WO2013120332A1 - 一种电池激活方法、模块及终端 - Google Patents

一种电池激活方法、模块及终端 Download PDF

Info

Publication number
WO2013120332A1
WO2013120332A1 PCT/CN2012/076798 CN2012076798W WO2013120332A1 WO 2013120332 A1 WO2013120332 A1 WO 2013120332A1 CN 2012076798 W CN2012076798 W CN 2012076798W WO 2013120332 A1 WO2013120332 A1 WO 2013120332A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
activation
unit
working parameter
control unit
Prior art date
Application number
PCT/CN2012/076798
Other languages
English (en)
French (fr)
Inventor
何志斌
刘忠治
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP12868402.4A priority Critical patent/EP2816658A4/en
Priority to US14/379,237 priority patent/US9960456B2/en
Publication of WO2013120332A1 publication Critical patent/WO2013120332A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to the field of battery applications of terminal devices, and in particular, to a battery activation method, a module, and a terminal.
  • a battery is a source of electrical energy for a terminal device. If there is no battery, the application performance of the terminal device will be greatly reduced.
  • a high-capacity, high-performance battery not only gives the terminal a long-term battery life, but also protects the terminal, enabling the terminal device to work efficiently for a long time.
  • the present invention provides a method, a module and a terminal for automatically activating a battery to maximize the original performance of the battery, and to solve the problem that the battery is used for a longer period of time after being fully charged, The problem of lower charging efficiency.
  • the steps of the battery activation method provided by the present invention are as follows: periodically collecting, recording, and uploading values of a first operational parameter of a battery and a value of a second operational parameter; determining a critical segment of the first operational parameter; And calculating a change value of the second working parameter in the key segment corresponding to the first working parameter; comparing the change value with the preset value, determining the use state of the battery according to the comparison result; and performing an activation operation on the battery according to the use state.
  • the method further includes: drawing the first working parameter value and the second working parameter value The working parameter curves of the first working parameter and the second working parameter are uploaded to the control unit. According to the drawn working parameter curve diagram, the corresponding second working parameter change value in the key segment of the first working parameter can be conveniently calculated.
  • the method before the activation of the battery, the method further includes: prompting the user to set an activation time, and receiving and releasing the battery activation operation instruction at the activation time. Remind the user to set the activation time, which can be used by the user without affecting the normal life of the user.
  • the method before the activation of the battery, the method further includes: controlling the terminal to enter deep sleep or shut down. After the terminal device enters deep sleep or shuts down, the activation operation of the battery will not adversely affect the terminal device, and protect the user's terminal device to a greater extent.
  • the first operating parameter is the voltage of the battery
  • the second operating parameter is at least one of the following operating parameters: battery power, current, time, temperature, internal
  • the first operating parameter is the battery power
  • the second operating parameter is at least one of the following operating parameters: battery voltage, current, time, temperature, internal resistance.
  • the preset value is a change value of the standard operating battery corresponding to the second operating parameter in the first operating parameter critical section.
  • the activation mode used for the activation operation of the battery is pulse charging or trickle charging or constant current constant voltage charging; the specific process of the constant current constant voltage charging is: The method of determining whether the battery activation is completed by performing constant current discharge, constant current charging, and constant voltage charging until the battery activation is completed is that the control unit calculates the change of the second operating parameter of the battery in the critical section of the first working parameter during the activation process. Whether the value is the same as or similar to the preset value.
  • the battery activation module includes: a detecting unit, configured to periodically collect, record, and upload operating parameter values of the battery; and a control unit, configured to determine a battery usage state, and determine whether the battery is needed Performing an activation operation; an activation unit for activating the battery; the detecting unit is connected to the control unit, and uploading the recorded working parameter value to the control unit; The control unit is connected to the detecting unit and the activation unit, and receives the working parameter value.
  • the activation command is issued to the activation unit; the activation unit is connected to the control unit, and when the activation command issued by the activation unit is received, the battery is performed. Activate the action.
  • the battery activation module further includes a reminding unit, and is connected to the control unit, configured to remind the user to set an activation time when receiving the reminder instruction issued by the activation unit, and receive and transmit the activation time to the control unit.
  • the control unit is further configured to issue a reminder command and receive an activation time transmitted by the reminder unit, and issue an activation command to the activation unit at the activation time.
  • the battery activation system further includes a switching unit, and is connected to the control unit, and configured to: after receiving the switching instruction issued by the control unit, switch to an external power supply mode to provide power for the activation operation of the battery, and the control unit It is also used to issue a switching instruction to the switching unit.
  • the present invention further provides a terminal, comprising an external power source, a battery, a power consumption module, and the battery activation module of any of the above embodiments, wherein the battery activation module is connected to an external power source, a battery, and a power consumption module.
  • FIG. 1 is a schematic structural view of an embodiment of a battery device according to the present invention.
  • FIG. 2 is a schematic structural view of a battery activation module according to a preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be further described in detail by way of embodiments with reference to the accompanying drawings.
  • FIGS. 1 and 2 A preferred embodiment of the battery activation module of the embodiment of the present invention will be described with reference to FIGS. 1 and 2. As can be seen from FIG.
  • the power management module of the present invention is applied to the terminal device, and the terminal includes an external power source, a battery, a power consumption module, and a power management module; wherein the external power supply includes but is not limited to an adapter, USB charging mode; batteries include, but are not limited to, nickel-metal hydride, nickel-cadmium, lithium-ion batteries; power-consuming modules are power-consuming units of terminal equipment, including but not limited to display screens of terminals, processors, touch screens, or WiFi, Bluetooth, Applications such as gravity sensors, acceleration, GPS, graphics processors, etc.; Power Management Modules (PMUs) are used to activate the battery to maximize the original performance of the battery.
  • the structure of the power activation module (PMU) is as shown in FIG.
  • the switching unit when there is an external power supply, the switching unit is used to switch to the external power supply mode, supply power to the power consumption module of the terminal device, charge the battery, and switch to the external power supply mode when receiving the switching instruction issued by the control unit
  • the battery activation operation supplies power
  • the switching unit when there is no external power supply, the switching unit is used to switch to the battery power supply mode to supply power to the power consumption module of the terminal device.
  • the monitoring unit is used to detect the usage status of the battery in real time, periodically measure the working parameters (including but not limited to voltage, electric quantity, current, internal resistance value, temperature, etc.), upload the working parameter value to the control unit, or according to the working parameter.
  • the value draws the corresponding working parameter graph and uploads it to the control unit.
  • the activation unit is configured to receive an activation instruction issued by the control unit, and activate the battery according to the activation instruction. During the battery activation process, the switching unit is also involved. The switching unit switches to the external power supply mode, and the battery is activated by an external power supply.
  • the activation mode for activating the battery includes but is not limited to: pulse charging or trickle charging or constant Current constant voltage charging method.
  • Trickle charging that is, maintenance charging (floating charge), for compensating self-discharge, mainly used for maintenance and activation of batteries in DC power systems such as telecommunication devices and signal systems.
  • Trickle charging keeps the battery in a nearly continuous state of continuous charging.
  • Pulse charging is mainly used for the activation of nickel-cadmium batteries. Since nickel-cadmium batteries are easily polarized during normal charging, conventional constant voltage or constant current charging will cause the electrolyte to continuously produce hydrogen-oxygen gas, and its oxygen will penetrate under the action of internal high pressure. To the negative electrode and the cadmium plate to generate CdO, resulting in a decrease in the effective capacity of the plate, and the pulse charging is generally carried out by charging and discharging, that is, charging for 5 seconds, then placing it for 1 second, so that the oxygen generated during the charging process will be under the discharge pulse.
  • the specific process of constant current constant voltage charging is: cyclically performing constant current discharge, constant current charging and constant voltage charging, and is widely applied to maintenance and activation of batteries such as lithium batteries, and the steps thereof will be given below by way of embodiments.
  • the reminding unit is configured to remind the user to set the activation time after receiving the reminder instruction issued by the control unit, and transmit the activation time set by the user to the control unit.
  • the control unit is the nerve center of the battery activation module, and is responsible for the communication between the relevant units and the release of the task command, including receiving the battery operation parameter value or the working parameter curve of the detection unit; controlling the power supply of the terminal device In the mode, the switching instruction is issued to the switching unit; the activation command is issued to the activation unit; the reminding command is issued to the reminding unit, and the activation time set by the user is received.
  • the specific work of the control unit is: after receiving the battery operating parameter value or the working parameter curve diagram, selecting the key segment of the first working parameter, and calculating the second working parameter variation value selected in the key segment of the first working parameter And comparing the change value with a preset value (the preset value is a change value of the second working parameter corresponding to the standard battery in the key segment of the first working parameter), if the change value is found to be excessively different from the preset value
  • the interrupt alarm will be issued in time, and the reason will be reported.
  • the interrupt alarm and cause will be displayed to the user through the reminder unit, so that the user knows which factor of the battery is beyond the warning line, and reminds the user to perform related activation operations through the pre-stored related logic.
  • the activation time is selected and the activation command is issued at the activation time set by the user.
  • Step S302 periodically collect, record, and upload the first working parameter value and the second working parameter value of the battery.
  • Step S304 The detecting unit periodically detects the operating voltage values of the battery voltage V, the current I, the time T, the electric quantity Q, the battery temperature T, the internal resistance R, and the like, and uploads the detected working parameter values, wherein when the first work is performed
  • the second operating parameter is at least one of the following operating parameters: battery power, current, time, temperature, internal resistance
  • the second working parameter is the following At least one of the operating parameters: battery voltage, current, time, temperature, internal resistance.
  • Step S306 Receive a working parameter value of the battery, calculate a change value of the second working parameter in the key segment of the first working parameter, compare a change value of the working parameter with a preset value, and determine a use state of the battery.
  • the detecting unit After collecting the relevant data, the detecting unit sends the working parameter value or the working parameter relationship graph to the control unit, and the control unit performs detailed calculation on several key segments of the first working parameter to obtain a change value of the corresponding second working parameter. And compare with the preset value.
  • the parameters to be judged include: the time ⁇ used in the voltage point VI to V2, the electric quantity value AQ One or more of them, if AQ or ⁇ 1 ⁇ preset value, it is considered that the battery is in a sub-health state.
  • Step S308 The battery is activated according to the state of use.
  • the battery activation module controls the terminal device to deep sleep and perform battery activation operation at 24 o'clock. Does not affect the user's use.
  • the activation mode for the activation operation of the battery includes, but is not limited to, pulse charging or trickle charging or constant current constant voltage charging. The following is a detailed description of the activation method of constant current and constant voltage charging.
  • Step 1 The control unit controls the terminal device to enter deep sleep or directly shut down;
  • Step 2 The control unit issues a switching instruction, and the switching unit switches to an external power supply mode, and activates the battery by using an external power supply;
  • Step 3 The activation unit starts, First discharge the battery and discharge it with current C1 until the voltage
  • Step 4 the control unit starts the timer, and sets the time T1;
  • Step 5 Use the large current C2 to charge until the voltage V2 (constant current charging);
  • Step 6. Keep the constant voltage V2 charging until The current is less than C3 (constant voltage charging);
  • Step 7. The control unit starts the timer and sets the time T2.
  • Step 8 The control unit determines whether it is necessary to discharge the battery again. If yes, proceed to step IX; otherwise, the activation operation is completed, and the terminal device resumes normal operation;
  • Step 9 Discharge the battery, discharge with current C1 until voltage VI;
  • Step 10 Repeat steps 4 to 8.
  • the present invention will be further supplemented by living examples below.
  • the method of detecting whether the battery needs to be activated is realized (taking a 4000 mAh lithium battery as an example, selecting the battery voltage as the first working parameter, and the battery power as the second working parameter):
  • the standard battery should be Q2, such as 500mAh. If it is ⁇ Q2, such as 300mAh, report the battery to sub-health alarm; 4. Select voltage point 4.0-3.9 The value of the change in power between v, the standard battery should be Q3, such as 700mAh, if at this time ⁇ Q3, such as 600mAh, the battery is reported to be in the sub-health alarm;
  • the standard battery should be Q4, such as 3600m Ah. If it is ⁇ Q4, such as 3000mAh, report the battery is in sub-health alarm; when the battery is in sub-health, the battery
  • the activation module reminds the user through the reminder unit to set the time for the battery to be activated, such as 24 o'clock on the day.
  • the steps and methods of activating the battery still taking the 4000mAh lithium battery as an example, select the activation mode of the constant current constant voltage charging for battery activation:
  • the user plugs in the external power adapter and selects the battery activation button
  • the battery is discharged with a current of Cl, such as 800mA, until the voltage VI, such as 3.0v; 3.
  • the time Tl such as 30min;
  • the battery is charged with a constant current of C2, such as 1.5A, until the voltage V2, such as 4.2v;

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明为了解决电池随着其使用时间越长,其充电完成后使用时间越短、充电效率越低的问题而提出了一种自动激活电池的方法、模块及终端来最大程度的保持电池的原有性能。本发明提供的电池激活模块包括检测单元、激活单元及控制单元,其电池激活方法是:周期性的收集、记录并上传电池的第一工作参数值和第二工作参数值;确定第一工作参数的关键段,并计算对应第一工作参数关键段中的第二工作参数变化值;将第二工作参数变化值与预设值进行比较,根据比较结果确定电池的使用状态,进一步根据使用状态对电池进行激活操作。实施本发明可实时监测电池的使用状态,并对电池进行激活操作,最大程度上保护电池的原有性能,能大大提高用户的使用体验。

Description

一种电池激活方法、 模块及终端 技术领域 本发明涉及终端设备的电池应用领域,尤其涉及一种电池激活方法、模块及终端。 背景技术 电池是终端设备的电能来源, 若没有电池, 终端设备的应用性能将大打折扣。 一 块高容量高性能的电池, 不仅可以给终端长时间的续航能力, 而且也可以保护终端, 使终端设备能够长时间高效率的工作。 随着现代手机, 尤其是智能机的普及, 其功能越来越丰富, 已经逐渐成为用户通 信、 办公、 娱乐的必备。 多数人对手机最为看重的还是电池续航能力, 38 %的受访者 表示只要手机能够持续正常运行 (如接打电话、 收发短信), 他们就满足了, 不想为了 任何附加功能而牺牲电池续航时间。 从售后市场获得的数据也显示, 消费者对手机产 品最不满意的地方就是电池的使用寿命越来越短, 并且充电效率越来越低。 电池使用寿命越来越短的原因可能是: 经常反复高电位充电、 过充, 长时间不充 导致电池过放等。 对于普通用户来说, 在开始使用终端设备的那一刻起, 电池的性能 会随着时间的推移而慢慢下降, 因此最大程度的保留电池的性能显得意义重大。 发明内容 本发明提出了一种可以自动激活电池的方法、 模块及终端, 来最大限度的保持电 池的原有性能, 用于解决电池随着使用时间越长, 其充满电后使用时间越短、 充电效 率越低的问题。 在一个具体实施例中, 本发明提供的电池激活方法的步骤如下: 周期性的收集、 记录并上传电池的第一工作参数的值和第二工作参数的值; 确定第一工作参数的关键段, 并计算对应第一工作参数的关键段中的第二工作参 数的变化值; 将变化值与预设值进行比较, 根据比较结果确定电池的使用状态; 根据使用状态, 对电池进行激活操作。 在一个具体实施例中, 上述电池激活方法中, 周期性的收集、 记录电池的第一工 作参数值和第二工作参数值之后, 还包括: 利用第一工作参数值和第二工作参数值绘 制第一工作参数和第二工作参数的工作参数曲线图到控制单元并上传。 根据绘制的工 作参数曲线图, 可方便的计算出在第一工作参数的关键段内对应的第二工作参数变化 值。 在一个具体实施例中, 上述电池激活方法中, 对电池进行激活之前, 还包括: 提 醒用户设置激活时间, 接收并在激活时间时下达电池激活操作指令。 提醒用户设置激 活时间, 可以方便用户使用, 不会影响用户的正常生活。 在一个具体实施例中, 上述电池激活方法中, 对电池进行激活之前, 还包括: 控 制终端进入深度休眠或者关机。 当终端设备进入深度休眠或者关机之后, 电池的激活 操作将不会对终端设备造成不利的影响, 更大程度的保护用户的终端设备。 在一个具体实施例中, 在上述所有电池激活方法中, 当第一工作参数为电池的电 压时, 第二工作参数为以下工作参数中的至少一个: 电池的电量、 电流、 时间、 温度、 内阻; 当第一工作参数为电池的电量时,第二工作参数为以下工作参数中的至少一个: 电池的电压、 电流、 时间、 温度、 内阻。 在一个具体实施例中, 上述所有电池激活方法中, 预设值为标准电池对应于第一 工作参数关键段中的第二工作参数的变化值。 在一个具体实施例中, 上述所有电池激活方法中, 对电池进行激活操作所采用的 激活方式为脉冲充电或者涓流充电或者恒流恒压充电; 该恒流恒压充电具体过程为: 循环的依次进行恒流放电、 恒流充电和恒压充电直至电池激活完成为止, 判断电池激 活是否完成的方法是控制单元在激活过程中计算电池的第二工作参数在第一工作参数 关键段内的变化值是否与预设值相同或者相近, 如果相同或者相近, 则本次电池的激 活完成, 停止该恒流恒压充电操作; 否则继续对电池进行激活操作。 在一个具体实施例中, 本发明提供的电池激活模块, 包括: 检测单元, 用于周期性收集、 记录并上传电池的工作参数值; 控制单元, 用于确定电池使用状态, 判断是否需要对电池进行激活操作; 激活单元, 用于对电池进行激活操作; 检测单元与控制单元相连, 向控制单元上传其记录的工作参数值; 控制单元与检测单元及激活单元相连, 接收工作参数值, 当需要对电池进行激活 操作时, 向激活单元下达激活指令; 激活单元与控制单元相连, 在接收激活单元下达的激活指令时, 进行电池激活操 作。 在一个具体实施例中, 上述电池激活模块中, 还包括提醒单元, 与控制单元相连, 用于在接收到激活单元下达的提醒指令时提醒用户设置激活时间, 接收并将激活时间 传送给控制单元; 控制单元还用于下达提醒指令, 并接收提醒单元传送的激活时间, 并在激活时间向激活单元下达激活指令。 在一个具体实施例中, 上述电池激活系统还包括切换单元, 与控制单元相连, 用 于在接收到控制单元下达的切换指令后, 切换为外接电源供电模式为电池的激活操作 提供电能, 控制单元还用于向切换单元下达切换指令。 同时, 本发明还提供了一种终端, 包括外接电源、 电池、 耗电模块、 及以上实施 例中任一项的电池激活模块, 电池激活模块与外接电源、 电池、 耗电模块相连。 实施本发明可以实时监测电池的使用状态, 并且可以实时把信息反馈给用户, 并 且能从用户得到相关执行指令, 对电池进行不同的激活等操作, 可以最大程度上保护 电池, 保持电池的原有性能。 用户不再会因为电池的性能下降而对丰富多彩的应用有 所顾虑, 能大大提高用户的使用体验。 附图说明 图 1为本发明终端设备的实施例的结构示意图; 图 2为本发明电池激活模块最佳实施例的结构示意图; 图 3为本发明电池激活方法最佳实施例的流程图。 具体实施方式 下面通过实施方式结合附图的方式对本发明做出进一步的详细说明。 结合图 1及图 2说明本发明实施例电池激活模块的最佳实施例。 从图 1可以看出, 本发明电源管理模块是运用在终端设备上面的, 该终端包括外 接电源、 电池、耗电模块和电源管理模块; 其中外接电源的形式包括但不限于适配器、 USB充电方式; 电池包括但不限于镍氢、 镍镉、 锂离子电池; 耗电模块就是终端设备 的耗电单元, 包括但不限于终端设备的显示屏、 处理器、 触摸屏、 或者 WiFi、 蓝牙、 重力感应器、 加速度、 GPS、 图形处理器等应用; 电源管理模块 (PMU) 则用来对电 池进行激活操作, 最大程度的保持电池的原有性能。 其中电源激活模块 (PMU) 的结构如图 2所示, 其包括检测单元、 控制单元、 提 醒单元、 激活单元和切换单元。 其中: 当有外接电源时, 切换单元用于切换到外接电源供电模式, 给终端设备的耗电模 块进行供电、 给电池进行充电、 接收到控制单元下达的切换指令时切换到外接电源供 电模式为电池激活操作供电; 当没有外接电源时, 切换单元用于切换到电池供电模式, 给终端设备的耗电模块进行供电。 监测单元用于实时检测电池的使用状态, 周期性进行工作参数 (包括但不限于电 压、 电量、 电流、 内阻值、 温度等) 的测量, 上传工作参数值到控制单元, 也可以根 据工作参数值绘制相应的工作参数曲线图并上传到控制单元。 激活单元用于接收控制单元下达的激活指令, 并按照该激活指令对电池进行激活 操作。在电池激活过程中, 切换单元也参与进来, 切换单元切换到外接电源供电模式, 使用外接电源对电池进行激活, 对电池进行激活的激活方式包括但不局限于: 脉冲充 电或者涓流充电或者恒流恒压充电方式。 涓流充电, 即维护充电 (浮充), 为补偿自放 电, 主要运用于电信装置、 信号系统等直流电源系统的蓄电池的维护及激活, 涓流充 电使蓄电池保持在近似完全充电状态的连续小电流充电, 在完全充电后处于涓流充电 状态, 以备放电时使用。 脉冲充电主要运用于镍镉电池的激活, 由于镍镉电池在常规 充电时容易极化, 常规恒压或恒流充电均会使电解液持续产生氢氧气体, 其氧气在内 部高压作用下, 渗透至负极与镉板作用生成 CdO ,造成极板有效容量下降, 而脉冲充 电一般采用充与放的方法, 即充 5秒钟, 就放 1秒钟, 这样充电过程产生的氧气在放 电脉冲下将大部分被还原成电解液, 不仅限制了内部电解液的气化量, 而且对那些已 经严重极化的旧电池, 在使用本充电方法充放电 5-10次后, 会逐渐恢复或接近原有容 量。 恒流恒压充电具体过程为: 循环的依次进行恒流放电、 恒流充电和恒压充电, 广 泛的运用到锂电池等电池的维护及激活, 其步骤将在下文中以实施例的方式给出。 提醒单元用于在接收到控制单元下达的提醒指令后, 提醒用户设置激活时间, 并 且把用户设置的激活时间传送到控制单元。 控制单元是电池激活模块的神经中枢,负责相关单元之间通信及任务指令的下达, 包括接收检测单元上传电池工作参数值或者工作参数曲线图; 控制终端设备的电源供 给模式, 向切换单元下达切换指令; 向激活单元下达激活指令; 向提醒单元下达提醒 指令, 并接收用户设置的激活时间等。 控制单元的具体工作是: 在接收到电池工作参数值或者工作参数曲线图后, 选取 第一工作参数的关键段, 计算在该第一工作参数的关键段内所选取的第二工作参数变 化值, 比较该变化值与预设值 (该预设值为标准电池对应于该第一工作参数关键段中 的第二工作参数的变化值) 大小, 如果发现该变化值与预设值偏差过大, 会及时发出 中断报警, 并上报原因, 该中断报警及原因通过提醒单元显示给用户, 使用户了解到 电池的哪个因素超出了警戒线, 通过预先存储的相关逻辑提醒用户进行相关的激活操 作和激活时间的选择, 并在用户设置的激活时间下达激活指令。 结合图 3说明本发明电池激活方法最佳实施例的工作流程, 该流程包括如下步骤
S302至步骤 S308。 步骤 S302: 周期性收集、 记录并上传电池的第一工作参数值及第二工作参数值。 步骤 S304: 检测单元周期性的检测电池的电压 V、 电流 I、 时间 T、 电量 Q、 电 池温度 T、 内阻 R等工作参数值, 并将检测到的工作参数值上传, 其中当第一工作参 数为电池的电压时, 第二工作参数为以下工作参数中的至少一个: 电池的电量、 电流、 时间、 温度、 内阻; 当第一工作参数为电池的电量时, 第二工作参数为以下工作参数 中的至少一个: 电池的电压、 电流、 时间、 温度、 内阻。 检测单元收集到需要的工作 参数后, 也可以计算并绘制出电压 V--电量 Q (电流 I、 时间 Τ、 温度 Τ、 内阻 R) 或 者电量 Q—电压 V (电流 I、 时间 Τ、 温度 Τ、 内阻 R) 的工作参数关系曲线图, 并将 计算得到的工作参数关系曲线图上传。 步骤 S306: 接收电池的工作参数值, 计算第一工作参数关键段中的第二工作参数 的变化值, 比较上述工作参数的变化值与预设值, 确定电池的使用状态。 检测单元在收集完相关数据后, 将工作参数值或者工作参数关系曲线图发送给控 制单元, 控制单元在第一工作参数几个关键段进行详细计算, 得出对应的第二工作参 数的变化值, 并和预设值进行比较。 假设第一工作参数定为电池的电压 V, 第二工作 参数定为电池的电量 Q及变化时间 Τ, 则进行判断的参数包括: 在电压点 VI 到 V2 时所用的时间 ΔΤ、 电量值 AQ中的一个或多个, 如果 AQ或者八1^预设值, 则认为是 电池处于亚健康状态。 步骤 S308: 根据使用状态对电池进行激活操作。 当电池处于亚健康状态时, 需要对电池进行激活操作。 此时可以自行按照既定方 案对电池进行激活操作, 也可以选择提醒用户设置电池激活时间, 比如 24点整, 则在 24点整的时间, 电池激活模块控制终端设备深度休眠, 进行电池激活操作, 不影响用 户的使用。 对电池进行激活操作的激活方式包括但不局限于脉冲充电或者涓流充电或者恒流 恒压充电的方式。 下面以恒流恒压充电的激活方式来具体说明。 步骤一、 控制单元控制终端设备进入深度休眠、 或者直接关机; 步骤二、 控制单元下达切换指令, 切换单元切换为外接电源供电模式, 利用外接 电源对电池进行激活操作; 步骤三、 激活单元启动, 首先对电池进行放电, 用电流 C1 进行放电, 直至电压
VI, (恒流放电); 步骤四、 控制单元启动定时器, 搁置时间 T1 ; 步骤五、 使用大电流 C2进行充电, 直到电压 V2 (恒流充电); 步骤六、 保持恒压 V2充电, 直至电流小于 C3 (恒压充电); 步骤七、 控制单元启动定时器, 搁置时间 T2; 步骤八: 控制单元判断是否需要对电池进行再次放电。 是, 则进行步骤九; 否, 则激活操作完成, 终端设备恢复正常工作; 步骤九: 对电池进行放电, 用电流 C1进行放电, 直至电压 VI; 步骤十: 重复步骤四至八。 下面以生活实例对本发明做进一步的补充说明。 在用户使用的过程中, 实现检测电池是否需要进行激活的方法(以 4000mAh锂电 池为例, 选择电池的电压为第一工作参数, 电池的电量为第二工作参数):
1. 在充电结束后,清空时间、电压、电量初始值。开始保存时间 T3,如 2011.11.25 10:25:20,电压 V4, 如 4.15v; 2. 实时监控电流, 计算实时电量, 并计算 AQ, 并绘制电压 V、 AQ, ΔΤ的实 时曲线;
3. 选取电压点 4.1-4.0v之间的电量变化值, 标准电池应该是 Q2, 如 500mAh, 如 果此时 < Q2,如 300mAh, 则上报电池处于亚健康警报; 4. 选取电压点 4.0-3.9v之间的电量变化值, 标准电池应该是 Q3, 如 700mAh, 如 果此时 < Q3,如 600mAh, 则上报电池处于亚健康警报;
5. 选取电压点 3.8-3.6v之间的电量变化值, 标准电池应该 Q4, 如 3600m Ah, 如 果此时 < Q4,如 3000mAh, 则上报电池处于亚健康警报; 当电池处于亚健康时, 电池激活模块通过提醒单元提醒用户设置对电池进行激活 操作的时间, 比如当天 24点等。 在用户使用的过程中,对电池进行激活操作的步骤及方法(仍以 4000mAh锂电池 为例, 选择恒流恒压充电的激活方式进行电池激活):
1. 用户插入外接电源适配器, 选择进行电池激活按钮;
2. 电池以电流 Cl, 如 800mA进行恒流放电, 直至电压 VI, 如 3.0v; 3. 放置时间 Tl, 如 30min;
4.电池以电流 C2, 如 1.5A进行恒流充电, 直至电压 V2, 如 4.2v;
5. 保持 4.2v的电压, 对电池进行恒压充电, 直至充电电流小于 C3, 如 80mA;
6. 放置时间 T2, 如 30min;
7. 以电流 C3, 如 800mA的电流进行恒流放电, 直至电压 V3, 如 3.0v; 8. 重新循环第 3到 6步,直至控制单元检测到电池在第一工作参数关键段内的第 二工作参数的变化值与预设值相同或相近, 则停止循环, 电池激活操作完成。 上述检测及激活过程中, 电池的所有工作参数(电压 V、 电流 I、 电量 Q、 时间 T) 都可以由用户自行设置。 以上仅是本发明的具体实施方式而已, 并非对本发明做任何形式上的限制, 凡是 依据本发明的技术实质对以上实施方式所做的任意简单修改、 等同变化或修饰, 均仍 属于本发明技术方案的保护范围。

Claims

权 利 要 求 书
1. 一种电池激活方法, 包括,
周期性的收集、记录并上传电池的第一工作参数的值和第二工作参数的值; 确定所述第一工作参数的关键段, 并计算对应所述第一工作参数的关键段 中的所述第二工作参数的变化值;
将所述第二工作参数的变化值与预设值进行比较, 根据比较结果确定所述 电池的使用状态, 并根据所述使用状态对所述电池进行激活。
2. 如权利要求 1所述的电池激活方法, 其中, 周期性的收集、 记录电池的第一工 作参数值和第二工作参数值之后, 还包括: 利用所述第一工作参数值和所述第 二工作参数值绘制所述第一工作参数和所述第二工作参数的工作参数曲线图并 上传。
3. 如权利要求 1所述的电池激活方法, 其中, 对电池进行激活之前, 还包括: 提 醒用户设置激活时间, 接收并在所述激活时间时下达电池激活指令。
4. 如权利要求 3所述的电池激活方法, 其中, 对电池进行激活之前, 还包括: 控 制终端进入深度休眠或者关机。
5. 如权利要求 1所述的电池激活方法, 其特征在于, 当所述第一工作参数为电池 的电压时, 所述第二工作参数为以下工作参数中的至少一个: 电池的电量、 电 流、 时间、 温度或内阻; 当所述第一工作参数为电池的电量时, 所述第二工作 参数为以下工作参数中的至少一个: 电池的电压、 电流、 时间、 温度或内阻。
6. 如权利要求 1所述的电池激活方法, 其中, 所述预设值为标准电池对应所述第 一工作参数关键段中的所述第二工作参数的变化值。
7. 如权利要求 1至 6任一项所述的电池激活方法, 其中, 对电池进行激活的激活 方式为脉冲充电或者涓流充电或者恒流恒压充电; 所述恒流恒压充电具体过程 为: 循环的依次进行恒流放电、 恒流充电和恒压充电直至电池激活完成。
8. —种电池激活模块, 包括:
检测单元, 设置为周期性收集、 记录并上传电池的工作参数值; 控制单元, 设置为确定所述电池的使用状态, 判断是否需要对所述电池进 行激活;
激活单元, 设置为对所述电池进行激活;
所述检测单元与所述控制单元相连, 向所述控制单元上传该检测单元记录 的工作参数值;
所述控制单元与所述检测单元及所述激活单元相连,接收所述工作参数值, 当需要对所述电池进行激活操作时, 向所述激活单元下达激活指令;
所述激活单元与所述控制单元相连, 在接收所述激活单元下达的激活指令 时, 对所述电池进行激活。
9. 如权利要求 8所述的电池激活模块, 其中, 还包括提醒单元, 与所述控制单元 相连,设置为在接收到所述激活单元下达的提醒指令时提醒用户设置激活时间, 接收所述激活时间并将所述激活时间传送给所述控制单元; 所述控制单元还设 置为向所述提醒对应下达提醒指令, 接收所述提醒单元传送的激活时间, 并在 所述激活时间向所述激活单元下达激活指令。
10. 如权利要求 8所述的电池激活模块, 其中, 还包括切换单元, 与所述控制单元 相连, 设置为在接收到所述控制单元下达的切换指令后, 切换为外接电源供电 模式为电池的激活操作提供电能; 所述控制单元还设置为向所述切换单元下达 切换指令。
11. 一种终端, 包括外接电源、 电池、 耗电模块, 还包括: 如权利要求 8至 10任一 项所述的电池激活模块; 所述电池激活模块与所述外接电源、 所述电池和所述 耗电模块相连。
PCT/CN2012/076798 2012-02-17 2012-06-12 一种电池激活方法、模块及终端 WO2013120332A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12868402.4A EP2816658A4 (en) 2012-02-17 2012-06-12 METHOD, MODULE AND TERMINAL FOR ACTIVATING A BATTERY
US14/379,237 US9960456B2 (en) 2012-02-17 2012-06-12 Method, module for activating battery and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210036001.2 2012-02-17
CN201210036001.2A CN102593540B (zh) 2012-02-17 2012-02-17 一种电池激活方法、模块及终端

Publications (1)

Publication Number Publication Date
WO2013120332A1 true WO2013120332A1 (zh) 2013-08-22

Family

ID=46481889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076798 WO2013120332A1 (zh) 2012-02-17 2012-06-12 一种电池激活方法、模块及终端

Country Status (4)

Country Link
US (1) US9960456B2 (zh)
EP (1) EP2816658A4 (zh)
CN (1) CN102593540B (zh)
WO (1) WO2013120332A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904332A (zh) * 2012-10-24 2013-01-30 三维通信股份有限公司 一种直放站监控电路后备电池管理控制方法
CN104752783B (zh) * 2013-12-30 2019-11-12 中兴通讯股份有限公司 一种终端电池激活方法、装置和终端
CN104009265B (zh) * 2014-05-22 2016-08-17 Tcl通讯(宁波)有限公司 一种移动终端的电池激活方法和装置
CN104901363B (zh) * 2015-05-15 2018-02-23 深圳天珑无线科技有限公司 移动设备电池的激活电路及方法
CN105403842A (zh) * 2015-12-07 2016-03-16 高新兴科技集团股份有限公司 一种多次放电精密测量蓄电池内阻的方法
US10326286B2 (en) 2016-08-11 2019-06-18 K2 Energy Solutions, Inc. Battery system with shipping mode
CN106505269A (zh) * 2016-12-19 2017-03-15 蔡秋华 一种智能家居用锂离子电池运行激活系统
CN106505695B (zh) * 2016-12-30 2019-04-16 Oppo广东移动通信有限公司 一种充电控制方法、装置及终端
CN106655396B (zh) * 2017-01-13 2019-02-12 Oppo广东移动通信有限公司 充电控制方法、装置及终端
CN108512261B (zh) * 2017-02-27 2020-07-03 北京小米移动软件有限公司 电池充电方法及装置
CN107656455A (zh) * 2017-09-28 2018-02-02 杭州古北电子科技有限公司 一种低功耗面板开关的实现方法及装置
JP7000845B2 (ja) * 2017-12-25 2022-01-19 トヨタ自動車株式会社 ニッケル水素電池の再生装置および再生方法
KR102314575B1 (ko) 2018-01-12 2021-10-20 주식회사 엘지에너지솔루션 이차전지의 충방전기 및 이를 포함하는 이차전지의 활성화 공정 장치
CN109638930B (zh) * 2019-02-15 2021-08-03 漳州科华电气技术有限公司 电池充电控制方法及供电系统
CN109921117B (zh) * 2019-04-18 2021-03-09 国网冀北电力有限公司承德供电公司 单体蓄电池在线脉冲活化装置及系统
CN113721153A (zh) * 2020-05-26 2021-11-30 郑州深澜动力科技有限公司 一种动力电池系统加热实验方法及系统
CN112884990A (zh) * 2021-01-14 2021-06-01 苏州极闪控电信息技术有限公司 一种基于大数据的街电共享租赁管理系统
CN113110667B (zh) * 2021-03-12 2022-10-14 上海辛格林纳新时达电机有限公司 一种电解电容的激活装置、激活方法及电气系统
CN113365171B (zh) * 2021-05-17 2023-01-06 百度在线网络技术(北京)有限公司 有屏音箱处理方法、装置、电子设备及存储介质
US20230018424A1 (en) * 2021-07-14 2023-01-19 Sk On Co., Ltd. Method for charging and discharging battery
CN116826214A (zh) * 2023-08-30 2023-09-29 杭州华塑科技股份有限公司 电池活化方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359840A (zh) * 2007-07-31 2009-02-04 雅马哈株式会社 电池充电器、蓄电池单元及具有该配置的电设备
CN101431565A (zh) * 2007-11-09 2009-05-13 索尼爱立信移动通信日本株式会社 移动电话终端和通信系统
CN101719568A (zh) * 2008-10-10 2010-06-02 天津市职业大学 智能控制电池激活修复仪的研制方法
WO2011050924A1 (en) * 2009-10-27 2011-05-05 F.I.A.M.M. S.P.A. Method for the continuous measure of the efficiency of a battery, especially a battery installed in motor vehicles, and a device utilizing this method.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196780A (en) * 1991-09-10 1993-03-23 Pacholok David R Ni-Cad battery charger circuit
JP3598873B2 (ja) * 1998-08-10 2004-12-08 トヨタ自動車株式会社 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
US7058525B2 (en) * 1999-04-08 2006-06-06 Midtronics, Inc. Battery test module
US7592776B2 (en) * 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
CN200962532Y (zh) * 2006-05-12 2007-10-17 徐俊亚 智能型可充电池激活器
CN101552362A (zh) * 2008-04-01 2009-10-07 李常恺 铅酸电池的还原电路及其方法
JP4816743B2 (ja) * 2009-02-17 2011-11-16 ソニー株式会社 電池パックおよび検出方法
WO2013086411A1 (en) * 2011-12-09 2013-06-13 The Aes Corporation Frequency responsive charge sustaining control of electricity storage systems for ancillary services on an electrical power grid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359840A (zh) * 2007-07-31 2009-02-04 雅马哈株式会社 电池充电器、蓄电池单元及具有该配置的电设备
CN101431565A (zh) * 2007-11-09 2009-05-13 索尼爱立信移动通信日本株式会社 移动电话终端和通信系统
CN101719568A (zh) * 2008-10-10 2010-06-02 天津市职业大学 智能控制电池激活修复仪的研制方法
WO2011050924A1 (en) * 2009-10-27 2011-05-05 F.I.A.M.M. S.P.A. Method for the continuous measure of the efficiency of a battery, especially a battery installed in motor vehicles, and a device utilizing this method.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816658A4 *

Also Published As

Publication number Publication date
CN102593540A (zh) 2012-07-18
EP2816658A1 (en) 2014-12-24
CN102593540B (zh) 2015-08-12
US9960456B2 (en) 2018-05-01
EP2816658A4 (en) 2015-04-01
US20150010783A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2013120332A1 (zh) 一种电池激活方法、模块及终端
RU2522425C2 (ru) Электронное устройство, способ зарядки электронного устройства, компьютерная программа, устройство контроля зарядки и способ контроля зарядки
CN109273783B (zh) 锂电池替换铅酸电池智能bms架构及使用方法
JP6486558B2 (ja) バッテリーパックの充電制御装置及び方法
CN102364744B (zh) 锂离子电池组充放电控制方法以及系统
CN106786831A (zh) 一种ups电源电量采集与控制系统
CN107708192B (zh) 一种自动切换蓝牙工作模式的方法及装置
US7825624B2 (en) Battery-operated power output device
CN203377652U (zh) 带声音提示的移动电源
CN106374548A (zh) 一种充放电控制装置、方法和智能电池
CN108146276B (zh) 电池自动切换装置及其控制方法
KR20180020717A (ko) 1차 전지를 이용한 2차 전지 방전 제어 장치 및 방법
CN103124097A (zh) 智能型锂离子充电器
CN105699909A (zh) 用电信息采集终端的电池电量管理方法
CN109088456A (zh) 一种移动终端充电保护系统
CN207603261U (zh) 一种电动车充电装置
CN207947636U (zh) 一种自动设定电压智能充电桩
CN210092930U (zh) 一种用于测试单节电池内阻的充电器
CN112531848B (zh) 一种电池包及其控制方法
CN203180580U (zh) 智能型锂离子充电器
CN104752783B (zh) 一种终端电池激活方法、装置和终端
CN202616843U (zh) 集成动力电池自主控制系统
CN204835564U (zh) 手机智能充电器
CN111327101A (zh) 一种腕带设备
CN211655764U (zh) 移动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14379237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012868402

Country of ref document: EP