WO2013118799A1 - Novel glucose dehydrogenase - Google Patents

Novel glucose dehydrogenase Download PDF

Info

Publication number
WO2013118799A1
WO2013118799A1 PCT/JP2013/052799 JP2013052799W WO2013118799A1 WO 2013118799 A1 WO2013118799 A1 WO 2013118799A1 JP 2013052799 W JP2013052799 W JP 2013052799W WO 2013118799 A1 WO2013118799 A1 WO 2013118799A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
fgdh
present
glucose dehydrogenase
activity
Prior art date
Application number
PCT/JP2013/052799
Other languages
French (fr)
Japanese (ja)
Inventor
洋輔 角田
理恵 平尾
悠 歌島
裕 川南
洋志 相場
岸本 高英
柳谷 周作
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2013118799A1 publication Critical patent/WO2013118799A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase

Definitions

  • the present invention relates to glucose dehydrogenase. More specifically, the present invention relates to a flavin-binding glucose dehydrogenase, a DNA encoding the same, a bacterium producing the enzyme, a method for producing the enzyme, a glucose measuring method using the enzyme, and the like.
  • SMBG Blood Glucose
  • a biosensor has an electrode and an enzyme reaction layer formed on an insulating substrate.
  • Examples of enzymes used here include glucose dehydrogenase (GDH) and glucose oxidase (GO). It has been pointed out that the method using GO (EC 1.1.3.4) is easily affected by dissolved oxygen in the measurement sample, and the dissolved oxygen affects the measurement result. On the other hand, GDH is not affected by dissolved oxygen.
  • GDH glucose dehydrogenase
  • PQQ-GDH pyrroloquinoline quinone-dependent glucose dehydrogenase
  • Flavin adenine dinucleotide-dependent glucose dehydrogenase (hereinafter also referred to as “FADGDH”) is not affected by dissolved oxygen and hardly acts on maltose.
  • Patent Documents 1 to 6 and Non-patent Documents 1 to 6 report those derived from Aspergillus terreus and Aspergillus oryzae, or modified ones thereof. However, since these enzymes have a relatively high reactivity with xylose (Patent Document 1), there is room for improvement when measuring blood glucose in those who are undergoing a xylose tolerance test.
  • Patent Document 6 flavin-binding GDH (Patent Document 6), which has a relatively low action on xylose, and modified GDH (Patent Document 7) having the advantages of GO and GDH have been developed, but there is still room for improvement. is there
  • an object of the present invention is to provide a new glucose dehydrogenase suitable for use in an SMBG sensor by being excellent in substrate characteristics, affinity for the substrate, thermal stability, and the like.
  • the present inventors have conducted day and night studies and screened many microorganisms that have not been reported to produce glucose dehydrogenase so far. It was found to have enzyme activity. As a result of isolating and purifying the enzyme and examining its characteristics, the present inventors have found that it is flavin-binding glucose dehydrogenation, has excellent substrate specificity, high affinity for D-glucose, and excellent heat. It was found that it has stability. Furthermore, the present inventors determined the amino acid sequence and gene sequence of the isolated enzyme, and found that these sequences are novel enzymes different from those of FADGDH reported so far.
  • Item 1 A flavin-binding glucose dehydrogenase comprising the polypeptide of any one of (a) to (c) below: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, (B) a polypeptide having a glucose dehydrogenase activity, comprising an amino acid sequence obtained by substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 1 , (C) A polypeptide comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 1 and having glucose dehydrogenase activity.
  • DNA encoding (F) In the amino acid sequence shown in SEQ ID NO: 1, a polyamino acid sequence comprising one or several amino acid residues substituted, deleted, inserted, added, or inverted, and having glucose dehydrogenase activity DNA encoding a peptide.
  • Item 3 A vector incorporating the DNA of Item 2.
  • Item 4 A transformant comprising the vector according to Item 3.
  • Item 5 The method for producing a flavin-binding glucose dehydrogenase according to claim 1, comprising culturing the transformant according to item 4.
  • Item 6 A method for measuring a glucose concentration, comprising causing the flavin-binding glucose dehydrogenase according to Item 1 to act on glucose.
  • Item 8 A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to Item 1.
  • Item 9 A glucose sensor comprising the flavin-binding glucose dehydrogenase according to Item 1.
  • Term A. A flavin-binding glucose dehydrogenase having the following characteristics (1) to (4): (1) Molecular weight: The molecular weight of the polypeptide portion of the enzyme measured by SDS-polyacrylamide electrophoresis is about 69 kDa. (2) Km value: Km value with respect to D-glucose is about 10 mM or less (3) Temperature stability: stable at 50 ° C.
  • the flavin-binding glucose dehydrogenase according to any one of Items A to D further comprising the following property (8): (8) Origin: Item F. derived from a microorganism classified into the genus Mucor. Item 10. The method for producing a flavin-binding glucose dehydrogenase according to any one of Items A to E, comprising culturing a microorganism classified into the genus Mucor and recovering glucose dehydrogenase.
  • Term G A method for measuring a glucose concentration, comprising causing the flavin-binding glucose dehydrogenase according to any one of Items A to E to act on glucose.
  • Term H A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to any one of Items A to E.
  • Term I A glucose sensor comprising the flavin-binding glucose dehydrogenase according to any one of Items A to E.
  • the flavin-binding glucose dehydrogenase of the present invention (hereinafter sometimes referred to as “FGDH”) has glucose dehydrogenase activity and has a high affinity for D-glucose (that is, for D-glucose). (Km value is significantly lower), which makes it possible to measure the D-glucose concentration in the sample in a shorter time with a smaller amount of enzyme.
  • the FGDH of the present invention since the FGDH of the present invention has a significantly low reactivity to D-xylose, it is possible to accurately measure the amount or concentration of glucose even when D-glucose and D-xylose coexist in the sample. To. Therefore, the FGDH of the present invention is suitable for blood glucose level measurement under a xylose tolerance test.
  • the FGDH of the present invention is excellent in thermal stability, it enables efficient production of sensor strips accompanied by heat treatment and the like.
  • the FGDH of the present invention is stable over a wide range of pH, it is suitable for use under a wide range of conditions. Because of these characteristics, the FGDH of the present invention makes it possible to accurately measure the glucose concentration in any sample containing D-glucose (for example, blood or food (such as seasonings or beverages)).
  • the DNA of the present invention encodes the FGDH of the present invention, it is possible to efficiently produce the FGDH of the present invention using a genetic engineering technique.
  • the influence of pH with respect to the activity of Mucor subtilismus NBRC6338 origin FGDH is shown.
  • the influence of the temperature with respect to the activity of Mucor subtilismus NBRC6338 origin FGDH is shown.
  • the result of having measured the pH stability of Mucor subtilissimus NBRC6338 origin FGDH is shown.
  • the result of having measured the temperature stability of Mucor subtilismus NBRC6338 origin FGDH is shown.
  • the relationship between the reaction rate of Mucor subtilismus NBRC6338-derived FGDH and the substrate concentration is shown.
  • Flavin-binding glucose dehydrogenase 1-1 Flavin-binding glucose dehydrogenase 1-1.
  • Glucose dehydrogenase activity Flavin-binding glucose dehydrogenase is an enzyme having physicochemical properties that catalyzes a reaction in which glucose hydroxyl group is oxidized to produce glucono- ⁇ -lactone in the presence of an electron acceptor.
  • this physicochemical property is referred to as glucose dehydrogenase activity, and unless otherwise specified, “enzyme activity” or “activity” means the enzyme activity.
  • the electron acceptor is not particularly limited as long as it is capable of transferring electrons in a reaction catalyzed by FGDH.
  • DCPIP 2,6-dichlorophenolindophenol
  • PMS phenazine methosulfate
  • ferricyan compound 2-methoxy-5-methylphenadium methyl sulfate
  • ferricyan compound 2-methoxy-5-methylphenadium methyl sulfate
  • Glucose dehydrogenase activity can be measured by a known method. For example, using DCPIP as an electron acceptor, the activity can be measured using the change in absorbance of the sample at a wavelength of 600 nm before and after the reaction as an index. More specifically, the activity can be measured using the following reagents and measurement conditions.
  • ⁇ Measurement conditions Prewarm 3 mL of reaction reagent at 37 ° C. for 5 minutes. After adding 0.1 mL of FGDH solution and mixing gently, the absorbance change at 600 nm was recorded for 5 minutes using a spectrophotometer controlled at 37 ° C. with water as a control, and from the linear part (ie, the reaction rate became constant). Measure the change in absorbance per minute ( ⁇ ODTEST). In the blind test, a solvent that dissolves FGDH is added to the reagent mixture instead of the FGDH solution, and the change in absorbance per minute ( ⁇ ODBLANK) is measured in the same manner. From these values, FGDH activity is determined according to the following equation. Here, 1 unit (U) in FGDH activity is the amount of enzyme that reduces 1 micromole of DCPIP per minute in the presence of 200 mM D-glucose.
  • 3.1 is the amount of the reaction reagent + enzyme solution (mL)
  • 16.3 is the molar molecular extinction coefficient (cm 2 / micromole) under the conditions for this activity measurement
  • 0.1 is the solution of the enzyme solution.
  • 1.0 indicates the optical path length (cm) of the cell.
  • FGDH of the present invention is a flavin-binding GDH that requires flavin as a prosthetic group.
  • FGDH of the present invention is preferably isolated FGDH or purified FGDH. Further, the FGDH of the present invention may be present in a state dissolved in a solution suitable for the above storage or in a lyophilized state (for example, in powder form). “Isolated” when used in relation to the enzyme (FGDH) of the present invention substantially includes components other than the enzyme (for example, contaminating proteins derived from host cells, other components, culture fluid, etc.). No) states. Specifically, for example, the isolated enzyme of the present invention has a contaminant protein content of less than about 20% by weight, preferably less than about 10%, more preferably less than about 5%, even more preferably. Is less than about 1%. On the other hand, the FGDH of the present invention may be present in a solution (eg, buffer) suitable for storage or measurement of enzyme activity.
  • a solution eg, buffer
  • the FGDH of the present invention is preferably composed of any of the following polypeptides (a) to (c).
  • A a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1;
  • B a polypeptide having a glucose dehydrogenase activity, comprising an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted, added and / or inverted in the amino acid sequence shown in SEQ ID NO: 1 ;
  • C A polypeptide comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 1 and having glucose dehydrogenase activity.
  • the amino acid sequence represented by SEQ ID NO: 1 is an amino acid sequence of FGDH derived from Mucor subtilismus NBRC6338, as shown in Example 5, and satisfies all the following characteristics of 1-3 to 1-10.
  • the polypeptide of (b) above has substitution, deletion, insertion, addition and / or substitution of one or several amino acid residues in the amino acid shown in SEQ ID NO: 1 as long as it retains glucose dehydrogenase activity.
  • a polypeptide consisting of an inverted amino acid sequence hereinafter sometimes collectively referred to as “mutation”).
  • “several” means that the glucose dehydrogenase activity and preferably the characteristics of 1-3 to 1-10 (especially 1-3, 1-4, 1-7, and 1-8) described later are maintained.
  • the number of amino acid residues to be mutated is, for example, 2 to 127, preferably 2 to 96, more preferably 2 to 64, still more preferably 2 to 32, and even more.
  • the number is preferably 2 to 20, more preferably 2 to 15, even more preferably 2 to 10, and particularly preferably 2 to 5.
  • conservative amino acid substitution refers to substitution of an amino acid residue with an amino acid residue having a side chain of similar properties.
  • a basic side chain eg lysine, arginine, histidine
  • an acidic side chain eg aspartic acid, glutamic acid
  • an uncharged polar side chain eg glycine, asparagine, glutamine, serine, threonine, tyrosine
  • Cysteine eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, Like tryptophan and histidine. Therefore, it is preferable to substitute between amino acid residues in the same family.
  • One or several mutations include restriction enzyme treatment, treatment with exonuclease, DNA ligase, etc., position-directed mutagenesis (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Press, New Random York) Introducing mutation into DNA encoding FGDH of the present invention described below using known methods such as introduction methods (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Press, New York). Is possible. Variant FGDH can also be obtained by other methods such as ultraviolet irradiation. Variants FGDH include naturally occurring variants (for example, single nucleotide polymorphisms) such as cases based on individual differences of microorganisms holding FGDH, species or genus differences.
  • the mutation is present at a site that does not affect the active site or substrate binding site of FGDH.
  • the polypeptide of the above (c) is compared with the amino acid sequence shown in SEQ ID NO: 1 as long as it retains glucose dehydrogenase activity, and preferably as long as it retains the following properties 1-3 to 1-10.
  • the identity between the amino acid sequence of FGDH of the present invention and the amino acid sequence shown in SEQ ID NO: 1 is 85% or more, more preferably 88% or more, still more preferably 90% or more, and still more preferably 93% or more, more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • Such a polypeptide comprising an amino acid sequence having a certain identity or more can be prepared based on the known genetic engineering techniques as described above.
  • Amino acid sequence identity can be calculated using commercially available or analytical tools available through telecommunications lines (Internet), such as the National Biotechnology Information Center (NCBI) homology algorithm BLAST (Basic local alignment). It can be calculated by using the default (initial setting) parameters at search tool) http://www.ncbi.nlm.nih.gov/BLAST/.
  • NCBI National Biotechnology Information Center
  • the FGDH of the present invention is excellent in substrate specificity.
  • the FGDH of the present invention has a significantly low reactivity to at least D-xylose, based on the reactivity to D-glucose. More specifically, the FGDH of the present invention preferably has a reactivity to D-xylose of 1.8% or less when the reactivity to D-glucose at the same concentration is 100%.
  • FGDH of the present invention preferably has low reactivity to D-galactose and maltose in addition to low reactivity to D-xylose.
  • the reactivity of FGDH of the present invention to D-galactose is usually 5% or less, preferably 3% or less, more preferably 2% or less, more preferably 100% of the reactivity to D-glucose at the same concentration. Preferably it is 1.5% or less, Most preferably, it is 1.3% or less.
  • the reactivity of FGDH of the present invention to maltose is usually 5% or less, preferably 4% or less, more preferably 3% or less, assuming that the reactivity to D-glucose at the same concentration is 100%. Preferably it is 2.3% or less.
  • the lower limit of the reactivity to D-xylose, D-galactose and maltose based on the reactivity of FGDH of the present invention to D-glucose is not particularly limited, but the lower limit is close to 0% or 0%. Can be a value.
  • the reactivity of FGDH to each saccharide is as described in 1-1.
  • the determination can be performed by replacing D-glucose with another sugar (for example, D-xylose, D-galactose, or maltose) and comparing the activity in the case of D-glucose. it can.
  • the concentration of each saccharide in the case of comparison is based on 50 mM.
  • the FGDH of the present invention having excellent substrate specificity as described above is preferable as an enzyme for accurately measuring the amount of glucose in a sample. That is, according to the FGDH of the present invention, it is possible to accurately measure the amount of target D-glucose even when impurities such as maltose, D-galactose, and D-xylose are present in the sample. . Therefore, this enzyme is suitable for applications in which the presence of such contaminants is expected or concerned (typically, measurement of the amount of glucose in blood), and can be used in various applications including such applications. Applicable and highly versatile.
  • the FGDH of the present invention preferably has a high affinity for D-glucose, which is the original substrate. Due to the high affinity, even when the concentration of D-glucose in the sample is low, the above-described catalytic reaction can proceed, and more accurate measurement of D-glucose concentration, measurement in a shorter time, This is because it contributes to measurement with a smaller amount of enzyme.
  • the affinity of FGDH for D-glucose is indicated by the Km value.
  • the Km value is a value obtained from the so-called Michaelis-Menten equation. Specifically, the above 1-1.
  • the D-glucose concentration is varied to measure the activity at each concentration, and a line weaver bark plot is created.
  • the Km value for D-glucose of FGDH of the present invention is preferably 10 mM or less, more preferably 9 mM or less, still more preferably 8 mM or less, even more preferably 7 mM or less, and particularly preferably 6.7 mM or less. is there.
  • the FGDH of the present invention preferably exhibits the highest activity at pH 8.0 (Tris HCl buffer).
  • the FGDH of the present invention preferably exhibits a relative activity of 80% or more, assuming that the activity at pH 8.0 (Tris HCl buffer) is 100%. That is, the optimum active pH of the FGDH of the present invention is 7.5 to 8.0, preferably pH 8.0.
  • the FGDH of the present invention exhibits the highest activity around pH 6.5 to 7.5 in the potassium phosphate buffer and MES-NaOH buffer, as shown in the examples described later. Therefore, when these buffers are used, it is preferable that pH 6.5 to 7.5 is the optimum active pH.
  • Optimum activity temperature The optimum activity temperature of the FGDH of the present invention is preferably 45 ° C to 50 ° C.
  • “45 ° C. to 50 ° C.” means that the optimum activation temperature is typically around 45 ° C. to 50 ° C. and further has a certain acceptable width.
  • the optimum activity temperature is determined by measuring the enzyme activity in a PIPES-NaOH buffer (pH 6.5) at an enzyme concentration of 0.1 U / mL, as shown in the Examples described later.
  • pH stability in the present specification, when the residual enzyme activity after treating a 2 U / mL enzyme at 25 ° C. for 16 hours under a specific pH condition is 95% or more compared to the enzyme activity before the treatment In addition, the enzyme is judged to be stable at the pH condition.
  • the FGDH of the present invention is preferably stable at least over the entire pH range of 3.0 to 8.0.
  • the residual enzyme activity after treating 2 U / mL of enzyme in a suitable buffer solution for example, potassium acetate buffer (pH 5.0)
  • a suitable buffer solution for example, potassium acetate buffer (pH 5.0)
  • the enzyme is judged to be stable at the temperature condition.
  • the FGDH of the present invention is preferably stable in a temperature range of at least 0 ° C. to 50 ° C.
  • the FGDH of the present invention preferably has at least one of the features shown in 1-3 to 1-8, more preferably two or more, and still more preferably the three characteristics. Further, more preferably four or more, more preferably five or more, still more preferably six or more, particularly preferably all of them.
  • the FGDH of the present invention may have the characteristics of 1-3 to 1-8 in any combination, but has the characteristics of 1-3, 1-4, 1-7, and 1-8. Is preferred.
  • the molecular weight of the polypeptide moiety constituting the FGDH of the present invention is preferably about 69 kDa as measured by SDS-PAGE.
  • the term “about 69 kDa” means that a range in which a person skilled in the art normally determines that there is a band at a position of 69 kDa when molecular weight is measured by SDS-PAGE is included.
  • Polypeptide moiety means FGDH in a state where sugar chains are not substantially bound.
  • the FGDH of the present invention produced by a microorganism is a glycan-linked type
  • the glycan is removed by treating it with heat treatment or saccharide hydrolase (that is, a “polypeptide moiety”).
  • heat treatment or saccharide hydrolase that is, a “polypeptide moiety”.
  • the means for removing the sugar chain from the sugar chain-bound FGDH is not particularly limited.
  • the sugar chain-bound FGDH was denatured by heating at 100 ° C. for 10 minutes. Thereafter, it can be carried out by treatment with N-glycosidase F (Roche Diagnostics) at 37 ° C. for 6 hours.
  • the molecular weight of the FGDH of the present invention is not particularly limited as long as it does not negatively affect glucose dehydrogenase activity, substrate specificity, affinity for D-glucose, and the like.
  • the molecular weight of the FGDH of the present invention in a state where sugar chains are bound is preferably 103,000 to 143,000 Da as measured by SDS-PAGE.
  • Glycan-linked FGDH is preferable from the viewpoint of making the enzyme more stable and from the viewpoint of enhancing water solubility and facilitating solubility in water.
  • the molecular weight measurement by SDS-PAGE can be performed using a commercially available molecular weight marker using a general method and apparatus.
  • the origin of the FGDH of the present invention is not particularly limited as long as it has the properties described above.
  • the FGDH of the present invention can be derived from, for example, a microorganism belonging to the genus Mucor. Although it does not restrict
  • NBRC NITE Biological Resource Center
  • Examples of other organisms from which the FGDH of the present invention is derived include microorganisms present in water systems such as soil, rivers, and lakes or in the ocean, and microorganisms that are resident on the surface or inside various animals and plants. Microorganisms that grow in a low temperature environment, a high temperature environment such as a volcano, an oxygen-free / high-pressure / no-light environment such as the deep sea, and a special environment such as an oil field may be used as the isolation source.
  • the FGDH of the present invention includes not only FGDH directly isolated from microorganisms, but also those obtained by modifying the isolated FGDH by amino acid sequence or the like by a protein engineering method or by genetic engineering techniques. .
  • microorganisms classified into the family Aceraceae and more specifically, Mucor guilliermondii, Mucor plainii, Mucor javanicus, Mucor cilinelloides, Mucor subtilismus, and Mucor hiemis.
  • Those derived from microorganisms belonging to silvaticus may be modified.
  • DNA encoding flavin-binding glucose dehydrogenase The DNA of the present invention comprises the above-mentioned 1.
  • DNA encoding FGDH specifically, one of the following (A) to (F).
  • D DNA containing a DNA that hybridizes under stringent conditions to a base sequence complementary to the base sequence shown in SEQ ID NO: 2 and that encodes a polypeptide having glucose dehydrogenase activity;
  • DNA encoding (F) In the amino acid sequence shown in SEQ ID NO: 1, a polyamino acid sequence comprising one or several amino acid residues substituted, deleted, inserted, added, or inverted, and having glucose dehydrogenase activity DNA encoding a peptide.
  • DNA encoding a protein refers to DNA from which the protein is obtained when it is expressed, that is, DNA having a base sequence corresponding to the amino acid sequence of the protein. Therefore, DNA that differs depending on codon degeneracy is also included.
  • the protein having the amino acid sequence encoded by the DNA of the present invention has glucose dehydrogenase activity and preferably at least one of the above characteristics of 1-2 to 1-10 (particularly, the above 1-3, 1-4). 1-7 and 1-8), the homology with the nucleotide sequence shown in SEQ ID NO: 2 is 80% or more, preferably 85% or more, more preferably 88% or more, and still more preferably 90%. More preferably, the nucleotide sequence is 93% or more, more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • the homology of the base sequence can be calculated using an analysis tool that is commercially available or available through a telecommunication line (Internet), and is calculated using software such as FASTA, BLAST, PSI-BLAST, SSEARCH, etc.
  • the Specifically, main initial conditions generally used for BLAST search are as follows. That is, in Advanced BLAST 2.1, by using blastn as a program and searching with various parameters set to default values, the homology value (%) of the nucleotide sequence can be calculated.
  • the protein encoded by it has glucose dehydrogenation activity, and preferably has the above-mentioned characteristics 1-2 to 1-10, more preferably the above 1-3, 1-4, 1-7 and 1 As long as it has at least one of the characteristics (-8), it may be DNA that hybridizes under stringent conditions to a base sequence complementary to the base sequence shown in SEQ ID NO: 2.
  • stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Such stringent conditions are known to those skilled in the art, and include, for example, Molecular Cloning (Third Edition, Cold Spring Harbor Press, New York, Current Protocols in Molecular. 1987).
  • Specific stringent conditions include, for example, a hybridization solution (50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 ⁇ Denhardt solution, 1% SDS, 10% Incubate at about 42 ° C. to about 50 ° C. with dextran sulfate, 10 ⁇ g / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5), and then with 0.1 ⁇ SSC, 0.1% SDS And washing at about 65 ° C to about 70 ° C.
  • a hybridization solution 50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0
  • 5 ⁇ Denhardt solution 1% SDS
  • 10% Incubate at about 42 ° C. to about 50 ° C. with dextran sulfate, 10 ⁇ g / ml denatured salmon sperm DNA, 50 mM phosphate buffer (
  • stringent conditions for example, 50% formamide, 5 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0) as a hybridization solution, 1 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, Examples include conditions using 10 ⁇ g / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)).
  • DNA that hybridizes under such conditions may include those in which a stop codon has occurred in the middle or those that have lost activity due to mutations in the active center, but these are incorporated into commercially available active expression vectors. It can be easily removed by expressing it in a suitable host and measuring the enzyme activity by a known method.
  • “several” has the same meaning as described in 1-2 above. That is, “several” means that the glucose dehydrogenase activity and preferably the characteristics of 1-3 to 1-10 (particularly 1-3, 1-4, 1-7, and 1-8) described later are maintained. As many as, for example, a number corresponding to less than about 20% of the total DNA, preferably a number corresponding to less than about 15%, more preferably a number corresponding to less than about 10%, even more preferred. Is a number corresponding to less than about 5%, most preferably a number corresponding to less than about 1%.
  • the number of bases to be mutated is, for example, 2 to 382, preferably 2 to 286, more preferably 2 to 290, still more preferably 2 to 95, and still more preferably. It is 2 to 19, more preferably 2 to 15, even more preferably 2 to 10, and particularly preferably 2 to 5.
  • the DNA encoding FGDH of the present invention is DNA that is present in an isolated state.
  • isolated DNA refers to a state separated from other components such as nucleic acids and proteins that coexist in the natural state.
  • the isolated DNA may contain some other nucleic acid components such as a nucleic acid sequence adjacent in the natural state (for example, a promoter region sequence and a terminator sequence).
  • an “isolated” state in the case of chromosomal DNA is preferably substantially free of other DNA components that coexist in the natural state.
  • the “isolated” state in the case of DNA prepared by genetic engineering techniques such as cDNA molecules is preferably substantially free of cell components, culture medium, and the like.
  • the “isolated” state in the case of DNA prepared by chemical synthesis is preferably substantially free of precursors (raw materials) such as dNTPs, chemical substances used in the synthesis process, and the like.
  • precursors raw materials
  • dNTPs chemical substances used in the synthesis process
  • DNA DNA in an isolated state.
  • the DNA of the present invention also includes DNA (cDNA) complementary to the above DNAs (A) to (F).
  • the DNA of the present invention can be produced and obtained by a chemical DNA synthesis method based on the sequence information disclosed in this specification or the attached sequence listing (particularly SEQ ID NO: 2). Genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. (Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); Secondary Biochemistry Experiment Course “ Genetic Research Methods I, II, III ”, edited by Japanese Biochemical Society (1986), etc.).
  • a chemical DNA synthesis method a solid phase synthesis method by a phosphoramidite method can be exemplified. An automatic synthesizer can be used for this synthesis method.
  • a cDNA library is prepared according to a conventional method from an appropriate source microorganism in which the FGDH of the present invention is expressed, and the DNA sequence of the present invention (for example, it can be carried out by selecting a desired clone using an appropriate probe or antibody peculiar to the nucleotide sequence of SEQ ID NO: 2 [Proc. Natl. Acad. Sci. , USA. 78, 6613 (1981); Science 122, 778 (1983), etc.].
  • the origin microorganism for preparing the cDNA library is not particularly limited as long as it is a microorganism that expresses the FGDH of the present invention, but is preferably a microorganism classified into the genus Mucor. More specifically, the above 1-10. Can be mentioned.
  • the separation of total RNA from the above microorganisms, the separation and purification of mRNA, the acquisition of cDNA and its cloning, etc. can all be carried out according to conventional methods.
  • the method for screening the DNA of the present invention from a cDNA library is not particularly limited, and can be performed according to a usual method.
  • a method for selecting a corresponding cDNA clone by immunoscreening using the polypeptide-specific antibody, a plaque high using a probe that selectively binds to a target nucleotide sequence Hybridization, colony hybridization, etc., and combinations thereof can be selected as appropriate.
  • a PCR method [Science 130, 1350 (1985)] or a modified method of DNA or RNA can be preferably used.
  • the RACE method Rapid amplification of cDNA ends; experimental medicine, 12 (6), 35 (1994)]
  • 5′-RACE method [M . A. Frohman, et al. , Proc. Natl. Acad. Sci. , USA. , 8, 8998 (1988)] and the like are suitable.
  • Primers used when adopting the PCR method can also be appropriately designed and synthesized based on the nucleotide sequence of SEQ ID NO: 2.
  • isolation and purification of the amplified DNA or RNA fragment can be carried out according to a conventional method as described above, for example, by gel electrophoresis, hybridization or the like.
  • the FGDH of the present invention can be easily produced in large quantities and stably.
  • Vector The vector of the present invention is the above-mentioned 2. This is a vector in which a DNA encoding FGDH of the present invention described in 1. is incorporated.
  • the “vector” is a nucleic acid molecule (carrier) capable of transporting a nucleic acid molecule inserted therein into a target such as a cell, and can replicate the DNA of the present invention in an appropriate host cell.
  • the type and structure are not particularly limited as long as it can be expressed. That is, the vector of the present invention is an expression vector.
  • an appropriate vector is selected in consideration of the type of host cell.
  • the vector examples include a plasmid vector, a cosmid vector, a phage vector, a virus vector (an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a herpes virus vector, etc.) and the like. It is also possible to use a vector suitable for using a filamentous fungus as a host or a vector suitable for self-cloning.
  • Escherichia coli When Escherichia coli is used as a host, for example, M13 phage or a modified product thereof, ⁇ phage or a modified product thereof, pBR322 or a modified product thereof (pB325, pAT153, pUC8, etc.) can be used.
  • yeast When yeast is used as a host, pYepSec1, pMFa, pYES2, etc. can be used.
  • insect cells When insect cells are used as hosts, for example, pAc and pVL can be used.
  • mammalian cells When mammalian cells are used as hosts, for example, pCDM8 and pMT2PC can be used, but the present invention is not limited thereto. .
  • the expression vector usually contains a promoter sequence necessary for the expression of the inserted nucleic acid and an enhancer sequence for promoting the expression.
  • An expression vector containing a selectable marker can also be used. When such an expression vector is used, the presence or absence of the expression vector (and the degree thereof) can be confirmed using a selection marker. Insertion of the DNA of the present invention into a vector, insertion of a selectable marker gene (if necessary), insertion of a promoter (if necessary), etc. are performed using standard recombinant DNA techniques (for example, Molecular Cloning, Third Edition, 1.84). , Cold Spring Harbor Laboratory Press, New York, which is a well-known method using a restriction enzyme and DNA ligase).
  • Transformant relates to a transformant in which the DNA of the present invention is introduced into a host cell.
  • the means for introducing the DNA of the present invention into the host is not particularly limited. And introduced into a host in a state of being incorporated into a vector described in 1.
  • the host cell is not particularly limited as long as it can express the DNA of the present invention and produce FGDH.
  • prokaryotic cells such as Escherichia coli and Bacillus subtilis
  • eukaryotic cells such as yeast, mold, insect cells, and mammalian cells can be used.
  • Escherichia coli Escherichia coli C600, Escherichia coli HB101, Escherichia coli DH5 ⁇ and the like are used, and examples of the vector include pBR322, pUC19, pBluescript, and the like.
  • yeast examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida utilis, Pichia pastoris, and examples of the vector include pAUR101, pAUR224, and pYE32.
  • the host is a filamentous fungal cell, for example, Aspergillus oryzae, Aspergillus niger, Mucor himalis and the like can be exemplified. It is also preferable to use as a host a microorganism belonging to the genus Mucor from which the FGDH of the present invention has been isolated. That is, in the transformant, exogenous DNA is usually present in the host cell, but a transformant obtained by so-called self-cloning using a microorganism from which the DNA is derived as a host is also a preferred embodiment.
  • the transformant of the present invention is preferably 3. It is prepared by transfection or transformation using the expression vector shown in 1. Transformation may be transient or stable.
  • Transformation may be transient or stable.
  • calcium phosphate coprecipitation method electroporation (Potter, H. et al., Proc. Natl. Acad. Sci. USA 81, 7161-7165 (1984)), lipofection (Felner) , PL et al., Proc. Natl. Acad. Sci. U.S.A. 84, 7413-7417 (1984)), microinjection (Graessmann, M. & Graessmann, A., Proc. Natl. Acad. Sci.
  • the transformant of the present invention has the ability to produce the FGDH of the present invention, it can be used to efficiently produce the FGDH of the present invention.
  • the FGDH of the present invention is typically produced by culturing a microorganism having the ability to produce the FGDH of the present invention.
  • the microorganism used for the culture is not particularly limited as long as it has the ability to produce the FGDH of the present invention.
  • the transformant shown in can be suitably used.
  • Microorganisms classified into the above genus Mucor are strains stored in, for example, NBRC (NITE Biologic Resource Center) (Independent Administrative Institution, Product Evaluation Technology Infrastructure, Biotechnology Headquarters, Biogenetic Resources Division). We can receive the sale by going through the procedure.
  • NBRC NITE Biologic Resource Center
  • the culture method and culture conditions are not particularly limited as long as the FGDH of the present invention is produced. That is, on the condition that FGDH is produced, a method and conditions suitable for the growth of the microorganism to be used can be appropriately set.
  • examples of the culture conditions include a culture medium, a culture temperature, and a culture time.
  • the medium is not particularly limited as long as the microorganism to be used can grow.
  • carbon sources such as glucose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acid, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor, casein
  • Nitrogen sources such as hydrolysates, bran and meat extracts, and further added with inorganic salts such as potassium salts, magnesium salts, sodium salts, phosphates, manganese salts, iron salts and zinc salts can be used.
  • vitamins, amino acids and the like may be added to the medium.
  • the culture conditions may be selected in consideration of the nutritional physiological properties of the microorganism. In many cases, it is advantageous to use liquid culture and industrially perform aeration and agitation culture. However, when productivity is considered, it may be advantageous to carry out by solid culture.
  • the pH of the medium is only required to be suitable for the growth of the microorganism to be cultured.
  • it is adjusted to about 3 to 8, preferably about 5 to 7, and the culture temperature is usually about 10 to 50 ° C., preferably about 25 to 35.
  • Culturing is carried out under aerobic conditions at about 0 ° C. for about 1 to 15 days, preferably about 3 to 7 days.
  • a shaking culture method or an aerobic deep culture method using a jar fermenter can be used as the culture method.
  • FGDH FGDH
  • the culture supernatant is filtered, centrifuged, etc. to remove insoluble matters, then concentrated with an ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis
  • the present enzyme can be obtained by performing separation and purification by appropriately combining various types of chromatography.
  • Flavin-binding glucose dehydrogenase produced by microorganisms belonging to the genus Mucor is basically a secreted protein.
  • the microbial cells are crushed by pressure treatment, ultrasonic treatment, mechanical method, or a method using an enzyme such as lysozyme, and if necessary, such as EDTA.
  • the present enzyme can be obtained by adding a chelating agent and a surfactant to solubilize GDH, separating and collecting it as an aqueous solution, separating and purifying it. After the cells are collected from the culture solution in advance by filtration, centrifugation, or the like, the above series of steps (crushing, separating, and purifying the cells) may be performed.
  • Purification includes, for example, concentration under reduced pressure, membrane concentration, salting-out treatment such as ammonium sulfate and sodium sulfate, or precipitation treatment by a fractional precipitation method using a hydrophilic organic solvent such as methanol, ethanol, acetone, etc., heat treatment or isoelectric point treatment.
  • adsorbent or a gel filtration agent adsorption chromatography, ion exchange chromatography, affinity chromatography, and the like can be combined as appropriate.
  • glucose dehydrogenase activity When collecting (extracting, purifying, etc.) a protein having glucose dehydrogenase activity from the culture solution, one or more of glucose dehydrogenase activity, maltose activity, thermal stability, etc. are used as indicators. May be.
  • the FGDH of the present invention is used as a purified sample, for example, it is preferable to purify it to have a specific activity of 110 to 210 (U / mg), preferably 140 to 180 (U / mg).
  • the final form may be liquid or solid (including powder).
  • this enzyme is obtained as a recombinant protein.
  • a DNA encoding this enzyme and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the peptide consists of a recombinant protein linked to any peptide or protein.
  • This enzyme can be obtained.
  • modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
  • Method for Measuring Glucose A method for measuring glucose using glucose dehydrogenase has already been established in the art. Therefore, according to a known method, the amount or concentration of glucose in various samples can be measured using the FGDH of the present invention. As long as the concentration or amount of glucose can be measured using the FGDH of the present invention, the mode is not particularly limited.
  • the FGDH of the present invention is allowed to act on glucose in a sample, and the electrons associated with the dehydrogenation reaction of glucose. This can be done by measuring the structural change of a receptor (eg, DCPIP) by absorbance. More specifically, the above 1-1. According to the method shown in FIG.
  • the measurement of the glucose concentration according to the present invention can be carried out by adding the FGDH of the present invention to a sample, or by adding and mixing them.
  • the sample containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods.
  • the amount of enzyme added to the sample is not particularly limited as long as the glucose concentration or amount can be measured.
  • the measurement of the glucose concentration in the form of a sensor to be described later can be performed, for example, as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the FGDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
  • the glucose assay kit of the present invention contains the FGDH of the present invention in an amount sufficient for at least one assay.
  • the kit includes the FGDH of the present invention, plus buffers necessary for the assay, mediators, glucose standard solution for creating a calibration curve, and directions for use.
  • the FGDH of the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the present invention also provides a glucose sensor using the FGDH of the present invention.
  • the glucose sensor of the present invention can be produced by using a carbon electrode, a gold electrode, a platinum electrode, or the like as an electrode and immobilizing the enzyme of the present invention on this electrode.
  • the immobilization method include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, and a redox polymer.
  • FGDH of the present invention may be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator represented by ferrocene or a derivative thereof, or may be used in combination. Since FGDH of the present invention is excellent in thermal stability, it can be immobilized under relatively high temperature conditions (for example, 50 ° C. and 55 ° C.). Typically, after FGDH of the present invention is immobilized on a carbon electrode using glutaraldehyde, glutaraldehyde can be blocked by treatment with a reagent having an amine group.
  • the measurement of glucose concentration using a sensor can be performed as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the FGDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
  • Example 1 Restoration of Strains
  • a strain belonging to the genus Mucor was obtained from the International Cooperation Division, National Institute of Technology and Evaluation Biotechnology Center. Since the obtained strain was an L-dried preparation, the ampoule was opened, 100 ⁇ L of reconstituted water was injected, the dried cells were suspended, and the suspension was dropped into the reconstitution medium for 3 days at 25 ° C. The strain was restored by stationary culture for 7 days.
  • As the restoration water sterilized water (distilled water treated at 120 ° C. for 20 minutes in an autoclave) is used, and as the restoration medium, DP medium (dextrin 2.0%, polypeptone 1.0%, KH 2 PO 4 . 0%, agarose 1.5%).
  • Example 2 Recovery of Culture Supernatant A medium containing 2 g of wheat germ and 2 mL of water was sterilized by autoclaving at 120 ° C. for 20 minutes, and each strain of the genus Mucor restored in Example 1 was inoculated with one platinum ear. The culture was stationary at 25 ° C. for 3 to 7 days. After the culture, 4 mL of 50 mM potassium phosphate buffer (pH 6.0) containing 2 mM EDTA was added, and the mixture was sufficiently suspended by vortexing.
  • 50 mM potassium phosphate buffer pH 6.0
  • Example 3 Confirmation of Glucose Dehydrogenase Activity Glucose dehydrogenase activity in the crude enzyme solution obtained in Example 2 was determined according to 1-1. It was measured using the glucose dehydrogenase activity measuring method shown in 1. The results are shown in Table 1.
  • Example 4 Purification of Mucor subtilissimus NBRC6338-derived GDH 50 mL of DP liquid medium was placed in a 500 mL Sakaguchi flask and sterilized by autoclaving to prepare a medium for preculture. Mucor subtilismus NBRC6338, which was previously reconstituted with DP plate medium, was inoculated into a preculture medium with one platinum ear, and cultured with shaking at 25 ° C. and 180 rpm for 3 days to obtain a seed culture solution.
  • 6.0 L of production medium (yeast extract 2.0%, glucose 1%, pH 6.0) was placed in a 10 L jar fermenter and sterilized by an autoclave to obtain a main culture medium.
  • 50 mL of the seed culture solution was inoculated into the main culture medium and cultured for 3 days under the conditions of a culture temperature of 25 ° C., a stirring speed of 600 rpm, an aeration rate of 2.0 L / min, and a tube pressure of 0.2 MPa. Thereafter, the culture solution was filtered with a filter cloth, and the cells were collected. The obtained bacterial cells were suspended in 50 mM potassium phosphate buffer (pH 6.0).
  • the suspension was fed to a French press (manufactured by Niro Soavi) at a flow rate of 160 mL / min and crushed at 1000 to 1300 bar. Subsequently, ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd.) was gradually added to the crushed solution so as to become 0.2 saturation, and after stirring at room temperature for 30 minutes, excess precipitate was removed using a filter aid. . Next, the mixture was concentrated using a UF membrane (Millipore Corporation) having a molecular weight cut-off of 10,000, and the concentrated solution was desalted using Sephadex G-25 gel.
  • the obtained purified enzyme was subjected to SDS-polyacrylamide gel electrophoresis (Past Gel 10-15%, Phassystem GE Healthcare).
  • phosphorylase b 97,400 dalton
  • bovine serum albumin 66,267 dalton
  • aldolase 42,400 dalton
  • carbonic anhydrase 30,000 dalton
  • trypsin inhibitor protein molecular weight marker
  • Example 5 Molecular Weight of Isolated GDH Peptide Part
  • the GDH purified in Example 4 was denatured by heating at 100 ° C. for 10 minutes, and then 5 U of N-glycosidase F (Roche Diagnostics). At 37 ° C. for 1 hour to decompose the sugar chain added to the protein. Thereafter, measurement was performed by SDS-polyacrylamide gel electrophoresis in the same manner as in Example 4. The same molecular weight marker as in Example 4 was used. As a result, it was found that the molecular weight of the purified FGDH polypeptide part was about 69,000 daltons.
  • Example 6 Substrate Specificity 1-1.
  • the activity of GDH purified in Example 4 was measured using D-glucose, maltose, D-galactose and D-xylose as substrates.
  • the activity when D-glucose was used as a substrate was defined as 100%, and the activity against other sugars compared with that was determined.
  • the concentration of each sugar was 50 mM. The results are shown in Table 2.
  • the substrate specificity of the FGDH of the present invention is 2.5% for the apparent activity for maltose, D-galactose and D-xylose when the activity value for D-glucose is 100%. It was as follows and it was shown that FGDH of this invention is excellent in substrate specificity.
  • Example 7 Optimum active pH Using the purified FGDH enzyme solution (0.5 U / mL) obtained in Example 4, the optimum pH was examined. 100 mM potassium acetate buffer (pH 5.0-5.5, plotted with ⁇ in the figure), 100 mM MES-NaOH buffer (pH 5.5-6.5, plotted with ⁇ in the figure), 100 mM potassium phosphate buffer Solution (pH 6.0-8.0, plotted with ⁇ in the figure), 100 mM Tris-HCl buffer solution (pH 7.5-9.0, plotted with ⁇ mark in the figure), and at each pH, the temperature was 37 ° C. Enzymatic reactions were carried out and the relative activities were compared. The results are shown in FIG.
  • the optimum activity pH of FGDH of the present invention showed the highest activity value at pH 8.0 when the Tris-HCl buffer was used.
  • the highest activity was shown in the pH range of 6.0 to 7.5.
  • MES-NaOH buffer was used, the highest activity was shown at pH 6.5.
  • Example 8 Optimal activity temperature Using the purified FGDH enzyme solution (0.1 U / mL) obtained in Example 4, the optimal activity temperature was examined.
  • the buffer solution used was 42 mM PIPES-NaOH buffer (pH 6.5), and the activity at 37 ° C., 40 ° C., 45 ° C., 50 ° C., 55 ° C. and 60 ° C. was determined. The results are shown in FIG.
  • the FGDH of the present invention showed the highest activity value in the range of 45 ° C. to 50 ° C., and the temperature range showing the relative activity of 80% or more with respect to the maximum activity value was 40 ° C. to 50 ° C. . From the above, it was shown that the optimum activity temperature of flavin-binding FGDH is around 40 ° C to 50 ° C.
  • Example 9 pH stability Using the purified FGDH enzyme solution (2 U / mL) obtained in Example 4, pH stability was examined. 100 mM glycine-HCl buffer (pH 2.5-pH 3.5: plotted with ⁇ in the figure) 100 mM acetate-potassium buffer (pH 3.0-pH 5.5: plotted with ⁇ in the figure), 100 mM MES-NaOH buffer Solution (pH 5.5-pH 6.5: plotted with ⁇ mark), 100 mM potassium phosphate buffer (pH 6.0-pH 8.0: plotted with ⁇ mark), 100 mM Tris-HCl buffer (pH 7.
  • 100 mM glycine-HCl buffer pH 2.5-pH 3.5: plotted with ⁇ in the figure
  • 100 mM acetate-potassium buffer pH 3.0-pH 5.5: plotted with ⁇ in the figure
  • 100 mM MES-NaOH buffer Solution pH 5.5-pH 6.5: plotted with ⁇ mark
  • the activity remaining rate was 95% or more in the range of pH 3.0 to pH 8.0. From this, it was shown that the stable pH range was pH 3.0 to pH 8.0.
  • Example 10 Temperature Stability Using the purified FGDH enzyme solution (2 U / mL) obtained in Example 4, temperature stability was examined. The FGDH enzyme solution was treated with each temperature (4 ° C, 30 ° C, 40 ° C, 50 ° C, 55 ° C, 60 ° C, 65 ° C, 70 ° C) for 15 minutes using 100 mM potassium acetate buffer (pH 5.0). Then, GDH activity was measured and the residual rate was measured compared with the GDH activity before a process. The results are shown in FIG.
  • the FGDH of the present invention had a residual rate of 96% after treatment in the temperature range of 4 ° C. to 50 ° C. From this, it was shown that FGDH is stable at 50 ° C. or lower.
  • Example 11 Measurement of Km Value
  • the activity of the FGDH enzyme purified in Example 4 was measured by changing the concentration of the substrate D-glucose, and a graph of the substrate concentration and the reaction rate was prepared (FIG. 5). Based on this, a Lineweaver-burk plot was created and the Km value was calculated. As a result, the Km value of FGDH of the present invention for D-glucose was 6.7 mM, and it was found that the affinity for D-glucose was high.
  • Example 12 Isolation of DNA Encoding FGDH (1) Extraction of Chromosomal DNA Mucor subtilis NBRC6338 was cultured overnight at 25 ° C. in a Sakaguchi flask containing 50 ml of YG medium (Yeast Extract 1%, Glucose 2%). The culture solution was filtered using a Buchner funnel and a Nutsche suction bottle to obtain bacterial cells. Among them, about 0.3 g of the microbial cells were frozen in liquid nitrogen, the mycelia were crushed using a mortar, and an extraction buffer (1% hexamethylmethyl bromide, 0.7 M NaCl, 50 mM Tris-HCl (pH 8.0), 10 mM.
  • YG medium Yeast Extract 1%, Glucose 2%
  • Chromosomal DNA precipitated by this treatment was centrifuged (20,000 g, 10 minutes, 4 ° C.), and the resulting precipitate was washed with 70% ethanol and vacuum dried.
  • the chromosomal DNA thus obtained was again dissolved in 4 ml of TE, 200 ⁇ l of 10 mg / ml RNase A (Sigma Aldrich Japan Co., Ltd.) was added, and the mixture was incubated at 37 ° C. for 30 minutes. Next, after adding 40 ⁇ l of 20 mg / ml Proteinase K, recombinant, PCR Grade (Roche Diagnostics) solution and incubating at 37 ° C.
  • chromosomal DNA was washed with 70% ethanol, vacuum-dried, and finally dissolved in 400 ⁇ l of TE solution to obtain a chromosomal DNA solution having a concentration of about 1 mg / ml.
  • the amplified DNA fragment was purified and a cloning kit Target Clone-Plus (manufactured by Toyobo) And was cloned into the vector pTA2 and transformed into Escherichia coli DH5 ⁇ competent cell (manufactured by Toyobo) to obtain a transformant.
  • the transformant was cultured in LB medium, the plasmid was extracted, and the base sequence analysis of the region corresponding to the enzyme gene was performed.
  • the sequence reaction was performed using BigDye TM Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Japan Co., Ltd.) according to the instruction manual of the product.
  • An ABI PRISM 310 sequencer (Applied Biosystems Japan Co., Ltd.) was used for the analysis.
  • the primers SEQ ID NOs: 4 and 5
  • As a result of the base sequence analysis a partial sequence of FGDH of about 1300 bp was obtained.
  • the sequence analysis of the amplified fragment was performed in the same manner as described above, and the upstream base sequence including the sequence presumed to be the start codon was clarified.
  • the above-described inverse PCR primers, InvF2 and InvR2 (SEQ ID NOs: 8 and 9) were used to restrict the genomic DNA obtained in (1) above.
  • Inverse PCR was performed in the same manner as described above, using as a template the one that had been treated with the enzyme XbaI and ligated. Thereby, the sequence analysis of the amplified fragment was performed in the same manner as described above, and the upstream base sequence including the sequence presumed to be a stop codon was clarified.
  • N-terminus Determination of N-terminus and C-terminus
  • the determination of N-terminus is based on the sequence obtained in (4) from the viewpoints of amino acid sequence homology, base sequence length, etc., using known information to the maximum. A multifaceted comparison was made to determine the start codon. The determination of the C terminal was also judged in the same manner.
  • ReverseTra-Ace manufactured by Toyobo Co., Ltd.
  • ReverseTra-Ace manufactured by Toyobo Co., Ltd.
  • reverse transcription was performed, and cDNA was synthesized.
  • 3UTR R1 SEQ ID NO: 11
  • PCR was performed under the recommended conditions using DNA polymerase KOD-Plus (manufactured by Toyobo) using the cDNA synthesized above as a template.
  • the primer SEQ ID NOs: 10 and 11 prepared in (6) above was used.
  • the gene region was excised from the plasmid with a restriction enzyme, mixed with a vector pUSA that had been treated with the same restriction enzyme, and ligation was performed by adding an equal amount of ligation reagent (Toyobo Lagation High) to the mixture and incubating. did.
  • the ligated DNA was transformed into Escherichia coli DH5 ⁇ strain competent cells (Toyobo Competent High DH5 ⁇ ) according to the protocol attached to the product to obtain the transformants.
  • the transformant was cultured in LB medium, and the plasmid was extracted. In this way, pUSAMsGDH designed to allow mass expression in Aspergillus oryzae was obtained.
  • FGDH of the present invention is excellent in substrate specificity, and enables the glucose amount to be measured more accurately. Therefore, it can be said that the FGDH of the present invention is suitable for measurement of blood glucose level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Physics & Mathematics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The purpose of the present invention is to provide a novel glucose dehydrogenase and a method for producing the same, and applications of the novel glucose dehydrogenase. This flavin-linked glucose dehydrogenase is provided with characteristics (1) to (4) below. (1) Molecular weight: The molecular weight of the polypeptide portion of the enzyme, as measured by SDS-polyacrylamide electrophoresis, is approximately 69 KDa. (2) Km value: The Km value with respect to D-glucose is approximately 10 mM or less. (3) Temperature stability: The glucose dehydrogenase is stable at 50°C or less. (4) pH stability: The glucose dehydrogenase is stable at a pH of 3.0 to 8.0.

Description

新規なグルコース脱水素酵素Novel glucose dehydrogenase
 本発明はグルコース脱水素酵素に関する。詳しくは、本発明はフラビン結合型グルコース脱水素酵素、それをコードするDNA、及び当該酵素の生産菌、当該酵素の製造方法、当該酵素を使用したグルコース測定方法などに関する。 The present invention relates to glucose dehydrogenase. More specifically, the present invention relates to a flavin-binding glucose dehydrogenase, a DNA encoding the same, a bacterium producing the enzyme, a method for producing the enzyme, a glucose measuring method using the enzyme, and the like.
 血糖自己測定(SMBG:Self-Monitoring of Blood Glucose)は糖尿病患者が自己の血糖値を管理し、治療に活用するために重要である。
近年、SMBGのために、電気化学的バイオセンサを用いた簡易型の自己血糖測定器が広く用いられている。バイオセンサは、絶縁性の基板上に電極、酵素反応層を形成したものである。
Self-Monitoring of Blood Glucose (SMBG) is important for diabetic patients to manage their blood glucose level and use it for treatment.
In recent years, a simple self-blood glucose meter using an electrochemical biosensor has been widely used for SMBG. A biosensor has an electrode and an enzyme reaction layer formed on an insulating substrate.
 ここで用いられる酵素としては、グルコース脱水素酵素(GDH)、グルコースオキシダーゼ(GO)などが挙げられる。GO(EC 1.1.3.4)を用いた方法は、測定サンプル中の溶存酸素の影響を受けやすく、溶存酸素が測定結果に影響を及ぼすといった問題点が指摘されている。一方でGDHは、溶存酸素の影響を受けないが、例えば、ピロロキノリンキノン依存型グルコース脱水素酵素(PQQ-GDH)(EC1.1.5.2(旧EC1.1.99.17))は、マルトースやラクトースといったグルコース以外の糖類にも作用するため正確な血糖値の測定には適していない。 Examples of enzymes used here include glucose dehydrogenase (GDH) and glucose oxidase (GO). It has been pointed out that the method using GO (EC 1.1.3.4) is easily affected by dissolved oxygen in the measurement sample, and the dissolved oxygen affects the measurement result. On the other hand, GDH is not affected by dissolved oxygen. For example, pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) (EC 1.1.5.2 (formerly EC 1.1.9.17)) is Since it also acts on sugars other than glucose, such as maltose and lactose, it is not suitable for accurate blood glucose measurement.
 フラビンアデニンジヌクレオチド依存性グルコース脱水素酵素(以下、「FADGDH」とも表す。)は、溶存酸素の影響を受けず、マルトースにもほとんど作用しない。特許文献1~6や非特許文献1~6には、アスペルギルス・テレウスやアスペルギルス・オリゼ由来のもの、あるいは、それらを改変したものなどが報告されている。しかし、これらの酵素は、キシロースに対する反応性が比較的高いため(特許文献1)、キシロース負荷試験を受けている者の血糖を測定する場合には改善の余地がある。近年、一方、キシロースに対する作用性が比較的低いフラビン結合型GDH(特許文献6)や、GOとGDHの長所を併せ持つ改変型GDH(特許文献7)などが開発されているが依然として改善の余地がある Flavin adenine dinucleotide-dependent glucose dehydrogenase (hereinafter also referred to as “FADGDH”) is not affected by dissolved oxygen and hardly acts on maltose. Patent Documents 1 to 6 and Non-patent Documents 1 to 6 report those derived from Aspergillus terreus and Aspergillus oryzae, or modified ones thereof. However, since these enzymes have a relatively high reactivity with xylose (Patent Document 1), there is room for improvement when measuring blood glucose in those who are undergoing a xylose tolerance test. In recent years, on the other hand, flavin-binding GDH (Patent Document 6), which has a relatively low action on xylose, and modified GDH (Patent Document 7) having the advantages of GO and GDH have been developed, but there is still room for improvement. is there
WO2004/058958WO2004 / 058958 WO2006/101239WO2006 / 101239 特開2007-289148JP2007-289148 特開2008-237210JP2008-237210A WO2008/059777WO2008 / 059777 WO2010/140431WO2010 / 140431 WO2011/068050WO2011 / 0668050
 上記のような現状の下、本発明者等は、SMBGにおける使用により適した、新規なグルコース脱水素酵素を開発すべく日夜検討を重ね、優れた基質特異性に加えて、D-グルコースに対する高い親和性を有し、安定性に優れた酵素を利用することで、測定時間を短縮し、且つ、少量の酵素量で正確な血糖値の測定が可能になるという課題を見出した。また、酵素を利用したSMBG用センサーの作成には、通常熱処理工程を伴うため、酵素は、前記のような特性に加えて、熱処理によって酵素活性を消失しない優れた熱安定性を有することが望ましい。よって、本発明は、基質特性、基質への親和性、及び熱安定性等に優れることにより、SMBG用センサーへの利用に適した新たなグルコース脱水素酵素を提供することを目的とする。 Under the present circumstances as described above, the present inventors have conducted day and night studies to develop a novel glucose dehydrogenase that is more suitable for use in SMBG. In addition to excellent substrate specificity, the present inventors have a high level of D-glucose. The present inventors have found that the use of an enzyme having affinity and excellent stability shortens the measurement time and enables accurate blood glucose measurement with a small amount of enzyme. In addition, since an SMBG sensor using an enzyme usually involves a heat treatment step, it is desirable that the enzyme has excellent thermal stability that does not lose enzyme activity by heat treatment in addition to the above-described characteristics. . Therefore, an object of the present invention is to provide a new glucose dehydrogenase suitable for use in an SMBG sensor by being excellent in substrate characteristics, affinity for the substrate, thermal stability, and the like.
 上記課題を解決するために、本発明者らは、日夜検討を重ね、これまでにグルコース脱水素酵素を生産することが報告されていない多くの微生物についてスクリーニングした結果、新たな微生物がグルコース脱水素酵素活性を有することを見出した。そして、本発明者等は、当該酵素を単離精製し、その特性を調べた結果、フラビン結合型のグルコース脱水素であり、優れた基質特異性、高いD-グルコースに対する親和性および優れた熱安定性を備えていることを見出した。更に、本発明者等は、単離した酵素のアミノ酸配列及び遺伝子配列を決定し、それらの配列がこれまでに報告されているFADGDHのものとは異なる新規な酵素であることを突き止めた。 In order to solve the above-mentioned problems, the present inventors have conducted day and night studies and screened many microorganisms that have not been reported to produce glucose dehydrogenase so far. It was found to have enzyme activity. As a result of isolating and purifying the enzyme and examining its characteristics, the present inventors have found that it is flavin-binding glucose dehydrogenation, has excellent substrate specificity, high affinity for D-glucose, and excellent heat. It was found that it has stability. Furthermore, the present inventors determined the amino acid sequence and gene sequence of the isolated enzyme, and found that these sequences are novel enzymes different from those of FADGDH reported so far.
 本発明は、係る知見に基づき、更なる研究と改良を重ねた結果完成したものであり、代表的な本発明は、以下の通りである。
項1
下記の(a)~(c)のいずれかのポリペプチドからなるフラビン結合型グルコース脱水素酵素;
(a)配列番号1に示されるアミノ酸配列からなるポリペプチド、
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位したアミノ酸配列からなり、グルコース脱水素酵素活性を有するポリペプチド、
(c)配列番号1に示されるアミノ酸配列との同一性が80%以上であるアミノ酸配列からなり、グルコース脱水素酵素活性を有するポリペプチド。
項2
以下の(A)~(E)のいずれかのDNA:
(A)配列番号1に示されるアミノ酸配列をコードするDNA、
(B)配列番号2に示される塩基配列をからなるDNA、
(C)配列番号2に示される塩基配列との相同性が80%以上である塩基配列からなり、且つ、グルコース脱水素酵素活性を有するポリペプチドをコードするDNA;
(D)配列番号2に示される塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAであり、且つグルコース脱水素酵素活性を有するポリペプチドをコードするDNA、
(E)配列番号2に示される塩基配列において、一若しくは数個の塩基が置換、欠失、挿入、付加及び/又は逆位されている塩基配列であり、グルコース脱水素酵素活性を有するポリペプチドをコードするDNA、
(F)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸残基が置換、欠失、挿入、付加、又は逆位したアミノ酸配列からなり、且つ、グルコース脱水素酵素活性を有するポリペプチドをコードするDNA。
項3
項2に記載のDNAを組み込んだベクター。
項4
項3に記載のベクターを含む形質転換体。
項5
項4に記載の形質転換体を培養することを含む、請求項1に記載のフラビン結合型グルコース脱水素酵素の製造方法。
項6
項1に記載のフラビン結合型グルコース脱水素酵素をグルコースに作用させることを含む、グルコース濃度の測定方法。
項8
項1に記載のフラビン結合型グルコース脱水素酵素を含むグルコースアッセイキット。
項9
項1に記載のフラビン結合型グルコース脱水素酵素を含むグルコースセンサ。
項A.下記の特性(1)~(4)を備えるフラビン結合型グルコース脱水素酵素。
(1)分子量: SDS-ポリアクリルアミド電気泳動で測定した酵素のポリペプチド部分の分子量が約69kDa
(2)Km値: D-グルコースに対するKm値が約10mM以下
(3)温度安定性:50℃以下で安定
(4)pH安定性: pH3.0~8.0の範囲で安定
項B.更に下記の特性(5)を備える、項Aに記載のフラビン結合型グルコース脱水素酵素。
(5)基質特異性: D-グルコースに対する反応性を100%としたときのD-キシロースに対する反応性が1.8%以下である
項C.更に下記の特性(6)を備える、項A又はBに記載のフラビン結合型グルコース脱水素酵素。
(6)至適活性温度: 45℃~50℃
項D.更に下記の特性(7)を備える、項A~Cのいずれかに記載のフラビン結合多型グルコース脱水素酵素。
(7)至適活性pH: 8.0
項E.更に下記の特性(8)を備える、項A~Dのいずれかに記載のフラビン結合型グルコース脱水素酵素。
(8)由来: ムコール(Mucor)属に分類される微生物に由来する
項F.ムコール属に分類される微生物を培養すること、及び
グルコース脱水素酵素を回収すること
を含む、項A~Eのいずれかに記載のフラビン結合型グルコース脱水素酵素の製造方法。
項G.項A~Eのいずれかに記載のフラビン結合型グルコース脱水素酵素をグルコースに作用させることを含む、グルコース濃度の測定方法。
項H.項A~Eのいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースアッセイキット。
項I.項A~Eのいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースセンサ。
The present invention has been completed as a result of further research and improvement based on such knowledge, and representative examples of the present invention are as follows.
Item 1
A flavin-binding glucose dehydrogenase comprising the polypeptide of any one of (a) to (c) below:
(A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1,
(B) a polypeptide having a glucose dehydrogenase activity, comprising an amino acid sequence obtained by substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 1 ,
(C) A polypeptide comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 1 and having glucose dehydrogenase activity.
Item 2
DNA of any of the following (A) to (E):
(A) DNA encoding the amino acid sequence represented by SEQ ID NO: 1,
(B) DNA comprising the base sequence represented by SEQ ID NO: 2,
(C) DNA comprising a nucleotide sequence having a homology with the nucleotide sequence represented by SEQ ID NO: 2 of 80% or more and encoding a polypeptide having glucose dehydrogenase activity;
(D) a DNA that hybridizes under stringent conditions to a base sequence complementary to the base sequence represented by SEQ ID NO: 2 and encodes a polypeptide having glucose dehydrogenase activity;
(E) a polypeptide having glucose dehydrogenase activity, wherein one or several bases in the base sequence shown in SEQ ID NO: 2 are substituted, deleted, inserted, added and / or inverted. DNA encoding
(F) In the amino acid sequence shown in SEQ ID NO: 1, a polyamino acid sequence comprising one or several amino acid residues substituted, deleted, inserted, added, or inverted, and having glucose dehydrogenase activity DNA encoding a peptide.
Item 3
A vector incorporating the DNA of Item 2.
Item 4
A transformant comprising the vector according to Item 3.
Item 5
The method for producing a flavin-binding glucose dehydrogenase according to claim 1, comprising culturing the transformant according to item 4.
Item 6
A method for measuring a glucose concentration, comprising causing the flavin-binding glucose dehydrogenase according to Item 1 to act on glucose.
Item 8
A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to Item 1.
Item 9
A glucose sensor comprising the flavin-binding glucose dehydrogenase according to Item 1.
Term A. A flavin-binding glucose dehydrogenase having the following characteristics (1) to (4):
(1) Molecular weight: The molecular weight of the polypeptide portion of the enzyme measured by SDS-polyacrylamide electrophoresis is about 69 kDa.
(2) Km value: Km value with respect to D-glucose is about 10 mM or less (3) Temperature stability: stable at 50 ° C. or less (4) pH stability: stable term in the range of pH 3.0 to 8.0 The flavin-binding glucose dehydrogenase according to Item A, further comprising the following property (5):
(5) Substrate specificity: C. The reactivity of D-xylose is 1.8% or less when the reactivity to D-glucose is 100%. The flavin-binding glucose dehydrogenase according to Item A or B, further comprising the following property (6):
(6) Optimal activity temperature: 45 ° C-50 ° C
Term D. The flavin-binding polymorphic glucose dehydrogenase according to any one of Items A to C, further comprising the following property (7):
(7) Optimum active pH: 8.0
Term E. The flavin-binding glucose dehydrogenase according to any one of Items A to D, further comprising the following property (8):
(8) Origin: Item F. derived from a microorganism classified into the genus Mucor. Item 10. The method for producing a flavin-binding glucose dehydrogenase according to any one of Items A to E, comprising culturing a microorganism classified into the genus Mucor and recovering glucose dehydrogenase.
Term G. A method for measuring a glucose concentration, comprising causing the flavin-binding glucose dehydrogenase according to any one of Items A to E to act on glucose.
Term H. A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to any one of Items A to E.
Term I. A glucose sensor comprising the flavin-binding glucose dehydrogenase according to any one of Items A to E.
 本発明のフラビン結合型グルコース脱水素酵素(以下、「FGDH」と称する場合もある。)は、グルコース脱水素酵素活性を有し、D-グルコースとの親和性が高い(即ち、D-グルコースに対するKm値が有意に低い)ため、より少ない酵素量で試料中のD-グルコース濃度をより短時間で測定することを可能にする。また、本発明のFGDHは、D-キシロースに対する反応性が有意に低いため、試料中にD-グルコースとD-キシロースが共存する場合であってもグルコース量又は濃度を正確に測定することを可能にする。
よって、本発明のFGDHはキシロース負荷試験下での血糖値測定に適している。更に、本発明のFGDHは、熱安定性に優れるため、熱処理等を伴う効率的なセンサストリップの製造を可能にする。加えて、本発明のFGDHは、広い範囲のpH領域に対して安定であるため、幅広い条件下での使用に適している。これらの特性を備えるため、本発明のFGDHは、D-グルコースを含むあらゆる試料(例えば、血液や食品(調味料や飲料等))におけるグルコース濃度を正確に測定することを可能にする。更に本発明のDNAは、本発明のFGDHをコードするため、遺伝子工学的手法を用いて、効率的に本発明のFGDHを製造することを可能にする。
The flavin-binding glucose dehydrogenase of the present invention (hereinafter sometimes referred to as “FGDH”) has glucose dehydrogenase activity and has a high affinity for D-glucose (that is, for D-glucose). (Km value is significantly lower), which makes it possible to measure the D-glucose concentration in the sample in a shorter time with a smaller amount of enzyme. In addition, since the FGDH of the present invention has a significantly low reactivity to D-xylose, it is possible to accurately measure the amount or concentration of glucose even when D-glucose and D-xylose coexist in the sample. To.
Therefore, the FGDH of the present invention is suitable for blood glucose level measurement under a xylose tolerance test. Furthermore, since the FGDH of the present invention is excellent in thermal stability, it enables efficient production of sensor strips accompanied by heat treatment and the like. In addition, since the FGDH of the present invention is stable over a wide range of pH, it is suitable for use under a wide range of conditions. Because of these characteristics, the FGDH of the present invention makes it possible to accurately measure the glucose concentration in any sample containing D-glucose (for example, blood or food (such as seasonings or beverages)). Furthermore, since the DNA of the present invention encodes the FGDH of the present invention, it is possible to efficiently produce the FGDH of the present invention using a genetic engineering technique.
Mucor subtilissimus NBRC6338由来FGDHの活性に対するpHの影響を示す。The influence of pH with respect to the activity of Mucor subtilismus NBRC6338 origin FGDH is shown. Mucor subtilissimus NBRC6338由来FGDHの活性に対する温度の影響を示す。The influence of the temperature with respect to the activity of Mucor subtilismus NBRC6338 origin FGDH is shown. Mucor subtilissimus NBRC6338由来FGDHのpH安定性を測定した結果を示す。The result of having measured the pH stability of Mucor subtilissimus NBRC6338 origin FGDH is shown. Mucor subtilissimus NBRC6338由来FGDHの温度安定性を測定した結果を示す。The result of having measured the temperature stability of Mucor subtilismus NBRC6338 origin FGDH is shown. Mucor subtilissimus NBRC6338由来FGDHの反応速度と基質濃度との関係を示す。The relationship between the reaction rate of Mucor subtilismus NBRC6338-derived FGDH and the substrate concentration is shown.
以下、本発明を詳細に説明する。
1.フラビン結合型グルコース脱水素酵素
1-1.グルコース脱水素酵素活性
 フラビン結合型グルコース脱水素酵素とは、電子受容体存在下でグルコースの水酸基を酸化してグルコノ-δ-ラクトンを生成する反応を触媒する理化学的性質を有する酵素である。本書においては、この理化学的性質をグルコースデヒドロゲナーゼ活性といい、特に断りが無い限り、「酵素活性」又は「活性」とは、当該酵素活性を意味する。前記電子受容体は、FGDHが触媒する反応において、電子の授受を担うことが可能である限り特に制限されないが、例えば、2,6-ジクロロフェノールインドフェノール(DCPIP)、フェナジンメトサルフェート(PMS)、1-メトキシ-5-メチルフェナジウムメチルサルフェート、及びフェリシアン化合物等を使用することができる。
Hereinafter, the present invention will be described in detail.
1. 1. Flavin-binding glucose dehydrogenase 1-1. Glucose dehydrogenase activity Flavin-binding glucose dehydrogenase is an enzyme having physicochemical properties that catalyzes a reaction in which glucose hydroxyl group is oxidized to produce glucono-δ-lactone in the presence of an electron acceptor. In this document, this physicochemical property is referred to as glucose dehydrogenase activity, and unless otherwise specified, “enzyme activity” or “activity” means the enzyme activity. The electron acceptor is not particularly limited as long as it is capable of transferring electrons in a reaction catalyzed by FGDH. For example, 2,6-dichlorophenolindophenol (DCPIP), phenazine methosulfate (PMS), 1-methoxy-5-methylphenadium methyl sulfate, ferricyan compound, and the like can be used.
 グルコースデヒドロゲナーゼ活性は、公知の方法で測定することができる。例えば、DCPIPを電子受容体として用い、反応前後における600nmの波長における試料の吸光度の変化を指標に活性を測定することができる。より具体的には、下記の試薬及び測定条件を用いて活性を測定することができる。 Glucose dehydrogenase activity can be measured by a known method. For example, using DCPIP as an electron acceptor, the activity can be measured using the change in absorbance of the sample at a wavelength of 600 nm before and after the reaction as an index. More specifically, the activity can be measured using the following reagents and measurement conditions.
 グルコースデヒドロゲナーゼ活性の測定方法
<試薬>
50mM PIPES緩衝液pH6.5(0.1% TritonX-100を含む)
24mM PMS溶液
2.0mM 2,6-ジクロロフェノールインドフェノール(DCPIP)溶液
1M D-グルコース溶液
上記PIPES緩衝液20.5mL、DCPIP溶液1.0mL、PMS溶液2.0mL、D―グルコース溶液5.9mLを混合して反応試薬とする。
Method for measuring glucose dehydrogenase activity <Reagent>
50 mM PIPES buffer pH 6.5 (including 0.1% Triton X-100)
24 mM PMS solution 2.0 mM 2,6-dichlorophenolindophenol (DCPIP) solution 1M D-glucose solution 20.5 mL of the above PIPES buffer, 1.0 mL of DCPIP solution, 2.0 mL of PMS solution, 5.9 mL of D-glucose solution To make a reaction reagent.
<測定条件>
 反応試薬3mLを37℃で5分間予備加温する。FGDH溶液0.1mLを添加しゆるやかに混和後、水を対照に37℃に制御された分光光度計で、600nmの吸光度変化を5分記録し、直線部分から(即ち、反応速度が一定になってから)1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検はFGDH溶液の代わりにFGDHを溶解する溶媒を試薬混液に加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってFGDH活性を求める。ここでFGDH活性における1単位(U)とは、濃度200mMのD-グルコース存在下で1分間に1マイクロモルのDCPIPを還元する酵素量である。
<Measurement conditions>
Prewarm 3 mL of reaction reagent at 37 ° C. for 5 minutes. After adding 0.1 mL of FGDH solution and mixing gently, the absorbance change at 600 nm was recorded for 5 minutes using a spectrophotometer controlled at 37 ° C. with water as a control, and from the linear part (ie, the reaction rate became constant). Measure the change in absorbance per minute (ΔODTEST). In the blind test, a solvent that dissolves FGDH is added to the reagent mixture instead of the FGDH solution, and the change in absorbance per minute (ΔODBLANK) is measured in the same manner. From these values, FGDH activity is determined according to the following equation. Here, 1 unit (U) in FGDH activity is the amount of enzyme that reduces 1 micromole of DCPIP per minute in the presence of 200 mM D-glucose.
 活性(U/mL)=
{-(ΔODTEST-ΔODBLANK)×3.1×希釈倍率}/{16.3×0.1×1.0}
Activity (U / mL) =
{− (ΔOD TEST −ΔOD BLANK ) × 3.1 × dilution ratio} / {16.3 × 0.1 × 1.0}
 なお、式中の3.1は反応試薬+酵素溶液の液量(mL)、16.3は本活性測定条件におけるミリモル分子吸光係数(cm/マイクロモル)、0.1は酵素溶液の液量(mL)、1.0はセルの光路長(cm)を示す。本書においては、別段の表示しない限り、酵素活性は上記の測定方法に従って、測定される。 In the formula, 3.1 is the amount of the reaction reagent + enzyme solution (mL), 16.3 is the molar molecular extinction coefficient (cm 2 / micromole) under the conditions for this activity measurement, and 0.1 is the solution of the enzyme solution. Amount (mL), 1.0 indicates the optical path length (cm) of the cell. In this document, unless otherwise indicated, enzyme activity is measured according to the measurement method described above.
 本発明のFGDHは、フラビンを補欠分子族として要求するフラビン結合型のGDHである。 FGDH of the present invention is a flavin-binding GDH that requires flavin as a prosthetic group.
 本発明のFGDHは、単離されたFGDH又は精製されたFGDHであることが好ましい。また、本発明のFGDHは、上記保存に適した溶液中に溶解した状態又は凍結乾燥された状態(例えば、粉末状)で存在してもよい。本発明の酵素(FGDH)に関して使用する場合の「単離された」とは、当該酵素以外の成分(例えば、宿主細胞に由来する夾雑タンパク質、他の成分、培養液等)を実質的に含まない)状態をいう。具体的には例えば、本発明の単離された酵素は、夾雑タンパク質の含有量が重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。一方で、本発明のFGDHは、保存又は酵素活性の測定に適した溶液(例えば、バッファー)中に存在してもよい。 FGDH of the present invention is preferably isolated FGDH or purified FGDH. Further, the FGDH of the present invention may be present in a state dissolved in a solution suitable for the above storage or in a lyophilized state (for example, in powder form). “Isolated” when used in relation to the enzyme (FGDH) of the present invention substantially includes components other than the enzyme (for example, contaminating proteins derived from host cells, other components, culture fluid, etc.). No) states. Specifically, for example, the isolated enzyme of the present invention has a contaminant protein content of less than about 20% by weight, preferably less than about 10%, more preferably less than about 5%, even more preferably. Is less than about 1%. On the other hand, the FGDH of the present invention may be present in a solution (eg, buffer) suitable for storage or measurement of enzyme activity.
 1-2.ポリペプチド
 本発明のFGDHは、下記(a)~(c)のいずれかのポリペプチドで構成されることが好ましい。
(a)配列番号1に示されるアミノ酸配列からなるポリペプチド;
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸残基が置換、欠失、挿入、付加および/または逆位したアミノ酸配列からなり、グルコース脱水素酵素活性を有するポリペプチド;
(c)配列番号1に示されるアミノ酸配列との同一性が80%以上であるアミノ酸配列からなり、グルコース脱水素酵素活性を有するポリペプチド。
1-2. Polypeptide The FGDH of the present invention is preferably composed of any of the following polypeptides (a) to (c).
(A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1;
(B) a polypeptide having a glucose dehydrogenase activity, comprising an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted, added and / or inverted in the amino acid sequence shown in SEQ ID NO: 1 ;
(C) A polypeptide comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 1 and having glucose dehydrogenase activity.
 配列番号1で示されるアミノ酸配列とは、実施例5に示される通り、Mucor subtilissimus NBRC6338に由来するFGDHのアミノ酸配列であり、下記1-3~1-10の特性を全て満たす。 The amino acid sequence represented by SEQ ID NO: 1 is an amino acid sequence of FGDH derived from Mucor subtilismus NBRC6338, as shown in Example 5, and satisfies all the following characteristics of 1-3 to 1-10.
 上記(b)のポリペプチドは、グルコース脱水素酵素活性を保持する限度で、配列番号1に示されるアミノ酸において、1若しくは数個のアミノ酸配残基が置換、欠失、挿入、付加及び/又は逆位(以下、これらを纏めて「変異」とする場合がある。)されたアミノ酸配列からなるポリペプチドである。ここで「数個」とは、グルコース脱水素酵素活性及び好ましくは後述する1-3~1-10(特に1-3、1-4、1-7、及び1-8)の特性が維持される限り制限されないが、例えば、全アミノ酸の約20%未満に相当する数であり、好ましくは約15%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。より具体的には、変異されるアミノ酸残基の個数は、例えば、2~127個、好ましくは2~96個、より好ましくは2~64個、更に好ましくは2~32個であり、より更に好ましくは2~20個、一層好ましくは2~15個、より一層好ましくは2~10個、特に好ましくは2~5個である。 The polypeptide of (b) above has substitution, deletion, insertion, addition and / or substitution of one or several amino acid residues in the amino acid shown in SEQ ID NO: 1 as long as it retains glucose dehydrogenase activity. A polypeptide consisting of an inverted amino acid sequence (hereinafter sometimes collectively referred to as “mutation”). Here, “several” means that the glucose dehydrogenase activity and preferably the characteristics of 1-3 to 1-10 (especially 1-3, 1-4, 1-7, and 1-8) described later are maintained. For example, it is a number corresponding to less than about 20% of all amino acids, preferably a number corresponding to less than about 15%, more preferably a number corresponding to less than about 10%, More preferably it is a number corresponding to less than about 5%, most preferably a number corresponding to less than about 1%. More specifically, the number of amino acid residues to be mutated is, for example, 2 to 127, preferably 2 to 96, more preferably 2 to 64, still more preferably 2 to 32, and even more. The number is preferably 2 to 20, more preferably 2 to 15, even more preferably 2 to 10, and particularly preferably 2 to 5.
 当該変異がアミノ酸の置換である場合、置換の種類は、特に制限されないが、FGDHの表現型に顕著な影響を与えないという観点から保存的アミノ酸置換が好ましい。「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。よって、同一のファミリー内のアミノ酸残基間で置換されることが好ましい。 When the mutation is an amino acid substitution, the type of substitution is not particularly limited, but conservative amino acid substitution is preferred from the standpoint that it does not significantly affect the FGDH phenotype. “Conservative amino acid substitution” refers to substitution of an amino acid residue with an amino acid residue having a side chain of similar properties. Depending on the side chain of the amino acid residue, a basic side chain (eg lysine, arginine, histidine), an acidic side chain (eg aspartic acid, glutamic acid), an uncharged polar side chain (eg glycine, asparagine, glutamine, serine, threonine, tyrosine) Cysteine), non-polar side chains (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (eg threonine, valine, isoleucine), aromatic side chains (eg tyrosine, phenylalanine, Like tryptophan and histidine). Therefore, it is preferable to substitute between amino acid residues in the same family.
 一又は数個の変異は、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)やランダム突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)など公知の手法を利用して後述する本発明のFGDHをコードするDNAに変異を導入することによって実施することが可能である。また、紫外線照射など他の方法によってもバリアントFGDHを得ることができる。バリアントFGDHには、FGDHを保持する微生物の個体差、種や属の違いに基づく場合などの天然に生じるバリアント(例えば、一塩基多型も含まれる。 One or several mutations include restriction enzyme treatment, treatment with exonuclease, DNA ligase, etc., position-directed mutagenesis (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Press, New Random York) Introducing mutation into DNA encoding FGDH of the present invention described below using known methods such as introduction methods (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Press, New York). Is possible. Variant FGDH can also be obtained by other methods such as ultraviolet irradiation. Variants FGDH include naturally occurring variants (for example, single nucleotide polymorphisms) such as cases based on individual differences of microorganisms holding FGDH, species or genus differences.
 また、FGDHの活性を維持するという観点からは、FGDHの活性部位又は基質結合部位に影響を与えない部位において上記変異が存在することが好ましい。 Also, from the viewpoint of maintaining the activity of FGDH, it is preferable that the mutation is present at a site that does not affect the active site or substrate binding site of FGDH.
 上記(c)のポリペプチドは、グルコース脱水素酵素活性を保持することを限度で、好ましくは下記1-3~1-10の特性を保持する限度で、配列番号1に示されるアミノ酸配列と比較した同一性が80%以上であるアミノ酸配列からなるポリペプチドである。好ましくは、本発明のFGDHが有するアミノ酸配列と配列番号1に示されるアミノ酸配列との同一性は、85%以上であり、より好ましくは88%以上、更に好ましくは90%以上、より更に好ましくは93%以上、一層好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である。このような一定以上の同一性を有するアミノ酸配列からなるポリペプチドは、上述するような公知の遺伝子工学的手法に基づいて作成することができる。 The polypeptide of the above (c) is compared with the amino acid sequence shown in SEQ ID NO: 1 as long as it retains glucose dehydrogenase activity, and preferably as long as it retains the following properties 1-3 to 1-10. A polypeptide comprising an amino acid sequence having an identity of 80% or more. Preferably, the identity between the amino acid sequence of FGDH of the present invention and the amino acid sequence shown in SEQ ID NO: 1 is 85% or more, more preferably 88% or more, still more preferably 90% or more, and still more preferably 93% or more, more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more. Such a polypeptide comprising an amino acid sequence having a certain identity or more can be prepared based on the known genetic engineering techniques as described above.
 アミノ酸配列の同一性は、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができ、例えば、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/ においてデフォルト(初期設定)のパラメーターを用いることにより、算出することができる。 Amino acid sequence identity can be calculated using commercially available or analytical tools available through telecommunications lines (Internet), such as the National Biotechnology Information Center (NCBI) homology algorithm BLAST (Basic local alignment). It can be calculated by using the default (initial setting) parameters at search tool) http://www.ncbi.nlm.nih.gov/BLAST/.
1-3.基質特異性
 本発明のFGDHは、基質特異性に優れている。特に、本発明のFGDHは、D-グルコースに対する反応性を基準とした場合に、少なくともD-キシロースに対する反応性が有意に低い。より具体的に、本発明のFGDHは、同一濃度のD-グルコースに対する反応性を100%とした場合に、D-キシロースに対する反応性が1.8%以下であることが好ましい。
1-3. Substrate specificity The FGDH of the present invention is excellent in substrate specificity. In particular, the FGDH of the present invention has a significantly low reactivity to at least D-xylose, based on the reactivity to D-glucose. More specifically, the FGDH of the present invention preferably has a reactivity to D-xylose of 1.8% or less when the reactivity to D-glucose at the same concentration is 100%.
 本発明のFGDHは、D-キシロースに対する反応性が低いことに加えて、D-ガラクトース及びマルトースに対する反応性も低いことが好ましい。本発明のFGDHのD-ガラクトースに対する反応性は、同一濃度のD-グルコースに対する反応性を100%として、通常5%以下であり、好ましくは3%以下であり、より好ましくは2%以下、更に好ましくは1.5%以下、特に好ましくは1.3%以下である。 FGDH of the present invention preferably has low reactivity to D-galactose and maltose in addition to low reactivity to D-xylose. The reactivity of FGDH of the present invention to D-galactose is usually 5% or less, preferably 3% or less, more preferably 2% or less, more preferably 100% of the reactivity to D-glucose at the same concentration. Preferably it is 1.5% or less, Most preferably, it is 1.3% or less.
 本発明のFGDHのマルトースに対する反応性は、同一濃度のD-グルコースに対する反応性を100%として、通常5%以下であり、好ましくは4%以下であり、より好ましくは3%以下であり、更に好ましくは2.3%以下である。 The reactivity of FGDH of the present invention to maltose is usually 5% or less, preferably 4% or less, more preferably 3% or less, assuming that the reactivity to D-glucose at the same concentration is 100%. Preferably it is 2.3% or less.
 上記本発明のFGDHのD-グルコースに対する反応性を基準としたD-キシロース、D-ガラクトース及びマルトースに対する反応性の下限値は、特に制限されないが、0%又は0%に限りなく近い値を下限値とすることができる。 The lower limit of the reactivity to D-xylose, D-galactose and maltose based on the reactivity of FGDH of the present invention to D-glucose is not particularly limited, but the lower limit is close to 0% or 0%. Can be a value.
 FGDHの各糖類に対する反応性は、上記1-1.に示すグルコースデヒドロゲナーゼ活性の測定方法において、D-グルコースを他の糖(例えば、D-キシロース、D-ガラクトース、又はマルトース)に置き換えて、D-グルコースの場合の活性を比較することにより求めることができる。但し、比較する場合の各糖類の濃度は50mMを基準とする。 The reactivity of FGDH to each saccharide is as described in 1-1. In the method for measuring glucose dehydrogenase activity shown in FIG. 4, the determination can be performed by replacing D-glucose with another sugar (for example, D-xylose, D-galactose, or maltose) and comparing the activity in the case of D-glucose. it can. However, the concentration of each saccharide in the case of comparison is based on 50 mM.
 以上のような優れた基質特異性を有する本発明のFGDHは、試料中のグルコース量を正確に測定するための酵素として好ましい。即ち、本発明のFGDHによれば試料中にマルトース、D-ガラクトース、D-キシロースなどの夾雑物が存在する場合であっても目的のD-グルコースの量を正確に測定することが可能である。従って本酵素は、試料中にこのような夾雑物の存在が予想又は懸念される用途(典型的には血液中のグルコース量の測定)に適したものであり、当該用途も含め様々な用途に適用可能であり、汎用性が高い。 The FGDH of the present invention having excellent substrate specificity as described above is preferable as an enzyme for accurately measuring the amount of glucose in a sample. That is, according to the FGDH of the present invention, it is possible to accurately measure the amount of target D-glucose even when impurities such as maltose, D-galactose, and D-xylose are present in the sample. . Therefore, this enzyme is suitable for applications in which the presence of such contaminants is expected or concerned (typically, measurement of the amount of glucose in blood), and can be used in various applications including such applications. Applicable and highly versatile.
1-4.D-グルコースに対する親和性
 本発明のFGDHは、本来の基質であるD-グルコースに対する親和性が高いことが好ましい。親和性が高いことにより、試料中のD-グルコースの濃度が低い場合であっても、上述する触媒反応を進めることができ、より正確なD-グルコース濃度の測定、より短時間での測定、及びより少ない酵素量での測定に資するからである。FGDHのD-グルコースに対する親和性は、Km値によって示される。Km値は、いわゆるミカエリス・メンテン式から求められる値であり、具体的には、上記1-1.に示す活性測定方法においてD-グルコースの濃度を変化させて各濃度における活性を測定し、ラインウィーバー・バーク・プロットを作成することによって求めることができる。
1-4. Affinity for D-glucose The FGDH of the present invention preferably has a high affinity for D-glucose, which is the original substrate. Due to the high affinity, even when the concentration of D-glucose in the sample is low, the above-described catalytic reaction can proceed, and more accurate measurement of D-glucose concentration, measurement in a shorter time, This is because it contributes to measurement with a smaller amount of enzyme. The affinity of FGDH for D-glucose is indicated by the Km value. The Km value is a value obtained from the so-called Michaelis-Menten equation. Specifically, the above 1-1. In the activity measurement method shown in FIG. 4, the D-glucose concentration is varied to measure the activity at each concentration, and a line weaver bark plot is created.
 酵素の反応速度論から判断して、Km値が低いほど、酵素は基質に対する親和性が高く、基質濃度が低い場合でも基質との複合体を形成することができ、より早い速度で触媒反応を進めることができる。本発明のFGDHのD-グルコースに対するKm値は、10mM以下であることが好ましく、より好ましくは9mM以下、更に好ましくは8mM以下、より更に好ましくは7mM以下であり、特に好ましくは6.7mM以下である。 Judging from the reaction kinetics of the enzyme, the lower the Km value, the higher the affinity of the enzyme for the substrate, and even when the substrate concentration is low, the enzyme can form a complex with the substrate. Can proceed. The Km value for D-glucose of FGDH of the present invention is preferably 10 mM or less, more preferably 9 mM or less, still more preferably 8 mM or less, even more preferably 7 mM or less, and particularly preferably 6.7 mM or less. is there.
1-5.至適活性pH
 本発明のFGDHは、実施例に示す通り、pH8.0(Tris HCl緩衝液)において最も高い活性を示すことが好ましい。また、pH7.5~8.0(TrisHCl緩衝液)において、本発明のFGDHは、pH8.0(Tris HCl緩衝液)における活性を100%として、80%以上の相対活性を示すことが好ましい。即ち、本発明のFGDHの至適活性pHは7.5~8.0であり、好ましくはpH8.0である。一方、本発明のFGDHは、後述する実施例に示す通り、リン酸カリウム緩衝液やMES-NaOH緩衝液を中ではpH6・5~7.5付近で最も高い活性を示す。よって、これらの緩衝液を用いる場合は、pH6.5~7.5が至適活性pHであることが好ましい。
1-5. Optimum active pH
As shown in Examples, the FGDH of the present invention preferably exhibits the highest activity at pH 8.0 (Tris HCl buffer). In addition, at pH 7.5 to 8.0 (TrisHCl buffer), the FGDH of the present invention preferably exhibits a relative activity of 80% or more, assuming that the activity at pH 8.0 (Tris HCl buffer) is 100%. That is, the optimum active pH of the FGDH of the present invention is 7.5 to 8.0, preferably pH 8.0. On the other hand, the FGDH of the present invention exhibits the highest activity around pH 6.5 to 7.5 in the potassium phosphate buffer and MES-NaOH buffer, as shown in the examples described later. Therefore, when these buffers are used, it is preferable that pH 6.5 to 7.5 is the optimum active pH.
1-6.至適活性温度
 本発明のFGDHの至適活性温度は、45℃~50℃であることが好ましい。ここで「45℃~50℃」とは、典型的に至適活性温度が45℃~50℃付近であり、更にある程度の許容可能な幅を有することを意味する。本明細書において、至適活性温度は、後述する実施例に示す通り、酵素濃度0.1U/mLでPIPES-NaOHバッファー(pH6.5)中における酵素活性を測定することにより求められる。
1-6. Optimum activity temperature The optimum activity temperature of the FGDH of the present invention is preferably 45 ° C to 50 ° C. Here, “45 ° C. to 50 ° C.” means that the optimum activation temperature is typically around 45 ° C. to 50 ° C. and further has a certain acceptable width. In the present specification, the optimum activity temperature is determined by measuring the enzyme activity in a PIPES-NaOH buffer (pH 6.5) at an enzyme concentration of 0.1 U / mL, as shown in the Examples described later.
1-7.pH安定性
 本明細書において、特定のpH条件の下、2U/mLの酵素を25℃で16時間処理した後の残存酵素活性が、処理前の酵素活性と比較して95%以上である場合に、当該酵素は、当該pH条件において安定であると判断する。本発明のFGDHは、少なくともpH3.0~8.0の範囲全体で安定であることが好ましい。
1-7. pH stability In the present specification, when the residual enzyme activity after treating a 2 U / mL enzyme at 25 ° C. for 16 hours under a specific pH condition is 95% or more compared to the enzyme activity before the treatment In addition, the enzyme is judged to be stable at the pH condition. The FGDH of the present invention is preferably stable at least over the entire pH range of 3.0 to 8.0.
1-8.温度安定性
 本明細書において、特定の温度条件の下、適当な緩衝液中(例えば酢酸カリウムバッファー(pH5.0))で2U/mLの酵素を15分間処理した後の残存酵素活性が、処理前の酵素活性と比較して実質的な低下が認められない(つまり約90%以上を維持する)とき、当該酵素は当該温度条件において安定であると判断する。本発明のFGDHは、少なくとも0℃~50℃の温度範囲において安定であることが好ましい。
1-8. Temperature Stability In this specification, the residual enzyme activity after treating 2 U / mL of enzyme in a suitable buffer solution (for example, potassium acetate buffer (pH 5.0)) for 15 minutes under a specific temperature condition When there is no substantial decrease compared to the previous enzyme activity (that is, maintaining about 90% or more), the enzyme is judged to be stable at the temperature condition. The FGDH of the present invention is preferably stable in a temperature range of at least 0 ° C. to 50 ° C.
 本発明のFGDHは、上記1-3~1-8で示される特徴のうち少なくとも1つ以上を備えていることが好ましく、より好ましくはその2つ以上を備え、更に好ましくはその3つの特性を更に備え、より更に好ましくはその4つ以上を備え、一層好ましくはその5つ以上を備え、より一層好ましくはその6つ以上を備え、特に好ましくはその全てを備える。本発明のFGDHは、上記1-3~1-8の特性を如何なる組合せで備えていても良いが、上記1-3、1-4、1-7及び1-8の特性を備えていることが好ましい。 The FGDH of the present invention preferably has at least one of the features shown in 1-3 to 1-8, more preferably two or more, and still more preferably the three characteristics. Further, more preferably four or more, more preferably five or more, still more preferably six or more, particularly preferably all of them. The FGDH of the present invention may have the characteristics of 1-3 to 1-8 in any combination, but has the characteristics of 1-3, 1-4, 1-7, and 1-8. Is preferred.
1-9.分子量
 本発明のFGDHを構成するポリペプチド部分の分子量は、SDS-PAGEで測定した場合に約69kDaであることが好ましい。「約69kDa」とは、SDS-PAGEで分子量を測定した際に、当業者が、通常69kDaの位置にバンドがあると判断する範囲を含むことを意味する。「ポリペプチド部分」とは、実質的に糖鎖が結合していない状態のFGDHを意味する。微生物によって生産された本発明のFGDHが糖鎖結合型である場合は、それを熱処理や糖加水分解酵素によって処理することにより、糖鎖を除去した状態(即ち、「ポリペプチド部分」)にすることができる。実質的に糖鎖が結合していない状態とは、熱処理や糖加水分解酵素によって処理された糖鎖結合型FGDHに不可避的に残存する糖鎖の存在を許容する。よって、FGDHが本来的に糖鎖結合型でない場合は、それ自体が「ポリペプチド部分」に相当する。
1-9. Molecular Weight The molecular weight of the polypeptide moiety constituting the FGDH of the present invention is preferably about 69 kDa as measured by SDS-PAGE. The term “about 69 kDa” means that a range in which a person skilled in the art normally determines that there is a band at a position of 69 kDa when molecular weight is measured by SDS-PAGE is included. “Polypeptide moiety” means FGDH in a state where sugar chains are not substantially bound. When the FGDH of the present invention produced by a microorganism is a glycan-linked type, the glycan is removed by treating it with heat treatment or saccharide hydrolase (that is, a “polypeptide moiety”). be able to. The state in which sugar chains are not substantially bound allows the presence of sugar chains inevitably remaining in sugar chain-bound FGDH treated by heat treatment or sugar hydrolase. Therefore, when FGDH is not inherently a sugar chain-binding type, it itself corresponds to a “polypeptide moiety”.
 糖鎖結合型FGDHから糖鎖を除去する手段は、特に制限されないが、例えば、後述する実施例に示すように、糖鎖結合型のFGDHを100℃で10分間加熱処理をして変性させた後、N-グリコシダーゼF(ロシュ・ダイアグノスティクス社製)を用いて37℃で6時間処理することにより実施することができる。 The means for removing the sugar chain from the sugar chain-bound FGDH is not particularly limited. For example, as shown in the examples described later, the sugar chain-bound FGDH was denatured by heating at 100 ° C. for 10 minutes. Thereafter, it can be carried out by treatment with N-glycosidase F (Roche Diagnostics) at 37 ° C. for 6 hours.
 本発明のFGDHが糖鎖に結合している場合、その分子量は、グルコース脱水素酵素活性、基質特異性、及びD-グルコースに対する親和性などにネガティブに影響しない限り特に制限されない。例えば、糖鎖が結合した状態の本発明FGDHの分子量は、SDS-PAGEでの測定において、103,000~143,000Daであることが好ましい。糖鎖結合型のFGDHは、酵素をより安定にするという観点及び水溶性を高め、水に溶け易くするという観点から好ましい。 When the FGDH of the present invention is bound to a sugar chain, the molecular weight is not particularly limited as long as it does not negatively affect glucose dehydrogenase activity, substrate specificity, affinity for D-glucose, and the like. For example, the molecular weight of the FGDH of the present invention in a state where sugar chains are bound is preferably 103,000 to 143,000 Da as measured by SDS-PAGE. Glycan-linked FGDH is preferable from the viewpoint of making the enzyme more stable and from the viewpoint of enhancing water solubility and facilitating solubility in water.
 SDS-PAGEでの分子量の測定は、一般的な手法及び装置を用い、市販される分子量マーカーを用いて行うことができる。 The molecular weight measurement by SDS-PAGE can be performed using a commercially available molecular weight marker using a general method and apparatus.
1-10.由来
 本発明のFGDHは、上述する特性を備える限り、その由来は特に制限されない。本発明のFGDHは、例えば、ムコール(Mucor)属に帰属する微生物に由来し得る。ムコール属に属する微生物としては、特に制限されないが、例えば、Mucor subtilissimus、Mucor guilliermondii、Mucor prainii、Mucor javanicus、Mucor circinelloides、及び、Mucor hiemalis f. silvaticus等を例示することができる。より具体的には、Mucor subtilissimus NBRC6338を例示することができる。Mucor subtilissimus NBRC6338は、NBRC(NITE Biological Resouce Center)(独立行政法人製品評価技術基盤機構 バイオテクノロジー本部 生物遺伝資源部門)に保管された菌株であり、所定の手続を経ることによってその分譲を受けることができる。
1-10. Origin The origin of the FGDH of the present invention is not particularly limited as long as it has the properties described above. The FGDH of the present invention can be derived from, for example, a microorganism belonging to the genus Mucor. Although it does not restrict | limit especially as microorganisms which belong to Mucor genus, For example, Mucor subtilismus, Mucor guilliermondi, Mucor plinii, Mucor javanicus, Mucor circinolides, and Mucor fiemis. Silvaticus etc. can be illustrated. More specifically, Mucor subtilissimus NBRC6338 can be exemplified. Mucor subtilisimus NBRC6338 is a strain stored in NBRC (NITE Biological Resource Center) (Biotechnology Division, Biotechnology Headquarters, National Institute for Product Evaluation and Technology), and may be transferred through predetermined procedures. it can.
 本発明のFGDHが由来する他の生物としては、例えば、土壌や河川・湖沼などの水系又は海洋に存在する微生物や各種動植物の表面または内部に常在する微生物などを挙げることができる。低温環境、火山などの高温環境、深海などの無酸素・高圧・無光環境、油田など特殊な環境に生育する微生物を単離源としてもよい。 Examples of other organisms from which the FGDH of the present invention is derived include microorganisms present in water systems such as soil, rivers, and lakes or in the ocean, and microorganisms that are resident on the surface or inside various animals and plants. Microorganisms that grow in a low temperature environment, a high temperature environment such as a volcano, an oxygen-free / high-pressure / no-light environment such as the deep sea, and a special environment such as an oil field may be used as the isolation source.
 本発明のFGDHには、微生物から直接単離されるFGDHだけでなく、単離されたFGDHを蛋白質工学的な方法によりアミノ酸配列等を改変したものや、遺伝子工学的手法により改変したものも含まれる。例えば、ケカビ科に分類される微生物、より具体的には、Mucor guilliermondii、Mucor prainii、Mucor javanicus、Mucor circinelloides、Mucor subtilissimus及び、Mucor hiemalis f. silvaticusに帰属する微生物に由来するものを改変したものであっても良い。 The FGDH of the present invention includes not only FGDH directly isolated from microorganisms, but also those obtained by modifying the isolated FGDH by amino acid sequence or the like by a protein engineering method or by genetic engineering techniques. . For example, microorganisms classified into the family Aceraceae, and more specifically, Mucor guilliermondii, Mucor plainii, Mucor javanicus, Mucor cilinelloides, Mucor subtilismus, and Mucor hiemis. Those derived from microorganisms belonging to silvaticus may be modified.
2.フラビン結合型グルコース脱水素酵素をコードするDNA
 本発明のDNAは、上記1.のFGDHをコードするDNAであり、具体的には以下の(A)~(F)のいずれかである。
(A)配列番号1に示されるアミノ酸配列をコードするDNA;
(B)配列番号2に示される塩基配列をからなるDNA;
(C)配列番号2に示される塩基配列との相同性が80%以上である塩基配列をからなり、且つ、グルコース脱水素酵素活性を有するポリペプチドをコードするDNA;
(D)配列番号2に示される塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAを含み、且つグルコース脱水素酵素活性を有するポリペプチドをコードするDNA;
(E)配列番号2に示される塩基配列において、一若しくは数個の塩基が置換、欠失、挿入、付加及び/又は逆位されている塩基配列であり、グルコース脱水素酵素活性を有するポリペプチドをコードするDNA;
(F)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸残基が置換、欠失、挿入、付加、又は逆位したアミノ酸配列からなり、且つ、グルコース脱水素酵素活性を有するポリペプチドをコードするDNA。
2. DNA encoding flavin-binding glucose dehydrogenase
The DNA of the present invention comprises the above-mentioned 1. DNA encoding FGDH, specifically, one of the following (A) to (F).
(A) DNA encoding the amino acid sequence represented by SEQ ID NO: 1;
(B) DNA comprising the base sequence represented by SEQ ID NO: 2;
(C) DNA comprising a nucleotide sequence having a homology with the nucleotide sequence represented by SEQ ID NO: 2 of 80% or more and encoding a polypeptide having glucose dehydrogenase activity;
(D) DNA containing a DNA that hybridizes under stringent conditions to a base sequence complementary to the base sequence shown in SEQ ID NO: 2 and that encodes a polypeptide having glucose dehydrogenase activity;
(E) a polypeptide having glucose dehydrogenase activity, wherein one or several bases in the base sequence shown in SEQ ID NO: 2 are substituted, deleted, inserted, added and / or inverted. DNA encoding
(F) In the amino acid sequence shown in SEQ ID NO: 1, a polyamino acid sequence comprising one or several amino acid residues substituted, deleted, inserted, added, or inverted, and having glucose dehydrogenase activity DNA encoding a peptide.
 本書において「タンパク質をコードするDNA」とは、それを発現させた場合に当該タンパク質が得られるDNA、即ち、当該タンパク質のアミノ酸配列に対応する塩基配列を有するDNAのことをいう。従ってコドンの縮重によって相違するDNAも含まれる。 As used herein, “DNA encoding a protein” refers to DNA from which the protein is obtained when it is expressed, that is, DNA having a base sequence corresponding to the amino acid sequence of the protein. Therefore, DNA that differs depending on codon degeneracy is also included.
 本発明のDNAは、それがコードするアミノ酸配列を有するタンパク質が、グルコース脱水素酵素活性及び好ましくは上記1-2~1-10の特性の少なくとも1つ(特に、上記1-3、1-4、1-7及び1-8の特性)を備える限り、配列番号2に示される塩基配列との相同性が80%以上、好ましくは85%以上、より好ましくは88%以上、更に好ましくは90%以上、より更に好ましくは93%以上、一層好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である塩基配列を有する。 In the DNA of the present invention, the protein having the amino acid sequence encoded by the DNA of the present invention has glucose dehydrogenase activity and preferably at least one of the above characteristics of 1-2 to 1-10 (particularly, the above 1-3, 1-4). 1-7 and 1-8), the homology with the nucleotide sequence shown in SEQ ID NO: 2 is 80% or more, preferably 85% or more, more preferably 88% or more, and still more preferably 90%. More preferably, the nucleotide sequence is 93% or more, more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
 塩基配列の相同性は、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができ、例えば、FASTA、BLAST、PSI-BLAST、SSEARCH等のソフトウェアを用いて計算される。具体的には、BLAST検索に一般的に用いられる主な初期条件は、以下の通りである。即ち、Advanced BLAST 2.1において、プログラムにblastnを用い、各種パラメータはデフォルト値に設定して検索を行うことにより、ヌクレオチド配列の相同性の値(%)を算出することができる。 The homology of the base sequence can be calculated using an analysis tool that is commercially available or available through a telecommunication line (Internet), and is calculated using software such as FASTA, BLAST, PSI-BLAST, SSEARCH, etc. The Specifically, main initial conditions generally used for BLAST search are as follows. That is, in Advanced BLAST 2.1, by using blastn as a program and searching with various parameters set to default values, the homology value (%) of the nucleotide sequence can be calculated.
 本発明のDNAは、それがコードするタンパク質がグルコース脱水素活性を有し、好ましくは上記1-2~1-10の特性、より好ましくは上記1-3、1-4、1-7及び1-8の特性)の少なくとも1つを備える限り、配列番号2に示される塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAであっても良い。ここで「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このようなストリンジェントな条件は当業者に公知であって、例えば、Molecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)やCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)を参照して設定することができる。 In the DNA of the present invention, the protein encoded by it has glucose dehydrogenation activity, and preferably has the above-mentioned characteristics 1-2 to 1-10, more preferably the above 1-3, 1-4, 1-7 and 1 As long as it has at least one of the characteristics (-8), it may be DNA that hybridizes under stringent conditions to a base sequence complementary to the base sequence shown in SEQ ID NO: 2. Here, “stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Such stringent conditions are known to those skilled in the art, and include, for example, Molecular Cloning (Third Edition, Cold Spring Harbor Press, New York, Current Protocols in Molecular. 1987).
 具体的なストリンジェントな条件としては、例えば、ハイブリダイゼーション液(50%ホルムアミド、10×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベーションし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。更に好ましいストリンジェントな条件として例えば、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。 Specific stringent conditions include, for example, a hybridization solution (50% formamide, 10 × SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 × Denhardt solution, 1% SDS, 10% Incubate at about 42 ° C. to about 50 ° C. with dextran sulfate, 10 μg / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5), and then with 0.1 × SSC, 0.1% SDS And washing at about 65 ° C to about 70 ° C. As more preferable stringent conditions, for example, 50% formamide, 5 × SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0) as a hybridization solution, 1 × Denhardt solution, 1% SDS, 10% dextran sulfate, Examples include conditions using 10 μg / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)).
 このような条件でハイブリダイズするDNAの中には途中にストップコドンが発生したものや、活性中心の変異により活性を失ったものも含まれ得るが、それらについては、市販の活性発現ベクターに組み込み、適当な宿主で発現させて、酵素活性を公知の手法で測定することによって容易に取り除くことができる。 DNA that hybridizes under such conditions may include those in which a stop codon has occurred in the middle or those that have lost activity due to mutations in the active center, but these are incorporated into commercially available active expression vectors. It can be easily removed by expressing it in a suitable host and measuring the enzyme activity by a known method.
 上記(E)及び(F)のDNAに関し、「数個」とは上記1-2に説明したものと同義である。即ち、「数個」とは、グルコース脱水素酵素活性及び好ましくは後述する1-3~1-10(特に1-3、1-4、1-7、及び1-8)の特性が維持される限りにおいて、例えば、全DNAの約20%未満に相当する数であり、好ましくは約15%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。より具体的には、変異される塩基の個数は、例えば、2~382個、好ましくは2~286個、より好ましくは2~290個、更に好ましくは2~95個であり、より更に好ましくは2~19個、一層好ましくは2~15個、より一層好ましくは2~10個、特に好ましくは2~5個である。 In the above DNAs (E) and (F), “several” has the same meaning as described in 1-2 above. That is, “several” means that the glucose dehydrogenase activity and preferably the characteristics of 1-3 to 1-10 (particularly 1-3, 1-4, 1-7, and 1-8) described later are maintained. As many as, for example, a number corresponding to less than about 20% of the total DNA, preferably a number corresponding to less than about 15%, more preferably a number corresponding to less than about 10%, even more preferred. Is a number corresponding to less than about 5%, most preferably a number corresponding to less than about 1%. More specifically, the number of bases to be mutated is, for example, 2 to 382, preferably 2 to 286, more preferably 2 to 290, still more preferably 2 to 95, and still more preferably. It is 2 to 19, more preferably 2 to 15, even more preferably 2 to 10, and particularly preferably 2 to 5.
 好適な一実施形態において、本発明のFGDHをコードするDNAは、単離された状態で存在するDNAである。ここで「単離されたDNA」とは、天然状態において共存するその他の核酸やタンパク質等の成分から分離された状態であることをいう。但し、単離されたDNAは、天然状態において隣接する核酸配列(例えばプロモーター領域の配列やターミネーター配列など)など一部の他の核酸成分を含んでいてもよい。例えば染色体DNAの場合の「単離された」状態とは、好ましくは、天然状態において共存する他のDNA成分を実質的に含まない。一方、cDNA分子など遺伝子工学的手法によって調製されるDNAの場合の「単離された」状態では、好ましくは、細胞成分や培養液などを実質的に含まない。同様に、化学合成によって調製されるDNAの場合の「単離された」状態では、好ましくは、dNTPなどの前駆体(原材料)や合成過程で使用される化学物質等を実質的に含まない。尚、それと異なる意味を表すことが明らかでない限り、本明細書において単に「DNA」と記載した場合には単離された状態のDNAを意味する。本発明のDNAには、上記(A)~(F)のDNAと相補的なDNA(cDNA)も含まれる。 In a preferred embodiment, the DNA encoding FGDH of the present invention is DNA that is present in an isolated state. Here, “isolated DNA” refers to a state separated from other components such as nucleic acids and proteins that coexist in the natural state. However, the isolated DNA may contain some other nucleic acid components such as a nucleic acid sequence adjacent in the natural state (for example, a promoter region sequence and a terminator sequence). For example, an “isolated” state in the case of chromosomal DNA is preferably substantially free of other DNA components that coexist in the natural state. On the other hand, the “isolated” state in the case of DNA prepared by genetic engineering techniques such as cDNA molecules is preferably substantially free of cell components, culture medium, and the like. Similarly, the “isolated” state in the case of DNA prepared by chemical synthesis is preferably substantially free of precursors (raw materials) such as dNTPs, chemical substances used in the synthesis process, and the like. In addition, unless it is clear that a different meaning is expressed, when simply described as “DNA” in this specification, it means DNA in an isolated state. The DNA of the present invention also includes DNA (cDNA) complementary to the above DNAs (A) to (F).
 本発明のDNAは、本明細書又は添付の配列表が開示する配列情報(特に、配列番号2)を基に、化学的DNA合成法により製造、取得することができる、例えば、公知の標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって容易に調製することができる(Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989);続生化学実験講座「遺伝子研究法I、II、III」、日本生化学会編(1986)等参照)。化学的DNA合成法としては、フォスフォアミダイト法による固相合成法を例示することができる。この合成法には自動合成機を利用することができる。 The DNA of the present invention can be produced and obtained by a chemical DNA synthesis method based on the sequence information disclosed in this specification or the attached sequence listing (particularly SEQ ID NO: 2). Genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. (Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); Secondary Biochemistry Experiment Course “ Genetic Research Methods I, II, III ”, edited by Japanese Biochemical Society (1986), etc.). As a chemical DNA synthesis method, a solid phase synthesis method by a phosphoramidite method can be exemplified. An automatic synthesizer can be used for this synthesis method.
 標準的な遺伝子工学的手法としては、具体的には、本発明のFGDHが発現される適当な起源微生物より、常法に従ってcDNAライブラリーを調製し、該ライブラリーから、本発明のDNA配列(例えば、配列番号2の塩基配列)に特有の適当なプローブや抗体を用いて所望クローンを選択することにより実施できる〔Proc. Natl. Acad. Sci., USA., 78, 6613 (1981);Science122, 778 (1983)等〕。 Specifically, as a standard genetic engineering technique, a cDNA library is prepared according to a conventional method from an appropriate source microorganism in which the FGDH of the present invention is expressed, and the DNA sequence of the present invention ( For example, it can be carried out by selecting a desired clone using an appropriate probe or antibody peculiar to the nucleotide sequence of SEQ ID NO: 2 [Proc. Natl. Acad. Sci. , USA. 78, 6613 (1981); Science 122, 778 (1983), etc.].
 cDNAライブラリーを調整するための起源微生物は、本発明FGDHを発現する微生物であれば特に制限れないが、好ましくは、ムコール属に分類される微生物である。より具体的には、上記1-10.に示す微生物を挙げることができる。 The origin microorganism for preparing the cDNA library is not particularly limited as long as it is a microorganism that expresses the FGDH of the present invention, but is preferably a microorganism classified into the genus Mucor. More specifically, the above 1-10. Can be mentioned.
 上記の微生物からの全RNAの分離、mRNAの分離や精製、cDNAの取得とそのクローニング等は、いずれも常法に従って実施することができる。本発明のDNAをcDNAライブラリーからスクリーニングする方法も、特に制限されず、通常の方法に従うことができる。例えば、cDNAによって産生されるポリペプチドに対して、該ポリペプチド特異抗体を使用した免疫的スクリーニングにより対応するcDNAクローンを選択する方法、目的のヌクレオチド配列に選択的に結合するプローブを用いたプラークハイブリダイゼーション、コロニーハイブリダイゼーション等やこれらの組合せ等を適宜選択して実施することができる。 The separation of total RNA from the above microorganisms, the separation and purification of mRNA, the acquisition of cDNA and its cloning, etc. can all be carried out according to conventional methods. The method for screening the DNA of the present invention from a cDNA library is not particularly limited, and can be performed according to a usual method. For example, for a polypeptide produced by cDNA, a method for selecting a corresponding cDNA clone by immunoscreening using the polypeptide-specific antibody, a plaque high using a probe that selectively binds to a target nucleotide sequence Hybridization, colony hybridization, etc., and combinations thereof can be selected as appropriate.
 DNAの取得に際しては、PCR法〔Science130, 1350 (1985)〕またはその変法によるDNA若しくはRNA増幅法が好適に利用できる。殊に、ライブラリーから全長のcDNAが得られ難いような場合には、RACE法〔Rapid amplification of cDNA ends;実験医学、12(6), 35 (1994)〕、特に5’-RACE法〔M.A. Frohman, et al., Proc. Natl. Acad. Sci., USA., 8, 8998 (1988)〕等の採用が好適である。 In obtaining DNA, a PCR method [Science 130, 1350 (1985)] or a modified method of DNA or RNA can be preferably used. In particular, when it is difficult to obtain a full-length cDNA from a library, the RACE method [Rapid amplification of cDNA ends; experimental medicine, 12 (6), 35 (1994)], especially the 5′-RACE method [M . A. Frohman, et al. , Proc. Natl. Acad. Sci. , USA. , 8, 8998 (1988)] and the like are suitable.
 PCR法の採用に際して使用されるプライマーも配列番号2の塩基配列に基づいて適宜設計し合成することができる。尚、増幅させたDNA若しくはRNA断片の単離精製は、前記の通り常法に従うことができ、例えばゲル電気泳動法、ハイブリダイゼーション法等によることができる。 Primers used when adopting the PCR method can also be appropriately designed and synthesized based on the nucleotide sequence of SEQ ID NO: 2. In addition, isolation and purification of the amplified DNA or RNA fragment can be carried out according to a conventional method as described above, for example, by gel electrophoresis, hybridization or the like.
 本発明のDNAを使用することにより、本発明のFGDHを容易に大量に、安定して製造することができる。 By using the DNA of the present invention, the FGDH of the present invention can be easily produced in large quantities and stably.
3.ベクター
 本発明のベクターは、上記2.で説明する本発明のFGDHをコードするDNAが組み込まれたベクターである。ここで「ベクター」とは、それに挿入された核酸分子を細胞等のターゲット内へと輸送することができる核酸性分子(キャリアー)であり、適当な宿主細胞内で本発明のDNAを複製可能であり、且つ、その発現が可能である限り、その種類や構造は特に限定されない。即ち、本発明のベクターは発現ベクターである。ベクターの種類は、宿主細胞の種類を考慮して適当なベクターが選択される。ベクターの具体例としては、プラスミドベクター、コスミドベクター、ファージベクター、ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、ヘルペスウイルスベクター等)等を挙げることができる。また、糸状菌を宿主とする場合に適したベクターや、セルフクローニングに適したベクターを使用することも可能である。
3. Vector The vector of the present invention is the above-mentioned 2. This is a vector in which a DNA encoding FGDH of the present invention described in 1. is incorporated. Here, the “vector” is a nucleic acid molecule (carrier) capable of transporting a nucleic acid molecule inserted therein into a target such as a cell, and can replicate the DNA of the present invention in an appropriate host cell. The type and structure are not particularly limited as long as it can be expressed. That is, the vector of the present invention is an expression vector. As the type of vector, an appropriate vector is selected in consideration of the type of host cell. Specific examples of the vector include a plasmid vector, a cosmid vector, a phage vector, a virus vector (an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a herpes virus vector, etc.) and the like. It is also possible to use a vector suitable for using a filamentous fungus as a host or a vector suitable for self-cloning.
 大腸菌を宿主とする場合は、例えば、M13ファージ又はその改変体、λファージ又はその改変体、pBR322又はその改変体(pB325、pAT153、pUC8など)など)を使用することができる。酵母を宿主とする場合は、pYepSec1、pMFa、pYES2等を使用することができる。昆虫細胞を宿主とする場合は、例えば、pAc、pVL等が使用でき、哺乳類細胞を宿主とする場合は、例えば、pCDM8、pMT2PC等を使用することができるが、これらに限定される訳ではない。 When Escherichia coli is used as a host, for example, M13 phage or a modified product thereof, λ phage or a modified product thereof, pBR322 or a modified product thereof (pB325, pAT153, pUC8, etc.) can be used. When yeast is used as a host, pYepSec1, pMFa, pYES2, etc. can be used. When insect cells are used as hosts, for example, pAc and pVL can be used. When mammalian cells are used as hosts, for example, pCDM8 and pMT2PC can be used, but the present invention is not limited thereto. .
 発現ベクターは通常、挿入された核酸の発現に必要なプロモーター配列や発現を促進させるエンハンサー配列等を含む。選択マーカーを含む発現ベクターを使用することもできる。かかる発現ベクターを用いた場合には選択マーカーを利用して発現ベクターの導入の有無(及びその程度)を確認することができる。本発明のDNAのベクターへの挿入、選択マーカー遺伝子の挿入(必要な場合)、プロモーターの挿入(必要な場合)等は標準的な組換えDNA技術(例えば、Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press, New Yorkを参照することができる、制限酵素及びDNAリガーゼを用いた周知の方法)を用いて行うことができる。 The expression vector usually contains a promoter sequence necessary for the expression of the inserted nucleic acid and an enhancer sequence for promoting the expression. An expression vector containing a selectable marker can also be used. When such an expression vector is used, the presence or absence of the expression vector (and the degree thereof) can be confirmed using a selection marker. Insertion of the DNA of the present invention into a vector, insertion of a selectable marker gene (if necessary), insertion of a promoter (if necessary), etc. are performed using standard recombinant DNA techniques (for example, Molecular Cloning, Third Edition, 1.84). , Cold Spring Harbor Laboratory Press, New York, which is a well-known method using a restriction enzyme and DNA ligase).
4.形質転換体
 本発明は、宿主細胞に本発明のDNAが導入された形質転換体に関する。本発明のDNAの宿主への導入手段は特に制限されないが、例えば、上記3.で説明するベクターに組み込まれた状態で宿主に導入される。宿主細胞は、本発明のDNAを発現してFGDHを生産することが可能である限り、特に制限されない。具体的には、大腸菌、枯草菌等の原核細胞や、酵母、カビ、昆虫細胞、哺乳動物細胞等の真核細胞等を使用することができる。宿主が大腸菌の場合、エシェリヒア・コリC600、エシェリヒア・コリHB101、エシェリヒア・コリDH5αなどが用いられ、ベクターとしてはpBR322、pUC19、pBluescriptなどが例として挙げられる。宿主が酵母の場合は、サッカロミセス・セレビシエ、シゾサッカロミセス・ポンベ、キャンデイダ・ウチリス、ピキア・パストリスなどが例として挙げられ、ベクターとしてはpAUR101、pAUR224、pYE32などが挙げられる。宿主が糸状菌細胞である場合は、例えば、Aspergillus oryzae, Aspergillus niger、Mucor hiemalis等を例示することができる。また、本発明のFGDHが単離されたムコール属に帰属する微生物を宿主とすることも好ましい。即ち、形質転換体では、通常、外来性のDNAが宿主細胞中に存在するが、DNAが由来する微生物を宿主とするいわゆるセルフクローニングによって得られる形質転換体も好適な実施形態である。
4). Transformant The present invention relates to a transformant in which the DNA of the present invention is introduced into a host cell. The means for introducing the DNA of the present invention into the host is not particularly limited. And introduced into a host in a state of being incorporated into a vector described in 1. The host cell is not particularly limited as long as it can express the DNA of the present invention and produce FGDH. Specifically, prokaryotic cells such as Escherichia coli and Bacillus subtilis, eukaryotic cells such as yeast, mold, insect cells, and mammalian cells can be used. When the host is Escherichia coli, Escherichia coli C600, Escherichia coli HB101, Escherichia coli DH5α and the like are used, and examples of the vector include pBR322, pUC19, pBluescript, and the like. When the host is yeast, examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida utilis, Pichia pastoris, and examples of the vector include pAUR101, pAUR224, and pYE32. In the case where the host is a filamentous fungal cell, for example, Aspergillus oryzae, Aspergillus niger, Mucor himalis and the like can be exemplified. It is also preferable to use as a host a microorganism belonging to the genus Mucor from which the FGDH of the present invention has been isolated. That is, in the transformant, exogenous DNA is usually present in the host cell, but a transformant obtained by so-called self-cloning using a microorganism from which the DNA is derived as a host is also a preferred embodiment.
 本発明の形質転換体は、好ましくは、上記3.に示される発現ベクターを用いたトランスフェクション乃至はトランスフォーメーションによって調製される。形質転換は、一過性であっても安定的な形質転換であってもよい。トランスフェクション及びトランスフォーメーションはリン酸カルシウム共沈降法、エレクトロポーレーション(Potter, H. et al., Proc. Natl. Acad. Sci. U.S.A. 81, 7161-7165(1984))、リポフェクション(Felgner, P.L. et al., Proc. Natl. Acad. Sci. U.S.A. 84,7413-7417(1984))、マイクロインジェクション(Graessmann, M. & Graessmann,A., Proc. Natl. Acad. Sci. U.S.A. 73,366-370(1976))、Hanahanの方法(Hanahan, D., J. Mol. Biol. 166, 557-580(1983))、酢酸リチウム法(Schiestl, R.H. et al., Curr. Genet. 16, 339-346(1989))、プロトプラスト-ポリエチレングリコール法(Yelton, M.M. et al., Proc. Natl. Acad. Sci. 81, 1470-1474(1984))等を利用して実施することができる。 The transformant of the present invention is preferably 3. It is prepared by transfection or transformation using the expression vector shown in 1. Transformation may be transient or stable. For transfection and transformation, calcium phosphate coprecipitation method, electroporation (Potter, H. et al., Proc. Natl. Acad. Sci. USA 81, 7161-7165 (1984)), lipofection (Felner) , PL et al., Proc. Natl. Acad. Sci. U.S.A. 84, 7413-7417 (1984)), microinjection (Graessmann, M. & Graessmann, A., Proc. Natl. Acad. Sci. USA 73, 366-370 (1976)), Hanahan's method (Hanahan, D., J. Mol. Biol. 66, 557-580 (1983)), the lithium acetate method (Schiestl, RH et al., Curr. Genet. 16, 339-346 (1989)), the protoplast-polyethylene glycol method (Yelton, MM). et al., Proc. Natl. Acad. Sci. 81, 1470-1474 (1984)) and the like.
 本発明の形質転換体は、本発明のFGDHを産生する能力を有するため、それを用いて効率的に本発明のFGDHを製造することが可能となる。 Since the transformant of the present invention has the ability to produce the FGDH of the present invention, it can be used to efficiently produce the FGDH of the present invention.
5.フラビン結合型グルコース脱水素酵素の製造方法
 本発明のFGDHは、典型的には、本発明のFGDHの生産能を有する微生物を培養することで製造される。培養に供される微生物は、本発明のFGDHを産生する能力を有する限り特に制限されず、例えば、上記1.に示すムコール属に帰属する野生型の微生物及び上記4.に示す形質転換体を好適に利用することができる。
5). Production method of flavin-binding glucose dehydrogenase The FGDH of the present invention is typically produced by culturing a microorganism having the ability to produce the FGDH of the present invention. The microorganism used for the culture is not particularly limited as long as it has the ability to produce the FGDH of the present invention. And a wild-type microorganism belonging to the genus Mucor shown in 4. The transformant shown in can be suitably used.
 上記のムコール(Mucor)属に分類される微生物は、例えば、NBRC(NITE Biological Resouce Center)(独立行政法人製品評価技術基盤機構 バイオテクノロジー本部 生物遺伝資源部門)に保管された菌株であり、所定の手続を経ることによってその分譲を受けることができる。 Microorganisms classified into the above genus Mucor are strains stored in, for example, NBRC (NITE Biologic Resource Center) (Independent Administrative Institution, Product Evaluation Technology Infrastructure, Biotechnology Headquarters, Biogenetic Resources Division). We can receive the sale by going through the procedure.
 培養方法及び培養条件は、本発明のFGDHが生産される限り特に限定されない。即ち、FGDHが生産されることを条件として、使用する微生物の生育に適合した方法及び条件を適宜設定できる。以下に、培養条件として、培地、培養温度、及び培養時間を例示する。 The culture method and culture conditions are not particularly limited as long as the FGDH of the present invention is produced. That is, on the condition that FGDH is produced, a method and conditions suitable for the growth of the microorganism to be used can be appropriately set. Hereinafter, examples of the culture conditions include a culture medium, a culture temperature, and a culture time.
 培地としては、使用する微生物が生育可能な培地であれば、特に制限されない。例えば、グルコース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、更に硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、ペプトン、酵母エキス、コーンスティープリカー、カゼイン加水分解物、ふすま、肉エキス等の窒素源、更にカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、亜鉛塩等の無機塩を添加したものを用いることができる。使用する微生物の生育を促進するためにビタミン、アミノ酸などを培地に添加してもよい。 The medium is not particularly limited as long as the microorganism to be used can grow. For example, carbon sources such as glucose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acid, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor, casein Nitrogen sources such as hydrolysates, bran and meat extracts, and further added with inorganic salts such as potassium salts, magnesium salts, sodium salts, phosphates, manganese salts, iron salts and zinc salts can be used. In order to promote the growth of the microorganisms to be used, vitamins, amino acids and the like may be added to the medium.
 ムコール(Mucor)属に分類される微生物を培養して本発明のFGDHを得る場合は、その微生物の栄養生理的性質を考慮して培養条件を選択すればよい。多くの場合は液体培養で行い、工業的には通気攪拌培養を行うのが有利である。ただし、生産性を考えた場合に、固体培養で行った方が有利な場合もある。 When culturing a microorganism classified into the genus Mucor to obtain the FGDH of the present invention, the culture conditions may be selected in consideration of the nutritional physiological properties of the microorganism. In many cases, it is advantageous to use liquid culture and industrially perform aeration and agitation culture. However, when productivity is considered, it may be advantageous to carry out by solid culture.
 培地のpHは、培養する微生物の生育に適していればよく、例えば約3~8、好ましくは約5~7程度に調整し、培養温度は通常約10~50℃、好ましくは約25~35℃程度で、1~15日間、好ましくは3~7日間程度好気的条件下で培養する。培養法としては例えば振盪培養法、ジャー・ファーメンターによる好気的深部培養法が利用できる。 The pH of the medium is only required to be suitable for the growth of the microorganism to be cultured. For example, it is adjusted to about 3 to 8, preferably about 5 to 7, and the culture temperature is usually about 10 to 50 ° C., preferably about 25 to 35. Culturing is carried out under aerobic conditions at about 0 ° C. for about 1 to 15 days, preferably about 3 to 7 days. As the culture method, for example, a shaking culture method or an aerobic deep culture method using a jar fermenter can be used.
 上記のような条件で培養した後、培養液又は菌体よりFGDHを回収することが好ましい。FGDHを菌体外に分泌する微生物を用いる場合は、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことにより本酵素を得ることができる。ムコール属に属する微生物が産生するフラビン結合型グルコース脱水素酵素は基本的に分泌型のタンパク質である。 It is preferable to collect FGDH from the culture solution or the cells after culturing under the above conditions. When using a microorganism that secretes FGDH outside the cells, for example, the culture supernatant is filtered, centrifuged, etc. to remove insoluble matters, then concentrated with an ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis, The present enzyme can be obtained by performing separation and purification by appropriately combining various types of chromatography. Flavin-binding glucose dehydrogenase produced by microorganisms belonging to the genus Mucor is basically a secreted protein.
 他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理、機械的手法、又はリゾチーム等の酵素を利用した手法等によって破砕した後、必要に応じて、EDTA等のキレート剤及び界面活性剤を添加してGDHを可溶化し、水溶液として分離採取し、分離、精製を行うことにより本酵素を得ることができる。ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。 On the other hand, when recovering from the microbial cells, for example, the microbial cells are crushed by pressure treatment, ultrasonic treatment, mechanical method, or a method using an enzyme such as lysozyme, and if necessary, such as EDTA. The present enzyme can be obtained by adding a chelating agent and a surfactant to solubilize GDH, separating and collecting it as an aqueous solution, separating and purifying it. After the cells are collected from the culture solution in advance by filtration, centrifugation, or the like, the above series of steps (crushing, separating, and purifying the cells) may be performed.
 精製は、例えば、減圧濃縮、膜濃縮、さらに硫酸アンモニウム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例えばメタノール、エタノール、アセトンなどによる分別沈殿法により沈殿処理、加熱処理や等電点処理、吸着剤あるいはゲルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等を適宜組み合わせて実施することができる。 Purification includes, for example, concentration under reduced pressure, membrane concentration, salting-out treatment such as ammonium sulfate and sodium sulfate, or precipitation treatment by a fractional precipitation method using a hydrophilic organic solvent such as methanol, ethanol, acetone, etc., heat treatment or isoelectric point treatment. In addition, gel filtration using an adsorbent or a gel filtration agent, adsorption chromatography, ion exchange chromatography, affinity chromatography, and the like can be combined as appropriate.
 カラムクロマトグラフィーを用いる場合は、例えば、セファデックス(Sephadex)ゲル(GEヘルスケア バイオサイエンス社製)などによるゲルろ過、DEAEセファロースCL-6B(GEヘルスケア バイオサイエンス社製)、オクチルセファロースCL-6B(GEヘルスケア バイオサイエンス社製)等を用いることができる。該精製酵素標品は、電気泳動(SDS-PAGE)的に単一のバンドを示す程度に純化されていることが好ましい。 When column chromatography is used, for example, gel filtration using Sephadex gel (GE Healthcare Bioscience), DEAE Sepharose CL-6B (GE Healthcare Bioscience), octyl Sepharose CL-6B (GE Healthcare manufactured by Biosciences) or the like can be used. The purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
 なお、培養液からのグルコース脱水素酵素活性を有するタンパク質の採取(抽出、精製など)にあたっては、グルコース脱水素酵素活性、マルトース作用性、熱安定性などのうちいずれか1つ以上を指標に行ってもよい。 When collecting (extracting, purifying, etc.) a protein having glucose dehydrogenase activity from the culture solution, one or more of glucose dehydrogenase activity, maltose activity, thermal stability, etc. are used as indicators. May be.
 各精製工程では原則としてFGDH活性を指標として分画を行い、次のステップへと進む。但し、予備試験などによって、適切な条件を予め設定可能な場合にはこの限りでない。 In each purification process, in principle, fractionation is performed using FGDH activity as an indicator, and the process proceeds to the next step. However, this does not apply when appropriate conditions can be set in advance by a preliminary test or the like.
 本発明のFGDHを精製標品とする場合は、例えば比活性が110~210(U/mg)、好ましくは比活性が140~180(U/mg)の状態に精製することが好ましい。
また、最終的な形態は液体状であっても固体状(粉体状を含む)であってもよい。
When the FGDH of the present invention is used as a purified sample, for example, it is preferable to purify it to have a specific activity of 110 to 210 (U / mg), preferably 140 to 180 (U / mg).
The final form may be liquid or solid (including powder).
 組換えタンパク質として本酵素を得ることにすれば種々の修飾が可能である。例えば、本酵素をコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなる本酵素を得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。 Various modifications are possible if this enzyme is obtained as a recombinant protein. For example, if a DNA encoding this enzyme and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the peptide consists of a recombinant protein linked to any peptide or protein. This enzyme can be obtained. In addition, modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
6.グルコースの測定方法
 グルコースデヒドロゲナーゼを用いたグルコースの測定方法は既に当該技術分野において確立されている。よって、公知の方法に従い、本発明のFGDHを用いて、各種試料中のグルコースの量又は濃度を測定することができる。本発明のFGDHを用いてグルコースの濃度又は量が測定可能である限り、その態様は特に制限されないが、例えば、本発明のFGDHを試料中のグルコースに作用させ、グルコースの脱水素反応に伴う電子受容体(例えば、DCPIP)の構造変化を吸光度で測定することにより実施することができる。より具体的には、上記1-1.に示す方法に従って、実施することができる。本発明に従った、グルコース濃度の測定は、試料に本発明のFGDHを添加すること、又は添加して混合することにより実施することができる。グルコースを含有する試料は、特に制限されないが、例えば、血液、飲料、食品等を挙げることができる。グルコース濃度又は量の測定が可能である限り、試料に添加する酵素の量はと特に制限されない。
6). Method for Measuring Glucose A method for measuring glucose using glucose dehydrogenase has already been established in the art. Therefore, according to a known method, the amount or concentration of glucose in various samples can be measured using the FGDH of the present invention. As long as the concentration or amount of glucose can be measured using the FGDH of the present invention, the mode is not particularly limited. For example, the FGDH of the present invention is allowed to act on glucose in a sample, and the electrons associated with the dehydrogenation reaction of glucose. This can be done by measuring the structural change of a receptor (eg, DCPIP) by absorbance. More specifically, the above 1-1. According to the method shown in FIG. The measurement of the glucose concentration according to the present invention can be carried out by adding the FGDH of the present invention to a sample, or by adding and mixing them. The sample containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods. The amount of enzyme added to the sample is not particularly limited as long as the glucose concentration or amount can be measured.
 後述するセンサの形態でのグルコース濃度の測定は、例えば、以下のようにして実施することができる。恒温セルに緩衝液を入れ、一定温度に維持する。メディエーターとしては、フェリシアン化カリウム、フェナジンメトサルフェートなどを用いることができる。
作用電極として本発明のFGDHを固定化した電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。
The measurement of the glucose concentration in the form of a sensor to be described later can be performed, for example, as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used.
An electrode on which the FGDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
7.グルコースアッセイキット
 本発明のグルコースアッセイキットは、本発明のFGDHを少なくとも1回のアッセイに十分な量で含む。典型的には、キットは、本発明のFGDHに加えて、アッセイに必要な緩衝液、メディエーター、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明のFGDHは種々の形態で、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。
7). Glucose Assay Kit The glucose assay kit of the present invention contains the FGDH of the present invention in an amount sufficient for at least one assay. Typically, the kit includes the FGDH of the present invention, plus buffers necessary for the assay, mediators, glucose standard solution for creating a calibration curve, and directions for use. The FGDH of the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
8.グルコースセンサ
 本発明はまた、本発明のFGDHを用いるグルコースセンサを提供する。本発明のグルコースセンサは、電極として、カーボン電極、金電極、白金電極などを用い、この電極上に本発明の酵素を固定化することで作製することができる。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどがある。その他、フェロセン又はその誘導体に代表される電子メディエーターとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。本発明のFGDHは、熱安定性に優れるため、比較的高温度(例えば、50℃や55℃)の条件下で固定化を実施することができる。典型的には、グルタルアルデヒドを用いて本発明のFGDHをカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングすることができる。
8). Glucose Sensor The present invention also provides a glucose sensor using the FGDH of the present invention. The glucose sensor of the present invention can be produced by using a carbon electrode, a gold electrode, a platinum electrode, or the like as an electrode and immobilizing the enzyme of the present invention on this electrode. Examples of the immobilization method include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, and a redox polymer. In addition, it may be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator represented by ferrocene or a derivative thereof, or may be used in combination. Since FGDH of the present invention is excellent in thermal stability, it can be immobilized under relatively high temperature conditions (for example, 50 ° C. and 55 ° C.). Typically, after FGDH of the present invention is immobilized on a carbon electrode using glutaraldehyde, glutaraldehyde can be blocked by treatment with a reagent having an amine group.
 センサーを用いたグルコース濃度の測定は、以下のようにして行うことができる。恒温セルに緩衝液を入れ、一定温度に維持する。メディエーターとしては、フェリシアン化カリウム、フェナジンメトサルフェートなどを用いることができる。作用電極として本発明のFGDHを固定化した電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。 The measurement of glucose concentration using a sensor can be performed as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the FGDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
 以下に、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
 実施例1 菌株の復元
 独立行政法人製品評価技術基盤機構バイオテクノロジーセンター国際連携課から、ムコール属に帰属する菌株を入手した。入手した菌株は、L-乾燥標品であったため、アンプルを開封し、復元水100μLを注入し、乾燥菌体を懸濁した後、懸濁液を復元培地に滴下し、25℃で3日間から7日間、静置培養することで菌株を復元させた。復元水としては、滅菌水(オートクレーブで120℃、20分間処理した蒸留水)を使用し、復元培地としては、DP培地(デキストリン2.0%、ポリペプトン1.0%、KHPO1.0%、アガロース1.5%)を使用した。
Example 1 Restoration of Strains A strain belonging to the genus Mucor was obtained from the International Cooperation Division, National Institute of Technology and Evaluation Biotechnology Center. Since the obtained strain was an L-dried preparation, the ampoule was opened, 100 μL of reconstituted water was injected, the dried cells were suspended, and the suspension was dropped into the reconstitution medium for 3 days at 25 ° C. The strain was restored by stationary culture for 7 days. As the restoration water, sterilized water (distilled water treated at 120 ° C. for 20 minutes in an autoclave) is used, and as the restoration medium, DP medium (dextrin 2.0%, polypeptone 1.0%, KH 2 PO 4 . 0%, agarose 1.5%).
実施例2 培養上清の回収
 小麦胚芽2g、水2mLを含む培地をオートクレーブで120℃、20分間滅菌した固体培地に、実施例1で復元させたMucor属の各菌株を一白金耳植菌し、25℃で3日間から7日間静置培養した。培養後、2mMのEDTAを含む50mMリン酸カリウム緩衝液(pH6.0)を4mL添加し、ボルテックスで十分に懸濁した。懸濁液に少量のガラスビーズを加えた後、ビーズショッカー(安井器械(株)製)で3,000rpm、3分間×2回の条件で破砕し、4℃、2,000×g、5分間の条件で遠心分離して、回収した上清を粗酵素液とした。
Example 2 Recovery of Culture Supernatant A medium containing 2 g of wheat germ and 2 mL of water was sterilized by autoclaving at 120 ° C. for 20 minutes, and each strain of the genus Mucor restored in Example 1 was inoculated with one platinum ear. The culture was stationary at 25 ° C. for 3 to 7 days. After the culture, 4 mL of 50 mM potassium phosphate buffer (pH 6.0) containing 2 mM EDTA was added, and the mixture was sufficiently suspended by vortexing. After adding a small amount of glass beads to the suspension, it was crushed under a condition of 3,000 rpm for 3 minutes × 2 times with a bead shocker (manufactured by Yasui Kikai Co., Ltd.), 4 ° C., 2,000 × g, 5 minutes. Centrifugation was performed under the above conditions, and the recovered supernatant was used as a crude enzyme solution.
実施例3 グルコース脱水素酵素活性の確認
 実施例2で得た粗酵素液中のグルコース脱水素酵素活性を、上記1-1.に示したグルコースデヒドロゲナーゼ活性測定方法を用いて測定した。その結果を表1に示す。
Example 3 Confirmation of Glucose Dehydrogenase Activity Glucose dehydrogenase activity in the crude enzyme solution obtained in Example 2 was determined according to 1-1. It was measured using the glucose dehydrogenase activity measuring method shown in 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、Mucor subtilissimus NBRC6338由来の粗酵素液にGDH活性が存在することが確認された。 As shown in Table 1, it was confirmed that the crude enzyme solution derived from Mucor subtilismus NBRC6338 has GDH activity.
実施例4 Mucor subtilissimus NBRC6338由来GDHの精製
 50mLのDP液体培地を500mL坂口フラスコに入れ、オートクレーブで滅菌し、前培養用の培地とした。予めDPプレート培地で復元したMucor subtilissimus NBRC6338を前培養培地に一白金耳植菌し、25℃、180rpmで3日間振とう培養し、種培養液とした。
Example 4 Purification of Mucor subtilissimus NBRC6338-derived GDH 50 mL of DP liquid medium was placed in a 500 mL Sakaguchi flask and sterilized by autoclaving to prepare a medium for preculture. Mucor subtilismus NBRC6338, which was previously reconstituted with DP plate medium, was inoculated into a preculture medium with one platinum ear, and cultured with shaking at 25 ° C. and 180 rpm for 3 days to obtain a seed culture solution.
 次に、6.0Lの生産培地(イーストイクストラクト2.0%、グルコース1%、pH6.0)を10L容ジャーファーメンターに入れ、オートクレーブで滅菌し、本培養培地とした。50mLの種培養液を本培養培地に植菌し、培養温度25℃、攪拌速度600rpm、通気量2.0L/分、管内圧0.2MPaの条件で3日間培養した。その後、培養液をろ布でろ過し、菌体を回収した。得られた菌体を50mMリン酸カリウム緩衝液(pH6.0)に懸濁した。 Next, 6.0 L of production medium (yeast extract 2.0%, glucose 1%, pH 6.0) was placed in a 10 L jar fermenter and sterilized by an autoclave to obtain a main culture medium. 50 mL of the seed culture solution was inoculated into the main culture medium and cultured for 3 days under the conditions of a culture temperature of 25 ° C., a stirring speed of 600 rpm, an aeration rate of 2.0 L / min, and a tube pressure of 0.2 MPa. Thereafter, the culture solution was filtered with a filter cloth, and the cells were collected. The obtained bacterial cells were suspended in 50 mM potassium phosphate buffer (pH 6.0).
 懸濁液をフレンチプレス(Niro Soavi製)に流速160mL/分で送液し、1000~1300barで破砕した。続いて、破砕液に硫酸アンモニウム(住友化学(株)製)を0.2飽和になるように徐々に添加して、室温で30分間攪拌した後、ろ過助剤を用いて余分な沈殿を除去した。次に分画分子量10,000のUF膜(ミリポア(株)製)を用いて濃縮し、濃縮液をSephadex G-25のゲルを用いて脱塩した。
その後、脱塩液に0.5飽和になるように硫酸アンモニウムを徐々に添加し、予め0.5飽和の硫酸アンモニウムを含む50mMリン酸カリウム緩衝液(pH6.0)で平衡化した400mLのPSセファロースFastFlow(GEヘルスケア製)カラムにかけ、50mMリン酸緩衝液(pH6.0)のリニアグラジエントで溶出させた。そして、溶出されたGDH画分を分画分子量10,000の中空糸膜(スペクトラムラボラトリーズ製)で濃縮後、DEAEセファロースFast Flow(GEヘルスケア製)カラムにかけ、精製酵素を得た。得られた精製酵素をSDS-ポリアクリルアミドゲル電気泳動法(Phast Gel 10-15% Phastsystem GEヘルスケア製)に供した。この際、タンパク質分子量マーカーとしてフォスフォリラーゼb(97,400ダルトン)、ウシ血清アルブミン(66,267ダルトン)、アルドラーゼ(42,400ダルトン)、カルボニックアンヒドラーゼ(30,000ダルトン)、トリプシンインヒビター(20,100ダルトン)を用いた。
The suspension was fed to a French press (manufactured by Niro Soavi) at a flow rate of 160 mL / min and crushed at 1000 to 1300 bar. Subsequently, ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd.) was gradually added to the crushed solution so as to become 0.2 saturation, and after stirring at room temperature for 30 minutes, excess precipitate was removed using a filter aid. . Next, the mixture was concentrated using a UF membrane (Millipore Corporation) having a molecular weight cut-off of 10,000, and the concentrated solution was desalted using Sephadex G-25 gel.
Thereafter, ammonium sulfate was gradually added to the desalted solution to 0.5 saturation, and 400 mL of PS Sepharose FastFlow previously equilibrated with 50 mM potassium phosphate buffer (pH 6.0) containing 0.5 saturated ammonium sulfate. It was applied to a column (manufactured by GE Healthcare) and eluted with a linear gradient of 50 mM phosphate buffer (pH 6.0). The eluted GDH fraction was concentrated with a hollow fiber membrane (Spectrum Laboratories) having a molecular weight cut off of 10,000, and then applied to a DEAE Sepharose Fast Flow (GE Healthcare) column to obtain a purified enzyme. The obtained purified enzyme was subjected to SDS-polyacrylamide gel electrophoresis (Past Gel 10-15%, Phassystem GE Healthcare). In this case, phosphorylase b (97,400 dalton), bovine serum albumin (66,267 dalton), aldolase (42,400 dalton), carbonic anhydrase (30,000 dalton), trypsin inhibitor (protein molecular weight marker) 20,100 Dalton).
 その結果、単一のバンドが得られたことから、GDHが十分に精製されていることを確認した。分子量マーカーと比較した移動度から、FGDHの分子量は109,000~143,000ダルトンであることが判明した。 As a result, since a single band was obtained, it was confirmed that GDH was sufficiently purified. From the mobility compared to molecular weight markers, the molecular weight of FGDH was found to be 109,000-143,000 daltons.
 実施例5 単離されたGDHのペプチド部分の分子量
 実施例4で精製したGDHを100℃、10分間、加熱処理して変性させた後、5UのN-グリコシダーゼF(ロシュ・ダイアグノスティクス製)で37℃、1時間処理し、タンパク質に付加している糖鎖を分解した。その後、実施例4と同様の方法でSDS-ポリアクリルアミドゲル電気泳動法で測定を行った。分子量マーカーは、実施例4と同じものを使用した。その結果、精製したFGDHのポリペプチド部分の分子量は約69,000ダルトンであることが判明した。
Example 5 Molecular Weight of Isolated GDH Peptide Part The GDH purified in Example 4 was denatured by heating at 100 ° C. for 10 minutes, and then 5 U of N-glycosidase F (Roche Diagnostics). At 37 ° C. for 1 hour to decompose the sugar chain added to the protein. Thereafter, measurement was performed by SDS-polyacrylamide gel electrophoresis in the same manner as in Example 4. The same molecular weight marker as in Example 4 was used. As a result, it was found that the molecular weight of the purified FGDH polypeptide part was about 69,000 daltons.
 実施例6 基質特異性
 上記1-1.に示したFGDHの活性測定法に従い、実施例4で精製したGDHについて、D-グルコース、マルトース、D-ガラクトース、D-キシロースを基質とした場合の活性を測定した。D-グルコースを基質とした場合の活性を100%とし、それと比較した他の糖に対する活性を求めた。各糖の濃度は50mMとした。結果を表2に示す。
Example 6 Substrate Specificity 1-1. According to the method for measuring the activity of FGDH shown in Fig. 4, the activity of GDH purified in Example 4 was measured using D-glucose, maltose, D-galactose and D-xylose as substrates. The activity when D-glucose was used as a substrate was defined as 100%, and the activity against other sugars compared with that was determined. The concentration of each sugar was 50 mM. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明のFGDHの基質特異性は、D-グルコースに対する活性値を100%とした場合、マルトース、D-ガラクトース、D-キシロースに対する見かけの活性は、いずれも2.5%以下であり、本発明のFGDHは基質特異性に優れていることが示された。 From the results of Table 2, the substrate specificity of the FGDH of the present invention is 2.5% for the apparent activity for maltose, D-galactose and D-xylose when the activity value for D-glucose is 100%. It was as follows and it was shown that FGDH of this invention is excellent in substrate specificity.
 実施例7 至適活性pH
 実施例4で得られた精製FGDH酵素液(0.5U/mL)を用いて、至適pHを調べた。100mM 酢酸カリウム緩衝液(pH5.0-5.5、図中■印でプロット)、100mM MES-NaOH緩衝液(pH5.5-6.5、図中□印でプロット)、100mMリン酸カリウム緩衝液(pH6.0-8.0、図中▲でプロット)、100mM Tris-HCl緩衝液(pH7.5-9.0、図中△印でプロット)を用い、それぞれのpHにおいて、温度37℃にて酵素反応を行い、相対活性を比較した。結果を図1に示す。
Example 7 Optimum active pH
Using the purified FGDH enzyme solution (0.5 U / mL) obtained in Example 4, the optimum pH was examined. 100 mM potassium acetate buffer (pH 5.0-5.5, plotted with ■ in the figure), 100 mM MES-NaOH buffer (pH 5.5-6.5, plotted with □ in the figure), 100 mM potassium phosphate buffer Solution (pH 6.0-8.0, plotted with ▲ in the figure), 100 mM Tris-HCl buffer solution (pH 7.5-9.0, plotted with △ mark in the figure), and at each pH, the temperature was 37 ° C. Enzymatic reactions were carried out and the relative activities were compared. The results are shown in FIG.
 その結果、本発明のFGDHの至適活性pHは、Tris-HCl緩衝液を使用した場合、pH8.0において最も高い活性値を示した。また、リン酸カリウム緩衝液を使用した場合は、pH6.0~7.5の範囲で最も高い活性が示された。更に、MES-NaOH緩衝液を用いた場合は、pH6.5で最も高い活性が示された。 As a result, the optimum activity pH of FGDH of the present invention showed the highest activity value at pH 8.0 when the Tris-HCl buffer was used. When potassium phosphate buffer was used, the highest activity was shown in the pH range of 6.0 to 7.5. Furthermore, when MES-NaOH buffer was used, the highest activity was shown at pH 6.5.
実施例8 至適活性温度
 実施例4で得られた精製FGDH酵素液(0.1U/mL)を用いて、至適活性温度を調べた。緩衝溶液には42mM PIPES-NaOH緩衝液(pH6.5)を用い、37℃、40℃、45℃、50℃、55℃、60℃における活性を求めた。結果を図2に示す。
Example 8 Optimal activity temperature Using the purified FGDH enzyme solution (0.1 U / mL) obtained in Example 4, the optimal activity temperature was examined. The buffer solution used was 42 mM PIPES-NaOH buffer (pH 6.5), and the activity at 37 ° C., 40 ° C., 45 ° C., 50 ° C., 55 ° C. and 60 ° C. was determined. The results are shown in FIG.
 その結果、本発明のFGDHは、45℃~50℃の範囲で最も高い活性値を示し、最大の活性値に対して80%以上の相対活性を示す温度範囲は40℃~50℃であった。以上のことから、フラビン結合型FGDHの至適活性温度は40℃~50℃付近であることが示された。 As a result, the FGDH of the present invention showed the highest activity value in the range of 45 ° C. to 50 ° C., and the temperature range showing the relative activity of 80% or more with respect to the maximum activity value was 40 ° C. to 50 ° C. . From the above, it was shown that the optimum activity temperature of flavin-binding FGDH is around 40 ° C to 50 ° C.
実施例9 pH安定性
 実施例4で得られた精製FGDH酵素液(2U/mL)を用いて、pH安定性を調べた。100mM グリシン-HCl緩衝液(pH2.5-pH3.5:図中■印でプロット)100mM 酢酸-カリウム緩衝液(pH3.0-pH5.5:図中□印でプロット)、100mM MES-NaOH緩衝液(pH5.5-pH6.5:図中▲印でプロット)、100mM リン酸カリウム緩衝液(pH6.0-pH8.0:図中△印でプロット)、100mM Tris-HCl緩衝液(pH7.5-pH9.0:図中●印でプロット)、100mM グリシン-NaOH緩衝液(pH9.0-pH10.5:図中○印でプロット)を用い、25℃、16時間、各緩衝液中で酵素を維持し、その後のグルコースを基質とした場合の活性を測定した。処理後の活性値と処理前の活性値を比較し、残存活性率を求めた。結果を図3に示す。
Example 9 pH stability Using the purified FGDH enzyme solution (2 U / mL) obtained in Example 4, pH stability was examined. 100 mM glycine-HCl buffer (pH 2.5-pH 3.5: plotted with ■ in the figure) 100 mM acetate-potassium buffer (pH 3.0-pH 5.5: plotted with □ in the figure), 100 mM MES-NaOH buffer Solution (pH 5.5-pH 6.5: plotted with ▲ mark), 100 mM potassium phosphate buffer (pH 6.0-pH 8.0: plotted with △ mark), 100 mM Tris-HCl buffer (pH 7. 5-pH 9.0: plotted with a circle in the figure), 100 mM glycine-NaOH buffer solution (pH 9.0-pH 10.5: plotted with a circle in the figure) at 25 ° C. for 16 hours in each buffer. The activity was measured when the enzyme was maintained and the subsequent glucose was used as a substrate. The activity value after the treatment and the activity value before the treatment were compared to determine the residual activity rate. The results are shown in FIG.
 その結果、活性の残存率はpH3.0~pH8.0の範囲で95%以上であった。このことから、安定pH域はpH3.0~pH8.0であることが示された。 As a result, the activity remaining rate was 95% or more in the range of pH 3.0 to pH 8.0. From this, it was shown that the stable pH range was pH 3.0 to pH 8.0.
実施例10 温度安定性
 実施例4で得られた精製FGDH酵素液(2U/mL)を用いて、温度安定性を調べた。100mM酢酸カリウム緩衝液(pH5.0)を用いて、FGDH酵素液を各温度(4℃、30℃、40℃、50℃、55℃、60℃、65℃、70℃)で15分間処理した後、GDH活性を測定し、処理前のGDH活性と比較して残存率を測定した。結果を図4に示す。
Example 10 Temperature Stability Using the purified FGDH enzyme solution (2 U / mL) obtained in Example 4, temperature stability was examined. The FGDH enzyme solution was treated with each temperature (4 ° C, 30 ° C, 40 ° C, 50 ° C, 55 ° C, 60 ° C, 65 ° C, 70 ° C) for 15 minutes using 100 mM potassium acetate buffer (pH 5.0). Then, GDH activity was measured and the residual rate was measured compared with the GDH activity before a process. The results are shown in FIG.
 その結果、本発明のFGDHは4℃~50℃の温度範囲での処理後96%の残存率を有していた。このことから、FGDHは、50℃以下で安定であることが示された。 As a result, the FGDH of the present invention had a residual rate of 96% after treatment in the temperature range of 4 ° C. to 50 ° C. From this, it was shown that FGDH is stable at 50 ° C. or lower.
実施例11 Km値の測定
 基質であるD-グルコースの濃度を変化させて実施例4で精製したFGDH酵素の活性測定を行い、基質濃度と反応速度のグラフを作成した(図5)。これに基づいてLineweaver-burk plotを作成し、Km値を算出した。その結果、本発明のFGDHのD-グルコースに対するKm値は、6.7mMであり、D-グルコースに対する親和性が高いことが判明した。
Example 11 Measurement of Km Value The activity of the FGDH enzyme purified in Example 4 was measured by changing the concentration of the substrate D-glucose, and a graph of the substrate concentration and the reaction rate was prepared (FIG. 5). Based on this, a Lineweaver-burk plot was created and the Km value was calculated. As a result, the Km value of FGDH of the present invention for D-glucose was 6.7 mM, and it was found that the affinity for D-glucose was high.
実施例12 FGDHをコードするDNAの単離
 (1)染色体DNAの抽出
 Mucor subtilissimus NBRC6338をYG培地(Yeast Extract 1%、Glucose 2%)50mlを入れた坂口フラスコを用いて25℃一晩培養した後、ブフナー漏斗及びヌッチェ吸引瓶を用いて培養液をろ過し、菌体を得た。そのうち、約0.3gの菌体を液体窒素中で凍結させ、乳鉢を用いて菌糸を粉砕し、Extraction buffer(1% hexadecyltrimethylammonium bromide、0.7M NaCl、50mM Tris-HCl(pH8.0)、10mM EDTA、1% メルカプトエタノール)12mlに懸濁した。室温で30分回転撹拌を続けた後、等量のフェノール:クロロホルム:イソアミルアルコール(25:24:1)溶液を加えて攪拌、遠心分離(1,500g、5分、室温)して上清を得た。得られた上清に等量のクロロホルム:イソアミルアルコール(24:1)溶液を加えて攪拌し、その後遠心分離(1,500g、5分、室温)を行った。その結果得られた上清に等量のイソプロパノールを穏やかに加えた。この処理によって析出した染色体DNAを遠心分離(20,000g、10分、4℃)して得られた沈殿を70%エタノールで洗浄し、真空乾燥した。このようにして得られた染色体DNAを再び4mlのTEに溶解し、10mg/mlのRNase A(シグマアルドリッチジャパン株式会社)を200μl加えた後、37℃で、30分間インキュベートした。次いで、20mg/mlのProteinase K,recombinant,PCR Grade(ロシュ・ダイアグノスティックス株式会社)溶液40μlを加えて37℃で、30分間インキュベートした後、等量のフェノール:クロロホルム:イソアミルアルコール(25:24:1)溶液を加えた。攪拌後、遠心分離(1,500g、5分、室温)し、上清を得た。この洗浄操作を2回繰り返した後、得られた上清に等量のクロロホルム:イソアミルアルコール(24:1)溶液を加えて攪拌し、その後遠心分離(1,500g、5分、室温)を行った。その結果得られた上清に対して、その1/10容量の3M NaOAc(pH4.8)と2.5倍容量のエタノールを加えて遠心処理(20,000g、20分、4℃)を行うことにより回収した。回収された染色体DNAを70%エタノールで洗浄した後、真空乾燥させ、最後に400μlのTE溶液に溶解して濃度約1mg/mlの染色体DNA溶液を得た。
Example 12 Isolation of DNA Encoding FGDH (1) Extraction of Chromosomal DNA Mucor subtilis NBRC6338 was cultured overnight at 25 ° C. in a Sakaguchi flask containing 50 ml of YG medium (Yeast Extract 1%, Glucose 2%). The culture solution was filtered using a Buchner funnel and a Nutsche suction bottle to obtain bacterial cells. Among them, about 0.3 g of the microbial cells were frozen in liquid nitrogen, the mycelia were crushed using a mortar, and an extraction buffer (1% hexamethylmethyl bromide, 0.7 M NaCl, 50 mM Tris-HCl (pH 8.0), 10 mM. It was suspended in 12 ml of EDTA, 1% mercaptoethanol). Continue rotating and stirring at room temperature for 30 minutes, add an equal amount of phenol: chloroform: isoamyl alcohol (25: 24: 1) solution, stir and centrifuge (1,500 g, 5 minutes, room temperature) to remove the supernatant. Obtained. An equal volume of chloroform: isoamyl alcohol (24: 1) solution was added to the obtained supernatant and stirred, followed by centrifugation (1,500 g, 5 minutes, room temperature). An equal volume of isopropanol was gently added to the resulting supernatant. Chromosomal DNA precipitated by this treatment was centrifuged (20,000 g, 10 minutes, 4 ° C.), and the resulting precipitate was washed with 70% ethanol and vacuum dried. The chromosomal DNA thus obtained was again dissolved in 4 ml of TE, 200 μl of 10 mg / ml RNase A (Sigma Aldrich Japan Co., Ltd.) was added, and the mixture was incubated at 37 ° C. for 30 minutes. Next, after adding 40 μl of 20 mg / ml Proteinase K, recombinant, PCR Grade (Roche Diagnostics) solution and incubating at 37 ° C. for 30 minutes, an equal amount of phenol: chloroform: isoamyl alcohol (25: 24: 1) The solution was added. After stirring, the mixture was centrifuged (1,500 g, 5 minutes, room temperature) to obtain a supernatant. After repeating this washing operation twice, an equal volume of chloroform: isoamyl alcohol (24: 1) solution was added to the resulting supernatant and stirred, followed by centrifugation (1,500 g, 5 minutes, room temperature). It was. The supernatant obtained as a result is subjected to centrifugation (20,000 g, 20 minutes, 4 ° C.) by adding 1/10 volume of 3M NaOAc (pH 4.8) and 2.5 times volume of ethanol. It was collected by The recovered chromosomal DNA was washed with 70% ethanol, vacuum-dried, and finally dissolved in 400 μl of TE solution to obtain a chromosomal DNA solution having a concentration of about 1 mg / ml.
(2)合成プライマーの設計
  配列番号3に示すAspergillus oryzae由来GDHのアミノ酸配列(特許4292486の配列表において配列番号4で示されるアミノ酸配列)やその他公知のアミノ配列を参考にして、比較的アミノ酸配列が保存されていると判断できる領域に基づいて、ミックス塩基を含有する縮重プライマー、degeF30、degeR13(配列番号4、5)を合成した。
(2) Design of synthetic primer The amino acid sequence of Aspergillus oryzae-derived GDH shown in SEQ ID NO: 3 (amino acid sequence shown in SEQ ID NO: 4 in the sequence table of Patent 4292486) and other known amino acid sequences are relatively amino acid sequences. Based on the region that can be determined to be conserved, degenerate primers, degeF30 and degeR13 (SEQ ID NOs: 4 and 5) containing a mixed base were synthesized.
(3)PCR法によるFGDH遺伝子部分配列の取得
 上記(1)で調製した染色体DNAを鋳型として、DNAポリメラーゼKOD-Plus(東洋紡製)を用いて推奨する条件のもとでPCRを行った。プライマーには、上記(2)で作製したプライマー(配列番号4、5)を使用した。そのPCR反応液をアガロースゲル電気泳動に供したところ、約1300bp程度の長さに相当するバンドが確認されたので、この増幅されたDNA断片を精製し、クローニングキットTarget Clone-Plus(東洋紡製)を用いて、そのプロトコールに従って操作を行い、ベクターpTA2にクローニングし、エシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出し、当該酵素遺伝子に相当する領域の塩基配列解析を実施した。シークエンス反応はBigDyeTM Terminator v3.1 Cycle Sequencing Kit(アプライドバイオシステムズジャパン株式会社)を用い、製品の使用説明書に従ってシークエンス反応を行った。解析にはABI PRISM 310シークエンサー(アプライドバイオシステムズジャパン株式会社)を使用した。当該酵素遺伝子の塩基配列解析を実施するためには、上記で使用したプライマー(配列番号4、5)を使用した。その塩基配列解析の結果、約1300bpのFGDHの部分配列を取得した。
(3) Acquisition of FGDH gene partial sequence by PCR method PCR was carried out under the recommended conditions using DNA polymerase KOD-Plus (manufactured by Toyobo) using the chromosomal DNA prepared in (1) above as a template. As the primer, the primer (SEQ ID NOs: 4 and 5) prepared in (2) above was used. When the PCR reaction solution was subjected to agarose gel electrophoresis, a band corresponding to a length of about 1300 bp was confirmed. The amplified DNA fragment was purified and a cloning kit Target Clone-Plus (manufactured by Toyobo) And was cloned into the vector pTA2 and transformed into Escherichia coli DH5α competent cell (manufactured by Toyobo) to obtain a transformant. The transformant was cultured in LB medium, the plasmid was extracted, and the base sequence analysis of the region corresponding to the enzyme gene was performed. The sequence reaction was performed using BigDye ™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Japan Co., Ltd.) according to the instruction manual of the product. An ABI PRISM 310 sequencer (Applied Biosystems Japan Co., Ltd.) was used for the analysis. In order to perform a base sequence analysis of the enzyme gene, the primers (SEQ ID NOs: 4 and 5) used above were used. As a result of the base sequence analysis, a partial sequence of FGDH of about 1300 bp was obtained.
(4)FGDH遺伝子全長配列の取得
 上記のようにして得られた、塩基配列に基づき、開始コドンを含むN末端方向の遺伝子配列取得のために、遺伝子の外側方向に向けた2種類のインバースPCR用プライマー、InvF1及びInvR1(配列番号6、7)を新たに設計した。このインバースPCR用プライマーを用い、上記(1)で得た染色体DNAを制限酵素HincIIで処理し、ライゲーションを行ったものを鋳型としてDNAポリメラーゼKOD-Plus(東洋紡製)を用いて推奨する条件のもとで、Inverse PCRを行った。これにより、増幅される断片の配列解析を、上記記載と同様にして行い、開始コドンと推測される配列を含む上流の塩基配列を明らかにした。また、終止コドンを含むC末端方向の遺伝子配列取得のためにも、上記記載のインバースPCR用プライマー、InvF2及びInvR2(配列番号8、9)を用い、上記(1)で得たゲノムDNAを制限酵素XbaIで処理し、ライゲーションを行ったものを鋳型として、上記記載、同様の方法でInverse PCRを行った。これにより、増幅される断片の配列解析を、上記記載と同様にして行い、終止コドンと推測される配列を含む上流の塩基配列を明らかにした。
(4) Acquisition of FGDH gene full-length sequence Based on the base sequence obtained as described above, two types of inverse PCR directed toward the outside of the gene in order to acquire a gene sequence in the N-terminal direction including the start codon. Primers, InvF1 and InvR1 (SEQ ID NOs: 6, 7) were newly designed. Using this inverse PCR primer, the chromosomal DNA obtained in (1) above was treated with the restriction enzyme HincII and ligated as a template under the recommended conditions using DNA polymerase KOD-Plus (manufactured by Toyobo). Inverse PCR was performed. Thereby, the sequence analysis of the amplified fragment was performed in the same manner as described above, and the upstream base sequence including the sequence presumed to be the start codon was clarified. In addition, in order to obtain a gene sequence in the C-terminal direction including a stop codon, the above-described inverse PCR primers, InvF2 and InvR2 (SEQ ID NOs: 8 and 9) were used to restrict the genomic DNA obtained in (1) above. Inverse PCR was performed in the same manner as described above, using as a template the one that had been treated with the enzyme XbaI and ligated. Thereby, the sequence analysis of the amplified fragment was performed in the same manner as described above, and the upstream base sequence including the sequence presumed to be a stop codon was clarified.
(5)N末端及びC末端の決定
 N末端の決定は、公知の情報を最大限に活用し、アミノ酸配列の相同性、塩基配列の長さなどの観点から(4)で得られた配列と多角的な比較を行い、開始コドンを判断した。
また、C末端の決定も同様の方法にて判断した。
(5) Determination of N-terminus and C-terminus The determination of N-terminus is based on the sequence obtained in (4) from the viewpoints of amino acid sequence homology, base sequence length, etc., using known information to the maximum. A multifaceted comparison was made to determine the start codon.
The determination of the C terminal was also judged in the same manner.
(6)Mucor subtilissimus NBRC6338由来のGDH遺伝子全長を増幅させるためのプライマー設計
 (5)での判断結果に基づき、開始コドンの上流にアニーリングするプライマー、5UTR F1(配列番号10)及び終止コドンの下流にアニーリングするプライマー、3UTR R1(配列番号11)を設計した。
(6) Primer design for amplifying the entire length of GDH gene derived from Mucor subtilismus NBRC6338 Based on the judgment result in (5), a primer that anneals upstream of the start codon, 5UTR F1 (SEQ ID NO: 10), and downstream of the stop codon A primer for annealing, 3UTR R1 (SEQ ID NO: 11) was designed.
(7)cDNA配列の決定
 Mucor subtilissimus NBRC6338をYG培地(Yeast Extract 1%、Glucose 2%)50mlを入れた坂口フラスコを用いて25℃で一晩培養した後、ブフナー漏斗及びヌッチェ吸引瓶を用いて培養液をろ過し、菌体を得た。そのうち、約0.3gの菌体を液体窒素中で凍結させ、乳鉢を用いて菌糸を粉砕した。続いて、ISOGEN(ニッポンジーン社製)を用いて、本キットのプロトコールに従って、粉砕した菌体からmRNAを得た。これをテンプレートにReverTra-Ace(東洋紡社製)を用いて、そのプロトコールに従って操作を行い、逆転写を行い、cDNAを合成した。逆転写のプライマーには、(6)で作製した3UTR R1(配列番号11)を用いた。続いて、上記で合成したcDNAを鋳型として、DNAポリメラーゼKOD-Plus(東洋紡製)を用いて推奨する条件のもとでPCRを行った。プライマーには、上記(6)で作製したプライマー(配列番号10、11)を使用した。そのPCR反応液をアガロースゲル電気泳動に供したところ、約2000bp程度の長さに相当するバンドが確認されたので、この増幅されたDNA断片の配列解析を、上記記載と同様にして行った。なお、ここでのcDNA配列解析には、3クローンの異なるプラスミド由来の塩基配列を解析した。なお、塩基配列の解析には、上記記載のプライマーを使用した。このようにして、配列番号2に示すMucor subtilissimus NBRC6338由来のFGDHのcDNA配列を決定した。また、当該cDNA配列がコードする当該酵素遺伝子のアミノ酸配列を配列番号1に示した。
(7) Determination of cDNA Sequence After culturing Mucor subtilisimus NBRC6338 at 25 ° C. overnight in a Sakaguchi flask containing 50 ml of YG medium (Yeast Extract 1%, Glucose 2%), using a Buchner funnel and a Nutsche suction bottle The culture solution was filtered to obtain bacterial cells. Among them, about 0.3 g of cells were frozen in liquid nitrogen, and the mycelium was pulverized using a mortar. Subsequently, mRNA was obtained from the pulverized cells using ISOGEN (manufactured by Nippon Gene) according to the protocol of this kit. Using this as a template, ReverseTra-Ace (manufactured by Toyobo Co., Ltd.) was operated according to the protocol, reverse transcription was performed, and cDNA was synthesized. As a primer for reverse transcription, 3UTR R1 (SEQ ID NO: 11) prepared in (6) was used. Subsequently, PCR was performed under the recommended conditions using DNA polymerase KOD-Plus (manufactured by Toyobo) using the cDNA synthesized above as a template. As the primer, the primer (SEQ ID NOs: 10 and 11) prepared in (6) above was used. When the PCR reaction solution was subjected to agarose gel electrophoresis, a band corresponding to a length of about 2000 bp was confirmed. The sequence analysis of the amplified DNA fragment was performed in the same manner as described above. In this cDNA sequence analysis, nucleotide sequences derived from three different clones were analyzed. In addition, the primer described above was used for the analysis of the base sequence. Thus, the cDNA sequence of FGDH derived from Mucor subtilismus NBRC6338 shown in SEQ ID NO: 2 was determined. The amino acid sequence of the enzyme gene encoded by the cDNA sequence is shown in SEQ ID NO: 1.
(8)公知のGDHとのアミノ酸配列比較
 上記(7)で明らかにしたアミノ酸配列と公知のアスペルギルスオリゼ由来のFADGDH、アスペルギルス・テレウス由来のFADGDHとの同一性は各々34%及び33%であった。アミノ酸配列解析は、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/ においてデフォルト(初期設定)のパラメーターを用いることにより、算出した。
(8) Amino acid sequence comparison with known GDH The identity of the amino acid sequence identified in (7) above with the known FADGDH derived from Aspergillus oryzae and FADGDH derived from Aspergillus terreus was 34% and 33%, respectively. . For amino acid sequence analysis, the default (initial setting) parameter is set in the homology algorithm BLAST (Basic local alignment search tool) http://www.ncbi.nlm.nih.gov/BLAST/ of the National Center for Biotechnology Information (NCBI). It was calculated by using.
実施例13 Mucor subtilissimus NBRC6338由来のFGDHのアスペルギルス・オリゼでの発現及び酵素活性の確認 Example 13 Confirmation of Expression and Enzyme Activity in Aspergillus oryzae of FGDH from Mucor subtilismus NBRC6338
(1)発現ベクターの構築
 実施例12で明らかにしたMucor subtilissimus NBRC6338由来FGDH遺伝子(配列番号2)を含む組み換えプラスミドpMsGDHで市販の大腸菌コンピテントセル(E.coli DH5α;東洋紡社製)を形質転換した後、形質転換体をアンピシリン(50mg/ml;ナカライテスク社製)を含んだ液体培地(1%ポリペプトン、0.5%酵母エキス、0.5%NaCl;pH7.3)を摂取し、30℃で一晩振とう培養して得られた菌体から、常法によりプラスミドを調整した。該プラスミドから遺伝子領域を制限酵素で切り出し、同じく制限酵素処理を行ったベクターpUSAと混合し、混合液と等量のライゲーション試薬(東洋紡製ラーゲーションハイ)を加えてインキュベーションすることにより、ライゲーションを実施した。このように、ライゲーションしたDNAをエシェリヒア・コリーDH5α株コンピテントセル(東洋紡製コンピテントハイDH5α)に当製品に添付のプロトコールに従ってそれぞれ形質転換し、該形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出した。このようにして、アスペルギルス・オリゼでの大量発現を可能とするように設計されたpUSAMsGDHを取得した。
(1) Construction of expression vector Transformation of commercially available Escherichia coli competent cell (E. coli DH5α; manufactured by Toyobo Co., Ltd.) with the recombinant plasmid pMsGDH containing the FGDH gene derived from Mucor subtilismus NBRC6338 (SEQ ID NO: 2) revealed in Example 12 Then, the transformant was fed with a liquid medium (1% polypeptone, 0.5% yeast extract, 0.5% NaCl; pH 7.3) containing ampicillin (50 mg / ml; manufactured by Nacalai Tesque), and 30 Plasmids were prepared from cells obtained by shaking culture overnight at 0 ° C. by a conventional method. The gene region was excised from the plasmid with a restriction enzyme, mixed with a vector pUSA that had been treated with the same restriction enzyme, and ligation was performed by adding an equal amount of ligation reagent (Toyobo Lagation High) to the mixture and incubating. did. In this way, the ligated DNA was transformed into Escherichia coli DH5α strain competent cells (Toyobo Competent High DH5α) according to the protocol attached to the product to obtain the transformants. The transformant was cultured in LB medium, and the plasmid was extracted. In this way, pUSAMsGDH designed to allow mass expression in Aspergillus oryzae was obtained.
(2)形質転換
 続いて、アスペルギルス・オリゼへの形質転換を行った。方法は、Biosci. Biotech.Biochem.,61(8)1367-1369.1997に記載の方法に準じて実施した。なお、本菌株は、Biosci.Biotech.Biochem.,61(8)1367-1369.1997に記載されているもので、pUSARプラスミドとともに(独)酒類総合研究所より得たものである。
(2) Transformation Subsequently, transformation into Aspergillus oryzae was performed. The method is described in Biosci. Biotech. Biochem. 61 (8) 1367-1369.1997. In addition, this strain is Biosci. Biotech. Biochem. , 61 (8) 1367-1369.1997, which was obtained from the Liquor Research Institute together with the pUSAR plasmid.
(3)培養
 形質転換体は10L容ジャーファーメンター(BMS10-PI/バイオット)を使用して培養した。(5%酵母エキス、2% ハイニュートAM、5% サンマルト)培地にて、培地液量7.0L、攪拌数600rpm、温度30℃、通気量1.0vvmの条件で培養した。この培養液を粗酵素液として、GDH活性を確認したところ、本発明のGDHが発現されていることが確認された。尚、形質転換前の宿主にGDH活性は認められなかった。
(3) Culture The transformant was cultured using a 10 L jar fermenter (BMS10-PI / Biot). The cells were cultured in a medium (5% yeast extract, 2% high-new AM, 5% sun malt) under the conditions of a medium volume of 7.0 L, a stirring speed of 600 rpm, a temperature of 30 ° C., and an aeration rate of 1.0 vvm. When the GDH activity was confirmed using this culture solution as a crude enzyme solution, it was confirmed that the GDH of the present invention was expressed. GDH activity was not observed in the host before transformation.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。
特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
The present invention is not limited to the description of the embodiments and examples of the invention described above.
Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The contents of the papers, published patent gazettes, patent gazettes, etc. specified in this specification are incorporated by reference in their entirety.
 本発明のFGDHは基質特異性に優れ、グルコース量をより正確に測定することを可能にする。従って本発明のFGDHは血糖値の測定などに好適といえる。 FGDH of the present invention is excellent in substrate specificity, and enables the glucose amount to be measured more accurately. Therefore, it can be said that the FGDH of the present invention is suitable for measurement of blood glucose level.

Claims (8)

  1. 下記の特性(1)~(4)を備えるフラビン結合型グルコース脱水素酵素。
    (1)分子量: SDS-ポリアクリルアミド電気泳動で測定した酵素のポリペプチド部分の分子量が約69kDa
    (2)Km値: D-グルコースに対するKm値が約10mM以下
    (3)温度安定性:50℃以下で安定
    (4)pH安定性: pH3.0~8.0の範囲で安定
     
    A flavin-binding glucose dehydrogenase having the following characteristics (1) to (4):
    (1) Molecular weight: The molecular weight of the polypeptide portion of the enzyme measured by SDS-polyacrylamide electrophoresis is about 69 kDa.
    (2) Km value: Km value for D-glucose of about 10 mM or less (3) Temperature stability: stable at 50 ° C. or less (4) pH stability: stable in the range of pH 3.0 to 8.0
  2. 更に下記の特性(5)を備える、請求項1に記載のフラビン結合型グルコース脱水素酵素。
    (5)基質特異性: D-グルコースに対する反応性を100%としたときのD-キシロースに対する反応性が1.8%以下である
    Furthermore, the flavin binding glucose dehydrogenase of Claim 1 provided with the following characteristic (5).
    (5) Substrate specificity: The reactivity to D-xylose is 1.8% or less when the reactivity to D-glucose is 100%.
  3. 更に下記の特性(6)を備える、請求項1又は2に記載のフラビン結合型グルコース脱水素酵素。
    (6)至適活性温度: 45℃~50℃
    Furthermore, the flavin binding glucose dehydrogenase of Claim 1 or 2 provided with the following characteristic (6).
    (6) Optimal activity temperature: 45 ° C to 50 ° C
  4. 更に下記の特性(8)を備える、請求項1~3のいずれかに記載のフラビン結合型グルコース脱水素酵素。
    (8)由来: ムコール(Mucor)属に分類される微生物に由来する
    The flavin-binding glucose dehydrogenase according to any one of claims 1 to 3, further comprising the following property (8):
    (8) Origin: Derived from a microorganism classified into the genus Mucor.
  5. ムコール属に分類される微生物を培養すること、及び
    グルコース脱水素酵素を回収すること
    を含む、請求項1~4のいずれかに記載のフラビン結合型グルコース脱水素酵素の製造方法。
    The method for producing a flavin-binding glucose dehydrogenase according to any one of claims 1 to 4, comprising culturing a microorganism classified into the genus Mucor and recovering glucose dehydrogenase.
  6. 請求項1~4のいずれかに記載のフラビン結合型グルコース脱水素酵素をグルコースに作用させることを含む、グルコース濃度の測定方法。 A method for measuring a glucose concentration, comprising causing the flavin-binding glucose dehydrogenase according to any one of claims 1 to 4 to act on glucose.
  7. 請求項1~4のいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースアッセイキット。 A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to any one of claims 1 to 4.
  8. 請求項1~4のいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースセンサ。 A glucose sensor comprising the flavin-binding glucose dehydrogenase according to any one of claims 1 to 4.
PCT/JP2013/052799 2012-02-09 2013-02-07 Novel glucose dehydrogenase WO2013118799A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012026449 2012-02-09
JP2012-026449 2012-02-09
JP2012026402 2012-02-09
JP2012-026402 2012-10-30

Publications (1)

Publication Number Publication Date
WO2013118799A1 true WO2013118799A1 (en) 2013-08-15

Family

ID=48947556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052799 WO2013118799A1 (en) 2012-02-09 2013-02-07 Novel glucose dehydrogenase

Country Status (2)

Country Link
JP (2) JP6207168B2 (en)
WO (1) WO2013118799A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195765A1 (en) * 2016-05-09 2017-11-16 キッコーマン株式会社 Flavin-binding glucose dehydrogenase variant
JP7509824B2 (en) 2016-05-09 2024-07-02 キッコーマン株式会社 Modified flavin-binding glucose dehydrogenase

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118799A1 (en) * 2012-02-09 2013-08-15 東洋紡株式会社 Novel glucose dehydrogenase
JP7397568B2 (en) * 2015-04-09 2023-12-13 東洋紡株式会社 Enzyme preparation for glucose measurement
CN110494568B (en) 2017-03-31 2024-03-19 龟甲万株式会社 Continuous glucose monitoring using FAD-dependent glucose dehydrogenase
JP7075905B2 (en) * 2019-03-12 2022-05-26 株式会社日立製作所 Simulation sample creation method, simulation sample creation device, numerical model creation system, and numerical model creation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053161A1 (en) * 2008-11-06 2010-05-14 ユニチカ株式会社 Modified flavin-adenine-dinucleotide-dependent glucose dehydrogenase
WO2010140431A1 (en) * 2009-06-04 2010-12-09 キッコーマン株式会社 Flavin-bound glucose dehydrogenase
WO2011034108A1 (en) * 2009-09-16 2011-03-24 東洋紡績株式会社 Modified flavine-adenine-dinucleotide-dependent glucose dehydrogenase
WO2011068050A1 (en) * 2009-12-05 2011-06-09 天野エンザイム株式会社 Mutant enzyme and application thereof
WO2012001976A1 (en) * 2010-06-29 2012-01-05 有限会社アルティザイム・インターナショナル Glucose dehydrogenase
WO2012073986A1 (en) * 2010-12-02 2012-06-07 キッコーマン株式会社 Flavin-bound glucose dehyrogenase, production method for flavin-bound glucose dehyrogenase, and yeast transformant used in same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118799A1 (en) * 2012-02-09 2013-08-15 東洋紡株式会社 Novel glucose dehydrogenase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053161A1 (en) * 2008-11-06 2010-05-14 ユニチカ株式会社 Modified flavin-adenine-dinucleotide-dependent glucose dehydrogenase
WO2010140431A1 (en) * 2009-06-04 2010-12-09 キッコーマン株式会社 Flavin-bound glucose dehydrogenase
WO2011034108A1 (en) * 2009-09-16 2011-03-24 東洋紡績株式会社 Modified flavine-adenine-dinucleotide-dependent glucose dehydrogenase
WO2011068050A1 (en) * 2009-12-05 2011-06-09 天野エンザイム株式会社 Mutant enzyme and application thereof
WO2012001976A1 (en) * 2010-06-29 2012-01-05 有限会社アルティザイム・インターナショナル Glucose dehydrogenase
WO2012073986A1 (en) * 2010-12-02 2012-06-07 キッコーマン株式会社 Flavin-bound glucose dehyrogenase, production method for flavin-bound glucose dehyrogenase, and yeast transformant used in same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195765A1 (en) * 2016-05-09 2017-11-16 キッコーマン株式会社 Flavin-binding glucose dehydrogenase variant
JPWO2017195765A1 (en) * 2016-05-09 2019-04-11 キッコーマン株式会社 Modified flavin-binding glucose dehydrogenase
US11066690B2 (en) 2016-05-09 2021-07-20 Kikkoman Corporation Flavin-binding glucose dehydrogenase variant
JP7084867B2 (en) 2016-05-09 2022-06-15 キッコーマン株式会社 Flavin-bound glucose dehydrogenase variant
JP2022133274A (en) * 2016-05-09 2022-09-13 キッコーマン株式会社 Flavin-binding glucose dehydrogenase variant
JP7509824B2 (en) 2016-05-09 2024-07-02 キッコーマン株式会社 Modified flavin-binding glucose dehydrogenase

Also Published As

Publication number Publication date
JP2013176364A (en) 2013-09-09
JP6207168B2 (en) 2017-10-04
JP2017169585A (en) 2017-09-28
JP6465156B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6460152B2 (en) Novel glucose dehydrogenase
JP6212852B2 (en) Novel glucose dehydrogenase
JP6079038B2 (en) Novel glucose dehydrogenase
JP5169991B2 (en) Modified flavin adenine dinucleotide-dependent glucose dehydrogenase
JP6465156B2 (en) Novel glucose dehydrogenase
JP5435180B1 (en) Novel glucose dehydrogenase
JPWO2007139013A1 (en) Flavin adenine dinucleotide-linked glucose dehydrogenase
JP5408125B2 (en) Filamentous flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH)
JP2015084676A (en) Flavine adenine dinucleotide dependent glucose dehydrogenase excellent in heat resistance
JP6264289B2 (en) Novel glucose dehydrogenase
JP6455134B2 (en) Novel glucose dehydrogenase
JP6342174B2 (en) Novel glucose dehydrogenase
JP6186927B2 (en) Novel glucose oxidase and polypeptide sequence encoding it
JP6390776B2 (en) Flavin adenine dinucleotide-dependent glucose dehydrogenase with excellent thermostability
JP2014097050A (en) Diaphorase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746617

Country of ref document: EP

Kind code of ref document: A1