WO2013120334A1 - 一种芯片cpt原子钟物理系统装置 - Google Patents

一种芯片cpt原子钟物理系统装置 Download PDF

Info

Publication number
WO2013120334A1
WO2013120334A1 PCT/CN2012/078270 CN2012078270W WO2013120334A1 WO 2013120334 A1 WO2013120334 A1 WO 2013120334A1 CN 2012078270 W CN2012078270 W CN 2012078270W WO 2013120334 A1 WO2013120334 A1 WO 2013120334A1
Authority
WO
WIPO (PCT)
Prior art keywords
linearly polarized
divergent light
circular divergent
light
circular
Prior art date
Application number
PCT/CN2012/078270
Other languages
English (en)
French (fr)
Inventor
顾思洪
张奕
屈苏平
史学明
Original Assignee
中国科学院武汉物理与数学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院武汉物理与数学研究所 filed Critical 中国科学院武汉物理与数学研究所
Publication of WO2013120334A1 publication Critical patent/WO2013120334A1/zh
Priority to US14/451,405 priority Critical patent/US9118336B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/06Gaseous, i.e. beam masers

Definitions

  • the present invention relates to the field of atomic clocks, and more particularly to a chip CPT atomic clock physical system device suitable for manufacturing a chip CPT atomic clock. Background technique
  • the atomic clock is a time-measurement tool that uses quantum transitions between different energy levels of microscopic atoms to measure time. Because the frequency of such quantum transitions has a high degree of stability, it is used to lock the frequency of ordinary crystal oscillators.
  • the physical system is the core component of the atomic clock.
  • the quality of the physical system directly determines the performance and performance of the atomic clock. Therefore, the design of the physical system is one of the keys to realize the atomic clock.
  • the interior of the bubble in the physical system contains alkali metal atoms and buffer gas and is heated above room temperature to produce alkali metal atomic vapor.
  • the buffer gas is an inert gas such as nitrogen, methane or helium or a mixed gas thereof, and is used to narrow the line width, fluorescence quenching, and energy level mixing.
  • the alkali metal atoms are ⁇ 133, ⁇ 87 or ⁇ 85, and the resonance between their ground state hyperfine sub-levels is used to identify the frequency of the injected microwave.
  • CPT atomic clock is a new type of atomic clock. It has the characteristics of small size, low power consumption and fast startup. It has broad application prospects. In principle, it is also the only atomic clock that can be miniaturized at present.
  • the MEMS process manufacturing subsystem, the ASIC process to manufacture the electronics system, can implement the chip CPT atomic clock.
  • FIG. 2 is a physical system diagram of a conventional passive bubble CPT atomic clock.
  • a certain power of microwave is mixed with DC through a capacitor, and a mixed electrical signal is injected into a Vertical-Cavity Surface-Emitting Laser (VCSEL) to generate a polygon band.
  • the fundamental frequency of the band is injected by a DC and a laser.
  • Temperature control the frequency difference between adjacent sidebands is equal to the microwave frequency, and the light intensity of each sideband satisfies the Bessel function.
  • CPT resonance requires two sideband excitations. If it is ⁇ 1 edgeband, it is called half-width modulation excitation; if it is fundamental frequency (0 level) and +1 (or -1) The horizontal sideband light is called full width modulation excitation.
  • the effect of the quarter-wave plate is to convert the linearly polarized light output from the VCSEL into left-handed ( ⁇ -) or right-handed ( ⁇ +) circularly polarized light.
  • the bubble is placed in an environment where temperature control is possible to provide the atomic vapor required for the interaction of the atom with the laser.
  • a solenoid (not shown in Fig. 2) is provided outside the bubble to generate a magnetic field parallel to the direction of light propagation.
  • the photodetector detects the laser passing through the bubble and converts it into a photocurrent signal.
  • the above conventional CPT atomic clock uses a single beam of ⁇ - or ⁇ + circularly polarized laser as a light source to excite an atomic transition scheme.
  • This scheme has a disadvantage in that it has an optical pumping effect on the atomic hyperfine splitting magnetic energy level due to circularly polarized laser light. , so that the atom tends to accumulate at the lowest (or maximum) magnetic energy level of the ground state magnetic quantum number, and this energy level does not contribute to the CPT dark state, which we call the polarization dark state.
  • Figure 1 illustrates this phenomenon, so the signal contrast (the amplitude of the photocurrent signal increased by CPT resonance is not higher than the amplitude of the photocurrent signal of the non-resonant).
  • the short-term frequency stability of the CPT atomic clock is inversely proportional to the contrast, so the short-term stability of the CPT atomic clock manufactured by this scheme is not high.
  • the scheme of using orthogonal circular polarization to excite CPT resonance, using ⁇ - and ⁇ + circularly polarized light to simultaneously interact with atoms can eliminate the above-mentioned polarization dark state and obtain a high contrast CPT signal.
  • This scheme can be illustrated by a four-level diagram of the interaction of light with atoms, as shown in Figure 3.
  • ⁇ - and ⁇ + circularly polarized light (2 ⁇ +1) ⁇ ( ⁇ is an integer) in time or space By delaying the time difference of ⁇ - and ⁇ + circularly polarized light (2 ⁇ +1) ⁇ ( ⁇ is an integer) in time or space, the in-phase superposition effect of the state function can be achieved, so that the CPT resonance signal is enhanced and the atom can be Focus on the "0-0 level", as shown in Figure 4. Therefore, the short-term stability of the atomic clock produced by the scheme of orthogonal circular polarization excitation CPT resonance is significantly higher than that of the conventional CPT atomic clock.
  • the object of the present invention is to provide a passive CPT atomic clock physical system device capable of concentrating atoms at a "0-0 level", thereby enhancing the CPT resonance signal and improving the signal, in view of the above problems existing in the prior art. Signal to noise ratio and contrast.
  • all devices in the device are integrated for miniaturization of passive CPT atomic clocks.
  • a chip CPT atomic clock physical system device comprising a vertical cavity surface emitting laser device, further comprising a first polarization beam splitter, a first ⁇ /4 wave plate, an atomic vapor cavity chip, a second ⁇ /4 wave plate and
  • the reflecting device further comprises a lens arranged in sequence, a second polarizing beam splitter and a photodetector, and the linear polarization emitted by the vertical cavity surface emitting laser device
  • the circular divergent light passes through the first polarizing beam splitter to obtain a first linearly polarized circular divergent light, and the first linearly polarized circular divergent light passes through the first ⁇ /4 wave plate to obtain a circularly polarized circular divergent light, and the circularly polarized circular shape
  • the divergent light sequentially passes through the atomic vapor cavity chip and the second ⁇ /4 wave plate to obtain a second linearly polarized circular divergent light, and the second linearly polarized circular divergent light is emitted by the reflecting device to obtain a first linear
  • the vertical cavity surface emitting laser device as described above includes a capacitor, an inductor, and a vertical cavity surface emitting laser.
  • One end of the capacitor is used for microwave input, the other end is connected to the anode of the vertical cavity surface emitting laser, and one end of the inductor is used for current input, and the other end is used for current input.
  • the anode of the vertical cavity surface emitting laser is connected to the cathode of the vertical cavity surface emitting laser.
  • the reflection device as described above comprises a first 45° reflection surface and a second 45° reflection surface, and the second linear polarization circular divergent light is reflected by the first 45° reflection surface to obtain a second linear polarization reflection circular divergence light, and the second linear polarization The reflected circular divergent light is reflected by the second 45° reflecting surface to obtain a first linearly polarized reflective circular divergent light.
  • the incident angle of the second linearly polarized circular divergent light as described above is 45 degrees, and the first 45° reflecting surface (9a) is perpendicular to the second 45° reflecting surface.
  • the linearly polarized circular divergent light, the first linearly polarized circular divergent light, the circularly polarized circular divergent light, and the second linearly polarized circular divergent light have the same beam center, the second linearly polarized reflection circular divergent light and the first
  • the linearly polarized reflected parallel light is perpendicular to the direction of propagation of the linearly polarized circular divergent light, linearly polarized circular divergent light, first linearly polarized circular divergent light, circularly polarized circular divergent light, second linearly polarized circular divergent light,
  • the second linearly polarized reflected circular divergent light, the first linearly polarized reflected circular divergent light, the first linearly polarized parallel light, and the first linearly polarized reflected parallel light are all located on the same plane.
  • the propagation direction of the linearly polarized circular divergent light as described above is the X-axis positive axis direction
  • the reverse direction of the X-axis positive axis direction is the X-axis negative axis direction
  • the inclined surface of the first polarization beam splitter and the second 45° reflection surface The tilting direction of the reflecting surface is 45 degrees clockwise in the negative direction of the X-axis
  • the inclined direction of the inclined surface of the second polarizing beam splitter and the reflecting surface of the first 45° reflecting surface are counterclockwise in the positive X-axis direction. Rotate 45° direction.
  • the second linearly polarized reflection circular divergent light has a propagation direction of the Y-axis positive axis direction, and the optical axis of the first ⁇ /4 wave plate is 45 degrees from the positive axis of the ⁇ axis, and the optical axis of the second ⁇ /4 wave plate is The optical axes of a ⁇ /4 wave plate are parallel.
  • the total optical path of the polarized reflected parallel light is " _, where C is the speed of light in the vacuum, V. . Atom in the atomic vapor cavity chip
  • the transition frequency between two energy levels with zero magnetic quantum number in the ground state hyperfine Zeeman level.
  • the atom can be concentrated at the "0-0 level", which enhances the CPT resonance signal and improves the signal-to-noise ratio and contrast of the signal;
  • the light source and detector can be integrated on the same silicon chip, and the device is more compact.
  • Figure 1 is a single circularly polarized light pumped alkali metal atomic state superfine structure Zeeman energy level population map (taking a representative right-handed polarized light pumping ⁇ 133 atom as an example, the straight line on the energy level represents a single circle Polarized light pumping, energy level distribution in steady state);
  • Figure 2 is a schematic diagram of the physical system of a conventional passive coherent population trapped atomic clock
  • Fig. 3 is a four-level pumping diagram of an orthogonal circularly polarized excitation CPT scheme (taking a representative ⁇ 133 atom as an example);
  • Fig. 4 is an orthogonal circular polarization excitation CPT scheme, an alkali metal atomic ground state hyperfine structure Zeeman energy level The population map (taking the representative ⁇ 133 atom as an example, the straight line on the energy level indicates the orthogonal circularly polarized light pumping, and the energy level population distribution in the steady state);
  • Figure 5 is a schematic diagram of the principle of the present invention.
  • FIG. 6 is a schematic diagram of an implementation flow of the present invention.
  • Figure 7 is a schematic view of the apparatus of the present invention.
  • FIG. 8 is a schematic diagram of the principle of a delay loop according to the present invention.
  • a chip CPT atomic clock physical system device includes a vertical cavity surface emitting laser device, and further includes a first polarization beam splitter 6a, a first ⁇ /4 wave plate 7a, and an atomic vapor cavity chip 8 which are sequentially disposed.
  • a second ⁇ /4 wave plate 7b and a reflecting device further comprising a lens 10, a second polarization beam splitter 6b and a photodetector 11 arranged in sequence, and the linearly polarized circular divergent light 12a emitted by the vertical cavity surface emitting laser device passes After the first polarization beam splitter 6a, the first linearly polarized circular divergent light 12b is obtained, and the first linearly polarized circular divergent light 12b is obtained by the first ⁇ /4 wave plate 7a to obtain circularly polarized circular divergent light 12c, which is circularly polarized and circular.
  • the divergent light 12c sequentially passes through the atomic vapor cavity chip 8 and the second ⁇ /4 wave plate 7b to obtain a second linearly polarized circular divergent light 12d, and the second linearly polarized circular divergent light 12d is emitted by the reflecting device to obtain a first linearly polarized reflection circle.
  • the first linearly polarized parallel light 12f is obtained by the first linearly polarized parallel light 12f, and the first linearly polarized parallel light 12g is reflected by the second polarizing beam splitter 6b to obtain a first linearly polarized reflection parallel.
  • the parallel light 12h is reflected by the first polarization beam splitter 6a, and then merged with the first linearly polarized circular divergent light 12b, and the first linearly polarized reflected parallel light 12h reflected by the first polarization beam splitter 6a passes through the first
  • the ⁇ /4 wave plate 7a, the atomic vapor cavity chip 8 and the second ⁇ /4 wave plate 7b are then reflected by the reflecting means and then sequentially transmitted to the photodetector 11 through the lens 10 and the second polarizing beam splitter 6b to be converted into current output. .
  • the vertical cavity surface emitting laser 5 in the vertical cavity surface emitting laser device emits linearly polarized circular divergent light 12a, and the linearly polarized circular divergent light 12a transmits the first linearly polarized circular divergent light 12b through the first polarizing beam splitter 6a.
  • the first linearly polarized circular divergent light 12b obtains circularly polarized circular divergent light 12c through the first ⁇ /4 wave plate 7a, and the circularly polarized circular divergent light 12c sequentially passes through the atomic vapor cavity chip 8 and the second ⁇ /4 wave plate 7b.
  • the second linearly polarized circular divergent light 12d is obtained, and the second linearly polarized circular divergent light 12d is emitted by the reflecting device to obtain a first linearly polarized and reflected circular divergent light 12f, and the first linearly polarized and reflected circular divergent light 12f is transmitted through the lens.
  • the first linearly polarized parallel light 12g, the distance between the light emitting plane of the vertical cavity surface emitting laser 5 and the lens is the focal length of the fixed lens, and the lens is placed at a position reflected by the reflecting device, and the physical system device is reduced by the reflection. volume of.
  • the vertical cavity surface emitting laser 5 and the photodetector 11 are integrated on one chip, which can reduce the volume of the physical system device compared with the conventional physical system.
  • the vertical cavity surface emitting laser device comprises a capacitor 3, an inductor 4 and a vertical cavity surface emitting laser 5, the capacitor 3 end is used for microwave input, the other end is connected with the anode of the vertical cavity surface emitting laser 5, and the inductor (4) is used for current at one end. The other end is connected to the anode of the vertical cavity surface emitting laser 5, and the cathode of the vertical cavity surface emitting laser 5 is electrically connected.
  • the reflecting device comprises a first 45° reflecting surface 9a and a second 45° reflecting surface 9b, and the second linearly polarized circular divergent light 12d is reflected by the first 45° reflecting surface 9a to obtain a second linearly polarized reflecting circular divergent light 12e, the second line
  • the polarized reflection circular divergent light 12e is reflected by the second 45° reflection surface 9b to obtain a first linearly polarized reflection circular divergent light 12f.
  • the incident angle of the second linearly polarized circular divergent light 12d is 45 degrees, and the first 45° reflecting surface 9a is perpendicular to the second 45° reflecting surface 9b.
  • the center of the beam of the linearly polarized circular divergent light 12a, the first linearly polarized circular divergent light 12b, the circularly polarized circular divergent light 12c, and the second linearly polarized circular divergent light 12d are all coincident, and the second linearly polarized reflection circular divergent light 12e and The first linearly polarized reflected parallel light 12h is perpendicular to the propagation direction of the linearly polarized circular divergent light 12a, the linearly polarized circular divergent light 12a, the first linearly polarized circular divergent light 12b, the circularly polarized circular divergent light 12c, and the second line
  • the polarization circular divergent light 12d, the second linear polarization reflection circular divergence light 12e, the first linear polarization reflection circular divergence light 12f, the first linear polarization parallel light 12g, and the first linear polarization reflection parallel light 12h are all located on the same plane.
  • the direction of propagation of the linearly polarized circular divergent light 12a is the X-axis positive axis direction
  • the opposite direction of the X-axis positive-axis direction is the X-axis negative axis direction
  • the inclination direction of the reflecting surface is a direction of 45 degrees clockwise rotation of the X-axis negative axis direction
  • the inclination direction of the inclined surface of the second polarization beam splitter 6b and the reflection surface of the first 45° reflection surface 9a is reversed by the X-axis positive axis direction.
  • the hour hand rotates in the 45° direction.
  • the propagation direction of the second linearly polarized reflection circular divergent light 12e is the Y-axis positive axis direction
  • the optical axis of the first ⁇ /4 wave plate 7a is 45 degrees from the positive axis direction of the Y-axis
  • the light of the second ⁇ /4 wave plate 7b The axis is parallel to the optical axis of the first ⁇ /4 wave plate 7a.
  • the total optical path of the linearly polarized parallel light 12g and the first linearly polarized reflected parallel light 12h is ⁇ , where c is the speed of light in the vacuum, V. .
  • the transition frequency between two energy levels with zero magnetic quantum number in the atomic ground state super-fine Zeeman energy level in the cavity chip.
  • the propagation direction of the linearly polarized circular divergent light 12a is the X-axis positive axis direction
  • the propagation direction of the second linear polarization reflection circular divergent light 12e is the Y-axis positive axis direction
  • the optical axis and the Y-axis of the first ⁇ /4 wave plate 7a The direction is 45°
  • the optical axis of the second ⁇ /4 wave plate 7b is parallel to the optical axis of the first ⁇ /4 wave plate 7a, so that the linearly polarized light beam in the Y-axis direction passes through the first ⁇ /4 wave plate 7a.
  • It is a magnetic left-handed (or right-handed) circularly polarized light.
  • Magnetic left-handed (or right-handed) circularly polarized light is defined as the opposite direction of the spin of the photon (or in the same direction) in the direction of the quantization axis, so the atom absorbs a magnetic left-handed (or right-handed) circularly polarized photon and then axially spins.
  • the angular momentum is reduced (or increased) by 3 ⁇ 4.
  • the +1-order sideband light of the laser emitted by the vertical cavity surface emitting laser 5 is adjusted to ⁇ 133 atoms
  • 6 2 /2 , 3 > and
  • F 4 > two-level electric dipole resonance
  • -1 level sideband light is adjusted to ⁇ 133 atom
  • 6 2 /2 , 4 > and ⁇ 6 2 P 1/2
  • F 4 > Two-level electric dipole transition resonance.
  • the frequency of the microwave input 1 is scanned, and the current output 13 of the photodetector 11 reflects the strength of the CPT resonance, and the current output 13 is the frequency identification signal of the microwave input 1, ie Achieve frequency discrimination 4.
  • the invention obtains a significantly larger amplitude of the frequency-modulated signal and can improve the performance of the passive coherent population trapped atomic clock.
  • the invention can concentrate the atoms at the "0-0 level", so that the CPT resonance signal is enhanced, and the signal-to-noise ratio and contrast of the signal are improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种芯片CPT原子钟物理系统装置,其中,垂直腔面发射激光装置发出的线偏振圆形发散光(12a)依次通过第一偏振分束器(6a)、第一λ /4波片(7a)、原子蒸汽腔芯片(8)和第二λ /4波片(7b)后经反射装置反射后通过透镜(10),然后经第二偏振分束器(6b)反射后依次通过第一λ /4波片(7a)、原子蒸汽腔芯片(8)和第二λ /4波片(7b),然后经反射装置反射后依次通过透镜(10)和第二偏振分束器(6b)传送到光电探测器(11)转换成电流输出。该装置能将原子集中在"0-0能级",使得CPT共振信号增强,提高信号的信噪比和对比度;光源、探测器可以集成在同一个硅片上,装置更小型化。

Description

一种芯片 CPT原子钟物理系统装置
技术领域
本发明技术涉及原子钟领域, 尤其涉及一种芯片 CPT原子钟物理系统装置, 适用于 制造芯片 CPT原子钟。 背景技术
原子钟是一种计量时间的工具, 利用微观世界原子不同能级之间的量子跃迁计量时 间, 因为这种量子跃迁的频率具有很高的稳定度, 用其对普通的晶体振荡器频率进行锁 定, 制造出具有很高稳定度的原子钟。 原子钟成为一种提供高稳定度、 高准确度的频率 信号的设备, 可以满足守时授时、 导航定位、 精密测量、 高速通信等众多要求。
物理系统是原子钟的核心部件, 物理系统的好坏直接决定了原子钟性能和指标的优 劣, 因此, 物理系统的设计是实现原子钟的关键之一。 物理系统中的汽泡内部包含碱金 属原子和缓冲气体, 并被加热到高于室温以产生碱金属原子蒸汽。 缓冲气体为氮气、 甲 烷、氦气等不活泼气体或它们的混合气体, 用来压窄谱线宽度、 荧光淬灭、 能级混杂等。 碱金属原子为铯 133、铷 87或铷 85,它们的基态超精细子能级之间的共振用来鉴定注入 微波的频率。 如图 1所示, 在弱磁场下, 由于两 mF=0的能级 ("0-0"能级) 对磁场不敏 感,因此常用它们之间的跃迁频率 ¼Q作为原子钟鉴频频率。当微波频率扫过跃迁频率时, 共振信号表现为探测光信号会出现一个凹陷或者凸起, 利用本地振荡器产生微波, 将此 微波锁定到共振信号中凹陷或凸起所对应的中心跃迁频率上, 就可得到精密的本地振荡 器时钟信号输出。
CPT原子钟是一种新型原子钟, 具有体积小、 功耗低、 启动快等特点, 有着广泛的 应用前景。原理上, 它也是目前已知的唯一可微型化的原子钟。应用 MEMS工艺制造量 子系统, ASIC工艺制造电子学系统, 可以实现芯片 CPT原子钟。
图 2是传统的被动型汽泡式 CPT原子钟的物理系统方案图。 一定功率的微波通过电 容与直流混合, 混合的电信号注入垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser, 简称 VCSEL) 来产生多边带光, 该多边带光的基频受注入直流和激光器温度控 制, 相邻边带的频差等于微波频率, 各边带光强度满足贝塞尔函数。 CPT共振需其中两 个边带激发, 若为 ±1级边带光, 则称为半宽调制激发; 若为基频 (0级) 和 +1 (或 -1 ) 级边带光, 称为全宽调制激发。 四分之一波片 (λ/4波片) 的作用是将 VCSEL输出的线 偏振光转变成左旋 (σ-) 或右旋 (σ+) 圆偏振光。 汽泡置于可准确控温的环境中, 为原 子与激光相互作用提供所需的原子蒸汽。 在对环境磁场作屏蔽的前提下, 在汽泡外设置 螺线管 (图 2中未画出) 产生平行于光传播方向的磁场。 光电探测器探测透过汽泡的激 光, 并转变为光电流信号。 合理控制注入直流和激光管温度, 使 VCSEL输出光中激发 CPT的两个边带分别激发两基态到同一激发态的电偶极跃迁(D1线或 D2线跃迁) 。 调 节微波频率从而改变两边带光的频率差, 当频率差扫过超精细能级" 0-0"共振频率时, 光 电探测器输出光电流将出现一个共振信号。 处理该共振信号得到反馈控制微波频率的信 号, 实现闭环控制后, 即可得到精密的本地振荡器时钟信号输出。
上述传统的 CPT 原子钟采用单束的 σ-或 σ+圆偏振激光作为光源激发原子跃迁方 案,这种方案有一个缺点, 即由于圆偏振激光对原子超精细分裂磁子能级的光抽运效应, 使得原子倾向于累积在基态磁量子数最小(或最大) 的磁子能级上, 而这个能级对 CPT 暗态是没有贡献的, 我们称之为极化暗态。 图 1说明了此现象, 因此信号对比度 (CPT 共振增加的光电流信号幅度比上非共振的光电流信号幅度)不高。而 CPT原子钟的短期 频率稳定度与对比度成反比, 因此该方案制造的 CPT原子钟的短期稳定度不高。
采用正交圆偏振激发 CPT共振的方案, 利用 σ-和 σ+圆偏振光同时与原子作用, 可 以消除上述极化暗态, 得到高对比度 CPT信号。该方案可用一个光与原子相互作用的四 能级图来说明, 如图 3所示。 通过在时间或者空间上延时使 σ-和 σ+圆偏振光相位差为 (2η+1 ) π (η为整数), 可以达到态函数同相叠加效果, 使得 CPT共振信号增强, 并能 将原子集中在 "0-0能级", 如图 4所示。 因此正交圆偏振激发 CPT共振的方案制作的原 子钟短期稳定度会明显高于传统 CPT原子钟。 发明内容
本发明的目的是针对现有的技术存在的上述问题,提供一种被动型 CPT原子钟物理 系统装置, 该装置能将原子集中在" 0-0能级", 使得 CPT共振信号增强, 提高信号的信 噪比和对比度。 另外, 装置中所有器件都利于集成, 可实现微型化被动型 CPT原子钟。
本发明的目的可通过下列技术方案来实现:
一种芯片 CPT原子钟物理系统装置, 包括垂直腔面发射激光装置, 还包括依次设置 的第一偏振分束器、第一 λ/4波片、原子蒸汽腔芯片、第二 λ/4波片和反射装置, 还包括 依次设置的透镜、 第二偏振分束器和光电探测器, 垂直腔面发射激光装置发出的线偏振 圆形发散光通过第一偏振分束器后得到第一线偏振圆形发散光, 第一线偏振圆形发散光 通过第一 λ/4波片得到圆偏振圆形发散光, 圆偏振圆形发散光依次通过原子蒸汽腔芯片 和第二 λ/4波片后得到第二线偏振圆形发散光, 第二线偏振圆形发散光经反射装置发射 后得到第一线偏振反射圆形发散光, 第一线偏振反射圆形发散光通过透镜得到第一线偏 振平行光, 第一线偏振平行光经过第二偏振分束器反射得到第一线偏振反射平行光, 第 一线偏振反射平行光经过第一偏振分束器反射后与第一线偏振圆形发散光合束, 经过第 一偏振分束器反射后的第一线偏振反射平行光依次通过第一 λ/4波片、 原子蒸汽腔芯片 和第二 λ/4波片, 然后经反射装置反射后依次通过透镜和第二偏振分束器传送到光电探 测器转换成电流输出。
如上所述的垂直腔面发射激光装置包括电容、 电感和垂直腔面发射激光器, 电容一 端用于微波输入, 另一端与垂直腔面发射激光器的阳极连接, 电感一端用于电流输入, 另一端与垂直腔面发射激光器的阳极连接, 垂直腔面发射激光器的阴极与电气地连接。
如上所述的反射装置包括第一 45°反射面和第二 45°反射面,第二线偏振圆形发散光 经第一 45°反射面反射后得到第二线偏振反射圆形发散光, 第二线偏振反射圆形发散光 经第二 45°反射面反射后得到第一线偏振反射圆形发散光。
如上所述的第二线偏振圆形发散光的入射角为 45度, 第一 45°反射面 (9a) 与第二 45°反射面垂直。
如上所述的线偏振圆形发散光、 第一线偏振圆形发散光、 圆偏振圆形发散光和第二 线偏振圆形发散光的光束中心均重合, 第二线偏振反射圆形发散光和第一线偏振反射平 行光均垂直于线偏振圆形发散光的传播方向, 线偏振圆形发散光、 第一线偏振圆形发散 光、 圆偏振圆形发散光、 第二线偏振圆形发散光、 第二线偏振反射圆形发散光、 第一线 偏振反射圆形发散光、 第一线偏振平行光和第一线偏振反射平行光均位于同一平面。
如上所述的线偏振圆形发散光的传播方向为 X轴正轴方向, X轴正轴方向的反方向 为 X轴负轴方向, 第一偏振分束器的斜面和第二 45°反射面的反射面的倾斜方向均为 X 轴负轴方向顺时针旋转 45度方向, 第二偏振分束器的斜面和第一 45°反射面的反射面的 倾斜方向均为 X轴正轴方向逆时针旋转 45°方向。
第二线偏振反射圆形发散光的传播方向为 Y轴正轴方向, 第一 λ/4波片的光轴与 Υ 轴正轴方向呈 45度, 第二 λ/4波片的光轴与第一 λ/4波片的光轴平行。
如上所述的第一线偏振圆形发散光、 圆偏振圆形发散光、 第二线偏振圆形发散光、 第二线偏振反射圆形发散光、 第一线偏振反射圆形发散光、 第一线偏振平行光和第一线 偏振反射平行光的总光程为」 _, 其中 C为真空中的光速, V。。为原子蒸汽腔芯片中原子
2^00
基态超精细塞曼能级中磁量子数为零的两能级之间跃迁频率。
与现有技术相比, 本发明的有益效果是:
1. 能将原子集中在" 0-0能级", 使得 CPT共振信号增强, 提高信号的信噪比和对比 度;
2. 光源、 探测器可以集成在同一个硅片上, 装置更小型化。 附图说明
图 1为单一圆偏振光抽运碱金属原子基态超精细结构塞曼能级布居图 (以具有代表 性的右旋偏振光抽运铯 133原子为例, 能级上的直条表示单一圆偏振光抽运, 稳态时能 级布居数分布);
图 2为传统的被动型相干布居囚禁原子钟的物理系统方案图;
图 3为正交圆偏振激发 CPT方案四能级抽运图(以具有代表性的铯 133原子为例); 图 4为正交圆偏振激发 CPT方案碱金属原子基态超精细结构塞曼能级布居图(以具 有代表性的铯 133原子为例, 能级上的直条表示正交圆偏振光抽运, 稳态时能级布居数 分布);
图 5为本发明的原理示意图;
图 6为本发明的实施流程示意图;
图 7为本发明的装置示意图;
图 8为本发明的延时环路原理示意图;
图中: 1-微波输入; 2-电流输入; 3-电容; 4-电感; 5-垂直腔面发射激光器; 6a-第一 偏振分束器; 6b-第二偏振分束器; 7a-第一 λ/4波片; 7b-第二 λ/4波片; 8-原子蒸汽腔芯 片; 9a-梯形棱镜的第一 45°反射面; 9b-梯形棱镜的第二 45°反射面; 10-透镜; 11-光电 探测器; 12a-线偏振圆形发散光; 12b-第一线偏振圆形发散光; 12c-圆偏振圆形发散光; 12d-第二线偏振圆形发散光; 12e-第二线偏振反射圆形发散光; 12f-第一线偏振反射圆形 发散光; 12g-第一线偏振平行光; 12h-第一线偏振反射平行光。 具体实施方式
实施例 1 : 如图 7所示, 一种芯片 CPT原子钟物理系统装置, 包括垂直腔面发射激光装置, 还 包括依次设置的第一偏振分束器 6a、 第一 λ/4波片 7a、 原子蒸汽腔芯片 8、 第二 λ/4波 片 7b和反射装置, 还包括依次设置的透镜 10、第二偏振分束器 6b和光电探测器 11, 垂 直腔面发射激光装置发出的线偏振圆形发散光 12a通过第一偏振分束器 6a后得到第一线 偏振圆形发散光 12b, 第一线偏振圆形发散光 12b通过第一 λ/4波片 7a得到圆偏振圆形 发散光 12c, 圆偏振圆形发散光 12c依次通过原子蒸汽腔芯片 8和第二 λ/4波片 7b后得 到第二线偏振圆形发散光 12d, 第二线偏振圆形发散光 12d经反射装置发射后得到第一 线偏振反射圆形发散光 12f, 第一线偏振反射圆形发散光 12f通过透镜 10得到第一线偏 振平行光 12g,第一线偏振平行光 12g经过第二偏振分束器 6b反射得到第一线偏振反射 平行光 12h, 第一线偏振反射平行光 12h经过第一偏振分束器 6a反射后与第一线偏振圆 形发散光 12b合束,经过第一偏振分束器 6a反射后的第一线偏振反射平行光 12h依次通 过第一 λ/4波片 7a、 原子蒸汽腔芯片 8和第二 λ/4波片 7b, 然后经反射装置反射后依次 通过透镜 10和第二偏振分束器 6b传送到光电探测器 11转换成电流输出。
垂直腔面发射激光装置中的垂直腔面发射激光器 5发射出线偏振圆形发散光 12a, 线偏振圆形发散光 12a透过第一偏振分束器 6a得到第一线偏振圆形发散光 12b, 第一线 偏振圆形发散光 12b通过第一 λ/4波片 7a得到圆偏振圆形发散光 12c, 圆偏振圆形发散 光 12c依次通过原子蒸汽腔芯片 8和第二 λ/4波片 7b后得到第二线偏振圆形发散光 12d, 第二线偏振圆形发散光 12d经反射装置发射后得到第一线偏振反射圆形发散光 12f, 第 一线偏振反射圆形发散光 12f透过透镜得到第一线偏振平行光 12g, 垂直腔面发射激光 器 5的发光平面与透镜间的距离为固定的透镜的焦距, 将透镜放置在经反射装置反射后 的位置上, 利用反射减小了物理系统装置的体积。
垂直腔面发射激光器 5与光电探测器 11集成在一块芯片上,与传统的物理系统相比, 可以减小物理系统装置的体积。
垂直腔面发射激光装置包括电容 3、电感 4和垂直腔面发射激光器 5, 电容 3—端用 于微波输入,另一端与垂直腔面发射激光器 5的阳极连接, 电感(4)一端用于电流输入, 另一端与垂直腔面发射激光器 5的阳极连接, 垂直腔面发射激光器 5的阴极与电气地连 接。
反射装置包括第一 45°反射面 9a和第二 45°反射面 9b, 第二线偏振圆形发散光 12d 经第一 45°反射面 9a反射后得到第二线偏振反射圆形发散光 12e, 第二线偏振反射圆形 发散光 12e经第二 45°反射面 9b反射后得到第一线偏振反射圆形发散光 12f。 第二线偏振圆形发散光 12d的入射角为 45度,第一 45°反射面 9a与第二 45°反射面 9b垂直。
线偏振圆形发散光 12a、第一线偏振圆形发散光 12b、 圆偏振圆形发散光 12c和第二 线偏振圆形发散光 12d的光束中心均重合, 第二线偏振反射圆形发散光 12e和第一线偏 振反射平行光 12h均垂直于线偏振圆形发散光 12a的传播方向, 线偏振圆形发散光 12a、 第一线偏振圆形发散光 12b、 圆偏振圆形发散光 12c、 第二线偏振圆形发散光 12d、 第二 线偏振反射圆形发散光 12e、第一线偏振反射圆形发散光 12f、第一线偏振平行光 12g和 第一线偏振反射平行光 12h均位于同一平面。
线偏振圆形发散光 12a的传播方向为 X轴正轴方向, X轴正轴方向的反方向为 X轴 负轴方向, 第一偏振分束器 6a的斜面和第二 45°反射面 9b的反射面的倾斜方向均为 X 轴负轴方向顺时针旋转 45度方向, 第二偏振分束器 6b的斜面和第一 45°反射面 9a的反 射面的倾斜方向均为 X轴正轴方向逆时针旋转 45°方向。
第二线偏振反射圆形发散光 12e的传播方向为 Y轴正轴方向,第一 λ/4波片 7a的光 轴与 Y轴正轴方向呈 45度, 第二 λ/4波片 7b的光轴与第一 λ/4波片 7a的光轴平行。
第一线偏振圆形发散光 12b、 圆偏振圆形发散光 12c、 第二线偏振圆形发散光 12d、 第二线偏振反射圆形发散光 12e、第一线偏振反射圆形发散光 12f、第一线偏振平行光 12g 和第一线偏振反射平行光 12h的总光程为 ^, 其中 c为真空中的光速, V。。为原子蒸汽
2^00
腔芯片中原子基态超精细塞曼能级中磁量子数为零的两能级之间跃迁频率。
线偏振圆形发散光 12a的传播方向为 X轴正轴方向,第二线偏振反射圆形发散光 12e 的传播方向为 Y轴正轴方向, 第一 λ/4波片 7a的光轴与 Y轴方向呈 45°, 第二 λ/4波片 7b的光轴与第一 λ/4波片 7a的光轴平行, 因此 Y轴方向上的线偏振光束经过第一 λ/4 波片 7a后变为磁左旋(或右旋) 圆偏振光。 磁左旋(或右旋) 圆偏振光定义为光子的自 旋方向反向 (或同向) 于量子化轴方向, 故原子吸收一个磁左旋 (或右旋) 圆偏振光光 子后轴向自旋角动量减小 (或增加) ¾。
如图 6所示, 第二步骤中, 与传统被动型 CPT原子钟中的方法相似, 将垂直腔面发 射激光器 5 发射的激光中 +1 级边带光调节到与铯 133 原子 | 62 /2, = 3 >和| 62 ^2
F = 4 >两能级的电偶极跃迁共振, -1 级边带光调节到与铯 133 原子 | 62 /2, = 4 >和 \ 62 P1/2 , F = 4 >两能级的电偶极跃迁共振。 如图 6所示, 第三步骤中, 扫描微波输入 1的频率, 光电探测器 11的电流输出 13 大小反应了 CPT共振的强弱, 该电流输出 13即为微波输入 1的频率鉴定信号, 即实现 鉴频 4。
本发明与传统被动型相干布居囚禁原子钟方案相比,获得的鉴频信号幅度明显较大, 能提高被动型相干布居囚禁原子钟的性能。
上述的实施方式只是本发明的一个具有代表性的特例, 同领域的工作人员通过共知 常识及本发明可得碱金属原子(铯 133、 铷 87、 铷 85 )、 不同谱线 (D1线和 D2线)、 不 同调制方式 (半宽调制和全宽调制) 的实施办法。
本发明能将原子集中在" 0-0能级", 使得 CPT共振信号增强, 提高信号的信噪比和 对比度。

Claims

权 利 要 求 书
1、 一种芯片 CPT 原子钟物理系统装置, 包括垂直腔面发射激光装置, 其特征在于: 还包括依次设置的第一偏振分束器 (6a)、 第一 λ/4波片 (7a)、 原子蒸汽腔芯片 (8)、 第二 λ/4波片 (7b) 和反射装置, 还包括依次设置的 透镜 (10)、 第二偏振分束器 (6b) 和光电探测器 ( 11), 垂直腔面发射激光 装置发出的线偏振圆形发散光 ( 12a) 通过第一偏振分束器 (6a) 后得到第一 线偏振圆形发散光 (12b), 第一线偏振圆形发散光 (12b) 通过第一 λ/4波片 (7a) 得到圆偏振圆形发散光 (12c), 圆偏振圆形发散光 (12c) 依次通过原 子蒸汽腔芯片(8)和第二 λ/4波片(7b)后得到第二线偏振圆形发散光(12d), 第二线偏振圆形发散光 ( 12d) 经反射装置发射后得到第一线偏振反射圆形 发散光 (12f), 第一线偏振反射圆形发散光 ( 12f) 通过透镜 ( 10) 得到第一 线偏振平行光 (12g), 第一线偏振平行光 (12g) 经过第二偏振分束器 (6b) 反射得到第一线偏振反射平行光 ( 12h), 第一线偏振反射平行光 ( 12h) 经 过第一偏振分束器 (6a) 反射后与第一线偏振圆形发散光 (12b) 合束, 经过 第一偏振分束器 (6a) 反射后的第一线偏振反射平行光 ( 12h) 依次通过第一 λ/4波片 (7a)、 原子蒸汽腔芯片 (8) 和第二 λ/4波片 (7b), 然后经反射装 置反射后依次通过透镜(10)和第二偏振分束器(6b)传送到光电探测器( 11) 转换成电流输出。
2、 根据权利要求 1 所述的一种芯片 CPT原子钟物理系统装置, 其特征 在于: 所述的垂直腔面发射激光装置包括电容 (3)、 电感 (4) 和垂直腔面 发射激光器 (5), 电容 (3) —端用于微波输入, 另一端与垂直腔面发射激 光器 (5) 的阳极连接, 电感 (4) 一端用于电流输入, 另一端与垂直腔面发 射激光器 (5) 的阳极连接, 垂直腔面发射激光器 (5) 的阴极与电气地连接。
3、 根据权利要求 1 所述的一种芯片 CPT原子钟物理系统装置, 其特征 在于: 所述的反射装置包括第一 45°反射面 (9a) 和第二 45°反射面 (9b), 第二线偏振圆形发散光 ( 12d) 经第一 45°反射面 (9a) 反射后得到第二线偏 振反射圆形发散光 ( 12e), 第二线偏振反射圆形发散光 (12e) 经第二 45°反 射面 (9b) 反射后得到第一线偏振反射圆形发散光 ( 12f)。
4、 根据权利要求 3所述的一种芯片 CPT原子钟物理系统装置, 其特征 在于: 所述的第二线偏振圆形发散光 (12d) 的入射角为 45 度, 第一 45°反 射面 (9a) 与第二 45°反射面 (9b) 垂直。
5、 根据权利要求 3所述的一种芯片 CPT原子钟物理系统装置, 其特征 在于: 所述的线偏振圆形发散光 ( 12a)、 第一线偏振圆形发散光 (12b)、 圆 偏振圆形发散光 ( 12c) 和第二线偏振圆形发散光 (12d) 的光束中心均重合, 第二线偏振反射圆形发散光 (12e) 和第一线偏振反射平行光 (12h) 均垂直 于线偏振圆形发散光 ( 12a) 的传播方向, 线偏振圆形发散光 ( 12a)、 第一线 偏振圆形发散光 ( 12b)、 圆偏振圆形发散光 ( 12c)、 第二线偏振圆形发散光
( 12d)、 第二线偏振反射圆形发散光 ( 12e)、 第一线偏振反射圆形发散光 ( 12f)、 第一线偏振平行光 ( 12g) 和第一线偏振反射平行光 ( 12h) 均位于 同一平面。
6、 根据权利要求 3所述的一种芯片 CPT原子钟物理系统装置, 其特征 在于: 所述的线偏振圆形发散光 (12a) 的传播方向为 X轴正轴方向, X轴 正轴方向的反方向为 X轴负轴方向, 第一偏振分束器(6a)的斜面和第二 45° 反射面 (9b) 的反射面的倾斜方向均为 X轴负轴方向顺时针旋转 45度方向, 第二偏振分束器 (6b) 的斜面和第一 45°反射面 (9a) 的反射面的倾斜方向 均为 X轴正轴方向逆时针旋转 45°方向。
第二线偏振反射圆形发散光(12e)的传播方向为 Y轴正轴方向,第一 λ/4 波片 (7a) 的光轴与 Y轴正轴方向呈 45度, 第二 λ/4波片 (7b) 的光轴与第 一 λ/4波片 (7a) 的光轴平行。
7、 根据权利要求 3所述的一种芯片 CPT原子钟物理系统装置, 其特征 在于: 所述的第一线偏振圆形发散光 (12b)、 圆偏振圆形发散光 (12c)、 第 二线偏振圆形发散光 (12d)、 第二线偏振反射圆形发散光 (12e)、 第一线偏 振反射圆形发散光 ( 12f)、 第一线偏振平行光 (12g) 和第一线偏振反射平行 光 ( 12h) 的总光程为 ^, 其中 C为真空中的光速, V。。为原子蒸汽腔芯片中
2^00
原子基态超精细塞曼能级中磁量子数为零的两能级之间跃迁频率。
PCT/CN2012/078270 2012-02-15 2012-07-30 一种芯片cpt原子钟物理系统装置 WO2013120334A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/451,405 US9118336B2 (en) 2012-02-15 2014-08-04 Physical system for chip-scale CPT atomic clock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100338076A CN102799101B (zh) 2012-02-15 2012-02-15 一种芯片cpt原子钟物理系统装置
CN201210033807.6 2012-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/451,405 Continuation-In-Part US9118336B2 (en) 2012-02-15 2014-08-04 Physical system for chip-scale CPT atomic clock

Publications (1)

Publication Number Publication Date
WO2013120334A1 true WO2013120334A1 (zh) 2013-08-22

Family

ID=47198231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078270 WO2013120334A1 (zh) 2012-02-15 2012-07-30 一种芯片cpt原子钟物理系统装置

Country Status (3)

Country Link
US (1) US9118336B2 (zh)
CN (1) CN102799101B (zh)
WO (1) WO2013120334A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196549A (zh) * 2019-06-29 2019-09-03 蚌埠学院 一种实现正交圆偏振光cpt原子钟物理系统的装置
CN116826521A (zh) * 2023-08-31 2023-09-29 中国航天三江集团有限公司 一种反射式原子气室及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981396B (zh) * 2012-12-11 2014-11-05 中国科学院武汉物理与数学研究所 双调制互注入的相干双色光源生成装置
JP6346446B2 (ja) 2013-02-14 2018-06-20 株式会社リコー 原子発振器、cpt共鳴の検出方法及び磁気センサ
CN103955130A (zh) * 2014-05-11 2014-07-30 中国科学院武汉物理与数学研究所 相干布局囚禁磁光效应的差分探测装置及方法
US9529334B2 (en) * 2015-03-31 2016-12-27 Texas Instruments Incorporated Rotational transition based clock, rotational spectroscopy cell, and method of making same
CN106200355A (zh) * 2016-09-23 2016-12-07 中国科学院武汉物理与数学研究所 一种微型cpt原子钟光源产生装置
US10520900B2 (en) 2016-12-28 2019-12-31 Texas Instruments Incorporated Methods and apparatus for magnetically compensated chip scale atomic clock
CN109839606B (zh) * 2019-03-13 2020-11-06 中国科学院武汉物理与数学研究所 一种新型原子磁强计装置及检测方法
CN110750044A (zh) * 2019-11-07 2020-02-04 蚌埠学院 一种可集成的cpt原子钟物理系统装置
CN112039523B (zh) * 2020-09-04 2023-09-22 中国科学院精密测量科学与技术创新研究院 基于极化调制的铷双光子跃迁光频标
CN112578660B (zh) * 2020-12-21 2022-02-08 中国计量科学研究院 基于笼式结构的喷泉钟探测光装置及调整方法
CN113406876B (zh) * 2021-06-18 2022-07-12 中国科学院国家授时中心 连续式cpt态制备与差分探测的方法及系统
CN114675524B (zh) * 2022-04-08 2024-02-09 湖北科技学院 一种微型cpt原子钟物理系统装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603984A (zh) * 2004-11-05 2005-04-06 中国科学院武汉物理与数学研究所 相干布局数囚禁冷原子钟
US20050212607A1 (en) * 2004-02-18 2005-09-29 William Happer Method and system for operating an atomic clock with alternating-polarization light
CN101488753A (zh) * 2009-02-17 2009-07-22 北京大学 一种原子钟基准频率的获取方法及原子钟
EP2131500A2 (en) * 2008-06-02 2009-12-09 SEPA - Sistemi Elettronici Per Automazione S.P.A. Atomic beam tube with counter propagating optical or atomic beams

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136261A (en) * 1990-12-11 1992-08-04 Ball Corporation Saturated absorption double resonance system and apparatus
US6320472B1 (en) * 1999-01-26 2001-11-20 Kernco, Inc. Atomic frequency standard
US6265945B1 (en) * 1999-10-25 2001-07-24 Kernco, Inc. Atomic frequency standard based upon coherent population trapping
US8605282B2 (en) * 2009-05-08 2013-12-10 Ben-Gurion University Of The Negev Research And Development Authority Method and apparatus for high precision spectroscopy
EP2473886B1 (fr) * 2009-09-04 2013-05-29 CSEM Centre Suisse D'electronique Et De Microtechnique SA Dispositif pour horloge atomique
CN101847994B (zh) * 2010-05-05 2012-04-04 中国科学院武汉物理与数学研究所 一种微波周期性On-Off调制VCSEL实现Ramsey-CPT原子频标的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212607A1 (en) * 2004-02-18 2005-09-29 William Happer Method and system for operating an atomic clock with alternating-polarization light
CN1603984A (zh) * 2004-11-05 2005-04-06 中国科学院武汉物理与数学研究所 相干布局数囚禁冷原子钟
EP2131500A2 (en) * 2008-06-02 2009-12-09 SEPA - Sistemi Elettronici Per Automazione S.P.A. Atomic beam tube with counter propagating optical or atomic beams
CN101488753A (zh) * 2009-02-17 2009-07-22 北京大学 一种原子钟基准频率的获取方法及原子钟

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO, YUANHONG ET AL.: "Research Progress of Chip-Scale Atomic Clock CPT Clock", TELECOMMUNICATION ENGINEERING, vol. 50, no. 6, June 2010 (2010-06-01), pages 125 - 131 *
ZHANG, RONGYAN ET AL.: "Optimization and Experimental Research of the Frequency Stabilizing System of Satellite-Borne MEMS Atomic Clock", ELECTRONIC DESIGN ENGINEERING, vol. 17, no. 19, September 2009 (2009-09-01), pages 111 - 113 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196549A (zh) * 2019-06-29 2019-09-03 蚌埠学院 一种实现正交圆偏振光cpt原子钟物理系统的装置
CN116826521A (zh) * 2023-08-31 2023-09-29 中国航天三江集团有限公司 一种反射式原子气室及其制备方法
CN116826521B (zh) * 2023-08-31 2023-11-28 中国航天三江集团有限公司 一种反射式原子气室及其制备方法

Also Published As

Publication number Publication date
CN102799101A (zh) 2012-11-28
CN102799101B (zh) 2013-09-18
US9118336B2 (en) 2015-08-25
US20140347140A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2013120334A1 (zh) 一种芯片cpt原子钟物理系统装置
CN102778839B (zh) 一种被动型cpt原子钟物理系统装置
CN108844532B (zh) 一种使用斜入射探测光路微小型核磁共振陀螺仪
US7323941B1 (en) Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequency
US7379486B2 (en) Technique for optically pumping alkali-metal atoms using CPT resonances
US10274549B1 (en) Scalar atomic magnetometer with heading error suppression
US8009520B2 (en) Method and system for operating an atomic clock using a self-modulated laser with electrical modulation
WO2013143237A1 (zh) 相干双色光源装置及相干双色光的生成方法
US8816779B2 (en) Device for an atomic clock
CN110333651B (zh) 基于相干布居数囚禁模式锁定的激光原子钟
US10921191B2 (en) Atomic sensing method and chip-scale atomic sensor
CN112946541A (zh) 一种碱金属原子自旋全光学控制系统及探测方法
CN110196549A (zh) 一种实现正交圆偏振光cpt原子钟物理系统的装置
CN102736510B (zh) 带有原子振荡器的手表
CN110750044A (zh) 一种可集成的cpt原子钟物理系统装置
CN112013828A (zh) 一种抽运激光与原子气室一体集成的核磁共振陀螺
CN209980031U (zh) 一种实现正交圆偏振光cpt原子钟物理系统的装置
CN102981396B (zh) 双调制互注入的相干双色光源生成装置
CN112600058B (zh) 一种基于Rb87调制转移光谱稳频光路结构
CN112242843A (zh) 一种实现高对比度cpt反相探测的方法和装置
CN113406876B (zh) 连续式cpt态制备与差分探测的方法及系统
Liu et al. Absolute active frequency locking of a diode laser with optical feedback generated by Doppler‐free collinear polarization spectroscopy
RU2312457C1 (ru) Способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла
JP2013239612A (ja) 量子干渉装置、原子発振器、電子機器及び量子干渉方法
JP2012054433A (ja) 位相保持型ラムゼー法を用いた基準信号発生器および基準信号発生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868617

Country of ref document: EP

Kind code of ref document: A1