WO2013121461A1 - Module used for stacking thin panels - Google Patents

Module used for stacking thin panels Download PDF

Info

Publication number
WO2013121461A1
WO2013121461A1 PCT/JP2012/001021 JP2012001021W WO2013121461A1 WO 2013121461 A1 WO2013121461 A1 WO 2013121461A1 JP 2012001021 W JP2012001021 W JP 2012001021W WO 2013121461 A1 WO2013121461 A1 WO 2013121461A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
thin
panel
stacking
thin plate
Prior art date
Application number
PCT/JP2012/001021
Other languages
French (fr)
Japanese (ja)
Inventor
正章 末岡
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Priority to PCT/JP2012/001021 priority Critical patent/WO2013121461A1/en
Priority to CN201280068877.3A priority patent/CN104144862B/en
Publication of WO2013121461A1 publication Critical patent/WO2013121461A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/48Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D57/00Internal frames or supports for flexible articles, e.g. stiffeners; Separators for articles packaged in stacks or groups, e.g. for preventing adhesion of sticky articles
    • B65D57/002Separators for articles packaged in stacks or groups, e.g. stacked or nested
    • B65D57/003Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles
    • B65D57/004Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles the articles being substantially flat panels, e.g. wooden planks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details

Definitions

  • the present invention relates to a module used for stacking thin panels, and more specifically, a module used for stacking and supporting thin panels such as a plurality of solar panels in the vertical direction for storage and transportation. About.
  • a solar panel has a thin plate shape in which cells are connected in series and protected by resin or tempered glass. More specifically, a cell made of silicon is interposed between a glass layer and a plastic layer, or between a glass layer and a glass layer. It is an embedded laminated structure, and has a thickness of several millimeters, an area of several square meters, and a weight ranging from 10 to 30 kg. Therefore, it is a precise and fragile structure.
  • Such solar panels are transported by vehicles such as trucks from manufacturing plants to rooftops and roofs of buildings and houses, which are relatively remote locations. Receive.
  • a module disposed at the four corners of the thin panel without using a costly frame has the same dimensions as the thickness of the thin panel. It is known that a groove portion is formed and a corner portion of the thin plate panel is sandwiched in the groove portion, thereby suppressing vibration and vertical flapping during conveyance of the thin plate panel, thereby preventing damage.
  • the thin panel particularly the solar panel
  • the thin panel is made of a brittle material such as glass. Therefore, the corners of the four corners are particularly easily damaged, and such a portion has the same dimensions as the thickness of the thin panel. Inserting the groove into the groove portion was a cumbersome operation.
  • the sandwich type module as described in Patent Document 2 arranges the modules at its four corners before stacking the solar panels. It is necessary to let Specifically, with the corners of the solar panel sandwiched between the modules, the modules placed on the solar panels to be stacked are stacked while aligning the modules at the four corners placed on the lower stage. There is a need.
  • the object of the present invention is applied to a thin plate panel that does not have a protective member such as a frame on the outer periphery, in particular, a solar panel. It is a module arranged at the four corners or other edges of the panel, and by simply stacking the modules and thin plate panels alternately, it is possible to easily construct a laminate for transportation, It is an object of the present invention to provide a module used for stacking thin panels that can effectively prevent fluttering and breakage of the thin panels due to an impact, and can greatly reduce the number of steps required for carrying work.
  • the module is configured by the stacked modules and the load transmitting unit that supports the weight of the thin plate panel, and the support unit for supporting the thin plate panel. Therefore, characteristics suitable for each purpose can be given to both.
  • the two modules do not need to be physically separable, and are deliberately separated from their functions.
  • the entire module is integrated by plastic resin injection molding or the like. It does not prevent it from forming.
  • the module may be disposed at each of the four corners of the rectangular thin plate panel, the support surface may have an L shape, and the positioning portion may have a standing wall surface extending upward from an outer edge of the support surface.
  • the size of the downward projecting portion may be a size that allows the lower end of the downward projecting portion of the module placed on the upper side to hit the upper surface of the thin panel when the thin plate panel is placed on the support surface.
  • the thin plate panel is placed on the support surface of the module and the upper module is placed thereon in order to form a laminate of the thin plate panels. Then, a thin plate panel is inserted between the lower end of the downward projecting portion of the module and the support surface, and an effect substantially equivalent to that of the second type prior art is obtained. That is, by sandwiching the supported portion (for example, the corners of the four corners) of the thin panel, vibrations during the transportation of the thin panel and vertical fluttering can be suppressed, thereby preventing damage.
  • the supported portion for example, the corners of the four corners
  • the vertical rigidity of the load transmission part depends on the vertical direction of the downward projection part. It is better to have a configuration that is stiffer than rigid.
  • the weight of the laminated body is supported, and so to speak, the load transmitting portion serving as the structural support of the laminated body is given rigidity capable of sufficiently supporting the weight.
  • the lower protrusion of the upper module which has the purpose of holding the upper surface of the thin plate panel, is kept low in rigidity (softened), and the weight of the entire upper laminate is reduced through the lower protrusion. Prevents the top panel from being applied
  • both the load transmitting portion and the downward projecting portion in a hollow structure. Therefore, it becomes possible to form a plurality of ribs in the hollow space formed in the hollow in the load transmitting portion and the downward projecting portion.
  • the thickness of the rib formed in the hollow space in the load transmitting portion is made thicker and / or the load transmitted than the thickness of the rib formed in the hollow space in the downward projecting portion.
  • the number of ribs formed in the hollow space in the portion is increased compared to the number of ribs formed in the hollow space in the downward projecting portion, and / or in the hollow space in the load transmitting portion. It is possible to adopt a configuration in which the interval between the formed ribs is made denser than the interval between the ribs formed in the hollow space in the downward projecting portion.
  • the vertical rigidity of the load transmitting portion can be easily reduced by appropriately designing the thickness, number of installations, or interval of the ribs. Compared to the vertical rigidity of the protrusion, the rigidity can be made suitable.
  • the wall thickness of the outer surface of the load transmission part formed in the hollow is It is preferable that the thickness is larger than the thickness of the rib formed in the hollow space in the load transmitting portion.
  • the bottom part of the downward projecting part is preferably open.
  • the lower end of the rib formed in the hollow space in the downward projecting portion is extended so as to coincide with the end surface of the bottom portion of the downward projecting portion.
  • the lower end of the lower protruding portion contacts not only the peripheral edge of the lower protruding portion but also the rib in the lower protruding portion, so that the force by which the lower protruding portion presses the thin panel from above can be distributed more uniformly.
  • this invention is not restricted to the structure mentioned above,
  • the load transmission part and the downward protrusion part can also be set as the structure currently formed.
  • a module used for stacking thin plate panels is: A support part that supports the thin panel from below, a load transmission part that is connected to the support part and transmits the weight of the thin panel in the vertical direction, and a positioning that horizontally positions the thin panel stacked vertically
  • a module used for stacking thin plate panels A main body that supports the weight of the module and the thin panel when a plurality of modules are stacked; an upper part that is formed outside the support and receives the upper module when the modules are stacked; and And a bottom part for transmitting a load to the upper part of the lower module when stacked,
  • the lower surface of the thin panel is in contact with a support surface formed on the upper surface of the support portion, and the upper surface is in contact with the lower end surface of the stacked upper module.
  • FIG. 1 is a schematic view showing a use state of a module according to the first embodiment of the present invention
  • FIG. 2 is a perspective view showing the module and the solar panel P in the use state of FIG. 3 (a) to 3 (f) show the module according to the first embodiment of the present invention, (a) top view, (b) bottom view, (c) outer side view, (d).
  • FIG. 6 is an inner side view, (e) a cross-sectional view along line ee, and (f) a cross-sectional view along line ff.
  • the solar panel P has a rectangular shape and is directly supported by the module 10 at each of the four corners without fitting a frame formed of plastic, light metal, or the like around the periphery.
  • the module 10 is interposed between the solar panels P in order to stack and support a plurality of solar panels P.
  • the load transmitting part 20 mainly serving to support the total weight and the support part 40 for supporting the corners of the four corners of the solar panel P are schematically configured.
  • the load transmitting unit 20 is formed in an L shape that is complementary to the corners of the four corners that are the supported portions of the solar panel P, and the positioning unit 22 is opposite to the solar panel P.
  • the support part 40 has a support surface 42 extending horizontally from the positioning part 22 of the load transmitting part 20 and a lower side of the support surface 42 below the bottom part 28 to support one solar panel P. And a downward projecting portion 44 projecting from the bottom.
  • the module 10 is disposed at each of the four corners of the solar panel P, the support surface 42 has an L shape, and the positioning unit 22 is located upward from the outer edge of the support surface 42. It has a standing wall 23 extending to 26.
  • the upper portion 26 constitutes an L-shaped load receiving surface
  • the bottom portion 28 constitutes an L-shaped load releasing surface
  • the downward projecting portion 44 extends downward from the bottom portion 28.
  • the outer side surface 27 extended to the contact part 45 (it demonstrates later) which is a lower end of a protrusion part.
  • the contact portion 45 will be described.
  • the lower surface of the downward projecting portion 44 is formed, and the lower surface is formed in parallel with the support surface 42.
  • the size of the contact portion 45 that is, the width of the lower surface of the downward projecting portion 44 may be determined from the viewpoint of effectively preventing such fluttering and rattling during the transportation of the solar panel P.
  • FIG. As shown in FIG. 3, it is not necessarily the same area as the support surface 42.
  • the load transmission unit 20 and the support unit 40 are described as if they were separate independent members. However, in general, the load transmission unit 20 and the support unit 40 are formed from a single member integrally molded by plastic injection molding or the like. It is configured (see FIG. 3 (e)).
  • the resin material of the module is a thermoplastic resin, and is an olefin resin such as polyethylene or polypropylene, or an amorphous resin, and more specifically, ethylene, propylene, butene, isoprene pentene, methyl pentene, or the like.
  • polyolefin for example, polypropylene, high density polyethylene
  • polypropylene high density polyethylene
  • the structure of the module 10 is relatively complicated. Therefore, it is particularly suitable for integral molding by injection molding.
  • both the load transmitting portion 20 and the downward projecting portion 44 of the support portion 40 have a hollow structure. That is, as best shown in FIG. 3B, in the load transmitting portion 20, four L-shaped sides are provided between the outer surface 24 and the positioning portion 22, and a total of 8 L-shaped portions. A plurality of ribs 30 are extended, and a hollow space 32 is opened between the rib 30 and the adjacent rib 30. Similarly, a total of five ribs 46 extend from the downward projecting portion 44 of the support portion 40, and a space between the rib 46 and the adjacent rib 46 is opened as a hollow space 48. The hollow space 48 is wider than the hollow space 32 due to the difference in the number of installed ribs 30 and 46.
  • the thickness of the rib 30 is 2.5 mm
  • the thickness of the rib 46 is 2.0 mm
  • the rib 30 provided in the load transmitting portion 20 is more in the rib 46 provided in the downward projecting portion 44. It is thicker than As shown in the cross-sectional view of FIG. 3 (f), these ribs 30, 46 are vertically projecting from the upper part 26 to the end face of the bottom part 28 in the rib 30 of the load transmitting part 20.
  • the ribs 46 are continuously provided vertically from the support surface 42 to the end surface of the lower end thereof, and each of the load transmitting portion 20 and the downward projecting portion 44 serves as a support member for a load in the vertical direction. It has become. As a result, the vertical rigidity of the load transmitting portion 20 is stiffer than the vertical rigidity of the downward projecting portion 44.
  • the solar panel P When the solar panel P is transported by a truck or the like using the module according to the present embodiment configured as described above, first, four modules 10, one at each of the four corners of the pallet 54, It installs so that it may correspond to the corner
  • the bottom portions 28 of the four modules 10 newly prepared are placed so as to overlap the upper portions 26 of the four modules 10 installed on the pallet 54.
  • the second solar panel P is moved above the pallet 54, the solar panel P is lowered on the support surface 42 of the support part 40 of the new module 10, and the solar panel P Is placed so that the corners of the module are in contact with the positioning part 22 of the module 10.
  • the outer surface 27 of the downward projecting portion 44 of the new module 10 abuts against the standing wall 23 of the lower module 10
  • the new module 10 10 does not shift outward in the radial direction, and the four corners of the solar panel P are reliably positioned by the positioning portion 22. Thereby, the loading of the second solar panel P is completed.
  • the modules 10 and the solar panels P are alternately stacked, and when the required number is reached, the top plate 56 is placed on the upper surface of the laminate.
  • a protective sleeve (not shown) is placed on the outer periphery to complete the transport unit 60. Then, the transport unit 60 is loaded on a truck or the like and transported to the installation site of the solar panel P.
  • the transport unit 60 When the truck arrives at the installation site, the transport unit 60 is unpacked. The unpacking is performed in the reverse order to the procedure when the transport unit 60 is formed. That is, first, a protective sleeve (not shown) is removed from the outer surface of the transport unit 60, and then the rope 58 is released. Then, the top plate 56 placed on the upper surface of the laminate is removed. Thereby, the uppermost solar panel P is exposed.
  • the uppermost solar panel P has its four corners positioned from four directions in the horizontal direction by the positioning portions 22 of the module 10, but is not restricted at all in the upward direction. Therefore, it can be taken out from the transport unit 60 as long as it is lifted vertically upward.
  • the top four modules 10 that have supported the solar panel P at the four corners until then are removed. Since the module 10 is merely placed on the module 10 one level lower, it can be easily removed by pulling upward. As a result, the next-stage solar panel P is exposed. Thus, taking out the solar panel P starts from the topmost one stacked last, contrary to the time of stacking, the taking out of the first solar panel P is performed last, The process ends when the first solar panel P is taken out.
  • the present embodiment although it is a simple configuration, it is applied to a thin plate panel, particularly a solar panel, which does not have a protective member such as a frame on its outer periphery, and in order to stack and support it.
  • a protective member such as a frame on its outer periphery
  • the feature of the module 100 according to the present embodiment is the positioning part and the contact part.
  • the positioning unit stacks the upper module 100 on the lower module 100 in a form in which the load release surface of the upper module 100 is placed on the load receiving surface of the lower module 100.
  • An upper locking portion 104 for restricting relative movement of the upper module 100 to the lower module 100 provided on the inner edge 102 of the load receiving surface, and the same side as the side on which the upper locking portion 104 of the load release surface is provided.
  • the inner edge 103 has an upper locking portion 104 and a lower locking portion 106 that is provided in a form offset in the horizontal direction and restricts relative movement of the upper module 100 relative to the lower module 100.
  • one upper locking portion 104 is provided on each side of the intersection portion of the L-shaped load receiving surface, and one lower locking portion 106 is provided on each side of the intersection portion of the L-shaped load release surface.
  • the upper locking portion 104 and the lower locking portion 106 are provided so as to substantially cover the inner edges 102 and 103 of the standing wall 22 in cooperation with each other.
  • the upper locking portion 104 is provided on the proximal side of the intersection portion of the L-shaped load receiving surface, and the lower locking portion 106 is provided on the distal side of the intersection portion of the L-shaped load release surface.
  • Each of the upper locking portions 104 has an inclined portion 110 that is inclined inward from the inner edge 102 of the load receiving surface upward from the load receiving surface, and is fixed to the inner surface of the standing wall 22.
  • the height H1 of the upper locking portion 104 from the load receiving surface is such that when the modules 100 are stacked, the upper locking portion 104 of the lower module 10 is positioned between the modules 100 adjacent in the vertical direction. Since the front end of the upper part extends partway along the inner surface of the standing wall 22 of the upper module 100, it may be set appropriately so as not to hit the lower surface of the support surface 42 of the upper module 10.
  • each of the lower engaging portions 106 has an inclined portion 113 that is inclined inward from the inner edge 103 of the load releasing surface downward from the load releasing surface, and is fixed to the inner surface of the standing wall 22. .
  • the height H2 of the lower locking portion 106 from the load release surface is such that when the modules 100 are stacked, the lower locking portion 106 of the upper module 100 is located between the modules 100 adjacent in the vertical direction. Since the tip of this part extends to the middle of the inner surface of the standing wall 22 of the lower module 100, it may be set appropriately so as not to hit the upper surface of the support surface 42 of the lower module 10.
  • the upper locking portion 104 of the lower module 100 restricts the upper module 100 from moving inward relative to the lower module 100.
  • the lower locking portion 106 of the module 100 restricts the upper module 100 from moving outward relative to the lower module 100, so that the upper module 100 moves inwardly with respect to the lower module 100.
  • the relative movement to the outside is suppressed, and the modules 100 can be stacked stably.
  • the module is formed in an L-shape, and on each side across the intersection, an upper locking portion 104 in the upper plate-like body 12 and a lower locking portion 106 in the lower plate-like body 14.
  • the two orthogonal directions on the horizontal plane can be regulated correspondingly, and more specifically, inward in the two orthogonal directions with respect to the module 100 below the upper module 100. Restriction is made, and restriction in the two orthogonal directions to the lower module 100 on the one upper module 100 is made.
  • the upper locking portion 104 and the lower locking portion 106 are provided on the inner edge 102 of the load receiving surface and the inner edge 103 of the load releasing surface, respectively.
  • the upper and lower locking portions 106 are not provided on the upper and load releasing surfaces, and the load receiving surface and the load releasing surface are made as small as possible by ensuring a sufficient load transmission area, and the outside of the module 100 itself. By avoiding overhanging, the compactness of the module 100 can be maintained.
  • the contact portion 45 unlike the case in which the downward projecting portion 44 is formed so as to cover the entire region of the support portion 40 in the first embodiment, the lower locking portion 106 is moved downward in the second embodiment.
  • the lower projecting portion 44 is provided to extend to the lower end, and the contact portion 45 is provided at the lower end thereof.
  • the contact portion 45 is provided in parallel with the support surface 42, and the downward extension length H2 of the contact portion 45 is such that when the module 100 is stacked, the contact portion 45 that can extend from the upper module supports the lower module. It suffices if the upper surface of the solar panel P placed on the surface 42 can be hit, and the installation position and the size of the hitting portion 45 may vary during transportation of the stacked solar panels P. What is necessary is just to determine suitably from a viewpoint which prevents rattling.
  • the contact portion 45 may taper downward.
  • the upper locking portion 104 is provided on the distal side of the intersection of the L-shaped load receiving surface, and the lower locking portion 106, that is, the lower protrusion 44 is located proximal to the intersection of the L-shaped load release surface. It may be provided on the side.
  • the lower locking portion 106 which is a positioning portion, is used to locally In particular, by providing the contact portion 45, it is possible to reduce the amount of the required resin material.
  • the solar panel in which the downward protrusion part 44 is conveying As long as fluttering of P can be prevented, the solar panel P may have a clearance of about several mm.
  • the same module 100 is used and stacked in a columnar shape at each of the four corners of the plurality of solar panels P.
  • the present invention is not limited thereto.
  • the strength is required accordingly. Therefore, a module 100 having the same outer shape but a different thickness is prepared.
  • a thick module 100 may be employed.
  • the case where each of the four corners of the solar panel P which has a rectangular shape was directly supported by the module 100 used for stacking of thin panel was demonstrated. Accordingly, the horizontal view of the supported portion of the thin panel is a right-angled corner, and the positioning portion 22 that is complementary to this is L-shaped, so that the overall outer shape of the module 10 is also approximately. L-shaped.
  • the thin plate panel is circular, the contour of the supported portion in the horizontal view has a convex arc shape, and the positioning portion 22 which is complementary to this has a concave arc shape. Needless to say.
  • FIG. 5A is a cross-sectional view taken along line ee
  • FIG. 5F is a cross-sectional view taken along line ff showing the module according to the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view taken along line ee
  • FIG. 5F is a cross-sectional view taken along line ff showing the module according to the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view taken along line ee
  • FIG. 5F is a cross-sectional view taken along line ff showing the module according to the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view taken along line ee
  • FIG. 5F is a cross-sectional view taken along line ff showing the module according to the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view taken along line ee
  • FIG. 5F is a cross-sectional view taken along line ff showing the module according

Abstract

The present invention relates to a module used for stacking thin panels (P), the module being provided with a support section (40) that supports a thin panel (P) from below, a load-transmitting section (20) for transmitting the weight of the thin panel (P) in the vertical direction, and a positioning section (22) that positions the thin panel (P) in the horizontal direction. In order to prevent rattling and damaging of the thin panels (P) due to vibrations during transport: the support section (40) has a supporting surface (42) on which the thin panel (P) is placed; the load-transmitting section (20) has an upper section (26) for receiving the module above and a base (28) for transmitting the load to the upper section (26) of the module below; and a lower protruding section (44) is provided, the lower protruding section being capable of facing and contacting the upper surface of the thin panel (P) that is supported by the module below. The lower end of the lower protruding section (44) is positioned below the base (28).

Description

薄板パネルの段積みに用いるモジュールModule used for stacking thin panels
 本発明は、薄板パネルの段積みに用いるモジュールに関し、より詳しくは、複数の太陽光パネル等の薄板パネルを上下方向に段積みして支持し、保管や運搬等を行うために使用されるモジュールに関する。 The present invention relates to a module used for stacking thin panels, and more specifically, a module used for stacking and supporting thin panels such as a plurality of solar panels in the vertical direction for storage and transportation. About.
 太陽光パネルは、セルを直列接続し、樹脂や強化ガラスで保護した薄板状をなし、より具体的には、ガラス層とプラスチック層、あるいはガラス層とガラス層との間にシリコンからなるセルが埋め込まれた積層構造であり、厚みが数ミリ、面積が数平方メートル、重量が10ないし30Kgに及ぶことから、精密で壊れ易い構造体である。 A solar panel has a thin plate shape in which cells are connected in series and protected by resin or tempered glass. More specifically, a cell made of silicon is interposed between a glass layer and a plastic layer, or between a glass layer and a glass layer. It is an embedded laminated structure, and has a thickness of several millimeters, an area of several square meters, and a weight ranging from 10 to 30 kg. Therefore, it is a precise and fragile structure.
 このような太陽光パネルは、製造工場から、比較的遠隔地の設置場所である、ビルや住宅の屋上や屋根へ、トラック等の車両によって搬送されるため、搬送中には様々な振動や衝撃を受ける。 Such solar panels are transported by vehicles such as trucks from manufacturing plants to rooftops and roofs of buildings and houses, which are relatively remote locations. Receive.
 従来、太陽光パネルのような、寸法が比較的大きくて、且つ壊れ易い薄板パネルを段積みして搬送するに際しては、主に2種類の手段が知られている。 Conventionally, two types of means have been known for stacking and transporting thin panels that are relatively large and fragile, such as solar panels.
 第1のタイプにおいては、特許文献1に開示されているように、薄板パネルにおける最も壊れ易い部分である四辺に、プラスチックや軽金属などから形成されたフレームを嵌着させて薄板パネルの周囲を破損に対して保護した後、これを薄板パネルの四隅に位置するモジュール(コーナー材とも称される)の上に載置するもので、四辺が保護された薄板パネルとモジュールとを交互に載置していくことで、薄板パネルの積層体を構成する。 In the first type, as disclosed in Patent Document 1, the periphery of the thin panel is damaged by fitting a frame formed of plastic or light metal on the four sides which are the most fragile parts of the thin panel. After being protected, the module is placed on a module (also referred to as a corner material) located at the four corners of the thin panel, and the thin panel with the four sides protected and the module are alternately placed. By doing so, a laminated body of thin plate panels is formed.
 しかし、この手段では、搬送する薄板パネルの四辺の数に対応する数の多数のフレームが必要になり、薄板パネルの搬送効率を低下させていた。 However, with this means, a large number of frames corresponding to the number of four sides of the thin panel to be transported are required, which reduces the transport efficiency of the thin panel.
 そこで、第2のタイプの搬送手段として、特許文献2に開示されているように、コストのかかるフレームを使用せず、薄板パネルの四隅に配されるモジュールに、薄板パネルの厚みと同じ寸法をもった溝部を形成し、溝部の中に薄板パネルの角部を挟み込むことで、薄板パネルの搬送中の振動や上下のばたつきを抑制し、もって破損を防ぐようにしたものが知られている。 Therefore, as disclosed in Patent Document 2, as a second type conveying means, a module disposed at the four corners of the thin panel without using a costly frame has the same dimensions as the thickness of the thin panel. It is known that a groove portion is formed and a corner portion of the thin plate panel is sandwiched in the groove portion, thereby suppressing vibration and vertical flapping during conveyance of the thin plate panel, thereby preventing damage.
 しかしながら、薄板パネル、とりわけ、太陽光パネルは、前述したように、ガラス等の脆性材料から構成されているので、特に四隅の角部が破損しやすく、かかる部分を、薄板パネルの厚みと同じ寸法をもった溝部に挿入するのは、煩雑な作業であった。
さらに、太陽光パネルの梱包ラインにおいて、パレットの上に太陽光パネルを段積みする際に、前記特許文献2のような挟み込みタイプのモジュールでは太陽光パネル段積みする前にその四隅にモジュールを配置させる必要がある。具体的には、太陽光パネルの角部をモジュールで挟み込んだ状態で、下段に配置されている四隅のモジュールに対して段積みする太陽光パネルに配置させたモジュールを位置合わせさせながら積み上げていく必要がある。このため、下段に配置されている四隅のモジュールに対してまずモジュールのみを配置させた後に、太陽光パネルを所定の位置に配置された四隅のモジュールに沿って載置させるという工程で梱包作業を行うことができないものとなり、太陽光パネルの梱包ラインが制約されることとなる。
特開2006-32978号 欧州特許EP2320157A2
However, as described above, the thin panel, particularly the solar panel, is made of a brittle material such as glass. Therefore, the corners of the four corners are particularly easily damaged, and such a portion has the same dimensions as the thickness of the thin panel. Inserting the groove into the groove portion was a cumbersome operation.
Furthermore, when stacking solar panels on a pallet in a solar panel packaging line, the sandwich type module as described in Patent Document 2 arranges the modules at its four corners before stacking the solar panels. It is necessary to let Specifically, with the corners of the solar panel sandwiched between the modules, the modules placed on the solar panels to be stacked are stacked while aligning the modules at the four corners placed on the lower stage. There is a need. For this reason, after placing only the modules with respect to the four corner modules arranged in the lower stage, the solar panel is placed along the four corner modules arranged in a predetermined position. This will not be possible and will limit the packaging line for solar panels.
JP 2006-32978 A European Patent EP2320157A2
 そこで、上記技術的問題点に鑑み、本発明の目的は、外周にフレーム等の保護部材を有しない薄板パネル、特に太陽光パネルに適用され、これを段積みして支持するために、該薄板パネルの四隅又はその他の縁部に配置されるモジュールであって、モジュールと薄板パネルとを交互にただ積み上げていくだけで、簡単に、搬送のための積層体を構築できると共に、搬送中の振動や衝撃に起因して薄板パネルがばたついたり破損したりするのを効果的に防止でき、搬送作業に要する手数を大幅に削減できる、薄板パネルの段積みに用いるモジュールを提供することにある。 Therefore, in view of the above technical problems, the object of the present invention is applied to a thin plate panel that does not have a protective member such as a frame on the outer periphery, in particular, a solar panel. It is a module arranged at the four corners or other edges of the panel, and by simply stacking the modules and thin plate panels alternately, it is possible to easily construct a laminate for transportation, It is an object of the present invention to provide a module used for stacking thin panels that can effectively prevent fluttering and breakage of the thin panels due to an impact, and can greatly reduce the number of steps required for carrying work.
 上記課題を解決するために、本発明に係る薄板パネルの段積みに用いるモジュールは、
 薄板パネルを下方より支持する支持部と、該支持部に連結され、薄板パネルの重さを上下方向に伝達する荷重伝達部と、上下に段積みされた薄板パネルの水平方向の位置決めをする位置決め部とを有する、薄板パネルの段積みに用いるモジュールであって、
 支持部は、薄板パネルを載置する支持面を有し、
 荷重伝達部は、支持面の外方に形成され、モジュールが積み上げられるときに上位モジュールを受ける上部と、モジュールが積み上げられるときに下位モジュールの当該上部に荷重を伝達する底部とを有し、
 下位モジュールにより支持された薄板パネルの上面に対向して当り可能な下方突出部が設けられ、前記下方突出部の下端は、該底部より下方に位置する、
 構成としている。
In order to solve the above problem, a module used for stacking thin plate panels according to the present invention is:
A support part that supports the thin panel from below, a load transmission part that is connected to the support part and transmits the weight of the thin panel in the vertical direction, and a positioning that horizontally positions the thin panel stacked vertically A module used for stacking thin plate panels,
The support portion has a support surface on which the thin plate panel is placed,
The load transmitting portion is formed outside the support surface and has an upper portion that receives the upper module when the module is stacked, and a bottom portion that transmits a load to the upper portion of the lower module when the module is stacked,
A lower projecting portion capable of being opposed to the upper surface of the thin panel supported by the lower module is provided, and a lower end of the lower projecting portion is located below the bottom portion;
It is configured.
 以上の構成を有する薄板パネルの段積みに用いるモジュールによれば、積み上げられたモジュール及び薄板パネルの重量を支持する荷重伝達部と、薄板パネルを支持するための支持部とから、モジュールが構成されるので、両者に対して、それぞれの目的に適した特性を与えることができる。もっとも、後述するように、両者は物理的に分離可能である必要は無く、その果たす機能から観念的に分離されるものであることから、例えば、プラスチック樹脂の射出成形などによってモジュール全体を一体的に形成することを妨げるものではない。 According to the module used for stacking the thin plate panels having the above-described configuration, the module is configured by the stacked modules and the load transmitting unit that supports the weight of the thin plate panel, and the support unit for supporting the thin plate panel. Therefore, characteristics suitable for each purpose can be given to both. However, as will be described later, the two modules do not need to be physically separable, and are deliberately separated from their functions. For example, the entire module is integrated by plastic resin injection molding or the like. It does not prevent it from forming.
 モジュールは、矩形薄板パネルの四隅それぞれに配置され、前記支持面は、L字形を有し、前記位置決め部は、前記支持面の外縁から上方に延在する立壁面を有するのでもよい。これにより、矩形薄板パネルの四隅それぞれにおいて、立壁面に当接するように矩形薄板パネルを支持面に載置することにより、矩形薄板パネルの外方への移動を抑制して、位置決めすることが可能である。
そして、下方突出部のサイズは、支持面上に薄板パネルを載置したとき、上位に載置されるモジュールの下方突出部の下端が、薄板パネルの上面に当たり可能な寸法にすると良い。
この当たり可能とは、段積みした薄板パネルの搬送時に、薄板パネルが上下にばたつくのを抑制することにより割れを防止するために、振動による薄板パネルの上下の振幅を規制できればよく、薄板パネルが振動しないときは下方突出部と薄板パネルの上面との間に多少の隙間を許容する意味である。
The module may be disposed at each of the four corners of the rectangular thin plate panel, the support surface may have an L shape, and the positioning portion may have a standing wall surface extending upward from an outer edge of the support surface. As a result, it is possible to position the rectangular thin panel by suppressing the outward movement of the rectangular thin panel by placing the rectangular thin panel on the support surface so as to contact the standing wall at each of the four corners of the rectangular thin panel. It is.
Then, the size of the downward projecting portion may be a size that allows the lower end of the downward projecting portion of the module placed on the upper side to hit the upper surface of the thin panel when the thin plate panel is placed on the support surface.
In order to prevent cracking by preventing the thin panel from flapping up and down during transportation of stacked thin panels, it is only necessary to be able to regulate the vertical amplitude of the thin panels due to vibration. When there is no vibration, it means that a slight gap is allowed between the downward projecting portion and the upper surface of the thin panel.
 以上の構成を有する薄板パネルの段積みに用いるモジュールによれば、薄板パネルの積層体を形成すべく、モジュールの支持面上に薄板パネルを載置し、その上に、上位のモジュールを載置すると、該モジュールの下方突出部の下端と、前記支持面との間に薄板パネルが挟み込まれ、上記第2のタイプの従来技術と実質的に同等の効果が得られる。すなわち、薄板パネルの被支持部分(例えば、四隅の角部)を挟み込むことで、薄板パネルの搬送中の振動や上下のばたつきを抑制し、もって破損を防ぐことができる。 According to the module used for stacking the thin plate panels having the above configuration, the thin plate panel is placed on the support surface of the module and the upper module is placed thereon in order to form a laminate of the thin plate panels. Then, a thin plate panel is inserted between the lower end of the downward projecting portion of the module and the support surface, and an effect substantially equivalent to that of the second type prior art is obtained. That is, by sandwiching the supported portion (for example, the corners of the four corners) of the thin panel, vibrations during the transportation of the thin panel and vertical fluttering can be suppressed, thereby preventing damage.
 ここで、上述の如く(必ずしも物理的には分離されないものの)観念的に分離された荷重伝達部と下方突出部とにおいては、荷重伝達部の垂直方向の剛性が、下方突出部の垂直方向の剛性に比べて、剛くなっている、構成にするのが良い。 Here, in the load transmission part and the downward projection part that are separated conceptually as described above (although not necessarily physically separated), the vertical rigidity of the load transmission part depends on the vertical direction of the downward projection part. It is better to have a configuration that is stiffer than rigid.
 以上の構成を有する薄板パネルの段積みに用いるモジュールによれば、積層体の重量を支え、いわば積層体の構造的支柱となる荷重伝達部には、かかる重量を充分に支持し得る剛性を与える一方、薄板パネルの上面を押さえる目的をもった、上位モジュールの下方突出部については、その剛性を低く抑え(柔らかくして)、上位の積層体全体の重量が、該下方突出部を介して薄板パネルの上面に加わることを防止する。 According to the module used for stacking the thin plate panels having the above-described configuration, the weight of the laminated body is supported, and so to speak, the load transmitting portion serving as the structural support of the laminated body is given rigidity capable of sufficiently supporting the weight. On the other hand, the lower protrusion of the upper module, which has the purpose of holding the upper surface of the thin plate panel, is kept low in rigidity (softened), and the weight of the entire upper laminate is reduced through the lower protrusion. Prevents the top panel from being applied
 そのために、本発明に係る薄板パネルの段積みに用いるモジュールにおいては、荷重伝達部と下方突出部とを共に、中空構造に形成するのが良い。
 それにより、荷重伝達部及び下方突出部における前記中空に形成された中空空間内に、複数のリブを形成することが可能になる。
Therefore, in the module used for stacking the thin panel according to the present invention, it is preferable to form both the load transmitting portion and the downward projecting portion in a hollow structure.
Thereby, it becomes possible to form a plurality of ribs in the hollow space formed in the hollow in the load transmitting portion and the downward projecting portion.
 そうすれば、荷重伝達部における中空空間内に形成されたリブの肉厚を、下方突出部における中空空間内に形成されたリブの肉厚に比べて、厚くしたり、及び/又は、荷重伝達部における中空空間内に形成されたリブの設置数を、下方突出部における中空空間内に形成されたリブの設置数に比べて、多くしたり、及び/又は、荷重伝達部における中空空間内に形成されたリブの間隔を、下方突出部における中空空間内に形成されたリブの間隔に比べて、密にしたりする、構成を採用することができる。 Then, the thickness of the rib formed in the hollow space in the load transmitting portion is made thicker and / or the load transmitted than the thickness of the rib formed in the hollow space in the downward projecting portion. The number of ribs formed in the hollow space in the portion is increased compared to the number of ribs formed in the hollow space in the downward projecting portion, and / or in the hollow space in the load transmitting portion. It is possible to adopt a configuration in which the interval between the formed ribs is made denser than the interval between the ribs formed in the hollow space in the downward projecting portion.
 以上の構成を有する薄板パネルの段積みに用いるモジュールによれば、リブの肉厚、設置数、又は間隔などを適切に設計することで、容易に、荷重伝達部の垂直方向の剛性を、下方突出部の垂直方向の剛性に比べて、適した剛さにすることが可能になる。 According to the module used for stacking the thin panel having the above configuration, the vertical rigidity of the load transmitting portion can be easily reduced by appropriately designing the thickness, number of installations, or interval of the ribs. Compared to the vertical rigidity of the protrusion, the rigidity can be made suitable.
 また、荷重伝達部の垂直方向の剛性を、下方突出部の垂直方向の剛性に比べて、剛くするためには、中空に形成された荷重伝達部における外側面を構成する壁面の肉厚は、荷重伝達部における中空空間内に形成されたリブの肉厚に比べて、厚くなっている、構成とするのが良い。 In addition, in order to make the vertical rigidity of the load transmission part stiffer than the vertical rigidity of the downward projecting part, the wall thickness of the outer surface of the load transmission part formed in the hollow is It is preferable that the thickness is larger than the thickness of the rib formed in the hollow space in the load transmitting portion.
 さらに、荷重伝達部及び下方突出部を、中空に形成した場合には、下方突出部の底部は、開口している、構成とするのが良い。 Furthermore, when the load transmitting part and the downward projecting part are formed hollow, the bottom part of the downward projecting part is preferably open.
 下方突出部の底を塞いで底面を形成した場合には、かかる底面にゴミや塵などが付着して、底面(すなわち、下方突出部の下端)が、これに当接する下方の薄板パネルの表面に傷を付ける恐れが高くなるが、底面を開口させることで、ゴミや塵の付着の底部への付着を防ぐことができる。 When the bottom surface is formed by closing the bottom of the downward projecting portion, dust or dust adheres to the bottom surface, and the bottom surface (that is, the lower end of the downward projecting portion) is in contact with the surface of the lower thin panel. However, by opening the bottom surface, it is possible to prevent dust and dust from adhering to the bottom.
 この場合、下方突出部における中空空間内に形成されたリブの下端は、該下方突出部における底部の端面に一致するように延設させる構成とするのが良い。 In this case, it is preferable that the lower end of the rib formed in the hollow space in the downward projecting portion is extended so as to coincide with the end surface of the bottom portion of the downward projecting portion.
 それにより、下方突出部の下端は、下方突出部の周縁のみならず、下方突出部内のリブにも接触し、下方突出部が薄板パネルを上から押さえる力をより均一に分布させることができる。 Thereby, the lower end of the lower protruding portion contacts not only the peripheral edge of the lower protruding portion but also the rib in the lower protruding portion, so that the force by which the lower protruding portion presses the thin panel from above can be distributed more uniformly.
 なお、本発明は、上述した構成に限られるものではなく、例えば、荷重伝達部及び下方突出部は、中実に形成されている、構成とすることもできる。 In addition, this invention is not restricted to the structure mentioned above, For example, the load transmission part and the downward protrusion part can also be set as the structure currently formed.
 この場合には、荷重伝達部と下方突出部とを異なる材料から構成して、荷重伝達部を構成する材料の剛性に比べて、下方突出部を構成する材料の剛性を、低く設定するのが良い。 In this case, the load transmitting part and the downward projecting part are made of different materials, and the rigidity of the material constituting the downward projecting part is set lower than the rigidity of the material constituting the load transmitting part. good.
 さらに、荷重伝達部及び下方突出部のうち、一方は中空に形成され、他方は中実に形成されている、構成にすることも可能である。 Further, it is possible to adopt a configuration in which one of the load transmitting portion and the downward projecting portion is formed hollow and the other is formed solid.
 上記課題を解決するために、本発明に係る薄板パネルの段積みに用いるモジュールは、
  薄板パネルを下方より支持する支持部と、該支持部に連結され、薄板パネルの重さを上下方向に伝達する荷重伝達部と、上下に段積みされた薄板パネルの水平方向の位置決めをする位置決め部とを有する、薄板パネルの段積みに用いるモジュールであって、
 複数のモジュールが段積みされるとき、モジュール及び前記薄板パネルの重量を支持する本体部であって、前記支持部の外方に形成され、モジュールが積み上げられるときに上位モジュールを受ける上部と、モジュールが積み上げられるときに下位モジュールの当該上部に荷重を伝達する底部と、を有してなる上記本体部を有し、
 前記薄板パネルはその下面が支持部の上面に形成された支持面と当接されるとともに、その上面が積み上げられた上位モジュールの下端面と当接される、
、構成としている。
In order to solve the above problem, a module used for stacking thin plate panels according to the present invention is:
A support part that supports the thin panel from below, a load transmission part that is connected to the support part and transmits the weight of the thin panel in the vertical direction, and a positioning that horizontally positions the thin panel stacked vertically A module used for stacking thin plate panels,
A main body that supports the weight of the module and the thin panel when a plurality of modules are stacked; an upper part that is formed outside the support and receives the upper module when the modules are stacked; and And a bottom part for transmitting a load to the upper part of the lower module when stacked,
The lower surface of the thin panel is in contact with a support surface formed on the upper surface of the support portion, and the upper surface is in contact with the lower end surface of the stacked upper module.
, The configuration.
 以下、本発明に係るモジュール10の第1実施形態について、段積みされる薄板パネルとして太陽光パネルPを用いる場合を例に、添付図面を参照しながら詳細に説明する。図1は、本発明の第1実施形態に係るモジュールの使用状態を示した模式図であり、図2は、図1の使用状態におけるモジュールと太陽光パネルPとを示した斜視図である。また、図3(a)乃至図3(f)は、本発明の第1実施形態によるモジュールを示した、(a)上面図、(b)底面図、(c)外側側面図、(d)内側側面図、(e)線e-eに沿った断面図、(f)線f-fに沿った断面図である。 Hereinafter, the first embodiment of the module 10 according to the present invention will be described in detail with reference to the accompanying drawings, taking as an example the case where a solar panel P is used as a stacked thin panel. FIG. 1 is a schematic view showing a use state of a module according to the first embodiment of the present invention, and FIG. 2 is a perspective view showing the module and the solar panel P in the use state of FIG. 3 (a) to 3 (f) show the module according to the first embodiment of the present invention, (a) top view, (b) bottom view, (c) outer side view, (d). FIG. 6 is an inner side view, (e) a cross-sectional view along line ee, and (f) a cross-sectional view along line ff.
 太陽光パネルPは、矩形状であり、周縁にプラスチックや軽金属などから形成されたフレームを嵌着させずに、四隅それぞれにおいてモジュール10により直接支持するようにしている。
図1乃至図3に示すように、モジュール10は、複数の太陽光パネルPを段積みして支持するために、これらの太陽光パネルP同士の間に介在されるものであって、モジュール10と太陽光パネルPとの合計重量を支持することを主たる役割とする荷重伝達部20と、太陽光パネルPの四隅の角部を支持するための支持部40とから概略構成されている。
The solar panel P has a rectangular shape and is directly supported by the module 10 at each of the four corners without fitting a frame formed of plastic, light metal, or the like around the periphery.
As shown in FIGS. 1 to 3, the module 10 is interposed between the solar panels P in order to stack and support a plurality of solar panels P. And the solar panel P, the load transmitting part 20 mainly serving to support the total weight and the support part 40 for supporting the corners of the four corners of the solar panel P are schematically configured.
 荷重伝達部20は、太陽光パネルPの被支持部分である四隅の角部と相補的な形状であるL字形に形成されてなる位置決め部22と、位置決め部22から太陽光パネルPとは反対方向に距離を隔てている外側面24と、モジュール10が積み上げられるときに上位モジュールを受ける上部26と、モジュール10が積み上げられるときに下位モジュールの上部26に荷重を伝達する底部28と、を有している。
一方、支持部40は、1枚の太陽光パネルPを支持すべく、荷重伝達部20の位置決め部22から水平に延在された支持面42と、支持面42の下側に底部28より下方に突設する下方突出部44と、を有している。
The load transmitting unit 20 is formed in an L shape that is complementary to the corners of the four corners that are the supported portions of the solar panel P, and the positioning unit 22 is opposite to the solar panel P. A laterally spaced outer surface 24, a top portion 26 that receives the upper module when the module 10 is stacked, and a bottom portion 28 that transmits load to the upper portion 26 of the lower module when the module 10 is stacked. is doing.
On the other hand, the support part 40 has a support surface 42 extending horizontally from the positioning part 22 of the load transmitting part 20 and a lower side of the support surface 42 below the bottom part 28 to support one solar panel P. And a downward projecting portion 44 projecting from the bottom.
 より詳細には、位置決め部22は、モジュール10は、太陽光パネルPの四隅それぞれに配置され、支持面42は、L字形を有し、位置決め部22は、支持面42の外縁から上方に上部26まで延在する立壁面23を有する。これにより、太陽光パネルPの四隅それぞれにおいて、立壁面23に当接するように太陽光パネルPを支持面42に載置することにより、太陽光パネルPの外方への移動を抑制して、位置決めすることが可能である。
また、図2に示すように、上部26は、L字形の荷重受け面を構成し、一方底部28は、L字形の荷重解放面を構成しており、下方突出部44は、底部28から下方突出部の下端である当たり部45(後に説明)まで延在する外側面27を有する。
これにより、太陽光パネルPの四隅それぞれにおいて、モジュール10を積み上げる際、図1に示すように、上下方向に隣接するモジュール10において、上位のモジュール10の外側面27が、下位のモジュール10の立壁面23に当接するように、上位のモジュール10の荷重解放面を下位のモジュール10の荷重受け面に載置することにより、上位のモジュール10の下位のモジュール10に対する外方への相対移動が抑制され、以てモジュール10を介して段積する太陽光パネルPの水平方向への位置決めを行うことが可能である。
More specifically, in the positioning unit 22, the module 10 is disposed at each of the four corners of the solar panel P, the support surface 42 has an L shape, and the positioning unit 22 is located upward from the outer edge of the support surface 42. It has a standing wall 23 extending to 26. Thereby, in each of the four corners of the solar panel P, by placing the solar panel P on the support surface 42 so as to contact the standing wall surface 23, the outward movement of the solar panel P is suppressed, It is possible to position.
Further, as shown in FIG. 2, the upper portion 26 constitutes an L-shaped load receiving surface, while the bottom portion 28 constitutes an L-shaped load releasing surface, and the downward projecting portion 44 extends downward from the bottom portion 28. It has the outer side surface 27 extended to the contact part 45 (it demonstrates later) which is a lower end of a protrusion part.
Thus, when the modules 10 are stacked at each of the four corners of the solar panel P, as shown in FIG. 1, in the modules 10 adjacent in the vertical direction, the outer surface 27 of the upper module 10 is By placing the load release surface of the upper module 10 on the load receiving surface of the lower module 10 so as to abut against the wall surface 23, the relative movement of the upper module 10 to the lower module 10 is suppressed. Therefore, it is possible to position the solar panels P stacked in stages through the module 10 in the horizontal direction.
当たり部45について説明すれば、下方突出部44の下面が構成し、下面は支持面42と平行に形成され、モジュール10を積み上げる際、図1に示すように、上下方向に隣接するモジュール10において、上述のように、上位のモジュール10を下位のモジュール10に載置することにより、上位のモジュール10の当たり部45は、下位のモジュール10により支持された太陽光パネルPの上面に対向して当接するよう設けられる。
これにより、太陽光パネルPの四隅は、太陽光パネルPを支持しているモジュール10の支持面42と、この上位にあるモジュール10の当たり部45との間にしっかりと挟持されているので、太陽光パネルPがばたついたり、がたついたりすることはない。
The contact portion 45 will be described. The lower surface of the downward projecting portion 44 is formed, and the lower surface is formed in parallel with the support surface 42. When the modules 10 are stacked, as shown in FIG. As described above, by placing the upper module 10 on the lower module 10, the contact portion 45 of the upper module 10 faces the upper surface of the solar panel P supported by the lower module 10. Provided to abut.
As a result, the four corners of the solar panel P are firmly sandwiched between the support surface 42 of the module 10 supporting the solar panel P and the contact portion 45 of the module 10 at the upper level. The solar panel P does not flutter or rattle.
当たり部45の大きさ、すなわち下方突出部44の下面の広さは、このような太陽光パネルPの搬送中におけるばたつき、がたつきを有効に防止する観点から定めればよく、図1ないし図3に示すように、必ずしも支持面42と同じ広さである必要はない。 The size of the contact portion 45, that is, the width of the lower surface of the downward projecting portion 44 may be determined from the viewpoint of effectively preventing such fluttering and rattling during the transportation of the solar panel P. FIG. As shown in FIG. 3, it is not necessarily the same area as the support surface 42.
荷重伝達部20と支持部40とは、あたかも独立した別の部材であるかの如く説明されているが、一般的には、プラスチックの射出成形等によって一体的に成形された単一の部材から構成されるものである(図3(e)参照)。
この点、モジュールの樹脂材料は、熱可塑性樹脂であり、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、または非晶性樹脂などで、より具体的にはエチレン、プロピレン、ブテン、イソプレンペンテン、メチルペンテン等のオレフィン類の単独重合体あるいは共重合体であるポリオレフィン(例えば、ポリプロピレン、高密度ポリエチレン)であり、モジュール10の構造が比較的複雑であることから、特に射出成形による一体成形に適している。
The load transmission unit 20 and the support unit 40 are described as if they were separate independent members. However, in general, the load transmission unit 20 and the support unit 40 are formed from a single member integrally molded by plastic injection molding or the like. It is configured (see FIG. 3 (e)).
In this respect, the resin material of the module is a thermoplastic resin, and is an olefin resin such as polyethylene or polypropylene, or an amorphous resin, and more specifically, ethylene, propylene, butene, isoprene pentene, methyl pentene, or the like. It is a polyolefin (for example, polypropylene, high density polyethylene) which is a homopolymer or copolymer of olefins, and the structure of the module 10 is relatively complicated. Therefore, it is particularly suitable for integral molding by injection molding.
 本実施形態においては、荷重伝達部20と、支持部40における下方突出部44とは、いずれも中空構造になっている。すなわち、図3(b)に最良に示されるように、荷重伝達部20にあっては、外側面24と位置決め部22との間に、L字形の一辺につき4枚、L字形の全体で8枚のリブ30が延設され、リブ30と隣接するリブ30との間は中空空間32として開放されている。同様に、支持部40における下方突出部44にあっては、合計5枚のリブ46が延設され、リブ46と隣接するリブ46との間は中空空間48として開放されている。リブ30とリブ46との設置枚数の違いから、中空空間32に比べて、中空空間48の方が広くなっている。さらに、リブ30の肉厚は、2.5mmであり、リブ46の肉厚は、2.0mmであり、荷重伝達部20に設けたリブ30の方が、下方突出部44に設けたリブ46に比べて、分厚くなっている。これらのリブ30,46は、図3(f)の断面図に示されるように、荷重伝達部20のリブ30にあっては、上部26から底部28の端面にまで垂直に、下方突出部44のリブ46にあっては、支持面42からその下端の端面にまで垂直に、いずれも連続的に設けられ、荷重伝達部20及び下方突出部44のそれぞれにおいて、上下方向の荷重に対する支持部材になっている。この結果、荷重伝達部20の垂直方向の剛性は、下方突出部44の垂直方向の剛性に比べて、剛くなっている。 In the present embodiment, both the load transmitting portion 20 and the downward projecting portion 44 of the support portion 40 have a hollow structure. That is, as best shown in FIG. 3B, in the load transmitting portion 20, four L-shaped sides are provided between the outer surface 24 and the positioning portion 22, and a total of 8 L-shaped portions. A plurality of ribs 30 are extended, and a hollow space 32 is opened between the rib 30 and the adjacent rib 30. Similarly, a total of five ribs 46 extend from the downward projecting portion 44 of the support portion 40, and a space between the rib 46 and the adjacent rib 46 is opened as a hollow space 48. The hollow space 48 is wider than the hollow space 32 due to the difference in the number of installed ribs 30 and 46. Furthermore, the thickness of the rib 30 is 2.5 mm, the thickness of the rib 46 is 2.0 mm, and the rib 30 provided in the load transmitting portion 20 is more in the rib 46 provided in the downward projecting portion 44. It is thicker than As shown in the cross-sectional view of FIG. 3 (f), these ribs 30, 46 are vertically projecting from the upper part 26 to the end face of the bottom part 28 in the rib 30 of the load transmitting part 20. The ribs 46 are continuously provided vertically from the support surface 42 to the end surface of the lower end thereof, and each of the load transmitting portion 20 and the downward projecting portion 44 serves as a support member for a load in the vertical direction. It has become. As a result, the vertical rigidity of the load transmitting portion 20 is stiffer than the vertical rigidity of the downward projecting portion 44.
 以上のように構成された、本実施形態によるモジュールを用いて太陽光パネルPをトラック等で搬送するに際しては、まず、パレット54の四隅にそれぞれ1つずつ、合計4個のモジュール10を太陽光パネルPの角部に一致させるように設置し、その上方に太陽光パネルPを移動させ、各モジュール10の支持部40の支持面42上にて太陽光パネルPを降ろし、太陽光パネルPの角部が、モジュール10の位置決め部22に当接するように載置する。これにより、1枚目の太陽光パネルPの積載が完了したことになる。 When the solar panel P is transported by a truck or the like using the module according to the present embodiment configured as described above, first, four modules 10, one at each of the four corners of the pallet 54, It installs so that it may correspond to the corner | angular part of the panel P, the solar panel P is moved above it, the solar panel P is dropped on the support surface 42 of the support part 40 of each module 10, and the solar panel P The corner portion is placed so as to contact the positioning portion 22 of the module 10. Thereby, the loading of the first solar panel P is completed.
 次に、先ほどパレット54上に設置した4個のモジュール10のそれぞれの上部26に、新たに用意した4個のモジュール10のそれぞれの底部28を重ねるようにして、配置する。そして、先ほどと同様に、2枚目の太陽光パネルPをパレット54の上方へ移動させ、新たなモジュール10の支持部40の支持面42上にて太陽光パネルPを降ろし、太陽光パネルPの角部が、モジュール10の位置決め部22に当接するように載置する。このとき、新たなモジュール10の下方突出部44の外側面27が、下位のモジュール10の立壁23に対して当接するので、たとえ、太陽光パネルPが水平方向に揺さぶられても、新たなモジュール10が放射方向外方へずれることはなく、太陽光パネルPの四隅は、位置決め部22によって確実に位置決めされることになる。これにより、2枚目の太陽光パネルPの積載が完了したことになる。 Next, the bottom portions 28 of the four modules 10 newly prepared are placed so as to overlap the upper portions 26 of the four modules 10 installed on the pallet 54. Then, as before, the second solar panel P is moved above the pallet 54, the solar panel P is lowered on the support surface 42 of the support part 40 of the new module 10, and the solar panel P Is placed so that the corners of the module are in contact with the positioning part 22 of the module 10. At this time, since the outer surface 27 of the downward projecting portion 44 of the new module 10 abuts against the standing wall 23 of the lower module 10, even if the solar panel P is shaken in the horizontal direction, the new module 10 10 does not shift outward in the radial direction, and the four corners of the solar panel P are reliably positioned by the positioning portion 22. Thereby, the loading of the second solar panel P is completed.
 図4に示すように、この過程を繰り返すことで、モジュール10と太陽光パネルPとを交互に段積みしていき、必要な枚数に至った時点で、積層体の上面に天板56を載置し、パレット54の底面から天板56の上面にわたって、上下方向にロープ58を掛けて束縛した後、外周に保護スリーブ(図示せず)をかぶせることで、搬送ユニット60が完成する。そして、この搬送ユニット60をトラック等に積載し、太陽光パネルPの設置現場へと輸送する。 As shown in FIG. 4, by repeating this process, the modules 10 and the solar panels P are alternately stacked, and when the required number is reached, the top plate 56 is placed on the upper surface of the laminate. After placing and binding the rope 58 in the vertical direction from the bottom surface of the pallet 54 to the top surface of the top plate 56, a protective sleeve (not shown) is placed on the outer periphery to complete the transport unit 60. Then, the transport unit 60 is loaded on a truck or the like and transported to the installation site of the solar panel P.
 輸送中には、トラックの走行に伴う振動が、太陽光パネルPに対して、特に垂直上下方向に加わるが、太陽光パネルPの四隅は、太陽光パネルPを支持しているモジュール10の支持面42と、この上位にあるモジュール10の当たり部45との間にしっかりと挟持されているので、太陽光パネルPがばたついたり、がたついたりすることはない。加えて、積層体における下段に配置された太陽光パネルPについては、その上方に積載された多枚数の太陽光パネルPの重量は、モジュール10の荷重伝達部20によって支えられ、剛性の低い下方突出部44から太陽光パネルPの上面に加わる荷重は軽減される。この結果、太陽光パネルPの破損は有効に防止される。 During transportation, vibrations accompanying the traveling of the truck are applied to the solar panel P in the vertical and vertical directions, and the four corners of the solar panel P are supported by the module 10 supporting the solar panel P. The solar panel P does not flutter or rattle because it is firmly held between the surface 42 and the contact portion 45 of the module 10 at the upper level. In addition, with respect to the solar panels P arranged in the lower stage of the laminate, the weight of the multiple solar panels P stacked above is supported by the load transmission unit 20 of the module 10 and has a lower rigidity. The load applied to the upper surface of the solar panel P from the protrusion 44 is reduced. As a result, damage to the solar panel P is effectively prevented.
 トラックが設置現場に到着したならば、搬送ユニット60の荷解きを行う。荷解きは、搬送ユニット60を形成したときの手順とは逆の順序で行う。すなわち、まず、搬送ユニット60の外面から保護スリーブ(図示せず)を取り外した後、ロープ58を解く。そして、積層体の上面に載置されている天板56を取り除く。これにより、最上位の太陽光パネルPが露出することになる。最上位の太陽光パネルPは、その四隅をモジュール10の位置決め部22によって水平方向に四方から位置決めされているが、上方向については、なんら拘束されていない。従って、これを垂直上方に持ち上げさえすれば、搬送ユニット60から取り出すことができる。 When the truck arrives at the installation site, the transport unit 60 is unpacked. The unpacking is performed in the reverse order to the procedure when the transport unit 60 is formed. That is, first, a protective sleeve (not shown) is removed from the outer surface of the transport unit 60, and then the rope 58 is released. Then, the top plate 56 placed on the upper surface of the laminate is removed. Thereby, the uppermost solar panel P is exposed. The uppermost solar panel P has its four corners positioned from four directions in the horizontal direction by the positioning portions 22 of the module 10, but is not restricted at all in the upward direction. Therefore, it can be taken out from the transport unit 60 as long as it is lifted vertically upward.
 最上位の太陽光パネルPを、必要な設置場所に設置し終えたならば、それまでこの太陽光パネルPをその四隅にて支持していた、最上位の4個のモジュール10を取り外す。モジュール10は、1段下のモジュール10の上に載置されているだけであるから、上向きに引き抜けば簡単に取り外すことができる。これにより、次段の太陽光パネルPが露出することになる。このように、太陽光パネルPの取り出しは、積み上げ時とは逆に、最後に積み重ねられた最上位のものから開始し、前述した1枚目の太陽光パネルPの取り出しが最後に行われ、1枚目の太陽光パネルPを取りだした時点で終了する。 When the topmost solar panel P has been installed at the required installation location, the top four modules 10 that have supported the solar panel P at the four corners until then are removed. Since the module 10 is merely placed on the module 10 one level lower, it can be easily removed by pulling upward. As a result, the next-stage solar panel P is exposed. Thus, taking out the solar panel P starts from the topmost one stacked last, contrary to the time of stacking, the taking out of the first solar panel P is performed last, The process ends when the first solar panel P is taken out.
 以上のように、本実施形態によれば、簡単な構成でありながら、外周にフレーム等の保護部材を有しない薄板パネル、特に太陽光パネルに適用され、これを段積みして支持するために、該薄板パネルの四隅又はその他の縁部に配置されるモジュールであって、モジュールと薄板パネルとを交互にただ積み上げていくだけで、簡単に、搬送のための積層体を構築できると共に、搬送中の振動や衝撃に起因して薄板パネルがばたついたり破損したりするのを効果的に防止でき、搬送作業に要する手数を大幅に削減できる、薄板パネルの段積みに用いるモジュールが提供される。 As described above, according to the present embodiment, although it is a simple configuration, it is applied to a thin plate panel, particularly a solar panel, which does not have a protective member such as a frame on its outer periphery, and in order to stack and support it. , Modules arranged at the four corners or other edges of the thin plate panel, and by simply stacking the modules and thin plate panels alternately, it is possible to easily construct a laminate for conveyance and A module used for stacking thin panels that can effectively prevent flapping and breakage of thin panels due to vibrations and shocks, and can greatly reduce the labor required for transporting operations is provided. .
 次に、図5および図6を参照して、本発明の第2実施形態を詳細に説明する。以下の説明では、第1実施形態と同様な構成要素には、同様な参照番号を付することにより、その説明は省略し、本実施形態の特徴について、詳細に説明する。
 本実施形態に係るモジュール100の特徴は、位置決め部および当たり部にある。
Next, a second embodiment of the present invention will be described in detail with reference to FIGS. In the following description, the same reference numerals are given to the same components as those in the first embodiment, the description thereof will be omitted, and the features of the present embodiment will be described in detail.
The feature of the module 100 according to the present embodiment is the positioning part and the contact part.
図5および図6に示すように、位置決め部は、上のモジュール100の荷重解放面を下のモジュール100の荷重受け面に載置する形態で上のモジュール100を下のモジュール100に積み重ねる際、荷重受け面の内縁102に設けられた、上のモジュール100の下のモジュール100に対する相対移動を制限する上係止部104と、荷重解放面の上係止部104が設けられる側と同じ側の内縁103に、上係止部104と水平方向にオフセットする形態で設けられた、上のモジュール100の下のモジュール100に対する相対移動を制限する下係止部106とを有する。
 より詳細には、上係止部104は、L字形荷重受け面の交差部の各側に1つずつ、下係止部106は、L字形荷重解放面の交差部の各側に1つずつ、上係止部104および下係止部106は、互いに協働して、立壁22の内縁102、103をほぼカバーするように設けられる。上係止部104は、L字形荷重受け面の交差部の近位側に設けられるとともに、下係止部106は、L字形荷重解放面の交差部の遠位側に設けられる。
As shown in FIGS. 5 and 6, the positioning unit stacks the upper module 100 on the lower module 100 in a form in which the load release surface of the upper module 100 is placed on the load receiving surface of the lower module 100. An upper locking portion 104 for restricting relative movement of the upper module 100 to the lower module 100 provided on the inner edge 102 of the load receiving surface, and the same side as the side on which the upper locking portion 104 of the load release surface is provided. The inner edge 103 has an upper locking portion 104 and a lower locking portion 106 that is provided in a form offset in the horizontal direction and restricts relative movement of the upper module 100 relative to the lower module 100.
More specifically, one upper locking portion 104 is provided on each side of the intersection portion of the L-shaped load receiving surface, and one lower locking portion 106 is provided on each side of the intersection portion of the L-shaped load release surface. The upper locking portion 104 and the lower locking portion 106 are provided so as to substantially cover the inner edges 102 and 103 of the standing wall 22 in cooperation with each other. The upper locking portion 104 is provided on the proximal side of the intersection portion of the L-shaped load receiving surface, and the lower locking portion 106 is provided on the distal side of the intersection portion of the L-shaped load release surface.
上係止部104の各々は、荷重受け面から上に向かって荷重受け面の内縁102から内方に離れる形態で傾斜する傾斜部110を有し、立壁22の内面に固定されている。上係止部104の荷重受け面から上方への高さH1は、後に説明するように、モジュール100を積み重ねる際、上下方向に隣接するモジュール100間において、下のモジュール10の上係止部104の先端部が上のモジュール100の立壁22の内面の途中まで及ぶことから、上のモジュール10の支持面42の下面にぶつからないように適宜に設定すればよい。 Each of the upper locking portions 104 has an inclined portion 110 that is inclined inward from the inner edge 102 of the load receiving surface upward from the load receiving surface, and is fixed to the inner surface of the standing wall 22. As described later, the height H1 of the upper locking portion 104 from the load receiving surface is such that when the modules 100 are stacked, the upper locking portion 104 of the lower module 10 is positioned between the modules 100 adjacent in the vertical direction. Since the front end of the upper part extends partway along the inner surface of the standing wall 22 of the upper module 100, it may be set appropriately so as not to hit the lower surface of the support surface 42 of the upper module 10.
 一方、下係止部106の各々は、荷重解放面から下に向かって荷重解放面の内縁103から内方に離れる形態で傾斜する傾斜部113を有し、立壁22の内面に固定されている。下係止部106の荷重解放面から下方への高さH2は、後に説明するように、モジュール100を積み重ねる際、上下方向に隣接するモジュール100間において、上のモジュール100の下係止部106の先端部が下のモジュール100の立壁22の内面の途中まで及ぶことから、下のモジュール10の支持面42の上面にぶつからないように適宜に設定すればよい。 On the other hand, each of the lower engaging portions 106 has an inclined portion 113 that is inclined inward from the inner edge 103 of the load releasing surface downward from the load releasing surface, and is fixed to the inner surface of the standing wall 22. . As described later, the height H2 of the lower locking portion 106 from the load release surface is such that when the modules 100 are stacked, the lower locking portion 106 of the upper module 100 is located between the modules 100 adjacent in the vertical direction. Since the tip of this part extends to the middle of the inner surface of the standing wall 22 of the lower module 100, it may be set appropriately so as not to hit the upper surface of the support surface 42 of the lower module 10.
 これにより、上下方向に隣接するモジュール100間において、下のモジュール100の上係止部104は、上のモジュール100が下のモジュール100に対して内方へ相対移動するのを制限し、上のモジュール100の下係止部106は、上のモジュール100が下のモジュール100に対して外方へ相対移動するのを制限することから、上のモジュール100が下のモジュール100に対して内方および外方へ相対移動するのが抑制され、モジュール100を安定して積み重ねることが可能である。特に、モジュールがL字形に形成され、交差部を挟んで各側に、上板状体12にあっては上係止部104が、下板状体14にあっては下係止部106が設置されることから、それに対応して、水平面上の直交する2方向の規制が可能であり、より具体的には、上のモジュール100の下のモジュール100に対する直交する2方向の内方への規制がなされ、一方上のモジュール100の下のモジュール100に対する直交する2方向の外方への規制がなされる。 Thereby, between the modules 100 adjacent to each other in the vertical direction, the upper locking portion 104 of the lower module 100 restricts the upper module 100 from moving inward relative to the lower module 100. The lower locking portion 106 of the module 100 restricts the upper module 100 from moving outward relative to the lower module 100, so that the upper module 100 moves inwardly with respect to the lower module 100. The relative movement to the outside is suppressed, and the modules 100 can be stacked stably. In particular, the module is formed in an L-shape, and on each side across the intersection, an upper locking portion 104 in the upper plate-like body 12 and a lower locking portion 106 in the lower plate-like body 14. Accordingly, the two orthogonal directions on the horizontal plane can be regulated correspondingly, and more specifically, inward in the two orthogonal directions with respect to the module 100 below the upper module 100. Restriction is made, and restriction in the two orthogonal directions to the lower module 100 on the one upper module 100 is made.
 以上の構成によれば、上係止部104および下係止部106はそれぞれ、荷重受け面の内縁102および荷重解放面の内縁103に設けられていることから、荷重伝達面である荷重受け面上および荷重解放面上には上下係止部106を設置せずに、荷重伝達面積を十分に確保することで荷重受け面および荷重解放面の幅Wを極力小さくするとともに、モジュール100自体の外側への張り出しを生じないようにすることで、モジュール100のコンパクト性を維持することが可能である。
一方、当たり部45について、第1実施形態においては、支持部40の全領域にわたるような下方突出部44を形成していたのと異なり、第2実施形態においては、下係止部106を下方に延長して下方突出部44を設け、その下端に当たり部45を設けることとした。当たり部45は、支持面42と平行に設けられ、当たり部45の下方への延び長さH2は、モジュール100を積み上げた際、上位のモジュールから可能に延びる当たり部45が下位のモジュールの支持面42に載置された太陽光パネルPの上面に対して当たり可能であればよく、また当たり部45の設置位置およびその広さは、段積みした太陽光パネルPの搬送中におけるばたつき、がたつきを防止する観点から適宜定めればよい。当たり部45が下方に向けて先細となるようにしてもよい。変形例として、上係止部104をL字形荷重受け面の交差部の遠位側に設けられるとともに、下係止部106、すなわち下方突出部44をL字形荷重解放面の交差部の近位側に設けてもよい。
このような構成によれば、第1実施形態においては、当たり部45を設けるのに下方突出部44全体を下方に突出させていたところ、位置決め部である下係止部106を利用して局所的に当たり部45を設けることにより、必要な樹脂材料の量を低減することが可能である。
According to the above configuration, the upper locking portion 104 and the lower locking portion 106 are provided on the inner edge 102 of the load receiving surface and the inner edge 103 of the load releasing surface, respectively. The upper and lower locking portions 106 are not provided on the upper and load releasing surfaces, and the load receiving surface and the load releasing surface are made as small as possible by ensuring a sufficient load transmission area, and the outside of the module 100 itself. By avoiding overhanging, the compactness of the module 100 can be maintained.
On the other hand, with respect to the contact portion 45, unlike the case in which the downward projecting portion 44 is formed so as to cover the entire region of the support portion 40 in the first embodiment, the lower locking portion 106 is moved downward in the second embodiment. The lower projecting portion 44 is provided to extend to the lower end, and the contact portion 45 is provided at the lower end thereof. The contact portion 45 is provided in parallel with the support surface 42, and the downward extension length H2 of the contact portion 45 is such that when the module 100 is stacked, the contact portion 45 that can extend from the upper module supports the lower module. It suffices if the upper surface of the solar panel P placed on the surface 42 can be hit, and the installation position and the size of the hitting portion 45 may vary during transportation of the stacked solar panels P. What is necessary is just to determine suitably from a viewpoint which prevents rattling. The contact portion 45 may taper downward. As a modification, the upper locking portion 104 is provided on the distal side of the intersection of the L-shaped load receiving surface, and the lower locking portion 106, that is, the lower protrusion 44 is located proximal to the intersection of the L-shaped load release surface. It may be provided on the side.
According to such a configuration, in the first embodiment, in order to provide the contact portion 45, the entire lower protruding portion 44 protrudes downward, but the lower locking portion 106, which is a positioning portion, is used to locally In particular, by providing the contact portion 45, it is possible to reduce the amount of the required resin material.
以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
 たとえば、上記実施形態においては、下方突出部44と太陽光パネルPとの間には、クリアランスがないものとして説明したが、それに限定されることなく、下方突出部44が搬送中の太陽光パネルPのばたつきを防止可能である限り、太陽光パネルPとの間に数mm程度のクリアランスを有するものでも良い。
また、本実施形態においては、複数の太陽光パネルPを上下方向に段積みするのに、同じモジュール100を用いて、複数の太陽光パネルPの四隅それぞれにおいて柱状に積み重ねたが、それに限定されることなく、下層のモジュール100ほど支持する太陽光パネルPの枚数が多いことから、その分強度が要求されるので、外形は同一だが肉厚の異なるモジュール100を準備し、下層のモジュール100ほど肉厚の厚いモジュール100を採用してもよい。
さらに、上記実施形態においては、矩形形状を有する太陽光パネルPの四隅それぞれを薄板パネルの段積みに用いるモジュール100によって直接支持する場合について説明した。従って、薄板パネルにおける被支持部分の水平視による輪郭は、直角な角部であり、これに対して相補的形状をなす位置決め部22は、L字形となり、もってモジュール10の全体的な外形も略L字形になる。しかしながら、薄板パネルが円形である場合には、被支持部分の水平視による輪郭は凸の円弧の形状になって、これに対して相補的形状をなす位置決め部22は凹の円弧の形状になることは言うまでもない。
The embodiments of the present invention have been described in detail above, but various modifications or changes can be made by those skilled in the art without departing from the scope of the present invention.
For example, in the said embodiment, although demonstrated that there was no clearance between the downward protrusion part 44 and the solar panel P, it is not limited to it, The solar panel in which the downward protrusion part 44 is conveying As long as fluttering of P can be prevented, the solar panel P may have a clearance of about several mm.
In the present embodiment, in order to stack a plurality of solar panels P in the vertical direction, the same module 100 is used and stacked in a columnar shape at each of the four corners of the plurality of solar panels P. However, the present invention is not limited thereto. Therefore, since the number of solar panels P supported by the lower layer module 100 is larger, the strength is required accordingly. Therefore, a module 100 having the same outer shape but a different thickness is prepared. A thick module 100 may be employed.
Furthermore, in the said embodiment, the case where each of the four corners of the solar panel P which has a rectangular shape was directly supported by the module 100 used for stacking of thin panel was demonstrated. Accordingly, the horizontal view of the supported portion of the thin panel is a right-angled corner, and the positioning portion 22 that is complementary to this is L-shaped, so that the overall outer shape of the module 10 is also approximately. L-shaped. However, when the thin plate panel is circular, the contour of the supported portion in the horizontal view has a convex arc shape, and the positioning portion 22 which is complementary to this has a concave arc shape. Needless to say.
本発明の第1実施形態に係るモジュールの使用状態を示した模式図である。It is the schematic diagram which showed the use condition of the module which concerns on 1st Embodiment of this invention. 図1の使用状態におけるモジュールと太陽光パネルとを示した斜視図である。It is the perspective view which showed the module and solar panel in the use condition of FIG. 本発明の第1実施形態に係るモジュールを示した、(a)上面図、(b)底面図である。It is the module which concerns on 1st Embodiment of this invention, (a) Top view, (b) Bottom view. 本発明の第1実施形態に係るモジュールを示した、(c)外側側面図、(d)内側側面図である。It is the module which concerns on 1st Embodiment of this invention, (c) Outside side view, (d) Inside side view. 本発明の第1実施形態に係るモジュールを示した、(e)線e-eに沿った断面図、(f)線f-fに沿った断面図である。FIG. 5A is a cross-sectional view taken along line ee and FIG. 5F is a cross-sectional view taken along line ff showing the module according to the first embodiment of the present invention. 本発明の第1実施形態によって積み上げられた薄板パネルの搬送ユニットを示した斜視図である。It is the perspective view which showed the conveyance unit of the thin panel piled up by 1st Embodiment of this invention. 本発明の第2実施形態に係るモジュールを示した斜視図である。It is the perspective view which showed the module which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るモジュールの図1と同様な図である。It is a figure similar to FIG. 1 of the module which concerns on 2nd Embodiment of this invention.
   P 太陽光パネル(薄板パネル)
   10,100 モジュール
   20 荷重伝達部
   22 位置決め部
   23 立壁
24 外側面
   26 上部
   27 外側面
28 底部
   30 リブ
   32 中空空間
   36 開口部
   40 支持部
   42 支持面
   44,144 下方突出部
   45 当たり部
46 リブ
   48 中空空間
   52 開口部
   54 パレット
   56 天板
   58 ロープ
   60 搬送ユニット
P Solar panel (thin panel)
DESCRIPTION OF SYMBOLS 10,100 Module 20 Load transmission part 22 Positioning part 23 Standing wall 24 Outer side surface 26 Upper part 27 Outer side surface 28 Bottom part 30 Rib 32 Hollow space 36 Opening part 40 Support part 42 Support surface 44,144 Downward protrusion part 45 Hit part 46 Rib 48 Hollow Space 52 Opening 54 Pallet 56 Top plate 58 Rope 60 Transport unit

Claims (18)

  1.  薄板パネルを下方より支持する支持部と、該支持部に連結され、薄板パネルの重さを上下方向に伝達する荷重伝達部と、上下に段積みされた薄板パネルの水平方向の位置決めをする位置決め部とを有する、薄板パネルの段積みに用いるモジュールであって、
     前記支持部は、薄板パネルを載置する支持面を有し、
     前記荷重伝達部は、前記支持面の外方に形成され、モジュールが積み上げられるときに上位モジュールを受ける上部と、モジュールが積み上げられるときに下位モジュールの当該上部に荷重を伝達する底部とを有し、
     下位モジュールにより支持された薄板パネルの上面に対向して当り可能な下方突出部が設けられ、前記下方突出部の下端は、該底部より下方に位置する、
     ことを特徴とする薄板パネルの段積みに用いるモジュール。
    A support part that supports the thin panel from below, a load transmission part that is connected to the support part and transmits the weight of the thin panel in the vertical direction, and a positioning that horizontally positions the thin panel stacked vertically A module used for stacking thin plate panels,
    The support portion has a support surface on which the thin plate panel is placed,
    The load transmitting portion is formed outside the support surface and has an upper portion that receives the upper module when the modules are stacked and a bottom portion that transmits a load to the upper portion of the lower module when the modules are stacked. ,
    A lower projecting portion capable of being opposed to the upper surface of the thin panel supported by the lower module is provided, and a lower end of the lower projecting portion is located below the bottom portion;
    This module is used for stacking thin panels.
  2.  前記モジュールは、矩形薄板パネルの四隅それぞれに配置され、前記支持面は、L字形を有し、前記位置決め部は、前記支持面の外縁から上方に延在する立壁面を有する、請求項1に記載の薄板パネルの段積みに用いるモジュール。 2. The module according to claim 1, wherein the module is disposed at each of the four corners of the rectangular thin plate panel, the support surface has an L shape, and the positioning portion has a standing wall surface extending upward from an outer edge of the support surface. A module used for stacking the thin panel described.
  3.  前記下方突出部のサイズは、前記支持面上に前記薄板パネルを載置したとき、上位に載置されるモジュールの下方突出部の下端が、前記薄板パネルの上面に当接する寸法になっている、請求項1ないし2のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 The size of the downward projecting portion is such that when the thin plate panel is placed on the support surface, the lower end of the lower projecting portion of the module placed on the upper side contacts the upper surface of the thin plate panel. A module used for stacking thin plate panels according to claim 1.
  4.  前記荷重伝達部の垂直方向の剛性は、前記下方突出部の垂直方向の剛性に比べて、剛くなっている、請求項1ないし3のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 The vertical rigidity of the load transmitting portion is stiffer than the vertical rigidity of the downward projecting portion, and is used for stacking thin panels according to any one of claims 1 to 3. module.
  5.  前記荷重伝達部及び前記下方突出部は、中空に形成されている、請求項1ないし3のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 The module used for stacking of thin plate panels according to any one of claims 1 to 3, wherein the load transmitting portion and the downward projecting portion are formed hollow.
  6.  前記荷重伝達部及び前記下方突出部における前記中空に形成された中空空間内に、複数のリブが形成されている、請求項5に記載の薄板パネルの段積みに用いるモジュール。 6. The module used for stacking thin panels according to claim 5, wherein a plurality of ribs are formed in the hollow space formed in the hollow in the load transmitting portion and the downward projecting portion.
  7.  前記荷重伝達部における前記中空空間内に形成された前記リブの肉厚は、前記下方突出部における前記中空空間内に形成された前記リブの肉厚に比べて、厚くなっている、請求項6に記載の薄板パネルの段積みに用いるモジュール。 The thickness of the rib formed in the hollow space in the load transmitting portion is thicker than the thickness of the rib formed in the hollow space in the downward projecting portion. A module used for stacking thin panel as described in 1.
  8.  前記荷重伝達部における前記中空空間内に形成された前記リブの設置数は、前記下方突出部における前記中空空間内に形成された前記リブの設置数に比べて、多くなっている、請求項6に記載の薄板パネルの段積みに用いるモジュール。 The number of installed ribs formed in the hollow space in the load transmitting portion is larger than the number of ribs formed in the hollow space in the downward projecting portion. A module used for stacking thin panel as described in 1.
  9.  前記荷重伝達部における前記中空空間内に形成された前記リブの間隔は、前記下方突出部における前記中空空間内に形成された前記リブの間隔に比べて、密になっている、請求項6に記載の薄板パネルの段積みに用いるモジュール。 The interval between the ribs formed in the hollow space in the load transmitting portion is closer to the interval between the ribs formed in the hollow space in the downward projecting portion. A module used for stacking the thin panel described.
  10.  前記中空に形成された荷重伝達部における外側面を構成する壁面の肉厚は、前記荷重伝達部における前記中空空間内に形成された前記リブの肉厚に比べて、厚くなっている、請求項6に記載の薄板パネルの段積みに用いるモジュール。 The wall thickness constituting the outer surface of the hollow load transmitting portion is thicker than the thickness of the rib formed in the hollow space of the load transmitting portion. A module used for stacking thin plate panels according to 6.
  11.  前記下方突出部の底部は、開口している、請求項5ないし10のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 The module used for stacking of thin plate panels according to any one of claims 5 to 10, wherein a bottom portion of the downward projecting portion is open.
  12.  前記下方突出部における前記中空空間内に形成された前記リブの下端は、該下方突出部における下端面に一致するように延設されている、請求項6ないし11のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 12. The lower end of the rib formed in the hollow space in the downward projecting portion extends so as to coincide with the lower end surface of the downward projecting portion. Module used for stacking thin panels.
  13.  前記荷重伝達部及び前記下方突出部は、中実に形成されている、請求項1ないし4のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 The module used for stacking thin plate panels according to any one of claims 1 to 4, wherein the load transmitting portion and the downward projecting portion are formed solid.
  14.  前記荷重伝達部と前記下方突出部とが異なる材料から構成され、前記荷重伝達部を構成する材料の剛性に比べて、前記下方突出部を構成する材料の剛性が、低くなっている、請求項13に記載の薄板パネルの段積みに用いるモジュール。 The load transmitting portion and the lower protruding portion are made of different materials, and the rigidity of the material forming the lower protruding portion is lower than the rigidity of the material forming the load transmitting portion. A module used for stacking the thin plate panels according to 13.
  15.  前記荷重伝達部及び前記下方突出部のうち、一方は中空に形成され、他方は中実に形成されている、請求項1ないし4のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 5. The module used for stacking thin panels according to any one of claims 1 to 4, wherein one of the load transmitting portion and the downward projecting portion is formed hollow and the other is formed solid.
  16.  前記薄板パネルは、太陽光パネルである、請求項1ないし15のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 The module used for stacking thin plate panels according to any one of claims 1 to 15, wherein the thin plate panels are solar panels.
  17.  前記モジュールは、樹脂製であり、一体成形されている、請求項1ないし請求項16のいずれか一項に記載の薄板パネルの段積みに用いるモジュール。 The module used for stacking thin plate panels according to any one of claims 1 to 16, wherein the module is made of resin and is integrally formed.
  18.   薄板パネルを下方より支持する支持部と、該支持部に連結され、薄板パネルの重さを上下方向に伝達する荷重伝達部と、上下に段積みされた薄板パネルの水平方向の位置決めをする位置決め部とを有する、薄板パネルの段積みに用いるモジュールであって、
     複数のモジュールが段積みされるとき、モジュール及び前記薄板パネルの重量を支持する本体部であって、前記支持部の外方に形成され、モジュールが積み上げられるときに上位モジュールを受ける上部と、モジュールが積み上げられるときに下位モジュールの当該上部に荷重を伝達する底部と、を有してなる上記本体部を有し、
     前記薄板パネルはその下面が支持部の上面に形成された支持面と当接されるとともに、その上面が積み上げられた上位モジュールの下端面と当接される、
     ことを特徴とする薄板パネルの段積みに用いるモジュール。
    A support part that supports the thin panel from below, a load transmission part that is connected to the support part and transmits the weight of the thin panel in the vertical direction, and a positioning that horizontally positions the thin panel stacked vertically A module used for stacking thin plate panels,
    A main body that supports the weight of the module and the thin panel when a plurality of modules are stacked; an upper part that is formed outside the support and receives the upper module when the modules are stacked; and And a bottom part for transmitting a load to the upper part of the lower module when stacked,
    The lower surface of the thin panel is in contact with a support surface formed on the upper surface of the support portion, and the upper surface is in contact with the lower end surface of the stacked upper module.
    This module is used for stacking thin panels.
PCT/JP2012/001021 2012-02-16 2012-02-16 Module used for stacking thin panels WO2013121461A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/001021 WO2013121461A1 (en) 2012-02-16 2012-02-16 Module used for stacking thin panels
CN201280068877.3A CN104144862B (en) 2012-02-16 2012-02-16 For the module of laminated thin panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001021 WO2013121461A1 (en) 2012-02-16 2012-02-16 Module used for stacking thin panels

Publications (1)

Publication Number Publication Date
WO2013121461A1 true WO2013121461A1 (en) 2013-08-22

Family

ID=48983633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001021 WO2013121461A1 (en) 2012-02-16 2012-02-16 Module used for stacking thin panels

Country Status (2)

Country Link
CN (1) CN104144862B (en)
WO (1) WO2013121461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063334A (en) * 2013-09-25 2015-04-09 大日本印刷株式会社 Storage case
US11891236B2 (en) 2020-02-25 2024-02-06 Pvpallet, Inc. Transport container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126143A (en) * 2019-06-24 2020-12-25 上海清远管业科技股份有限公司 Cassette type HDPE hollow wall shield segment protective sleeve and preparation method thereof
CN112874863B (en) * 2021-02-07 2022-09-06 东莞阿尔泰显示技术有限公司 Packaging structure, stacking packaging structure and technology of LED lamp beads
CN113401685A (en) * 2021-06-03 2021-09-17 河北光兴半导体技术有限公司 Inserting frame system for glass plates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142873A (en) * 1998-11-12 2000-05-23 Dainippon Printing Co Ltd Auxiliary packaging tool and packaged body
JP2009035300A (en) * 2007-08-01 2009-02-19 Nippon Electric Glass Co Ltd Spacer and plate-like object-packaging body
JP2010120690A (en) * 2008-11-21 2010-06-03 Saidetsuku Kk Tray for conveying plate-like goods
JP2011037474A (en) * 2009-08-10 2011-02-24 Sekisui Plastics Co Ltd Solar battery panel packaging material
JP2011178450A (en) * 2010-03-02 2011-09-15 Takigen Mfg Co Ltd Corner supporting member for packing panel
JP2012025473A (en) * 2010-07-27 2012-02-09 Mitsubishi Plastics Inc Corner member and method for stacking panels using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142873A (en) * 1998-11-12 2000-05-23 Dainippon Printing Co Ltd Auxiliary packaging tool and packaged body
JP2009035300A (en) * 2007-08-01 2009-02-19 Nippon Electric Glass Co Ltd Spacer and plate-like object-packaging body
JP2010120690A (en) * 2008-11-21 2010-06-03 Saidetsuku Kk Tray for conveying plate-like goods
JP2011037474A (en) * 2009-08-10 2011-02-24 Sekisui Plastics Co Ltd Solar battery panel packaging material
JP2011178450A (en) * 2010-03-02 2011-09-15 Takigen Mfg Co Ltd Corner supporting member for packing panel
JP2012025473A (en) * 2010-07-27 2012-02-09 Mitsubishi Plastics Inc Corner member and method for stacking panels using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063334A (en) * 2013-09-25 2015-04-09 大日本印刷株式会社 Storage case
US11891236B2 (en) 2020-02-25 2024-02-06 Pvpallet, Inc. Transport container

Also Published As

Publication number Publication date
CN104144862B (en) 2016-05-18
CN104144862A (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5736630B2 (en) Module used for stacking thin panel and method for stacking thin panel
JP5604544B2 (en) Module for stacking thin panels and stacking method of thin panels
JP5303053B2 (en) Rectangular thin panel transport unit
EP2439770B1 (en) Module for stacking thin panels and method of stacking thin panels
JP6028937B2 (en) Transport unit for rectangular thin panel
WO2013121461A1 (en) Module used for stacking thin panels
WO2013128926A1 (en) Transport unit for rectangular thin plate panels
JP2012232781A (en) Module for use in stacking thin plate panel
JP5868211B2 (en) Loading packing device and packing method
CN102530353B (en) Module for stacking thin panels
JP2011148552A (en) Storage container for plate-shaped body
JPWO2013121461A1 (en) Module used for stacking thin panels
JP5181015B2 (en) Vertically mounted thin panel transport unit
KR102203574B1 (en) supporting member for loading solar cell module
JP5914229B2 (en) Corner support mechanism for packaging panel materials
JP5721576B2 (en) Packing body and buffer
JP5401983B2 (en) Assembled container
JP2019018879A (en) Storage tray
JP2017121940A (en) Package and packaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868498

Country of ref document: EP

Kind code of ref document: A1