WO2013120266A1 - 一种葡萄糖检测电极的制备方法 - Google Patents

一种葡萄糖检测电极的制备方法 Download PDF

Info

Publication number
WO2013120266A1
WO2013120266A1 PCT/CN2012/071238 CN2012071238W WO2013120266A1 WO 2013120266 A1 WO2013120266 A1 WO 2013120266A1 CN 2012071238 W CN2012071238 W CN 2012071238W WO 2013120266 A1 WO2013120266 A1 WO 2013120266A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
prussian blue
chit
carbon nanotube
scanning
Prior art date
Application number
PCT/CN2012/071238
Other languages
English (en)
French (fr)
Inventor
杨秀莲
Original Assignee
Yang Xiulian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Xiulian filed Critical Yang Xiulian
Priority to PCT/CN2012/071238 priority Critical patent/WO2013120266A1/zh
Publication of WO2013120266A1 publication Critical patent/WO2013120266A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Definitions

  • the present invention relates to a method for preparing an electrode, and more particularly to a method for preparing a glucose detecting electrode. Background technique
  • Glucose detection plays an important role in medical testing. Electrochemical detection of glucose is usually carried out by reacting glucose oxidase with glucose to produce hydrogen peroxide in the presence of dissolved oxygen, and detecting the oxidation of hydrogen peroxide generated at a high potential V vs. Ag/AgCl).
  • V vs. Ag/AgCl a high potential
  • many substances in biological fluids e.g., ascorbic acid, uric acid, etc.
  • a metal hexacyanoferrate complex such as Prussian blue (PB) and its analog modified electrode
  • PB Prussian blue
  • PB Prussian blue
  • HRP horseradish peroxidase
  • a variety of selectively permeable membranes have been widely used for selective electroanalysis of hydrogen peroxide, for example, Nafion, polymethylaniline blue, poly-o-aminophenol, poly-o-phenylenediamine, and the like.
  • Dopamine electrooxidation polymeric membranes have been successfully used for the immobilization of anti-human immunoglobulin G and glucose oxidase in neutral phosphate buffers and have been found to have cation selective permeability and good biocompatibility.
  • Carbon nanotubes were discovered in 1991, and their unique physicochemical properties make them widely used in the research of biosensors.
  • the use of carbon nanotubes accelerates the rate of electron transfer, thereby increasing the response and sensitivity of the sensor. Summary of the invention
  • An object of the present invention is to provide a method for preparing a glucose detecting electrode, thereby effectively improving the sensitivity and selectivity of the detection.
  • the method of the present invention comprises the following steps:
  • the electrode is a glassy carbon, gold or platinum electrode.
  • the amperometric detection of glucose was carried out under stirring in a pH 5 phosphate buffer solution, and the current response was the difference between the steady state current and the background current. All experiments were carried out at room temperature.
  • the beneficial effects of the invention are as follows: 1.
  • the combination of multi-wall carbon nanotubes and chitosan is beneficial to electron transfer and the anti-interference ability of the electrode;
  • the use of polydopamine to fix glucose oxidase has high sensitivity and reproducibility. Good performance, stability and anti-interference and other beneficial properties. detailed description
  • the electrode was then placed in a 0.2 M HC10 4 solution for cyclic voltammetry scanning (potential interval 0-1.5 V vs SCE, scanning speed 30 mV/s) until the cyclic voltammogram response reappears; electrode preparation steps: ( 1) The gold electrode was placed in an aqueous solution containing 0.5 mM K 3 Fe(CN) 6 , 0.5 mM Fe 2 (S0 4 ) 3 , 1.0 mM K 2 S0 4 and 0.05 mM H 2 S0 4 in a non-stirred state.
  • the electrode was then placed in a 0.2 M HC10 4 solution for cyclic voltammetry scanning (potential interval 0-1.5 V vs SCE, scanning speed 30 mV/s) until the cyclic voltammogram response reappears; electrode preparation steps: ( 1) The gold electrode was placed in an aqueous solution containing 0.5 mM K 3 Fe(CN) 6 , 0.5 mM Fe 2 (S0 4 ) 3 , 1.0 mM K 2 S0 4 and 0.05 mM H 2 S0 4 in a non-stirred state.
  • Example 1 1 MK 2 HP0 4 -KH 2 P0 4 and 0.1 MK 2 S0 4 phosphate buffer solution, the polydopamine-glucose oxidase/carbon nanotube-CHIT/Prussian blue/electrode prepared in Example 1 was placed.
  • the potentiostatic method was used to control the potential at -0.6 V, and glucose was added to detect the current response as the difference between the steady state current and the background current.
  • the linear response range is from 0.01 to 4. 5 mM, the response time is less than 5 seconds, the minimum detection limit is 0.3 ⁇ (signal-to-noise ratio is 3), and the detection sensitivity is 9.895 ⁇ / ⁇ .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种葡萄糖检测电极,即利用循环伏安法在电极上修饰普鲁士蓝膜,然后滴加碳纳米管-壳聚糖(CHIT)水溶液,最后利用聚多巴胺膜固定葡萄糖氧化酶,从而制备聚多巴胺-葡萄糖氧化酶/碳纳米管-CHIT/普鲁士蓝/电极,该电极用于检测葡萄糖抗干扰强,线性宽,响应快,灵敏度高,重现性好等。

Description

一种葡萄糖检测电极的制备方法 技术领域
本发明涉及一种电极的制备方法,尤其涉及一种葡萄糖检测电极 的制备方法。 背景技术
葡萄糖的检测在医疗检测中起着很重要的作用。电化学检测葡萄 糖通常是在有溶解氧存在条件下,通过葡萄糖氧化酶与葡萄糖反应产 生过氧化氢, 并检测所生成的过氧化氢在高电位 V vs. Ag/AgCl ) 下的氧化进行的。 然而, 生物体液中的许多物质 (如, 抗 坏血酸、尿酸等)在类似的氧化电位下也很容易被氧化, 从而引起干 扰电流。 因此, 如何抑制和避免干扰, 提高选择性, 一直广受关注。
到目前为止, 人们主要是利用以下两种方法来减小干扰: (1 )通 过在电极上面固定催化剂降低检测电位,利用过氧化氢的还原代替它 的氧化进行检测; (2 )利用选择渗透性膜固定酶或者蛋白质, 从而减 小或抑制干扰物质的电活性, 同时, 该选择渗透性膜对过氧化氢有良 好渗透性的, 并且使其在电极上保持高的电活性。
人们通常使用两类物质用于过氧化氢的还原催化:一种是金属的 六氰合铁络合物, 比如普鲁士蓝(PB)及其类似物修饰的电极对过氧 化氢的还原具有很高的催化活性,并且很容易在各种电极上电化学沉 积,具有价格低廉、检测过氧化氢的高灵敏性和较好的稳定性等优点。 它们已经被广泛应用于基于检测过氧化氢的生物传感器。另一种是过 氧化物酶, 例如辣根过氧化物酶(HRP) , 它已经被广泛应用于催化过 氧化氢的还原。 众所周知, HRP的催化能力是由于具有铁血红素基团 电活性中心,但因为它在溶液中的稳定性不好,和价格比较高等缺陷, 所以人们一直探索利用其他的类似物来代替它。
多种选择性透过性膜已经被广泛应用于过氧化氢的选择性电分 析, 例如, Nafion、 聚甲苯胺蓝、 聚邻氨基苯酚、 聚邻苯二胺等。 多 巴胺电氧化聚合膜已经成功用于中性磷酸缓冲液中抗人免疫球蛋白 G和葡萄糖氧化酶的固定,并且发现其具有阳离子选择渗透性和良好 的生物兼容性。
碳纳米管 (CNTs ) 发现于 1991年, 其独特的理化性质使之广泛 地应用在生物传感器的研究之中。使用碳纳米管可以加速电子传递速 率, 从而提高传感器的响应和灵敏度。 发明内容
本发明的目的在于提供一种葡萄糖检测电极的制备方法,从而有 效提高检测的灵敏度和选择性。
本发明的方法包含以下歩骤:
电极的清洗: 在电极表面滴上 1-2滴双氧水和浓硫酸体积比为 3 : 1的混合溶液, 停留 10秒, 用二次蒸馏水冲洗, 如此反复约 3次。 然后将电极放在 0. 2 M HC104溶液中进行循环伏安扫描 (电位区间 0-1. 5 V vs SCE, 扫描速度 30 mV/s ) , 直到循环伏安图响应重现; 电极制备的歩骤: (1)在非搅拌状态下,将金电极置于含有 0.5 mM K3Fe(CN)6、 0.5 mM Fe2(S04)3、 1.0 mM K2S04和 0.05 mM H2S04的水 溶液中, 在 -0.25-0.4 V电位范围内, 以 15-35 mV s—1的扫描速率, 进行循环伏安扫描沉积普鲁士蓝膜, 时间 1一 3分钟, 然后用水充分 冲洗并用氮气吹干, 制得普鲁士蓝 /电极;
(2)将 lmg 多壁碳纳米管 MWNTs在 1%的壳聚糖(CHIT)中超声 处理 15min后得到 Img/mL的 MWNTs-CHIT, 所述多壁碳纳米管为市售 碳纳米管, 经混酸恒温 40°C超声分散成均匀的黑色溶胶, 抽虑纯化 后, 清洗, 真空干燥后制得;
(3)在修饰有普鲁士蓝膜的电极表面滴加取其中 8 μ L覆盖在传 感器底层上, 4°C下干燥 24h制得碳纳米管 -CHIT/普鲁士蓝 /电极;
(4) 将 (3) 中所得的碳纳米管 -CHIT/普鲁士蓝 /电极浸入含有 葡萄糖氧化酶和多巴胺的 PH为 9磷酸缓冲溶液中,采用三电极系统, 进行循环伏安扫描, 扫描范围为 -0.7-0.7 V, 扫描速率为 15-20 mV s 1, 时间为 10-30分钟, 将葡萄糖氧化酶固定在修饰有普鲁士蓝和碳 纳米管的电极上, 制成的电极用二次蒸馏水充分冲洗后, 放置在 PH 为 5磷酸缓冲液中, 4°C下保存待用, 从而制得聚多巴胺一葡萄糖氧 化酶 /碳纳米管 -CHIT/普鲁士蓝 /电极。其中所述电极为玻碳, 金或铂 电极。
葡萄糖的安培检测在搅拌条件下, 在 PH为 5磷酸缓冲溶液中进 行, 电流响应为稳态电流和背景电流之差。所有的实验均在室温条件 下进行。 本发明的有益效果体现在:一、采用多壁碳纳米管和壳聚糖结合, 有利于电子传递以及提高电极的抗干扰能力; 二、利用聚多巴胺固定 葡萄糖氧化酶,具有灵敏度高,重现性好,稳定和抗干扰等有益性能。 具体实施方式
实施例一
电极的清洗: 在电极表面滴上 1-2滴双氧水和浓硫酸体积比为 3:1的混合溶液, 停留 10秒, 用二次蒸馏水冲洗, 如此反复约 3次。 然后将电极放在 0.2 M HC104溶液中进行循环伏安扫描 (电位区间 0-1.5 V vs SCE, 扫描速度 30 mV/s), 直到循环伏安图响应重现; 电极制备的歩骤: (1)在非搅拌状态下,将金电极置于含有 0.5 mM K3Fe(CN)6、 0.5 mM Fe2(S04)3、 1.0 mM K2S04和 0.05 mM H2S04的水 溶液中, 在 -0.25-0.4 V电位范围内, 以 35 mV s— 1的扫描速率, 进行 循环伏安扫描沉积普鲁士蓝膜, 时间 1分钟, 然后用水充分冲洗并用 氮气吹干, 制得普鲁士蓝 /电极;
(2)将 lmg 多壁碳纳米管 MWNTs在 1%的壳聚糖(CHIT)中超声 处理 15min后得到 Img/mL的 MWNTs-CHIT, 所述多壁碳纳米管为市售 碳纳米管, 经混酸恒温 40°C超声分散成均匀的黑色溶胶, 抽虑纯化 后, 清洗, 真空干燥后制得;
(3)在修饰有普鲁士蓝膜的电极表面滴加取其中 8 μ L覆盖在传 感器底层上, 4°C下干燥 24h制得碳纳米管 -CHIT/普鲁士蓝 /电极;
(4) 将 (3) 中所得的碳纳米管 -CHIT/普鲁士蓝 /电极浸入含有 葡萄糖氧化酶和多巴胺的 PH为 9磷酸缓冲溶液中,采用三电极系统, 进行循环伏安扫描, 扫描范围为 -0.7-0.7 V, 扫描速率为 20 mV s1, 时间为 10分钟, 将葡萄糖氧化酶固定在修饰有普鲁士蓝和碳纳米管 的电极上, 制成的电极用二次蒸馏水充分冲洗后, 放置在 pH为 5磷 酸缓冲液中, 4。C 下保存待用, 从而制得聚多巴胺一葡萄糖氧化酶 / 碳纳米管 -CHIT/普鲁士蓝 /电极。 实施例二
电极的清洗: 在电极表面滴上 1-2滴双氧水和浓硫酸体积比为 3:1的混合溶液, 停留 10秒, 用二次蒸馏水冲洗, 如此反复约 3次。 然后将电极放在 0.2 M HC104溶液中进行循环伏安扫描 (电位区间 0-1.5 V vs SCE, 扫描速度 30 mV/s), 直到循环伏安图响应重现; 电极制备的歩骤: (1)在非搅拌状态下,将金电极置于含有 0.5 mM K3Fe(CN)6、 0.5 mM Fe2(S04)3、 1.0 mM K2S04和 0.05 mM H2S04的水 溶液中, 在 -0.25-0.4 V电位范围内, 以 15 mV s— 1的扫描速率, 进行 循环伏安扫描沉积普鲁士蓝膜, 时间 1分钟, 然后用水充分冲洗并用 氮气吹干, 制得普鲁士蓝 /电极;
(2)将 lmg 多壁碳纳米管 MWNTs在 1%的壳聚糖(CHIT)中超声 处理 15min后得到 Img/mL的 MWNTs-CHIT, 所述多壁碳纳米管为市售 碳纳米管, 经混酸恒温 40°C超声分散成均匀的黑色溶胶, 抽虑纯化 后, 清洗, 真空干燥后制得;
(3)在修饰有普鲁士蓝膜的电极表面滴加取其中 8 μ L覆盖在传 感器底层上, 4°C下干燥 24h制得碳纳米管 -CHIT/普鲁士蓝 /电极;
(4) 将 (3 ) 中所得的碳纳米管 -CHIT/普鲁士蓝 /电极浸入含有 葡萄糖氧化酶和多巴胺的 PH为 9磷酸缓冲溶液中,采用三电极系统, 进行循环伏安扫描, 扫描范围为 -0. 7-0. 7 V, 扫描速率为 15 mV s 1 , 时间为 10分钟, 将葡萄糖氧化酶固定在修饰有普鲁士蓝和碳纳米管 的电极上, 制成的电极用二次蒸馏水充分冲洗后, 放置在 pH为 5磷 酸缓冲液中, 4。C 下保存待用, 从而制得聚多巴胺一葡萄糖氧化酶 / 碳纳米管 -CHIT/普鲁士蓝 /电极。
实施例三
葡萄糖检测
将实施例 1中所制聚多巴胺一葡萄糖氧化酶 /碳纳米管 -CHIT/普 鲁士蓝 /电极放含有 0. 1 M K2HP04-KH2P04和 0. 1 M K2S04磷酸缓冲溶液, pH 5 中, 室温条件下, 在搅拌的条件下进行, 利用恒电位法, 控制 电位在 -0. 6V, 加入葡萄糖, 检测电流响应为稳态电流和背景电流之 差。 线性响应范围为 0. 01到 4. 5 mM、 响应时间小于 5秒, 最低检测 限为 0. 3μΜ (信噪比为 3), 检测灵敏度为 9. 895 ηΑ/μΜ。

Claims

权利要求书
1、 一种葡萄糖检测电极的制备方法, 其包括以下歩骤:
电极的清洗: 在电极表面滴上 1-2滴双氧水和浓硫酸体积比为 3:1的混合溶液, 停留 10秒, 用二次蒸馏水冲洗, 如此反复约 3次。 然后将电极放在 0.2 M HC104溶液中进行循环伏安扫描 (电位区间 0-1.5 V vs SCE, 扫描速度 30 mV/s), 直到循环伏安图响应重现; 电极制备的歩骤: (1)在非搅拌状态下,将金电极置于含有 0.5 mM K3Fe(CN)6、 0.5 mM Fe2(S04)3、 1.0 mM K2S04和 0.05 mM H2S04的水 溶液中, 在 -0.25-0.4 V电位范围内, 以 15-35 mV s—1的扫描速率, 进行循环伏安扫描沉积普鲁士蓝膜, 时间 1一 3分钟, 然后用水充分 冲洗并用氮气吹干, 制得普鲁士蓝 /电极;
(2)将 lmg 多壁碳纳米管 MWNTs在 1%的壳聚糖(CHIT)中超声 处理 15min后得到 Img/mL的 MWNTs-CHIT, 所述多壁碳纳米管为市售 碳纳米管, 经混酸恒温 40°C超声分散成均匀的黑色溶胶, 抽虑纯化 后, 清洗, 真空干燥后制得;
(3)在修饰有普鲁士蓝膜的电极表面滴加取其中 8 μ L覆盖在传 感器底层上, 4°C下干燥 24h制得碳纳米管 -CHIT/普鲁士蓝 /电极;
(4) 将 (3) 中所得的碳纳米管 -CHIT/普鲁士蓝 /电极浸入含有 葡萄糖氧化酶和多巴胺的 PH为 9磷酸缓冲溶液中,采用三电极系统, 进行循环伏安扫描, 扫描范围为 -0.7-0.7 V, 扫描速率为 15-20 mV s 1, 时间为 10-30分钟, 将葡萄糖氧化酶固定在修饰有普鲁士蓝和碳 纳米管的电极上, 制成的电极用二次蒸馏水充分冲洗后, 放置在 PH 为 5磷酸缓冲液中, 4°C下保存待用, 从而制得聚多巴胺一葡萄糖氧 化酶 /碳纳米管 -CHIT/普鲁士蓝 /电极。
2、 根据权利要求 1所述方法, 其中所述电极为玻碳, 金或铂电极。
PCT/CN2012/071238 2012-02-16 2012-02-16 一种葡萄糖检测电极的制备方法 WO2013120266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071238 WO2013120266A1 (zh) 2012-02-16 2012-02-16 一种葡萄糖检测电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071238 WO2013120266A1 (zh) 2012-02-16 2012-02-16 一种葡萄糖检测电极的制备方法

Publications (1)

Publication Number Publication Date
WO2013120266A1 true WO2013120266A1 (zh) 2013-08-22

Family

ID=48983537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071238 WO2013120266A1 (zh) 2012-02-16 2012-02-16 一种葡萄糖检测电极的制备方法

Country Status (1)

Country Link
WO (1) WO2013120266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030212A (zh) * 2019-12-24 2021-06-25 大连大学 一种快速分析检测葡萄糖的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105471A (zh) * 2007-07-23 2008-01-16 南京工业大学 一种检测葡萄糖的酶电极的制备方法
CN101806766A (zh) * 2010-04-09 2010-08-18 济南大学 一种羟丙基壳聚糖/碳纳米管修饰的电化学传感器及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105471A (zh) * 2007-07-23 2008-01-16 南京工业大学 一种检测葡萄糖的酶电极的制备方法
CN101806766A (zh) * 2010-04-09 2010-08-18 济南大学 一种羟丙基壳聚糖/碳纳米管修饰的电化学传感器及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZENG: "Jinxiang, tan na m? gu?n fú hé w? xié tóng dian cui hua y? sh?ng w? chuan g?n y?n ji?", PH. D. THESIS, 17 April 2008 (2008-04-17), HUNAN UNIVERSITY, pages 52 - 59 *
ZHOU: "Qingmei, j? y? di?n chen ji qiao ju tang hé du? b? an y?ng hua ju he mo de an péi sh?ng wú chuan g?n y?n ji?", MASTER THESIS OF HUNAN, 19 October 2007 (2007-10-19), NORMAL UNIVERSITY, pages 15 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030212A (zh) * 2019-12-24 2021-06-25 大连大学 一种快速分析检测葡萄糖的方法
CN113030212B (zh) * 2019-12-24 2022-11-04 大连大学 一种快速分析检测葡萄糖的方法

Similar Documents

Publication Publication Date Title
Wollenberger et al. Enzyme electrodes using bioelectrocatalytic reduction of hydrogen peroxide
Luo et al. Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube‐modified electrodes
Zheng et al. Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor
Canbay et al. Design of a multiwalled carbon nanotube–Nafion–cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination
Gholivand et al. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode
Rahman et al. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film
Roy et al. Vertically aligned carbon nanotube probes for monitoring blood cholesterol
Xiao et al. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing
Pérez et al. Amperometric bienzymatic biosensor for L-lactate analysis in wine and beer samples
Monošík et al. Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode
Liu et al. Hydrophobic ionic liquid immoblizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol
Camacho et al. Amperometric Biosensor for hydrogen peroxide, using supramolecularly immobilized horseradish peroxidase on the β‐cyclodextrin‐coated gold electrode
Jeykumari et al. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications
Saleh et al. Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell
Hnaien et al. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination
Yang et al. A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter
Sharma et al. Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes
Chen et al. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar–lectin biospecific interaction
Haghighi et al. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode
Wang et al. Carbon felt-based bioelectrocatalytic flow-through detectors: Highly sensitive amperometric determination of H2O2 based on a direct electrochemistry of covalently modified horseradish peroxidase using cyanuric chloride as a linking agent
Omidinia et al. Electrochemical nanobiosensing of phenylalanine using phenylalanine dehydrogenase incorporated on amino-functionalized mobile crystalline material-41
Villalonga et al. Construction of an amperometric biosensor for xanthine via supramolecular associations
Radi et al. Novel protocol for covalent immobilization of horseradish peroxidase on gold electrode surface
Njagi et al. The interface in biosensing: improving selectivity and sensitivity
Ou et al. Electrochemiluminescence biosensor for cholesterol detection based on AuNPs/l-cys–C 60 nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868389

Country of ref document: EP

Kind code of ref document: A1