WO2013118841A1 - End unsaturated α-olefin polymer and method for producing same - Google Patents

End unsaturated α-olefin polymer and method for producing same Download PDF

Info

Publication number
WO2013118841A1
WO2013118841A1 PCT/JP2013/052941 JP2013052941W WO2013118841A1 WO 2013118841 A1 WO2013118841 A1 WO 2013118841A1 JP 2013052941 W JP2013052941 W JP 2013052941W WO 2013118841 A1 WO2013118841 A1 WO 2013118841A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
terminal unsaturated
olefin polymer
raw material
molecular weight
Prior art date
Application number
PCT/JP2013/052941
Other languages
French (fr)
Japanese (ja)
Inventor
藤村 剛経
金丸 正実
町田 修司
南 裕
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2013557578A priority Critical patent/JP5957472B2/en
Publication of WO2013118841A1 publication Critical patent/WO2013118841A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to a terminal unsaturated ⁇ -olefin polymer and a method for producing the same. More specifically, the present invention relates to a terminal unsaturated ⁇ -olefin polymer having a high concentration of terminal unsaturated groups, and an efficient method for producing a terminal unsaturated ⁇ -olefin polymer capable of reducing by-products.
  • High molecular weight polyolefin is widely used as an industrial component because it has high chemical stability, excellent mechanical properties, and is inexpensive.
  • low molecular weight polyolefins are limited to use as waxes, but higher functionality is expected.
  • Patent Documents 1 and 2 disclose thermal decomposition of high molecular weight polyolefins, particularly polypropylene, for the introduction of unsaturated groups (Patent Documents 1 and 2).
  • Patent Document 1 discloses polypropylene obtained by pyrolyzing isotactic polypropylene at 370 ° C. (for example, the number of vinylidene groups per molecule is 1.8), and
  • Patent Document 2 is pyrolysis obtained by pyrolyzing polybutene at 370 ° C. Polybutenes (for example, 1.53 to 1.75 vinylidene groups per molecule) are disclosed.
  • Patent Document 3 describes a method for producing a terminal unsaturated polyolefin using a homopolymer or copolymer of propylene or butene-1 as a raw material.
  • ⁇ -olefin polymers having a larger carbon number are used as the wax component and the lubricating oil component, but a large amount of unsaturated groups are efficiently produced particularly for ⁇ -olefin polymers having 5 or more carbon atoms.
  • a terminal unsaturated ⁇ -olefin characterized in that it is a homopolymer and / or copolymer of an ⁇ -olefin having 5 or more carbon atoms and has a terminal unsaturated group concentration of 2.0 to 30 mol%. Olefin polymer.
  • a terminal unsaturated ⁇ -olefin polymer which is a polymer of ⁇ -olefin having a high degree of unsaturation and having 5 or more carbon atoms can be provided.
  • Terminal unsaturated ⁇ -olefin polymer The terminal unsaturated ⁇ -olefin polymer of the present invention is a homopolymer and / or copolymer of an ⁇ -olefin having 5 or more carbon atoms, and has a terminal unsaturated group concentration of 2.0 to 30 mol%. It is characterized by that.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention has a high concentration of terminal unsaturated groups and is excellent in reactivity.
  • Examples of the ⁇ -olefin used in the production of the terminal unsaturated ⁇ -olefin polymer of the present invention include pentene-1, heptene-1, hexene-1, heptene-1, octene-1, decene-1, and 4-methylpentene. -1,3-methylbutene-1 and the like.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention preferably contains 50 to 100% by mass of ⁇ -olefin units having 5 to 12 carbon atoms, and 50 to 100 ⁇ -olefin units having 14 to 30 carbon atoms. Even if it contains the mass%, it is preferable.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention preferably has a mesotriad fraction [mm] of 20 to 80 mol%, more preferably 25 to 70 mol%, and more preferably 30 to 60 mol%. More preferably.
  • the mesotriad fraction [mm] is less than 20 mol%, the handleability due to stickiness or the like is deteriorated, whereas when it exceeds 80 mol%, the crystallinity is increased, so that the low-temperature meltability is reduced, and the coating properties and the like are reduced. Workability becomes worse.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention has a terminal unsaturated group concentration of 2.0 to 30 mol%, preferably 2.1 to 28 mol%, preferably 2.2 to 25 mol%. More preferably, it is 2.3 to 23 mol%, further preferably 2.5 to 20 mol%.
  • the terminal unsaturated group concentration per molecule is less than 2.0 mol%, the reactivity is inferior and the adhesive performance is lowered.
  • the terminal unsaturated group concentration exceeds 30 mol%, the number of reaction points increases, and gel is generated to deteriorate the adhesion performance, and the melt fluidity deteriorates, and the workability such as coating property deteriorates.
  • the number of terminal unsaturated groups per molecule is preferably more than 1.0 and 2.5 or less, and 1.3 to 2.5 More preferably, it is more preferably 1.35 to 2.5, and particularly preferably 1.4 to 2.0.
  • the number of terminal unsaturated groups per molecule exceeds 1.0, it is expected that heat resistance is imparted by a reaction starting from the terminal unsaturated group.
  • the number of terminal unsaturated groups per molecule is 2.5 or less, the branched structure of polyolefin decreases. Since the branched structure is different in linear structure and melt fluidity, the behavior such as coating may change.
  • terminal unsaturated group examples include a vinyl group, a vinylidene group, and a trans (vinylene) group.
  • the terminal unsaturated group defined in this specification means a vinyl group and a vinylidene group.
  • Vinyl groups and vinylidene groups are radically polymerizable and have a wide range of applications for various reactions and can meet various requirements.
  • the terminal unsaturated group concentration and the number of terminal unsaturated groups in the terminal unsaturated ⁇ -olefin polymer of the present invention mean the concentration and number of the total amount of vinyl groups and vinylidene groups. When only a vinyl group is present, it means the concentration and number of only the vinyl group, and when both vinyl group and vinylidene group are included, it means the concentration and number of both sums.
  • terminal unsaturated group concentration and the number of terminal unsaturated groups per molecule can be determined by 1 H-NMR measurement. Specifically, terminal vinylidene groups appearing at ⁇ 4.8 to 4.6 (2H), terminal vinyl groups appearing at ⁇ 5.9 to 5.7 (1H) and ⁇ 1.05 obtained from 1 H-NMR measurement. Based on the methyl group appearing at ⁇ 0.60 (3H), the terminal unsaturated group concentration (C) (mol%) can be calculated.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention preferably has a weight average molecular weight Mw of 500 to 100,000, more preferably 700 to 90,000, and more preferably 800 to 80,000. Further preferred.
  • Mw weight average molecular weight
  • the flexibility of the polyolefin is improved when heat resistance is imparted to the polyolefin by a reaction based on the terminal vinylidene group.
  • the weight average molecular weight is 100,000 or less, the melt viscosity becomes small and workability such as coating property is improved.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) method.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention preferably has a molecular weight distribution Mw / Mn of 1.10 to 2.60, more preferably 1.10 to 2.55, and more preferably 1.10 to More preferably, it is 2.50.
  • Mw / Mn molecular weight distribution
  • the molecular weight distribution is 1.10 or more, the production is facilitated.
  • the molecular weight distribution exceeds 2.60, the molecular weight distribution is wide and there is a concern about variation in the functional group concentration, and the performance such as curability deteriorates.
  • the molecular weight distribution Mw / Mn can be determined by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) by the GPC method.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are determined by the Universal Calibration method using the constants K and a of the Mark-Houwink-Sakurada formula in order to convert the polystyrene equivalent molecular weight into the molecular weight of the corresponding polymer.
  • Detector RI detector for liquid chromatography
  • Waters 150C Column: TOSO GMHHR-H (S) HT
  • Solvent 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
  • Flow rate 1.0 mL / min
  • Sample concentration 0.3% by mass
  • the terminal unsaturated ⁇ -olefin polymer of the present invention has a melting point of 20 ° C. or more and 100 ° C. or less, only one peak temperature is observed in the melting behavior measurement using a differential scanning calorimeter, and the peak The full width at half maximum is preferably within 15 ° C.
  • the melting behavior was measured by using a differential scanning calorimeter (DSC). The sample was heated from room temperature to 190 ° C. at 100 ° C./min, held at 190 ° C. for 5 minutes, then ⁇ 30 ° C. to 10 ° C. The temperature is lowered at / min, held at ⁇ 30 ° C. for 5 minutes, and then heated to 190 ° C.
  • the temperature at the peak top in the obtained melting curve is defined as the melting point (Tm).
  • the melting point is preferably 30 to 90 ° C., more preferably 35 to 85 ° C., and still more preferably 40 to 80 ° C. from the viewpoint of low temperature melting property and storage property.
  • the half-value width of the endothermic peak obtained when measuring the melting point is the peak width at 50% of the endothermic peak when the melting point (Tm) is measured by DSC, from the viewpoint of low-temperature melting component and sharp melt property.
  • the temperature is preferably 1 to 9 ° C, more preferably 1 to 7 ° C, still more preferably 2 to 7 ° C.
  • a small half-value width indicates that the endothermic peak is sharp, that is, the melting behavior is rapid. In this case, the occurrence of problems such as high-temperature storage stability and stickiness due to low-temperature melting components is suppressed.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention preferably has a kinematic viscosity at 100 ° C. of 3 to 2000 mm / s 2 .
  • the kinematic viscosity at 100 ° C. is a value measured in accordance with JIS K2283, preferably 10 to 1500 mm / s 2 , more preferably 30 to 1000 mm / s 2 , and still more preferably 50 to 500 mm / s 2. s 2 .
  • the 100 ° C. kinematic viscosity is less than 3 mm / s 2 , the performance in curing and the like is insufficient, and when the 100 ° C.
  • kinematic viscosity exceeds 2000 mm / s 2 , the viscosity is high and the fluidity at room temperature decreases.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention uses a homopolymer and / or copolymer of an ⁇ -olefin having 5 or more carbon atoms as a raw material polyolefin, and an organic peroxide of 0.05 to 5.0% by mass is added, and heat treatment is performed at a temperature of 200 to 380 ° C.
  • the above method for producing a terminal unsaturated ⁇ -olefin polymer can reduce the amount of gaseous by-products, so that the purity can be improved. Further, the terminal unsaturated ⁇ -olefin polymer can be produced at low cost.
  • the raw material polyolefin has a mesotriad fraction [mm] of 20 to 80 mol%, the raw material polyolefin can be easily melted at low temperatures or has good solubility in a solvent. It has a wide temperature range and can be decomposed at a relatively low temperature. Thereby, it has the merit which can control a side reaction.
  • the decomposition can be efficiently performed with a milder and shorter reaction, and the above-mentioned merit of the raw material polyolefin can be increased.
  • the raw material polyolefin has a terminal unsaturated group in advance, the above merits can be maximized.
  • the mesotriad fraction of the decomposed product is derived from the raw material polyolefin, when [mm] is 20 to 80 mol%, it can be easily melted at a low temperature or has good solubility in a solvent.
  • the mesotriad fraction [mm] of the raw material polyolefin is the same as that of the terminal unsaturated ⁇ -olefin polymer.
  • the weight average molecular weight Mw of the raw material polyolefin is preferably 4,000 to 1,000,000, more preferably 5,000 to 900,000, and further preferably 6,000 to 800,000. preferable.
  • the decomposition rate can be set high.
  • the weight average molecular weight of the raw material polyolefin is 1,000,000 or less, the viscosity at the time of decomposition becomes low, so that there are no restrictions on stirring power and stirring uniformity in the process.
  • the raw material polyolefin preferably has 0.40 to 1.00 terminal unsaturated groups per molecule, more preferably 0.45 to 1.00, still more preferably 0.50 to 1.00. And most preferably 0.55 to 1.00.
  • the number of terminal unsaturated groups per molecule is 0.40 or more, the number of terminal unsaturated groups is sufficiently increased by decomposition, and the high molecular weight is decomposed to increase the number of terminal unsaturated groups. There is no need.
  • the number of terminal unsaturated groups per molecule is 1.00 or less, production by a technique using a polymerization catalyst described later becomes easy.
  • Raw material polyolefin can be manufactured by using a metallocene catalyst which consists of a combination of the following component (A), (B) and (C), for example, and using hydrogen as a molecular weight regulator. Specifically, it can be produced by the method disclosed in WO2008 / 047860.
  • A Transition metal compound containing a metal element belonging to Groups 3 to 10 of the periodic table having a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, and a substituted indenyl group.
  • B Reacts with a transition metal compound.
  • C Organoaluminum compound that can form an ionic complex
  • the transition metal compound containing a metal element belonging to Groups 3 to 10 of the periodic table having a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a substituted indenyl group as the component (A) the following general formula (I ) Is represented.
  • M represents a metal element of Groups 3 to 10 of the periodic table, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium, and lanthanoid series. Metal etc. are mentioned. Among these, titanium, zirconium and hafnium are preferable from the viewpoint of olefin polymerization activity and the like, and zirconium is most preferable from the viewpoint of yield of terminal vinylidene group and catalytic activity.
  • E 1 and E 2 are respectively substituted cyclopentadienyl group, indenyl group, substituted indenyl group, heterocyclopentadienyl group, substituted heterocyclopentadienyl group, amide group (—N ⁇ ), phosphine group (—P ⁇ ), Hydrocarbon group [>CR-,> C ⁇ ] and silicon-containing group [>SiR-,> Si ⁇ ] (where R is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, or a heteroatom-containing group)
  • a ligand selected from among (A) A ligand selected from among (A), and a crosslinked structure is formed via A 1 and A 2 .
  • E 1 and E 2 may be the same or different from each other.
  • a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group and a substituted indenyl group are preferable, and at least one of E 1 and E 2 is a cyclopentadienyl group, A substituted cyclopentadienyl group, an indenyl group or a substituted indenyl group;
  • the substituent of the substituted cyclopentadienyl group, substituted indenyl group, or substituted heterocyclopentadienyl group has 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms).
  • a substituent such as a hydrocarbon group, a silicon-containing group or a heteroatom-containing group is shown.
  • X represents a ⁇ -bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different, and may be cross-linked with other X, E 1 , E 2 or Y.
  • X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, carbon Examples thereof include a silicon-containing group having 1 to 20 carbon atoms, a phosphide group having 1 to 20 carbon atoms, a sulfide group having 1 to 20 carbon atoms, and an acyl group having 1 to 20 carbon atoms.
  • the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, cyclohexyl group, octyl group; vinyl group, propenyl group, cyclohexenyl group, etc.
  • An arylalkyl group such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group Group, anthracenyl group, aryl group such as phenanthonyl group, and the like.
  • alkyl groups such as methyl group, ethyl group, and propyl group
  • aryl groups such as phenyl group are preferable.
  • alkoxy group having 1 to 20 carbon atoms examples include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, a phenylmethoxy group, and a phenylethoxy group.
  • aryloxy group having 6 to 20 carbon atoms examples include phenoxy group, methylphenoxy group, and dimethylphenoxy group.
  • amide group having 1 to 20 carbon atoms include dimethylamide group, diethylamide group, dipropylamide group, dibutylamide group, dicyclohexylamide group, methylethylamide group, and other alkylamide groups, divinylamide group, and dipropenylamide group.
  • Alkenylamide groups such as dicyclohexenylamide group; arylalkylamide groups such as dibenzylamide group, phenylethylamide group and phenylpropylamide group; arylamide groups such as diphenylamide group and dinaphthylamide group.
  • Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl groups such as tripropylsilyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group and trinaphthylsilyl group; hydrocarbons such as trimethylsilyl ether group A substituted silyl ether group; a silicon-substituted alkyl group such as a trimethylsilylmethyl group; a silicon-substituted aryl group such as a tri
  • Examples of the phosphide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, E
  • Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, E
  • acyl group having 1 to 20 carbon atoms examples include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, thearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X.
  • Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like.
  • Examples of the amine include amines having 1 to 20 carbon atoms, and specifically include methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and dicyclohexylamine.
  • Alkylamines such as methylethylamine; alkenylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, dicyclohexenylamine; arylalkylamines such as phenylamine, phenylethylamine, phenylpropylamine; An arylamine such as naphthylamine can be mentioned.
  • ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, and isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, Aliphatic hybrid ether compounds such as methyl-n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether, methyl Aliphatic unsaturated ether compounds such as vinyl ether, methyl allyl ether, ethyl vinyl ether, ethy
  • phosphines include phosphines having 1 to 20 carbon atoms. Specifically, monohydrocarbon-substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; alkyl phosphines such as trihydrocarbon-substituted phosphines such as trimethylphosphine, triethylphosphine, tripropylphosphine, tribut
  • a 1 and A 2 are divalent bridging groups for bonding two ligands, which are a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and a silicon-containing group.
  • R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, May be different.
  • q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
  • At least one is preferably a crosslinking group composed of a hydrocarbon group having 1 or more carbon atoms or a silicon-containing group.
  • a bridging group include those represented by the following general formula (a), and specific examples thereof include a methylene group, an ethylene group, an ethylidene group, a propylidene group, an isopropylidene group, and a cyclohexylidene group.
  • an ethylene group, an isopropylidene group, and a dimethylsilylene group are preferable.
  • R 2 and R 3 are each a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and they are the same as each other. However, they may be different from each other and may be bonded to each other to form a ring structure, and e represents an integer of 1 to 4.
  • transition metal compound represented by the general formula (I) include specific examples described in WO2008 / 066168.
  • analogous compound of the metal element of another group may be sufficient.
  • a transition metal compound belonging to Group 4 of the periodic table is preferred, and a zirconium compound is particularly preferred.
  • transition metal compounds represented by the general formula (I) compounds represented by the following general formula (II) are preferable.
  • M represents a metal element belonging to Groups 3 to 10 of the periodic table
  • a 1a and A 2a each represent a bridging group represented by the general formula (a) in the above general formula (I).
  • CH 2 , CH 2 CH 2 , (CH 3 ) 2 C, (CH 3 ) 2 C (CH 3 ) 2 C, (CH 3 ) 2 Si and (C 6 H 5) 2 Si are preferred.
  • a 1a and A 2a may be the same as or different from each other.
  • R 4 to R 13 each represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group.
  • halogen atom the hydrocarbon group having 1 to 20 carbon atoms, and the silicon-containing group are the same as those described in the general formula (I).
  • halogen-containing hydrocarbon group having 1 to 20 carbon atoms examples include p-fluorophenyl group, 3,5-difluorophenyl group, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3,5-bis ( (Trifluoro) phenyl group, fluorobutyl group and the like.
  • heteroatom-containing group examples include C1-C20 heteroatom-containing groups, specifically, nitrogen-containing groups such as dimethylamino group, diethylamino group, and diphenylamino group; phenylsulfide group, methylsulfide group, and the like Sulfur-containing groups of: phosphorus-containing groups such as dimethylphosphino groups and diphenylphosphino groups; oxygen-containing groups such as methoxy groups, ethoxy groups, and phenoxy groups.
  • R 4 and R 5 a group containing a hetero atom such as a halogen atom, oxygen, or silicon is preferable because of high polymerization activity.
  • R 6 to R 13 are preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • X and Y are the same as in general formula (I).
  • q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
  • transition metal compounds represented by the above general formula (II) when both indenyl groups are the same, examples of the transition metal compounds belonging to Group 4 of the periodic table include specific examples described in WO2008 / 066168. . Further, it may be a compound similar to a metal element other than Group 4. A transition metal compound belonging to Group 4 of the periodic table is preferred, and a zirconium compound is particularly preferred.
  • the transition metal compound of Group 4 of the periodic table is disclosed in WO2008 / 066168. Specific examples of the description are given. Further, it may be a compound similar to a metal element other than Group 4. A transition metal compound belonging to Group 4 of the periodic table is preferred, and a zirconium compound is particularly preferred.
  • a high purity terminal unsaturated olefin polymer having a relatively low molecular weight can be obtained, and A borate compound is preferable in terms of high catalyst activity.
  • Specific examples of the borate compound include those described in WO2008 / 066168. These can be used individually by 1 type or in combination of 2 or more types.
  • dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, and tetrakis (Perfluorophenyl) methylanilinium borate and the like are preferable.
  • the catalyst used in the production method of the present invention may be a combination of the component (A) and the component (B).
  • an organoaluminum compound is used as the component (C).
  • organoaluminum compound (C) trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trinormal hexylaluminum, trinormaloctylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride.
  • Dimethylaluminum fluoride, diisobutylaluminum hydride, diethylaluminum hydride and ethylaluminum sesquichloride These organoaluminum compounds may be used alone or in combination of two or more.
  • trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trinormalhexylaluminum and trinormaloctylaluminum is preferable, and triisobutylaluminum, trinormalhexylaluminum and trimethylaluminum Normal octyl aluminum is more preferred.
  • the amount of component (A) used is usually 0.1 ⁇ 10 ⁇ 6 to 1.5 ⁇ 10 ⁇ 5 mol / L, preferably 0.15 ⁇ 10 ⁇ 6 to 1.3 ⁇ 10 ⁇ 5 mol / L, More preferably, it is 0.2 ⁇ 10 ⁇ 6 to 1.2 ⁇ 10 ⁇ 5 mol / L, and particularly preferably 0.3 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 5 mol / L.
  • the amount of component (A) used is 0.1 ⁇ 10 ⁇ 6 mol / L or more, the catalytic activity is sufficiently expressed, and when it is 1.5 ⁇ 10 ⁇ 5 mol / L or less, the heat of polymerization is easy. Can be removed.
  • the use ratio (A) / (B) of the component (A) and the component (B) is preferably 10/1 to 1/100, more preferably 2/1 to 1/10 in terms of molar ratio.
  • (A) / (B) is in the range of 10/1 to 1/100, an effect as a catalyst can be obtained and the catalyst cost per unit mass polymer can be suppressed. Further, there is no fear that a large amount of boron exists in the target terminal unsaturated ⁇ -olefin polymer.
  • the use ratio (A) / (C) of the component (A) to the component (C) is preferably 1/1 to 1/10000, more preferably 1/5 to 1/2000, still more preferably 1 in terms of molar ratio. / 10 to 1/1000.
  • the preliminary contact may be performed using the above-described component (A) and component (B), or component (A), component (B) and component (C).
  • the preliminary contact can be performed by bringing the component (A) into contact with, for example, the component (B).
  • the method is not particularly limited, and a known method can be used. Such preliminary contact is effective in reducing the catalyst cost, such as improving the catalytic activity and reducing the proportion of the (B) component used as the promoter.
  • the terminal unsaturated group concentration of the terminal unsaturated ⁇ -olefin polymer obtained using the raw material polyolefin becomes 2.0 mol% or more.
  • the hydrogen pressure in the polymerization reaction of the raw material polyolefin is more preferably 0.005 to 0.100 MPa.
  • the polymerization temperature in the polymerization reaction is preferably 60 to 120 ° C., more preferably 70 to 100 ° C. When the polymerization temperature is 70 ° C. or higher, the terminal unsaturated group concentration of the terminal unsaturated ⁇ -olefin polymer obtained using the raw material polyolefin tends to be 2.0 mol% or higher.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention is produced by decomposing the raw material polyolefin, preferably in an inert gas atmosphere.
  • the decomposition is preferably a radical decomposition reaction, and the decomposition reaction proceeds under relatively mild conditions as compared with a thermal decomposition reaction that does not use an organic peroxide.
  • the reaction proceeds at a relatively high temperature at a temperature of 200 to 500 ° C.
  • a thermal decomposition reaction at a high temperature there are problems such as a decrease in the yield of the target structure due to the generation of a large amount of by-products. Is possible.
  • it is a method of shortening the residence time in the thermal decomposition reaction.
  • the residence time is preferably 1 to 60 minutes, and more preferably 1 to 30 minutes.
  • the radical decomposition reaction can be carried out by adding 0.05 to 5.0% by mass of an organic peroxide to the raw material polyolefin and reacting at a temperature of 200 to 380 ° C.
  • the decomposition temperature is preferably 220 to 360, more preferably 250 to 350 ° C. When the decomposition temperature is less than 200 ° C., the decomposition reaction does not proceed, and the terminal unsaturated group concentration of the terminal unsaturated ⁇ -olefin polymer obtained may not be 2.0 mol% or more.
  • the decomposition temperature exceeds 380 ° C.
  • the decomposition proceeds vigorously, and the decomposition may be completed before the organic peroxide is sufficiently uniformly diffused into the molten polymer by stirring, which may reduce the yield.
  • the organic peroxide to be added is preferably an organic peroxide having a 1-minute half-life temperature of 140 to 270 ° C.
  • specific examples of the organic peroxide include the following compounds: diisobutyryl peroxide, Cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate, 1,1,3,3-tetramethylbutylperoxyneodecano Eight, di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-hexylperoxyneodecanoate, t-butylperoxyneoheptanoate, t-hexyl Peroxypivalate, t-butyl peroxypivalate, di (3 , 5-trimethylhexanoyl) peroxide,
  • the amount of the organic peroxide added is preferably 0.05 to 5.0% by mass, more preferably 1.0 to 4.0% by mass with respect to the raw material polyolefin.
  • the addition amount is less than 0.05% by mass, the decomposition reaction rate may be slowed and the production efficiency may be deteriorated.
  • the addition amount exceeds 5.0% by mass, the odor resulting from the decomposition of the organic peroxide may be a problem.
  • the decomposition time of the decomposition reaction is, for example, 30 seconds to 10 hours, preferably 1 minute to 1 hour.
  • the decomposition time is less than 30 seconds, not only does the decomposition reaction not proceed sufficiently, but a large amount of undecomposed organic peroxide may remain.
  • the decomposition time exceeds 10 hours, there is a concern that the crosslinking reaction, which is a side reaction, may progress, and the resulting terminal unsaturated ⁇ -olefin polymer may turn yellow.
  • the radical decomposition reaction can be carried out by using, for example, either a batch method or a melt continuous method.
  • a radical thermal decomposition reaction can be carried out by dropping an organic oxide and heating at a predetermined temperature for a predetermined time.
  • the organic peroxide may be dropped within the range of the decomposition time, and the dropping may be either continuous dropping or divided dropping.
  • the reaction time from the dropping end time is preferably within the above reaction time range.
  • the organic peroxide may be dissolved in a solvent and dropped as a solution.
  • the solvent is preferably a hydrocarbon solvent, and specific examples include aliphatic hydrocarbons such as heptane, octane, decane, dodecane, tetradecane, hexadecane, and nanodecane; methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane, And alicyclic hydrocarbons such as cyclododecane; and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene.
  • a solvent having a boiling point of 100 ° C. or higher is preferable.
  • raw material polyolefin may be dissolved in a solvent during decomposition.
  • the reaction time as viewed from the average residence time is, for example, 20 seconds to 10 minutes.
  • the melt continuous method can improve the mixing state and shorten the reaction time compared to the batch method.
  • a method of impregnating the raw material polyolefin with the organic peroxide using the above-mentioned apparatus, or a method of individually supplying and mixing the raw material polyolefin and the organic peroxide can be applied.
  • the impregnation of the raw material polyolefin with the organic peroxide is performed by adding a predetermined amount of the organic peroxide to the raw material polyolefin in the presence of an inert gas such as nitrogen, and stirring the solution in the range of room temperature to 40 ° C.
  • the raw material pellets can be uniformly absorbed and impregnated.
  • the obtained raw material polyolefin impregnated with the organic peroxide (impregnated pellet) is decomposed by melt extrusion, or the impregnated pellet is added to the raw material polyolefin as a master batch and decomposed to obtain a terminal unsaturated polyolefin.
  • the raw polyolefin is absorbed and impregnated as a solution in which the organic peroxide is previously dissolved in a hydrocarbon solvent. It is good to let them.
  • the raw material polyolefin and the organic peroxide are supplied to the extruder hopper at a constant flow rate, or the organic peroxide is supplied at a constant flow rate in the middle of the barrel. Can be implemented.
  • the terminal unsaturated group By functionalizing the terminal unsaturated group using the terminal unsaturated ⁇ -olefin polymer of the present invention, 5 mol% or more (preferably 10 mol% or more) of the terminal unsaturated group was functionally modified. It can be a functionalized ⁇ -olefin polymer.
  • the functional group is preferably one or more functional groups selected from a hydroxyl group, an epoxy group, an alkoxysilicon group, an alkylsilicon group, a carboxyl group, an amino group, and an isocyanate group.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention preferably has an acid anhydride structure.
  • An acid anhydride structure is a structure in which one molecule of water is lost from two carboxyl groups of a carboxylic acid, and two acyl groups share one oxygen atom.
  • R 1 COOCOR 2 For example, maleic anhydride, succinic anhydride, phthalic anhydride and the like can be mentioned.
  • the functionalized ⁇ -olefin polymer has a functional group, compatibility and dispersibility with a polar compound can be improved, and it becomes easy to obtain a composition with various polymers. Further, since the functionalized ⁇ -olefin polymer has a functional group, the solubility and dispersibility in a polar solvent such as water can be improved, and it can be used as an emulsion adhesive or a coating material. For application to polyolefin materials, adhesion and paintability can be imparted, and the surface condition of organic inorganic pigments can be improved, making it possible to produce polyolefin master batches. Can be granted.
  • Terminal unsaturated group concentration Terminal vinylidene groups appearing in ⁇ 4.8 to 4.6 (2H), terminal vinyl groups appearing in ⁇ 5.9 to 5.7 (1H) and ⁇ 1.05 to 0.60 (1H-NMR measurement obtained from 1 H-NMR measurement) Based on the methyl group appearing in 3H), the terminal unsaturated group concentration (C) (mol%) was calculated.
  • the precipitate was filtered and then heated and dried under reduced pressure to obtain 200 g of terminal unsaturated low stereoregular poly 1-hexene as a raw material polyolefin.
  • weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm] number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
  • the precipitate was filtered and then heated and dried under reduced pressure to obtain 230 g of terminal unsaturated low stereoregular poly 1-decene as a raw material polyolefin.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • mesotriad fraction [mm] number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
  • the precipitate was filtered and then heated and dried under reduced pressure to obtain 220 g of terminal unsaturated low stereoregular poly 1-dodecene as a raw material polyolefin.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • mesotriad fraction [mm] number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
  • the precipitate was filtered and then heated and dried under reduced pressure to obtain 190 g of a terminal unsaturated low stereoregular poly 1-octadecene as a raw material polyolefin.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • mesotriad fraction [mm] number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
  • the precipitate was filtered and then heated and dried under reduced pressure to obtain 175 g of a terminal unsaturated low stereoregular C26-28 copolymer as a raw material polyolefin.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • mesotriad fraction [mm] number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
  • distillation is performed at 180 ° C. under reduced pressure of 5 ⁇ 10 ⁇ 6 MPa, and the number of carbon atoms is 24 or less.
  • a terminal unsaturated low stereoregular 1-octene / 1-dodecene copolymer which is a raw material polyolefin, was obtained.
  • Example 1 [Production of terminal unsaturated ⁇ -olefin polymer] 40 g of the raw material polyolefin produced in Production Example 1 was introduced into a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream. Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
  • Example 2 [Production of terminal unsaturated ⁇ -olefin polymer] 40 g of the raw material polyolefin produced in Production Example 2 was introduced into a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream. Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
  • the terminal unsaturated ⁇ -olefin polymer had a weight average molecular weight (Mw) of 9100 and a molecular weight distribution (Mw / Mn) of 1.72.
  • Mw weight average molecular weight
  • Mn molecular weight distribution
  • Example 3 [Production of terminal unsaturated ⁇ -olefin polymer] 40 g of the raw material polyolefin produced in Production Example 3 was placed in a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer and stirred for 30 minutes under a nitrogen stream. Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
  • the terminal unsaturated ⁇ -olefin polymer had a weight average molecular weight (Mw) of 8500 and a molecular weight distribution (Mw / Mn) of 1.81.
  • Mw weight average molecular weight
  • Mn molecular weight distribution
  • Example 4 [Production of terminal unsaturated ⁇ -olefin polymer] 40 g of the raw material polyolefin produced in Production Example 4 was placed in a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream. Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
  • the terminal unsaturated ⁇ -olefin polymer had a weight average molecular weight (Mw) of 8500 and a molecular weight distribution (Mw / Mn) of 1.81.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 5 [Production of terminal unsaturated ⁇ -olefin polymer] 40 g of the raw material polyolefin produced in Production Example 5 was charged into a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream. Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
  • the terminal unsaturated ⁇ -olefin polymer had a weight average molecular weight (Mw) of 6500 and a molecular weight distribution (Mw / Mn) of 1.79.
  • Mw weight average molecular weight
  • Mn molecular weight distribution
  • Example 6 [Production of terminal unsaturated ⁇ -olefin polymer] Glass beads were filled in a tubular reactor having an inner diameter of 10 mm and a length of 50 cm, and heated to 400 ° C. with a mantle heater. The raw material polyolefin obtained in Production Example 6 was continuously decomposed with a pump at a flow rate of 40 ml / hour to obtain a terminal unsaturated 1-octene / 1-dodecene copolymer. The residence time at this time was 27 minutes.
  • Comparative Example 1 [Production of terminal unsaturated propylene polymer]
  • n-heptane was 24 L / h
  • triisobutylaluminum was 15 mmol / h
  • the catalyst component obtained by contacting 2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride, triisobutylaluminum and propylene in a mass ratio of 1: 2: 20 was converted to 6 ⁇ mol in terms of zirconium.
  • the polymerization temperature was set to 83 ° C., and propylene and hydrogen were continuously supplied so that the hydrogen concentration in the gas phase of the reactor was 0.86 mol% and the total pressure in the reactor was maintained at 0.7 MPa ⁇ G.
  • a polymerization reaction was performed. Irganox 1010 (manufactured by Ciba Specialty Chemicals), which is a stabilizer, is added to the resulting polymerization solution so that the content is 500 ppm by mass, and n-heptane, which is a solvent, is removed to obtain a raw material. A low crystalline polypropylene which is polypropylene was obtained. This raw material polypropylene was made into resin pellets by underwater cutting. The resulting raw material polypropylene had a stereoregularity [mmmm] of 45 mol%, a weight average molecular weight (Mw) of 45,600, and a terminal unsaturated group number of 0.95 / molecule.
  • radical decomposition was performed under the following conditions to produce a terminal unsaturated propylene polymer. Specifically, 70 g of raw material polypropylene was put into a stainless steel reactor (with an internal volume of 500 mL) equipped with a stirrer. The mixture was stirred for 30 minutes under a nitrogen stream. Stirring was stopped and the resin temperature was raised to 120 ° C. using a mantle heater. Stirring was resumed after confirming that it was in a molten state, and the mantle heater was controlled so that the resin temperature was constant at 320 ° C. To this molten resin, 1.2 g of cumene hydroperoxide (trade name: Park Mill P, manufactured by NOF Corporation) was dropped over 4 minutes.
  • cumene hydroperoxide trade name: Park Mill P, manufactured by NOF Corporation
  • Comparative Example 2 The raw material polyolefin produced in Production Example 2 was used for evaluation as it was. About the obtained terminal unsaturated ⁇ -olefin polymer, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], kinematic viscosity at 100 ° C., melting point (Tm), terminal unsaturated group The concentration and the number of terminal unsaturated groups per molecule were measured. The results are shown in Table 2.
  • the terminal unsaturated ⁇ -olefin polymers of Examples 1 to 6 have high terminal unsaturated group concentrations of 2.0 mol% or more, and can be said to be highly reactive polymers. Therefore, it can be said that it can be suitably used as a use or raw material for reactive adhesives, reactive hot melt adhesives, other adhesives, pressure-sensitive adhesives, sealing materials, sealing materials, reactive plasticizers, and the like. Moreover, since it is an olefin polymer having 5 or more carbon atoms, it can be said that there are effects such as improvement of material heat resistance and improvement of waterproofness.
  • Comparative Example 1 is a terminal unsaturated olefin polymer having 3 carbon atoms
  • the terminal unsaturated concentration per molecular weight was less than 2.0 mol%.
  • the decomposition reaction was not performed in the comparative example 2
  • the terminal unsaturated concentration per molecular weight was less than 2.0 mol%.
  • the terminal unsaturated group concentration is low, the reactivity of the obtained polymer is low, and it is difficult to use it in applications such as reactive adhesives, sealing materials, sealing materials, adhesives, and plasticizers. It was.
  • the terminal unsaturated ⁇ -olefin polymer of the present invention uses a terminal unsaturated group as a reaction point, thereby imparting adhesiveness, paintability, and coating properties to a chemically inert polyolefin material. It can be used in fields such as the production of alloy materials with resins and compositions with inorganic and organic fillers. Furthermore, by using as a reactive raw material, it can be widely used as a raw material for reactive adhesives, reactive hot melt adhesives, other adhesives, pressure-sensitive adhesives, sealing materials, sealing materials, potting materials, reactive plasticizers, etc. Available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention provides: an end unsaturated α-olefin polymer which is a polymer of an α-olefin having at least 5 carbon atoms with a high degree of unsaturation; and a method for producing an end unsaturated α-olefin polymer which generates less by-products. The present invention is obtained by: an end unsaturated α-olefin polymer which is a homopolymer and/or a copolymer of an α-olefin having at least 5 carbon atoms, and which is characterized in that the end unsaturated group concentration is 2.0 to 30 mol%; a method for producing the end unsaturated α-olefin polymer by adding 0.05 to 5.0 mass% of an organic peroxide to a polyolefin which is the raw material and heat treating the mixture at a temperature of 200 to 380°C; and a method for producing the end unsaturated α-olefin polymer by heat treating the polyolefin which is the raw material at a temperature of 200 to 500°C with a residence time of an hour or less.

Description

末端不飽和α-オレフィン重合体及びその製造方法Terminally unsaturated α-olefin polymer and process for producing the same
 本発明は、末端不飽和α-オレフィン重合体及びその製造方法に関する。さらに詳しくは末端不飽和基濃度の高い末端不飽和α-オレフィン重合体、及び副生成物を低減でき、効率的な末端不飽和α-オレフィン重合体の製造方法に関する。 The present invention relates to a terminal unsaturated α-olefin polymer and a method for producing the same. More specifically, the present invention relates to a terminal unsaturated α-olefin polymer having a high concentration of terminal unsaturated groups, and an efficient method for producing a terminal unsaturated α-olefin polymer capable of reducing by-products.
 高分子量ポリオレフィンは化学的安定性が高く、力学物性に優れ、安価なことから工業部材等として幅広く用いられている。一方で、低分子量ポリオレフィンは、ワックス類としての使用に限定されているが、その高機能化が期待されている。 High molecular weight polyolefin is widely used as an industrial component because it has high chemical stability, excellent mechanical properties, and is inexpensive. On the other hand, low molecular weight polyolefins are limited to use as waxes, but higher functionality is expected.
 ポリオレフィンの機能化は長年にわたり行われてきたが、低分子量~中分子量領域での効率的な製造技術がないうえ、炭化水素であるポリオレフィンに対する極性等の付加技術も限定されていた。特に低分子量~中分子量ポリオレフィンをメタロセン触媒により製造する試みが近年なされているが、より高い機能を付与するために必要な不飽和基の官能基等を制御して導入するには限界があった。 Although the functionalization of polyolefin has been performed for many years, there is no efficient production technology in the low molecular weight to medium molecular weight region, and additional technology such as polarity for polyolefin which is a hydrocarbon is also limited. In particular, attempts have been made in recent years to produce low to medium molecular weight polyolefins with metallocene catalysts, but there was a limit to the control and introduction of unsaturated functional groups required to give higher functions. .
 特許文献1及び2には、不飽和基の導入のため、高分子量ポリオレフィン、特にポリプロピレンを熱分解することが開示されている(特許文献1及び2)。特許文献1は、アイソタクチックポリプロピレンを370℃で熱分解したポリプロピレン(例えば1分子当りのビニリデン基数は1.8個)を開示し、特許文献2は、ポリブテンを370℃で熱分解した熱分解ポリブテン(例えば1分子当りのビニリデン基数は1.53~1.75個)を開示する。 Patent Documents 1 and 2 disclose thermal decomposition of high molecular weight polyolefins, particularly polypropylene, for the introduction of unsaturated groups (Patent Documents 1 and 2). Patent Document 1 discloses polypropylene obtained by pyrolyzing isotactic polypropylene at 370 ° C. (for example, the number of vinylidene groups per molecule is 1.8), and Patent Document 2 is pyrolysis obtained by pyrolyzing polybutene at 370 ° C. Polybutenes (for example, 1.53 to 1.75 vinylidene groups per molecule) are disclosed.
 また、特許文献3には、プロピレンやブテン-1の単独重合体又は共重合体を原料として、末端不飽和ポリオレフィンを製造する方法が記載されている。
 一方、ワックス成分や潤滑油成分としては、より炭素数が大きいα-オレフィンの重合体が用いられるが、特に炭素数5以上のα-オレフィン重合体に対して、多量の不飽和基を効率よく導入する方法について何ら具体的に開示されていない。
Patent Document 3 describes a method for producing a terminal unsaturated polyolefin using a homopolymer or copolymer of propylene or butene-1 as a raw material.
On the other hand, α-olefin polymers having a larger carbon number are used as the wax component and the lubricating oil component, but a large amount of unsaturated groups are efficiently produced particularly for α-olefin polymers having 5 or more carbon atoms. There is no specific disclosure about the method of introduction.
特開2003-40921号公報JP 2003-40921 A 特開2003-137927号公報JP 2003-137927 A 国際公開第2011/148586号International Publication No. 2011/148586
 特許文献1及び特許文献2では、高分子量体を高分解することでビニリデン数を増加しているが、大量の副生成物の発生により、目的とする構造の収率が低下する等の課題があることがわかった。
 本発明の目的は、不飽和度が高く、炭素数5以上のα-オレフィンの重合体である末端不飽和α-オレフィン重合体を提供することである。
 本発明の他の目的は、副生成物の発生量が少ない末端不飽和α-オレフィン重合体の製造方法を提供することである。
In Patent Document 1 and Patent Document 2, the vinylidene number is increased by high-resolution decomposition of the high molecular weight product, but there are problems such as a decrease in yield of the target structure due to the generation of a large amount of by-products. I found out.
An object of the present invention is to provide a terminal unsaturated α-olefin polymer which is a polymer of an α-olefin having a high degree of unsaturation and having 5 or more carbon atoms.
Another object of the present invention is to provide a method for producing a terminal unsaturated α-olefin polymer with a small amount of by-products.
 本発明によれば、以下の発明が提供される。
[1]炭素数5以上のα-オレフィンの単独重合体及び/又は共重合体であって、末端不飽和基濃度が2.0~30モル%であることを特徴とする末端不飽和α-オレフィン重合体。
[2]1分子当りの末端不飽和基の数が1.0個を超え2.5個以下である、[1]に記載の末端不飽和α-オレフィン重合体。
[3]炭素数5~12のα-オレフィン単位を50~100質量%含む、[1]又は[2]に記載の末端不飽和α-オレフィン重合体。
[4]炭素数14~30のα-オレフィン単位を50~100質量%含む、[1]又は[2]に記載の末端不飽和α-オレフィン重合体。
[5]100℃における動粘度が3~2000mm/s2であり、メソトリアッド分率[mm]が20~80モル%である、[1]~[4]のいずれかに記載の末端不飽和α-オレフィン重合体。
[6]示差走査型熱量計を用いた融解挙動測定において、融点が20℃以上100℃以下であり、ピーク温度が一つだけ観測され、かつ該ピークの半値幅が15℃以内である、[1]~[5]のいずれかに記載の末端不飽和α-オレフィン重合体。
[7]重量平均分子量Mwが500~100,000であり、かつ、分子量分布Mw/Mnが1.10~2.60である、[1]~[6]のいずれかに記載の末端不飽和α-オレフィン重合体。
[8]有機過酸化物を原料ポリオレフィンに対して0.05~5.0質量%添加し、温度200~380℃で加熱処理することを特徴とする[1]~[7]のいずれかに記載の末端不飽和α-オレフィン重合体の製造方法。
[9]原料ポリオレフィンを、温度200~500℃で滞留時間1時間以内で加熱処理することを特徴とする[1]~[7]のいずれかに記載の末端不飽和α-オレフィン重合体の製造方法。
[10]前記加熱処理の処理時間が30秒~10時間である、[8]又は[9]に記載の末端不飽和α-オレフィン重合体の製造方法。
According to the present invention, the following inventions are provided.
[1] A terminal unsaturated α-olefin characterized in that it is a homopolymer and / or copolymer of an α-olefin having 5 or more carbon atoms and has a terminal unsaturated group concentration of 2.0 to 30 mol%. Olefin polymer.
[2] The terminal unsaturated α-olefin polymer according to [1], wherein the number of terminal unsaturated groups per molecule is more than 1.0 and 2.5 or less.
[3] The terminal unsaturated α-olefin polymer according to [1] or [2], containing 50 to 100% by mass of an α-olefin unit having 5 to 12 carbon atoms.
[4] The terminal unsaturated α-olefin polymer according to [1] or [2], containing 50 to 100% by mass of an α-olefin unit having 14 to 30 carbon atoms.
[5] The terminal unsaturated α according to any one of [1] to [4], wherein the kinematic viscosity at 100 ° C. is 3 to 2000 mm / s 2 and the mesotriad fraction [mm] is 20 to 80 mol%. An olefin polymer.
[6] In melting behavior measurement using a differential scanning calorimeter, the melting point is 20 ° C. or more and 100 ° C. or less, only one peak temperature is observed, and the half width of the peak is 15 ° C. or less. [1] The terminally unsaturated α-olefin polymer according to any one of [5].
[7] Terminal unsaturation according to any one of [1] to [6], wherein the weight average molecular weight Mw is 500 to 100,000 and the molecular weight distribution Mw / Mn is 1.10 to 2.60. α-olefin polymer.
[8] The organic peroxide is added in an amount of 0.05 to 5.0% by mass with respect to the raw material polyolefin, and heat-treated at a temperature of 200 to 380 ° C. In any one of [1] to [7] A process for producing the terminal unsaturated α-olefin polymer as described.
[9] The production of a terminal unsaturated α-olefin polymer according to any one of [1] to [7], wherein the raw material polyolefin is heat-treated at a temperature of 200 to 500 ° C. for a residence time of 1 hour or less. Method.
[10] The method for producing a terminal unsaturated α-olefin polymer according to [8] or [9], wherein the heat treatment time is 30 seconds to 10 hours.
 本発明によれば、不飽和度が高く、炭素数5以上のα-オレフィンの重合体である末端不飽和α-オレフィン重合体を提供できる。
 また、本発明によれば、副生成物の発生量が少ない末端不飽和α-オレフィン重合体の製造方法を提供できる。
According to the present invention, a terminal unsaturated α-olefin polymer which is a polymer of α-olefin having a high degree of unsaturation and having 5 or more carbon atoms can be provided.
In addition, according to the present invention, it is possible to provide a method for producing a terminal unsaturated α-olefin polymer with a small amount of by-products.
[末端不飽和α-オレフィン重合体]
 本発明の末端不飽和α-オレフィン重合体は、炭素数5以上のα-オレフィンの単独重合体及び/又は共重合体であって、末端不飽和基濃度が2.0~30モル%であることを特徴とする。
 本発明の末端不飽和α-オレフィン重合体は、末端不飽和基の濃度が高く、反応性に優れる。
[Terminal unsaturated α-olefin polymer]
The terminal unsaturated α-olefin polymer of the present invention is a homopolymer and / or copolymer of an α-olefin having 5 or more carbon atoms, and has a terminal unsaturated group concentration of 2.0 to 30 mol%. It is characterized by that.
The terminal unsaturated α-olefin polymer of the present invention has a high concentration of terminal unsaturated groups and is excellent in reactivity.
 本発明の末端不飽和α-オレフィン重合体の製造に用いられるα-オレフィンとしては、ペンテン-1、ヘプテン-1、ヘキセン-1、ヘプテン-1、オクテン-1、デセン-1、4-メチルペンテン-1、3-メチルブテン-1等が挙げられる。
 本発明の末端不飽和α-オレフィン重合体は、炭素数5~12のα-オレフィン単位を50~100質量%含むことが好ましく、また、炭素数14~30のα-オレフィン単位を50~100質量%含んでいても好ましい。
Examples of the α-olefin used in the production of the terminal unsaturated α-olefin polymer of the present invention include pentene-1, heptene-1, hexene-1, heptene-1, octene-1, decene-1, and 4-methylpentene. -1,3-methylbutene-1 and the like.
The terminal unsaturated α-olefin polymer of the present invention preferably contains 50 to 100% by mass of α-olefin units having 5 to 12 carbon atoms, and 50 to 100 α-olefin units having 14 to 30 carbon atoms. Even if it contains the mass%, it is preferable.
 本発明の末端不飽和α-オレフィン重合体は、メソトリアッド分率[mm]が20~80モル%であることが好ましく、25~70モル%であることがより好ましく、30~60モル%であることがさらに好ましい。
 メソトリアッド分率[mm]が20モル%未満であると、ベタツキ等による取扱い性が悪くなり、一方80モル%を超えると、結晶性が高くなるため、低温溶融性が低下し、塗布性等の作業性が悪くなる。
The terminal unsaturated α-olefin polymer of the present invention preferably has a mesotriad fraction [mm] of 20 to 80 mol%, more preferably 25 to 70 mol%, and more preferably 30 to 60 mol%. More preferably.
When the mesotriad fraction [mm] is less than 20 mol%, the handleability due to stickiness or the like is deteriorated, whereas when it exceeds 80 mol%, the crystallinity is increased, so that the low-temperature meltability is reduced, and the coating properties and the like are reduced. Workability becomes worse.
 本発明の末端不飽和α-オレフィン重合体は、末端不飽和基濃度が2.0~30モル%であり、2.1~28モル%であることが好ましく、2.2~25モル%であることがより好ましく、2.3~23モル%であることが更に好ましく、2.5~20モル%であることが特に好ましい。
 1分子当りの末端不飽和基濃度が2.0モル%未満であると、反応性に劣り、接着性能が低下する。また、末端不飽和基濃度が30モル%を超えると反応点が多くなり、ゲルが発生し接着性能が低下したり、溶融流動性が悪くなり、塗布性等の作業性が悪くなる。
 本発明の末端不飽和α-オレフィン重合体は、1分子当りの末端不飽和基の数が1.0個を超え2.5個以下であることが好ましく、1.3~2.5個であることがより好ましく、1.35~2.5個であることがさらに好ましく、1.4~2.0個であることが特に好ましい。
 1分子当りの末端不飽和基の数が1.0個を超える場合、末端不飽和基を起点とした反応による耐熱性の付与が期待される。一方、1分子当りの末端不飽和基の数が2.5個以下の場合、ポリオレフィンの分岐構造が少なくなる。分岐構造は、直鎖状構造及び溶融流動性が異なるため塗布等の挙動が変化するおそれがある。
The terminal unsaturated α-olefin polymer of the present invention has a terminal unsaturated group concentration of 2.0 to 30 mol%, preferably 2.1 to 28 mol%, preferably 2.2 to 25 mol%. More preferably, it is 2.3 to 23 mol%, further preferably 2.5 to 20 mol%.
When the terminal unsaturated group concentration per molecule is less than 2.0 mol%, the reactivity is inferior and the adhesive performance is lowered. On the other hand, when the terminal unsaturated group concentration exceeds 30 mol%, the number of reaction points increases, and gel is generated to deteriorate the adhesion performance, and the melt fluidity deteriorates, and the workability such as coating property deteriorates.
In the terminal unsaturated α-olefin polymer of the present invention, the number of terminal unsaturated groups per molecule is preferably more than 1.0 and 2.5 or less, and 1.3 to 2.5 More preferably, it is more preferably 1.35 to 2.5, and particularly preferably 1.4 to 2.0.
When the number of terminal unsaturated groups per molecule exceeds 1.0, it is expected that heat resistance is imparted by a reaction starting from the terminal unsaturated group. On the other hand, when the number of terminal unsaturated groups per molecule is 2.5 or less, the branched structure of polyolefin decreases. Since the branched structure is different in linear structure and melt fluidity, the behavior such as coating may change.
 なお、末端不飽和基としては、ビニル基、ビニリデン基、トランス(ビニレン)基等が挙げられるが、本明細書で定義する末端不飽和基とは、ビニル基及びビニリデン基を意味する。ビニル基及びビニリデン基はラジカル重合性、各種反応の適用範囲が広く、多様な要求に対応できる。
 本発明の末端不飽和α-オレフィン重合体における末端不飽和基濃度及び末端不飽和基数は、ビニル基及びビニリデン基の総量の濃度及び数を意味する。ビニル基のみ存在する場合は、ビニル基のみの濃度及び数を意味し、ビニル基及びビニリデン基両方含む場合は、両方の和の濃度及び数を意味する。
Examples of the terminal unsaturated group include a vinyl group, a vinylidene group, and a trans (vinylene) group. The terminal unsaturated group defined in this specification means a vinyl group and a vinylidene group. Vinyl groups and vinylidene groups are radically polymerizable and have a wide range of applications for various reactions and can meet various requirements.
The terminal unsaturated group concentration and the number of terminal unsaturated groups in the terminal unsaturated α-olefin polymer of the present invention mean the concentration and number of the total amount of vinyl groups and vinylidene groups. When only a vinyl group is present, it means the concentration and number of only the vinyl group, and when both vinyl group and vinylidene group are included, it means the concentration and number of both sums.
 上述の末端不飽和基濃度や1分子当りの末端不飽和基の数は、1H-NMR測定により求めることができる。具体的には、1H-NMR測定より得られるδ4.8~4.6(2H)に出現する末端ビニリデン基、δ5.9~5.7(1H)に出現する末端ビニル基及びδ1.05~0.60(3H)に出現するメチル基に基づいて、末端不飽和基濃度(C)(モル%)が算出できる。
  ビニリデン基のCH2(4.8~4.6ppm)・・・(i)
  ビニル基のCH(5.9~5.7ppm)・・・(ii)
  側鎖末端のCH3(1.05~0.60ppm)・・・(iii)
  ビニリデン基量=[(i)/2]/[(iii)/3]×100 モル%
  ビニル基量=(ii)/[(iii)/3]×100 モル%
  末端不飽和基濃度=[ビニリデン基量]+[ビニル基量]
 上記方法により算出した末端不飽和基濃度(C、モル%)と、ゲルパーミエイションクロマトグラフ(GPC)より求めた数平均分子量(Mn)及びモノマー分子量(M)から、下記式により1分子当りの末端不飽和基の数を算出することができる。
  1分子当りの末端不飽和基の数(個)=(Mn/M)×(C/100)
The above-mentioned terminal unsaturated group concentration and the number of terminal unsaturated groups per molecule can be determined by 1 H-NMR measurement. Specifically, terminal vinylidene groups appearing at δ4.8 to 4.6 (2H), terminal vinyl groups appearing at δ5.9 to 5.7 (1H) and δ1.05 obtained from 1 H-NMR measurement. Based on the methyl group appearing at ˜0.60 (3H), the terminal unsaturated group concentration (C) (mol%) can be calculated.
CH 2 of vinylidene group (4.8 to 4.6 ppm) (i)
Vinyl group CH (5.9 to 5.7 ppm) (ii)
CH 3 at the end of the side chain (1.05 to 0.60 ppm) (iii)
Vinylidene group amount = [(i) / 2] / [(iii) / 3] × 100 mol%
Vinyl group amount = (ii) / [(iii) / 3] × 100 mol%
Terminal unsaturated group concentration = [vinylidene group amount] + [vinyl group amount]
From the terminal unsaturated group concentration (C, mol%) calculated by the above method, the number average molecular weight (Mn) and the monomer molecular weight (M) determined from the gel permeation chromatograph (GPC), per molecule The number of terminal unsaturated groups can be calculated.
Number of terminal unsaturated groups per molecule (number) = (Mn / M) × (C / 100)
 本発明の末端不飽和α-オレフィン重合体は、重量平均分子量Mwが500~100,000であることが好ましく、700~90,000であることがより好ましく、800~80,000であることがさらに好ましい。
 重量平均分子量が500以上であると、末端ビニリデン基を基点とした反応によってポリオレフィンに耐熱性を付与する場合に、ポリオレフィンの柔軟性が良好となる。一方、重量平均分子量が100,000以下であると、溶融粘度が小さくなり、塗布性等の作業性が向上する。
 なお、上記重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)法により測定できる。
The terminal unsaturated α-olefin polymer of the present invention preferably has a weight average molecular weight Mw of 500 to 100,000, more preferably 700 to 90,000, and more preferably 800 to 80,000. Further preferred.
When the weight average molecular weight is 500 or more, the flexibility of the polyolefin is improved when heat resistance is imparted to the polyolefin by a reaction based on the terminal vinylidene group. On the other hand, when the weight average molecular weight is 100,000 or less, the melt viscosity becomes small and workability such as coating property is improved.
The weight average molecular weight can be measured by gel permeation chromatography (GPC) method.
 本発明の末端不飽和α-オレフィン重合体は、分子量分布Mw/Mnが1.10~2.60であることが好ましく、1.10~2.55であることがより好ましく、1.10~2.50であることが更に好ましい。
 分子量分布が1.10以上であると製造が容易となる一方、分子量分布が2.60を超えると、分子量分布が広く官能基濃度のバラつきが懸念され、硬化性等の性能が悪くなる。
The terminal unsaturated α-olefin polymer of the present invention preferably has a molecular weight distribution Mw / Mn of 1.10 to 2.60, more preferably 1.10 to 2.55, and more preferably 1.10 to More preferably, it is 2.50.
When the molecular weight distribution is 1.10 or more, the production is facilitated. On the other hand, when the molecular weight distribution exceeds 2.60, the molecular weight distribution is wide and there is a concern about variation in the functional group concentration, and the performance such as curability deteriorates.
 分子量分布Mw/Mnは、GPC法により重量平均分子量(Mw)及び数平均分子量(Mn)をそれぞれ測定することにより求めることができる。
 重量平均分子量(Mw)及び数平均分子量(Mn)は、ポリスチレン換算分子量を対応するポリマーの分子量に換算するため、Mark-Houwink-桜田の式の定数K及びaを用いてUniversal Calibration法により求めることができる。
 具体的には「『サイズ排除クロマトグラフィー』、森定雄著、p.67~69、1992年、共立出版」に記載の方法によって決定できる。なお、K及びαは、「『Polymer Handbook』,John Wiley&Sons,Inc.」に記載されている。また、新たに算出する絶対分子量に対する極限粘度の関係から定法によって決定することもできる。
The molecular weight distribution Mw / Mn can be determined by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) by the GPC method.
The weight average molecular weight (Mw) and the number average molecular weight (Mn) are determined by the Universal Calibration method using the constants K and a of the Mark-Houwink-Sakurada formula in order to convert the polystyrene equivalent molecular weight into the molecular weight of the corresponding polymer. Can do.
Specifically, it can be determined by the method described in ““ Size Exclusion Chromatography ”, Sadao Mori, p. 67-69, 1992, Kyoritsu Publishing. K and α are described in “Polymer Handbook”, John Wiley & Sons, Inc. Moreover, it can also determine by a conventional method from the relationship of the intrinsic viscosity with respect to the newly calculated absolute molecular weight.
 GPCの測定装置及び測定条件は例えば以下である。
検出器:液体クロマトグラフィー用RI検出器 ウオーターズ 150C
カラム:TOSO GMHHR-H(S)HT
溶媒:1,2,4-トリクロロベンゼン
測定温度:145℃
流速:1.0mL/分
試料濃度:0.3質量%
The measuring apparatus and measurement conditions of GPC are as follows, for example.
Detector: RI detector for liquid chromatography Waters 150C
Column: TOSO GMHHR-H (S) HT
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 mL / min Sample concentration: 0.3% by mass
 本発明の末端不飽和α-オレフィン重合体は、示差走査型熱量計を用いた融解挙動測定において、融点が20℃以上100℃以下であり、ピーク温度が一つだけ観測され、かつ該ピークの半値幅が15℃以内であることが好ましい。
 上記融解挙動測定は、示差走査型熱量計(DSC)を用い、試料を室温から190℃まで、100℃/分で昇温し、190℃で5分保持した後、-30℃まで、10℃/分で降温させ、-30℃で5分保持した後、190℃まで10℃/分で昇温させることで、吸熱ピークを示す融解曲線を得ることで行われる。示差走査型熱量計としては特に限定されないが、例えばパーキンエルマー社製DSC7(商品名)を用いることができる。本発明では、得られた融解曲線におけるピークトップの温度を融点(Tm)とする。
 前記融点は、低温融解性と保管性の観点から、好ましくは30~90℃、より好ましくは35~85℃、さらに好ましくは40~80℃である。また、融点の測定に際して得られる吸熱ピークの半値幅は、DSCにて融点(Tm)を測定した際の吸熱ピークの50%高さにおけるピーク幅を言い、低温融解成分、シャープメルト性の観点から、好ましくは1~9℃、より好ましくは1~7℃、さらに好ましくは2~7℃である。半値幅が小さいことは吸熱ピークがシャープ、つまり融解挙動が急速であることを示し、この場合、低温融解成分等により高温保管安定性やベタツキ等取り扱い性の課題の発生が抑制される。
The terminal unsaturated α-olefin polymer of the present invention has a melting point of 20 ° C. or more and 100 ° C. or less, only one peak temperature is observed in the melting behavior measurement using a differential scanning calorimeter, and the peak The full width at half maximum is preferably within 15 ° C.
The melting behavior was measured by using a differential scanning calorimeter (DSC). The sample was heated from room temperature to 190 ° C. at 100 ° C./min, held at 190 ° C. for 5 minutes, then −30 ° C. to 10 ° C. The temperature is lowered at / min, held at −30 ° C. for 5 minutes, and then heated to 190 ° C. at 10 ° C./min to obtain a melting curve showing an endothermic peak. Although it does not specifically limit as a differential scanning calorimeter, For example, DSC7 (brand name) by Perkin Elmer can be used. In the present invention, the temperature at the peak top in the obtained melting curve is defined as the melting point (Tm).
The melting point is preferably 30 to 90 ° C., more preferably 35 to 85 ° C., and still more preferably 40 to 80 ° C. from the viewpoint of low temperature melting property and storage property. The half-value width of the endothermic peak obtained when measuring the melting point is the peak width at 50% of the endothermic peak when the melting point (Tm) is measured by DSC, from the viewpoint of low-temperature melting component and sharp melt property. The temperature is preferably 1 to 9 ° C, more preferably 1 to 7 ° C, still more preferably 2 to 7 ° C. A small half-value width indicates that the endothermic peak is sharp, that is, the melting behavior is rapid. In this case, the occurrence of problems such as high-temperature storage stability and stickiness due to low-temperature melting components is suppressed.
 本発明の末端不飽和α-オレフィン重合体は、100℃における動粘度が3~2000mm/s2であることが好ましい。
 100℃における動粘度は、JIS K2283に準拠して測定する値であり、10~1500mm/s2であることが好ましく、より好ましくは30~1000mm/s2であり、更に好ましくは50~500mm/s2である。
 100℃動粘度が3mm/s2未満であると、硬化等での性能が不十分であり、100℃動粘度が2000mm/s2を超えると、粘度が高いため、室温での流動性が低下し塗布性等の性能が低下し、接着剤、シーリング等の用途で使うことが難しい。
The terminal unsaturated α-olefin polymer of the present invention preferably has a kinematic viscosity at 100 ° C. of 3 to 2000 mm / s 2 .
The kinematic viscosity at 100 ° C. is a value measured in accordance with JIS K2283, preferably 10 to 1500 mm / s 2 , more preferably 30 to 1000 mm / s 2 , and still more preferably 50 to 500 mm / s 2. s 2 .
When the 100 ° C. kinematic viscosity is less than 3 mm / s 2 , the performance in curing and the like is insufficient, and when the 100 ° C. kinematic viscosity exceeds 2000 mm / s 2 , the viscosity is high and the fluidity at room temperature decreases. However, it is difficult to use in applications such as adhesives and sealing due to a decrease in performance such as coating properties.
[末端不飽和α-オレフィン重合体の製造方法]
 本発明の末端不飽和α-オレフィン重合体は、炭素数5以上のα-オレフィンの単独重合体及び/又は共重合体を原料ポリオレフィンとして用い、これに対して有機過酸化物を0.05~5.0質量%添加し、温度200~380℃で加熱処理することを特徴とする。
[Method for producing terminally unsaturated α-olefin polymer]
The terminal unsaturated α-olefin polymer of the present invention uses a homopolymer and / or copolymer of an α-olefin having 5 or more carbon atoms as a raw material polyolefin, and an organic peroxide of 0.05 to 5.0% by mass is added, and heat treatment is performed at a temperature of 200 to 380 ° C.
 上記の末端不飽和α-オレフィン重合体の製造方法は、ガス状の副生成物量を低減できるので、純度を向上させることができる。また、末端不飽和α-オレフィン重合体を安価に製造できる。
 原料ポリオレフィンのメソトリアッド分率[mm]が20~80モル%であると、原料ポリオレフィンは低温で容易に溶融でき、又は溶媒への良好な溶解性を有するため、分解反応場の選定範囲及び分解設定温度範囲が広く、比較的低温で分解することが可能である。これにより、副反応を制御できるメリットを有している。加えて、有機過酸化物を併用する分解では、より温和でかつ短時間の反応で効率よく分解でき、原料ポリオレフィンの上記メリットを大きくすることができる。特に原料ポリオレフィンが末端不飽和基を予め有している場合では、上記メリットを最大化できる。また、分解物のメソトリアッド分率も原料ポリオレフィンに由来するため、[mm]が20~80モル%であると低温で容易に溶融できる、又は溶媒への良好な溶解性を有するため、適用用途範囲が広がる。
The above method for producing a terminal unsaturated α-olefin polymer can reduce the amount of gaseous by-products, so that the purity can be improved. Further, the terminal unsaturated α-olefin polymer can be produced at low cost.
When the raw material polyolefin has a mesotriad fraction [mm] of 20 to 80 mol%, the raw material polyolefin can be easily melted at low temperatures or has good solubility in a solvent. It has a wide temperature range and can be decomposed at a relatively low temperature. Thereby, it has the merit which can control a side reaction. In addition, in the decomposition using the organic peroxide in combination, the decomposition can be efficiently performed with a milder and shorter reaction, and the above-mentioned merit of the raw material polyolefin can be increased. In particular, when the raw material polyolefin has a terminal unsaturated group in advance, the above merits can be maximized. In addition, since the mesotriad fraction of the decomposed product is derived from the raw material polyolefin, when [mm] is 20 to 80 mol%, it can be easily melted at a low temperature or has good solubility in a solvent. Spread.
 上記原料ポリオレフィンのメソトリアッド分率[mm]については、上述の末端不飽和α-オレフィン重合体と同様である。 The mesotriad fraction [mm] of the raw material polyolefin is the same as that of the terminal unsaturated α-olefin polymer.
 原料ポリオレフィンの重量平均分子量Mwは、4,000~1,000,000であることが好ましく、5,000~900,000であることがより好ましく、6,000~800,000であることが更に好ましい。
 原料ポリオレフィンの重量平均分子量が4,000以上であると、分解率を高く設定することができる。一方、原料ポリオレフィンの重量平均分子量が1,000,000以下であると、分解時の粘度が低くなるため、プロセス上の撹拌動力、撹拌均一性等の制約が生じない。
The weight average molecular weight Mw of the raw material polyolefin is preferably 4,000 to 1,000,000, more preferably 5,000 to 900,000, and further preferably 6,000 to 800,000. preferable.
When the weight average molecular weight of the raw material polyolefin is 4,000 or more, the decomposition rate can be set high. On the other hand, when the weight average molecular weight of the raw material polyolefin is 1,000,000 or less, the viscosity at the time of decomposition becomes low, so that there are no restrictions on stirring power and stirring uniformity in the process.
 原料ポリオレフィンは、好ましくは末端不飽和基を1分子当り0.40~1.00個有することが好ましく、より好ましくは0.45~1.00個、更に好ましくは0.50~1.00個、最も好ましくは0.55~1.00個有する。
 1分子当りの末端不飽和基の数が0.40個以上であると、分解によって末端不飽和基の数が十分に増加し、末端不飽和基を増加させるために、高分子量体を分解する必要が生じない。一方、1分子当りの末端不飽和基の数が1.00個以下であると、後述する重合触媒による技術での製造が容易となる。
The raw material polyolefin preferably has 0.40 to 1.00 terminal unsaturated groups per molecule, more preferably 0.45 to 1.00, still more preferably 0.50 to 1.00. And most preferably 0.55 to 1.00.
When the number of terminal unsaturated groups per molecule is 0.40 or more, the number of terminal unsaturated groups is sufficiently increased by decomposition, and the high molecular weight is decomposed to increase the number of terminal unsaturated groups. There is no need. On the other hand, when the number of terminal unsaturated groups per molecule is 1.00 or less, production by a technique using a polymerization catalyst described later becomes easy.
 原料ポリオレフィンは、例えば下記成分(A)、(B)及び(C)の組合せからなるメタロセン触媒を用い、水素を分子量調節剤として用いることにより製造することができる。具体的には、WO2008/047860に開示の方法で製造できる。
  (A)シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基を有する周期律表第3族~10族の金属元素を含む遷移金属化合物
  (B)遷移金属化合物と反応してイオン性の錯体を形成しうる化合物
  (C)有機アルミニウム化合物
Raw material polyolefin can be manufactured by using a metallocene catalyst which consists of a combination of the following component (A), (B) and (C), for example, and using hydrogen as a molecular weight regulator. Specifically, it can be produced by the method disclosed in WO2008 / 047860.
(A) Transition metal compound containing a metal element belonging to Groups 3 to 10 of the periodic table having a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, and a substituted indenyl group. (B) Reacts with a transition metal compound. (C) Organoaluminum compound that can form an ionic complex
 (A)成分のシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又は置換インデニル基を有する周期律表第3~10族の金属元素を含む遷移金属化合物としては、下記一般式(I)で表される二架橋錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000001
As the transition metal compound containing a metal element belonging to Groups 3 to 10 of the periodic table having a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a substituted indenyl group as the component (A), the following general formula (I ) Is represented.
Figure JPOXMLDOC01-appb-C000001
 上記一般式(I)において、Mは周期律表第3~10族の金属元素を示し、具体例としてはチタン,ジルコニウム,ハフニウム,イットリウム,バナジウム,クロム,マンガン,ニッケル,コバルト,パラジウム及びランタノイド系金属等が挙げられる。これらの中ではオレフィン重合活性等の点からチタン,ジルコニウム及びハフニウムが好適であり、末端ビニリデン基の収率及び触媒活性の点から、ジルコニウムが最も好適である。
 E1及びE2はそれぞれ、置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基(-N<),ホスフィン基(-P<),炭化水素基〔>CR-,>C<〕及びケイ素含有基〔>SiR-,>Si<〕(但し、Rは水素又は炭素数1~20の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、A1及びA2を介して架橋構造を形成している。E1及びE2は互いに同一でも異なっていてもよい。このE1及びE2としては、シクロペンタジエニル基、置換シクロペンタジエニル基,インデニル基及び置換インデニル基が好ましく、E1及びE2のうちの少なくとも一つは、シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又は置換インデニル基である。
 前記置換シクロペンタジエニル基、置換インデニル基、置換へテロシクロペンタジエニル基の置換基としては、炭素数1~20(好ましくは炭素数1~10、より好ましくは炭素数1~5)の炭化水素基、ケイ素含有基又はヘテロ原子含有基等の置換基を示す。
 Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。このXの具体例としては、ハロゲン原子,炭素数1~20の炭化水素基,炭素数1~20のアルコキシ基,炭素数6~20のアリールオキシ基,炭素数1~20のアミド基,炭素数1~20のケイ素含有基,炭素数1~20のホスフィド基,炭素数1~20のスルフィド基,炭素数1~20のアシル基等が挙げられる。
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~20の炭化水素基として具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基等のアルキル基;ビニル基、プロペニル基、シクロヘキセニル基等のアルケニル基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアリールアルキル基;フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントラセニル基、フェナントニル基等のアリール基等が挙げられる。なかでもメチル基、エチル基、プロピル基等のアルキル基やフェニル基等のアリール基が好ましい。
In the above general formula (I), M represents a metal element of Groups 3 to 10 of the periodic table, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium, and lanthanoid series. Metal etc. are mentioned. Among these, titanium, zirconium and hafnium are preferable from the viewpoint of olefin polymerization activity and the like, and zirconium is most preferable from the viewpoint of yield of terminal vinylidene group and catalytic activity.
E 1 and E 2 are respectively substituted cyclopentadienyl group, indenyl group, substituted indenyl group, heterocyclopentadienyl group, substituted heterocyclopentadienyl group, amide group (—N <), phosphine group (—P <), Hydrocarbon group [>CR-,> C <] and silicon-containing group [>SiR-,> Si <] (where R is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, or a heteroatom-containing group) A ligand selected from among (A), and a crosslinked structure is formed via A 1 and A 2 . E 1 and E 2 may be the same or different from each other. As E 1 and E 2 , a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group and a substituted indenyl group are preferable, and at least one of E 1 and E 2 is a cyclopentadienyl group, A substituted cyclopentadienyl group, an indenyl group or a substituted indenyl group;
The substituent of the substituted cyclopentadienyl group, substituted indenyl group, or substituted heterocyclopentadienyl group has 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms). A substituent such as a hydrocarbon group, a silicon-containing group or a heteroatom-containing group is shown.
X represents a σ-bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different, and may be cross-linked with other X, E 1 , E 2 or Y. Specific examples of X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, carbon Examples thereof include a silicon-containing group having 1 to 20 carbon atoms, a phosphide group having 1 to 20 carbon atoms, a sulfide group having 1 to 20 carbon atoms, and an acyl group having 1 to 20 carbon atoms.
Examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom. Specific examples of the hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, cyclohexyl group, octyl group; vinyl group, propenyl group, cyclohexenyl group, etc. An arylalkyl group such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group Group, anthracenyl group, aryl group such as phenanthonyl group, and the like. Of these, alkyl groups such as methyl group, ethyl group, and propyl group, and aryl groups such as phenyl group are preferable.
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基、フェニルメトキシ基、フェニルエトキシ基等が挙げられる。炭素数6~20のアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基等が挙げられる。炭素数1~20のアミド基としては、ジメチルアミド基、ジエチルアミド基、ジプロピルアミド基、ジブチルアミド基、ジシクロヘキシルアミド基、メチルエチルアミド基等のアルキルアミド基や、ジビニルアミド基、ジプロペニルアミド基、ジシクロヘキセニルアミド基等のアルケニルアミド基;ジベンジルアミド基、フェニルエチルアミド基、フェニルプロピルアミド基等のアリールアルキルアミド基;ジフェニルアミド基、ジナフチルアミド基等のアリールアミド基が挙げられる。
 炭素数1~20のケイ素含有基としては、メチルシリル基、フェニルシリル基等のモノ炭化水素置換シリル基;ジメチルシリル基、ジフェニルシリル基等のジ炭化水素置換シリル基;トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基等のトリ炭化水素置換シリル基;トリメチルシリルエーテル基等の炭化水素置換シリルエーテル基;トリメチルシリルメチル基等のケイ素置換アルキル基;トリメチルシリルフェニル基等のケイ素置換アリール基等が挙げられる。なかでもトリメチルシリルメチル基、フェニルジメチルシリルエチル基等が好ましい。
Examples of the alkoxy group having 1 to 20 carbon atoms include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, a phenylmethoxy group, and a phenylethoxy group. Examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy group, methylphenoxy group, and dimethylphenoxy group. Examples of the amide group having 1 to 20 carbon atoms include dimethylamide group, diethylamide group, dipropylamide group, dibutylamide group, dicyclohexylamide group, methylethylamide group, and other alkylamide groups, divinylamide group, and dipropenylamide group. Alkenylamide groups such as dicyclohexenylamide group; arylalkylamide groups such as dibenzylamide group, phenylethylamide group and phenylpropylamide group; arylamide groups such as diphenylamide group and dinaphthylamide group.
Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl groups such as tripropylsilyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group and trinaphthylsilyl group; hydrocarbons such as trimethylsilyl ether group A substituted silyl ether group; a silicon-substituted alkyl group such as a trimethylsilylmethyl group; a silicon-substituted aryl group such as a trimethylsilylphenyl group; Of these, a trimethylsilylmethyl group, a phenyldimethylsilylethyl group, and the like are preferable.
 炭素数1~20のホスフィド基としては、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基、ヘキシルスルフィド基、シクロヘキシルスルフィド基、オクチルスルフィド基等のアルキルスルフィド基;ビニルスルフィド基、プロペニルスルフィド基、シクロヘキセニルスルフィド基等のアルケニルスルフィド基;ベンジルスルフィド基、フェニルエチルスルフィド基、フェニルプロピルスルフィド基等のアリールアルキルスルフィド基;フェニルスルフィド基、トリルスルフィド基、ジメチルフェニルスルフィド基、トリメチルフェニルスルフィド基、エチルフェニルスルフィド基、プロピルフェニルスルフィド基、ビフェニルスルフィド基、ナフチルスルフィド基、メチルナフチルスルフィド基、アントラセニルスルフィド基、フェナントニルスルフィド基等のアリールスルフィド基が挙げられる。 Examples of the phosphide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, Ethyl phenyl sulfide group, propyl phenyl sulfide group, biphenyl sulfide group, naphthyl sulfide group, methyl naphthyl sulfide group, Cement racemase Nils sulfide group, an aryl sulfide groups such as a phenanthridine Nils sulfide group.
 炭素数1~20のスルフィド基としては、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基、ヘキシルスルフィド基、シクロヘキシルスルフィド基、オクチルスルフィド基等のアルキルスルフィド基;ビニルスルフィド基、プロペニルスルフィド基、シクロヘキセニルスルフィド基等のアルケニルスルフィド基;ベンジルスルフィド基、フェニルエチルスルフィド基、フェニルプロピルスルフィド基等のアリールアルキルスルフィド基;フェニルスルフィド基、トリルスルフィド基、ジメチルフェニルスルフィド基、トリメチルフェニルスルフィド基、エチルフェニルスルフィド基、プロピルフェニルスルフィド基、ビフェニルスルフィド基、ナフチルスルフィド基、メチルナフチルスルフィド基、アントラセニルスルフィド基、フェナントニルスルフィド基等のアリールスルフィド基が挙げられる。
 炭素数1~20のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、パルミトイル基、テアロイル基、オレオイル基等のアルキルアシル基、ベンゾイル基、トルオイル基、サリチロイル基、シンナモイル基、ナフトイル基、フタロイル基等のアリールアシル基、シュウ酸、マロン酸、コハク酸等のジカルボン酸からそれぞれ誘導されるオキサリル基、マロニル基、スクシニル基等が挙げられる。
Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, Ethyl phenyl sulfide group, propyl phenyl sulfide group, biphenyl sulfide group, naphthyl sulfide group, methyl naphthyl sulfide group, Tiger Se Nils sulfide group, an aryl sulfide groups such as a phenanthridine Nils sulfide group.
Examples of the acyl group having 1 to 20 carbon atoms include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, thearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
 一方、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のYやE1,E2又はXと架橋していてもよい。このYのルイス塩基の具体例としては、アミン類,エーテル類,ホスフィン類,チオエーテル類等を挙げることができる。アミンとしては、炭素数1~20のアミンが挙げられ、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、シクロヘキシルアミン、メチルエチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン、メチルエチルアミン等のアルキルアミン;ビニルアミン、プロペニルアミン、シクロヘキセニルアミン、ジビニルアミン、ジプロペニルアミン、ジシクロヘキセニルアミン等のアルケニルアミン;フェニルアミン、フェニルエチルアミン、フェニルプロピルアミン等のアリールアルキルアミン;ジフェニルアミン、ジナフチルアミン等のアリールアミンが挙げられる。 On the other hand, Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X. Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like. Examples of the amine include amines having 1 to 20 carbon atoms, and specifically include methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and dicyclohexylamine. Alkylamines such as methylethylamine; alkenylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, dicyclohexenylamine; arylalkylamines such as phenylamine, phenylethylamine, phenylpropylamine; An arylamine such as naphthylamine can be mentioned.
 エーテル類としては、メチルエーテル、エチルエーテル、プロピルエーテル、イソプロピルエーテル、ブチルエーテル、イソブチルエーテル、n-アミルエーテル、イソアミルエーテル等の脂肪族単一エーテル化合物;メチルエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチル-n-アミルエーテル、メチルイソアミルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、エチルブチルエーテル、エチルイソブチルエーテル、エチル-n-アミルエーテル、エチルイソアミルエーテル等の脂肪族混成エーテル化合物;ビニルエーテル、アリルエーテル、メチルビニルエーテル、メチルアリルエーテル、エチルビニルエーテル、エチルアリルエーテル等の脂肪族不飽和エーテル化合物;アニソール、フェネトール、フェニルエーテル、ベンジルエーテル、フェニルベンジルエーテル、α-ナフチルエーテル、β-ナフチルエーテル等の芳香族エーテル化合物、酸化エチレン、酸化プロピレン、酸化トリメチレン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環式エーテル化合物が挙げられる。 Examples of ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, and isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, Aliphatic hybrid ether compounds such as methyl-n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether, methyl Aliphatic unsaturated ether compounds such as vinyl ether, methyl allyl ether, ethyl vinyl ether, ethyl allyl ether; , Aromatic ether compounds such as phenetole, phenyl ether, benzyl ether, phenyl benzyl ether, α-naphthyl ether, β-naphthyl ether, cyclic ether compounds such as ethylene oxide, propylene oxide, trimethylene oxide, tetrahydrofuran, tetrahydropyran, dioxane Is mentioned.
 ホスフィン類としては、炭素数1~20のホスフィンが挙げられる。具体的には、メチルホスフィン、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、ヘキシルホスフィン、シクロヘキシルホスフィン、オクチルホスフィン等のモノ炭化水素置換ホスフィン;ジメチルホスフィン、ジエチルホスフィン、ジプロピルホスフィン、ジブチルホスフィン、ジヘキシルホスフィン、ジシクロヘキシルホスフィン、ジオクチルホスフィン等のジ炭化水素置換ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィン等のトリ炭化水素置換ホスフィン等のアルキルホスフィンや、ビニルホスフィン、プロペニルホスフィン、シクロヘキセニルホスフィン等のモノアルケニルホスフィンやホスフィンの水素原子をアルケニルが2個置換したジアルケニルホスフィン;ホスフィンの水素原子をアルケニルが3個置換したトリアルケニルホスフィン;ベンジルホスフィン、フェニルエチルホスフィン、フェニルプロピルホスフィン等のアリールアルキルホスフィン;ホスフィンの水素原子をアリール又はアルケニルが3個置換したジアリールアルキルホスフィン又はアリールジアルキルホスフィン;フェニルホスフィン、トリルホスフィン、ジメチルフェニルホスフィン、トリメチルフェニルホスフィン、エチルフェニルホスフィン、プロピルフェニルホスフィン、ビフェニルホスフィン、ナフチルホスフィン、メチルナフチルホスフィン、アントラセニルホスフィン、フェナントニルホスフィン;ホスフィンの水素原子をアルキルアリールが2個置換したジ(アルキルアリール)ホスフィン;ホスフィンの水素原子をアルキルアリールが3個置換したトリ(アルキルアリール)ホスフィン等のアリールホスフィンが挙げられる。チオエーテル類としては、前記のスルフィドが挙げられる。 Examples of phosphines include phosphines having 1 to 20 carbon atoms. Specifically, monohydrocarbon-substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; alkyl phosphines such as trihydrocarbon-substituted phosphines such as trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine, trihexylphosphine, tricyclohexylphosphine, and trioctylphosphine; vinyl Monoalkenes such as phosphine, propenylphosphine, cyclohexenylphosphine, etc. Dialkenylphosphine in which two alkenyls are substituted for phosphine and phosphine hydrogen atoms; Trialkenylphosphine in which three alkenyls are substituted for phosphine hydrogens; Arylalkylphosphine such as benzylphosphine, phenylethylphosphine, phenylpropylphosphine; Diarylalkylphosphine or aryldialkylphosphine having three hydrogen atoms substituted with aryl or alkenyl; phenylphosphine, tolylphosphine, dimethylphenylphosphine, trimethylphenylphosphine, ethylphenylphosphine, propylphenylphosphine, biphenylphosphine, naphthylphosphine, methylnaphthyl Phosphine, anthracenyl phosphine, phenanthenyl phosphine; phosphine water Atom alkyl aryl two substituted di (alkylaryl) phosphine; arylphosphine such as a hydrogen atom of phosphine alkylaryl three substituted with tri (alkylaryl) phosphine. Examples of the thioethers include the aforementioned sulfides.
 次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、ケイ素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO2-、-Se-、-NR1-、-PR1-、-P(O)R1-、-BR1-又は-AlR1-を示し、R1は水素原子、ハロゲン原子、炭素数1~20の炭化水素基又は炭素数1~20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。
 このような架橋基のうち、少なくとも一つは炭素数1以上の炭化水素基からなる架橋基もしくは、ケイ素含有基であることが好ましい。このような架橋基としては、例えば下記一般式(a)で表されるものが挙げられ、その具体例としては、メチレン基,エチレン基,エチリデン基,プロピリデン基,イソプロピリデン基,シクロヘキシリデン基,1,2-シクロヘキシレン基,ビニリデン基(CH2=C=),ジメチルシリレン基,ジフェニルシリレン基,メチルフェニルシリレン基,ジメチルゲルミレン基,ジメチルスタニレン基,テトラメチルジシリレン基,ジフェニルジシリレン基等を挙げることができる。これらの中で、エチレン基,イソプロピリデン基及びジメチルシリレン基が好適である。
Next, A 1 and A 2 are divalent bridging groups for bonding two ligands, which are a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and a silicon-containing group. Group, germanium-containing group, tin-containing group, —O—, —CO—, —S—, —SO 2 —, —Se—, —NR 1 —, —PR 1 —, —P (O) R 1 —, —BR 1 — or —AlR 1 —, wherein R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, May be different. q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
Among such crosslinking groups, at least one is preferably a crosslinking group composed of a hydrocarbon group having 1 or more carbon atoms or a silicon-containing group. Examples of such a bridging group include those represented by the following general formula (a), and specific examples thereof include a methylene group, an ethylene group, an ethylidene group, a propylidene group, an isopropylidene group, and a cyclohexylidene group. , 1,2-cyclohexylene group, vinylidene group (CH 2 = C =), dimethylsilylene group, diphenylsilylene group, methylphenylsilylene group, dimethylgermylene group, dimethylstannylene group, tetramethyldisilylene group, diphenyldi A silylene group etc. can be mentioned. Among these, an ethylene group, an isopropylidene group, and a dimethylsilylene group are preferable.
Figure JPOXMLDOC01-appb-C000002
(Dは周期律表第14族元素であり、例えば炭素,ケイ素,ゲルマニウム及びスズが挙げられる。R2及びR3はそれぞれ水素原子又は炭素数1~20の炭化水素基で、それらは互いに同一でも異なっていてもよく、また互いに結合して環構造を形成していてもよい。eは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000002
(D is a group 14 element of the periodic table, and examples thereof include carbon, silicon, germanium and tin. R 2 and R 3 are each a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and they are the same as each other. However, they may be different from each other and may be bonded to each other to form a ring structure, and e represents an integer of 1 to 4.)
 一般式(I)で表される遷移金属化合物の具体例としては、WO2008/066168に記載の具体例が挙げられる。また、他の族の金属元素の類似化合物であってもよい。好ましくは周期律表第4族の遷移金属化合物であり、中でもジルコニウムの化合物が好ましい。 Specific examples of the transition metal compound represented by the general formula (I) include specific examples described in WO2008 / 066168. Moreover, the analogous compound of the metal element of another group may be sufficient. A transition metal compound belonging to Group 4 of the periodic table is preferred, and a zirconium compound is particularly preferred.
 上記一般式(I)で表される遷移金属化合物の中では、下記一般式(II)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
Among the transition metal compounds represented by the general formula (I), compounds represented by the following general formula (II) are preferable.
Figure JPOXMLDOC01-appb-C000003
 上記一般式(II)において、Mは周期律表第3~10族の金属元素を示し、A1a及びA2aは、それぞれ上記一般式(I)における一般式(a)で表される架橋基を示し、CH2,CH2CH2,(CH32C,(CH32C(CH32C,(CH32Si及び(C65)2Siが好ましい。A1a及びA2aは、互いに同一でも異なっていてもよい。R4~R13はそれぞれ水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、ケイ素含有基又はヘテロ原子含有基を示す。ハロゲン原子、炭素数1~20の炭化水素基及びケイ素含有基としては、上記一般式(I)において説明したものと同様のものが挙げられる。炭素数1~20のハロゲン含有炭化水素基としては、p-フルオロフェニル基、3,5-ジフルオロフェニル基、3,4,5-トリフルオロフェニル基、ペンタフルオロフェニル基、3,5-ビス(トリフルオロ)フェニル基、フルオロブチル基等が挙げられる。ヘテロ原子含有基としては、炭素数1~20のヘテロ原子含有基が挙げられ、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基等の窒素含有基;フェニルスルフィド基、メチルスルフィド基等の硫黄含有基;ジメチルホスフィノ基、ジフェニルホスフィノ基等の燐含有基;メトキシ基、エトキシ基、フェノキシ基等の酸素含有基等が挙げられる。なかでも、R4及びR5としてはハロゲン原子、酸素、ケイ素等のヘテロ原子を含有する基が、重合活性が高く好ましい。R6~R13としては、水素原子又は炭素数1~20の炭化水素基が好ましい。X及びYは一般式(I)と同じである。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。 In the above general formula (II), M represents a metal element belonging to Groups 3 to 10 of the periodic table, and A 1a and A 2a each represent a bridging group represented by the general formula (a) in the above general formula (I). CH 2 , CH 2 CH 2 , (CH 3 ) 2 C, (CH 3 ) 2 C (CH 3 ) 2 C, (CH 3 ) 2 Si and (C 6 H 5) 2 Si are preferred. A 1a and A 2a may be the same as or different from each other. R 4 to R 13 each represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group. Examples of the halogen atom, the hydrocarbon group having 1 to 20 carbon atoms, and the silicon-containing group are the same as those described in the general formula (I). Examples of the halogen-containing hydrocarbon group having 1 to 20 carbon atoms include p-fluorophenyl group, 3,5-difluorophenyl group, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3,5-bis ( (Trifluoro) phenyl group, fluorobutyl group and the like. Examples of the heteroatom-containing group include C1-C20 heteroatom-containing groups, specifically, nitrogen-containing groups such as dimethylamino group, diethylamino group, and diphenylamino group; phenylsulfide group, methylsulfide group, and the like Sulfur-containing groups of: phosphorus-containing groups such as dimethylphosphino groups and diphenylphosphino groups; oxygen-containing groups such as methoxy groups, ethoxy groups, and phenoxy groups. Among these, as R 4 and R 5 , a group containing a hetero atom such as a halogen atom, oxygen, or silicon is preferable because of high polymerization activity. R 6 to R 13 are preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. X and Y are the same as in general formula (I). q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
 上記一般式(II)で表される遷移金属化合物のうち、両方のインデニル基が同一である場合、周期律表第4族の遷移金属化合物としては、WO2008/066168に記載の具体例が挙げられる。また、第4族以外の他の族の金属元素の類似化合物であってもよい。好ましくは周期律表第4族の遷移金属化合物であり、中でもジルコニウムの化合物が好ましい。 Of the transition metal compounds represented by the above general formula (II), when both indenyl groups are the same, examples of the transition metal compounds belonging to Group 4 of the periodic table include specific examples described in WO2008 / 066168. . Further, it may be a compound similar to a metal element other than Group 4. A transition metal compound belonging to Group 4 of the periodic table is preferred, and a zirconium compound is particularly preferred.
 一方、上記一般式(II)で表される遷移金属化合物のうち、R5が水素原子で、R4が水素原子でない場合、周期律表第4族の遷移金属化合物としては、WO2008/066168に記載の具体例が挙げられる。また、第4族以外の他の族の金属元素の類似化合物であってもよい。好ましくは周期律表第4族の遷移金属化合物であり、中でもジルコニウムの化合物が好ましい。 On the other hand, among the transition metal compounds represented by the above general formula (II), when R 5 is a hydrogen atom and R 4 is not a hydrogen atom, the transition metal compound of Group 4 of the periodic table is disclosed in WO2008 / 066168. Specific examples of the description are given. Further, it may be a compound similar to a metal element other than Group 4. A transition metal compound belonging to Group 4 of the periodic table is preferred, and a zirconium compound is particularly preferred.
 本発明で用いる触媒を構成する(B)遷移金属化合物と反応してイオン性の錯体を形成しうる化合物としては、比較的低分子量の高純度末端不飽和オレフィン系重合体が得られる点、及び触媒高活性の点でボレート化合物が好ましい。ボレート化合物としては、WO2008/066168に記載の具体例が挙げられる。これらは一種を単独で又は二種以上を組み合わせて用いることができる。後述する水素と遷移金属化合物とのモル比(水素/遷移金属化合物)が0である場合、テトラキス(ペンタフルオロフェニル)ホウ酸ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリフェニルカルベニウム及びテトラキス(パーフルオロフェニル)ホウ酸メチルアニリニウム等が好ましい。 As a compound capable of reacting with the transition metal compound (B) constituting the catalyst used in the present invention to form an ionic complex, a high purity terminal unsaturated olefin polymer having a relatively low molecular weight can be obtained, and A borate compound is preferable in terms of high catalyst activity. Specific examples of the borate compound include those described in WO2008 / 066168. These can be used individually by 1 type or in combination of 2 or more types. When the molar ratio of hydrogen and transition metal compound (hydrogen / transition metal compound) described later is 0, dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, and tetrakis (Perfluorophenyl) methylanilinium borate and the like are preferable.
 本発明の製造方法で用いる触媒は、上記(A)成分と(B)成分との組み合わせでもよく、上記(A)成分及び(B)成分に加えて(C)成分として有機アルミニウム化合物を用いてもよい。
 (C)成分の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリノルマルへキシルアルミニウム、トリノルマルオクチルアルミニウム、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド及びエチルアルミニウムセスキクロリド等が挙げられる。これらの有機アルミニウム化合物は一種用いてもよく、二種以上を組み合わせて用いてもよい。
 これらのうち、本発明においては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリノルマルへキシルアルミニウム及びトリノルマルオクチルアルミニウム等のトリアルキルアルミニウムが好ましく、トリイソブチルアルミニウム、トリノルマルへキシルアルミニウム及びトリノルマルオクチルアルミニウムがより好ましい。
The catalyst used in the production method of the present invention may be a combination of the component (A) and the component (B). In addition to the component (A) and the component (B), an organoaluminum compound is used as the component (C). Also good.
As the organoaluminum compound (C), trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trinormal hexylaluminum, trinormaloctylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride. Dimethylaluminum fluoride, diisobutylaluminum hydride, diethylaluminum hydride and ethylaluminum sesquichloride. These organoaluminum compounds may be used alone or in combination of two or more.
Among these, in the present invention, trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trinormalhexylaluminum and trinormaloctylaluminum is preferable, and triisobutylaluminum, trinormalhexylaluminum and trimethylaluminum Normal octyl aluminum is more preferred.
 (A)成分の使用量は、通常0.1×10-6~1.5×10-5mol/L、好ましくは0.15×10-6~1.3×10-5mol/L、より好ましくは0.2×10-6~1.2×10-5mol/L、特に好ましくは0.3×10-6~1.0×10-5mol/Lである。(A)成分の使用量が0.1×10-6mol/L以上であると、触媒活性が十分に発現され、1.5×10-5mol/L以下であると、重合熱を容易に除去することができる。
 (A)成分と(B)成分との使用割合(A)/(B)は、モル比で好ましくは10/1~1/100、より好ましくは2/1~1/10である。(A)/(B)が10/1~1/100の範囲にあると、触媒としての効果が得られると共に、単位質量ポリマー当たりの触媒コストを抑えることができる。また、目的とする末端不飽和α-オレフィン重合体中にホウ素が多量に存在するおそれがない。
 (A)成分と(C)成分との使用割合(A)/(C)は、モル比で好ましくは1/1~1/10000、より好ましくは1/5~1/2000、更に好ましくは1/10~1/1000である。(C)成分を用いることにより、遷移金属当たりの重合活性を向上させることができる。(A)/(C)が1/1~1/10000の範囲にあると、(C)成分の添加効果と経済性のバランスが良好であり、また、目的とする末端不飽和α-オレフィン重合体中にアルミニウムが多量に存在するおそれがない。
 本発明の製造方法においては、上述した(A)成分及び(B)成分、あるいは(A)成分、(B)成分及び(C)成分を用いて予備接触を行うこともできる。予備接触は、(A)成分に、例えば(B)成分を接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。このような予備接触により触媒活性の向上や、助触媒である(B)成分の使用割合の低減等、触媒コストの低減に効果的である。
The amount of component (A) used is usually 0.1 × 10 −6 to 1.5 × 10 −5 mol / L, preferably 0.15 × 10 −6 to 1.3 × 10 −5 mol / L, More preferably, it is 0.2 × 10 −6 to 1.2 × 10 −5 mol / L, and particularly preferably 0.3 × 10 −6 to 1.0 × 10 −5 mol / L. When the amount of component (A) used is 0.1 × 10 −6 mol / L or more, the catalytic activity is sufficiently expressed, and when it is 1.5 × 10 −5 mol / L or less, the heat of polymerization is easy. Can be removed.
The use ratio (A) / (B) of the component (A) and the component (B) is preferably 10/1 to 1/100, more preferably 2/1 to 1/10 in terms of molar ratio. When (A) / (B) is in the range of 10/1 to 1/100, an effect as a catalyst can be obtained and the catalyst cost per unit mass polymer can be suppressed. Further, there is no fear that a large amount of boron exists in the target terminal unsaturated α-olefin polymer.
The use ratio (A) / (C) of the component (A) to the component (C) is preferably 1/1 to 1/10000, more preferably 1/5 to 1/2000, still more preferably 1 in terms of molar ratio. / 10 to 1/1000. By using the component (C), the polymerization activity per transition metal can be improved. When (A) / (C) is in the range of 1/1 to 1/10000, the balance between the effect of addition of component (C) and economy is good, and the desired terminal unsaturated α-olefin weight There is no fear that a large amount of aluminum is present in the coalescence.
In the production method of the present invention, the preliminary contact may be performed using the above-described component (A) and component (B), or component (A), component (B) and component (C). The preliminary contact can be performed by bringing the component (A) into contact with, for example, the component (B). However, the method is not particularly limited, and a known method can be used. Such preliminary contact is effective in reducing the catalyst cost, such as improving the catalytic activity and reducing the proportion of the (B) component used as the promoter.
 原料ポリオレフィンの製造においては、重合反応における水素圧を0.1MPa以下とすると、当該原料ポリオレフィンを用いて得られる末端不飽和α-オレフィン重合体の末端不飽和基濃度が2.0モル%以上となりやすい。原料ポリオレフィンの重合反応における水素圧は、0.005~0.100MPaであるとより好ましい。
 また、重合反応における重合温度は、60~120℃であることが好ましく、70~100℃であることがより好ましい。重合温度が70℃以上であると、当該原料ポリオレフィンを用いて得られる末端不飽和α-オレフィン重合体の末端不飽和基濃度が2.0モル%以上となりやすい。
In the production of the raw material polyolefin, when the hydrogen pressure in the polymerization reaction is 0.1 MPa or less, the terminal unsaturated group concentration of the terminal unsaturated α-olefin polymer obtained using the raw material polyolefin becomes 2.0 mol% or more. Cheap. The hydrogen pressure in the polymerization reaction of the raw material polyolefin is more preferably 0.005 to 0.100 MPa.
The polymerization temperature in the polymerization reaction is preferably 60 to 120 ° C., more preferably 70 to 100 ° C. When the polymerization temperature is 70 ° C. or higher, the terminal unsaturated group concentration of the terminal unsaturated α-olefin polymer obtained using the raw material polyolefin tends to be 2.0 mol% or higher.
 本発明の製造方法においては、原料ポリオレフィンを、好ましくは不活性気体雰囲気下で分解することで本発明の末端不飽和α-オレフィン重合体を製造する。当該分解は好ましくはラジカル分解反応であり、有機過酸化物を使用しない熱分解反応と比較して、比較的穏和な条件で分解反応が進行する。一方熱分解反応の場合、温度200~500℃で、比較的高い温度で反応が進行する。高温での熱分解反応の場合、大量の副生成物の発生により、目的とする構造の収率が低下する等の課題があるが、滞留時間を調整することで、収率を維持した分解が可能である。具体的には、熱分解反応において滞留時間を短くする方法である。滞留時間は、1~60分であることが好ましく、1~30分であることがより好ましい。 In the production method of the present invention, the terminal unsaturated α-olefin polymer of the present invention is produced by decomposing the raw material polyolefin, preferably in an inert gas atmosphere. The decomposition is preferably a radical decomposition reaction, and the decomposition reaction proceeds under relatively mild conditions as compared with a thermal decomposition reaction that does not use an organic peroxide. On the other hand, in the case of a pyrolysis reaction, the reaction proceeds at a relatively high temperature at a temperature of 200 to 500 ° C. In the case of a thermal decomposition reaction at a high temperature, there are problems such as a decrease in the yield of the target structure due to the generation of a large amount of by-products. Is possible. Specifically, it is a method of shortening the residence time in the thermal decomposition reaction. The residence time is preferably 1 to 60 minutes, and more preferably 1 to 30 minutes.
 上記ラジカル分解反応は、有機過酸化物を原料ポリオレフィンに対して0.05~5.0質量%添加し、温度200~380℃で反応させることで実施できる。
 原料ポリオレフィンに対する有機過酸化物の添加量を0.05質量%以上とすることで、得られる末端不飽和α-オレフィン重合体の末端不飽和基濃度を高めることができる。
 上記分解温度は、好ましくは220~360であり、より好ましくは250~350℃である。分解温度が200℃未満の場合、分解反応が進まず、得られる末端不飽和α-オレフィン重合体の末端不飽和基濃度が2.0モル%以上とならないおそれがある。一方、分解温度が380℃を超える場合、分解が激しく進行し、撹拌により十分に有機過酸化物が溶融ポリマーに均一拡散する前に分解が終了してしまい、収率が低下するおそれがある。
The radical decomposition reaction can be carried out by adding 0.05 to 5.0% by mass of an organic peroxide to the raw material polyolefin and reacting at a temperature of 200 to 380 ° C.
By setting the amount of the organic peroxide added to the raw material polyolefin to be 0.05% by mass or more, the concentration of the terminal unsaturated group of the terminal unsaturated α-olefin polymer obtained can be increased.
The decomposition temperature is preferably 220 to 360, more preferably 250 to 350 ° C. When the decomposition temperature is less than 200 ° C., the decomposition reaction does not proceed, and the terminal unsaturated group concentration of the terminal unsaturated α-olefin polymer obtained may not be 2.0 mol% or more. On the other hand, when the decomposition temperature exceeds 380 ° C., the decomposition proceeds vigorously, and the decomposition may be completed before the organic peroxide is sufficiently uniformly diffused into the molten polymer by stirring, which may reduce the yield.
 添加する有機過酸化物は、好ましくは1分間半減期温度が140~270℃の有機過酸化物であり、当該有機過酸化物の具体例としては以下の化合物が挙げられる:ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエイト、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエイト、ジ(4-t-ブチルシクロへキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、t-ヘキシルパーオキシネオデカノエイト、t-ブチルパーオキシネオへプタノエイト、t-ヘキシルパーオキシピバレイト、t-ブチルパーオキシピバレイト、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウリルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエイト、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)へキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエイト、ジ(4-メチルベンゾイル)パーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエイト、ジ(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルプロピルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘササン、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロへキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサネート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、3,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、t-ブチルパーオキシアセテイト、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゾエート、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)へキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-Menthans ハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド。 The organic peroxide to be added is preferably an organic peroxide having a 1-minute half-life temperature of 140 to 270 ° C., and specific examples of the organic peroxide include the following compounds: diisobutyryl peroxide, Cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate, 1,1,3,3-tetramethylbutylperoxyneodecano Eight, di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-hexylperoxyneodecanoate, t-butylperoxyneoheptanoate, t-hexyl Peroxypivalate, t-butyl peroxypivalate, di (3 , 5-trimethylhexanoyl) peroxide, dilauryl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2- Ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, di (4-methylbenzoyl) peroxide, t-butylperoxy-2-ethylhexanoate, di (3-methyl Benzoyl) peroxide, dibenzoyl peroxide, 1,1-di (t-butylperoxy) -2-methylcyclohexane, 1,1-di (t-hexylpropylperoxy) -3,3,5-trimethylcyclohexane 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cycl Hesasan, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy- 3,5,5-trimethylhexanate, t-butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy 2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, 3,5-di -Methyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate, 2,2-di- (t-butylperoxy) butane, t-butylperoxybenzoate, n-butyl4 , 4-Di- (t-butylperoxy) valate, di (2-t-butylperoxyisopropyl) Pyr) benzoate, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl Peroxide, p-Menthans hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydro Peroxide, cumene hydroperoxide, t-butyl hydroperoxide.
 有機過酸化物の添加量は、好ましくは原料ポリオレフィンに対して0.05~5.0質量%であり、より好ましくは1.0~4.0質量%である。添加量が0.05質量%未満である場合、分解反応速度が遅くなって生産効率が悪くなるおそれがある。一方、添加量が5.0質量%を超える場合、有機過酸化物の分解に起因する臭気が問題となるおそれがある。 The amount of the organic peroxide added is preferably 0.05 to 5.0% by mass, more preferably 1.0 to 4.0% by mass with respect to the raw material polyolefin. When the addition amount is less than 0.05% by mass, the decomposition reaction rate may be slowed and the production efficiency may be deteriorated. On the other hand, when the addition amount exceeds 5.0% by mass, the odor resulting from the decomposition of the organic peroxide may be a problem.
 分解反応の分解時間は、例えば30秒~10時間であり、好ましくは1分~1時間である。分解時間が30秒未満の場合、分解反応が十分に進行しないだけでなく、未分解の有機過酸化物が多量に残存するおそれがある。一方、分解時間が10時間を超える場合、副反応である架橋反応の進行が懸念されることや、得られる末端不飽和α-オレフィン重合体が黄変するおそれがある。 The decomposition time of the decomposition reaction is, for example, 30 seconds to 10 hours, preferably 1 minute to 1 hour. When the decomposition time is less than 30 seconds, not only does the decomposition reaction not proceed sufficiently, but a large amount of undecomposed organic peroxide may remain. On the other hand, when the decomposition time exceeds 10 hours, there is a concern that the crosslinking reaction, which is a side reaction, may progress, and the resulting terminal unsaturated α-olefin polymer may turn yellow.
 ラジカル分解反応は、例えばバッチ法による分解及び溶融連続法による分解のいずれかの方法を用いることで実施できる。 The radical decomposition reaction can be carried out by using, for example, either a batch method or a melt continuous method.
 ラジカル分解反応をバッチ法によって実施する場合、例えば、撹拌装置の付いたステンレス製等の反応容器に窒素、アルゴン等の不活性ガスを充填し、原料ポリオレフィンを入れて加熱溶融させ、溶融した原料ポリオレフィンに及び有機化酸化物を滴下して、所定温度で所定時間加熱することでラジカル熱分解反応を実施できる。
 上記有機過酸化物の滴下は、上記分解時間の範囲内で滴下するとよく、当該滴下は連続的な滴下及び分割した滴下のいずれでもよい。また、滴下終了時間からの反応時間は、上記反応時間の範囲内とするとよい。
When the radical decomposition reaction is carried out by a batch method, for example, a reaction vessel made of stainless steel or the like equipped with a stirrer is filled with an inert gas such as nitrogen or argon, and the raw material polyolefin is put and melted by heating. In addition, a radical thermal decomposition reaction can be carried out by dropping an organic oxide and heating at a predetermined temperature for a predetermined time.
The organic peroxide may be dropped within the range of the decomposition time, and the dropping may be either continuous dropping or divided dropping. Further, the reaction time from the dropping end time is preferably within the above reaction time range.
 有機過酸化物は、溶媒に溶解して溶液として滴下してもよい。
 上記溶媒は、好ましくは炭化水素系溶媒であり、具体例としてはヘプタン、オクタン、デカン、ドデカン、テトラデカン、ヘキサデカン、ナノデカン等の脂肪族炭化水素;メチルシクロペンタン、シクロヘキサン、メチルシクロへキサン、シクロオクタン、シクロドデカン等の脂環式炭化水素;及びベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素が挙げられる。これら溶媒のなかでも、沸点が100℃以上の溶媒が好ましい。
The organic peroxide may be dissolved in a solvent and dropped as a solution.
The solvent is preferably a hydrocarbon solvent, and specific examples include aliphatic hydrocarbons such as heptane, octane, decane, dodecane, tetradecane, hexadecane, and nanodecane; methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane, And alicyclic hydrocarbons such as cyclododecane; and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene. Among these solvents, a solvent having a boiling point of 100 ° C. or higher is preferable.
 また、分解の際、原料ポリオレフィンを溶媒に溶解させてもよい。 Further, the raw material polyolefin may be dissolved in a solvent during decomposition.
 ラジカル分解反応を溶融連続法によって実施する場合、平均滞留時間でみた反応時間は、例えば20秒~10分である。溶融連続法はバッチ法と比較して混合状態を良好にでき、反応時間を短くすることができる。
 装置は、単軸又は二軸の溶融押出機を用いることができ、好ましくはバレル途中に注入口を有し、減圧脱気が可能な押出機であって、L/D=10以上である押出機である。
When the radical decomposition reaction is carried out by a continuous melt process, the reaction time as viewed from the average residence time is, for example, 20 seconds to 10 minutes. The melt continuous method can improve the mixing state and shorten the reaction time compared to the batch method.
The apparatus can use a single-screw or twin-screw melt extruder, preferably an extruder having an inlet in the middle of the barrel and capable of degassing under reduced pressure, and L / D = 10 or more. Machine.
 溶融連続法によるラジカル分解反応は、上記装置を用いて、有機過酸化物を原料ポリオレフィンに含浸させる方法、又は原料ポリオレフィン及び有機過酸化物を個別に供給して混合する方法が適用できる。 For the radical decomposition reaction by the melt continuous method, a method of impregnating the raw material polyolefin with the organic peroxide using the above-mentioned apparatus, or a method of individually supplying and mixing the raw material polyolefin and the organic peroxide can be applied.
 有機過酸化物の原料ポリオレフィンへの含浸は、具体的には所定量の有機過酸化物を窒素等の不活性ガス存在下で原料ポリオレフィンに添加し、室温~40℃の範囲で撹拌することで、原料ペレットに均一に吸収含浸させることができる。得られた有機過酸化物を含浸させた原料ポリオレフィン(含浸ペレット)を溶融押出によって分解する又は、含浸ペレットをマスターバッチとして原料ポリオレフィンに添加して分解することで末端不飽和ポリオレフィンが得られる。
 なお、有機過酸化物が固体である、又は有機過酸化物が原料ポリオレフィンに対して溶解性が低い場合は、有機過酸化物を予め炭化水素溶媒に溶解させた溶液として、原料ポリオレフィンに吸収含浸させるとよい。
Specifically, the impregnation of the raw material polyolefin with the organic peroxide is performed by adding a predetermined amount of the organic peroxide to the raw material polyolefin in the presence of an inert gas such as nitrogen, and stirring the solution in the range of room temperature to 40 ° C. The raw material pellets can be uniformly absorbed and impregnated. The obtained raw material polyolefin impregnated with the organic peroxide (impregnated pellet) is decomposed by melt extrusion, or the impregnated pellet is added to the raw material polyolefin as a master batch and decomposed to obtain a terminal unsaturated polyolefin.
If the organic peroxide is solid or the organic peroxide has low solubility in the raw polyolefin, the raw polyolefin is absorbed and impregnated as a solution in which the organic peroxide is previously dissolved in a hydrocarbon solvent. It is good to let them.
 原料ポリオレフィン及び有機過酸化物を個別に供給しての混合は、押出機ホッパー部に一定流量で原料ポリオレフィンと有機過酸化物を供給する、又は有機過酸化物をバレル途中に一定流量で供給することで実施できる。 Mixing by separately supplying the raw material polyolefin and the organic peroxide, the raw material polyolefin and the organic peroxide are supplied to the extruder hopper at a constant flow rate, or the organic peroxide is supplied at a constant flow rate in the middle of the barrel. Can be implemented.
 本発明の末端不飽和α-オレフィン重合体を用いて、その末端不飽和基を官能化することで、末端不飽和基の5モル%以上(好ましくは10モル%以上)が官能基修飾された官能化α-オレフィン重合体とすることができる。
 当該官能基は、好ましくは水酸基、エポキシ基、アルコキシ珪素基、アルキル珪素基、カルボキシル基、アミノ基及びイソシアナート基から選択される1以上の官能基である。
 また、本発明の末端不飽和α-オレフィン重合体は、好ましくは酸無水物構造を有する。酸無水物構造とは、カルボン酸のカルボキシル基2個から1分子の水が失われ、2つのアシル基が1個の酸素原子を共有する構造である。一般に、R1COOCOR2で示される。例えば、無水マレイン酸、無水コハク酸、無水フタル酸等が挙げられる。
By functionalizing the terminal unsaturated group using the terminal unsaturated α-olefin polymer of the present invention, 5 mol% or more (preferably 10 mol% or more) of the terminal unsaturated group was functionally modified. It can be a functionalized α-olefin polymer.
The functional group is preferably one or more functional groups selected from a hydroxyl group, an epoxy group, an alkoxysilicon group, an alkylsilicon group, a carboxyl group, an amino group, and an isocyanate group.
The terminal unsaturated α-olefin polymer of the present invention preferably has an acid anhydride structure. An acid anhydride structure is a structure in which one molecule of water is lost from two carboxyl groups of a carboxylic acid, and two acyl groups share one oxygen atom. Generally indicated by R 1 COOCOR 2 . For example, maleic anhydride, succinic anhydride, phthalic anhydride and the like can be mentioned.
 官能化α-オレフィン重合体は、官能基を有することで、極性化合物との相溶性及び分散性を向上させることができ、各種ポリマーとの組成物を得ることが容易になる。また、官能化α-オレフィン重合体が官能基を有することで、水等の極性溶媒への溶解性及び分散性を向上させることができ、エマルジョン系接着剤又は塗料として使用できる。ポリオレフィン系材料への適用としては接着性、塗装性の付与ができ、有機無機顔料の表面状態を改良するため、ポリオレフィン系マスターバッチの製造も可能となるほか、アルコキシ珪素基等では架橋による耐熱性の付与が可能である。 Since the functionalized α-olefin polymer has a functional group, compatibility and dispersibility with a polar compound can be improved, and it becomes easy to obtain a composition with various polymers. Further, since the functionalized α-olefin polymer has a functional group, the solubility and dispersibility in a polar solvent such as water can be improved, and it can be used as an emulsion adhesive or a coating material. For application to polyolefin materials, adhesion and paintability can be imparted, and the surface condition of organic inorganic pigments can be improved, making it possible to produce polyolefin master batches. Can be granted.
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。物性の測定方法及び測定装置を以下に示す。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The physical property measuring method and measuring device are shown below.
[末端不飽和基濃度]
 1H-NMR測定より得られるδ4.8~4.6(2H)に出現する末端ビニリデン基、δ5.9~5.7(1H)に出現する末端ビニル基及びδ1.05~0.60(3H)に出現するメチル基に基づいて、末端不飽和基濃度(C)(モル%)を算出した。
  ビニリデン基のCH2(4.8~4.6ppm)・・・(i)
  ビニル基のCH(5.9~5.7ppm)・・・(ii)
  側鎖末端のCH3(1.05~0.60ppm)・・・(iii)
  ビニリデン基量=[(i)/2]/[(iii)/3]×100 モル%
  ビニル基量=(ii)/[(iii)/3]×100 モル%
  末端不飽和基濃度(C)=[ビニリデン基量]+[ビニル基量]
[Terminal unsaturated group concentration]
Terminal vinylidene groups appearing in δ 4.8 to 4.6 (2H), terminal vinyl groups appearing in δ 5.9 to 5.7 (1H) and δ 1.05 to 0.60 (1H-NMR measurement obtained from 1 H-NMR measurement) Based on the methyl group appearing in 3H), the terminal unsaturated group concentration (C) (mol%) was calculated.
CH 2 of vinylidene group (4.8 to 4.6 ppm) (i)
Vinyl group CH (5.9 to 5.7 ppm) (ii)
CH 3 at the end of the side chain (1.05 to 0.60 ppm) (iii)
Vinylidene group amount = [(i) / 2] / [(iii) / 3] × 100 mol%
Vinyl group amount = (ii) / [(iii) / 3] × 100 mol%
Terminal unsaturated group concentration (C) = [vinylidene group amount] + [vinyl group amount]
[1分子当りの末端不飽和基の数]
 上記方法により算出した末端不飽和基濃度(C、モル%)と、ゲルパーミエイションクロマトグラフ(GPC)より求めた数平均分子量(Mn)及びモノマー分子量(M)から、下記式により1分子当りの末端不飽和基の数を算出した。
  1分子当りの末端不飽和基の数(個)=(Mn/M)×(C/100)
[Number of terminal unsaturated groups per molecule]
From the terminal unsaturated group concentration (C, mol%) calculated by the above method, the number average molecular weight (Mn) and the monomer molecular weight (M) determined from the gel permeation chromatograph (GPC), per molecule The number of terminal unsaturated groups was calculated.
Number of terminal unsaturated groups per molecule (number) = (Mn / M) × (C / 100)
[動粘度]
 JIS K 2283に準拠し測定した。
[Kinematic viscosity]
Measured according to JIS K 2283.
[重量平均分子量(Mw)、分子量分布(Mw/Mn)]
 ゲルパーミエイションクロマトグラフ(GPC)法により、重量平均分子量及び分子量分布を測定した(ポリスチレン換算)。
GPC測定装置
カラム:TOSO GMHHR-H(S)HT
検出器:液体クロマトグラム用RI検出器 WATERS 150C
測定条件
溶媒:1,2,4-トリクロロベンゼン
測定温度:145℃
流速:1.0ミリリットル/分50
試料濃度:2.2mg/ミリリットル
注入量:160マイクロリットル
検量線:Universal Calibration
解析プログラム:HT-GPC(Ver.1.0)
[Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn)]
The weight average molecular weight and molecular weight distribution were measured by gel permeation chromatography (GPC) method (polystyrene conversion).
GPC measuring device column: TOSO GMHHR-H (S) HT
Detector: RI detector for liquid chromatogram WATERS 150C
Measurement conditions Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 ml / min 50
Sample concentration: 2.2 mg / milliliter Injection amount: 160 microliter Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
[融点[Tm]]
 示差走査型熱量計(DSC、パーキンエルマー社製、商品名:「DSC7」)を用い、試料を室温から190℃まで、100℃/分で昇温し、190℃で5分保持した後、-30℃まで、10℃/分で降温させ、-30℃で5分保持した後、190℃まで10℃/分で昇温させることで、吸熱ピークを示す融解曲線を得た。得られた融解曲線におけるピークトップの温度を融点(Tm)とした。
[Melting point [Tm]]
Using a differential scanning calorimeter (DSC, manufactured by Perkin Elmer, trade name: “DSC7”), the sample was heated from room temperature to 190 ° C. at 100 ° C./min, held at 190 ° C. for 5 minutes, − The temperature was lowered to 30 ° C. at 10 ° C./min, held at −30 ° C. for 5 minutes, and then heated to 190 ° C. at 10 ° C./min to obtain a melting curve showing an endothermic peak. The peak top temperature in the obtained melting curve was defined as the melting point (Tm).
[半値幅[℃]]
 上記でDSCにて融点(Tm)を測定した際の吸熱ピークの50%高さにおけるピーク幅を測定した。
[Half-width [° C]]
The peak width at 50% height of the endothermic peak when the melting point (Tm) was measured by DSC was measured.
[メソトリアッド分率[mm]]
 Macromolecules,24,2334(1991)及びPolymer,30,1350(1989)に記載の方法により13C-NMRを用いて求めた。
[Mesotriad fraction [mm]]
It was determined using 13 C-NMR by the method described in Macromolecules, 24, 2334 (1991) and Polymer, 30, 1350 (1989).
[反応性評価]
 以下の基準に従って評価した。
  ◎:末端不飽和基の濃度が2.0~30モル%、且つ、1分子当りの末端不飽和基の数が1.7~2.0個
  ○:末端不飽和基の濃度が2.0~30モル%、且つ、1分子当りの末端不飽和基の数が1.0個を超え2.5個未満
  ×:末端不飽和基の濃度が2.0モル%未満又は30モル%を超える
[Reactivity evaluation]
Evaluation was made according to the following criteria.
A: The concentration of terminal unsaturated groups is 2.0 to 30 mol%, and the number of terminal unsaturated groups per molecule is 1.7 to 2.0. ○: The concentration of terminal unsaturated groups is 2.0. ˜30 mol%, and the number of terminal unsaturated groups per molecule is more than 1.0 and less than 2.5 ×: the concentration of terminal unsaturated groups is less than 2.0 mol% or more than 30 mol%
[室温流動性]
 以下の基準に従って評価した。
  有:室温にて、目視により、流動性を有することを確認した。
  無:室温にて、目視により、流動性を有しないことを確認した。
[Room temperature fluidity]
Evaluation was made according to the following criteria.
Existence: It confirmed that it had fluidity by visual observation at room temperature.
None: It was confirmed by visual observation at room temperature that there was no fluidity.
製造例1
[原料ポリオレフィンの製造]
 加熱乾燥した1リットルオートクレーブに、1-ヘキセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.05MPaを導入した。撹拌しながら温度80℃で1時間重合した。重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、原料ポリオレフィンである末端不飽和低立体規則性ポリ1-ヘキセン200gを得た。
 得られた原料ポリオレフィンについて、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第1表に示す。
Production Example 1
[Manufacture of raw material polyolefin]
In a heat-dried 1 liter autoclave, 400 ml of 1-hexene, 1 mmol of triisobutylaluminum, 2 μmol of (1,1′-ethylene) (2,2′-tetramethyldisylylene) -bis (indenyl) zirconium dichloride, Tetrakis pentafluorophenyl borate (8 μmol) was added, and hydrogen (0.05 MPa) was further introduced. Polymerization was conducted for 1 hour at a temperature of 80 ° C. with stirring. After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 200 g of terminal unsaturated low stereoregular poly 1-hexene as a raw material polyolefin.
About the obtained raw material polyolefin, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
製造例2
[原料ポリオレフィンの製造]
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.05MPaを導入した。撹拌しながら温度90℃で1時間重合した。重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、原料ポリオレフィンである末端不飽和低立体規則性ポリ1-デセン230gを得た。
 得られた原料ポリオレフィンについて、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第1表に示す。
Production Example 2
[Manufacture of raw material polyolefin]
In a heat-dried 1 liter autoclave, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, 2 μmol of (1,1′-ethylene) (2,2′-tetramethyldisylylene) -bis (indenyl) zirconium dichloride, Tetrakis pentafluorophenyl borate (8 μmol) was added, and hydrogen (0.05 MPa) was further introduced. Polymerization was carried out at 90 ° C. for 1 hour with stirring. After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 230 g of terminal unsaturated low stereoregular poly 1-decene as a raw material polyolefin.
About the obtained raw material polyolefin, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
製造例3
[原料ポリオレフィンの製造]
 加熱乾燥した1リットルオートクレーブに、1-ドデセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.05MPaを導入した。撹拌しながら温度90℃で1時間重合した。重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、原料ポリオレフィンである末端不飽和低立体規則性ポリ1-ドデセン220gを得た。
 得られた原料ポリオレフィンについて、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第1表に示す。
Production Example 3
[Manufacture of raw material polyolefin]
In a heat-dried 1 liter autoclave, 1-dodecene 400 ml, triisobutylaluminum 1 mmol, (1,1′-ethylene) (2,2′-tetramethyldisylylene) -bis (indenyl) zirconium dichloride 2 μmol, Tetrakis pentafluorophenyl borate (8 μmol) was added, and hydrogen (0.05 MPa) was further introduced. Polymerization was carried out at 90 ° C. for 1 hour with stirring. After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 220 g of terminal unsaturated low stereoregular poly 1-dodecene as a raw material polyolefin.
About the obtained raw material polyolefin, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
製造例4
[原料ポリオレフィンの製造]
 加熱乾燥した1リットルオートクレーブに、1-オクタデセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.05MPaを導入した。撹拌しながら温度90℃で1時間重合した。重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、原料ポリオレフィンである末端不飽和低立体規則性ポリ1-オクタデセン190gを得た。
 得られた原料ポリオレフィンについて、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第1表に示す。
Production Example 4
[Manufacture of raw material polyolefin]
In a heat-dried 1 liter autoclave, 400 ml of 1-octadecene, 1 mmol of triisobutylaluminum, 2 μmol of (1,1′-ethylene) (2,2′-tetramethyldisylylene) -bis (indenyl) zirconium dichloride, Tetrakis pentafluorophenyl borate (8 μmol) was added, and hydrogen (0.05 MPa) was further introduced. Polymerization was carried out at 90 ° C. for 1 hour with stirring. After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 190 g of a terminal unsaturated low stereoregular poly 1-octadecene as a raw material polyolefin.
About the obtained raw material polyolefin, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
製造例5
[原料ポリオレフィンの製造]
 加熱乾燥した1リットルオートクレーブに、炭素数26~28のαオレフィン混合物400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.05MPaを導入した。撹拌しながら温度110℃で1時間重合した。重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、原料ポリオレフィンである末端不飽和低立体規則性C26~28共重合体175gを得た。
 得られた原料ポリオレフィンについて、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第1表に示す。
Production Example 5
[Manufacture of raw material polyolefin]
In a heat-dried 1 liter autoclave, 400 ml of an α-olefin mixture having 26 to 28 carbon atoms, 1 mmol of triisobutylaluminum, (1,1′-ethylene) (2,2′-tetramethyldisilene) -bis (indenyl) 2 micromoles of zirconium dichloride and 8 micromoles of tetrakispentafluorophenylborate were added, and 0.05 MPa of hydrogen was further introduced. Polymerization was conducted for 1 hour at 110 ° C. with stirring. After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 175 g of a terminal unsaturated low stereoregular C26-28 copolymer as a raw material polyolefin.
About the obtained raw material polyolefin, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
製造例6
[触媒混合液の調製]
 10ミリリットルのガラス製シュレンク瓶に窒素雰囲気下でトリイソブチルアルミニウム0.20ミリモル(0.5ミリモル/ミリリットルのトルエン溶液;0.4ミリリットル)、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド4マイクロモル(5マイクロモル/ミリリットルのトルエン溶液;0.8ミリリットル)及び粉末状のN,N’-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.08ミリモル(64ミリグラム)を入れ室温で1分ほど加え撹拌した後、1-ドデセン1ミリリットルを加えてさらに室温で1時間撹拌し、触媒混合液を調製した。
[原料ポリオレフィンの製造]
 加熱乾燥した1リットルオートクレーブに、1-ドデセン234ミリリットル、1-オクテン166ミリリットル、トリイソブチルアルミニウム0.3ミリモルをいれ、90℃に昇温した。上述の調製工程により得られた触媒混合液を1.6ミリリットル投入後、水素0.05MPaGを導入し、重合を開始した。120分後、残りの触媒混合液1.6ミリリットルを添加し、更に90℃で120分反応させた後、メタノール10ミリリットルを投入し重合を停止させた。内容物を取出し、1質量%NaOH水溶液200ミリリットル中に加え、撹拌した。この溶液を分液ロートに移し、有機層を分取した後、有機層を水洗し、有機層を東洋ろ紙2Cのろ紙で固形分を取り除いた。得られた溶液からロータリーエバポレーター(約1.0×10-4MPaGの減圧下、オイルバス100℃)でトルエン、原料、メタノール等を留去し、無色透明液体235g得た。更に掃く薄膜蒸留装置(柴田科学製分子蒸留装置MS-300特型、高真空排気装置DS-212Z)を用いて5×10-6MPaの減圧下、180℃で蒸留を行い、炭素数24以下の成分を取り除くことにより、原料ポリオレフィンである末端不飽和低立体規則性1-オクテン/1-ドデセン共重合体を205g得た。
 得られた原料ポリオレフィンについて、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第1表に示す。
Production Example 6
[Preparation of catalyst mixture]
In a 10 ml glass Schlenk bottle under a nitrogen atmosphere, 0.20 mmol of triisobutylaluminum (0.5 mmol / ml of toluene solution; 0.4 ml), (1,1′-dimethylsilylene) (2,2 ′ -Dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride 4 micromolar (5 micromole / milliliter toluene solution; 0.8 milliliter) and N, N'-dimethylanilinium tetrakis (pentafluorophenyl) in powder form 0.08 mmol (64 milligrams) of borate was added and stirred for about 1 minute at room temperature. Then, 1 milliliter of 1-dodecene was added and further stirred for 1 hour at room temperature to prepare a catalyst mixture.
[Manufacture of raw material polyolefin]
In a 1 liter autoclave that had been dried by heating, 234 ml of 1-dodecene, 166 ml of 1-octene, and 0.3 mmol of triisobutylaluminum were added, and the temperature was raised to 90 ° C. After adding 1.6 ml of the catalyst mixture obtained by the above preparation step, 0.05 MPaG of hydrogen was introduced to initiate polymerization. After 120 minutes, the remaining 1.6 ml of the catalyst mixture was added, and further reacted at 90 ° C. for 120 minutes, and then 10 ml of methanol was added to stop the polymerization. The contents were taken out and added to 200 ml of 1% by weight NaOH aqueous solution and stirred. This solution was transferred to a separatory funnel, the organic layer was separated, the organic layer was washed with water, and the organic layer was removed with Toyo filter paper 2C filter paper. Toluene, raw materials, methanol and the like were distilled off from the obtained solution with a rotary evaporator (oil bath 100 ° C. under reduced pressure of about 1.0 × 10 −4 MPaG) to obtain 235 g of a colorless transparent liquid. Further, using a thin-film distillation device (molecular distillation device MS-300 special model manufactured by Shibata Kagaku, high vacuum evacuation device DS-212Z), distillation is performed at 180 ° C. under reduced pressure of 5 × 10 −6 MPa, and the number of carbon atoms is 24 or less. By removing the above component, 205 g of a terminal unsaturated low stereoregular 1-octene / 1-dodecene copolymer, which is a raw material polyolefin, was obtained.
About the obtained raw material polyolefin, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, and yield It was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例1
[末端不飽和α-オレフィン重合体の製造]
 撹拌装置付きステンレス製反応器(内容量500ml)に製造例1で製造した原料ポリオレフィン40gを投入し、窒素気流下に30分間撹拌した。
 撹拌を停止し、マントルヒーターを用い樹脂温度を160℃に上昇した。溶融状態になったことを確認して、撹拌を再開した。マントルヒーターを樹脂温度が270℃と一定になるように制御した。これに、キュメンハイドロパーオキサイド0.4ミリリットルを4分にわたり滴下した。滴下終了後、4分間反応し、その後110℃まで冷却した。
 反応終了後、100℃で減圧乾燥を10時間行い、末端不飽和α-オレフィン重合体であるラジカル分解アモルファスポリ1-ヘキセンを得た。
 得られた末端不飽和α-オレフィン重合体の収率は原料ポリオレフィンに対して99.1質量%であり、副生成物量は微量であった。末端不飽和α-オレフィン重合体の重量平均分子量(Mw)は8800であり、分子量分布(Mw/Mn)は1.64であった。また、1分子当りの末端不飽和基の数は1.9個であった。
Example 1
[Production of terminal unsaturated α-olefin polymer]
40 g of the raw material polyolefin produced in Production Example 1 was introduced into a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream.
Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
After completion of the reaction, drying under reduced pressure at 100 ° C. was carried out for 10 hours to obtain radically decomposed amorphous poly-1-hexene which is a terminal unsaturated α-olefin polymer.
The yield of the obtained terminal unsaturated α-olefin polymer was 99.1% by mass with respect to the raw material polyolefin, and the amount of by-products was very small. The weight average molecular weight (Mw) of the terminal unsaturated α-olefin polymer was 8800, and the molecular weight distribution (Mw / Mn) was 1.64. The number of terminal unsaturated groups per molecule was 1.9.
実施例2
[末端不飽和α-オレフィン重合体の製造]
 撹拌装置付きステンレス製反応器(内容量500ml)に製造例2で製造した原料ポリオレフィン40gを投入し、窒素気流下に30分間撹拌した。
 撹拌を停止し、マントルヒーターを用い樹脂温度を160℃に上昇した。溶融状態になったことを確認して、撹拌を再開した。マントルヒーターを樹脂温度が270℃と一定になるように制御した。これに、キュメンハイドロパーオキサイド0.4ミリリットルを4分にわたり滴下した。滴下終了後、4分間反応し、その後110℃まで冷却した。
 反応終了後、100℃で減圧乾燥を10時間行い末端不飽和α-オレフィン重合体であるラジカル分解ポリ1-デセンを得た。
 得られた末端不飽和α-オレフィン重合体の収率は原料ポリオレフィンに対して99.2質量%であり、副生成物量は微量であった。末端不飽和α-オレフィン重合体の重量平均分子量(Mw)は9100であり、分子量分布(Mw/Mn)は1.72であった。また、1分子当りの末端不飽和基の数は1.8個であった。
Example 2
[Production of terminal unsaturated α-olefin polymer]
40 g of the raw material polyolefin produced in Production Example 2 was introduced into a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream.
Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
After completion of the reaction, drying under reduced pressure at 100 ° C. was carried out for 10 hours to obtain radically decomposed poly 1-decene as a terminal unsaturated α-olefin polymer.
The yield of the obtained terminal unsaturated α-olefin polymer was 99.2% by mass based on the raw material polyolefin, and the amount of by-products was very small. The terminal unsaturated α-olefin polymer had a weight average molecular weight (Mw) of 9100 and a molecular weight distribution (Mw / Mn) of 1.72. The number of terminal unsaturated groups per molecule was 1.8.
実施例3
[末端不飽和α-オレフィン重合体の製造]
 撹拌装置付きステンレス製反応器(内容量500ml)に製造例3で製造した原料ポリオレフィン40gを投入し、窒素気流下に30分間撹拌した。
 撹拌を停止し、マントルヒーターを用い樹脂温度を160℃に上昇した。溶融状態になったことを確認して、撹拌を再開した。マントルヒーターを樹脂温度が270℃と一定になるように制御した。これに、キュメンハイドロパーオキサイド0.4ミリリットルを4分にわたり滴下した。滴下終了後、4分間反応し、その後110℃まで冷却した。
 反応終了後、100℃で減圧乾燥を10時間行い末端不飽和α-オレフィン重合体であるラジカル分解ポリ1-ドデセンを得た。
 得られた分解ポリ1-ドデセンの収率は原料ポリオレフィンに対して99.9質量%であり、副生成物量は微量であった。末端不飽和α-オレフィン重合体の重量平均分子量(Mw)は8500であり、分子量分布(Mw/Mn)は1.81であった。また、1分子当りの末端不飽和基の数は1.7個であった。
Example 3
[Production of terminal unsaturated α-olefin polymer]
40 g of the raw material polyolefin produced in Production Example 3 was placed in a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer and stirred for 30 minutes under a nitrogen stream.
Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
After completion of the reaction, drying under reduced pressure at 100 ° C. was carried out for 10 hours to obtain radically decomposed poly 1-dodecene as a terminal unsaturated α-olefin polymer.
The yield of the obtained decomposed poly 1-dodecene was 99.9% by mass based on the raw material polyolefin, and the amount of by-products was very small. The terminal unsaturated α-olefin polymer had a weight average molecular weight (Mw) of 8500 and a molecular weight distribution (Mw / Mn) of 1.81. The number of terminal unsaturated groups per molecule was 1.7.
実施例4
[末端不飽和α-オレフィン重合体の製造]
 撹拌装置付きステンレス製反応器(内容量500ml)に製造例4で製造した原料ポリオレフィン40gを投入し、窒素気流下に30分間撹拌した。
 撹拌を停止し、マントルヒーターを用い樹脂温度を160℃に上昇した。溶融状態になったことを確認して、撹拌を再開した。マントルヒーターを樹脂温度が270℃と一定になるように制御した。これに、キュメンハイドロパーオキサイド0.4ミリリットルを4分にわたり滴下した。滴下終了後、4分間反応し、その後110℃まで冷却した。
 反応終了後、100℃で減圧乾燥を10時間行い末端不飽和α-オレフィン重合体であるラジカル分解ポリ1-オクタデセンを得た。
 得られた末端不飽和α-オレフィン重合体の収率は原料ポリオレフィンに対して99.9質量%であり、副生成物量は微量であった。末端不飽和α-オレフィン重合体の重量平均分子量(Mw)は8500であり、分子量分布(Mw/Mn)は1.81であった。また、1分子当りの末端不飽和基の数は1.5個であった。
Example 4
[Production of terminal unsaturated α-olefin polymer]
40 g of the raw material polyolefin produced in Production Example 4 was placed in a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream.
Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
After completion of the reaction, drying under reduced pressure at 100 ° C. was carried out for 10 hours to obtain radically decomposed poly 1-octadecene as a terminal unsaturated α-olefin polymer.
The yield of the obtained terminal unsaturated α-olefin polymer was 99.9% by mass based on the raw material polyolefin, and the amount of by-products was very small. The terminal unsaturated α-olefin polymer had a weight average molecular weight (Mw) of 8500 and a molecular weight distribution (Mw / Mn) of 1.81. The number of terminal unsaturated groups per molecule was 1.5.
実施例5
[末端不飽和α-オレフィン重合体の製造]
 撹拌装置付きステンレス製反応器(内容量500ml)に製造例5で製造した原料ポリオレフィン40gを投入し、窒素気流下に30分間撹拌した。
 撹拌を停止し、マントルヒーターを用い樹脂温度を160℃に上昇した。溶融状態になったことを確認して、撹拌を再開した。マントルヒーターを樹脂温度が270℃と一定になるように制御した。これに、キュメンハイドロパーオキサイド0.4ミリリットルを4分にわたり滴下した。滴下終了後、4分間反応し、その後110℃まで冷却した。
 反応終了後、100℃で減圧乾燥を10時間行い末端不飽和α-オレフィン重合体であるラジカル分解C26~28共重合体を得た。
 得られた末端不飽和α-オレフィン重合体の収率は原料ポリオレフィンに対して98.9質量%であり、副生成物量は微量であった。末端不飽和α-オレフィン重合体の重量平均分子量(Mw)は6500であり、分子量分布(Mw/Mn)は1.79であった。また、1分子当りの末端不飽和基の数は1.5個であった。
Example 5
[Production of terminal unsaturated α-olefin polymer]
40 g of the raw material polyolefin produced in Production Example 5 was charged into a stainless steel reactor (with an internal volume of 500 ml) equipped with a stirrer, and stirred for 30 minutes under a nitrogen stream.
Stirring was stopped, and the resin temperature was raised to 160 ° C. using a mantle heater. After confirming that it was in a molten state, stirring was resumed. The mantle heater was controlled so that the resin temperature was constant at 270 ° C. To this, 0.4 ml of cumene hydroperoxide was added dropwise over 4 minutes. After completion of the dropwise addition, the reaction was performed for 4 minutes, and then cooled to 110 ° C.
After completion of the reaction, drying under reduced pressure at 100 ° C. was performed for 10 hours to obtain a radically decomposed C26-28 copolymer which is a terminal unsaturated α-olefin polymer.
The yield of the obtained terminal unsaturated α-olefin polymer was 98.9% by mass based on the raw material polyolefin, and the amount of by-products was very small. The terminal unsaturated α-olefin polymer had a weight average molecular weight (Mw) of 6500 and a molecular weight distribution (Mw / Mn) of 1.79. The number of terminal unsaturated groups per molecule was 1.5.
実施例6
[末端不飽和α―オレフィン重合体の製造]
 内径10ミリ長さ50センチメートルからなる管状反応器にガラスビーズを充填し、マントルヒーターで400℃に加熱した。そこに製造例6で得られた原料ポリオレフィンをポンプで40ミリリットル/時間の流量で通し連続的に分解し、末端不飽和1-オクテン/1-ドデセン共重合体を得た。この時の滞留時間は27分であった。
 得られた末端不飽和1-オクテン/1-ドデセン共重合体について、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第2表に示した
Example 6
[Production of terminal unsaturated α-olefin polymer]
Glass beads were filled in a tubular reactor having an inner diameter of 10 mm and a length of 50 cm, and heated to 400 ° C. with a mantle heater. The raw material polyolefin obtained in Production Example 6 was continuously decomposed with a pump at a flow rate of 40 ml / hour to obtain a terminal unsaturated 1-octene / 1-dodecene copolymer. The residence time at this time was 27 minutes.
About the obtained terminal unsaturated 1-octene / 1-dodecene copolymer, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule The terminal unsaturated group concentration and the yield were measured. The results are shown in Table 2.
比較例1
[末端不飽和プロピレン重合体の製造]
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを24L/h、トリイソブチルアルミニウムを15mmol/h、及びジメチルアニリニウムテトラキスペンタフルオロフェニルボレートと(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドとトリイソブチルアルミニウムとプロピレンとを質量比1:2:20で接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hで連続供給した。
 重合温度を83℃に設定し、反応器の気相部の水素濃度を0.86モル%、反応器内の全圧を0.7MPa・Gに保つように、プロピレン及び水素を連続供給し、重合反応を行った。
 得られた重合溶液に、安定剤であるイルガノックス1010(チバ・スペシャルティ・ケミカルズ社製)をその含有割合が500質量ppmになるように添加し、溶媒であるn-ヘプタンを除去して、原料ポリプロピレンである低結晶性ポリプロピレンを得た。この原料ポリプロピレンをアンダーウオーターカットにより樹脂ペレットとした。
 得られた原料ポリプロピレンの立体規則性[mmmm]は45モル%であり、重量平均分子量(Mw)は45,600、末端不飽和基数は0.95個/分子であった。
Comparative Example 1
[Production of terminal unsaturated propylene polymer]
In a stainless steel reactor with an internal volume of 20 L with a stirrer, n-heptane was 24 L / h, triisobutylaluminum was 15 mmol / h, and dimethylanilinium tetrakispentafluorophenylborate and (1,2'-dimethylsilylene) ( The catalyst component obtained by contacting 2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride, triisobutylaluminum and propylene in a mass ratio of 1: 2: 20 was converted to 6 μmol in terms of zirconium. / H was continuously fed.
The polymerization temperature was set to 83 ° C., and propylene and hydrogen were continuously supplied so that the hydrogen concentration in the gas phase of the reactor was 0.86 mol% and the total pressure in the reactor was maintained at 0.7 MPa · G. A polymerization reaction was performed.
Irganox 1010 (manufactured by Ciba Specialty Chemicals), which is a stabilizer, is added to the resulting polymerization solution so that the content is 500 ppm by mass, and n-heptane, which is a solvent, is removed to obtain a raw material. A low crystalline polypropylene which is polypropylene was obtained. This raw material polypropylene was made into resin pellets by underwater cutting.
The resulting raw material polypropylene had a stereoregularity [mmmm] of 45 mol%, a weight average molecular weight (Mw) of 45,600, and a terminal unsaturated group number of 0.95 / molecule.
 上記原料ポリプロピレンを用い、以下の条件でラジカル分解を行い、末端不飽和プロピレン重合体を製造した。
 具体的には、撹拌装置付きステンレス製反応器(内容量500mL)に原料ポリプロピレン70gを投入した。窒素気流下に30分間撹拌した。
 撹拌を停止し、マントルヒーターを用いて樹脂温度を120℃に昇温した。溶融状態になったことを確認して撹拌を再開し、マントルヒーターを樹脂温度が320℃で一定になるように制御した。この溶融樹脂に、キュメンハイドロパーオキサイド(商品名:パークミルP、日油株式会社製)1.2gを4分にわたり滴下した。滴下終了後、4分間反応させ、空冷して110℃まで冷却した。110℃で温度を保ったまま、トルエン200ミリリットルを投入し、均一溶液を調製した。
 このトルエン溶液をテフロン(登録商標)コート製のバットに回収し、トルエンを除去して、100℃で8時間減圧乾燥することでラジカル分解ポリプロピレンを得た。
 得られた末端不飽和プロピレン重合体について、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、1分子当りの末端不飽和基の数、末端不飽和基濃度、及び収率を測定した。結果を第2表に示す。
Using the raw material polypropylene, radical decomposition was performed under the following conditions to produce a terminal unsaturated propylene polymer.
Specifically, 70 g of raw material polypropylene was put into a stainless steel reactor (with an internal volume of 500 mL) equipped with a stirrer. The mixture was stirred for 30 minutes under a nitrogen stream.
Stirring was stopped and the resin temperature was raised to 120 ° C. using a mantle heater. Stirring was resumed after confirming that it was in a molten state, and the mantle heater was controlled so that the resin temperature was constant at 320 ° C. To this molten resin, 1.2 g of cumene hydroperoxide (trade name: Park Mill P, manufactured by NOF Corporation) was dropped over 4 minutes. After completion of dropping, the reaction was allowed to proceed for 4 minutes, followed by air cooling and cooling to 110 ° C. While maintaining the temperature at 110 ° C., 200 ml of toluene was added to prepare a uniform solution.
The toluene solution was recovered in a Teflon (registered trademark) vat, the toluene was removed, and the residue was dried under reduced pressure at 100 ° C. for 8 hours to obtain radically decomposed polypropylene.
About the obtained terminal unsaturated propylene polymer, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], number of terminal unsaturated groups per molecule, terminal unsaturated group concentration, And the yield was measured. The results are shown in Table 2.
比較例2
 製造例2で製造した原料ポリオレフィンをそのまま評価に供した。
 得られた末端不飽和α-オレフィン重合体について、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メソトリアッド分率[mm]、100℃における動粘度、融点(Tm)、末端不飽和基濃度及び1分子当りの末端不飽和基の数を測定した。結果を第2表に示す。
Comparative Example 2
The raw material polyolefin produced in Production Example 2 was used for evaluation as it was.
About the obtained terminal unsaturated α-olefin polymer, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), mesotriad fraction [mm], kinematic viscosity at 100 ° C., melting point (Tm), terminal unsaturated group The concentration and the number of terminal unsaturated groups per molecule were measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~6の末端不飽和α-オレフィン重合体は、末端不飽和基の濃度が2.0モル%以上と高くなっており、反応性が高い重合体であると言える。したがって、反応型接着剤、反応型ホットメルト接着剤、その他接着剤、粘着剤、封止材、シーリング材、反応性可塑剤等の用途や原料として好適に使用できると言える。また、炭素数5以上のオレフィン重合体であるため、材料耐熱性向上、防水性向上等の効果もあるといえる。
 これに対し、比較例1では炭素数3の末端不飽和オレフィン重合体であるため、分子量あたりの末端不飽和濃度が2.0モル%未満であった。また、比較例2では分解反応を行っていないので、分子量あたりの末端不飽和濃度が2.0モル%未満であった。さらに、末端不飽和基濃度が低いため、得られた重合体の反応性は低く、反応型接着剤、封止材、シーリング材、接着剤、可塑剤等の用途での使用は難しい結果となった。
The terminal unsaturated α-olefin polymers of Examples 1 to 6 have high terminal unsaturated group concentrations of 2.0 mol% or more, and can be said to be highly reactive polymers. Therefore, it can be said that it can be suitably used as a use or raw material for reactive adhesives, reactive hot melt adhesives, other adhesives, pressure-sensitive adhesives, sealing materials, sealing materials, reactive plasticizers, and the like. Moreover, since it is an olefin polymer having 5 or more carbon atoms, it can be said that there are effects such as improvement of material heat resistance and improvement of waterproofness.
In contrast, since Comparative Example 1 is a terminal unsaturated olefin polymer having 3 carbon atoms, the terminal unsaturated concentration per molecular weight was less than 2.0 mol%. Moreover, since the decomposition reaction was not performed in the comparative example 2, the terminal unsaturated concentration per molecular weight was less than 2.0 mol%. Furthermore, since the terminal unsaturated group concentration is low, the reactivity of the obtained polymer is low, and it is difficult to use it in applications such as reactive adhesives, sealing materials, sealing materials, adhesives, and plasticizers. It was.
 本発明の末端不飽和α-オレフィン重合体は、末端不飽和基を反応点に用いることで、化学的に不活性なポリオレフィン材料に対して接着性、塗装性、コーティング性の付与、ポリオレフィン以外の樹脂とのアロイ材料の製造、無機・有機フィラーとの組成物等の分野に利用できる。さらに反応性原料として活用することにより、反応型接着剤、反応型ホットメルト接着剤、その他接着剤、粘着剤、封止材、シーリング材、ポッティング材、反応性可塑剤等の用途や原料として幅広く利用できる。 The terminal unsaturated α-olefin polymer of the present invention uses a terminal unsaturated group as a reaction point, thereby imparting adhesiveness, paintability, and coating properties to a chemically inert polyolefin material. It can be used in fields such as the production of alloy materials with resins and compositions with inorganic and organic fillers. Furthermore, by using as a reactive raw material, it can be widely used as a raw material for reactive adhesives, reactive hot melt adhesives, other adhesives, pressure-sensitive adhesives, sealing materials, sealing materials, potting materials, reactive plasticizers, etc. Available.

Claims (10)

  1.  炭素数5以上のα-オレフィンの単独重合体及び/又は共重合体であって、末端不飽和基濃度が2.0~30モル%であることを特徴とする末端不飽和α-オレフィン重合体。 A terminal unsaturated α-olefin polymer, which is a homopolymer and / or copolymer of an α-olefin having 5 or more carbon atoms, and has a terminal unsaturated group concentration of 2.0 to 30 mol% .
  2.  1分子当りの末端不飽和基の数が1.0個を超え2.5個以下である、請求項1に記載の末端不飽和α-オレフィン重合体。 The terminal unsaturated α-olefin polymer according to claim 1, wherein the number of terminal unsaturated groups per molecule is more than 1.0 and 2.5 or less.
  3.  炭素数5~12のα-オレフィン単位を50~100質量%含む、請求項1又は2に記載の末端不飽和α-オレフィン重合体。 The terminal unsaturated α-olefin polymer according to claim 1 or 2, comprising 50 to 100% by mass of an α-olefin unit having 5 to 12 carbon atoms.
  4.  炭素数14~30のα-オレフィン単位を50~100質量%含む、請求項1又は2に記載の末端不飽和α-オレフィン重合体。 The terminal unsaturated α-olefin polymer according to claim 1 or 2, comprising 50 to 100% by mass of an α-olefin unit having 14 to 30 carbon atoms.
  5.  100℃における動粘度が3~2000mm/s2であり、メソトリアッド分率[mm]が20~80モル%である、請求項1~4のいずれかに記載の末端不飽和α-オレフィン重合体。 The terminal unsaturated α-olefin polymer according to any one of claims 1 to 4, having a kinematic viscosity at 100 ° C of 3 to 2000 mm / s 2 and a mesotriad fraction [mm] of 20 to 80 mol%.
  6.  示差走査型熱量計を用いた融解挙動測定において、融点が20℃以上100℃以下であり、ピーク温度が一つだけ観測され、かつ該ピークの半値幅が15℃以内である、請求項1~5のいずれかに記載の末端不飽和α-オレフィン重合体。 In the melting behavior measurement using a differential scanning calorimeter, the melting point is 20 ° C. or more and 100 ° C. or less, only one peak temperature is observed, and the half width of the peak is within 15 ° C. 6. The terminal unsaturated α-olefin polymer according to any one of 5 above.
  7.  重量平均分子量Mwが500~100,000であり、かつ、分子量分布Mw/Mnが1.10~2.60である、請求項1~6のいずれかに記載の末端不飽和α-オレフィン重合体。 7. The terminal unsaturated α-olefin polymer according to claim 1, having a weight average molecular weight Mw of 500 to 100,000 and a molecular weight distribution Mw / Mn of 1.10 to 2.60. .
  8.  有機過酸化物を原料ポリオレフィンに対して0.05~5.0質量%添加し、温度200~380℃で加熱処理することを特徴とする請求項1~7のいずれかに記載の末端不飽和α-オレフィン重合体の製造方法。 The terminal unsaturation according to any one of claims 1 to 7, wherein the organic peroxide is added in an amount of 0.05 to 5.0 mass% with respect to the raw material polyolefin, and is heated at a temperature of 200 to 380 ° C. A method for producing an α-olefin polymer.
  9.  原料ポリオレフィンを、温度200~500℃で滞留時間1時間以内で加熱処理することを特徴とする請求項1~7のいずれかに記載の末端不飽和α-オレフィン重合体の製造方法。 The method for producing a terminal unsaturated α-olefin polymer according to any one of claims 1 to 7, wherein the raw material polyolefin is heat-treated at a temperature of 200 to 500 ° C within a residence time of 1 hour.
  10.  前記加熱処理の処理時間が30秒~10時間である、請求項8又は9に記載の末端不飽和α-オレフィン重合体の製造方法。 The method for producing a terminal unsaturated α-olefin polymer according to claim 8 or 9, wherein the heat treatment time is 30 seconds to 10 hours.
PCT/JP2013/052941 2012-02-08 2013-02-07 End unsaturated α-olefin polymer and method for producing same WO2013118841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013557578A JP5957472B2 (en) 2012-02-08 2013-02-07 Terminally unsaturated α-olefin polymer and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-025197 2012-02-08
JP2012025197 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118841A1 true WO2013118841A1 (en) 2013-08-15

Family

ID=48947596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052941 WO2013118841A1 (en) 2012-02-08 2013-02-07 End unsaturated α-olefin polymer and method for producing same

Country Status (2)

Country Link
JP (1) JP5957472B2 (en)
WO (1) WO2013118841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108128A (en) * 2013-10-25 2015-06-11 三洋化成工業株式会社 Method for producing modified polyolefin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104720A (en) * 1995-08-07 1997-04-22 Tosoh Corp Peroxide-modified ethylene/alpha-olefin copolymer elastomer and resin composition
WO2008066168A1 (en) * 2006-12-01 2008-06-05 Idemitsu Kosan Co., Ltd. Graft copolymer, thermoplastic resin composition comprising the graft copolymer, and those production method
WO2008114648A1 (en) * 2007-03-16 2008-09-25 Idemitsu Kosan Co., Ltd. OXIDATIVELY MODIFIED α-OLEFIN POLYMER AND PROCESS FOR PRODUCTION THEREOF
WO2010117028A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Α-olefin ologimer and method for producing same
WO2011148586A1 (en) * 2010-05-26 2011-12-01 出光興産株式会社 Terminally unsaturated polyolefin, and manufacturing method thereof
WO2012070240A1 (en) * 2010-11-26 2012-05-31 出光興産株式会社 Α-olefin polymer and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104720A (en) * 1995-08-07 1997-04-22 Tosoh Corp Peroxide-modified ethylene/alpha-olefin copolymer elastomer and resin composition
WO2008066168A1 (en) * 2006-12-01 2008-06-05 Idemitsu Kosan Co., Ltd. Graft copolymer, thermoplastic resin composition comprising the graft copolymer, and those production method
WO2008114648A1 (en) * 2007-03-16 2008-09-25 Idemitsu Kosan Co., Ltd. OXIDATIVELY MODIFIED α-OLEFIN POLYMER AND PROCESS FOR PRODUCTION THEREOF
WO2010117028A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Α-olefin ologimer and method for producing same
WO2011148586A1 (en) * 2010-05-26 2011-12-01 出光興産株式会社 Terminally unsaturated polyolefin, and manufacturing method thereof
WO2012070240A1 (en) * 2010-11-26 2012-05-31 出光興産株式会社 Α-olefin polymer and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108128A (en) * 2013-10-25 2015-06-11 三洋化成工業株式会社 Method for producing modified polyolefin

Also Published As

Publication number Publication date
JP5957472B2 (en) 2016-07-27
JPWO2013118841A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5890774B2 (en) Terminally unsaturated polyolefin and method for producing the same
JPWO2008047860A1 (en) High purity terminally unsaturated olefin polymer and process for producing the same
JP5512973B2 (en) Graft copolymer or thermoplastic resin composition containing the copolymer and method for producing them
KR20140107263A (en) Ethylene/alpha-olefin/nonconjugated polyene interpolymers and processes to form the same
JP5016298B2 (en) Terminally modified poly-α-olefin, process for producing the same, and composition containing the same
JP6002230B2 (en) Functionalized α-olefin polymer, curable composition and cured product using the same
CN1033811C (en) Control of solution process for polymerization of ethylene
JP2013249459A (en) α-OLEFIN POLYMER
WO2012035710A1 (en) Highly viscous higher alphaolefin polymer and method for producing same
JP5241294B2 (en) Resin composition comprising polyolefin graft copolymer and addition polymerization polymer
EP2897726A1 (en) Production of vinyl terminated polyethylene
JP5957472B2 (en) Terminally unsaturated α-olefin polymer and process for producing the same
JPWO2012070240A1 (en) α-olefin polymer and process for producing the same
JP4620205B2 (en) Polypropylene film
JP2014098072A (en) FUNCTIONALIZED α-OLEFIN POLYMER AND CURING COMPOSITION AND CURED PRODUCT USING THE SAME
WO2006049278A1 (en) Crosslinked olefin polymers and process for production thereof
JP2014040526A (en) FUNCTIONALIZED α-OLEFIN POLYMER, CURABLE COMPOSITION USING THE SAME AND CURED MATERIAL
JP4902099B2 (en) Polar group-containing higher olefin polymer and process for producing the same
JP5074013B2 (en) Block copolymer or thermoplastic resin composition containing the copolymer and method for producing them
JP3172622B2 (en) Method for producing olefin polymer
JP2014040516A (en) Curable tackifier/adhesive composition
JP2009138137A (en) Polyolefin-based resin composition
JP4441222B2 (en) Chlorinated propylene-based polymer, production method thereof, and use thereof
JP2016164233A (en) FUNCTIONALIZED α-OLEFIN POLYMER AND RESIN COMPOSITION CONTAINING THE SAME
JP2004196848A (en) Butene block copolymer and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746084

Country of ref document: EP

Kind code of ref document: A1