is about three times as large, the above-mentioned problem of the current concentration in the through hole may be more serious.
 本発明は上記問題点の少なくともいずれかを解決するためになされたものである。本発明は、透明導電膜から発電電流を収集する集電孔付近における電気抵抗を低減することにより、集電孔などの貫通孔付近におけるジュール熱を抑制した光電変換素子を実現することに貢献する。 The present invention has been made to solve at least one of the above-mentioned problems. The present invention contributes to the realization of a photoelectric conversion element in which the Joule heat in the vicinity of a through hole such as a current collection hole is suppressed by reducing the electric resistance in the vicinity of the current collection hole that collects generated current from a transparent conductive film. .
 上記課題を吟味した結果、本願の発明者は、集電孔(第1貫通孔)付近の電気抵抗を低減するための具体的構成を採用することにより、上述した課題の少なくともいくつかが解決されることを見出した。 As a result of examining the above problems, the inventor of the present application solves at least some of the above problems by adopting a specific configuration for reducing the electrical resistance in the vicinity of the current collection holes (first through holes). I found that.
 すなわち、本発明のある態様においては、互いに直列接続される複数の単位セルが一片の絶縁性の基板の一方の面の上に形成されている光電変換素子であって、各単位セルは、前記基板の前記一方の面の上に形成された裏面電極と、裏面電極の面の上に形成された光電変換層と、光電変換層の面の上に形成された透明電極とを備えているものであり、前記基板の他方の面の上に形成され、基板を貫通する第1貫通孔を通じて一の単位セルの前記透明電極に電気的に接続され、かつ、基板を貫通する第2貫通孔を通じて他の単位セルの前記裏面電極に電気的に接続された、互いに切り離された複数の背面電極を備え、前記複数の単位セルは、各単位セルに属する前記透明電極および前記裏面電極が、別々の背面電極に対し、それぞれ前記第1貫通孔と前記第2貫通孔を通じ電気的に接続され、これにより、各単位セルが各背面電極により直列接続されており、前記透明電極が、透明電極の面に接して形成され、前記第1貫通孔から延びている線状部を有する金属導電体を備えているものである光電変換素子が提供される。 That is, in one aspect of the present invention, it is a photoelectric conversion element in which a plurality of unit cells connected in series with each other are formed on one surface of a piece of insulating substrate, and each unit cell is A back surface electrode formed on the one surface of the substrate, a photoelectric conversion layer formed on the surface of the back surface electrode, and a transparent electrode formed on the surface of the photoelectric conversion layer Through the first through hole formed on the other surface of the substrate and electrically connected to the transparent electrode of one unit cell through the first through hole penetrating through the substrate, and through the second through hole penetrating through the substrate The unit cell further includes a plurality of back electrodes separated from one another electrically connected to the back electrode of another unit cell, wherein the plurality of unit cells are separated by the transparent electrode and the back electrode belonging to each unit cell. For the back electrode, the first The unit cell is electrically connected through the through hole and the second through hole, whereby each unit cell is connected in series by the back electrode, the transparent electrode is formed in contact with the surface of the transparent electrode, and the first There is provided a photoelectric conversion element comprising a metal conductor having a linear portion extending from a through hole.
 ここで、光電変換層は、光により発電する任意の層であり、典型的には、アモルファスまたは微結晶などのシリコンやシリコンゲルマニウムの薄膜(以下「シリコン系薄膜」という)や、CIGSなどの化合物系薄膜を含んでいる。 Here, the photoelectric conversion layer is an arbitrary layer that generates electric power by light, and typically, a thin film of silicon or silicon germanium such as amorphous or microcrystalline (hereinafter referred to as “silicon-based thin film”) or a compound such as CIGS It contains a system thin film.
 本発明のいずれかの態様においては、透明導電膜の電気抵抗を原因として生成されるジュール熱(抵抗ロス)を低減する光電変換素子を作製することが可能となる。 In any aspect of the present invention, it is possible to produce a photoelectric conversion element that reduces Joule heat (resistance loss) generated due to the electrical resistance of the transparent conductive film.
従来のSCAF構造の光電変換素子の構造を示す斜視図である。It is a perspective view which shows the structure of the photoelectric conversion element of the conventional SCAF structure. 本発明のある実施形態における改良されたSCAF構造の光電変換素子の概略構造を示す一部破断斜視図である。It is a partially broken perspective view which shows schematic structure of the photoelectric conversion element of the improved SCAF structure in one embodiment of this invention. 本発明のある実施形態における改良されたSCAF構造の光電変換素子の構造を示す平面図である。図3(a)は一方の面(受光面)側、図3(b)は他方の面(背面)側の平面図である。It is a top view which shows the structure of the photoelectric conversion element of the improved SCAF structure in one embodiment of this invention. FIG. 3A is a plan view of one surface (light receiving surface) side, and FIG. 3B is a plan view of the other surface (rear surface) side. SCAF構造の光電変換素子における透明電極の構造を示す平面図である。図4(a)は従来のSCAF構造の光電変換素子における単位セルを示し、図4(b)および(c)は、本発明のある実施形態の改良されたSCAF構造の光電変換素子における単位セルを示す。It is a top view which shows the structure of the transparent electrode in the photoelectric conversion element of a SCAF structure. FIG. 4 (a) shows a unit cell in a conventional photoelectric conversion device of the SCAF structure, and FIGS. 4 (b) and 4 (c) show unit cells in the photoelectric conversion device of the improved SCAF structure according to an embodiment of the present invention. Indicates 本発明のある実施形態における改良されたSCAF構造の光電変換素子の単位セルの並びを示す平面図である。It is a top view showing alignment of a unit cell of a photoelectric conversion element of the improved SCAF structure in one embodiment of the present invention. 本発明のある実施形態における改良されたSCAF構造の光電変換素子を製造する工程を示すフローチャートである。5 is a flow chart illustrating a process of manufacturing an improved SCAF structured photoelectric conversion device according to an embodiment of the present invention. 本発明のある実施形態における改良されたSCAF構造の光電変換素子の第1貫通孔付近の構造を示す拡大図である。図7(a)は第1貫通孔付近の平面図、図7(b)は第1貫通孔付近の構造を示す概略断面図である。It is an enlarged view which shows the structure of the 1st through-hole vicinity of the photoelectric conversion element of the improved SCAF structure in one embodiment of this invention. Fig.7 (a) is a top view of 1st through-hole vicinity, FIG.7 (b) is a schematic sectional drawing which shows the structure of 1st through-hole vicinity. 光電変換素子の第1貫通孔の内部の構造を示す概略断面図である。図8(a)および図8(b)は、それぞれ、従来のSCAF構造、および本発明の実施形態の改良されたSCAF構造の第1貫通孔の内部における膜の重なりを示す。It is a schematic sectional drawing which shows the structure inside the 1st through-hole of a photoelectric conversion element. FIGS. 8 (a) and 8 (b) show the overlap of the membrane inside the first through hole of the conventional SCAF structure and the improved SCAF structure of an embodiment of the present invention, respectively. 光電変換素子の第2貫通孔の内部の構造を示す概略断面図である。図9(a)および図9(b)は、それぞれ、従来のSCAF構造、および本発明の実施形態の改良されたSCAF構造の第2貫通孔の内壁面42における膜の重なりを示す。It is a schematic sectional drawing which shows the structure inside the 2nd through-hole of a photoelectric conversion element. FIGS. 9 (a) and 9 (b) show the overlap of the membranes on the inner wall surface 42 of the second through hole of the conventional SCAF structure and the improved SCAF structure of the embodiment of the present invention, respectively.
 以下、本発明に係る光電変換素子の実施形態を図面に基づき説明する。当該説明に際し特に言及がない限り、全図にわたり共通する部分または要素には共通する参照符号が付されている。また、図中、各実施形態の要素のそれぞれは、必ずしも互いの縮尺比を保って示してはいない。 Hereinafter, an embodiment of a photoelectric conversion element according to the present invention will be described based on the drawings. In the description, unless otherwise stated, common parts or elements throughout the drawings are denoted by common reference numerals. Further, in the drawings, each of the elements of the respective embodiments is not necessarily shown with the scale ratio of each other.
<第1実施形態>
[1 概略構造]
[1-1 光電変換素子の概略構成]
 図2は、本実施形態における一例の改良されたSCAF構造の光電変換素子100の概略構造を示す一部破断斜視図である。また、図3は、光電変換素子100の構成を示す平面図である。本実施形態において提供される光電変換素子100では、図2および図3に示すように、互いに直列接続される複数の単位セル10が一片の絶縁性の基板1の一方の面1aの上に形成されている。基板1は、例えばプラスチックフィルムの基板などを採用することができる。各単位セル10は、基板1の一方の面1aの上に形成された裏面電極12と、裏面電極12の面の上に形成された光電変換層14と、光電変換層の面の上に形成された透明電極16とを備えている。つまり、各単位セル10の動作においては、透明電極16を透過した光によって光電変換層14が発電した電力は、裏面電極12および透明電極16によって取り出される。
First Embodiment
[1 Outline structure]
[1-1 Schematic Configuration of Photoelectric Conversion Element]
FIG. 2 is a partially broken perspective view showing a schematic structure of an example of the improved SCAF structure photoelectric conversion element 100 in the present embodiment. FIG. 3 is a plan view showing the configuration of the photoelectric conversion element 100. As shown in FIG. In the photoelectric conversion element 100 provided in the present embodiment, as shown in FIG. 2 and FIG. 3, a plurality of unit cells 10 connected in series are formed on one surface 1 a of a piece of insulating substrate 1. It is done. For example, a substrate of a plastic film can be employed as the substrate 1. Each unit cell 10 is formed on the back surface electrode 12 formed on one surface 1 a of the substrate 1, the photoelectric conversion layer 14 formed on the surface of the back surface electrode 12, and the surface of the photoelectric conversion layer And the transparent electrode 16. That is, in the operation of each unit cell 10, the power generated by the photoelectric conversion layer 14 by the light transmitted through the transparent electrode 16 is taken out by the back electrode 12 and the transparent electrode 16.
 基板1の他方の面1bの上には、複数の背面電極20を形成する。背面電極20は、単位セル10に対応させた単位領域となるように互いに切り離されている。光電変換素子100に含まれる背面電極20は、基板1を貫通する第1貫通孔30を通じ一の単位セル(例えば単位セル10)の透明電極16に電気的に接続されている。背面電極20は、基板1を貫通する第2貫通孔40を通じ他の単位セル(例えば単位セル10i+1)の裏面電極12にも電気的に接続されている。このため、本実施形態にて提供される光電変換素子100では、複数の単位セル10において、各単位セル10に属する透明電極16および裏面電極12が、互いに別々の背面電極20に対し、それぞれ第1貫通孔と第2貫通孔を通じ電気的に接続される。こうして、光電変換素子100では各単位セル10が各背面電極20により直列接続される。なお、上記直列接続の両末端に位置する単位セル10や背面電極20では、電力を光電変換素子100外に取り出す構成のために必ずしもこのように作製されない。例えば背面電極20との接続が、末端の単位セル10の透明電極16または裏面電極12の一方のみに対し確立されている構成や、背面電極20が一つの単位セル10のみにしか接続されない構成が採用される。なお、図2に示したSCAF構造の光電変換素子100においては、第1貫通孔30は、基板1のみならず、裏面電極12、光電変換層14および透明電極16をも貫通している。これに対し第2貫通孔40は、基板1に加え裏面電極12も貫通している。 A plurality of back electrodes 20 are formed on the other surface 1 b of the substrate 1. The back electrodes 20 are separated from each other so as to be unit areas corresponding to the unit cells 10. The back electrode 20 included in the photoelectric conversion element 100 is electrically connected to the transparent electrode 16 of one unit cell (for example, unit cell 10 i ) through a first through hole 30 penetrating the substrate 1. The back electrode 20 is also electrically connected to the back electrode 12 of another unit cell (for example, unit cell 10 i + 1 ) through a second through hole 40 penetrating the substrate 1. For this reason, in the photoelectric conversion element 100 provided in the present embodiment, in the plurality of unit cells 10, the transparent electrodes 16 and the back surface electrodes 12 belonging to each unit cell 10i are respectively different from the back electrodes 20 different from each other. It is electrically connected through the first through hole and the second through hole. Thus, in the photoelectric conversion element 100, the unit cells 10 are connected in series by the back electrodes 20. In addition, in the unit cell 10 and the back surface electrode 20 which are located in the both ends of the said serial connection, since it is the structure which takes out electric power out of the photoelectric conversion element 100, it is not necessarily produced in this way. For example, there is a configuration in which the connection with the back electrode 20 is established to only one of the transparent electrode 16 or the back electrode 12 of the terminal unit cell 10 or a configuration in which the back electrode 20 is connected to only one unit cell 10 Will be adopted. In addition, in the photoelectric conversion element 100 of the SCAF structure shown in FIG. 2, the 1st through-hole 30 penetrates not only the board | substrate 1 but the back surface electrode 12, the photoelectric converting layer 14, and the transparent electrode 16. On the other hand, the second through hole 40 penetrates the back electrode 12 in addition to the substrate 1.
 本実施形態にて提供される光電変換素子100では、透明電極16の面に接する導電体50をさらに形成する。そしてその導電体50を、第1貫通孔30から延びる線状部52を備えるようにしておく(図2および図3)。 In the photoelectric conversion element 100 provided in the present embodiment, the conductor 50 in contact with the surface of the transparent electrode 16 is further formed. And the conductor 50 is provided with the linear part 52 extended from the 1st through-hole 30 (FIG. 2 and FIG. 3).
[1-1-1 導電体50による効果]
 上記構造の光電変換素子100においては、光電変換素子の動作上または作製上のいくつかの技術的利点を有している。まず、導電体50を透明電極16に形成することにより、第1貫通孔30の数自体や面積あたりの数(面密度)を減少させることが可能となる。つまり、従来の第1貫通孔730(図1)の数や面密度は、透明電極716が示す高い抵抗率と、従来の個々の第1貫通孔730における透明電極716から背面電極720の電流経路が示す高い抵抗率との双方に対応すべく、透明電極716を流れる電流を背面電極720に負担させる前提の下で決定されていた。いわば、透明電極716の電流経路をできるだけ短くして背面電極720に電流を伝達してしまい、さらに、可能な限り多くの第1貫通孔730に分配して第1貫通孔730一つあたりの電流量を削減するように設計されていた。これに対し、本実施形態の光電変換素子100においては、従来の設計思想とは異なるアプローチとして、導電体50、特に線状部52の導通機能により透明電極16の実効的な抵抗値を低下させる。その結果、第1貫通孔30による発電面積の減少が防止され、エネルギー損失すなわち曲線因子の低下を防ぐという動作上の利点ももたらされる
[1-1-1 Effect of Conductor 50]
The photoelectric conversion element 100 having the above structure has several technical advantages in the operation or fabrication of the photoelectric conversion element. First, by forming the conductor 50 on the transparent electrode 16, it is possible to reduce the number of first through holes 30 and the number (area density) per area. That is, the number and the surface density of the conventional first through holes 730 (FIG. 1) have high resistivity indicated by the transparent electrode 716 and the current path from the transparent electrode 716 to the back electrode 720 in the conventional first through holes 730. In order to correspond to both of the high resistivity shown by the above, it has been determined under the premise that the current flowing through the transparent electrode 716 is charged to the back electrode 720. In other words, the current path of the transparent electrode 716 is as short as possible to transmit the current to the back electrode 720, and the current is distributed to as many first through holes 730 as possible, and the current per one first through hole 730 is distributed. It was designed to reduce the amount. On the other hand, in the photoelectric conversion element 100 of the present embodiment, as a different approach from the conventional design concept, the conductive resistance function of the conductor 50, particularly the linear portion 52, reduces the effective resistance value of the transparent electrode 16. . As a result, the reduction of the power generation area by the first through hole 30 is prevented, and the operational advantage of preventing the reduction of the energy loss, ie, the curvilinear factor is also provided
 また、上記構造の光電変換素子100においては、導電体50を透明電極16に接触させて形成することにより、ホットスポット現象が発生しにくくなるという利点も生じる。図1を参照して説明したように、単位セルを直列接続したSCAF構造の場合のホットスポット現象では、第1貫通孔730に集中する電流経路における透明電極716の抵抗が問題となる。本実施形態の光電変換素子100においては、導電体50の線状部52が第1貫通孔30から延びているように形成されている。このため、電流は透明電極16よりもむしろ線状部52を流れて第1貫通孔30に到達する。したがって、第1貫通孔30付近における局所的な温度上昇を抑制することができ、ホットスポット現象が回避される。 Moreover, in the photoelectric conversion element 100 of the said structure, by making the conductor 50 contact and form the transparent electrode 16, the advantage that a hot spot phenomenon becomes difficult to generate arises also. As described with reference to FIG. 1, in the hot spot phenomenon in the case of the SCAF structure in which unit cells are connected in series, the resistance of the transparent electrode 716 in the current path concentrated in the first through hole 730 becomes a problem. In the photoelectric conversion element 100 of the present embodiment, the linear portion 52 of the conductor 50 is formed to extend from the first through hole 30. Therefore, the current flows through the linear portion 52 rather than the transparent electrode 16 and reaches the first through hole 30. Therefore, a local temperature rise in the vicinity of the first through hole 30 can be suppressed, and the hot spot phenomenon is avoided.
 なお、線状部52が第1貫通孔30から延びているとは、典型的には、線状部52が、第1貫通孔30から出発し、連続体をなしていて、その経路をたどると切れ目無くつながり、透明電極16の他の部分に到達していることである。ただし、これ以外にも、第1貫通孔30の縁取りとなるような縁取り部54(図7)が形成されている場合には線状部52が縁取り部54に接しながら延びていても、線状部52が第1貫通孔30から延びているものとする。さらに、線状部52は、概して線状の経路をなす部分または組合せによって線状の経路をなす要素部分を含んでいる。ここで、例えば微細な断裂部が形成されていても、線状部52がその役割を果たすことに留意されたい。例えば基板1に可撓性基板を採用して小さな曲率半径の曲げが作用したり、また、熱膨張など何らかの理由によりクラックが生じる場合がある。これらのクラックの発生を見越して鎖線状の経路をなすように導電体50の材質が意図的にパターニングされる場合もある。これらの例のような導体の構造であっても、線状部52の典型例には、概して線状といえる形状のものが含まれている。導電性をある程度有している透明電極16に接して形成される線状部52である以上、断裂部が存在していても透明電極16の抵抗値を低下させる役割が実現されるためである。 Here, that the linear portion 52 extends from the first through hole 30 typically means that the linear portion 52 starts from the first through hole 30, forms a continuous body, and follows the path thereof It is connected seamlessly and reaches the other part of the transparent electrode 16. However, in addition to this, even if the linear portion 52 extends while being in contact with the edge portion 54 when the edge portion 54 (FIG. 7) that forms the edge of the first through hole 30 is formed, The protuberance 52 extends from the first through hole 30. Further, the linear portion 52 includes an element portion that forms a linear path by a portion or combination that forms a generally linear path. Here, it should be noted that the linear portion 52 plays a role even if, for example, minute fractures are formed. For example, a flexible substrate may be adopted as the substrate 1 to cause bending with a small radius of curvature, or cracks may occur for some reason such as thermal expansion. In some cases, the material of the conductor 50 is intentionally patterned to form a chain-like path in anticipation of the occurrence of the cracks. Even in the case of the conductor structure as in these examples, typical examples of the linear portion 52 include those having a generally linear shape. As long as the linear portion 52 is formed in contact with the transparent electrode 16 having a certain degree of conductivity, the role of lowering the resistance value of the transparent electrode 16 is realized even if there is a fractured portion. .
 さらに、導電体50を形成する本実施形態の光電変換素子100では、第1貫通孔30の数を光電変換素子の特性を低下させることなく減らすことができるため、第1貫通孔30の加工時間を短縮することができる。貫通孔を機械的パンチンングで形成する場合、パンチング回数の低減で加工時間が短縮できる。更には使用する金型の小型化が可能である。それによって装置コストも低減することも可能となる。またレーザーを使用した加工の場合でも同様に照射回数を減らすことによる可能時間の短縮とそれに伴う装置コストの低減が可能である。 Furthermore, in the photoelectric conversion element 100 of the present embodiment in which the conductor 50 is formed, the number of first through holes 30 can be reduced without degrading the characteristics of the photoelectric conversion element, so the processing time of the first through holes 30 can be reduced. Can be shortened. When the through holes are formed by mechanical punching, the processing time can be shortened by reducing the number of times of punching. Furthermore, the miniaturization of the mold used is possible. This also makes it possible to reduce the device cost. Further, even in the case of processing using a laser, it is possible to shorten the possible time by reducing the number of irradiations and to reduce the cost of the apparatus accordingly.
[1-1-2 電極非形成領域(ENEA)]
 従来のSCAF構造の光電変換素子700(図1)においては、集電孔(第1貫通孔)が受光面の広い範囲にわたり分散して配置されることに合わせ、背面電極720を広い領域にわたり形成する必要がある。この背面電極720を形成するためには、そのための電極膜の形成と、それをパターニングする処理とを必要としていることから、可能な限り面積を縮小したいという要請もある。そこで、本実施形態における好適な構成として、光電変換素子100においては、図2および図3に示すように、電極非形成領域60((Electrode Non-Existent Area 60、以下「ENEA60」と略記する)を形成する。本実施形態におけるENEA60は、基板1の他方の面1bにおいて、背面電極20が形成されない領域である。図3(a)は一方の面1a(受光面)側、図3(b)は他方の面1b(背面)側の平面図である。ENEA60は、図3(b)では基板1の他方の面1bが露出した面として描いている。より具体的には、図3(a)と(b)を対比して位置関係を示すように、ENEA60は、複数の単位セル10が形成されている一方の面1aの領域(例えば発電領域18)に相当する他方の面1bの側の領域のうちの少なくとも一部を占めるように形成される。そして、図3(a)に示すように、導電体50に備わる線状部52が、基板の一方の面1aの側において、ENEA60に相当する領域の少なくとも一部に延びている。このような光電変換素子100の構成は、導電体50により第1貫通孔30の数または面密度を減少させることが可能となったために実現されるものである。第1貫通孔30の数を減少しうる光電変換素子100では、背面電極20の領域を制限することによりENEA60を設けることが可能となるのである。
[1-1-2 electrode non-forming area (ENEA)]
In the photoelectric conversion element 700 (FIG. 1) of the conventional SCAF structure, the back electrode 720 is formed over a wide area in accordance with the current collection holes (first through holes) being distributed over the wide area of the light receiving surface. There is a need to. In order to form the back electrode 720, it is necessary to reduce the area as much as possible, since it is necessary to form an electrode film for that purpose and to process it for patterning. Therefore, as a preferable configuration in the present embodiment, in the photoelectric conversion element 100, as shown in FIGS. 2 and 3, an electrode non-formed area 60 ((abbreviated as “Electrode Non-Existent Area 60, hereinafter“ ENEA 60 ”) The ENEA 60 in this embodiment is a region where the back electrode 20 is not formed on the other surface 1b of the substrate 1. Fig. 3 (a) is the one surface 1a (light receiving surface) side, Fig. 3 (b). 3B is a plan view of the other surface 1b (rear surface) side, and in FIG. 3B, the ENEA 60 is drawn as a surface to which the other surface 1b of the substrate 1 is exposed. As shown in the positional relationship between a) and (b) in comparison, the ENEA 60 has the other corresponding to the area (for example, the power generation area 18) of one surface 1a on which a plurality of unit cells 10 are formed. It is formed so as to occupy at least a part of the region on the side of the surface 1b, and as shown in FIG. On the side, it extends to at least a part of the area corresponding to ENEA 60. Such a configuration of the photoelectric conversion element 100 makes it possible to reduce the number or the surface density of the first through holes 30 by the conductor 50. In the photoelectric conversion element 100 capable of reducing the number of the first through holes 30, it is possible to provide the ENEA 60 by limiting the area of the back electrode 20.
 ENEA60を形成する光電変換素子100では、ENEA60を形成しない構成に比べて技術上のメリットが生じる。第1のメリットは、ENEA60を設けることにより、背面電極20を形成する範囲を限定し、光電変換素子100を作製するために必要となる資源を削減する効果である。より具体的には、背面電極20の層を例えばスパッタリング法により形成する場合には、そのターゲットを小型にすることで使用量を削減することが可能となる。また、スパッタリング装置の電極サイズを小型化することも可能になるため、装置の小型化や成膜時のエネルギーの削減も達成される。 In the photoelectric conversion element 100 which forms ENEA60, a technical merit arises compared with the structure which does not form ENEA60. The first advantage is that the provision of the ENEA 60 limits the range in which the back electrode 20 is formed, and reduces the resources required to produce the photoelectric conversion element 100. More specifically, when the layer of the back electrode 20 is formed by sputtering, for example, the amount of use can be reduced by miniaturizing the target. In addition, since the electrode size of the sputtering apparatus can be miniaturized, the miniaturization of the apparatus and the reduction of energy at the time of film formation can also be achieved.
 さらに、第2のメリットは加工処理の時間を削減することができるという利点である。ENEA60を設け背面電極20の範囲を制限することは、背面電極20を区切るための例えば分離線SL2(図3(b))を形成するレーザースクライブ処理のパターニングの距離を短縮することになるため、スクライブ処理の加工時間を短縮することができる。 Furthermore, the second advantage is that the time for processing can be reduced. Providing the ENEA 60 to limit the range of the back electrode 20 shortens the patterning distance of the laser scribing process for forming, for example, the separation line SL2 (FIG. 3B) for dividing the back electrode 20. The processing time of the scribing process can be shortened.
 加えて、第3のメリットとして、隣りあう背面電極20同士が短絡するリスクも軽減される。パターニングの距離が短縮化されると、リークを引き起こす確率が低減されるためである。更にパターニング条件の変動によって発生しうる背面加工時の裏面電極に対するダメージのリスクも低減することも可能となる。 In addition, as a third advantage, the risk of short circuit between adjacent back electrodes 20 is also reduced. This is because shortening the patterning distance reduces the probability of causing a leak. Furthermore, it is also possible to reduce the risk of damage to the back electrode during back surface processing that may occur due to variations in patterning conditions.
[1-2 透明電極の構造]
 次に、上述した光電変換素子100のさらに詳細な構造について述べる。まず、透明電極16および導電体50の構造を説明する。図4は、本実施形態の改良されたSCAF構造の光電変換素子における透明電極の構造を示す平面図である。図4(a)は従来のSCAF構造の光電変換素子700における単位セル710を示し、図4(b)および(c)は、本実施形態の光電変換素子100における単位セル10を示す。また、図5は、本実施形態の光電変換素子100における改良されたSCAF構造の光電変換素子100の単位セル10の並びを示す平面図である。光電変換素子における透明電極の構造を拡大して示す説明図である。
[1-2 Structure of transparent electrode]
Next, a more detailed structure of the above-described photoelectric conversion element 100 will be described. First, the structures of the transparent electrode 16 and the conductor 50 will be described. FIG. 4 is a plan view showing the structure of the transparent electrode in the improved SCAF photoelectric conversion element of this embodiment. FIG. 4A shows a unit cell 710 in the photoelectric conversion element 700 of the conventional SCAF structure, and FIGS. 4B and 4C show a unit cell 10 in the photoelectric conversion element 100 of the present embodiment. Moreover, FIG. 5 is a top view which shows the sequence of the unit cell 10 of the photoelectric conversion element 100 of the improved SCAF structure in the photoelectric conversion element 100 of this embodiment. It is explanatory drawing which expands and shows the structure of the transparent electrode in a photoelectric conversion element.
 光電変換素子100において、複数の単位セル10は、一方向に延びる短冊に区切られ各単位セルを短冊の幅方向に並べるように配置したものである。図4および図5においては、紙面の上下方向に延びる向きの短冊により各単位セルを描いている。なお、複数の背面電極20は、複数の単位セル10における各単位セル10、10i+1の並びの方向に並ぶように、基板1の他方の面1bにおいてそれぞれの背面電極20へと区切られている(図3)。従来の光電変換素子700の単位セル710(図4(a))においては、電気抵抗が大きい透明電極716に集電された電流が流れ、しかも、光電変換素子700に含まれる別の単位セル710からの電流も透明電極716を通過せざるを得ない。したがって、第1貫通孔730は多数形成される。これに対し本実施形態の光電変換素子100(図4(b)、(c))においては、導電体50の線状部52の少なくとも一部が、透明電極16の短冊の長手方向つまり光電変換素子100の図4の紙面上の上下方向に延びている。このため、第1貫通孔30の数を減少させても、透明電極16だけではなく導電体50を伝う電流経路も確立される。つまり、透明電極16の電気抵抗は実質的には上昇しない。さらに、図4(c)に示すように、例えば基板1の他方の面1bにENEA60を形成し、一方の面1aの側におけるそのENEA60に相当する領域に達するように、第1貫通孔30から延びるように構成することも可能となる。なお、そのためには、例えば図4(c)に明示したように、線状部52の本数を増加させるなどの工夫が有効である。それ以外にも、導電体50の電気抵抗を導電体50の材質や膜厚の調整により低下させるなどの調整も有効である。 In the photoelectric conversion element 100, the plurality of unit cells 10 are divided into strips extending in one direction, and the unit cells are arranged in the width direction of the strips. In FIG. 4 and FIG. 5, each unit cell is drawn by a strip extending in the vertical direction of the paper surface. The plurality of back electrodes 20 are divided into the back electrodes 20 on the other surface 1 b of the substrate 1 so as to be aligned in the direction in which the unit cells 10 i and 10 i + 1 are arranged in the plurality of unit cells 10. (Figure 3). In the unit cell 710 (FIG. 4A) of the conventional photoelectric conversion element 700, the current collected by the transparent electrode 716 having a large electric resistance flows, and another unit cell 710 included in the photoelectric conversion element 700. The current from the source also has to pass through the transparent electrode 716. Therefore, a large number of first through holes 730 are formed. On the other hand, in the photoelectric conversion element 100 (FIGS. 4B and 4C) of the present embodiment, at least a part of the linear portion 52 of the conductor 50 is in the longitudinal direction of the strip of the transparent electrode 16, that is, photoelectric conversion It extends in the vertical direction on the sheet of FIG. 4 of the element 100. For this reason, even if the number of first through holes 30 is reduced, a current path passing not only through the transparent electrode 16 but also through the conductor 50 is established. That is, the electrical resistance of the transparent electrode 16 does not substantially increase. Furthermore, as shown in FIG. 4C, for example, an ENEA 60 is formed on the other surface 1b of the substrate 1 and from the first through hole 30 to reach a region corresponding to the ENEA 60 on the side of one surface 1a. It can also be configured to extend. For that purpose, for example, as clearly shown in FIG. 4C, a device such as increasing the number of linear portions 52 is effective. Besides this, adjustment such as lowering the electric resistance of the conductor 50 by adjusting the material and film thickness of the conductor 50 is also effective.
 なお、図3に示すように、光電変換素子100における典型的なENEA60は、複数の単位セル10の範囲にわたり、複数の単位セル10の並びの方向つまり短冊形状の幅方向(図3の紙面上下方向)に延びているものである。このような構成の光電変換素子100では、短冊形状の各単位セル10、10i+1の並びの方向にENEA60が延びる配置となる。このため、ENEA60を帯状の領域といった実用性の高い形状とすることが可能となる。これは、図4(c)のように、短冊形状の長手方向に延びるように線状部52を向けた配置の結果もたらされる効果といえる。 Note that, as shown in FIG. 3, a typical ENEA 60 in the photoelectric conversion element 100 has a direction in which a plurality of unit cells 10 are arranged, that is, a strip-like width direction (upper and lower in FIG. Direction). In the photoelectric conversion element 100 having such a configuration, the ENEA 60 extends in the direction in which the strip-shaped unit cells 10 i and 10 i + 1 are arranged. For this reason, it becomes possible to make ENEA 60 into the shape with high practicability, such as a strip | belt-shaped area | region. This can be said to be an effect resulting from the arrangement in which the linear portion 52 is oriented to extend in the longitudinal direction of the strip shape as shown in FIG. 4 (c).
 特に、光電変換素子100においては、一の単位セル10に属する透明電極16および裏面電極12が、短冊の両端部10E1および10E2の近傍において、第1貫通孔30および第2貫通孔40を通じ、互いに別々の背面電極20に対しそれぞれ電気的に接続されている。また、ENEA60が、複数の単位セル10それぞれの短冊の長手方向中央部を複数の単位セル10にわって短冊の幅方向に延びる領域に相当する他方の面1bの領域となっている。 In particular, in the photoelectric conversion element 100, through one unit cell 10 i transparent electrode 16 and the back electrode 12 belongs to is in the vicinity of both end portions 10E1 and 10E2 of the strip, the first through hole 30 and the second through hole 40, They are electrically connected to the back electrodes 20 different from one another. Further, the ENEA 60 is a region of the other surface 1 b corresponding to a region extending in the width direction of the strip across the plurality of unit cells 10 in the longitudinal direction central portion of the strip of each of the plurality of unit cells 10.
 光電変換素子100においては、上述した実用性の高い形状にENEA60を形成することに加え、短冊の両端部10E1および10E2それぞれにおいて、第1貫通孔30と第2貫通孔40による接続を実現することも可能となる。すると、ENEA60を設ける利点つまり背面電極20の形状を縮小しつつ、各単位セル10を接続する電気抵抗を小さく保てることとなる。 In the photoelectric conversion element 100, in addition to forming the ENEA 60 in a shape having high practicability described above, the connection by the first through holes 30 and the second through holes 40 is realized at each of the both ends 10E1 and 10E2 of the strip. Is also possible. Then, the electrical resistance connecting the unit cells 10 can be kept small while the advantage of providing the ENEA 60, that is, the shape of the back electrode 20 is reduced.
 特に、図5に示すように、本実施形態の光電変換素子100においては、各単位セル10に第1貫通孔30が複数備わり、導電体50の一の線状部52が一の単位セル10の範囲の第1貫通孔30の少なくとも2つを結ぶように形成されている。この構成では、集電された電流や他の単位セルからの電流が、線状部52により結ばれている複数の第1貫通孔30の間で各経路の抵抗値に応じ分配される。また、いずれかの第1貫通孔30に何らかの障害が生じたとしても、線状部52の経路により繋がる他の第1貫通孔30が冗長経路となることにより、その障害が発電性能に直接的な悪影響が及びにくくなる。さらに、発電動作の起電力が一の単位セル10内で分布した場合であっても、線状部52により結ばれている複数の第1貫通孔30の間において発電電流が分配される。このため、起電力の分布により個別の第1貫通孔30に電流が集中しホットスポット現象を生じさせる事態を未然に防ぐことができる。 In particular, as shown in FIG. 5, in the photoelectric conversion element 100 of the present embodiment, each unit cell 10 i is provided with a plurality of first through holes 30, and one linear portion 52 of the conductor 50 is one unit cell. At least two of the first through holes 30 in the range of 10 i are formed to be connected. In this configuration, the collected current and the currents from other unit cells are distributed among the plurality of first through holes 30 connected by the linear portions 52 in accordance with the resistance value of each path. In addition, even if any failure occurs in any of the first through holes 30, the other first through holes 30 connected by the route of the linear portion 52 become redundant paths, so the failure is directly related to the power generation performance. Adverse effects are less likely to occur. Furthermore, even when the electromotive force of the power generation operation is distributed in one unit cell 10, the generated current is distributed among the plurality of first through holes 30 connected by the linear portion 52. For this reason, it is possible to prevent in advance the situation in which the current is concentrated in the individual first through holes 30 due to the distribution of the electromotive force to cause the hot spot phenomenon.
 さらに、光電変換素子100における導電体50の線状部52は、一方の面1aにおいて第1貫通孔30から複数の向きに向かって延びている複数の線状部を有している。この構成により、面的な広がりを有する透明電極16の各部から第1貫通孔30に向かって流れる電流の経路の抵抗値が低下する。 Furthermore, the linear portion 52 of the conductor 50 in the photoelectric conversion element 100 has a plurality of linear portions extending from the first through hole 30 in a plurality of directions on one surface 1 a. With this configuration, the resistance value of the path of the current flowing from each part of the transparent electrode 16 having a planar spread toward the first through hole 30 is reduced.
[1-3 導電体50の材質]
 導電体50は、最も典型的には、銀ペーストをスクリーン印刷によりパターニングして配置しその銀ペーストを硬化させて形成した層のような、主成分となる一つの成分を金属とするものである。つまり、導電体50には、バインダー成分などの金属以外の成分が含まれている場合もある。また、それ以外にも、パターニングが可能な任意の種類の金属を主成分とする導電体の層を導電体50として採用することができる。例えば、適当なマスクによる金属薄層の蒸着、パターニングされた金属箔の導電性粘着剤による貼着などを採用しても同様の効果が達成される。また導電体50には、カーボンペーストといった導電性を有する材料を採用することも可能である。ただし、後述する第1貫通孔30の内壁面32における導電体50の導通の効果を利用する場合には、その内壁面32にまで導電体50が形成されうる形成方法や材質を採用する。
[1-3 Material of Conductor 50]
The conductor 50 is most typically one component as a main component, such as a layer formed by patterning a silver paste by screen printing and then curing the silver paste and forming it as a metal. . That is, the conductor 50 may contain components other than metals, such as a binder component. In addition to the above, a layer of a conductor mainly composed of any kind of metal that can be patterned can be adopted as the conductor 50. For example, the same effect can be achieved by adopting deposition of a thin metal layer with a suitable mask, adhesion with a conductive adhesive of a patterned metal foil, or the like. Moreover, it is also possible to employ a conductive material such as carbon paste for the conductor 50. However, in the case of utilizing the effect of conduction of the conductor 50 on the inner wall surface 32 of the first through hole 30 described later, a forming method or a material in which the conductor 50 can be formed on the inner wall surface 32 is employed.
[1-4 製造方法]
 次に、図2~図5に示した構造の光電変換素子100を作製する製造方法を、図6を参照して説明する。以下の製造方法の説明に示す材料、使用量、割合、処理内容、処理手順、要素または部材の向きや具体的配置等は本発明の趣旨を逸脱しない限り適宜変更することかできる。したがって、本発明の範囲は以下の具体例に限定されるものではない。図6は、本実施形態における改良されたSCAF構造の光電変換素子を製造する工程を示すフローチャートである。なお、光電変換素子100の断面構造が明確に現われる図7、図8(b)および図9(b)についても適宜参照する。まず、光電変換素子100を作製する基板1としては、絶縁性のフィルム基板を採用する。具体的には、例えば50μm厚程度のポリイミドフィルムを用いる。他に採用することができる基板の材質の例としては、PET、PEN、PES、アクリル、アラミド等の他の絶縁性プラスチックフィルムが挙げられる。
[1-4 Manufacturing method]
Next, a method of manufacturing the photoelectric conversion element 100 having the structure shown in FIGS. 2 to 5 will be described with reference to FIG. The materials, amounts used, proportions, treatment contents, treatment procedures, orientations of elements or members, specific arrangements and the like shown in the following description of the production method can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention is not limited to the following specific examples. FIG. 6 is a flowchart showing steps of manufacturing the improved SCAF photoelectric conversion element in the present embodiment. In addition, FIG. 7, FIG. 8 (b), and FIG.9 (b) which the cross-section of the photoelectric conversion element 100 clearly shows are also referred to suitably. First, as a substrate 1 for producing the photoelectric conversion element 100, an insulating film substrate is adopted. Specifically, for example, a polyimide film having a thickness of about 50 μm is used. Other examples of the material of the substrate that can be adopted include other insulating plastic films such as PET, PEN, PES, acryl, aramid and the like.
 基板1にはまず、第2貫通孔40(接続孔)のための開口44(図9(b))を形成する。このために打ち抜き金型(パンチ)により基板1の所定の位置に開口44を設ける(接続孔形成工程S102)。次いで、減圧下にて加熱することにより、基板1の材質のポリイミドフィルムから放出されるガスを除去する脱ガス処理S104を行なう。なお、この脱ガス処理S104は接続孔形成工程S102の前後いずれかもしくは両方において実施してもかまわない。例えば、図6のフローにおける接続孔形成工程S102よりも前に、脱ガス処理を(図示しない)追加することも好ましい。 First, an opening 44 (FIG. 9B) for the second through hole 40 (connection hole) is formed in the substrate 1. For this purpose, an opening 44 is provided at a predetermined position of the substrate 1 by a punching die (punch) (connection hole forming step S102). Next, by heating under reduced pressure, degassing processing S104 is performed to remove the gas released from the polyimide film of the material of the substrate 1. The degassing process S104 may be performed either before or after the connection hole forming process S102. For example, it is also preferable to add a degassing process (not shown) before the connection hole forming step S102 in the flow of FIG.
 その後、基板1の一方の面1aに裏面電極12となる層を形成し(裏面電極層形成工程S106)、次いで、基板1の面の他方の面1bに背面電極20の基板1側の層となる第1接続配線層22を形成する(第1接続配線層形成工程S108)。裏面電極12となる層は、例えば銀(Ag)を膜厚200nmとなるようにスパッタリング法により形成する。また、第1接続配線層22の材質としても、例えば裏面電極12となる層と同じくAgを採用する。なお、これら裏面電極12となる層および第1接続配線層22の材料は、これら以外にAg合金、アルミニウム(Al)およびその合金等の金属を用いることができる。また、裏面電極12となる層には、金属層と透明電極層との多層構造からなる膜などを用いることもできる。これら裏面電極12となる層および第1接続配線層22を形成する際の成膜法はスパッタリング法に限られず、真空蒸着法やスプレー成膜法、印刷法、塗布法、めっき法を採用することもできる。 Thereafter, a layer to be the back surface electrode 12 is formed on one surface 1a of the substrate 1 (back surface electrode layer forming step S106), and then the other surface 1b of the surface of the substrate 1 and the layer on the substrate 1 side of the back surface electrode 20 The first connection wiring layer 22 is formed (first connection wiring layer forming step S108). The layer to be the back electrode 12 is formed by sputtering, for example, silver (Ag) to a film thickness of 200 nm. Also, as a material of the first connection wiring layer 22, for example, the same Ag as the layer to be the back electrode 12 is adopted. In addition to these materials, metals such as an Ag alloy, aluminum (Al), and an alloy thereof can be used as the material of the layer serving as the back surface electrode 12 and the first connection wiring layer 22. Moreover, the film etc. which consist of a multilayer structure of a metal layer and a transparent electrode layer can also be used for the layer used as the back surface electrode 12. The film formation method for forming the layer to be the back electrode 12 and the first connection wiring layer 22 is not limited to the sputtering method, and vacuum deposition, spray film formation, printing, coating, and plating may be employed. You can also.
 ここで、第1接続配線層形成工程S108においては、ENEA60を形成するために、第1接続配線層22の形成範囲が、ENEA60以外の領域に制限されている。ENEA60を設けて裏面電極12の領域を限定するためには、スパッタリングではターゲットの形状やスパッタリング装置の電極形状によってENEA60を形成することが典型的な手法である。それ以外の成膜方法を採用する場合にも、例えば帯状のような単純な形状のENEA60を設けることは容易である。また、ENEA60を設けた結果、その後の成膜工程において基板1からの放出ガス量が問題になる場合には、脱ガス処理S104などの脱ガス処理のタイミングや処理条件を変更して対処することが可能である。 Here, in the first connection wiring layer forming step S108, in order to form the ENEA 60, the formation range of the first connection wiring layer 22 is limited to a region other than the ENEA 60. In order to provide the ENEA 60 and limit the area of the back electrode 12, it is a typical method in sputtering to form the ENEA 60 depending on the shape of the target and the electrode shape of the sputtering apparatus. Even when other film forming methods are adopted, it is easy to provide ENEA 60 having a simple shape like, for example, a strip. In addition, if the amount of released gas from the substrate 1 becomes a problem in the subsequent film forming process as a result of providing the ENEA 60, the timing and processing conditions of the degassing process such as the degassing process S104 should be changed. Is possible.
 裏面電極層形成工程S106と第1接続配線層形成工程S108とを終えた状態では、基板1の一方の面1aに形成した裏面電極12となる層と基板1の他方の面1bに形成した第1接続配線層22の層とが第2貫通孔40(接続孔)の内壁面またはその付近において直接重なり、互いに電気的に接続される(図9(b))。 When the back surface electrode layer forming step S106 and the first connection wiring layer forming step S108 are completed, the layer to be the back surface electrode 12 formed on one surface 1a of the substrate 1 and the other surface 1b formed on the other surface 1b of the substrate 1 The layers of the first connection wiring layer 22 overlap directly on or near the inner wall surface of the second through hole 40 (connection hole), and are electrically connected to each other (FIG. 9B).
 第1接続配線層形成工程S108を終えると、第1面パターニング工程S110を行い、その時点において基板1の一方の面1a(第1面)に形成されている第1接続配線層22を分離線SL1にて分離する。その後、第2貫通孔40の場合とは別の打ち抜き金型を用い基板1に第1貫通孔30(集電孔)のための開口34(図8(b))を形成する(集電孔形成工程S112)。この際には、基板1のみならず、その段階において基板1に形成して裏面電極12となる層および第1接続配線層22をも貫通する第1貫通孔30を形成する。さらに、基板1の一方の面1a側には半導体層などの光電変換層14を形成する(半導体層形成工程S114)。この光電変換層14には、例えばアモルファスシリコンのn層、i層、およびp層を基板1側から配置するnip構造のシリコン(Si)層が形成され、その成膜のために、例えば高周波容量結合プラズマCVD(Chemical Vapor Deposition)法が用いられる。なお本実施形態において光電変換層14を形成する際の成膜手法は特段限定されない。上述のように高周波容量結合プラズマCVD法を用いること、さらには、そのための成膜装置として平行平板型のシャワーヘッド電極を放電電極とする装置を利用することは成膜法の好ましい一例である。光電変換層14の他の構成としては、微結晶Siをi層に用いた光電変換層としてもよいし、また、アモルファスSiのnip構造と微結晶Siのnip構造とを積層するような多接合型(タンデム型)の光電変換層としてもよい。n層およびp層の構成材料の別例としては、アモルファスSiOなどの合金を用いるように本実施形態を変形することも可能である。また、各種の技術的改良を施すために、界面層やトンネル接合層としてSiOやアモルファスSi、微結晶Si層を追加することも可能である。 When the first connection wiring layer forming step S108 is completed, the first surface patterning step S110 is performed, and at that time, the first connection wiring layer 22 formed on one surface 1a (first surface) of the substrate 1 is separated. It separates with SL1. Thereafter, an opening 34 (FIG. 8 (b)) for the first through hole 30 (current collecting hole) is formed in the substrate 1 using a punching die different from the case of the second through hole 40 (current collecting hole Formation step S112). At this time, not only the substrate 1 but also the layer to be the back electrode 12 and the first connection wiring layer 22 which are formed on the substrate 1 at that stage are formed. Furthermore, a photoelectric conversion layer 14 such as a semiconductor layer is formed on one surface 1a side of the substrate 1 (semiconductor layer forming step S114). In this photoelectric conversion layer 14, for example, an n layer, an i layer and a silicon (Si) layer of an nip structure in which an n layer, an i layer and ap layer of amorphous silicon are arranged from the substrate 1 side are formed. A coupled plasma CVD (Chemical Vapor Deposition) method is used. In addition, the film-forming method at the time of forming the photoelectric converting layer 14 in this embodiment is not specifically limited. As described above, using a high-frequency capacitively coupled plasma CVD method, and using a device having a parallel plate type shower head electrode as a discharge electrode as a film forming device therefor is a preferable example of the film forming method. Another configuration of the photoelectric conversion layer 14 may be a photoelectric conversion layer in which microcrystalline Si is used for the i layer, or a multijunction in which an nip structure of amorphous Si and an nip structure of microcrystalline Si are stacked. It may be a type (tandem type) photoelectric conversion layer. As another example of the constituent material of the n layer and the p layer, it is also possible to modify the present embodiment so as to use an alloy such as amorphous SiO. Moreover, it is also possible to add SiO, amorphous Si, or a microcrystalline Si layer as an interface layer or a tunnel junction layer in order to make various technical improvements.
 また、本実施形態の光電変換素子100における光電変換層14の形成の際には、成膜処理の処理効率を高めるための他の工夫も有用である。例えば、基板1を連続搬送させながら連続成膜するロール・ツー・ロール方式は、本実施形態のための好ましい工程として採用することができる。これ以外にも、搬送モードと成膜モードとを繰りかえすように動作して、成膜モードにおいては基板を停止させた状態となるようにし成膜処理を進める手法(ステッピングロール法)もまた本実施形態の好ましい工程として採用することができる。 Moreover, in the case of formation of the photoelectric converting layer 14 in the photoelectric conversion element 100 of this embodiment, the other device for improving the processing efficiency of a film-forming process is also useful. For example, a roll-to-roll system in which a film is continuously formed while continuously transporting the substrate 1 can be adopted as a preferable process for the present embodiment. Besides this, a method (stepping roll method) is also implemented, which operates so as to repeat the transport mode and the film formation mode, and causes the substrate to be in a stopped state in the film formation mode. It can be adopted as a preferred process of form.
 半導体層形成工程S114にて光電変換層14を形成した後、さらに、透明電極16となる層として基板1の一方の面1aの側に透明導電性材料を堆積する(透明導電層形成工程S116)。この際、光電変換層の両側最端部、すなわち、両端部10E1および10E2のうち、第2貫通孔40が設けられる範囲にはマスクを掛けることにより、当該範囲に透明導電性材料を堆積しないようにする。その結果この範囲においては光電変換層14が露出する(図2、図3(a)、図9(b))。こうして、透明電極16が第2貫通孔40の領域に形成されないようにする。 After forming the photoelectric conversion layer 14 in the semiconductor layer forming step S114, a transparent conductive material is further deposited on the side of one surface 1a of the substrate 1 as a layer to be the transparent electrode 16 (transparent conductive layer forming step S116) . At this time, the transparent conductive material is not deposited in the range by providing a mask in the range in which the second through holes 40 are provided among both end portions of the photoelectric conversion layer, that is, both ends 10E1 and 10E2. Make it As a result, in this range, the photoelectric conversion layer 14 is exposed (FIG. 2, FIG. 3 (a), FIG. 9 (b)). Thus, the transparent electrode 16 is not formed in the region of the second through hole 40.
 本実施形態の透明電極16となる層のための透明導電性材料には各種の透明導電性材料を用いることが可能であり、その材質は特に限定されない。この透明導電性材料は、典型的には、ITO、SnO、TiO、ZnO、IZO(In-ZnO、登録商標)などの金属酸化物の透明導電性材料のいずれかまたはその組み合わせ(積層体または混合物)が選択される。さらに、透明導電層形成工程S116の成膜方法としてはRFスパッタリング、DCスパッタリング、印刷法、塗布法なども採用することができる。 Various kinds of transparent conductive materials can be used as the transparent conductive material for the layer to be the transparent electrode 16 of the present embodiment, and the material is not particularly limited. This transparent conductive material is typically any one or a combination of transparent conductive materials of metal oxides such as ITO, SnO 2 , TiO 2 , ZnO, IZO (In 2 O 3 -ZnO, registered trademark), etc. (Laminate or mixture) is selected. Furthermore, RF sputtering, DC sputtering, a printing method, a coating method, etc. are employable as a film-forming method of transparent conductive layer formation process S116.
 次いで、基板1の他方の面1b側の全面に、第1接続配線層22とともに背面電極20をなす第2接続配線層24の層が形成される(第2接続配線層形成工程S118)。この第2接続配線層24の層としては、例えばニッケルなどの金属材料などの低抵抗の導電層が形成される。第2接続配線層形成工程S118を終えると、基板1の一方の面1aに形成した透明電極16となる層と基板1の他方の面1bに形成した第2接続配線層24の層とが第1貫通孔30の内壁面またはその付近にて直接重なり、互いに電気的に接続される(図8(b))。なお、第2接続配線層24は基板1の他方の面1bにおいて第1接続配線層22にも接するように形成されるため、他方の面1bにおけるこれらの接続配線層は互いに接続され電気的には一体化された接続配線層として背面電極20のための層をなしている。 Next, a layer of the second connection wiring layer 24 which forms the back electrode 20 together with the first connection wiring layer 22 is formed on the entire surface of the other surface 1 b of the substrate 1 (second connection wiring layer forming step S118). As the layer of the second connection wiring layer 24, a low resistance conductive layer such as a metal material such as nickel is formed. After the second connection wiring layer forming step S118, the layer to be the transparent electrode 16 formed on one surface 1a of the substrate 1 and the layer of the second connection wiring layer 24 formed on the other surface 1b of the substrate 1 (1) They are directly superposed on or near the inner wall surface of the through hole 30 and electrically connected to each other (FIG. 8 (b)). Since the second connection wiring layer 24 is formed to be in contact with the first connection wiring layer 22 on the other surface 1b of the substrate 1, these connection wiring layers on the other surface 1b are connected to each other and electrically Are layers for the back electrode 20 as an integrated connection wiring layer.
 第2接続配線層形成工程S118の後、基板1の一方の面1a側の透明電極16となる層の面の上に、所定のパターンが形成されるように、導電体50を形成する(導電体層形成工程S120)。この導電体50の材質には、銀(Ag)などの金属材料を採用することができる。これ以外にも、Ag合金、Al、Cu、Ti等の金属材料を用い多層構造からなる膜などを用いることもできる。さらにこれらの金属の微粉末または微粒子を含む導電性ペースト、例えば銀ペーストにより形成した導体膜を採用することもできる。ここで、導電体50の材質の選択の際に考慮される要因は、パターニングが容易であること、導電性が高いこと太陽電池の製品(モジュール)に期待される使用期間の間に劣化が生じないこと等である。パターニングにより、導電体50の一部として線状部52や縁取り部54(図7)も形成される。さらにカーボンペースト等の導電性が低い材料も適用可能である。 Conductor 50 is formed on the surface of the layer to be transparent electrode 16 on one surface 1a side of substrate 1 after the second connection wiring layer formation step S118 so that a predetermined pattern is formed (conductivity Body layer forming step S120). As a material of the conductor 50, a metal material such as silver (Ag) can be adopted. Besides this, it is also possible to use a film having a multilayer structure using a metal material such as Ag alloy, Al, Cu, Ti or the like. Furthermore, a conductive film containing fine powder or fine particles of these metals, for example, a conductive film formed of silver paste can also be adopted. Here, the factors considered in selecting the material of the conductor 50 are that patterning is easy and that the conductivity is high, deterioration occurs during the expected period of use of the product (module) of the solar cell. There is no such thing. By the patterning, the linear portion 52 and the border portion 54 (FIG. 7) are also formed as a part of the conductor 50. Furthermore, materials with low conductivity such as carbon paste are also applicable.
 導電体層形成工程S120において用いられるパターニング手法に関し補足する。本実施形態において利用されるパターニングには、種々の手法を採用することができる。上述したスクリーン印刷法は、その好適な一例である。これ以外にも、インクジェット印刷法、メタルマスクを利用した蒸着によるパターニング処理、ディスペンサー描画、フィルム転写などを採用することもできる。 It supplements regarding the patterning method used in conductor layer formation process S120. Various methods can be adopted for the patterning used in the present embodiment. The screen printing method described above is a preferred example thereof. Other than this, an inkjet printing method, a patterning process by vapor deposition using a metal mask, a dispenser drawing, a film transfer and the like can also be adopted.
 導電体層形成工程S120の後に、基板1の基板1の一方の面1a(第1面)側に、再び分離線SL1によるパターニングを行なう(第1面パターニング工程S122)。このパターニングの結果、光電変換層14が裏面電極12と同一の形状を有することとなる。透明電極16は、第2貫通孔40の付近には形成されてはいないが、分離線SL1の付近は裏面電極と同じ位置において区切られる。こうして、分離線SL1に囲われる形状のうち、端部の接続孔2の付近を除き、裏面電極12、光電変換層14(半導体層)、透明電極16がこの順に積層された単位セル10が形成される。 After the conductor layer forming step S120, patterning by the separation line SL1 is performed again on one surface 1a (first surface) side of the substrate 1 of the substrate 1 (first surface patterning step S122). As a result of this patterning, the photoelectric conversion layer 14 has the same shape as the back electrode 12. The transparent electrode 16 is not formed in the vicinity of the second through hole 40, but the vicinity of the separation line SL1 is divided at the same position as the back surface electrode. Thus, the unit cell 10 is formed by stacking the back electrode 12, the photoelectric conversion layer 14 (semiconductor layer), and the transparent electrode 16 in this order except for the vicinity of the connection hole 2 at the end in the shape surrounded by the separation line SL1. Be done.
 また、単位セル10を形成する工程をより確実に行うため、ここに示した第1面パターニング工程S122に加えて予備的なパターニング処理(例えば第1面パターニング工程S110)を行なうことも好ましい。この予備的なパターニング処理は、例えば、裏面電極層形成工程S106よりも後であって、半導体層形成工程S114よりも前となるいずれかの段階にて実施する。この予備的なパターニング処理の際にも、裏面電極層6を区切るようにパターニングされるのは分離線SL1の位置である。 In addition to the first surface patterning step S122 shown here, it is also preferable to perform a preliminary patterning process (for example, the first surface patterning step S110) in order to perform the step of forming the unit cells 10 more reliably. The preliminary patterning process is performed, for example, at any stage after the back surface electrode layer forming process S106 and before the semiconductor layer forming process S114. Also in this preliminary patterning process, it is the position of the separation line SL1 that is patterned so as to separate the back electrode layer 6.
 最後に、基板1の基板1の他方の面1b(第2面)の側に対しても分離線SL2の位置にレーザー加工を施す(第2面パターニング工程S124)。この第2面パターニング工程S124においては、第2接続配線層24と第1接続配線層22とを同時に分離する。これらのパターニングは典型的にはレーザーを利用したスクライビング処理(レーザースクライブ)のほか、裏面電極12や光電変換層14の材質によっては、金属の刃によるメカニカルスクライビング法を採用することもできる。 Finally, laser processing is performed on the side of the other surface 1b (second surface) of the substrate 1 of the substrate 1 at the position of the separation line SL2 (second surface patterning step S124). In the second surface patterning step S124, the second connection wiring layer 24 and the first connection wiring layer 22 are simultaneously separated. In addition to the scribing process (laser scribing) which typically uses a laser, depending on the material of the back surface electrode 12 and the photoelectric converting layer 14, the mechanical scribing method by the metal blade can also be employ | adopted for these patterning.
 なお、上記説明においては、第1面パターニング工程S122、第2面パターニング工程S124よりも前に導電体層形成工程S120を実施する順序により説明したが、導電体層形成工程S120を第1面パターニング工程S122と第2面パターニング工程S124との間に実施したり、第1面パターニング工程S122および第2面パターニング工程S124を終えた後に導電体層形成工程S120を実施することも可能である。 In the above description, although the conductive layer forming step S120 is performed in the order prior to the first surface patterning step S122 and the second surface patterning step S124, the conductive layer forming step S120 is patterned on the first surface It is also possible to carry out between the step S122 and the second surface patterning step S124 or to carry out the conductor layer forming step S120 after completing the first surface patterning step S122 and the second surface patterning step S124.
[1-5 貫通孔の構成:導電体50による縁取り]
 次に、本実施形態の光電変換素子100における第1貫通孔30付近における導電体50の構造について詳述する。図7は、本実施形態における改良されたSCAF構造の光電変換素子100における第1貫通孔30付近の構造を示す拡大図である。図7(a)は第1貫通孔30付近の一方の面1a側から見た平面図、図7(b)は、第1貫通孔30付近の構造を、A-A’部の位置にて切断した概略断面図である。
[1-5 configuration of through holes: outline by conductor 50]
Next, the structure of the conductor 50 in the vicinity of the first through hole 30 in the photoelectric conversion element 100 of the present embodiment will be described in detail. FIG. 7 is an enlarged view showing a structure in the vicinity of the first through hole 30 in the photoelectric conversion element 100 of the improved SCAF structure in the present embodiment. FIG. 7 (a) is a plan view seen from one surface 1a side in the vicinity of the first through hole 30, and FIG. 7 (b) shows a structure in the vicinity of the first through hole 30 at a position of AA '. It is the schematic sectional drawing cut | disconnected.
 光電変換素子100においては、導電体50が透明電極16の面における第1貫通孔30の開口34を縁取りする位置を被覆している。つまり、図7に示すように、単位セル10において基板1、裏面電極12、光電変換層14、および透明電極16を貫通する第1貫通孔30の第1貫通孔30の縁をなす部分を縁取るように縁取り部54が形成されている。このような縁取り部54の構成は、とりわけ第1貫通孔30近傍における透明電極16への電流集中がもたらす高い電流密度によるジュール熱の生成を抑止する効果が高い。したがって、第1貫通孔30付近での局所的な温度上昇を抑制することが可能となり、本実施形態の光電変換素子100の構成において有用である。 In the photoelectric conversion element 100, the conductor 50 covers a position of the surface of the transparent electrode 16 at which the opening 34 of the first through hole 30 is bordered. That is, as shown in FIG. 7, in the unit cell 10, the edge of the first through hole 30 of the first through hole 30 penetrating the substrate 1, the back electrode 12, the photoelectric conversion layer 14, and the transparent electrode 16 is an edge. A border 54 is formed to be taken. Such a configuration of the rim portion 54 is particularly effective in suppressing the generation of Joule heat due to the high current density caused by the current concentration on the transparent electrode 16 in the vicinity of the first through hole 30. Therefore, it becomes possible to suppress a local temperature rise in the vicinity of the first through hole 30, and is useful in the configuration of the photoelectric conversion element 100 of the present embodiment.
[1-6 貫通孔の内壁面での接続]
 本実施形態の光電変換素子100においては、貫通孔の内部において導電体50の導通機能も利用することができる。図8は、光電変換素子の第1貫通孔の内部の構造を示す概略断面図である。図8(a)および図8(b)は、第1貫通孔の内壁面における膜の重なりを示しており、それぞれ、従来のSCAF構造、および本発明の実施形態の改良されたSCAF構造のものである。また、図9は、光電変換素子の第2貫通孔の内部の構造を示す概略断面図である。図9(a)および図9(b)は第2貫通孔の内壁面における膜の重なりを示しており、それぞれ、従来のSCAF構造、および本発明の実施形態の改良されたSCAF構造のものである。
[1-6 Connection on inner wall surface of through hole]
In the photoelectric conversion element 100 of the present embodiment, the conduction function of the conductor 50 can also be utilized inside the through hole. FIG. 8 is a schematic cross-sectional view showing the structure inside the first through hole of the photoelectric conversion element. FIGS. 8 (a) and 8 (b) show the overlap of the membranes on the inner wall of the first through hole, respectively, of the conventional SCAF structure and of the improved SCAF structure according to an embodiment of the invention It is. Moreover, FIG. 9 is a schematic sectional drawing which shows the structure inside the 2nd through-hole of a photoelectric conversion element. FIGS. 9 (a) and 9 (b) show the overlap of the membranes on the inner wall of the second through hole, respectively with the conventional SCAF structure and the improved SCAF structure of the embodiment of the present invention is there.
 従来のSCAF構造の第1貫通孔730(図8(a))においては、典型的には第1貫通孔730の内壁面732に、背面電極720の層と透明電極716の層とが延びており、内壁面732においてそれらが互いに接触する領域(「716/724」の符号により示す)にて電気的導通が確立されている。図8(a)の紙面上の右側の内壁面にその電流経路を白抜き矢印により示している。ところが、領域716/724は、この内壁面732においては、製造時のばらつきなどの要因によって必ずしも常に十全な電流経路となるとは限らない。仮に透明電極716の電気抵抗値が十分に低いと仮定したとしても、図4(a)に示したように多数の第1貫通孔730を配置する状態から、図4(b)または(c)に示した本実施形態の光電変換素子100のように第1貫通孔30の数を減らすことにより、第1貫通孔30の単位面積当たりの個数(面密度)を小さくしようとする限り、個々の第1貫通孔30の導通経路としての信頼性を高める必要がある。特に、導電体50の線状部52を透明電極16に接触させて形成することによりホットスポット現象に起因する破損の確率を低減したとしても、依然として、第1貫通孔30に電流が集中する状況は維持される。そのような場合の一つの直接的改良は、第1貫通孔30の内径を広げ第1貫通孔30の周縁長を増して導電領域を拡大する対応である。ただし、その改良では発電面積が縮小してしまう。 In the first through hole 730 (FIG. 8A) of the conventional SCAF structure, typically, the layer of the back electrode 720 and the layer of the transparent electrode 716 extend on the inner wall surface 732 of the first through hole 730 Electrical continuity is established in the region (indicated by the symbol “716/724”) where they contact each other on the inner wall surface 732. The current path is shown by the outline arrow on the inner wall surface on the right side of the paper surface of FIG. 8A. However, region 716/724 does not always always have a sufficient current path on inner wall surface 732 due to factors such as manufacturing variations. Even if it is assumed that the electric resistance value of the transparent electrode 716 is sufficiently low, as shown in FIG. 4 (a), from the state where a large number of first through holes 730 are disposed, FIG. 4 (b) or (c) As long as the number (area density) per unit area of the first through holes 30 is reduced by reducing the number of the first through holes 30 as in the photoelectric conversion element 100 of the present embodiment shown in FIG. It is necessary to improve the reliability of the first through hole 30 as the conduction path. In particular, even if the probability of breakage due to the hot spot phenomenon is reduced by forming the linear portion 52 of the conductor 50 in contact with the transparent electrode 16, the situation in which the current is still concentrated in the first through hole 30 Is maintained. One direct improvement in such a case is to widen the inner diameter of the first through hole 30 and increase the peripheral length of the first through hole 30 to enlarge the conductive region. However, the improvement will reduce the power generation area.
 そこで、図9に示した本実施形態における改良されたSCAF構造の光電変換素子100においては、導電体50を利用し各第1貫通孔30の導通の信頼性を高める工夫を採用する(図8(b))。具体的には、背面電極20と透明電極16とのそれぞれが延びている第1貫通孔30の内壁面32の少なくとも一部に導電体50を配置する。導電体50は、内壁面32における背面電極20と透明電極16との双方に接して電気的経路を確立または増強するように機能する。このような構成を採用すれば、第1貫通孔30における導通の信頼性を高めることが可能となる。なお、内壁面32における導電体50は、第1貫通孔30の開口34を塞ぐように配置されていてもよい。また、開口34を塞ぐか塞がないかにかかわらず、内壁面32における図8(b)のように導電体50を配置することに作製上の困難性はない。上述した製造法の例のように、例えばスクリーン印刷などの手法によって導電性ペーストを利用し導電体50を形成することができる。つまり、第1貫通孔30のサイズは直径1mm~5mm程度の場合が多く、また、基板1の厚みは通例は1mm未満である。このため、導電体50を形成する時点における第1貫通孔30は、第1貫通孔730(図8(a)と同様の状態となっていても、第1貫通孔30を通し基板1の他方の面1bの側に到達するまで、または他方の面1bの側にはみ出す程度に内壁面32に導電体50を形成することもできる。 Therefore, in the photoelectric conversion element 100 of the improved SCAF structure in the present embodiment shown in FIG. 9, a device is employed to improve the reliability of conduction of each first through hole 30 using the conductor 50 (FIG. 8). (B). Specifically, the conductor 50 is disposed on at least a part of the inner wall surface 32 of the first through hole 30 in which each of the back electrode 20 and the transparent electrode 16 extends. The conductor 50 is in contact with both the back electrode 20 and the transparent electrode 16 on the inner wall surface 32 and functions to establish or enhance an electrical path. Adopting such a configuration makes it possible to improve the reliability of conduction in the first through holes 30. The conductor 50 on the inner wall surface 32 may be disposed so as to close the opening 34 of the first through hole 30. Further, regardless of whether or not the opening 34 is closed, there is no manufacturing difficulty in arranging the conductor 50 as shown in FIG. 8B on the inner wall surface 32. As in the example of the manufacturing method described above, the conductor 50 can be formed using a conductive paste by a method such as screen printing. That is, the size of the first through hole 30 is often about 1 mm to 5 mm in diameter, and the thickness of the substrate 1 is typically less than 1 mm. Therefore, even when the first through hole 30 at the time of forming the conductor 50 is in the same state as the first through hole 730 (FIG. 8A), the first through hole 30 passes through the other side of the substrate 1. The conductor 50 can also be formed on the inner wall surface 32 to such an extent that it reaches the surface 1b side or protrudes to the other surface 1b side.
 さらに、貫通孔における接続の信頼性を高める効果は、第2貫通孔40においても同様に達成される。図9は、光電変換素子の第2貫通孔の内部の構造を示す概略断面図である。図9(a)および(b)は、それぞれ、従来のSCAF構造、および本発明の実施形態の改良されたSCAF構造における、光電変換素子における第2貫通孔の内壁面における膜の重なりを示す。従来の光電変換素子700における第2貫通孔740においては、裏面電極712と背面電極720(第1接続配線層722、第2接続配線層724)との接続は、それらが第2貫通孔740の内部において重なり接触する領域(712/722/724の符号により示す)に限定される。この重なりの領域は、実際の光電変換素子700では製造上のばらつきのために十分な面積を有しないことがある。これに対し、本実施形態の光電変換素子100においては、背面電極20と裏面電極12とのそれぞれが第2貫通孔40の内壁面42の少なくとも一部に延びており、導電体50が、第2貫通孔40の内壁面42における背面電極20と、裏面電極12との双方に接して電気的経路を確立または増強していると好適である。この場合にも、導電体50が第2貫通孔40の内部を埋めるように配置されていてもよい。また、第2貫通孔40おける導電体50の配置についても、特段の作製上の困難性はない。 Furthermore, the effect of enhancing the reliability of the connection in the through hole is similarly achieved in the second through hole 40. FIG. 9 is a schematic cross-sectional view showing the structure inside the second through hole of the photoelectric conversion element. FIGS. 9 (a) and (b) show the overlap of the film on the inner wall surface of the second through hole in the photoelectric conversion element in the conventional SCAF structure and the improved SCAF structure of the embodiment of the present invention, respectively. The connection between the back surface electrode 712 and the back surface electrode 720 (the first connection wiring layer 722 and the second connection wiring layer 724) in the second through holes 740 in the conventional photoelectric conversion element 700 is the same as that of the second through holes 740. It is limited to the area (indicated by the reference numerals 712/722/724) which is internally overlapped and in contact. This overlapping region may not have an area sufficient for the actual photoelectric conversion element 700 due to manufacturing variations. On the other hand, in the photoelectric conversion element 100 of the present embodiment, each of the back electrode 20 and the back electrode 12 extends to at least a part of the inner wall surface 42 of the second through hole 40, and the conductor 50 Preferably, an electrical path is established or enhanced in contact with both the back electrode 20 and the back electrode 12 on the inner wall surface 42 of the through hole 40. Also in this case, the conductor 50 may be disposed to fill the inside of the second through hole 40. In addition, the arrangement of the conductor 50 in the second through hole 40 also has no particular difficulty in preparation.
[2 変形例]
 本実施形態の光電変換素子100の構成は例示のものに過ぎない。したがって、本実施形態の光電変換素子100は、上述したものには限定されず、種々の変更または改良を施すことができる。
[2 modification]
The configuration of the photoelectric conversion element 100 of the present embodiment is merely an example. Therefore, photoelectric conversion element 100 of this embodiment is not limited to what was mentioned above, A various change or improvement can be given.
[2-1 ENEA60の採否]
 図3を参照し上述した光電変換素子100においては、ENEA60が形成されている構成を説明したものの、本実施形態において明示的なENEA60が形成されていることは必須ではない。例えば、基板1の材質によっては、真空処理中にガスを放出する性質のものがある。その場合に背面電極20にガスバリア層としての機能を担わせている場合もある。そのような場合には、ENEA60を設けることと設けないこととの間での技術的得失が勘案され、ENEA60の採否を決定することができる。
[2-1 Adoption of ENEA 60]
Although the configuration in which the ENEA 60 is formed is described in the photoelectric conversion element 100 described above with reference to FIG. 3, it is not essential that the explicit ENEA 60 is formed in the present embodiment. For example, depending on the material of the substrate 1, there is a property of releasing gas during vacuum processing. In such a case, the back electrode 20 may function as a gas barrier layer. In such a case, technical merits and demerits between providing and not providing the ENEA 60 can be taken into consideration, and the adoption or rejection of the ENEA 60 can be determined.
[2-2 ENEA60の変形]
 また、ENEA60が形成された光電変換素子100において、ENEA60の形状や位置も、必ずしも単位セル10の長手方向中央部に形成されていることを要さない。
[2-2 Modification of ENEA 60]
Further, in the photoelectric conversion element 100 in which the ENEA 60 is formed, the shape and position of the ENEA 60 do not necessarily have to be formed at the central portion in the longitudinal direction of the unit cell 10.
 さらに、ENEA60に代えて電極削減領域(図示しない)を設けることも有用である。電極削減領域は、基板1の他方の面1bにおけるENEA60と同一または類似の形状の領域を占めるように形成される。つまり、電極削減領域は、複数の単位セルが形成されている領域に相当する他方の面1bの側の領域のうちの少なくとも一部に形成される。また、電極削減領域を設ける構成においては、背面電極20が、上述した第1接続配線層22および第2接続配線層24のような、複数の金属層の積層膜により形成されている。その場合において、電極削減領域は、背面電極20をなす積層膜のうちの少なくともいずれかの電極層が形成されない領域である。したがって、電極削減領域には、層数が削減された背面電極20が存在する場合があり、その点において、電極削減領域はENEA60とは相違する。この場合にも、ENEA60について図3を参照して説明したように、導電体50に備わる線状部52は、基板1の一方の面1aの側における電極削減領域に相当する領域の少なくとも一部に延びている。このような構成であっても、上述したENEA60を設ける光電変換素子100の省資源により製造が可能になるという利点と同様の利点が少なくともある程度実現される。 Furthermore, it is also useful to provide an electrode reduction area (not shown) instead of the ENEA 60. The electrode reduced area is formed to occupy the area of the same or similar shape as the ENEA 60 on the other surface 1 b of the substrate 1. That is, the electrode reduced area is formed in at least a part of the area on the side of the other surface 1 b corresponding to the area in which the plurality of unit cells are formed. Further, in the configuration in which the electrode reduction area is provided, the back electrode 20 is formed of a laminated film of a plurality of metal layers such as the first connection wiring layer 22 and the second connection wiring layer 24 described above. In that case, the electrode reduction region is a region where at least one of the electrode layers of the laminated film forming the back electrode 20 is not formed. Therefore, there may be a back electrode 20 in which the number of layers is reduced in the electrode reduction region, and in that respect, the electrode reduction region is different from the ENEA 60. Also in this case, as described with reference to FIG. 3 for the ENEA 60, the linear portion 52 provided in the conductor 50 is at least a part of the region corresponding to the electrode reduction region on the side of one surface 1a of the substrate 1 It extends to Even with such a configuration, the same advantages as the advantage that manufacturing becomes possible due to the resource saving of the photoelectric conversion element 100 provided with the above-described ENEA 60 are realized at least to some extent.
 そのような場合に、任意選択として、電極削減領域には第1貫通孔30を配置しないような平面配置を採用する光電変換素子は、例えば第1貫通孔30による発電面積の浸食を抑止するため、さらに好適な構成である。 In such a case, as an option, the photoelectric conversion element adopting a planar arrangement in which the first through holes 30 are not disposed in the electrode reduction region is, for example, to suppress the erosion of the power generation area by the first through holes 30. It is a further preferred configuration.
[2-3 導電体50の変形]
 さらに、図7および図8に示した第1貫通孔30の構造においては、導電体50が第1貫通孔30を塞いでいない構成を示しているが、導電体50が第1貫通孔30を塞いでいる構成を採用することもできる。第2貫通孔40の内壁面42に導電体50を配置する場合についても同様である。
[2-3 Deformation of conductor 50]
Furthermore, in the structure of the first through hole 30 shown in FIGS. 7 and 8, the conductor 50 does not block the first through hole 30. However, the conductor 50 does not cover the first through hole 30. It is also possible to adopt a closed configuration. The same applies to the case where the conductor 50 is disposed on the inner wall surface 42 of the second through hole 40.
 導電体50として形成されるパターンも、各種のパターンとすることができる。スクリーン印刷によって形成される導電体50のパターンの典型例を以下例示する。 The pattern formed as the conductor 50 can also be various patterns. The typical example of the pattern of the conductor 50 formed by screen printing is illustrated below.
 線状部52の延びる方向は、一方の面1aの面内において、縦・横・斜めのいずれの方向でもかまわない。上述したように、一つの典型は、線状部52の少なくとも一部が、第1貫通孔30から透明電極16の短冊の長手方向に延びて、基板1の一方の面1aの側におけるENEA60に相当する領域に達しているものである。この際、複数の単位セル10は、一方向に延びる短冊に区切られ各単位セルが短冊の幅方向に並べて配置されたものである。 The extending direction of the linear portion 52 may be any of vertical, horizontal, and diagonal directions in the plane of the one surface 1a. As described above, in one typical example, at least a portion of the linear portion 52 extends in the longitudinal direction of the strip of the transparent electrode 16 from the first through hole 30 to the ENEA 60 on the side of one surface 1 a of the substrate 1. It has reached the corresponding area. At this time, the plurality of unit cells 10 are divided into strips extending in one direction, and the unit cells are arranged in the width direction of the strips.
 また、第1貫通孔30から複数の向きに向かって延びている複数の線状部を有しているとは、例えば、第1貫通孔30から延びる向きが、互いに180度異なる向き、互いに90度異なる向き、といった角度により指定される複数の向きの線状部52を有するものが典型である。それ以外にも、線状部52が樹木の枝のように、幹、枝、小枝といった分岐構造となっているものも含んでいる。 Further, having a plurality of linear portions extending from the first through hole 30 in a plurality of directions means, for example, that the directions extending from the first through hole 30 are different by 180 degrees from each other. It is typical to have linear portions 52 of a plurality of orientations specified by angles, such as different orientations. Other than that, the linear part 52 includes one having a branched structure such as a trunk, a branch, and a twig like a branch of a tree.
 本実施形態の導電体50の線状部52の形状は、電気的要件、光学的要件、機械的要件、そして製造上の要件を満たすように適宜に変形し調整することが可能である。線状部52の材質を同一とした場合、線状部52の本数が多く、ライン幅が大きく、またその膜厚が大きいほど、透明電極16の実質的抵抗を低下させることが可能となる。また、線状部52の本数が少なく、ライン幅が小さいほど、透明電極16を通過する光を遮る割合を低下させることができる。さらに、基板1が可撓性基板に形成されて光電変換素子100に可撓性を持たせたい場合には、膜厚が薄いほど可撓性が影響を受けにくいことが考慮される。製造上の要件としては、線状部52の幅は、一般には幅広であれば形成が容易となる。 The shape of the linear portion 52 of the conductor 50 of the present embodiment can be appropriately deformed and adjusted so as to satisfy the electrical requirements, the optical requirements, the mechanical requirements, and the manufacturing requirements. When the material of the linear portion 52 is the same, the substantial resistance of the transparent electrode 16 can be reduced as the number of the linear portions 52 is large, the line width is large, and the film thickness is large. In addition, as the number of linear portions 52 is smaller and the line width is smaller, the ratio of blocking light passing through the transparent electrode 16 can be reduced. Furthermore, when the substrate 1 is formed on a flexible substrate and the photoelectric conversion element 100 is desired to have flexibility, it is considered that the smaller the film thickness, the less the influence of the flexibility. As a manufacturing requirement, if the width of the linear portion 52 is generally wide, formation is easy.
 また、図7に示した縁取り部54を設ける場合において、その縁取り部54の範囲も適宜調整される。一般に、縁取り部54が広いと、電気的側面から性能を向上させることが可能となる。これに対し、光学的側面からは、縁取り部54による遮光が発電面積を減少させる点も考慮される。 Further, in the case of providing the border 54 shown in FIG. 7, the range of the border 54 is also appropriately adjusted. In general, if the border 54 is wide, it is possible to improve the performance from the electrical side. On the other hand, from the optical side, it is also considered that the light shielding by the border 54 reduces the power generation area.
 そして、上述した実施形態においては、線状部52や縁取り部54を形成したり、第1貫通孔30または第2貫通孔40の内壁面に導電体50を形成したりする場合に、導電体50の各部を一度の処理により形成するものであるかのように説明した。しかし、導電体50は、実質的に電気的経路を有する金属などの導電体である限り、複数回の処理により部分的に形成したものを組み合わせることによっても形成することが可能である。 And in the embodiment mentioned above, when forming the linear part 52 and the edge part 54, or forming the conductor 50 in the inner wall face of the 1st through-hole 30 or the 2nd through-hole 40, It has been described that each of the 50 parts is formed by one process. However, as long as the conductor 50 is a conductor such as a metal substantially having an electrical path, it can also be formed by combining those partially formed by a plurality of treatments.
 さらに、上記好適な構成の説明において、導電体50が、第1貫通孔30の内壁面32や第2貫通孔40の内壁面42において電気的経路を確立または増強する機能を説明した。しかし、導電体50による電気的経路の確立や電気的経路の増強は、必ずしも、導電体50が無い状態で全く導通のない電気的経路を導電体50のみによって確立することには限定されない。量産時のばらつきなどの要因により確率的に電気的経路が不完全となる不具合を顕在的にまたは潜在的に軽減する機能を果たす限り、導電体50は電気的経路の確立や電気的経路の増強する機能を果たしているためである。 Furthermore, in the description of the preferred configuration, the function of establishing or enhancing the electrical path on the inner wall surface 32 of the first through hole 30 and the inner wall surface 42 of the second through hole 40 has been described. However, the establishment of the electrical path by the conductor 50 and the enhancement of the electrical path are not necessarily limited to the establishment of the electrical path without conduction at all by the conductor 50 alone. Conductor 50 establishes an electrical path or enhances an electrical path as long as it functions to obviously or potentially reduce a defect in which the electrical path is stochastically incomplete due to a factor such as a variation during mass production. To perform the function.
[2-4 単位セル10の配列の変形]
 基板1には必ずしも1列のみ単位セル10の列が形成されるとは限らない。上述の直列接続された単位セル10を複数の列をなすように設ける場合(図示しない)にも、各列の間には、透明電極16のための透明導電性材料を堆積させない。その場合にもENEA60を形成することは可能である。その場合、その場合にもENEA60の配置は、基板1の一方の面1aにおいて複数の単位セルが形成されている領域に相当する他方の面1bの側の領域のうちの少なくとも一部とされる。第1貫通孔30と第2貫通孔40が配置される領域には背面電極20が配置されて直列接続が確立される限り、背面電極20を配置しないENEA60を設けることに支障はない。
[2-4 Unit cell 10 array modification]
Only one row of unit cells 10 is not necessarily formed on the substrate 1. Even when the series-connected unit cells 10 described above are provided in a plurality of rows (not shown), the transparent conductive material for the transparent electrode 16 is not deposited between the rows. Also in that case, it is possible to form ENEA 60. In that case, also in that case, the arrangement of ENEA 60 is at least a part of the region on the other surface 1 b side corresponding to the region in which a plurality of unit cells are formed on one surface 1 a of substrate 1 . As long as the back electrode 20 is disposed in a region where the first through holes 30 and the second through holes 40 are disposed and serial connection is established, it is not a hindrance to provide the ENEA 60 in which the back electrode 20 is not disposed.
[2-5 光電変換層14の材質]
 本実施形態の光電変換素子100に採用される光電変換素子のタイプは特に限定されない。すなわち、光電変換層14の材質は、作製方法の欄において上述したアモルファスシリコンのn層、i層、およびp層を基板1側から配置するnip構造のシリコン(Si)層とすることが一つの典型である。
[2-5 Material of photoelectric conversion layer 14]
The type of photoelectric conversion element employed in the photoelectric conversion element 100 of the present embodiment is not particularly limited. That is, the material of the photoelectric conversion layer 14 is a silicon (Si) layer of an nip structure in which the n layer, i layer, and p layer of the amorphous silicon described above in the column of the manufacturing method are disposed from the substrate 1 side. It is typical.
 別の典型例は、光電変換層14の材質として、カルコパイライト系と呼ばれるCIGS[Cu(In,Ga)Se2]をはじめとする化合物太陽電池である。その場合の光電変換素子100の製造方法、特に裏面電極層形成工程S106~透明導電層形成工程S116は次のようなものとなる。 Another typical example is a compound solar cell including CIGS [Cu (In, Ga) Se2] called chalcopyrite as a material of the photoelectric conversion layer 14. In that case, the method of manufacturing the photoelectric conversion element 100, in particular, the back electrode layer forming step S106 to the transparent conductive layer forming step S116 are as follows.
 まず、裏面電極層形成工程S106では、基板1の一方の面1aの面の裏面電極12となる層をモリブデン(Mo)により形成しておく。次に、上述したように第1接続配線層形成工程S108、第1面パターニング工程S110および集電孔形成工程S112を実行する。その後その時点に形成されている裏面電極12となるMoの層に、光電変換層14としてp型CIGS吸収層とバッファ層をこの順に形成する(半導体層形成工程S114)。さらに、透明電極16を形成する透明導電層形成工程S116を実施する。CIGSの場合には、透明電極16に相当する透明電極は、高抵抗の透明電極層と低抵抗の透明電極層との積層体とされる。なお、p型CIGS吸収層は、Cu、In、Ga、およびSe(銅、インジウム、ガリウム、セレン)などの元素により、例えば、Cu(In1-xGa)Seと表現されるものである。ここで、p型CIGS吸収層では、p型の導電型となるように、Cuと、(In+Ga)との間で組成が調整される。バッファ層の材質は、CdS、ZnS、ZnO,ZnOH、ZnSe、ZnInSe、In、ZnMgOを選択することができる。透明電極16が形成された後は、第2接続配線層形成工程S118~第2面パターニング工程S124は、上述したように実施される。 First, in the back surface electrode layer forming step S106, a layer to be the back surface electrode 12 on the surface of one surface 1a of the substrate 1 is formed of molybdenum (Mo). Next, as described above, the first connection wiring layer formation step S108, the first surface patterning step S110, and the current collection hole formation step S112 are performed. After that, the p-type CIGS absorption layer and the buffer layer are formed in this order as the photoelectric conversion layer 14 in the layer of Mo to be the back surface electrode 12 formed at that time (semiconductor layer forming step S114). Furthermore, the transparent conductive layer formation process S116 which forms the transparent electrode 16 is implemented. In the case of CIGS, the transparent electrode corresponding to the transparent electrode 16 is a laminate of a high resistance transparent electrode layer and a low resistance transparent electrode layer. The p-type CIGS absorption layer is expressed by, for example, Cu (In 1-x Ga x ) Se 2 by an element such as Cu, In, Ga, and Se (copper, indium, gallium, selenium) and the like. is there. Here, in the p-type CIGS absorption layer, the composition is adjusted between Cu and (In + Ga) so as to be a p-type conductivity type. The material of the buffer layer may be selected CdS, ZnS, ZnO, ZnOH, ZnSe, ZnIn 2 Se 4, In 2 S 3, a ZnMgO. After the transparent electrode 16 is formed, the second connection wiring layer forming step S118 to the second surface patterning step S124 are performed as described above.
 なお、CIGS系太陽電池は、シリコン系薄膜光電変換素子に比べて電流が大きくなる。このため、本実施形態の導電体50を採用することによる透明電極16の抵抗の低下や第1貫通孔30または第2貫通孔40を通じた直列接続の低抵抗化ならびに信頼性の向上は一層有用である。その一方、CIGS系太陽電池は、一般に真空に対して感度が鈍いという特性がある。つまり、裏面電極12を形成する成膜処理中において環境の真空度が劣化しても、作成後の光電変換素子100の性能に対する悪影響は、シリコン系薄膜太陽電池の場合に比べわずかである。このため、上述した背面電極20による基板1からの脱ガスに対するガスバリア性の要請は高くなく、シリコン系光電変換素子の場合に比べENEA60を配置することとの組合せが一層好ましい構成となる。 In addition, the current is larger in the CIGS solar cell than in the silicon thin film photoelectric conversion element. For this reason, the reduction of the resistance of the transparent electrode 16 by adopting the conductor 50 of the present embodiment and the reduction of resistance and improvement of the reliability of series connection through the first through holes 30 or the second through holes 40 are more useful. It is. On the other hand, CIGS solar cells generally have the property of being insensitive to vacuum. That is, even if the degree of vacuum of the environment is deteriorated during the film forming process of forming the back electrode 12, the adverse effect on the performance of the photoelectric conversion element 100 after formation is slight compared to the case of the silicon based thin film solar cell. For this reason, the request | requirement of the gas barrier property with respect to degassing from the board | substrate 1 by the back surface electrode 20 mentioned above is not high, and the combination with arrange | positioning ENEA60 becomes a more preferable structure compared with the case of a silicon system photoelectric conversion element.
 以上、本発明の実施形態を具体的に説明した。上述の各実施形態および実施例は、発明を説明するために記載されたものであり、本出願の発明の範囲は、請求の範囲の記載に基づいて定められるべきものである。また、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、請求の範囲に含まれるものである。 The embodiments of the present invention have been specifically described above. The above-described embodiments and examples are described to explain the invention, and the scope of the invention of the present application should be determined based on the description of the claims. In addition, modifications within the scope of the present invention, including other combinations of the respective embodiments, are also included in the scope of the claims.
 本発明の光電変換素子は、太陽光などの光により発電を行なう任意の装置に利用可能である。 The photoelectric conversion element of the present invention can be used for any device that generates electric power by light such as sunlight.
 100 光電変換素子
 1 基板
 1b 一方の面
 1a 他方の面
 10 単位セル
 10E1、10E2 両端部
 12 裏面電極
 14 光電変換層
 16 透明電極
 20 背面電極
 22 第1接続配線層
 24 第2接続配線層
 30 第1貫通孔
 32 内壁面
 34 開口
 40 第2貫通孔
 42 内壁面
 44 開口
 50 導電体
 52 線状部
 54 縁取り部
 60 電極非形成領域(ENEA)
 SL1、SL2 分離線
100 photoelectric conversion element 1 substrate 1b one surface 1a other surface 10 unit cells 10E1 and 10E2 both ends 12 back surface electrode 14 photoelectric conversion layer 16 transparent electrode 20 back surface electrode 22 first connection wiring layer 24 second connection wiring layer 30 first Through hole 32 inner wall surface 34 opening 40 second through hole 42 inner wall surface 44 opening 50 conductor 52 linear portion 54 edge portion 60 electrode non-forming area (ENEA)
SL1, SL2 separation line

Claims (10)

  1.  互いに直列接続される複数の単位セルが一片の絶縁性の基板の一方の面の上に形成されている光電変換素子であって、
     各単位セルは、前記基板の前記一方の面の上に形成された裏面電極と、該裏面電極の面の上に形成された光電変換層と、該光電変換層の面の上に形成された透明電極とを備えているものであり、
     前記基板の他方の面の上に形成され、該基板を貫通する第1貫通孔を通じ一の単位セルの前記透明電極に電気的に接続され、かつ、該基板を貫通する第2貫通孔を通じ他の単位セルの前記裏面電極に電気的に接続された、互いに切り離された複数の背面電極
     を備え、
     前記複数の単位セルは、各単位セルに属する前記透明電極および前記裏面電極が、別々の背面電極に対し、それぞれ前記第1貫通孔と前記第2貫通孔を通じ電気的に接続され、これにより、各単位セルが各背面電極により直列接続されており、
     前記透明電極が、該透明電極の面に接して形成され、前記第1貫通孔から延びている線状部を有する導電体を備えているものである
     光電変換素子。
    A photoelectric conversion element in which a plurality of unit cells connected in series with each other is formed on one surface of a piece of insulating substrate,
    Each unit cell is formed on the back surface electrode formed on the one surface of the substrate, the photoelectric conversion layer formed on the surface of the back surface electrode, and the surface of the photoelectric conversion layer And a transparent electrode,
    A second through hole is formed on the other surface of the substrate, is electrically connected to the transparent electrode of one unit cell through a first through hole passing through the substrate, and the other through the second through hole through the substrate. And a plurality of back electrodes separated from one another electrically connected to the back electrode of the unit cell,
    In the plurality of unit cells, the transparent electrode and the back electrode belonging to each unit cell are electrically connected to the separate back electrodes through the first through holes and the second through holes, respectively. Each unit cell is connected in series by each back electrode,
    A photoelectric conversion element, wherein the transparent electrode includes a conductor formed in contact with a surface of the transparent electrode and having a linear portion extending from the first through hole.
  2.  前記複数の単位セルが形成されている領域に相当する前記他方の面の側の領域のうちの少なくとも一部に、前記背面電極が形成されない電極非形成領域が設けられており、
     前記導電体に備わる前記線状部が、前記基板の前記一方の面の側における該電極非形成領域に相当する領域の少なくとも一部に延びている
     請求項1に記載の光電変換素子。
    An electrode non-forming region in which the back electrode is not formed is provided in at least a part of the region on the other side corresponding to the region in which the plurality of unit cells are formed,
    The photoelectric conversion element according to claim 1, wherein the linear portion provided in the conductor extends in at least a part of a region corresponding to the electrode non-formed region on the side of the one surface of the substrate.
  3.  前記複数の単位セルは、一方向に延びる短冊に区切られ各単位セルが該短冊の幅方向に並べて配置されたものであり、
     前記複数の背面電極は、前記複数の単位セルにおける各単位セルの並びの方向に並ぶように前記基板の前記他方の面において各背面電極へと区切られており、
     前記導電体の前記線状部の少なくとも一部が、前記第1貫通孔から前記透明電極の短冊の長手方向に延びて、前記基板の前記一方の面の側における前記電極非形成領域に相当する領域に達しており、
     前記電極非形成領域が、前記複数の単位セルの範囲にわたり前記短冊の幅方向に延びている
     請求項2に記載の光電変換素子。
    The plurality of unit cells are divided into strips extending in one direction, and the unit cells are arranged side by side in the width direction of the strips.
    The plurality of back electrodes are divided into the back electrodes on the other surface of the substrate so as to be aligned in the direction in which the unit cells are arranged in the plurality of unit cells.
    At least a portion of the linear portion of the conductor extends in the longitudinal direction of the strip of the transparent electrode from the first through hole, and corresponds to the electrode non-forming region on the side of the one surface of the substrate Reach the area,
    The photoelectric conversion element according to claim 2, wherein the electrode non-forming region extends in the width direction of the strip over the range of the plurality of unit cells.
  4.  一の単位セルに属する前記透明電極および前記裏面電極が、前記短冊の両端部近傍において、それぞれ、前記第1貫通孔および前記第2貫通孔を通じ、互いに別々の背面電極に対しそれぞれ電気的に接続されており、
     前記電極非形成領域が、前記複数の単位セルそれぞれの前記短冊の長手方向中央部を前記複数の単位セルにわたって前記短冊の幅方向に延びる領域に相当する前記他方の面の領域となっている
     請求項3に記載の光電変換素子。
    The transparent electrode and the back electrode belonging to one unit cell are electrically connected to the back electrodes different from each other through the first through hole and the second through hole, respectively, in the vicinity of both ends of the strip. Has been
    The electrode non-forming region is a region of the other surface corresponding to a region extending in the width direction of the strip across the plurality of unit cells in the longitudinal central portion of the strip in each of the plurality of unit cells. Item 4. The photoelectric conversion element according to item 3.
  5.  前記背面電極が複数の金属層の積層膜により形成されており、
     前記複数の単位セルが形成されている領域に相当する前記他方の面の側の領域のうちの少なくとも一部に、前記背面電極をなす積層膜のうちの少なくともいずれかの電極層が形成されない電極削減領域が設けられており、
     前記導電体に備わる前記線状部が、前記基板の前記一方の面の側における該電極削減領域に相当する領域の少なくとも一部に延びている
     請求項1に記載の光電変換素子。
    The back electrode is formed of a laminated film of a plurality of metal layers,
    An electrode in which at least one of the electrode layers of the laminated film forming the back electrode is not formed on at least a part of the area on the other side corresponding to the area where the plurality of unit cells are formed A reduction area is provided,
    The photoelectric conversion element according to claim 1, wherein the linear portion provided in the conductor extends in at least a part of a region corresponding to the electrode reduction region on the side of the one surface of the substrate.
  6.  前記導電体が前記透明電極の面における前記第1貫通孔の開口を縁取りして被覆している
     請求項1乃至請求項5のいずれか1項に記載の光電変換素子。
    The photoelectric conversion element according to any one of claims 1 to 5, wherein the conductor covers the opening of the first through hole on the surface of the transparent electrode.
  7.  前記第1貫通孔の内壁面の少なくとも一部に、前記背面電極と前記透明電極とのそれぞれが延びており、
     前記導電体が、前記第1貫通孔の前記内壁面における前記背面電極と、前記透明電極との双方に接して電気的経路を確立または増強している
     請求項1乃至請求項5のいずれか1項に記載の光電変換素子。
    Each of the back electrode and the transparent electrode extends on at least a part of the inner wall surface of the first through hole,
    The electric conductor establishes or enhances an electrical path in contact with both the back electrode on the inner wall surface of the first through hole and the transparent electrode. The photoelectric conversion element as described in a term.
  8.  前記第2貫通孔の内壁面の少なくとも一部に、前記背面電極と前記裏面電極とのそれぞれが延びており、
     前記導電体が、前記第2貫通孔の前記内壁面における前記背面電極と、前記裏面電極との双方に接して電気的経路を確立または増強している
     請求項1乃至請求項5のいずれか1項に記載の光電変換素子。
    Each of the back electrode and the back electrode extends on at least a part of the inner wall surface of the second through hole,
    The electric conductor establishes or enhances an electrical path in contact with both the back surface electrode and the back surface electrode on the inner wall surface of the second through hole. The photoelectric conversion element as described in a term.
  9.  各単位セルに前記第1貫通孔が複数備わっており、前記導電体の一の線状部が一の単位セルの範囲の前記第1貫通孔の少なくとも2つを結ぶように形成されている
     請求項1乃至請求項5のいずれか1項に記載の光電変換素子。
    A plurality of first through holes are provided in each unit cell, and one linear portion of the conductor is formed to connect at least two of the first through holes in the range of one unit cell. The photoelectric conversion element according to any one of claims 1 to 5.
  10.  前記導電体の前記線状部が、前記第1貫通孔から、前記一方の面において複数の向きに向かって延びている複数の線状部を有している
     請求項1乃至請求項5のいずれか1項に記載の光電変換素子。
    The linear portion of the conductor includes a plurality of linear portions extending from the first through hole toward a plurality of directions on the one surface. The photoelectric conversion element as described in 1 or 2.
PCT/JP2013/053304 2012-02-17 2013-02-13 Photoelectric conversion element WO2013122067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-033104 2012-02-17
JP2012033104 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013122067A1 true WO2013122067A1 (en) 2013-08-22

Family

ID=48984177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053304 WO2013122067A1 (en) 2012-02-17 2013-02-13 Photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2013122067A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075236A1 (en) * 2014-11-13 2016-05-19 Nexcis Method for production of a photovoltaic cell
CN114668490A (en) * 2015-10-21 2022-06-28 圣犹达医疗用品心脏病学部门有限公司 High-density electrode mapping catheter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342924A (en) * 1992-12-28 1994-12-13 Fuji Electric Co Ltd Thin-film solar cell and manufacture thereof
JP2009010262A (en) * 2007-06-29 2009-01-15 Fuji Electric Holdings Co Ltd Thin film solar cell module and its manufacturing method
JP2011198784A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Thin film solar cell and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342924A (en) * 1992-12-28 1994-12-13 Fuji Electric Co Ltd Thin-film solar cell and manufacture thereof
JP2009010262A (en) * 2007-06-29 2009-01-15 Fuji Electric Holdings Co Ltd Thin film solar cell module and its manufacturing method
JP2011198784A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Thin film solar cell and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075236A1 (en) * 2014-11-13 2016-05-19 Nexcis Method for production of a photovoltaic cell
FR3028668A1 (en) * 2014-11-13 2016-05-20 Nexcis PROCESS FOR PRODUCING A PHOTOVOLTAIC CELL
CN114668490A (en) * 2015-10-21 2022-06-28 圣犹达医疗用品心脏病学部门有限公司 High-density electrode mapping catheter

Similar Documents

Publication Publication Date Title
US8975510B2 (en) Foil-based interconnect for rear-contact solar cells
US9171979B2 (en) Battery and solar method for manufacturing the same
JP5901656B2 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF {SOLARCELLANDMANUFACTURERINGMETHODFOFTHEME
JP2012522393A (en) Photovoltaic power generation apparatus and manufacturing method thereof
EP2393122B2 (en) Photoelectric conversion cell, photoelectric conversion module, and method for manufacturing photoelectric conversion cell
KR100999797B1 (en) Solar cell and method of fabricating the same
US9818897B2 (en) Device for generating solar power and method for manufacturing same
KR101081075B1 (en) Solar cell and method of fabricating the same
WO2016158299A1 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
KR101283072B1 (en) Solar cell apparatus and method of fabricating the same
US20100147356A1 (en) Thin film solar cell string
KR101114099B1 (en) Solar cell apparatus and method of fabricating the same
WO2013122067A1 (en) Photoelectric conversion element
KR101550927B1 (en) Solar cell and method of fabircating the same
JP5624153B2 (en) Solar cell and manufacturing method thereof
US20220102659A1 (en) Photovoltaic module
CN111247643B (en) Photoelectric conversion module and method for manufacturing photoelectric conversion module
WO2010109567A1 (en) Photoelectric conversion device, solar cell module and method for manufacturing photoelectric conversion device
WO2010150749A1 (en) Solar cell, solar cell with wiring sheet attached, and solar cell module
KR101055019B1 (en) Photovoltaic device and its manufacturing method
US20120211060A1 (en) Thin-film solar cell module and method for manufacturing the same
US11588061B2 (en) Photoelectric conversion module and method for manufacturing photoelectric conversion module
US9954122B2 (en) Solar cell apparatus and method of fabricating the same
KR101306525B1 (en) Solar cell module and method of fabricating the same
US9373729B2 (en) Solar cell and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749838

Country of ref document: EP

Kind code of ref document: A1