WO2013118682A1 - Stratified allocation device and stratified allocation unit - Google Patents

Stratified allocation device and stratified allocation unit Download PDF

Info

Publication number
WO2013118682A1
WO2013118682A1 PCT/JP2013/052481 JP2013052481W WO2013118682A1 WO 2013118682 A1 WO2013118682 A1 WO 2013118682A1 JP 2013052481 W JP2013052481 W JP 2013052481W WO 2013118682 A1 WO2013118682 A1 WO 2013118682A1
Authority
WO
WIPO (PCT)
Prior art keywords
sector
positioning
position information
information
main power
Prior art date
Application number
PCT/JP2013/052481
Other languages
French (fr)
Japanese (ja)
Inventor
勇輝 大薮
寺田 雅之
岡島 一郎
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Publication of WO2013118682A1 publication Critical patent/WO2013118682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Definitions

  • the present invention relates to a layer-by-layer allocation apparatus and a layer-by-layer allocation method that divide a sector into layers and allocate predetermined values.
  • the population in a sector is obtained from the number of mobile terminals located in the sector formed by a base station.
  • the population in the sector is converted into a population for each predetermined unit area for obtaining a population distribution and the like.
  • Patent Document 1 it is assumed that people are uniformly distributed in a sector, and the population for each unit area is calculated using the ratio of the area where the sector and the unit area overlap.
  • Patent Document 2 describes that the position of a mobile device in a sector is estimated based on a distance from an antenna.
  • an object of the present invention is to provide a layer-by-layer allocation apparatus and a layer-by-layer allocation method that can obtain a distribution bias of a predetermined value in a sector.
  • the stratified allocation apparatus includes a layer division unit that divides a sector formed by a base station into layers based on a propagation time of radio waves transmitted and received between the mobile device and the base station, and a layer division unit. And a layer-by-layer assignment unit that assigns a predetermined value associated with the positioning position information of the mobile device obtained by the predetermined positioning for each of the divided layers.
  • the stratified allocation method includes a layer division step for dividing a sector formed by a base station into layers based on propagation times of radio waves transmitted and received between a mobile device and the base station, and a layer division A layer-by-layer assignment step in which a predetermined value associated with the positioning position information of the mobile device obtained by the predetermined positioning is assigned to each layer divided in the step.
  • the sector is divided into layers based on the propagation time of radio waves transmitted and received between the mobile device and the base station, and a predetermined value is assigned to each divided layer.
  • a predetermined value is assigned to each divided layer.
  • the apparatus described in the above-mentioned Patent Document 2 cannot allow overlap between sectors, that is, in such a case, the sector area is basically exclusive. For this reason, for example, when a sector is added or removed, or when a sector is under construction or fails, it is necessary to re-estimate the sector area around those sectors each time, and the processing man-hours are increased. To increase.
  • the overlap between sectors can be allowed, the areas between sectors can be obtained individually. Therefore, for example, even when a certain sector is under construction or the like, there is no need to re-estimate the sector area around the sector, and the number of processing steps can be reduced.
  • a calculation unit area conversion means for converting a predetermined value assigned to each layer into a value for each distribution calculation unit area.
  • a predetermined value assigned to each layer can be converted into a value for each distribution calculation unit area.
  • the distribution can be calculated more accurately in consideration of the distribution bias of the predetermined value within the sector.
  • a value for each unit area can be obtained.
  • the present invention it is possible to allow overlap between sectors or between layered areas obtained by dividing the sector into layers, that is, to obtain a predetermined value without considering the difference between frequency bands and sectors. Can do. For this reason, in this invention, the value for every distribution calculation unit area can be calculated
  • the calculation unit area conversion means calculates a predetermined value for each layer based on an area ratio between the area of one layer and the area of each distribution calculation unit area included in the one layer. It is preferable to convert each value. Thus, by converting the predetermined value for each layer into the value for each distribution calculation unit area using the area ratio, the conversion can be quickly performed by a simple calculation.
  • the apparatus further comprises correspondence information acquisition means for acquiring correspondence information in which the positioning position information of the mobile device obtained by the predetermined positioning and the sector identifier of the sector where the mobile device is located are associated with each other.
  • the predetermined value assigned to each layer is calculated based on the positioning position information associated with the sector identifier of the sector to be divided among the correspondence information acquired by the correspondence information acquisition unit. .
  • a predetermined value can be calculated based on the positioning position information.
  • the correspondence information acquisition means is a first positioning based on a propagation time of radio waves transmitted and received between the mobile device and the base station, and the positioning position information is obtained by the first positioning.
  • the first correspondence position information is a first correspondence information to be acquired when the correspondence information is the first correspondence information in which the first positioning position information and the sector identifier are associated with each other.
  • the information acquisition means, and the predetermined positioning is a second positioning different from the first positioning, the positioning position information is the second positioning position information obtained by the second positioning, and the correspondence information is Including at least one of second correspondence information acquisition means for acquiring the second correspondence information when the second positioning information and the sector identifier are associated with each other. Is preferred.
  • the first correspondence information or the second correspondence information can be obtained by the first correspondence information acquisition means or the second correspondence information acquisition means.
  • the sector to be divided is a directional sector
  • the first positioning position information includes propagation time information related to the propagation time
  • the layered dividing means divides the sector at a predetermined interval determined based on the propagation time. It is preferable to divide.
  • the sector is divided at a predetermined interval determined based on the propagation time.
  • the sector can be divided more appropriately.
  • the division target sector is a directional sector
  • the first positioning position information includes the coordinate information of the mobile device corresponding to the propagation time
  • the layered division means corresponds to the sector identifier of the division target sector.
  • the sector is preferably divided based on the position of the coordinate information of the first positioning position information. As described above, when the sector to be divided is a directional sector and the first positioning position information includes coordinate information, the sector is divided by dividing the sector based on the position of the coordinate information. Can be divided appropriately.
  • the division target sector is an omnidirectional sector
  • the first positioning position information includes propagation time information related to the propagation time
  • the layered division unit is configured to execute the sector at a predetermined interval determined based on the propagation time. Is preferably divided.
  • the sector is divided at a predetermined interval determined based on the propagation time.
  • the sector can be divided more appropriately.
  • the distribution of mobile stations obtained from the positioning position information associated with the predetermined sector identifier, and the base station that forms the sector corresponding to the predetermined sector identifier Based on the position of the antenna and further comprising main power area estimating means for estimating the radius of the main power area where the sector corresponding to the predetermined sector identifier is the main power, and the layered dividing means is the main power area estimating means. It is preferable to specify the sector shape using the estimated radius of the main power area. Thereby, even when the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the radius of the main power area can be obtained.
  • the main power area estimation means determines the division target sector based on the propagation time information included in the first positioning position information associated with the sector identifier of the division target sector in the first correspondence information. It is preferable to estimate the radius of the main power area as the main power. Thereby, even when the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the radius of the main power area can be obtained based on the propagation time information.
  • the main power area estimation unit forms the coordinate information included in the first positioning position information associated with the sector identifier of the sector to be divided and the sector to be divided among the first correspondence information. It is preferable to estimate the radius of the main power area where the sector to be divided becomes the main power based on the position of the antenna of the base station. Thereby, even when the radius of the main power area where the sector to be divided is the main power cannot be acquired, the coordinates of the main power area based on the coordinate information included in the first positioning position information and the antenna position are obtained. The radius can be determined.
  • the main power area estimation means divides based on the distribution of mobile stations located in the division target sector obtained by the second positioning and the position of the antenna of the base station that forms the division target sector. It is preferable to estimate the radius of the main power area where the target sector is the main power. As a result, even if the radius of the main power area where the sector to be divided is the main power cannot be acquired, the main power area based on the distribution of mobile devices obtained by the second positioning and the position of the antenna Can be obtained.
  • the apparatus further comprises layer width calculating means for calculating the layer width of the layer to be divided by the layer dividing means, and the layer dividing means preferably divides the sector using the layer width calculated by the layer width calculating means.
  • the layer width calculating means for calculating the layer width of the layer to be divided by the layer dividing means, even if the coordinate information at a certain position cannot be obtained without a mobile device at a certain position, Sectors can be divided more appropriately.
  • the base station based on the distribution of mobile devices obtained from the second positioning position information associated with the predetermined sector identifier among the second correspondence information, the base station forming the sector corresponding to the predetermined sector identifier It is preferable to further include a radiation width calculating means for calculating the radiation width of the radio wave radiated from the antenna.
  • the predetermined value is preferably a population. In this case, the population can be assigned to each layer divided by the layered dividing means.
  • FIG. 1 is a block diagram showing a functional configuration of a mobile communication system.
  • a mobile communication system 10 includes a mobile device 100, a BTS (base station) 200, an RNC (radio network control device) 300, an exchange 400, a GPS location management unit 501, and a location collection unit. 502 and a population calculation device 600 as a stratified allocation device.
  • BTS base station
  • RNC radio network control device
  • the mobile device 100 includes a GPS function unit 101.
  • the GPS function unit 101 acquires detailed position information (hereinafter referred to as “GPS coordinate information”) indicating the location of the mobile device 100 using GPS (second positioning).
  • GPS coordinate information (second positioning position information) is acquired when a predetermined application (an application using GPS coordinate information) installed in the mobile device 100 is executed.
  • the GPS function unit 101 acquires the GPS coordinate information
  • the GPS function unit 101 outputs the acquired GPS coordinate information to the GPS position management unit 501.
  • the BTS 200 radiates radio waves for communication with the mobile device 100 from the antenna 201 to form a sector that is a communication area.
  • sectors There are two types of sectors: a directional sector and an omnidirectional sector.
  • a directional sector is a sector formed using a directional antenna. For example, as shown in FIG. 2A, when the antenna 201 includes six antennas having directivity and each antenna radiates radio waves in different directions by 60 degrees, six directional sectors C1 to C6 are provided. Is formed.
  • An omnidirectional sector is a sector formed by, for example, radiating radio waves in one direction from one antenna. For example, as shown in FIG. 2B, the omnidirectional sector C10 is formed by radiating radio waves from the antenna 201 in all directions.
  • the RNC 300 includes a communication control unit 301 and a position specifying unit 302.
  • the communication control unit 301 is a part that performs communication connection with the mobile device 100 via the BTS 200, for example, a portion that performs communication connection processing based on communication connection processing based on outgoing call processing or incoming call processing from the mobile device 100. It is.
  • the position specifying unit 302 specifies the position in the sector of the mobile device 100 using the PRACH-PD positioning method (first positioning).
  • the location of the mobile device 100 in the sector using the PRACH-PD positioning method is executed when the mobile device 100 performs communication connection (for example, connection processing at the time of outgoing call, incoming call, or handover).
  • the position specifying unit 302 transmits a propagation time (first positioning position information) until the PRACH signal transmitted to the mobile device 100 is returned by the mobile device 100 and reaches the BTS 200. , Propagation time information).
  • the measurement result of the propagation time is every predetermined unit time obtained based on the phase period of the radio wave.
  • the position specifying unit 302 obtains the positioning time when the position of the mobile device 100 is measured using the PRACH-PD positioning method, the sector identifier of the sector where the mobile device 100 is located, and the propagation time.
  • the associated information is calculated as delay information (first positioning position information, first correspondence information). This delay information can be calculated regardless of whether the sector is a directional sector or an omnidirectional sector. Note that the distance between the antenna 201 and the mobile device 100 can be obtained from the propagation time, and it can be said that the propagation time represents the position of the mobile device 100. That is, it can be said that the delay information is position information indicating the position of the mobile device 100.
  • the position specifying unit 302 In addition to calculating the delay information using the PRACH-PD positioning method, the position specifying unit 302 also uses PRACH-PD position information (using the coordinates of the mobile device 100 as information for specifying the location of the mobile device 100). First positioning position information and correspondence information) are calculated. Specifically, when the sector is a directional sector, as illustrated in FIG. 5, the position specifying unit 302 assumes that the mobile device 100 is located on a straight line L along the directivity direction of the radio wave. Then, the position P1 on the straight line L obtained based on the separation distance is calculated as the position of the mobile device 100. Then, as shown in FIG.
  • the position specifying unit 302 is on a straight line L obtained based on the positioning time when the position of the mobile device 100 is measured, the sector identifier of the sector where the mobile device 100 is located, and the separation distance.
  • PRACH-PD position information that associates the coordinates (latitude / longitude) of the mobile device 100 is calculated.
  • the position specifying unit 302 assumes that the mobile device 100 is located at the position P10 of the antenna 201 as shown in FIG. Then, as shown in FIG. 7, the position specifying unit 302 determines the positioning time when the position of the mobile device 100 is positioned, the sector identifier of the sector where the mobile device 100 is located, and the coordinates (latitude / longitude) of the mobile device 100.
  • the PRACH-PD position information in which (the position of the antenna 201) is associated is calculated.
  • the sector is an omni-directional sector, almost all the positions of the mobile device 100 that are positioned using the PRACH-PD positioning method coincide with the position of the antenna 201.
  • the location specifying unit 302 outputs the calculated delay information and PRACH-PD location information to the exchange 400 through the communication control unit 301.
  • the exchange 400 includes a communication control unit 401 and a location information management unit 402. Similar to the communication control unit 301 of the RNC 300, the communication control unit 401 is a part that performs communication connection processing.
  • the location information management unit 402 stores the delay information and the PRACH-PD location information transmitted from the location specifying unit 302. As shown in FIGS. 4, 6, and 7, delay information (see FIG. 4) and PRACH-PD position information (see FIGS. 6 and 7) are shown in separate tables. The time and the coordinate information of the PRACH-PD position information may be held in the same table.
  • the GPS location management unit 501 associates the time when GPS coordinate information is acquired by the mobile device 100, the sector identifier of the sector where the mobile device 100 is located, and the latitude and longitude. Then, the associated result is stored as GPS position information (second correspondence information).
  • the location collection unit 502 collects GPS location information stored in the GPS location management unit 501, delay information stored in the location information management unit 402, and PRACH-PD location information. Then, the position collection unit 502 outputs the collected information to the population calculation device 600 at a predetermined timing or in response to a request from the population calculation device 600.
  • the population calculation device 600 calculates a population for each population distribution calculation unit area (distribution calculation unit area). As illustrated in FIG. 9, the population calculation device 600 includes a GPS position information acquisition unit (second correspondence information acquisition unit) 601, a delay position information acquisition unit (first correspondence information acquisition unit) 602, and an equipment change detection unit 603. , Facility information storage unit 604, layer division unit (layer division unit) 605, in-layer population calculation unit (stratified allocation unit) 606, calculation unit area conversion unit (calculation unit area conversion unit) 607, population output unit 609, and A layered region creation parameter estimation unit 610 is included.
  • the GPS location information acquisition unit 601 acquires the GPS location information (see FIG. 8) output from the location collection unit 502.
  • the delay position information acquisition unit 602 acquires delay information and PRACH-PD position information (see FIGS. 4, 6, and 7) output from the position collection unit 502.
  • the layered region creation parameter estimation unit 610 uses the sector information based on at least one of the GPS position information and the delay information PRACH-PD position information acquired by the GPS position information acquisition unit 601 or the delay position information acquisition unit 602. Type, main power area, etc. are calculated. Specifically, as shown in FIG. 9, the layered region creation parameter estimation unit 610 includes a sector type determination unit 611, an antenna position calculation unit 612, a main power area estimation unit (main power area estimation means) 613, and a radiation direction calculation unit. 615, a radiation width calculation unit (radiation width calculation unit) 616, and a layer width calculation unit (layer width calculation unit) 617.
  • the sector type determination unit 611 determines whether the sector formed by the BTS 200 is a directional sector or an omnidirectional sector based on the PRACH-PD position information acquired by the delay position information acquisition unit 602. To do.
  • three methods for determining the sector type will be described.
  • the PRACH-PD position information of the mobile device 100 calculated using the PRACH-PD positioning method will be described.
  • a sector is a directional sector and a plurality of mobile devices 100 are located in the sector.
  • the coordinate position of each mobile device 100 in the PRACH-PD position information is the distance to the antenna 201 in each mobile device 100. Based on the above, it has a property to be any one of positions P1, P2, P3, P4, and P5 on the straight line L along the directivity direction of the radio wave.
  • the positioning point of the mobile device 100 may be approximated to the center position between the sectors.
  • a plurality of sectors are adjacent at close intervals.
  • a position other than the straight line L for example, the position P11, FIG. P12, P13, etc.
  • the positioning point of the mobile device 100 is rarely calculated as a position other than the straight line L. For example, it is assumed that several hundreds of mobile devices 100 are measured at positions P1 to P5. Further, it is assumed that several mobile devices 100 are measured at P11 to P13.
  • the positioning points of each mobile device 100 in the PRACH-PD position information have a property of gathering at the position P ⁇ b> 10 of the antenna 201.
  • the positioning point of the mobile device 100 may be approximated to the center position between the sectors.
  • positions other than the position P10 of the antenna 201 for example, positions P14, P15, P16, and P17 in FIG. 11
  • the measurement is performed assuming that several hundred mobile devices 100 exist at the position P10. It is assumed that several mobile devices 100 are measured at P14 to P17, respectively.
  • the sector type determination unit 611 adds up PRACH-PD position information having sector identifiers for which sector types are determined for each positioning point. When the positions of the positioning points are concentrated on one point, the sector type determination unit 611 determines that the target sector is an omnidirectional sector.
  • the sector type determination unit 611 adds up PRACH-PD position information having sector identifiers for which sector types are determined for each positioning point. Then, the sector type determination unit 611 counts the number of terminals (number of signals) of the mobile device 100 for each positioning point. Then, the sector type determination unit 611 obtains a straight line connecting the positioning point with the largest number of signals and the positioning point with the second largest number of signals, and the positioning points are equal to or greater than a predetermined threshold (for example, three points) on the obtained straight line. Etc.) Determine whether it exists.
  • a predetermined threshold for example, three points
  • a positioning point existing within a predetermined distance for example, 20 m
  • the sector type determination unit 611 determines that the target sector is a directional sector. In the case of a directional sector, this utilizes the property that positioning points are arranged on a straight line L along the direction of radio wave as shown in FIG.
  • the sector type determination unit 611 adds up PRACH-PD position information having sector identifiers for which sector types are determined for each positioning point. For example, when the PRACH-PD position information for the directional sector C11 shown in FIG. 10 is tabulated, as shown in FIG. 12, each position P1 to P5, which is a positioning point where the mobile device 100 is positioned, is displayed. For each of P11 to P13, the number of terminals (number of signals) of the mobile device 100 is tabulated. The latitude of the position P2 is Y2, the longitude is X2, and the number of signals is 400. The latitude of the position P5 is Y5, the longitude is X5, and the number of signals is 200.
  • each position P10 which is a positioning point where the mobile device 100 is positioned
  • the number of terminals (number of signals) of mobile device 100 is tabulated.
  • the latitude of the position P10 is Y10
  • the longitude is X10
  • the number of signals is 400.
  • the latitude of the position P15 is Y15
  • the longitude is X15
  • the number of signals is 2.
  • the sector type determination unit 611 extracts two positioning points with the larger number of signals in order from the number of signals for each positioning point in the aggregated PRACH-PD position information. For example, in the total result of the PRACH-PD position information for the directional sector C11 shown in FIG. 12, the position P2 (X2, Y2) and the position P5 (X5, Y5) are extracted as two positioning points with a large number of signals. Is done. Further, for example, in the total result of the PRACH-PD position information for the omnidirectional sector C12 shown in FIG. 13, the position P10 (X10, Y10) and the position P15 (X15, Y15) are two positioning points with a large number of signals. Is extracted.
  • the sector type determination unit 611 compares the number of signals of the extracted two positioning points. As a result of the comparison, the sector type determination unit 611 determines that the sector is an omnidirectional sector when the difference in the number of signals at the two positioning points is larger than a predetermined value, or when the ratio is smaller than the predetermined value, If the difference in the number of signals is smaller than a predetermined value, or if the ratio is larger than a predetermined value, the sector is determined to be a directional sector. This is based on the fact that in the case of the omnidirectional sector, the positioning points of almost all the mobile devices 100 are the positions of the antenna 201 and are rarely positioned at positions other than the antenna 201. Further, in the case of the directional sector, the fact that the mobile device 100 is positioned relatively evenly at each position on the straight line in the direction of the radio wave is utilized.
  • the number of signals of two positioning points extracted from the PRACH-PD position information for the directional sector C11 shown in FIG. 12 is the number of signals 400 at the position P2 and the number of signals 200 at the position P5.
  • the number of signals at the two positioning points extracted from the PRACH-PD position information for the omnidirectional sector C12 shown in FIG. 13 is the number of signals 400 at the position P10 and the number of signals 2 at the position P15.
  • the sector type determination unit 611 determines the sector C12 (see FIG. 11) having a large difference in the number of signals as a non-directional sector as shown in FIG. 13, and the difference in the number of signals as shown in FIG.
  • a small sector C11 is determined as a directional sector.
  • the sector type determination unit 611 acquires PRACH-PD position information having a sector identifier for which the sector type is determined, and totals the acquired PRACH-PD position information for each positioning point (step S101).
  • the sector type determination unit 611 extracts two positioning points with the larger number of signals in order from the number of signals for each positioning point in the aggregated PRACH-PD position information (step S102).
  • the sector type determination unit 611 determines that the sector to be determined is an omnidirectional sector (step S105).
  • the sector type determination unit 611 determines whether or not the difference in the number of signals at the two extracted positioning points is equal to or greater than a predetermined value (step S102). S103). In this determination, the difference in the number of signals is greater than or equal to a predetermined value when the smaller signal number of the two signals is less than a predetermined threshold value (for example, 5%) with respect to the larger signal number. It can also be judged as being.
  • a predetermined threshold value for example, 5%
  • step S103 determines that the sector to be determined is an omnidirectional sector (step S105).
  • step S103: NO determines that the sector to be determined is a directional sector (step S104).
  • the sector type determination unit 611 determines the sector type for each sector using the PRACH-PD position information. Further, among the above-described three methods for determining the sector type, a predetermined two or more methods may be used in combination. That is, the sector type determination unit 611 determines whether or not the positions of the respective positioning points of the PRACH-PD position information are concentrated at one point as in the above-described first method of sector type determination.
  • the target sector is determined to be an omnidirectional sector. When the position of the positioning point is not concentrated on one point, the sector type determination unit 611 determines the positioning point with the largest number of signals and the positioning point with the second largest number of signals as in the second method of sector type determination described above.
  • the positioning point is determined to be greater than or equal to a predetermined threshold (for example, 3 or more) on the obtained straight line,
  • a predetermined threshold for example, 3 or more
  • the target sector is determined to be an omnidirectional sector.
  • the sector type determination unit 611 uses the second number of signals at the positioning point with the largest number of signals as in the third method of sector type determination described above. If the difference from the number of signals at a large number of positioning points is larger than a predetermined value, or if the ratio is smaller than a predetermined value, it is determined that the target sector is an omnidirectional sector.
  • the sector type determination unit 611 determines whether the difference between the number of signals at the positioning point with the largest number of signals and the number of signals at the positioning point with the second largest number of signals is smaller than a predetermined value, or when the ratio is larger than the predetermined value.
  • the target sector is determined to be an omnidirectional sector. In this case, the accuracy of determining the sector type can be improved.
  • the sector type determination by the sector type determination unit 611 is not essential, and the sector type can be stored in advance in the facility information storage unit 604.
  • the antenna position calculation unit 612 calculates the position of the antenna 201 based on the distribution of the mobile devices 100 obtained from the PRACH-PD position information. Note that the antenna position calculation unit 612 uses a different method to determine the position of the antenna 201 based on whether the sector formed by the BTS 200 for which the position of the antenna 201 is to be calculated is a directional sector or an omnidirectional sector. Estimate the position. As the sector type, the sector type determined by the sector type determining unit 611 can be used.
  • the first to seventh methods a method for calculating the position of the antenna 201 when the sector formed by the BTS 200 is a directional sector will be described, and as the eighth and ninth methods, omnidirectionality will be described. A method for calculating the position of the antenna 201 in the case of a sector will be described.
  • the antenna position calculation unit 612 delays the PRACH-PD position information for the BTS 200 for which the antenna 201 is to be calculated. Obtained from the position information obtaining unit 602. Note that identification information for identifying the BTS is added to the PRACH-PD position information in addition to the information shown in FIG. 6, for example.
  • the antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain BTS for each positioning point, and maps it as shown in FIG.
  • the antenna 201 of the BTS 200 to be calculated includes three antennas having directivity, and three sectors C21, C22, and C23 are formed.
  • the position of the antenna 201 of the BTS B1 is obtained.
  • FIG. 15 (a) shows the positioning points of each mobile device 100 associated with sector identifiers C21 to C23 for BTS B1.
  • the antenna position calculation unit 612 obtains straight lines L21, L22, and L23 that pass through the mapped positioning points for each sector. For example, when the straight line L21 is obtained, it can be obtained based on two positioning points having a large number of signals among the positioning points of the mobile device 100 for the sector C21.
  • the antenna position calculation unit 612 calculates the position of the intersection A1 of the straight lines L21 to L23 as the position of the antenna 201 of the BTS B1.
  • the BTS 200 for which the position of the antenna 201 is to be calculated forms six sectors as in FIG.
  • the antenna position calculation unit 612 delays the PRACH-PD position information for the BTS 200 for which the antenna 201 is to be calculated. Obtained from the position information obtaining unit 602.
  • the antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain BTS for each positioning point and maps as shown in FIG.
  • the antenna 201 of the BTS 200 to be calculated includes six antennas having directivity, and six sectors C31, C32, C33, C34, C35, and C36 are formed.
  • the position of the antenna 201 of the BTS B2 is obtained.
  • FIG. 16 (a) shows the positioning points of each mobile device 100 associated with sector identifiers C31 to C36 for BTS B2.
  • the antenna position calculation unit 612 obtains straight lines L31, L32, L33, L34, L35, and L36 passing through the mapped positioning points for each sector.
  • this straight line is obtained, it can also be obtained based on two positioning points having a large number of signals, as in the first method described above.
  • the antenna position calculation unit 612 obtains intersections in two predetermined combinations of the straight lines L31 to L36. Specifically, for a sector whose radio wave radiation direction is about 180 degrees (for example, about 180 degrees ⁇ 5 degrees), the intersection point of the straight line passing through the positioning point is calculated. The case where it deviates from the position of an antenna can be considered. Therefore, for a sector whose radio wave radiation direction differs by about 180 degrees, the intersection of straight lines passing through the positioning point is not obtained.
  • intersection of the straight line L31 and the straight line L32, the intersection of the straight line L31 and the straight line L33, the intersection of the straight line L31 and the straight line L35, the intersection of the straight line L31 and the straight line L36, the intersection of the straight line L32 and the straight line L33, and the straight line L32 Intersection with straight line L34, Intersection with straight line L32 and straight line L36, Intersection with straight line L33 and straight line L34, Intersection with straight line L33 and straight line L35, Intersection with straight line L34 and straight line L35, Intersection with straight line L34 and straight line L36 , And the intersection of the straight line L35 and the straight line L36, respectively.
  • the antenna position calculation unit 612 calculates the average position A2 of the obtained intersections as the position of the antenna 201 of the BTS B2. In addition, when the distance between the average position of each intersection and the position of each intersection is within a predetermined distance (for example, about several meters), the obtained average position of each intersection can be calculated as the antenna position. .
  • the antenna position calculation unit 612 acquires PRACH-PD position information having a sector identifier that is a calculation target of the position of the antenna 201, and acquires delayed position information. From the unit 602.
  • the antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 17, the positioning points are arranged in the direction of the radio wave.
  • the antenna position calculation unit 612 obtains the relationship between the distance from the origin and the number of signals at each positioning point, with one end point in the arrangement direction of the positioning points among the positioning points shown in FIG. This is represented by a graph in FIG. In FIG. 18, the horizontal axis represents the distance from the origin, and the vertical axis represents the number of signals.
  • the antenna position calculation unit 612 calculates the position of the positioning point as the origin among the positioning points as the position of the antenna 201. This uses a wireless characteristic that the closer to the BTS 200, the more easily the mobile device 100 belongs to the BTS 200 (the number of signals increases).
  • the antenna position calculation unit 612 determines the position of the other end point in the positioning point arrangement direction. Is calculated as the position of the antenna 201.
  • the antenna position calculation unit 612 acquires PRACH-PD position information having a sector identifier that is a calculation target of the position of the antenna 201, and acquires delayed position information. From the unit 602.
  • the antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 19A, the positioning points are arranged in the direction of the radio wave. Here, it is assumed that there are 11 positioning points (positioning points T1 to T11).
  • the antenna position calculation unit 612 extracts two positioning points having the largest number of signals from the positioning points shown in FIG. For example, it is assumed that the number of signals at the positioning point T2 is 400, the number of signals at the positioning point T5 is 200, and the positioning points T2 and T5 are extracted. As shown in FIG. 19B, the antenna position calculation unit 612 obtains a straight line L40 passing through the positioning point T2 and the positioning point T5.
  • the antenna position calculation unit 612 has positioning points T1 positioned at both ends of the straight line L40 among the positioning points within a predetermined distance from the obtained straight line L40. , T11. Thereby, as described above, even when the mobile device 100 is positioned at a position different from the directivity direction of the radio wave when performing PRACH-PD positioning, these positioning points are determined from the antenna position candidates. This can be excluded, and the calculation accuracy of the antenna position can be improved.
  • the antenna position calculation unit 612 obtains the number of signals at each positioning point as shown in FIG. Then, the antenna position calculation unit 612 calculates, as the position of the antenna 201, the position of the positioning point on the side where the portion with a large number of signals is biased among the positioning points T1 and T11. In the example shown in FIG. 19D, it is assumed that a portion with a large number of signals is biased toward the positioning point T1. Therefore, the antenna position calculation unit 612 calculates the position of the positioning point T1 as the position of the antenna 201.
  • the position of the antenna 201 can be calculated by the following method in addition to calculating the position of the positioning point on the side where the portion with a large number of signals is biased as the position of the antenna 201.
  • the antenna position calculation unit 612 calculates the total number of signals at the positioning points T1 to T5 (hereinafter referred to as “S ( T1 to T5) ”) and the total number of signals at the positioning points T7 to T11 (hereinafter referred to as“ S (T7 to T11) ”).
  • the number of positioning points in the group including the positioning point T1 and the number of positioning points in the group including the positioning point T11 need only be the same (for example, the positioning points shown in FIG. 19C are the positioning points T1 to T1). If it is up to T10, it can be divided into positioning points T1 to T5 and positioning points T6 to T10.) Then, the antenna position calculation unit 612 determines the positioning points T1 and T11 when the ratio between the total value of the number of signals of one group and the total value of the number of signals of the other group is equal to or greater than a predetermined threshold. Among them, the positioning point belonging to the group having the larger total number of signals can be calculated as the position of the antenna 201.
  • the ratio is equal to or greater than a predetermined threshold, for example, when the total value of the number of signals in one group is greater than twice the total value of the number of signals in the other group.
  • the antenna position calculation unit 612 obtains the PRACH-PD position information having the sector identifier for which the position of the antenna 201 is calculated, as the delay position information acquisition unit 602. Get from.
  • the antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 20, the positioning points are arranged in the direction of the radio wave. Further, as described above, it is assumed that positioning points T20 to T25 are positioned at a place other than the straight line L41 that is the direction of radio wave by the PRACH-PD positioning.
  • the positioning points T20 to T25 measured at a place other than on the straight line L41 are particularly often positioned near the installation position of the antenna 201. Therefore, the antenna position calculation unit 612 calculates the position of the antenna 201 based on the distribution of the positioning points T20 to T25. In the example shown in FIG. 20, for example, at a predetermined position (for example, an end point of a positioning point aligned on the straight line L41) in an area R1 surrounded by a circle with a predetermined radius (for example, 1 km) centering on the end point on the straight line L41. Calculation is made assuming that the antenna 201 exists.
  • a predetermined position for example, an end point of a positioning point aligned on the straight line L41
  • a predetermined radius for example, 1 km
  • each positioning point indicated by the acquired PRACH-PD position information includes positioning points arranged on a straight line L41 and positioning points T20 to T25 located outside the straight line L41 as shown in FIG. . Further, out of the positioning points arranged on the straight line L41, the positioning points at both ends are set as positioning points T26 and T27, respectively.
  • the antenna position calculation unit 612 extracts positioning points T20 to T25 that are measured at a place other than on the straight line L41. Then, the antenna position calculation unit 612 calculates the sum of the distances between the positioning point T26 located at the end of the positioning points arranged on the straight line L41 and the extracted positioning points T20 to T25. Similarly, the antenna position calculation unit 612 obtains the sum of the distances between the positioning point T27 located at the end of the positioning points arranged on the straight line L41 and the extracted positioning points T20 to T25.
  • the antenna position calculation unit 612 has a positioning point with a smaller sum of distances from the positioning points T20 to T25 among the positioning points T26 and T27 at both ends of the positioning point arranged on the straight line L41 (in the example of FIG. 20, the positioning point). T26) is calculated as the position of the antenna 201.
  • the antenna position calculation unit 612 obtains the PRACH-PD position information having the sector identifier for which the position of the antenna 201 is calculated, as the delay position information acquisition unit 602. Get from.
  • the antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 21A, the positioning points are arranged in the directivity direction of the radio wave. Furthermore, it is assumed that positioning points have been measured at locations other than on a straight line along the direction of radio wave by PRACH-PD positioning.
  • the antenna position calculation unit 612 extracts two positioning points having the largest number of signals from the positioning points shown in FIG. For example, it is assumed that the number of signals at the positioning point T32 is 400, the number of signals at the positioning point T35 is 200, and the positioning points T32 and T35 are extracted. As shown in FIG. 21B, the antenna position calculation unit 612 obtains a straight line L42 passing through the positioning point T32 and the positioning point T35.
  • the antenna position calculation unit 612 has positioning points T31 positioned at both ends of the straight line L40 among positioning points within a predetermined distance from the obtained straight line L42. , T39. Thereby, as described above, even when the mobile device 100 is positioned at a position different from the directivity direction of the radio wave when performing PRACH-PD positioning, these positioning points are determined from the antenna position candidates. This can be excluded, and the calculation accuracy of the antenna position can be improved.
  • the antenna position calculation unit 612 calculates the dispersion of the positioning points around the positioning fixed point T31 and the dispersion of the positioning points around the positioning fixed point T39. Then, the antenna position calculation unit 612 calculates the position of the positioning point T31 located on the side with large dispersion as the position of the antenna 201. This is based on the fact that positioning points measured at a place other than on the straight line L42 are gathered particularly in the vicinity of the installation position of the antenna 201.
  • the position of the antenna 201 can be calculated by combining two or more predetermined methods among the first to seventh methods for calculating the position of the antenna 201 described above. In this case, the calculation accuracy of the position of the antenna 201 can be improved.
  • the antenna position calculation unit 612 when the sector formed by the BTS 200 that is the calculation target of the antenna 201 is an omni-directional sector, stores the PRACH-PD position information including the sector identifier that is the calculation target of the antenna 201, Obtained from the delay position information obtaining unit 602. In this case, almost all the positions of the mobile device 100 coincide with the position of the antenna 201. Therefore, the antenna position calculation unit 612 calculates the positioning point with the highest signal density as the position of the antenna 201.
  • the antenna position calculation unit 612 when the sector formed by the BTS 200 that is the calculation target of the antenna 201 is an omni-directional sector, stores the PRACH-PD position information including the sector identifier that is the calculation target of the antenna 201, Obtained from the delay position information obtaining unit 602.
  • the antenna position calculation unit 612 has a signal number in which the ratio between the positioning point with the highest signal density (hereinafter referred to as “first high-density point”) and the number of signals at the first high-density point is 5% or more.
  • the positioning point is calculated as the position of the antenna 201.
  • a plurality of antenna positions are estimated for one omnidirectional sector. For example, when drawing a power area, the power area is centered on each antenna position. Draw.
  • the antenna position calculation unit 612 calculates the position of the antenna 201. Note that the calculation of the position of the antenna 201 by the antenna position calculation unit 612 is not essential, and the position of the antenna 201 can be stored in the facility information storage unit 604 in advance.
  • the main power area estimation unit 613 calculates the distribution of the mobile device 100 based on the delay information, the PRACH-PD position information, or the GPS position information, and determines the estimation target based on the calculated distribution and the position of the antenna 201.
  • the radius of the main power area in which the sector to be the main power is estimated.
  • the main influence area estimation unit 613 estimates the radius of the main influence area by the following method according to the acquired information (delay information, PRACH-PD position information, or GPS position information).
  • the main power area estimation unit 613 determines the PRACH-PD position information (for example, FIG. 6) having the sector identifier of the sector for which the main power area is estimated. Is acquired from the delay position information acquisition unit 602.
  • the radius of the main power area is calculated for the sector with the sector identifier C8.
  • the main power area estimation unit 613 adds up the acquired PRACH-PD position information for each latitude and longitude, and calculates the number of signals for each latitude and longitude.
  • the PRACH-PD position information used here preferably uses only information about positioning points arranged on a straight line along the radio wave radiation direction. Further, as a straight line along the radio wave radiation direction, a straight line connecting a positioning point with the largest number of signals and a positioning point with the second largest number of signals can be used.
  • the main power area estimation unit 613 acquires position information of the antenna 201 that forms a sector that is an estimation target of the main power area.
  • the position information of the antenna 201 calculated by the antenna position calculation unit 612 is used, or when the position information of the antenna 201 is stored in the facility information storage unit 604 in advance, the stored position information of the antenna 201 is used. Can be used.
  • the main power area estimation unit 613 determines the distance between the antenna 201 and the mobile device 100 based on the latitude / longitude (latitude / longitude shown in FIG. 22) of the positioning result of the mobile device 100 and the position of the antenna. Calculate the distance. Then, as shown in FIG. 23, the main power area estimation unit 613 calculates the sector identifier, the distance between the antenna 201 and the mobile device 100, and the number of signals from the PRACH-PD position information collected for each latitude and longitude. The associated intermediate table is calculated.
  • the main power area estimation unit 613 obtains a signal density distribution by distance with the horizontal axis as the distance and the vertical axis as the number of signals, based on the calculated intermediate table. Then, the main influence area estimation unit 613 obtains the distance D from the antenna position (origin position) to the portion where the accumulated density of the number of signals is 90% in the obtained signal density distribution by distance. The main power area estimation unit 613 estimates the obtained distance D as the radius of the main power area where the sector C8 (sector identifier C8 sector, hereinafter the same) is the main power.
  • the main power area estimation unit 613 acquires, for example, PRACH-PD position information illustrated in FIG. 6 from the delay position information acquisition unit 602 (step S201).
  • the main power area estimation unit 613 totals the acquired PRACH-PD position information for each latitude and longitude, and calculates the number of signals for each latitude and longitude (see FIG. 22) (step S202).
  • the main power area estimation unit 613 acquires position information of the antenna 201 that forms a sector to be estimated for the main power area (step S203). Then, the main power area estimation unit 613 calculates the distance between the antenna 201 and the mobile device 100 (step S204) and associates the sector identifier, the distance, and the number of signals (see FIG. 23). Is calculated (step S205).
  • the main power area estimation unit 613 calculates a signal density distribution by distance (see FIG. 24) from the intermediate table (step S206). Then, the main power area estimation unit 613 calculates the distance D to the portion where the cumulative density of signals is 90%, and estimates the calculated distance D as the radius of the main power area where the sector C8 is the main power ( Step S207).
  • the main power area estimation unit 613 has a main power area in which the sector is the main power based on the PRACH-PD position information. Can be obtained.
  • the main power area estimation unit 613 When estimating the radius of the main power area in which a certain sector is the main power, the main power area estimation unit 613 has delay information (for example, the information shown in FIG. 4) having the sector identifier of the sector for which the main power area is estimated. ) Is acquired from the delay position information acquisition unit 602.
  • delay information for example, the information shown in FIG. 4
  • the radius of the main power area is calculated for the sector with the sector identifier C7.
  • the sector here may be either a directional sector or an omnidirectional sector.
  • the main power area estimation unit 613 aggregates the acquired delay information for each propagation time, and calculates the number of signals for each propagation time.
  • the main power area estimation unit 613 calculates the distance between the antenna 201 and the mobile device 100 based on the propagation time, and uses the sector identifier as shown in FIG. And an intermediate table in which the distance between the antenna 201 and the mobile device 100 is associated with the number of signals.
  • the main power area estimation unit 613 obtains a signal density distribution by distance with the horizontal axis as the distance and the vertical axis as the number of signals, based on the calculated intermediate table. Then, the main influence area estimation unit 613 obtains the distance D from the antenna position (origin position) to the portion where the accumulated density of the number of signals is 90% in the obtained signal density distribution by distance. However, a value of a predetermined cumulative density can be used in addition to the 90% value used as the cumulative density. The main power area estimation unit 613 estimates the obtained distance D as the radius of the main power area where the sector C7 is the main power.
  • the main power area estimation unit 613 acquires, for example, the delay information illustrated in FIG. 4 from the delay position information acquisition unit 602 (step S301).
  • the main power area estimation unit 613 aggregates the acquired delay information for each propagation time, and calculates the number of signals for each propagation time (see FIG. 26) (step S302).
  • the main power area estimation unit 613 calculates an intermediate table (see FIG. 27) in which the sector identifier, the distance, and the number of signals are associated (step S303). Then, the main influence area estimation unit 613 calculates a signal density distribution by distance (see FIG. 24) from the intermediate table (step S304).
  • the main power area estimation unit 613 calculates the distance D to the portion where the cumulative density of signals is 90%, and estimates the calculated distance D as the radius of the main power area where the sector C7 is the main power. (Step S305).
  • the main power area estimation unit 613 can obtain the radius of the main power area where the directional sector and the omnidirectional sector are the main power based on the acquired delay information.
  • the main power area estimation unit 613 When estimating the radius of the main power area in which a certain sector is the main power, the main power area estimation unit 613 has GPS position information (for example, as shown in FIG. 8) having the sector identifier of the sector for which the main power area is estimated. Information) is acquired from the GPS position information acquisition unit 601.
  • GPS position information for example, as shown in FIG. 8
  • Information is acquired from the GPS position information acquisition unit 601.
  • the main power area estimation unit 613 acquires position information of the antenna 201 that forms a sector that is an estimation target of the main power area.
  • the position information of the antenna 201 calculated by the antenna position calculation unit 612 is used, or when the position information of the antenna 201 is stored in the facility information storage unit 604 in advance, the stored position information of the antenna 201 is used. Can be used.
  • the main power area estimation unit 613 calculates the distance between the antenna 201 and the mobile device 100 based on the latitude / longitude (latitude / longitude shown in FIG. 8) of the GPS position information and the position of the antenna. Then, as shown in FIG. 24, the main influence area estimation unit 613 obtains a signal density distribution by distance with the horizontal axis representing the distance and the vertical axis representing the number of signals, as shown in FIG.
  • the main power area estimation unit 613 obtains the distance D from the antenna position (origin position) to the portion where the accumulated density of the number of signals is 90% in the obtained signal density distribution by distance.
  • a value of a predetermined cumulative density can be used in addition to the 90% value used as the cumulative density.
  • the main power area estimation unit 613 estimates the obtained distance D as the radius of the main power area where the sector C20 is the main power.
  • a sector area R2 having a radius D from the position of the antenna 201 is a main power area where the sector C20 is the main power. Presumed.
  • an area R3 in a circle having a radius D from the position of the antenna 201 is a main power area where the sector C20 is the main power area. Is estimated as
  • the radiation direction calculation unit 615 obtains the distribution of the mobile device 100 based on the PRACH-PD position information, and calculates the radiation direction of the radio wave radiated from the antenna 201 based on the obtained distribution. Note that the radiation direction calculation unit 615 does not need to perform a process of calculating the radiation direction of the radio wave for the omnidirectional sector. Whether or not the sector is an omnidirectional sector can be determined using the determination result of the sector type determination unit 611 and the sector type information stored in the facility information storage unit 604. Here, the radiation direction of the radio wave radiated from the antenna 201 forming the directional sector is calculated.
  • the radiation direction calculation unit 615 calculates the radiation direction of the radio wave of the antenna 201 that forms a certain sector
  • the PRACH-PD position information having the sector identifier of the sector formed by the antenna 201 that is the calculation target is acquired from the delay position information acquisition unit 602.
  • the radiation direction of the radio wave radiated from the antenna 201 forming the sector with the sector identifier C8 is calculated.
  • the radiation direction calculation unit 615 acquires position information of the antenna that forms the sector C8.
  • the position information of the antenna 201 calculated by the antenna position calculation unit 612 is used, or when the position information of the antenna 201 is stored in the facility information storage unit 604 in advance, the stored position information of the antenna 201 is used. Can be used.
  • the positioning points are arranged in the direction of the radio wave from the position of the antenna 201.
  • Radiation direction calculation unit 615 aggregates the acquired PRACH-PD position information of sector identifier C8 for each positioning point (for each latitude and longitude), and calculates the number of signals for each positioning point as shown in FIG.
  • the radiation direction calculation part 615 extracts two positioning points with many signals sequentially from the positioning points shown in FIG. For example, as shown in FIG. 30B, the number of signals at the positioning point T42 (X2, Y2) is 400, and the number of signals at the positioning point T45 (X5, Y5) is 200. The positioning points T42, T45. Is extracted. Further, the radiation direction calculation unit 615 obtains a straight line L43 passing through the positioning point T42 and the positioning point T45 as shown in FIG. 30 (b).
  • the radiation direction calculation unit 615 obtains the radiation direction of the radio wave radiated from the antenna 201 forming the sector C8 from the position of the antenna 201 and the straight line L43. For example, as shown in FIG. 30C, the north direction is 0 degree, and the radiation direction of the radio wave can be expressed by the angle of the straight line L43 with respect to the north direction. Note that the radiation direction calculation processing by the radiation direction calculation unit 615 is not essential, and the processing in the layered division unit 605 and the like can be performed using data previously stored in the facility information storage unit 604.
  • the radiation width calculation unit 616 calculates the distribution of the mobile device 100 based on the GPS position information, and calculates the radiation width of the radio wave radiated from the antenna forming the predetermined sector based on the calculated distribution. Note that the emission width calculation unit 616 does not need to perform processing for calculating the emission width of radio waves for non-directional sectors. Whether or not the sector is an omnidirectional sector can be determined using the determination result of the sector type determination unit 611 and the sector type information stored in the facility information storage unit 604. Here, the case where the radiation width of the radio wave radiated from the antenna 201 forming the directional sector is calculated will be described.
  • the radiation width calculation unit 616 obtains GPS position information (for example, information shown in FIG. 8) having the sector identifier of the sector formed by the radio wave for which the radiation width is to be calculated, as a GPS position information acquisition unit 601. Get from.
  • GPS position information for example, information shown in FIG. 8
  • the radiation width of the radio wave forming the sector of the sector identifier C20 is calculated will be described.
  • the radiation width calculation unit 616 acquires the position information of the antenna 201 that forms the sector C20 formed by the radio wave for which the radiation width is to be calculated.
  • the position information of the antenna 201 calculated by the antenna position calculation unit 612 can be used, or when the position information of the antenna 201 is stored in advance, the stored position information of the antenna 201 can be used. .
  • the mobile device 100 and the position of the antenna 201 in the acquired GPS position information are mapped, as shown in FIG. 32 (a), the mobile device has a predetermined spread from the position of the antenna 201 to the radio wave radiation direction side. 100 positioning points are scattered.
  • the radiation width calculation unit 616 creates a plurality of radial sector regions S centered on the position of the antenna 201 as shown in FIG.
  • a predetermined value set in advance or the radius of the main power area estimated by the main power area estimation unit 613 can be used.
  • the radiation width calculation unit 616 includes a positioning point whose distance to the antenna 201 is less than a predetermined distance among positioning points included in the extracted GPS position information, and a positioning whose distance to the antenna 201 is equal to or greater than a predetermined distance.
  • a positioning point other than a point is extracted. Specifically, as shown in FIG. 32B, the positioning points in the area U1 where the distance to the antenna 201 is less than the predetermined distance and the area U2 where the distance to the antenna 201 is equal to or larger than the predetermined distance are excluded. Then, the remaining positioning points are extracted. Thereby, for example, a positioning point measured by a radio wave or the like that circulates in the vicinity of the antenna 201 in a direction opposite to the radiation direction of the radio wave, which is caused by the characteristics of the antenna 201, can be excluded.
  • the radiation width calculation unit 616 uses the angle with respect to the radio wave radiation direction as a reference, and the number of positioning points (signals) in each sector area S, as shown in FIG. The density distribution of the number of signals is created with the number) as the vertical axis.
  • the radio wave radiation direction used here is the value calculated by the radiation direction calculation unit 615, or when the radio wave radiation direction is stored in the facility information storage unit 604 in advance, the stored radio wave radiation direction is used. Direction can be used.
  • the radiation width calculator 616 calculates the radiation width of the radio wave based on the created density distribution of the number of signals. First, a procedure for obtaining an angle range on the positive angle side with respect to 0 ° (radiation direction of radio waves) as the radio wave emission width will be described. The radiation width calculation unit 616 obtains the total value of the number of signals for each angle from the larger angle side toward the smaller angle side. Then, the radiation width calculation unit 616 obtains an angle at which the total value of the number of signals is 5% of the total number of signals. In the example shown in FIG. 32C, it is assumed that an angle of 30 ° is obtained.
  • the radiation width calculation unit 616 sets an angle at which the total value of the number of signals thus obtained is 5% of the total number of signals as an angle boundary on the positive angle side in the radio wave radiation width. Next, a procedure for obtaining an angle range on the negative angle side with respect to 0 ° as the radio wave emission width will be described. Similarly to the above, the radiation width calculation unit 616 calculates the total value of the number of signals for each angle from the smaller angle side to the larger side. Then, the radiation width calculation unit 616 obtains an angle at which the total value of the number of signals is 5% of the total number of signals. In the example shown in FIG. 32C, it is assumed that an angle of ⁇ 30 ° is obtained.
  • the emission width calculation unit 616 sets the angle at which the total value of the number of signals obtained in this way is 5% of the total number of signals as an angle boundary on the minus angle side in the emission width of the radio wave. Then, the radiation width calculation unit 616 calculates 60 ° which is an angle range between the angle boundary 30 ° on the plus angle side and the angle boundary ⁇ 30 ° on the minus angle side as the radiation width of the radio wave.
  • the radial width calculator 616 gradually approaches the positive angle side boundary and the negative angle side angle boundary toward the angle 0 degree while keeping the absolute values of the respective angles the same.
  • the total value of the number of signals for each angle sandwiched between the angle boundary and the angle boundary on the negative angle side is 90% of the total number of signals (this 90% value is an example, and other values may be used).
  • Each of the angle boundaries at the time can be an angle boundary on the plus angle side and an angle boundary on the minus angle side in the radiation width of the radio wave.
  • an angle that is 5% of the total number of signals is used when obtaining the total value of the number of signals.
  • the angle is not limited to 5%, and other values may be used.
  • the density distribution graph shown in FIG. 32C will be described using a simplified density distribution graph (see FIG. 33).
  • the sector area S having a larger number of positioning points is subjected to statistical processing, etc., assuming that the number of mobile devices 100 is smaller than the actual number.
  • the fan-shaped area S having a small number of positioning points (small population) is subjected to statistical processing and the like assuming that the number of mobile devices 100 is larger than the actual number.
  • the actual number of mobile devices 100 is increased or decreased for each sector area S. May cause errors.
  • the rectangle Ss is formed by a horizontal axis and a vertical axis passing through the origin, a straight line Ls extending in the horizontal axis direction, and a straight line Lsk extending in the vertical axis direction.
  • the angle indicated by the straight line Lsk (the angle indicated by the horizontal axis at the intersection of the straight line Lsk and the horizontal axis) is the boundary of the angle on one side when the radio wave radiation width is determined.
  • the angle indicated by the horizontal axis at the intersection of the straight line Lsk and the horizontal axis is referred to as an angle k.
  • the total number of signals in the rectangle Ss can be obtained by integrating the straight line Ls.
  • the straight line Ls can be expressed by the following formulas (1) and (2).
  • Ls 0 (d> k) (2)
  • the triangle St is formed by a horizontal axis and a vertical axis passing through the origin, and an inclination Lt of the number of signals.
  • the angle k obtained using the equation (3) is a boundary of one side angle (here, an angle on the plus side with respect to the radio wave radiation direction) when determining the radiation width.
  • the boundary of the angle on the other side when determining the radiation width (here, the angle on the minus side with respect to the radio wave radiation direction) is obtained.
  • the emission width calculation unit 616 can calculate the emission width of the radio wave particularly suitable for calculating the population in the sector using the equation (3).
  • the radiation width calculation processing by the radiation width calculation unit 616 is not essential, and the processing in the layered division unit 605 or the like can be performed using data previously stored in the facility information storage unit 604.
  • the layer width calculation unit 617 is a layer used when the layer division unit 605 divides the sector for each layer based on the PRACH-PD position information about the directional sector obtained by using the PRACH-PD positioning method. Calculate the width.
  • the position of each mobile device 100 (positioning point of the mobile device 100) indicated by the PRACH-PD position information for the directional sector is a straight line L along the directivity direction of the radio wave as shown in FIG. It has the property of being arranged at approximately equal intervals above.
  • a layer division unit 605 described later divides a sector for each layer based on the position of each mobile device 100 indicated by the PRACH-PD position information.
  • the positioning point is a straight line L1.
  • the positioning points are partially missing as shown in FIG. FIG. 34 shows a state where the mobile device 100 has not been positioned at the position P3.
  • the layer dividing unit 605 cannot appropriately divide the sector for each layer. Therefore, the layer width calculation unit 617 obtains the layer width when the layer division unit 605 divides the sector.
  • the layer width calculation unit 617 acquires the PRACH-PD position information having the sector identifier for which the layer width is to be calculated, from the delay position information acquisition unit 602. Then, the layer width calculation unit 617 totals the acquired PRACH-PD position information for each positioning point of the mobile device 100 (the position of the mobile device 100), and obtains the total result shown in FIG.
  • the sector with the sector identifier C30 is the division target of the layer width.
  • the layer width calculation unit 617 obtains the distance between each positioning point and obtains the calculation result shown in FIG.
  • the distance between the positioning point P1 and the positioning point P2 is 245.20 ⁇ 3 m
  • the distance between the positioning point P2 and the positioning point P3 is 243.23 m
  • the positioning point P9 and the positioning point P10 It is assumed that the distance is 246.05 ⁇ 2 m and the distance between the positioning point P10 and the positioning point P11 is 244.85 m.
  • the calculation result of this distance is shown in FIG.
  • the layer width calculation unit 617 obtains the mode value among the calculated distances between the positioning points.
  • 245 m is the mode value.
  • a value obtained by another method may be used.
  • the distances between the positioning points may be arranged in order from the shortest distance, and the distances between the positioning points corresponding to the middle of the arranged order may be used.
  • the layer width calculation unit 617 calculates the obtained distance between the positioning points (here, 245 m) as the layer width when the layer division unit 605 divides the sector C30 into layers. Note that the layer width calculation processing by the layer width calculation unit 617 is not essential, and the processing in the layered division unit 605 and the like can be performed using data previously stored in the facility information storage unit 604.
  • the positioning points are not aligned on the straight line L1 as shown in FIG. 34, and the mobile device 100 may be positioned at a place other than the straight line L1. This is due to the fact that the positioning point of the mobile device 100 is approximated to the center position between sectors when the mobile device 100 exists at the sector boundary.
  • the layer width calculation unit 617 obtains the number of signals (number of terminals of the mobile device 100) for each positioning point, and extracts two positioning points in order from the largest number of obtained signals. Then, the layer width calculation unit 617 may obtain a straight line that passes through the extracted positioning points, and may obtain the layer width based on the distance between the positioning points on the obtained straight line.
  • the equipment change detection unit 603 includes the sector type determined by the sector type determination unit 611, the position information of the antenna 201 calculated by the antenna position calculation unit 612, the radius of the main power area estimated by the main power area estimation unit 613, The radio wave radiation direction calculated by the radiation direction calculation unit 615, the radio wave radiation width calculated by the radiation width calculation unit 616, and the layer width calculated by the layer width calculation unit 617 are acquired. And the equipment change detection part 603 compares these acquired information with the information memorize
  • the equipment change detection unit 603 is effective for reducing the amount of calculation processing, but without the equipment change detection unit 603, the sector type calculation result or the like may be stored in the equipment information storage unit 604. .
  • the facility information storage unit 604 stores information related to the facilities of the BTS 200. Specifically, the sector information, the position information of the antenna 201, the radius of the main power area whose main power is the target sector, the antenna The radio wave emission direction, radio wave emission width, and layer width calculated by the layer width calculation unit 617 are stored.
  • the layer division unit 605 divides the target sector into layers. First, a description will be given of processing in which the layer dividing unit 605 divides a sector into layers when the target sector is a directional sector and PRACH-PD position information (see FIG. 6) is acquired.
  • the layered division unit 605 acquires PRACH-PD position information (see FIG. 6) having the sector identifier of the sector to be divided from the delay position information acquisition unit 602.
  • the layered division unit 605 radiates radio waves radiated from the antenna 201 forming the sector C8 stored in the facility information storage unit 604 and the position information of the antenna 201 forming the sector C8 stored in the facility information storage unit 604.
  • the layer division unit 605 identifies the shape of the sector C8 to be divided based on the acquired information. Specifically, as shown in FIG. 38 (a), the layered division unit 605 uses a position information of the antenna 201, a radio wave radiation direction, a radius of the main power area, and a radio wave radiation width to form a sector. Create an area for. That is, this sector-shaped area becomes the range of sector C8.
  • the layer division unit 605 draws a plurality of arc-shaped lines centering on the antenna 201 so as to pass through each positioning point of the PRACH-PD position information, thereby forming sector sectors. Divide C8 into layers. Note that only the positioning points arranged on a straight line along the radiation direction of radio waves are used as the positioning points used here. In addition, when some of the positioning points of the acquired PRACH-PD position information are missing as shown in FIG. 34 (when the positioning points are not arranged at equal intervals), the missing parts are not layered. Dividing into layers using the layer width calculated by the width calculation unit 617.
  • FIG. 38B shows a state in which the sector C8 is divided into seven divided areas S1 to S7 by a fan-shaped radius line and an arc-shaped line. Further, the layered division unit 605 obtains representative points representing each divided area for each divided area S1 to S7. For example, as shown in FIG. 38B, of the intersections (positioning points of the mobile device 100) between the straight line L2 indicating the radio wave radiation direction and the outer edges of the divided areas S1 to S7, the intersection on the side closer to the antenna 201 Is the representative point.
  • the representative point of the divided area S2 is an intersection M2 on the side closer to the antenna 201 among the intersections of the outer edge of the divided area S2 and the straight line L2, and the representative point of the divided area S2 (hereinafter referred to as “representative point M2”) Become.
  • the layered division unit 605 obtains the coordinates of the representative points M1, M3 to M7 of the divided areas S1, S3 to S7.
  • the representative point M1 is the position of the antenna 201.
  • each representative point corresponds to a positioning point of mobile device 100.
  • a midpoint between adjacent positioning points can be used as the representative point.
  • the layered division unit 605 calculates information in which the sector identifier, the calculated coordinates of the representative point (latitude / longitude), and the divided area information (polygon information indicating the divided area) are associated with each other. .
  • the layer dividing unit 605 divides a sector into layers when the target sector is a directional sector and delay information (see FIG. 4) is acquired.
  • the layered division unit 605 acquires delay information (see FIG. 4) having the sector identifier of the sector to be divided from the delay position information acquisition unit 602.
  • the layered division unit 605 radiates radio waves radiated from the antenna 201 forming the sector C7 stored in the facility information storage unit 604 and the position information of the antenna 201 forming the sector C7 stored in the facility information storage unit 604.
  • the layer division unit 605 identifies the shape of the sector C7 to be divided based on the acquired information.
  • the same method as described with reference to FIG. 38A when the division target sector is a directional sector and the PRACH-PD position information is acquired can be used.
  • the layer division unit 605 acquires information on the layer width used when dividing the sector C7 (a directional sector and a sector from which delay information is acquired) from the facility information storage unit 604.
  • a length for example, a separation distance per delay amount
  • the layered division unit 605 draws a plurality of arc-shaped lines around the antenna 201 to divide the sector sector C7 into layers, as shown in FIG.
  • FIG. 40 shows a state where the sector C7 is divided into seven divided areas S11 to S17 by fan-shaped radius lines and arc-shaped lines.
  • the layered division unit 605 obtains representative points representing each divided area for each divided area S11 to S17. For example, as shown in FIG. 40, the coordinates of the intersection point closer to the antenna 201 among the intersection points of the straight line L3 indicating the radiation direction of the radio wave and the outer edges of the divided areas S11 to S17 are set as representative points.
  • the representative point of the divided area S12 is the intersection point M12 on the side closer to the antenna 201 among the intersection points of the outer edge of the divided area S12 and the straight line L3, as a representative point of the divided area S12 (hereinafter referred to as “representative point M12”).
  • the layered dividing unit 605 obtains the coordinates of the representative points M11, M13 to M17 of the divided areas S11, S13 to S17.
  • the representative point M11 is the position of the antenna 201.
  • the layered division unit 605 associates sector identifiers, calculated representative point coordinates (latitude / longitude), propagation time, and divided area information (polygon information indicating divided areas). Calculate information. Each divided area can be identified from each other using the sector identifier and the coordinates (latitude / longitude) of the representative point. Further, a divided area identifier for identifying each divided area may be added to the information shown in FIG.
  • the layer dividing unit 605 divides a sector into layers when the target sector is an omni-directional sector and delay information (see FIG. 4) is acquired.
  • the layered division unit 605 acquires delay information (see FIG. 4) having the sector identifier of the sector to be divided from the delay position information acquisition unit 602.
  • the layer division unit 605 includes the position information of the antenna 201 forming the sector C7 stored in the facility information storage unit 604, the radius of the main power area where the sector C7 estimated by the main power area estimation unit 613 is the main power, and To get.
  • the layer division unit 605 identifies the shape of the sector C7 to be divided based on the acquired information.
  • the target sector C7 is an omnidirectional sector, as shown in FIG. 42, the sector C7 is centered on the position of the antenna 201 and the radius of the main power area estimated by the main power area estimation unit 613 is obtained. It becomes circular with the length of.
  • the layer division unit 605 acquires information about the layer width used when dividing the sector C7 (a non-directional sector and a sector from which delay information is acquired) from the facility information storage unit 604.
  • As the layer width a length obtained based on the propagation time (for example, a separation distance per delay amount) can be used.
  • the layer dividing unit 605 draws a plurality of circular lines around the antenna 201 based on the acquired layer width information, and divides the circular sector C7 into layers.
  • FIG. 42 shows a state in which the circular sector C7 is divided into three divided areas S21 to S23.
  • the divided area S21 is circular, and the divided areas S22 and S23 are annular.
  • the layer division unit 605 does not perform the process of dividing the sector into layers.
  • the layer division unit 605 may obtain a division area by excluding a portion corresponding to the sea.
  • divided areas may be obtained by excluding regions that are not subject to calculation such as populations such as lakes and imperial palaces. That is, as shown in FIG. 43 (a), when the sector sector C8 and the coastline K (in the figure, the right side from the coastline K is the sea and the left side is the land) overlap, As shown, for the divided areas S6 and S7 overlapping the sea part, the divided area information (polygon information) of the divided areas S6 and S7 is obtained by excluding the part corresponding to the sea.
  • This map information (information about the coastline K) can be stored in advance by the layered division unit 605.
  • the intra-tier population calculation unit 606 obtains the population (predetermined value) for each divided area divided by the layered division unit 605. For example, when the target sector is a directional sector and PRACH-PD position information (see FIG. 6) is acquired, as shown in FIG. 22, the terminal for each positioning point is based on the PRACH-PD position information. Calculate the number. Then, the in-story population calculation unit 606 converts the number of terminals of the mobile device 100 for each positioning point into a population. Specifically, the population calculation unit 606 in the stratum obtains the population for each positioning point by multiplying the number of terminals for each positioning point by the expansion coefficient. This expansion coefficient is a coefficient for converting the calculated number of terminals into a population.
  • expansion coefficient for every population estimation unit which is a unit which estimates a population.
  • population estimation unit examples include, for example, attributes, places, time zones, etc., adopting each address prefecture, every 5 years of age, every gender, every hour, etc. Also good.
  • the expansion coefficient the reciprocal of “the product of the coverage ratio and the terminal penetration rate (that is, the ratio of the number of areas in the population)” can be used.
  • area ratio means the ratio of the area number to the contracted number
  • popularity ratio means the ratio of the contracted number to the population.
  • Such an expansion coefficient is desirably derived for each population estimation unit, but is not essential.
  • the expansion coefficient may be derived using, for example, the number of terminals (the number of visited areas) estimated based on the feature amount and the time length of the total time period as follows.
  • the feature amount is information corresponding to the estimated generation density for the generated delay information or PRACH-PD position information. Details of the feature amount will be described later.
  • the total time zone is a time zone (for example, 1 hour) that is a target for calculating the population.
  • the feature amount is obtained from the delay information or the PRACH-PD position information, and based on the feature amount and the time length of the totaling time zone, the number of terminals for each expansion coefficient calculation unit is totaled to obtain the user number pyramid data, Population pyramid data in the same expansion coefficient calculation unit obtained in advance as statistical data (for example, the Basic Resident Register) is acquired. Then, the acquisition rate of delay information or PRACH-PD position information for each expansion coefficient calculation unit (that is, the number of areas / population) is calculated in the user number pyramid data and the population pyramid data.
  • the “delay information or PRACH-PD location information acquisition rate (that is, the number of areas / population)” obtained here corresponds to the “product of the area ratio and the terminal penetration rate” described above.
  • the reciprocal of the “delay information or PRACH-PD position information acquisition rate” obtained in this way can be derived as an expansion coefficient.
  • an enlargement factor calculation unit for calculating the enlargement factor for example, every prefecture of the address, every 5 or 10 years, every age group, every gender, every hour as a time zone, etc. may be adopted. A combination of two or more of these may be employed. For example, if the enlargement coefficient calculation unit is “male in the 20s in Tokyo”, the males in the 20s in Japan who live in Tokyo (that is, the address information in the user attribute is Tokyo).
  • the corresponding delay information or PRACH-PD position information is extracted and the number of terminals is totaled to obtain the user number pyramid data, and the population pyramid data related to a 20-year-old man living in Tokyo is obtained from the statistical data.
  • PRACH-PD position information or GPS position information of users residing in Tokyo instead of extracting only delay information, PRACH-PD position information or GPS position information of users residing in Tokyo, Delay information, PRACH-PD position information, or GPS position information whose address information in the user attribute is Tokyo are extracted.
  • the delay rate or PRACH-PD location information acquisition rate (ie, the number of people in the area / population) of the enlargement factor calculation unit (here, men in the 20s living in Tokyo) is calculated from the user number pyramid data and the population pyramid data.
  • the reciprocal number of the “acquisition rate of delay information or PRACH-PD position information” obtained and calculated can be derived as an expansion coefficient.
  • the enlargement coefficient calculation unit and the population estimation unit are described as being equal. However, this is merely an example, and the present invention is not limited to this.
  • each positioning point When the directional sector is divided for each layer based on the PRACH-PD position information, as shown in FIG. 39, representative points (latitude / longitude) are associated with each divided area.
  • representative points latitude / longitude
  • calculating the population of each divided area conceptually, by associating the representative points associated with each divided area with the positioning points of the PRACH-PD position information based on a predetermined condition, Seeking the population of Specifically, for example, the population at the positioning point indicating the position of the antenna 201 is within the divided area S1 in FIG. 38B, and the population at the positioning point indicating the position close to the position of the antenna 201 is the divided area S2.
  • the population for each coordinate (latitude / longitude) of the positioning point is calculated as the population of each divided area. More specifically, the population at the positioning point is assigned to the divided area indicated by the representative point having the smallest distance from the positioning point. Then, as shown in FIG. 44, the in-layer population calculation unit 606 associates the sector identifier, the divided area identifier, and the population.
  • the delay information is aggregated for each propagation time as shown in FIG. 26, and the number of signals for each propagation time. Is calculated. This number of signals is the number of terminals of mobile device 100 for each propagation time. Then, in the same manner as described above, the in-layer population calculation unit 606 obtains the population for each propagation time by multiplying the number of terminals for each propagation time by the expansion coefficient.
  • the directional sector is divided for each layer based on the delay information, as shown in FIG. 41, information on the propagation time is associated with each divided area.
  • the propagation time associated with each divided area is associated with the propagation time of delay information based on a predetermined condition (for example, the division with the closest propagation time).
  • a predetermined condition for example, the division with the closest propagation time.
  • the population for each divided area is obtained. Specifically, for example, the population corresponding to the shortest propagation time is the population in the divided area S11 in FIG. 40, and the population corresponding to the next shortest propagation time is the population corresponding to the divided area S12. Is calculated as the population in each divided area.
  • the in-layer population calculation unit 606 associates the sector identifier, the divided area identifier, and the population.
  • the target sector is an omnidirectional sector and delay information (see FIG. 4)
  • delay information is aggregated for each propagation time, and the number of signals for each propagation time is calculated. This number of signals is the number of terminals of the mobile device 100 for each positioning point.
  • the in-layer population calculation unit 606 obtains the population for each propagation time by multiplying the number of terminals for each propagation time by the expansion coefficient.
  • the omnidirectional sector is divided for each layer based on the delay information, information on the propagation time is associated with each divided area.
  • the population for each divided area can be calculated.
  • the population corresponding to the shortest propagation time is the population in the divided area S21 in FIG. 42
  • the population corresponding to the next shortest propagation time is the population in the divided area S22. Calculate as the population in each divided area. If the population corresponding to the propagation time cannot be associated with the divided area on a one-to-one basis, the population is associated with the divided area with the closest propagation time. Then, as shown in FIG. 46, the in-layer population calculation unit 606 associates the sector identifier, the divided area identifier, and the population.
  • the in-story population calculation unit 606 calculates the population for each positioning point and the population for each propagation time, and assigns the population for each positioning point and the population for each propagation time to each divided area. From this, the population for each positioning point and the population for each propagation time may be acquired. That is, the position information used to create the layered region and the position information used to calculate the population do not have to be in the same time series. For example, a layered region can be created using location information for a certain month, and a population calculated using current location information can be assigned. Further, in this embodiment, the population is assigned to each divided area.
  • the calculation unit area conversion unit 607 converts the population for each divided area formed by dividing the sector into layers into a population for each population distribution calculation unit area for calculating the population distribution.
  • the calculation unit area conversion unit 607 uses a conversion table.
  • this conversion table the area ratio between the area of one layer and the area of each population distribution calculation unit area included in one layer is calculated for each layer.
  • a ratio between the area of the divided area after the exclusion and the area of the population distribution calculation unit area is used.
  • This conversion table can be calculated in advance by the calculation unit area conversion unit 607.
  • the calculation unit area conversion unit 607 uses a conversion matrix (FIG. 49) that represents the conversion table shown in FIG. 48 in a matrix format when converting the population.
  • the row direction is divided areas S1 to S7, and the column direction is population distribution calculation unit areas M1 to M16.
  • the calculation unit area conversion unit 607 multiplies the conversion matrix by the population (100 people) for each of the divided areas S1 to S7 and performs matrix calculation to thereby calculate the population distribution calculation unit areas M1 to M16. Seeking the population of By the conversion process using this conversion matrix, the population for each of the population distribution calculation unit areas M1 to M16 can be calculated as shown in FIG. Thereby, the population for every population distribution calculation unit area can be calculated
  • the sector is a sector
  • a conversion table and a conversion matrix are obtained, and the population distribution using the conversion matrix is obtained.
  • the population for each calculation unit area can be calculated.
  • the population output unit 609 outputs the population for each population distribution calculation unit area converted by the calculation unit area conversion unit 607 to another statistical device (not shown).
  • the output population for each population distribution calculation unit area is used for, for example, store development, road traffic survey, disaster countermeasures, environmental countermeasures, and the like.
  • This embodiment is configured as described above, and the sector is divided into layers by the layer division unit 605 based on the propagation time of radio waves transmitted and received between the mobile device and the base station.
  • the population calculation unit 606 calculates the population for each divided layer.
  • the population for each layer which is an area narrower than the sector, can be obtained, and the distribution distribution of the population in the sector can be grasped more accurately.
  • the calculation unit area conversion unit 607 converts the population for each layer into the population for each population distribution calculation unit area. Thereby, the population for every population distribution calculation unit area can be calculated
  • Each population can be determined.
  • this embodiment it is possible to allow overlap between sectors or between layered regions obtained by dividing the sector into layers, that is, obtain the population without considering the difference in frequency band or sector. be able to. For this reason, in this embodiment, the population for every population distribution calculation unit area can be calculated
  • calculation unit area conversion unit 607 calculates the conversion table using the area ratio of the divided areas that overlap geographically with the population distribution calculation unit area. And the calculation unit area conversion part 607 can perform conversion quickly by simple calculation by performing area conversion of the calculation unit of a population using the conversion matrix which represented the conversion table in the matrix form.
  • the in-story population calculation unit 606 obtains the number of mobile terminals based on the number of signals of delay information and PRACH-PD position information, and obtains the population from the obtained number of mobile terminals.
  • the population can be calculated based on the delay information obtained based on the propagation time of radio waves and the PRACH-PD position information.
  • the layered division unit 605 divides the sector based on the propagation time, thereby making the sector more appropriate. Can be divided.
  • the layered division unit 605 selects a sector based on the coordinate information (positioning point) included in the PRACH-PD position information. To divide. Thereby, a sector can be divided more appropriately.
  • the emission width calculation unit 616 calculates the emission width of the radio wave based on the distribution of the mobile devices 100 located in the sector to be divided obtained from the GPS position information, the position of the antenna, and the emission direction of the radio wave. To do. Thereby, even if it is a case where the radio wave radiation width cannot be acquired, the radio wave radiation width can be obtained based on the distribution of the mobile device 100, the position of the antenna, and the radio wave radiation direction.
  • the main power area estimation unit 613 uses the division information as the main power based on the delay information. Estimate the radius of the main power area. Thereby, even when the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the radius of the main power area can be obtained based on the delay information.
  • the main power area estimation unit 613 uses the PRACH-PD position information and the antenna position as the main power of the division target sector. Estimate the radius of the main power area. As a result, even if the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the main information is based on the coordinate information (positioning point) included in the PRACH-PD position information and the antenna position. The radius of the power area can be obtained.
  • the main power area estimation unit 613 determines the main power that the division target sector is the main power based on the distribution of mobile stations located in the division target sector obtained from the GPS position information and the antenna position. Estimate the radius of the area. As a result, even if the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the distribution of the mobile device obtained from the GPS position information and the position of the antenna The radius can be determined.
  • the layer width calculation unit 617 performs layered processing based on the arrangement interval of the positioning points of the PRACH-PD position information.
  • the dividing unit 605 calculates the layer width when the sector is divided. In this case, for example, the layer width calculated by the layer width calculation unit 617 is used even when the mobile device 100 does not exist at a certain position and the mobile device 100 is not measured at a certain position. Thus, the sector can be divided more appropriately.
  • the present invention is not limited to the above-described embodiment, and may be modified without changing the gist described in each claim.
  • the feature amount can be used when the in-layer population calculation unit 606 calculates the number of terminals of the mobile device.
  • This feature amount can also be used when the enlargement coefficient used when the in-layer population calculation unit 606 calculates the population.
  • the “feature amount” is information corresponding to the estimated generation density of the generated delay information or PRACH-PD position information as described above. Further, the “estimated generation density” here is generated per unit time around the time when the delay information or the PRACH-PD position information is generated by the mobile device 100 that generated the delay information or the PRACH-PD position information. It is an estimated value of the number of delay information or PRACH-PD position information.
  • position data acquisition means for acquiring position data including a terminal identifier for identifying a mobile device, position information regarding the position of the mobile device, and position acquisition time information from which the position information was acquired, and a certain first position Among the position data including the same identification information as the first position data, the position acquisition time information of the second position data that is the position data immediately before the first position data, and the first Position data acquisition means for acquiring the position acquisition time information of the third position data which is position data immediately after the position data, the position acquisition time information of the first position data, and the position acquisition time information of the second position data
  • the feature amount calculation means for calculating the feature amount of the first position data based on two or more of the position acquisition time information of the third position data, and the observation about the observation period to be observed.
  • One or more position data including position acquisition time information after the start time and before the observation end time and including position information associated with the observation area information related to the observation area to be observed is set as observation target position data.
  • the feature amount of the observation target position data, and the observation period length that is the difference between the observation start time and the observation end time is calculated.
  • the feature quantity can be obtained by providing terminal number estimation means for estimation.
  • the image processing apparatus further includes an expansion coefficient storage unit that stores an expansion coefficient for converting the number of terminals into a population, and the terminal number estimation unit is based on the feature amount, the observation period length, and the expansion coefficient of the observation target position data. It is possible to estimate the population residing in the observation area during the observation period.
  • first positioning position information the delay information and the PRACH-PD position information are collectively referred to as “first positioning position information”, and the population calculation unit 606 in the stratum calculates a feature amount from the first positioning position information, Processing for calculating the number of terminals of the mobile device will be described.
  • the in-story population calculation unit 606 has one or more pieces of first positioning position information in which the time when the first positioning position information is acquired (positioning) is after the counting start time in the counting time zone and before the counting end time. Is acquired as the aggregation target position information.
  • the total time zone is a time zone in which the population is calculated in the in-layer population calculation unit 606.
  • the population calculation unit 606 within the stratum includes the same terminal identifier as the first aggregation target position information for the aggregation target position information (hereinafter referred to as “first aggregation target position information”) for which the feature amount is to be obtained.
  • first aggregation target position information the time when the aggregation target position information immediately before the first aggregation target position information (hereinafter referred to as “second aggregation target position information”) is acquired, and immediately after the first aggregation target position information.
  • the time at which the total object position information hereinafter referred to as “third total object position information”.
  • the in-story population calculation unit 606 it is not essential for the in-story population calculation unit 606 to acquire the entire second or third aggregation target position information, and at least information about the time included in the first positioning position information may be acquired. Good. Further, it is assumed that a terminal identifier for identifying the mobile device is added to the first positioning position information.
  • the in-story population calculation unit 606 calculates a feature amount for each of the first aggregation target position information. For example, the in-layer population calculation unit 606 calculates the difference between the time when the second aggregation target position information is acquired and the time when the third aggregation target position information is acquired for the first aggregation target position information. Calculate as a feature.
  • the in-layer population calculation unit 606 when the time when the second aggregation target position information is acquired is an abnormal value, the in-layer population calculation unit 606, as an example, the time when the first aggregation target position information is acquired and the second aggregation When the difference from the time when the target position information is acquired is larger than a predetermined reference value (for example, 1 hour), only a predetermined time (for example, 1 hour) from the time when the first aggregation target position information is acquired. A feature amount for the first aggregation target position information is calculated using a time that goes back in the past as the time when the second aggregation target position information is acquired.
  • a predetermined reference value for example, 1 hour
  • the in-layer population calculation unit 606 when the time when the third aggregation target position information is acquired is an abnormal value, the in-layer population calculation unit 606, as an example, the time when the first aggregation target position information is acquired and the third When the difference from the time when the aggregation target position information is acquired is larger than a predetermined reference value (for example, 1 hour), a predetermined time (for example, 1 hour) from the time when the first aggregation target position information is acquired.
  • the feature amount for the first aggregation target position information is calculated using the time advanced only in the future as the time when the third aggregation target position information is acquired.
  • the process when the time at which the second and third aggregation target position information is acquired is an abnormal value is not an essential process, but by performing the above process, the mobile device 100 is located outside the service area.
  • the acquisition time interval of the first positioning position information becomes abnormally long due to the fact that the mobile device 100 is turned off or the mobile device 100 is powered off, etc., the influence of the abnormally long acquisition time interval Can be prevented from coming out excessively.
  • the in-layer population calculation unit 606 calculates first positioning position information including a terminal identifier (here, a case where the first positioning position information is delay information) is calculated.
  • a database in which feature quantities are associated is created.
  • the in-story population calculation unit 606 estimates the number of terminals based on the feature amount of the first positioning position information and the time length of the counting time zone that is the difference between the counting start time and the counting end time. Specifically, for example, when the first positioning position information is delay information, the in-layer population calculation unit 606 uses the delay information illustrated in FIG. The number of terminals is estimated based on the feature amount associated with the extracted delay information. This number of terminals is the number of terminals of mobile device 100 corresponding to the propagation time. Similarly, for example, when the first positioning position information is PRACH-PD position information, PRACH-PD having the same latitude and longitude (same positioning points) in the data in which the feature amount is associated with the PRACH-PD position information. The position information is extracted, and the number of terminals is estimated based on the feature amount associated with the extracted PRACH-PD position information. This number of terminals is the number of terminals of the mobile device 100 at the positioning point.
  • the in-story population calculation unit 606 calculates the total number of feature amounts of delay information with the same propagation time, or features of PRACH-PD position information with the same latitude and longitude. The numerical value obtained by dividing the total amount by twice the time length of the totaling time zone is estimated as the number of terminals.
  • the result of dividing by the length T of the aggregate time slot the sum of residence time t i of the divided area S in the aggregate time slot for each mobile station a i, estimating the number of terminals m.
  • the true value of the residence time t i of the divided area S in the aggregate time slot of the mobile station and a i is a unobservable, first positioning position information for each mobile station a i can be acquired.
  • the first positioning position information associated with the divided area S is sorted in time order.
  • X i is the total number of first positioning position information associated with the divided area S among the first positioning position information for the mobile device a i acquired within the total time period
  • the number of terminals Is an estimation of the value of m from the acquired first positioning position information q ij (j is an integer not less than 1 and not more than x i ).
  • p i be the density at which the first positioning position information q ij of the mobile device a i is acquired (that is, the first number of positioning position information per unit time). At this time, if the probability that the first positioning position information is acquired is independent of the divided area, the divided area is included in the first positioning position information about the mobile device a i acquired within the total time period.
  • the first positioning position information q ij is the first aggregation target position information
  • the first positioning position information q i (j ⁇ 1) is the second aggregation target position information
  • q i (j + 1) corresponds to the third tabulation target position information.
  • the first positioning position information q i1 , q i2 , q i3 is acquired within the counting time period and within the period in which the mobile device a i stays in the divided area S.
  • the first positioning position information q i0 is acquired immediately before the first positioning position information q i1
  • the first positioning position information q i4 is acquired immediately after the first positioning position information q i3 .
  • the mobile station a i the residence time t i of the divided area S in the aggregate time slot corresponds to estimate as the period from to (u i0 and the midpoint of the u i1) (midpoint of u i3 and u i4).
  • the first positioning position information q i4 for the mobile device a i is acquired during the stay in the divided area S, although it is not within the total time zone.
  • a process that does not estimate the end time of the stay time t i as the end time of the total time period T is described. To do.
  • the in-story population calculation unit 606 obtains a feature amount from the delay information and the PRACH-PD location information as the first positioning location information, and calculates the number of mobile terminals in the divided area from the obtained feature amount. Can be calculated. In this case, the number of terminals in the divided area can be calculated more accurately.
  • the feature amount calculation method described above the time difference between the aggregation target position information before and after the aggregation target position information (first aggregation target position information) for which the feature amount is to be obtained (second aggregation target position information and third information).
  • first aggregation target position information first aggregation target position information
  • the time difference with respect to the aggregation target position information is calculated as the feature amount of the first aggregation target position information.
  • the feature amount can be expressed by the following equation (11).
  • equation (11) is only the deformation
  • type information about the second aggregation target position information and the third aggregation target position information for example, first positioning position information described later.
  • Delay information, PRACH-PD position information generation factor (generation timing) is considered.
  • the time difference between the third aggregation target position information and the first aggregation target position information is multiplied by a correction coefficient ⁇ corresponding to the type information (generation factor here) of the third aggregation target position information.
  • the correction coefficient ⁇ or ⁇ may be determined according to the type information of the first aggregation target position information, or the correction coefficient ⁇ or ⁇ may be corrected according to the type information of the first and second aggregation target position information. Even if the coefficient ⁇ is determined, the correction coefficient ⁇ may be determined according to the type information of the first and third totaling target position information.
  • a value obtained by adding the values obtained by these multiplications is set as a feature amount of the first aggregation target position information.
  • the generation factor of the first positioning position information that becomes the second aggregation target position information and the third aggregation target position information is included in the generated first positioning position information.
  • the generation factors of the first positioning position information include the timing at which positioning using the above-described PRACH-PD positioning method is performed, such as when the mobile device 100 originates, receives an incoming call, or performs a handover.
  • set values of the correction coefficients ⁇ and ⁇ are determined in advance.
  • a correction coefficient ⁇ for the third aggregation target position information is set according to the information about the generation factor of the third aggregation target position information, and the second is set according to the information about the generation factor of the second aggregation target position information. It is sufficient to set the correction coefficient ⁇ for the total target position information. Both the correction coefficients ⁇ and ⁇ may be set in advance to a value of 0 or more and 2 or less. However, this numerical range is not essential.
  • the expected value of the time spent in the current divided area is the same before and after the generation of the first positioning position information. it is conceivable that.
  • the terminal has not stayed in the current divided area at least before the first positioning position information is generated, for example, in the case of the first positioning position information generated in response to a handover There is.
  • the time during which the terminal stayed in the current divided area before the first positioning position information is generated is considered as 0, and the type information (generation factor) of the first aggregation target position information is
  • the correction coefficient ⁇ that is, the correction coefficient ⁇ related to the time difference from the immediately previous aggregation target position information
  • the equation (12) can be set to zero.
  • the second and third total targets that are the total target position information before and after the first total target position information.
  • the time difference between the second aggregation target position information and the third aggregation target position information is corrected according to the type information about the position information (for example, the generation factor of the first positioning position information), and the corrected time difference is used.
  • the feature amount can be calculated with higher accuracy based on the type information of the first positioning position information.
  • the layer division unit 605 divides a sector or a circular sector into a layer, but is not limited to a sector or a circular sector.
  • the sector of the shape may be divided into layers.
  • the in-story population calculation unit 606 obtains the population from the number of terminals of the mobile device 100.
  • the number of terminals (predetermined value) for each divided area may be obtained without obtaining the population. .

Abstract

A strata division unit (605) divides sectors into strata. A stratal population calculation unit (606) calculates the population for each divided stratum. A calculation unit area conversion unit (607) calculates the population for each population distribution calculation unit area on the basis of the population for each stratum. Calculating the population for each divided stratum in this way enables the population for each stratum, which is an area that is smaller than a sector, to be determined, and enables population distribution biases in a sector to be accurately understood.

Description

層別割当装置及び層別割当方法Stratified allocation apparatus and stratified allocation method
 本発明は、セクタを層状に分割し所定の値を割り当てる層別割当装置及び層別割当方法に関する。 The present invention relates to a layer-by-layer allocation apparatus and a layer-by-layer allocation method that divide a sector into layers and allocate predetermined values.
 従来、基地局によって形成されるセクタに在圏する移動機の端末数から、セクタ内の人口を求めることが行われている。また、セクタ内の人口を、人口分布等を求めるための所定の単位エリア毎の人口に変換することが行われている。例えば、特許文献1では、セクタ内に人が一様に分布しているものとし、セクタと単位エリアとが重なる面積の比を用いて単位エリア毎の人口を算出している。また、特許文献2では、セクタ内の移動機の位置を、アンテナとの距離に基づいて推定することが記載されている。 Conventionally, the population in a sector is obtained from the number of mobile terminals located in the sector formed by a base station. In addition, the population in the sector is converted into a population for each predetermined unit area for obtaining a population distribution and the like. For example, in Patent Document 1, it is assumed that people are uniformly distributed in a sector, and the population for each unit area is calculated using the ratio of the area where the sector and the unit area overlap. Patent Document 2 describes that the position of a mobile device in a sector is estimated based on a distance from an antenna.
国際公開WO2011/021608号パンフレットInternational Publication WO2011 / 021608 Pamphlet 特開2006-033207号公報JP 2006-033207 A
 しかしながら、特許文献1に記載された人口の算出方法では、セクタ内に一様に人が分布しているものとしてエリアの変換を行っているため、例えば、セクタのある位置に人が偏って存在している場合には、単位エリア毎の人口を正確に算出することができなかった。また、特許文献2に記載された方法を用いると、セクタ内の移動機の位置(アンテナからの距離)を推定することができるものの、複数の移動機の分布偏りについては考慮されておらず、セクタ内の移動機の分布偏りをどのようにして把握すべきかについて不明である。 However, in the method of calculating the population described in Patent Document 1, areas are converted on the assumption that people are uniformly distributed in the sector. For example, people are biased at a certain sector position. In this case, the population for each unit area could not be calculated accurately. Moreover, although the position (distance from the antenna) of the mobile device in the sector can be estimated by using the method described in Patent Document 2, the distribution bias of a plurality of mobile devices is not considered, It is unclear how to grasp the distribution bias of mobile devices in the sector.
 そこで本発明は、セクタ内の所定の値の分布偏りを求めることができる層別割当装置及び層別割当方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a layer-by-layer allocation apparatus and a layer-by-layer allocation method that can obtain a distribution bias of a predetermined value in a sector.
 本発明に係る層別割当装置は、移動機と基地局との間で送受信される電波の伝播時間に基づいて基地局によって形成されるセクタを層状に分割する層状分割手段と、層状分割手段で分割された層毎に、所定の測位によって得られる移動機の測位位置情報に対応付けられた所定の値を割り当てる層別割当手段と、を備える。 The stratified allocation apparatus according to the present invention includes a layer division unit that divides a sector formed by a base station into layers based on a propagation time of radio waves transmitted and received between the mobile device and the base station, and a layer division unit. And a layer-by-layer assignment unit that assigns a predetermined value associated with the positioning position information of the mobile device obtained by the predetermined positioning for each of the divided layers.
 また、本発明に係る層別割当方法は、移動機と基地局との間で送受信される電波の伝播時間に基づいて基地局によって形成されるセクタを層状に分割する層状分割ステップと、層状分割ステップで分割された層毎に、所定の測位によって得られる移動機の測位位置情報に対応付けられた所定の値を割り当てる層別割当ステップと、を含む。 Further, the stratified allocation method according to the present invention includes a layer division step for dividing a sector formed by a base station into layers based on propagation times of radio waves transmitted and received between a mobile device and the base station, and a layer division A layer-by-layer assignment step in which a predetermined value associated with the positioning position information of the mobile device obtained by the predetermined positioning is assigned to each layer divided in the step.
 これらの発明にあっては、移動機と基地局との間で送受信される電波の伝播時間に基づいてセクタが層状に分割され、分割された層毎に所定の値が割り当てられる。このように、分割された層毎に所定の値を割り当てることで、セクタよりも狭いエリアである層毎の所定の値を求めることができ、セクタ内における所定の値の分布偏りをより正確に把握することができる。 In these inventions, the sector is divided into layers based on the propagation time of radio waves transmitted and received between the mobile device and the base station, and a predetermined value is assigned to each divided layer. In this way, by assigning a predetermined value to each divided layer, it is possible to obtain a predetermined value for each layer, which is an area narrower than the sector, and more accurately distribute the distribution of the predetermined value in the sector. I can grasp it.
 なお、上記特許文献2に記載された装置では、セクタ間のオーバーラップが許容できない、即ち、このような場合には基本的にセクタの領域が排他的になる。このため、例えば、セクタが増設・廃設された場合や、セクタが工事中・故障した場合には、それらのセクタの周辺にあるセクタ領域を、その都度再推定する必要があり、処理工数が増加する。一方、本発明では、セクタ間のオーバーラップを許容することができるため、セクタ同士の領域を個別に求めることができる。そのため、例えば、あるセクタが工事中等となった場合であっても、そのセクタの周辺のセクタ領域を再度推定する必要がなく、処理工数を削減することができる。 It should be noted that the apparatus described in the above-mentioned Patent Document 2 cannot allow overlap between sectors, that is, in such a case, the sector area is basically exclusive. For this reason, for example, when a sector is added or removed, or when a sector is under construction or fails, it is necessary to re-estimate the sector area around those sectors each time, and the processing man-hours are increased. To increase. On the other hand, in the present invention, since the overlap between sectors can be allowed, the areas between sectors can be obtained individually. Therefore, for example, even when a certain sector is under construction or the like, there is no need to re-estimate the sector area around the sector, and the number of processing steps can be reduced.
 また、層毎に割り当てられた所定の値を、分布算出単位エリア毎の値に変換する算出単位エリア変換手段を更に備えることが好ましい。この場合には、層毎に割り当てられた所定の値を、分布算出単位エリア毎の値に変換することができる。即ち、セクタよりも狭いエリアである層毎の所定の値に基づいて分布算出単位エリア毎の値を算出することで、セクタ内における所定の値の分布偏り等を考慮してより正確に分布算出単位エリア毎の値を求めることができる。なお、上記特許文献2に記載された装置では、セクタ間のオーバーラップが許容できないため、周波数帯毎に別々のセクタ勢力エリアを推定して分布算出単位エリア毎の値を求める必要がある。一方、本発明では、セクタ間、又はセクタを層状に分割した層状の領域間のオーバーラップを許容することができる、即ち、周波数帯やセクタの違いを考慮することなく、所定の値を求めることができる。このため本発明では、分布算出単位エリア毎の値を効率よく求めることができる。 Further, it is preferable to further include a calculation unit area conversion means for converting a predetermined value assigned to each layer into a value for each distribution calculation unit area. In this case, a predetermined value assigned to each layer can be converted into a value for each distribution calculation unit area. In other words, by calculating the value for each distribution calculation unit area based on the predetermined value for each layer that is an area narrower than the sector, the distribution can be calculated more accurately in consideration of the distribution bias of the predetermined value within the sector. A value for each unit area can be obtained. In the device described in Patent Document 2, since overlap between sectors cannot be allowed, it is necessary to estimate a different sector influence area for each frequency band and obtain a value for each distribution calculation unit area. On the other hand, in the present invention, it is possible to allow overlap between sectors or between layered areas obtained by dividing the sector into layers, that is, to obtain a predetermined value without considering the difference between frequency bands and sectors. Can do. For this reason, in this invention, the value for every distribution calculation unit area can be calculated | required efficiently.
 また、算出単位エリア変換手段は、一の層の面積と、一の層内に含まれる分布算出単位エリア毎の面積と、の面積比に基づいて、層毎の所定の値を分布算出単位エリア毎の値に変換する、ことが好ましい。このように面積比を用いて層毎の所定の値を分布算出単位エリア毎の値に変換することで、簡易な計算によってすばやく変換を行うことができる。 Further, the calculation unit area conversion means calculates a predetermined value for each layer based on an area ratio between the area of one layer and the area of each distribution calculation unit area included in the one layer. It is preferable to convert each value. Thus, by converting the predetermined value for each layer into the value for each distribution calculation unit area using the area ratio, the conversion can be quickly performed by a simple calculation.
 また、所定の測位によって得られる移動機の測位位置情報、及び、移動機が在圏するセクタのセクタ識別子、が対応付けられた対応情報を取得する対応情報取得手段を更に備え、層別割当手段は、対応情報取得手段で取得された対応情報のうち、分割対象とするセクタのセクタ識別子に対応付けられた測位位置情報に基づいて、各層に割り当てられた所定の値を算出する、ことが好ましい。この場合には、測位位置情報に基づいて所定の値を算出することができる。 The apparatus further comprises correspondence information acquisition means for acquiring correspondence information in which the positioning position information of the mobile device obtained by the predetermined positioning and the sector identifier of the sector where the mobile device is located are associated with each other. Preferably, the predetermined value assigned to each layer is calculated based on the positioning position information associated with the sector identifier of the sector to be divided among the correspondence information acquired by the correspondence information acquisition unit. . In this case, a predetermined value can be calculated based on the positioning position information.
 また、対応情報取得手段は、所定の測位が、移動機と基地局との間で送受信される電波の伝播時間に基づく第1の測位であり、測位位置情報が、第1の測位によって得られる第1の測位位置情報 であり、対応情報が、第1の測位位置情報とセクタ識別子とが対応付けられた第1の対応情報である場合に、第1の対応情報を取得する第1の対応情報取得手段、及び、所定の測位が、第1の測位とは異なる第2の測位であり、測位位置情報が、第2の測位によって得られる第2の測位位置情報であり、対応情報が、第2の測位位置情報とセクタ識別子とが対応付けられた第2の対応情報である場合に、第2の対応情報を取得する第2の対応情報取得手段、のうち少なくともいずれか一方を含むことが好ましい。この場合には、第1の対応情報取得手段或いは第2の対応情報取得手段によって、第1の対応情報或いは第2の対応情報を取得することができる。 The correspondence information acquisition means is a first positioning based on a propagation time of radio waves transmitted and received between the mobile device and the base station, and the positioning position information is obtained by the first positioning. The first correspondence position information is a first correspondence information to be acquired when the correspondence information is the first correspondence information in which the first positioning position information and the sector identifier are associated with each other. The information acquisition means, and the predetermined positioning is a second positioning different from the first positioning, the positioning position information is the second positioning position information obtained by the second positioning, and the correspondence information is Including at least one of second correspondence information acquisition means for acquiring the second correspondence information when the second positioning information and the sector identifier are associated with each other. Is preferred. In this case, the first correspondence information or the second correspondence information can be obtained by the first correspondence information acquisition means or the second correspondence information acquisition means.
 また、分割対象のセクタは有指向性セクタであり、第1の測位位置情報は、伝播時間に関する伝播時間情報を含み、層状分割手段は、伝播時間に基づいて定められた所定の間隔でセクタを分割することが好ましい。このように、分割対象のセクタが有指向性セクタであり、第1の測位位置情報が伝播時間情報を含んでいる場合には、伝播時間に基づいて定められた所定の間隔でセクタを分割することで、セクタをより適切に分割することができる。 Further, the sector to be divided is a directional sector, the first positioning position information includes propagation time information related to the propagation time, and the layered dividing means divides the sector at a predetermined interval determined based on the propagation time. It is preferable to divide. Thus, when the division target sector is a directional sector and the first positioning position information includes propagation time information, the sector is divided at a predetermined interval determined based on the propagation time. Thus, the sector can be divided more appropriately.
 また、分割対象のセクタは有指向性セクタであり、第1の測位位置情報は、伝播時間に対応する移動機の座標情報を含み、層状分割手段は、分割対象のセクタのセクタ識別子に対応する第1の測位位置情報の座標情報の位置に基づいて前記セクタを分割することが好ましい。このように、分割対象のセクタが有指向性セクタであり、第1の測位位置情報が座標情報を含んでいる場合には、座標情報の位置に基づいてセクタを分割することで、セクタをより適切に分割することができる。 Further, the division target sector is a directional sector, the first positioning position information includes the coordinate information of the mobile device corresponding to the propagation time, and the layered division means corresponds to the sector identifier of the division target sector. The sector is preferably divided based on the position of the coordinate information of the first positioning position information. As described above, when the sector to be divided is a directional sector and the first positioning position information includes coordinate information, the sector is divided by dividing the sector based on the position of the coordinate information. Can be divided appropriately.
 また、分割対象のセクタは無指向性セクタであり、第1の測位位置情報は、伝播時間に関する伝播時間情報を含み、層状分割手段は、伝播時間に基づいて定められた所定の間隔で前記セクタを分割することが好ましい。このように、分割対象のセクタが無指向性セクタであり、第1の測位位置情報が伝播時間情報を含んでいる場合には、伝播時間に基づいて定められた所定の間隔でセクタを分割することで、セクタをより適切に分割することができる。 Further, the division target sector is an omnidirectional sector, the first positioning position information includes propagation time information related to the propagation time, and the layered division unit is configured to execute the sector at a predetermined interval determined based on the propagation time. Is preferably divided. Thus, when the division target sector is an omnidirectional sector and the first positioning position information includes propagation time information, the sector is divided at a predetermined interval determined based on the propagation time. Thus, the sector can be divided more appropriately.
 また、対応情報取得手段で取得された対応情報のうち、所定のセクタ識別子に対応付けられた測位位置情報によって得られる移動機の分布、及び、所定のセクタ識別子に対応するセクタを形成する基地局のアンテナの位置、に基づいて、所定のセクタ識別子に対応するセクタが主勢力となる主勢力エリアの半径を推定する主勢力エリア推定手段を更に備え、層状分割手段は、主勢力エリア推定手段で推定された主勢力エリアの半径を用いてセクタの形状を特定することが好ましい。これにより、分割対象のセクタが主勢力となる主勢力エリアの半径が取得できない場合であっても、主勢力エリアの半径を求めることができる。 Also, among the correspondence information acquired by the correspondence information acquisition means, the distribution of mobile stations obtained from the positioning position information associated with the predetermined sector identifier, and the base station that forms the sector corresponding to the predetermined sector identifier Based on the position of the antenna, and further comprising main power area estimating means for estimating the radius of the main power area where the sector corresponding to the predetermined sector identifier is the main power, and the layered dividing means is the main power area estimating means. It is preferable to specify the sector shape using the estimated radius of the main power area. Thereby, even when the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the radius of the main power area can be obtained.
 また、主勢力エリア推定手段は、第1の対応情報のうち、分割対象のセクタのセクタ識別子に対応付けられた第1の測位位置情報に含まれる伝播時間情報に基づいて、分割対象のセクタが主勢力となる主勢力エリアの半径を推定することが好ましい。これにより、分割対象のセクタが主勢力となる主勢力エリアの半径が取得できない場合であっても、伝播時間情報に基づいて主勢力エリアの半径を求めることができる。 Further, the main power area estimation means determines the division target sector based on the propagation time information included in the first positioning position information associated with the sector identifier of the division target sector in the first correspondence information. It is preferable to estimate the radius of the main power area as the main power. Thereby, even when the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the radius of the main power area can be obtained based on the propagation time information.
 また、主勢力エリア推定手段は、第1の対応情報のうち、分割対象のセクタのセクタ識別子に対応付けられた第1の測位位置情報に含まれる座標情報、及び、分割対象のセクタを形成する基地局のアンテナの位置、に基づいて、分割対象のセクタが主勢力となる主勢力エリアの半径を推定することが好ましい。これにより、分割対象のセクタが主勢力となる主勢力エリアの半径が取得できない場合であっても、第1の測位位置情報に含まれる座標情報、及び、アンテナの位置に基づいて主勢力エリアの半径を求めることができる。 In addition, the main power area estimation unit forms the coordinate information included in the first positioning position information associated with the sector identifier of the sector to be divided and the sector to be divided among the first correspondence information. It is preferable to estimate the radius of the main power area where the sector to be divided becomes the main power based on the position of the antenna of the base station. Thereby, even when the radius of the main power area where the sector to be divided is the main power cannot be acquired, the coordinates of the main power area based on the coordinate information included in the first positioning position information and the antenna position are obtained. The radius can be determined.
 また、主勢力エリア推定手段は、第2の測位によって得られる分割対象のセクタに在圏する移動機の分布、及び、分割対象のセクタを形成する基地局のアンテナの位置、に基づいて、分割対象のセクタが主勢力となる主勢力エリアの半径を推定することが好ましい。これにより、分割対象のセクタが主勢力となる主勢力エリアの半径が取得できない場合であっても、第2の測位によって得られる移動機の分布、及び、アンテナの位置に基づいて、主勢力エリアの半径を求めることができる。 The main power area estimation means divides based on the distribution of mobile stations located in the division target sector obtained by the second positioning and the position of the antenna of the base station that forms the division target sector. It is preferable to estimate the radius of the main power area where the target sector is the main power. As a result, even if the radius of the main power area where the sector to be divided is the main power cannot be acquired, the main power area based on the distribution of mobile devices obtained by the second positioning and the position of the antenna Can be obtained.
 また、第1の対応情報のうち、分割対象のセクタのセクタ識別子に対応付けられた複数の第1の測位位置情報に含まれる伝播時間に対応する移動機の座標情報の配列間隔に基づいて、層状分割手段によって分割する層の層幅を算出する層幅算出手段を更に備え、層状分割手段は、層幅算出手段によって算出された層幅を用いてセクタを分割することが好ましい。この場合には、例えば、偶然ある位置に移動機が存在せずにある位置での座標情報が取得できなかった場合であっても、層幅算出手段で算出された層幅を用いることで、セクタをより適切に分割することができる。 Moreover, based on the arrangement interval of the coordinate information of the mobile device corresponding to the propagation time included in the plurality of first positioning position information associated with the sector identifier of the sector to be divided among the first correspondence information, It is preferable that the apparatus further comprises layer width calculating means for calculating the layer width of the layer to be divided by the layer dividing means, and the layer dividing means preferably divides the sector using the layer width calculated by the layer width calculating means. In this case, for example, by using the layer width calculated by the layer width calculating means, even if the coordinate information at a certain position cannot be obtained without a mobile device at a certain position, Sectors can be divided more appropriately.
 また、第2の対応情報のうち、所定のセクタ識別子に対応付けられた第2の測位位置情報によって得られる移動機の分布に基づいて、所定のセクタ識別子に対応するセクタを形成する基地局のアンテナから放射される電波の放射幅を算出する放射幅算出手段を更に備えることが好ましい。
 また、所定の値は、人口であることが好ましい。この場合には、層状分割手段で分割された層毎に人口を割り当てることができる。
Further, based on the distribution of mobile devices obtained from the second positioning position information associated with the predetermined sector identifier among the second correspondence information, the base station forming the sector corresponding to the predetermined sector identifier It is preferable to further include a radiation width calculating means for calculating the radiation width of the radio wave radiated from the antenna.
The predetermined value is preferably a population. In this case, the population can be assigned to each layer divided by the layered dividing means.
 本発明によれば、セクタ内の所定の値の分布偏りを求めることができる。 According to the present invention, it is possible to obtain a distribution bias of a predetermined value in a sector.
層別割当装置を適用した移動通信システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the mobile communication system to which the allocation apparatus by layer is applied. BTSとセクタとの関係を示す図である。It is a figure which shows the relationship between BTS and a sector. PRACH-PD測位の原理を示す図である。It is a figure which shows the principle of PRACH-PD positioning. 遅延情報を示す図である。It is a figure which shows delay information. 有指向性セクタにおける移動機の測位点を示す図である。It is a figure which shows the positioning point of the mobile device in a directional sector. PRACH-PD位置情報を示す図である。It is a figure which shows PRACH-PD position information. PRACH-PD位置情報を示す図である。It is a figure which shows PRACH-PD position information. GPS位置情報を示す図である。It is a figure which shows GPS position information. 人口分布算出装置の詳細を示すブロック図である。It is a block diagram which shows the detail of a population distribution calculation apparatus. 有指向性セクタにおける移動機の測位点を示す図である。It is a figure which shows the positioning point of the mobile device in a directional sector. 無指向性セクタにおける移動機の測位点を示す図である。It is a figure which shows the positioning point of the mobile device in an omnidirectional sector. 有指向性セクタにおけるPRACH-PD位置情報を測位点毎に集計した結果を示す図である。It is a figure which shows the result of having totaled PRACH-PD position information in a directional sector for every positioning point. 無指向性セクタにおけるPRACH-PD位置情報を測位点毎に集計した結果を示す図である。It is a figure which shows the result of having totaled the PRACH-PD position information in an omnidirectional sector for every positioning point. セクタ種別判断部における第3の方法に関する処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process regarding the 3rd method in a sector classification judgment part. アンテナの位置を算出する第1の方法について説明した図である。It is a figure explaining the 1st method of calculating the position of an antenna. アンテナの位置を算出する第2の方法について説明した図である。It is a figure explaining the 2nd method of calculating the position of an antenna. アンテナの位置を算出する第3の方法について説明した図である。It is a figure explaining the 3rd method of calculating the position of an antenna. アンテナの位置を算出する第3の方法について説明した図である。It is a figure explaining the 3rd method of calculating the position of an antenna. アンテナの位置を算出する第4の方法について説明した図である。It is a figure explaining the 4th method of calculating the position of an antenna. アンテナの位置を算出する第5及び第6の方法について説明した図である。It is the figure explaining the 5th and 6th method of calculating the position of an antenna. アンテナの位置を算出する第7の方法について説明した図である。It is a figure explaining the 7th method of calculating the position of an antenna. 緯度・経度毎の信号数を示す図である。It is a figure which shows the number of signals for every latitude and longitude. 中間テーブルを示す図である。It is a figure which shows an intermediate | middle table. 距離別信号密度分布を示す図である。It is a figure which shows signal density distribution according to distance. 主勢力エリア推定部における処理の流れを示す図である。It is a figure which shows the flow of a process in the main influence area estimation part. 遅延情報における伝播時間毎の信号数を示す図である。It is a figure which shows the number of signals for every propagation time in delay information. 中間テーブルを示す図である。It is a figure which shows an intermediate | middle table. 主勢力エリア推定部における処理の流れを示す図である。It is a figure which shows the flow of a process in the main influence area estimation part. 主勢力エリア推定部における主勢力エリアの半径を推定する方法について説明した図である。It is the figure explaining the method of estimating the radius of the main influence area in the main influence area estimation part. 放射方向を算出する方法について説明した図である。It is a figure explaining the method of calculating a radiation direction. 測位点毎の信号数を示す図である。It is a figure which shows the number of signals for every positioning point. 放射幅を算出する方法について説明した図である。It is a figure explaining the method of calculating a radiation width. 密度分布を簡略化したグラフを示す図である。It is a figure which shows the graph which simplified density distribution. PRACH-PD測位方式を用いて得られた有指向性セクタについてのPRACH-PD位置情報をマッピングした図である。It is the figure which mapped PRACH-PD position information about the directional sector obtained using PRACH-PD positioning method. PRACH-PD位置情報を測位点毎に集計した結果を示す図である。It is a figure which shows the result of having totaled PRACH-PD position information for every positioning point. 層幅を算出する方法について説明した図である。It is a figure explaining the method of calculating a layer width. 測位点間の距離を示す図である。It is a figure which shows the distance between positioning points. 有指向性セクタを層状に分割する様子を示す図である。It is a figure which shows a mode that a directional sector is divided | segmented into layers. 分割後におけるセクタ識別子と代表点の座標と分割エリア情報とを対応付けた情報を示す図である。It is a figure which shows the information which matched the sector identifier after a division | segmentation, the coordinate of a representative point, and division | segmentation area information. 有指向性セクタを層状に分割する様子を示す図である。It is a figure which shows a mode that a directional sector is divided | segmented into layers. 分割後におけるセクタ識別子と代表点の座標と伝播時間と分割エリア情報とを対応付けた情報を示す図である。It is a figure which shows the information which matched the sector identifier after a division | segmentation, the coordinate of a representative point, propagation time, and division | segmentation area information. 無指向性セクタを層状に分割する様子を示す図である。It is a figure which shows a mode that an omnidirectional sector is divided | segmented into layers. 海岸線を考慮して分割エリアを求める様子を示す図である。It is a figure which shows a mode that a division area is calculated | required in consideration of a coastline. 層内人口算出部によって算出された人口を示す図である。It is a figure which shows the population calculated by the in-story population calculation part. 層内人口算出部によって算出された人口を示す図である。It is a figure which shows the population calculated by the in-story population calculation part. 層内人口算出部によって算出された人口を示す図である。It is a figure which shows the population calculated by the in-story population calculation part. 変換テーブルを算出する様子を示す図である。It is a figure which shows a mode that a conversion table is calculated. 変換テーブルを示す図である。It is a figure which shows a conversion table. 変換行列を示す図である。It is a figure which shows a conversion matrix. 変換行列を用いて変換を行う様子を示す図である。It is a figure which shows a mode that it converts using a conversion matrix. 人口分布算出単位エリア毎の人口を示す図である。It is a figure which shows the population for every population distribution calculation unit area. 遅延情報と特徴量とを対応付けたデータベースを示す図である。It is a figure which shows the database which matched delay information and the feature-value. 端末数推計の考え方を説明するための図である。It is a figure for demonstrating the view of terminal number estimation. 端末数推計に係る計算方法を説明するための図である。It is a figure for demonstrating the calculation method which concerns on terminal number estimation.
 次に、本発明に係る層別割当装置及び層別割当方法を適用した移動通信システムの好適な一実施形態について説明する。まず、移動通信システム10の機能ブロック構成について説明する。図1は、移動通信システムの機能構成を示すブロック図である。図1に示すように、移動通信システム10は、移動機100と、BTS(基地局)200と、RNC(無線ネットワーク制御装置)300と、交換機400と、GPS位置管理部501と、位置収集部502と、層別割当装置としての人口算出装置600とを含んで構成されている。 Next, a preferred embodiment of a mobile communication system to which the layer allocation apparatus and layer allocation method according to the present invention is applied will be described. First, the functional block configuration of the mobile communication system 10 will be described. FIG. 1 is a block diagram showing a functional configuration of a mobile communication system. As shown in FIG. 1, a mobile communication system 10 includes a mobile device 100, a BTS (base station) 200, an RNC (radio network control device) 300, an exchange 400, a GPS location management unit 501, and a location collection unit. 502 and a population calculation device 600 as a stratified allocation device.
 移動機100は、GPS機能部101を含んで構成されている。GPS機能部101は、GPS(第2の測位)を用いて移動機100の存在位置を示す詳細な位置情報(以下「GPS座標情報」と称する。)を取得するものである。GPS座標情報(第2の測位位置情報)は、移動機100に搭載された所定のアプリケーション(GPS座標情報を用いるアプリケーション)の実行時等に取得される。GPS機能部101は、GPS座標情報を取得すると、取得したGPS座標情報をGPS位置管理部501に対して出力する。 The mobile device 100 includes a GPS function unit 101. The GPS function unit 101 acquires detailed position information (hereinafter referred to as “GPS coordinate information”) indicating the location of the mobile device 100 using GPS (second positioning). The GPS coordinate information (second positioning position information) is acquired when a predetermined application (an application using GPS coordinate information) installed in the mobile device 100 is executed. When the GPS function unit 101 acquires the GPS coordinate information, the GPS function unit 101 outputs the acquired GPS coordinate information to the GPS position management unit 501.
 BTS200は、アンテナ201から移動機100と通信を行うための電波を放射し、通信エリアであるセクタを形成する。なお、セクタの種類として、有指向性セクタと、無指向性セクタとがある。有指向性セクタは、指向性を有するアンテナを用いて形成されるセクタである。例えば、図2(a)に示すように、アンテナ201が指向性を有する6つのアンテナを備え、各アンテナがそれぞれ60度ずつ異なる方向に電波を放射する場合、6つの有指向性セクタC1~C6が形成される。無指向性セクタは、例えば、一つのアンテナからすべての方向に電波を放射することによって形成されるセクタである。例えば、図2(b)に示すように、アンテナ201からすべての方向に電波を放射することによって無指向性セクタC10が形成される。 The BTS 200 radiates radio waves for communication with the mobile device 100 from the antenna 201 to form a sector that is a communication area. There are two types of sectors: a directional sector and an omnidirectional sector. A directional sector is a sector formed using a directional antenna. For example, as shown in FIG. 2A, when the antenna 201 includes six antennas having directivity and each antenna radiates radio waves in different directions by 60 degrees, six directional sectors C1 to C6 are provided. Is formed. An omnidirectional sector is a sector formed by, for example, radiating radio waves in one direction from one antenna. For example, as shown in FIG. 2B, the omnidirectional sector C10 is formed by radiating radio waves from the antenna 201 in all directions.
 RNC300は、通信制御部301と、位置特定部302とを含んで構成されている。通信制御部301は、移動機100とBTS200を介して通信接続を行う部分であり、例えば、移動機100からの発信処理若しくは着信処理に基づいた通信接続処理に基づいた通信接続処理等を行う部分である。 The RNC 300 includes a communication control unit 301 and a position specifying unit 302. The communication control unit 301 is a part that performs communication connection with the mobile device 100 via the BTS 200, for example, a portion that performs communication connection processing based on communication connection processing based on outgoing call processing or incoming call processing from the mobile device 100. It is.
 位置特定部302は、PRACH-PD測位方式(第1の測位)を用いて、移動機100のセクタ内の位置を特定する。このPRACH-PD測位方式を用いた移動機100のセクタ内の位置の特定は、移動機100が通信接続(例えば、発信時、着信時、又はハンドオーバ時における接続処理等)を行う際に実行される。詳細には、位置特定部302は、図3に示すように、移動機100へ向けて送信されたPRACH信号が移動機100で折り返してBTS200に到達するまでの伝播時間(第1の測位位置情報、伝播時間情報)を測定する。この伝播時間の測定結果は、電波の位相周期に基づいて得られる所定の単位時間毎となる。 The position specifying unit 302 specifies the position in the sector of the mobile device 100 using the PRACH-PD positioning method (first positioning). The location of the mobile device 100 in the sector using the PRACH-PD positioning method is executed when the mobile device 100 performs communication connection (for example, connection processing at the time of outgoing call, incoming call, or handover). The Specifically, as illustrated in FIG. 3, the position specifying unit 302 transmits a propagation time (first positioning position information) until the PRACH signal transmitted to the mobile device 100 is returned by the mobile device 100 and reaches the BTS 200. , Propagation time information). The measurement result of the propagation time is every predetermined unit time obtained based on the phase period of the radio wave.
 位置特定部302は、図4に示すように、PRACH-PD測位方式を用いて移動機100の位置を測位した測位時刻と、移動機100が在圏するセクタのセクタ識別子と、伝播時間とを対応付けた情報を遅延情報(第1の測位位置情報、第1の対応情報)として算出する。この遅延情報は、セクタが有指向性セクタであるか、無指向性セクタであるかを問わず算出することができる。なお、この伝播時間により、アンテナ201と移動機100との離間距離を求めることができ、伝播時間が移動機100の位置を表していると言える。即ち、遅延情報は、移動機100の位置を示す位置情報であると言える。 As shown in FIG. 4, the position specifying unit 302 obtains the positioning time when the position of the mobile device 100 is measured using the PRACH-PD positioning method, the sector identifier of the sector where the mobile device 100 is located, and the propagation time. The associated information is calculated as delay information (first positioning position information, first correspondence information). This delay information can be calculated regardless of whether the sector is a directional sector or an omnidirectional sector. Note that the distance between the antenna 201 and the mobile device 100 can be obtained from the propagation time, and it can be said that the propagation time represents the position of the mobile device 100. That is, it can be said that the delay information is position information indicating the position of the mobile device 100.
 また、位置特定部302は、PRACH-PD測位方式を用いて遅延情報を算出する以外にも、移動機100の位置を特定する情報として、移動機100の座標を用いたPRACH-PD位置情報(第1の測位位置情報、対応情報)を算出する。具体的には、セクタが有指向性セクタである場合、図5に示すように、位置特定部302は、電波の指向方向に沿った直線L上に移動機100が位置しているものと仮定し、離間距離に基づいて得られる直線L上の位置P1を移動機100の位置として算出する。そして、位置特定部302は、図6に示すように、移動機100の位置を測位した測位時刻と、移動機100が在圏するセクタのセクタ識別子と、離間距離に基づいて得られる直線L上における移動機100の座標(緯度・経度)とを対応付けたPRACH-PD位置情報を算出する。 In addition to calculating the delay information using the PRACH-PD positioning method, the position specifying unit 302 also uses PRACH-PD position information (using the coordinates of the mobile device 100 as information for specifying the location of the mobile device 100). First positioning position information and correspondence information) are calculated. Specifically, when the sector is a directional sector, as illustrated in FIG. 5, the position specifying unit 302 assumes that the mobile device 100 is located on a straight line L along the directivity direction of the radio wave. Then, the position P1 on the straight line L obtained based on the separation distance is calculated as the position of the mobile device 100. Then, as shown in FIG. 6, the position specifying unit 302 is on a straight line L obtained based on the positioning time when the position of the mobile device 100 is measured, the sector identifier of the sector where the mobile device 100 is located, and the separation distance. PRACH-PD position information that associates the coordinates (latitude / longitude) of the mobile device 100 is calculated.
 また、セクタが無指向性セクタである場合、図2(b)に示すように、位置特定部302は、アンテナ201の位置P10に移動機100が位置しているものと仮定する。そして、位置特定部302は、図7に示すように、移動機100の位置を測位した測位時刻と、移動機100が在圏するセクタのセクタ識別子と、移動機100の座標(緯度・経度)(アンテナ201の位置)とを対応付けたPRACH-PD位置情報を算出する。なお、セクタが無指向性セクタである場合、PRACH-PD測位方式を用いて測位される移動機100の位置は、ほぼ全てがアンテナ201の位置と一致する。 Further, when the sector is an omni-directional sector, the position specifying unit 302 assumes that the mobile device 100 is located at the position P10 of the antenna 201 as shown in FIG. Then, as shown in FIG. 7, the position specifying unit 302 determines the positioning time when the position of the mobile device 100 is positioned, the sector identifier of the sector where the mobile device 100 is located, and the coordinates (latitude / longitude) of the mobile device 100. The PRACH-PD position information in which (the position of the antenna 201) is associated is calculated. When the sector is an omni-directional sector, almost all the positions of the mobile device 100 that are positioned using the PRACH-PD positioning method coincide with the position of the antenna 201.
 位置特定部302は、算出した遅延情報及びPRACH-PD位置情報を、通信制御部301を通じて交換機400へ出力する。 The location specifying unit 302 outputs the calculated delay information and PRACH-PD location information to the exchange 400 through the communication control unit 301.
 交換機400は、通信制御部401と、位置情報管理部402とを含んで構成されている。通信制御部401は、RNC300の通信制御部301と同様に、通信接続処理を行う部分である。 The exchange 400 includes a communication control unit 401 and a location information management unit 402. Similar to the communication control unit 301 of the RNC 300, the communication control unit 401 is a part that performs communication connection processing.
 位置情報管理部402は、位置特定部302から送信された遅延情報及びPRACH-PD位置情報を記憶する。なお、図4,図6,及び図7に示すように、遅延情報(図4参照)とPRACH-PD位置情報(図6,図7参照)とを別テーブルで示したが、遅延情報の伝播時間とPRACH-PD位置情報の座標情報とが同一テーブルで保持されていてもよい。 The location information management unit 402 stores the delay information and the PRACH-PD location information transmitted from the location specifying unit 302. As shown in FIGS. 4, 6, and 7, delay information (see FIG. 4) and PRACH-PD position information (see FIGS. 6 and 7) are shown in separate tables. The time and the coordinate information of the PRACH-PD position information may be held in the same table.
 GPS位置管理部501は、図8に示すように、移動機100によってGPS座標情報が取得された時刻と、当該移動機100が在圏するセクタのセクタ識別子と、緯度・経度とを対応付けし、対応付けした結果をGPS位置情報(第2の対応情報)として記憶する。 As shown in FIG. 8, the GPS location management unit 501 associates the time when GPS coordinate information is acquired by the mobile device 100, the sector identifier of the sector where the mobile device 100 is located, and the latitude and longitude. Then, the associated result is stored as GPS position information (second correspondence information).
 位置収集部502は、GPS位置管理部501が記憶するGPS位置情報と、位置情報管理部402が記憶する遅延情報、PRACH-PD位置情報を収集する。そして、位置収集部502は、収集した情報を所定のタイミング、又は人口算出装置600からの要求に応じて人口算出装置600に出力する。 The location collection unit 502 collects GPS location information stored in the GPS location management unit 501, delay information stored in the location information management unit 402, and PRACH-PD location information. Then, the position collection unit 502 outputs the collected information to the population calculation device 600 at a predetermined timing or in response to a request from the population calculation device 600.
 人口算出装置600は、人口分布算出単位エリア(分布算出単位エリア)毎の人口を算出するものである。図9に示すように、人口算出装置600は、GPS位置情報取得部(第2の対応情報取得手段)601、遅延位置情報取得部(第1の対応情報取得手段)602、設備変更検出部603、設備情報蓄積部604、層状分割部(層状分割手段)605、層内人口算出部(層別割当手段)606、算出単位エリア変換部(算出単位エリア変換手段)607、人口出力部609、及び層状領域作成パラメータ推定部610を含んで構成される。 The population calculation device 600 calculates a population for each population distribution calculation unit area (distribution calculation unit area). As illustrated in FIG. 9, the population calculation device 600 includes a GPS position information acquisition unit (second correspondence information acquisition unit) 601, a delay position information acquisition unit (first correspondence information acquisition unit) 602, and an equipment change detection unit 603. , Facility information storage unit 604, layer division unit (layer division unit) 605, in-layer population calculation unit (stratified allocation unit) 606, calculation unit area conversion unit (calculation unit area conversion unit) 607, population output unit 609, and A layered region creation parameter estimation unit 610 is included.
 GPS位置情報取得部601は、位置収集部502から出力されたGPS位置情報(図8参照)を取得する。遅延位置情報取得部602は、位置収集部502から出力された遅延情報及びPRACH-PD位置情報(図4,図6,図7参照)を取得する。 The GPS location information acquisition unit 601 acquires the GPS location information (see FIG. 8) output from the location collection unit 502. The delay position information acquisition unit 602 acquires delay information and PRACH-PD position information (see FIGS. 4, 6, and 7) output from the position collection unit 502.
 層状領域作成パラメータ推定部610は、GPS位置情報取得部601又は遅延位置情報取得部602によって取得されたGPS位置情報、遅延情報PRACH-PD位置情報のうち、少なくともいずれか一つに基づいて、セクタの種別や主勢力エリア等を算出する。詳細には、層状領域作成パラメータ推定部610は、図9に示すように、セクタ種別判断部611、アンテナ位置算出部612、主勢力エリア推定部(主勢力エリア推定手段)613、放射方向算出部615、放射幅算出部(放射幅算出手段)616、及び層幅算出部(層幅算出手段)617を含んで構成される。 The layered region creation parameter estimation unit 610 uses the sector information based on at least one of the GPS position information and the delay information PRACH-PD position information acquired by the GPS position information acquisition unit 601 or the delay position information acquisition unit 602. Type, main power area, etc. are calculated. Specifically, as shown in FIG. 9, the layered region creation parameter estimation unit 610 includes a sector type determination unit 611, an antenna position calculation unit 612, a main power area estimation unit (main power area estimation means) 613, and a radiation direction calculation unit. 615, a radiation width calculation unit (radiation width calculation unit) 616, and a layer width calculation unit (layer width calculation unit) 617.
 セクタ種別判断部611は、BTS200によって形成されるセクタが有指向性セクタであるか、無指向性セクタであるかを、遅延位置情報取得部602によって取得されたPRACH-PD位置情報に基づいて判断する。以下、セクタ種別を判断する3つの方法について説明する。 The sector type determination unit 611 determines whether the sector formed by the BTS 200 is a directional sector or an omnidirectional sector based on the PRACH-PD position information acquired by the delay position information acquisition unit 602. To do. Hereinafter, three methods for determining the sector type will be described.
 ここで、PRACH-PD測位方式を用いて算出された移動機100のPRACH-PD位置情報の詳細について説明する。まず、セクタが有指向性セクタであり、当該セクタ内に複数の移動機100が在圏している場合について説明する。この場合、伝播時間の測定結果は所定の単位時間毎となるため、図10に示すように、PRACH-PD位置情報における各移動機100の座標位置は、各移動機100におけるアンテナ201との距離に基づいて、電波の指向方向に沿った直線L上の位置P1,P2,P3,P4,P5のいずれかの位置となる性質を持っている。 Here, details of the PRACH-PD position information of the mobile device 100 calculated using the PRACH-PD positioning method will be described. First, a case where a sector is a directional sector and a plurality of mobile devices 100 are located in the sector will be described. In this case, since the measurement result of the propagation time is every predetermined unit time, as shown in FIG. 10, the coordinate position of each mobile device 100 in the PRACH-PD position information is the distance to the antenna 201 in each mobile device 100. Based on the above, it has a property to be any one of positions P1, P2, P3, P4, and P5 on the straight line L along the directivity direction of the radio wave.
 しかしながら、複数のセクタの境界に移動機100が存在する状態でPRACH-PD測位を行うと、各セクタ間の中心位置に移動機100の測位点が近似されることがある。アンテナ201の近傍においては、複数のセクタが近い間隔で隣接しており、特に、アンテナ201の近傍において、移動機100の測位点として、直線L上以外の位置(例えば、図10の位置P11,P12,P13等)が算出されることがある。但し、移動機100がセクタの境界に位置する頻度が少ないため、移動機100の測位点が直線L以外の位置として算出されることは少ない。例えば、位置P1~P5には、それぞれ数百個の移動機100が測定されたものとする。また、P11~P13には、それぞれ数個程度の移動機100が測定されたものとする。 However, when the PRACH-PD positioning is performed in a state where the mobile device 100 exists at the boundary between a plurality of sectors, the positioning point of the mobile device 100 may be approximated to the center position between the sectors. In the vicinity of the antenna 201, a plurality of sectors are adjacent at close intervals. In particular, in the vicinity of the antenna 201, as a positioning point of the mobile device 100, a position other than the straight line L (for example, the position P11, FIG. P12, P13, etc.) may be calculated. However, since the frequency with which the mobile device 100 is located at the sector boundary is low, the positioning point of the mobile device 100 is rarely calculated as a position other than the straight line L. For example, it is assumed that several hundreds of mobile devices 100 are measured at positions P1 to P5. Further, it is assumed that several mobile devices 100 are measured at P11 to P13.
 次に、セクタが無指向性セクタであり、当該セクタ内に複数の移動機100が在圏している場合について説明する。この場合、図11に示すように、PRACH-PD位置情報における各移動機100の測位点は、アンテナ201の位置P10に集まる性質を持っている。しかしながら、上述のように、複数のセクタの境界に移動機100が存在する状態でPRACH-PD測位を行うと、各セクタ間の中心位置に移動機100の測位点が近似されることがある。このため、頻度は少ないものの、移動機100の測位点として、アンテナ201の位置P10以外の位置(例えば、図11の位置P14,P15,P16,P17等)が算出されることがある。例えば、位置P10には、数百個の移動機100が存在するものとして測定されたものとする。P14~P17には、それぞれ数個程度の移動機100が測定されたものとする。 Next, a case where the sector is an omni-directional sector and a plurality of mobile devices 100 are located in the sector will be described. In this case, as shown in FIG. 11, the positioning points of each mobile device 100 in the PRACH-PD position information have a property of gathering at the position P <b> 10 of the antenna 201. However, as described above, when PRACH-PD positioning is performed in a state where the mobile device 100 exists at the boundaries of a plurality of sectors, the positioning point of the mobile device 100 may be approximated to the center position between the sectors. For this reason, although the frequency is low, positions other than the position P10 of the antenna 201 (for example, positions P14, P15, P16, and P17 in FIG. 11) may be calculated as positioning points of the mobile device 100. For example, it is assumed that the measurement is performed assuming that several hundred mobile devices 100 exist at the position P10. It is assumed that several mobile devices 100 are measured at P14 to P17, respectively.
 まず、セクタ種別判断部611によるセクタ種別判断の第1の方法について説明する。セクタ種別判断部611は、セクタ種別の判断対象となるセクタ識別子を有するPRACH-PD位置情報を測位点毎に集計する。この測位点の位置が一点に集中する場合、セクタ種別判断部611は、対象とするセクタは無指向性セクタであるものとして判断する。 First, a first method of sector type determination by the sector type determination unit 611 will be described. The sector type determination unit 611 adds up PRACH-PD position information having sector identifiers for which sector types are determined for each positioning point. When the positions of the positioning points are concentrated on one point, the sector type determination unit 611 determines that the target sector is an omnidirectional sector.
 次に、セクタ種別判断部611によるセクタ種別判断の第2の方法について説明する。セクタ種別判断部611は、セクタ種別の判断対象となるセクタ識別子を有するPRACH-PD位置情報を測位点毎に集計する。そして、セクタ種別判断部611は、測位点毎の移動機100の端末数(信号数)を計数する。そして、セクタ種別判断部611は、最も信号数が多い測位点と2番目に信号数が多い測位点とを結ぶ直線を求め、求めた直線上に測位点が所定の閾値以上(例えば、3点以上等)存在しているか否かを判断する。なお、直線上の測位点以外にも、直線から所定距離(例えば、20m等)以内に存在する測位点を用いてもよい。直線上の測位点が所定の閾値以上あると判定される場合、セクタ種別判断部611は、対象とするセクタは有指向性セクタであるものとして判断する。これは、有指向性セクタである場合には、図10に示すように測位点が電波の指向方向に沿った直線L上に並ぶ性質を利用したものである。 Next, a second method of sector type determination by the sector type determination unit 611 will be described. The sector type determination unit 611 adds up PRACH-PD position information having sector identifiers for which sector types are determined for each positioning point. Then, the sector type determination unit 611 counts the number of terminals (number of signals) of the mobile device 100 for each positioning point. Then, the sector type determination unit 611 obtains a straight line connecting the positioning point with the largest number of signals and the positioning point with the second largest number of signals, and the positioning points are equal to or greater than a predetermined threshold (for example, three points) on the obtained straight line. Etc.) Determine whether it exists. In addition to the positioning point on the straight line, a positioning point existing within a predetermined distance (for example, 20 m) from the straight line may be used. When it is determined that the positioning point on the straight line is equal to or greater than the predetermined threshold, the sector type determination unit 611 determines that the target sector is a directional sector. In the case of a directional sector, this utilizes the property that positioning points are arranged on a straight line L along the direction of radio wave as shown in FIG.
 次に、セクタ種別判断部611によるセクタ種別判断の第3の方法について説明する。セクタ種別判断部611は、セクタ種別の判断対象となるセクタ識別子を有するPRACH-PD位置情報を測位点毎に集計する。例えば、図10に示す有指向性のセクタC11についてのPRACH-PD位置情報を集計した場合には、図12に示すように、移動機100が測位された測位点である各位置P1~P5,P11~P13毎に、移動機100の端末数(信号数)が集計される。なお、位置P2の緯度をY2、経度をX2とし、信号数を400とする。また、位置P5の緯度をY5,経度をX5とし、信号数を200とする。 Next, a third method of sector type determination by the sector type determination unit 611 will be described. The sector type determination unit 611 adds up PRACH-PD position information having sector identifiers for which sector types are determined for each positioning point. For example, when the PRACH-PD position information for the directional sector C11 shown in FIG. 10 is tabulated, as shown in FIG. 12, each position P1 to P5, which is a positioning point where the mobile device 100 is positioned, is displayed. For each of P11 to P13, the number of terminals (number of signals) of the mobile device 100 is tabulated. The latitude of the position P2 is Y2, the longitude is X2, and the number of signals is 400. The latitude of the position P5 is Y5, the longitude is X5, and the number of signals is 200.
 また、例えば、図11に示す無指向性のセクタC12についてのPRACH-PD位置情報を集計した場合には、図13に示すように、移動機100が測位された測位点である各位置P10,P14~P17毎に、移動機100の端末数(信号数)が集計される。なお、位置P10の緯度をY10、経度をX10とし、信号数を400とする。また、位置P15の緯度をY15,経度をX15とし、信号数を2とする。 Further, for example, when the PRACH-PD position information for the omnidirectional sector C12 shown in FIG. 11 is tabulated, as shown in FIG. 13, each position P10, which is a positioning point where the mobile device 100 is positioned, For each of P14 to P17, the number of terminals (number of signals) of mobile device 100 is tabulated. The latitude of the position P10 is Y10, the longitude is X10, and the number of signals is 400. The latitude of the position P15 is Y15, the longitude is X15, and the number of signals is 2.
 次に、セクタ種別判断部611は、集計したPRACH-PD位置情報の測位点毎の信号数より、信号数が多い測位点を多いものから順に2つ抽出する。例えば、図12に示す有指向性のセクタC11についてのPRACH-PD位置情報の集計結果では、信号数が多い2つの測位点として位置P2(X2,Y2)と位置P5(X5,Y5)が抽出される。また、例えば、図13に示す無指向性のセクタC12についてのPRACH-PD位置情報の集計結果では、信号数が多い2つの測位点として位置P10(X10,Y10)と位置P15(X15,Y15)が抽出される。 Next, the sector type determination unit 611 extracts two positioning points with the larger number of signals in order from the number of signals for each positioning point in the aggregated PRACH-PD position information. For example, in the total result of the PRACH-PD position information for the directional sector C11 shown in FIG. 12, the position P2 (X2, Y2) and the position P5 (X5, Y5) are extracted as two positioning points with a large number of signals. Is done. Further, for example, in the total result of the PRACH-PD position information for the omnidirectional sector C12 shown in FIG. 13, the position P10 (X10, Y10) and the position P15 (X15, Y15) are two positioning points with a large number of signals. Is extracted.
 次に、セクタ種別判断部611は、抽出した2つの測位点の信号数を比較する。比較の結果、セクタ種別判断部611は、2つの測位点における信号数の差が所定値より大きい場合、又は比率が所定値より小さい場合にはそのセクタを無指向性セクタであると判断し、信号数の差が所定値より小さい場合、又は比率が所定値より大きい場合にはそのセクタを有指向性セクタであると判断する。これは、無指向性セクタの場合には、ほぼ全ての移動機100の測位点がアンテナ201の位置となり、アンテナ201以外の位置に測位されることが少ないことを利用したものである。更に、有指向性セクタの場合には、電波の指向方向の直線上の各位置において比較的均等に移動機100が測位されることを利用したものである。 Next, the sector type determination unit 611 compares the number of signals of the extracted two positioning points. As a result of the comparison, the sector type determination unit 611 determines that the sector is an omnidirectional sector when the difference in the number of signals at the two positioning points is larger than a predetermined value, or when the ratio is smaller than the predetermined value, If the difference in the number of signals is smaller than a predetermined value, or if the ratio is larger than a predetermined value, the sector is determined to be a directional sector. This is based on the fact that in the case of the omnidirectional sector, the positioning points of almost all the mobile devices 100 are the positions of the antenna 201 and are rarely positioned at positions other than the antenna 201. Further, in the case of the directional sector, the fact that the mobile device 100 is positioned relatively evenly at each position on the straight line in the direction of the radio wave is utilized.
 例えば、図12に示す有指向性のセクタC11についてのPRACH-PD位置情報から抽出された2つの測位点の信号数は、位置P2における信号数400と、位置P5における信号数200となっている。また、図13に示す無指向性のセクタC12についてのPRACH-PD位置情報から抽出された2つの測位点の信号数は、位置P10における信号数400と、位置P15における信号数2となっている。従って、セクタ種別判断部611は、図13に示すように、信号数の差が大きいセクタC12(図11参照)を無指向性セクタとして判断し、図12に示すように、信号数の差が小さいセクタC11(図10参照)を有指向性セクタとして判断する。 For example, the number of signals of two positioning points extracted from the PRACH-PD position information for the directional sector C11 shown in FIG. 12 is the number of signals 400 at the position P2 and the number of signals 200 at the position P5. . Further, the number of signals at the two positioning points extracted from the PRACH-PD position information for the omnidirectional sector C12 shown in FIG. 13 is the number of signals 400 at the position P10 and the number of signals 2 at the position P15. . Therefore, the sector type determination unit 611 determines the sector C12 (see FIG. 11) having a large difference in the number of signals as a non-directional sector as shown in FIG. 13, and the difference in the number of signals as shown in FIG. A small sector C11 (see FIG. 10) is determined as a directional sector.
 次に、セクタ種別判断部611における第3の方法に関する処理の流れについて、図14に示すフローチャートを用いて説明する。まず、セクタ種別判断部611は、セクタ種別の判断対象となるセクタ識別子を有するPRACH-PD位置情報を取得し、取得したPRACH-PD位置情報を測位点毎に集計する(ステップS101)。次に、セクタ種別判断部611は、集計したPRACH-PD位置情報の測位点毎の信号数より、信号数が多い測位点を多いものから順に2つ抽出する(ステップS102)。2つの測位点が抽出できない場合(ステップS102:NO)、セクタ種別判断部611は、判断対象としたセクタは無指向性セクタであるものとして判断する(ステップS105)。 Next, the flow of processing related to the third method in the sector type determination unit 611 will be described using the flowchart shown in FIG. First, the sector type determination unit 611 acquires PRACH-PD position information having a sector identifier for which the sector type is determined, and totals the acquired PRACH-PD position information for each positioning point (step S101). Next, the sector type determination unit 611 extracts two positioning points with the larger number of signals in order from the number of signals for each positioning point in the aggregated PRACH-PD position information (step S102). When two positioning points cannot be extracted (step S102: NO), the sector type determination unit 611 determines that the sector to be determined is an omnidirectional sector (step S105).
 一方、2つの測位点が抽出できた場合(ステップS102:YES)、セクタ種別判断部611は、抽出した2つの測位点における信号数の差が所定値以上であるか否かを判断する(ステップS103)。なお、この判断において、2つの信号数のうち、小さい方の信号数が大きい方の信号数に対して所定の閾値(例えば5%等)以下の場合に、信号数の差が所定値以上であるものとして判断することもできる。 On the other hand, when two positioning points can be extracted (step S102: YES), the sector type determination unit 611 determines whether or not the difference in the number of signals at the two extracted positioning points is equal to or greater than a predetermined value (step S102). S103). In this determination, the difference in the number of signals is greater than or equal to a predetermined value when the smaller signal number of the two signals is less than a predetermined threshold value (for example, 5%) with respect to the larger signal number. It can also be judged as being.
 信号数の差が所定値以上である場合(ステップS103:YES)、セクタ種別判断部611は、判断対象としたセクタは無指向性セクタであるものとして判断する(ステップS105)。一方、信号数の差が所定値以上でない場合(ステップS103:NO)、セクタ種別判断部611は、判断対象としたセクタは有指向性セクタであるものとして判断する(ステップS104)。 If the difference in the number of signals is equal to or greater than the predetermined value (step S103: YES), the sector type determination unit 611 determines that the sector to be determined is an omnidirectional sector (step S105). On the other hand, if the difference in the number of signals is not greater than or equal to the predetermined value (step S103: NO), the sector type determination unit 611 determines that the sector to be determined is a directional sector (step S104).
 以上のようにして、セクタ種別判断部611は、PRACH-PD位置情報を用いて、各セクタについてのセクタ種別を判断する。また、上述したセクタ種別を判断するための3つの方法のうち、所定の2以上の方法を組み合わせて用いてもよい。即ち、セクタ種別判断部611は、上述したセクタ種別判断の第1の方法のようにPRACH-PD位置情報の各測位点の位置が一点に集中するか否かを判断し、一点に集中する場合、対象とするセクタは無指向性セクタであるものとして判断する。測位点の位置が一点に集中しない場合、セクタ種別判断部611は、上述したセクタ種別判断の第2の方法のように最も信号数が多い測位点と2番目に信号数が多い測位点とを結ぶ直線を求め、求めた直線上に測位点が所定の閾値以上(例えば、3点以上等)あると判定されるか否かを判断し、測位点が所定の閾値以上あると判定されない場合、対象とするセクタは無指向性セクタであるものとして判断する。測位点が所定の閾値以上あると判定される場合、セクタ種別判断部611は、上述したセクタ種別判断の第3の方法のように、最も信号数が多い測位点における信号数と2番目に信号数が多い測位点における信号数との差が所定値より大きい場合、又は比率が所定値より小さい場合、対象とするセクタは無指向性セクタであるものとして判断する。一方、最も信号数が多い測位点における信号数と2番目に信号数が多い測位点における信号数との差が所定値より小さい場合、又は比率が所定値より大きい場合、セクタ種別判断部611は、対象とするセクタを無指向性セクタであるものとして判断する。この場合には、セクタ種別の判断の精度を向上させることができる。なお、セクタ種別判断部611によるセクタ種別の判断は必須ではなく、予め設備情報蓄積部604にセクタ種別を記憶しておくこともできる。 As described above, the sector type determination unit 611 determines the sector type for each sector using the PRACH-PD position information. Further, among the above-described three methods for determining the sector type, a predetermined two or more methods may be used in combination. That is, the sector type determination unit 611 determines whether or not the positions of the respective positioning points of the PRACH-PD position information are concentrated at one point as in the above-described first method of sector type determination. The target sector is determined to be an omnidirectional sector. When the position of the positioning point is not concentrated on one point, the sector type determination unit 611 determines the positioning point with the largest number of signals and the positioning point with the second largest number of signals as in the second method of sector type determination described above. When a straight line to be connected is obtained, it is determined whether or not the positioning point is determined to be greater than or equal to a predetermined threshold (for example, 3 or more) on the obtained straight line, The target sector is determined to be an omnidirectional sector. When it is determined that the positioning point is equal to or greater than the predetermined threshold, the sector type determination unit 611 uses the second number of signals at the positioning point with the largest number of signals as in the third method of sector type determination described above. If the difference from the number of signals at a large number of positioning points is larger than a predetermined value, or if the ratio is smaller than a predetermined value, it is determined that the target sector is an omnidirectional sector. On the other hand, when the difference between the number of signals at the positioning point with the largest number of signals and the number of signals at the positioning point with the second largest number of signals is smaller than a predetermined value, or when the ratio is larger than the predetermined value, the sector type determination unit 611 The target sector is determined to be an omnidirectional sector. In this case, the accuracy of determining the sector type can be improved. The sector type determination by the sector type determination unit 611 is not essential, and the sector type can be stored in advance in the facility information storage unit 604.
 アンテナ位置算出部612は、PRACH-PD位置情報によって得られる移動機100の分布に基づいて、アンテナ201の位置を算出する。なお、アンテナ位置算出部612は、アンテナ201の位置の算出対象とするBTS200が形成するセクタが、有指向性セクタであるか或いは無指向性セクタであるかに基づいて、異なる方法によってアンテナ201の位置を推定する。このセクタ種別は、セクタ種別判断部611によって判断されたセクタ種別を用いることができる。以下、第1~第7の方法として、BTS200によって形成されるセクタが有指向性セクタである場合にアンテナ201の位置を算出する方法を説明し、第8,第9の方法として、無指向性セクタである場合にアンテナ201の位置を算出する方法を説明する。 The antenna position calculation unit 612 calculates the position of the antenna 201 based on the distribution of the mobile devices 100 obtained from the PRACH-PD position information. Note that the antenna position calculation unit 612 uses a different method to determine the position of the antenna 201 based on whether the sector formed by the BTS 200 for which the position of the antenna 201 is to be calculated is a directional sector or an omnidirectional sector. Estimate the position. As the sector type, the sector type determined by the sector type determining unit 611 can be used. Hereinafter, as the first to seventh methods, a method for calculating the position of the antenna 201 when the sector formed by the BTS 200 is a directional sector will be described, and as the eighth and ninth methods, omnidirectionality will be described. A method for calculating the position of the antenna 201 in the case of a sector will be described.
 まず、アンテナ201の位置を算出する第1の方法について説明する。アンテナ位置算出部612は、アンテナ201の位置の算出対象とするBTS200が形成するセクタが有指向性セクタである場合、アンテナ201の位置の算出対象とするBTS200についてのPRACH-PD位置情報を、遅延位置情報取得部602から取得する。なお、PRACH-PD位置情報には、例えば図6に示す各情報の他に、BTSを識別するための識別情報が付加されているものとする。 First, a first method for calculating the position of the antenna 201 will be described. When the sector formed by the BTS 200 for which the antenna 201 is to be calculated is a directional sector, the antenna position calculation unit 612 delays the PRACH-PD position information for the BTS 200 for which the antenna 201 is to be calculated. Obtained from the position information obtaining unit 602. Note that identification information for identifying the BTS is added to the PRACH-PD position information in addition to the information shown in FIG. 6, for example.
 アンテナ位置算出部612は、取得したあるBTSについてのPRACH-PD位置情報を測位点毎に集計し、図15(a)に示すようにマッピングする。ここでは、算出対象としたBTS200のアンテナ201は、指向性を有する3つのアンテナを備えており、3つのセクタC21,C22,C23が形成されているものとする。また、ここでは、BTS B1のアンテナ201の位置を求めるものとする。 The antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain BTS for each positioning point, and maps it as shown in FIG. Here, it is assumed that the antenna 201 of the BTS 200 to be calculated includes three antennas having directivity, and three sectors C21, C22, and C23 are formed. Here, the position of the antenna 201 of the BTS B1 is obtained.
 アンテナ201が指向性を有する場合、PRACH-PD測位を行うと、上述のように、セクタ毎に電波の指向方向に沿って移動機100の測位点が並ぶ性質を有する。図15(a)では、BTS B1についてセクタ識別子C21~C23に対応付けられた各移動機100の測位点が示されている。 When the antenna 201 has directivity, when PRACH-PD positioning is performed, as described above, the positioning points of the mobile device 100 are arranged along the directivity direction of the radio wave for each sector. FIG. 15 (a) shows the positioning points of each mobile device 100 associated with sector identifiers C21 to C23 for BTS B1.
 次に、アンテナ位置算出部612は、図15(b)に示すように、セクタ毎に、マッピングした測位点を通る直線L21,L22,L23を求める。なお、例えば、直線L21を求める場合、セクタC21についての移動機100の各測位点のうち、信号数の多い2つの測位点に基づいて求めることもできる。そして、アンテナ位置算出部612は、直線L21~L23の交点A1の位置を、BTS B1のアンテナ201の位置として算出する。 Next, as shown in FIG. 15B, the antenna position calculation unit 612 obtains straight lines L21, L22, and L23 that pass through the mapped positioning points for each sector. For example, when the straight line L21 is obtained, it can be obtained based on two positioning points having a large number of signals among the positioning points of the mobile device 100 for the sector C21. The antenna position calculation unit 612 calculates the position of the intersection A1 of the straight lines L21 to L23 as the position of the antenna 201 of the BTS B1.
 次に、アンテナ201の位置を算出する第2の方法について説明する。ここでは、アンテナ201の位置の算出対象とするBTS200が図2(a)と同様に、6つのセクタを形成しているものとする。アンテナ位置算出部612は、アンテナ201の位置の算出対象とするBTS200が形成するセクタが有指向性セクタである場合、アンテナ201の位置の算出対象とするBTS200についてのPRACH-PD位置情報を、遅延位置情報取得部602から取得する。 Next, a second method for calculating the position of the antenna 201 will be described. Here, it is assumed that the BTS 200 for which the position of the antenna 201 is to be calculated forms six sectors as in FIG. When the sector formed by the BTS 200 for which the antenna 201 is to be calculated is a directional sector, the antenna position calculation unit 612 delays the PRACH-PD position information for the BTS 200 for which the antenna 201 is to be calculated. Obtained from the position information obtaining unit 602.
 アンテナ位置算出部612は、取得したあるBTSについてのPRACH-PD位置情報を測位点毎に集計し、図16(a)に示すようにマッピングする。ここでは、算出対象としたBTS200のアンテナ201は、指向性を有する6つのアンテナを備えており、6つのセクタC31,C32,C33,C34,C35,C36が形成されているものとする。また、ここでは、BTS B2のアンテナ201の位置を求めるものとする。図16(a)では、BTS B2についてセクタ識別子C31~C36に対応付けられた各移動機100の測位点が示されている。 The antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain BTS for each positioning point and maps as shown in FIG. Here, it is assumed that the antenna 201 of the BTS 200 to be calculated includes six antennas having directivity, and six sectors C31, C32, C33, C34, C35, and C36 are formed. Here, the position of the antenna 201 of the BTS B2 is obtained. FIG. 16 (a) shows the positioning points of each mobile device 100 associated with sector identifiers C31 to C36 for BTS B2.
 次に、アンテナ位置算出部612は、図16(b)に示すように、マッピングした測位点を通る直線L31,L32,L33,L34,L35,L36をセクタ毎に求める。この直線を求める際に、上述の第1の方法と同様に、信号数の多い2つの測位点に基づいて求めることもできる。 Next, as shown in FIG. 16B, the antenna position calculation unit 612 obtains straight lines L31, L32, L33, L34, L35, and L36 passing through the mapped positioning points for each sector. When this straight line is obtained, it can also be obtained based on two positioning points having a large number of signals, as in the first method described above.
 そして、アンテナ位置算出部612は、直線L31~L36の所定の2つの組み合わせにおける交点をそれぞれ求める。具体的には、電波の放射方向が180度程度(例えば、180度±5度程度等)異なるセクタについて、測位点を通る直線の交点を求めると、微細なずれによって、交点の位置が実際のアンテナの位置と乖離する場合が考えられる。そこで、電波の放射方向が180度程度異なるセクタについては、測位点を通る直線の交点を求めることは行わない。従って、直線L31と直線L32との交点、直線L31と直線L33との交点、直線L31と直線L35との交点、直線L31と直線L36との交点、直線L32と直線L33との交点、直線L32と直線L34との交点、直線L32と直線L36との交点、直線L33と直線L34との交点、直線L33と直線L35との交点、直線L34と直線L35との交点、直線L34と直線L36との交点、及び、直線L35と直線L36との交点をそれぞれ求める。 Then, the antenna position calculation unit 612 obtains intersections in two predetermined combinations of the straight lines L31 to L36. Specifically, for a sector whose radio wave radiation direction is about 180 degrees (for example, about 180 degrees ± 5 degrees), the intersection point of the straight line passing through the positioning point is calculated. The case where it deviates from the position of an antenna can be considered. Therefore, for a sector whose radio wave radiation direction differs by about 180 degrees, the intersection of straight lines passing through the positioning point is not obtained. Therefore, the intersection of the straight line L31 and the straight line L32, the intersection of the straight line L31 and the straight line L33, the intersection of the straight line L31 and the straight line L35, the intersection of the straight line L31 and the straight line L36, the intersection of the straight line L32 and the straight line L33, and the straight line L32 Intersection with straight line L34, Intersection with straight line L32 and straight line L36, Intersection with straight line L33 and straight line L34, Intersection with straight line L33 and straight line L35, Intersection with straight line L34 and straight line L35, Intersection with straight line L34 and straight line L36 , And the intersection of the straight line L35 and the straight line L36, respectively.
 そして、アンテナ位置算出部612は、求めた各交点の平均の位置A2を、BTS B2のアンテナ201の位置として算出する。なお、各交点の平均の位置と、各交点の位置との距離が所定距離(例えば、数メートル程度)以内である場合に、求めた各交点の平均の位置をアンテナ位置として算出することもできる。 Then, the antenna position calculation unit 612 calculates the average position A2 of the obtained intersections as the position of the antenna 201 of the BTS B2. In addition, when the distance between the average position of each intersection and the position of each intersection is within a predetermined distance (for example, about several meters), the obtained average position of each intersection can be calculated as the antenna position. .
 次に、アンテナ201の位置を算出する第3の方法について説明する。アンテナ位置算出部612は、ある有指向性セクタを形成するBTS200のアンテナ201の位置を算出する場合、アンテナ201の位置の算出対象となるセクタ識別子を有するPRACH-PD位置情報を、遅延位置情報取得部602から取得する。 Next, a third method for calculating the position of the antenna 201 will be described. When calculating the position of the antenna 201 of the BTS 200 that forms a certain directional sector, the antenna position calculation unit 612 acquires PRACH-PD position information having a sector identifier that is a calculation target of the position of the antenna 201, and acquires delayed position information. From the unit 602.
 アンテナ位置算出部612は、取得したあるセクタについてのPRACH-PD位置情報を測位点毎に集計し、図12と同様に、測位点毎に信号数を算出する。集計結果をマッピングすると、図17に示すように、測位点が電波の指向方向に並ぶ性質を有する。 The antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 17, the positioning points are arranged in the direction of the radio wave.
 そして、アンテナ位置算出部612は、図17に示す各測位点のうち、測位点の並び方向の一方の端点を原点として、原点からの距離と、各測位点における信号数との関係を求める。これをグラフで表すと、図18で表される。図18では、横軸に原点からの距離、縦軸に信号数を表している。 Then, the antenna position calculation unit 612 obtains the relationship between the distance from the origin and the number of signals at each positioning point, with one end point in the arrangement direction of the positioning points among the positioning points shown in FIG. This is represented by a graph in FIG. In FIG. 18, the horizontal axis represents the distance from the origin, and the vertical axis represents the number of signals.
 図18に示す例では、信号数の多い部分が、原点位置側に偏っている。従って、アンテナ位置算出部612は、各測位点のうち、原点とした測位点の位置をアンテナ201の位置として算出する。これは、BTS200に近いほど、そのBTS200に移動機100が属しやすい(信号数が多くなる)という無線の特性を利用するものである。 In the example shown in FIG. 18, a portion with a large number of signals is biased toward the origin position. Therefore, the antenna position calculation unit 612 calculates the position of the positioning point as the origin among the positioning points as the position of the antenna 201. This uses a wireless characteristic that the closer to the BTS 200, the more easily the mobile device 100 belongs to the BTS 200 (the number of signals increases).
 なお、図18において、信号数の多い部分が原点とは反対側(原点からの距離が遠い側)に偏っていた場合、アンテナ位置算出部612は、測位点の並び方向の他方の端点の位置をアンテナ201の位置として算出する。 In FIG. 18, when the portion with a large number of signals is biased to the side opposite to the origin (the side far from the origin), the antenna position calculation unit 612 determines the position of the other end point in the positioning point arrangement direction. Is calculated as the position of the antenna 201.
 次に、アンテナ201の位置を算出する第4の方法について説明する。アンテナ位置算出部612は、ある有指向性セクタを形成するBTS200のアンテナ201の位置を算出する場合、アンテナ201の位置の算出対象となるセクタ識別子を有するPRACH-PD位置情報を、遅延位置情報取得部602から取得する。 Next, a fourth method for calculating the position of the antenna 201 will be described. When calculating the position of the antenna 201 of the BTS 200 that forms a certain directional sector, the antenna position calculation unit 612 acquires PRACH-PD position information having a sector identifier that is a calculation target of the position of the antenna 201, and acquires delayed position information. From the unit 602.
 アンテナ位置算出部612は、取得したあるセクタについてのPRACH-PD位置情報を測位点毎に集計し、図12と同様に、測位点毎に信号数を算出する。集計結果をマッピングすると、図19(a)に示すように、測位点が電波の指向方向に並ぶ性質を有する。ここでは、11個の測位点(測位点T1~T11)が存在するものとする。 The antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 19A, the positioning points are arranged in the direction of the radio wave. Here, it is assumed that there are 11 positioning points (positioning points T1 to T11).
 そして、アンテナ位置算出部612は、図19(a)に示す各測位点のうち、信号数が多い測位点を多いものから順に2つ抽出する。例えば、測位点T2の信号数が400であり、測位点T5の信号数が200であり、この測位点T2,T5が抽出されたものとする。アンテナ位置算出部612は、図19(b)に示すように、測位点T2と測位点T5とを通る直線L40を求める。 Then, the antenna position calculation unit 612 extracts two positioning points having the largest number of signals from the positioning points shown in FIG. For example, it is assumed that the number of signals at the positioning point T2 is 400, the number of signals at the positioning point T5 is 200, and the positioning points T2 and T5 are extracted. As shown in FIG. 19B, the antenna position calculation unit 612 obtains a straight line L40 passing through the positioning point T2 and the positioning point T5.
 アンテナ位置算出部612は、図19(b)及び図19(c)に示すように、求めた直線L40から所定距離以内にある測位点のうち、直線L40の両端部にそれぞれ位置する測位点T1,T11を求める。これにより、上述したように、PRACH-PD測位を行ったときに、電波の指向方向とは異なる位置に移動機100が測位された場合であっても、これらの測位点をアンテナ位置の候補から除外することができ、アンテナ位置の算出精度を向上させることができる。 As shown in FIGS. 19B and 19C, the antenna position calculation unit 612 has positioning points T1 positioned at both ends of the straight line L40 among the positioning points within a predetermined distance from the obtained straight line L40. , T11. Thereby, as described above, even when the mobile device 100 is positioned at a position different from the directivity direction of the radio wave when performing PRACH-PD positioning, these positioning points are determined from the antenna position candidates. This can be excluded, and the calculation accuracy of the antenna position can be improved.
 次に、アンテナ位置算出部612は、図19(d)に示すように、各測位点における信号数を求める。そして、アンテナ位置算出部612は、測位点T1,T11のうち、信号数の多い部分が偏っている側の測位点の位置を、アンテナ201の位置として算出する。図19(d)に示す例では、信号数の多い部分が測位点T1側に偏っているものとする。このため、アンテナ位置算出部612は、測位点T1の位置を、アンテナ201の位置として算出する。 Next, the antenna position calculation unit 612 obtains the number of signals at each positioning point as shown in FIG. Then, the antenna position calculation unit 612 calculates, as the position of the antenna 201, the position of the positioning point on the side where the portion with a large number of signals is biased among the positioning points T1 and T11. In the example shown in FIG. 19D, it is assumed that a portion with a large number of signals is biased toward the positioning point T1. Therefore, the antenna position calculation unit 612 calculates the position of the positioning point T1 as the position of the antenna 201.
 なお、信号数の多い部分が偏っている側の測位点の位置を、アンテナ201の位置として算出する以外にも、以下の方法によってアンテナ201の位置を算出することもできる。具体的には、アンテナ位置算出部612は、例えば、図19(c)に示すように測位点T1~T11が求められている場合、測位点T1~T5における信号数の合計(以下「S(T1~T5)」と表す)と、測位点T7~T11における信号数の合計(以下「S(T7~T11)」と表す)とを求める。即ち、測位点T1を含むグループにおける測位点の数と、測位点T11を含むグループにおける測位点の数とが同じであればよい(例えば、図19(c)に示す測位点が測位点T1~T10までである場合、測位点T1~T5と、測位点T6~T10とに分けることができる。)。そして、アンテナ位置算出部612は、一方のグループの信号数の合計の値と他方のグループの信号数の合計の値との比が所定の閾値以上となっている場合に、測位点T1,T11のうち、信号数の合計の値が大きいグループに属する方の測位点を、アンテナ201の位置として算出することもできる。ここで、比が所定の閾値以上とは、例えば、一方のグループの信号数の合計の値が、他方のグループの信号数の合計の値の2倍よりも大きい場合とすることができる。 In addition, the position of the antenna 201 can be calculated by the following method in addition to calculating the position of the positioning point on the side where the portion with a large number of signals is biased as the position of the antenna 201. Specifically, for example, when the positioning points T1 to T11 are obtained as shown in FIG. 19C, the antenna position calculation unit 612 calculates the total number of signals at the positioning points T1 to T5 (hereinafter referred to as “S ( T1 to T5) ”) and the total number of signals at the positioning points T7 to T11 (hereinafter referred to as“ S (T7 to T11) ”). That is, the number of positioning points in the group including the positioning point T1 and the number of positioning points in the group including the positioning point T11 need only be the same (for example, the positioning points shown in FIG. 19C are the positioning points T1 to T1). If it is up to T10, it can be divided into positioning points T1 to T5 and positioning points T6 to T10.) Then, the antenna position calculation unit 612 determines the positioning points T1 and T11 when the ratio between the total value of the number of signals of one group and the total value of the number of signals of the other group is equal to or greater than a predetermined threshold. Among them, the positioning point belonging to the group having the larger total number of signals can be calculated as the position of the antenna 201. Here, the ratio is equal to or greater than a predetermined threshold, for example, when the total value of the number of signals in one group is greater than twice the total value of the number of signals in the other group.
 次に、アンテナ201の位置を算出する第5の方法について説明する。アンテナ位置算出部612は、ある有指向性セクタを形成するアンテナ201の位置を算出する場合、アンテナ201の位置の算出対象となるセクタ識別子を有するPRACH-PD位置情報を、遅延位置情報取得部602から取得する。 Next, a fifth method for calculating the position of the antenna 201 will be described. When calculating the position of the antenna 201 that forms a certain directional sector, the antenna position calculation unit 612 obtains the PRACH-PD position information having the sector identifier for which the position of the antenna 201 is calculated, as the delay position information acquisition unit 602. Get from.
 アンテナ位置算出部612は、取得したあるセクタについてのPRACH-PD位置情報を測位点毎に集計し、図12と同様に、測位点毎に信号数を算出する。集計結果をマッピングすると、図20に示すように、測位点が電波の指向方向に並ぶ性質を有する。更に、上述したように、PRACH-PD測位により、電波の指向方向である直線L41上以外の場所にも、測位点T20~T25が測位されているものとする。 The antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 20, the positioning points are arranged in the direction of the radio wave. Further, as described above, it is assumed that positioning points T20 to T25 are positioned at a place other than the straight line L41 that is the direction of radio wave by the PRACH-PD positioning.
 直線L41上以外の場所で測位される測位点T20~T25は、アンテナ201の設置位置の近傍で特に多く測位される。そこで、アンテナ位置算出部612は、この測位点T20~T25の分布に基づいて、アンテナ201の位置を算出する。図20に示す例では、例えば、直線L41上の端点を中心とする所定半径(例えば1km)の円で囲んだエリアR1内の所定位置(例えば、直線L41上に並ぶ測位点の端点等)にアンテナ201が存在するものとして算出される。 The positioning points T20 to T25 measured at a place other than on the straight line L41 are particularly often positioned near the installation position of the antenna 201. Therefore, the antenna position calculation unit 612 calculates the position of the antenna 201 based on the distribution of the positioning points T20 to T25. In the example shown in FIG. 20, for example, at a predetermined position (for example, an end point of a positioning point aligned on the straight line L41) in an area R1 surrounded by a circle with a predetermined radius (for example, 1 km) centering on the end point on the straight line L41. Calculation is made assuming that the antenna 201 exists.
 次に、アンテナ201の位置を算出する第6の方法について説明する。アンテナ位置算出部612は、ある有指向性セクタを形成するアンテナ201の位置を算出する場合、アンテナ201の位置の算出対象となるセクタ識別子を有するPRACH-PD位置情報を、遅延位置情報取得部602から取得する。ここでは、取得されたPRACH-PD位置情報が示す各測位点は、図20に示すように、直線L41上に並ぶ測位点と、直線L41上以外に位置する測位点T20~T25とを含むものとする。また、直線L41上に並ぶ測位点のうち、両端部の測位点をそれぞれ測位点T26,T27とする。 Next, a sixth method for calculating the position of the antenna 201 will be described. When calculating the position of the antenna 201 that forms a certain directional sector, the antenna position calculation unit 612 obtains the PRACH-PD position information having the sector identifier for which the position of the antenna 201 is calculated, as the delay position information acquisition unit 602. Get from. Here, each positioning point indicated by the acquired PRACH-PD position information includes positioning points arranged on a straight line L41 and positioning points T20 to T25 located outside the straight line L41 as shown in FIG. . Further, out of the positioning points arranged on the straight line L41, the positioning points at both ends are set as positioning points T26 and T27, respectively.
 アンテナ位置算出部612は、直線L41上以外の場所で測位される測位点T20~T25を抽出する。そして、アンテナ位置算出部612は、直線L41上に並ぶ測位点の端部に位置する測位点T26と、抽出した各測位点T20~T25との距離の総和を求める。同様に、アンテナ位置算出部612は、直線L41上に並ぶ測位点の端部に位置する測位点T27と、抽出した各測位点T20~T25との距離の総和を求める。アンテナ位置算出部612は、直線L41上に並ぶ測位点の両端の測位点T26,T27のうち、各測位点T20~T25との距離の総和が小さい方の測位点(図20の例では測位点T26)を、アンテナ201の位置として算出する。 The antenna position calculation unit 612 extracts positioning points T20 to T25 that are measured at a place other than on the straight line L41. Then, the antenna position calculation unit 612 calculates the sum of the distances between the positioning point T26 located at the end of the positioning points arranged on the straight line L41 and the extracted positioning points T20 to T25. Similarly, the antenna position calculation unit 612 obtains the sum of the distances between the positioning point T27 located at the end of the positioning points arranged on the straight line L41 and the extracted positioning points T20 to T25. The antenna position calculation unit 612 has a positioning point with a smaller sum of distances from the positioning points T20 to T25 among the positioning points T26 and T27 at both ends of the positioning point arranged on the straight line L41 (in the example of FIG. 20, the positioning point). T26) is calculated as the position of the antenna 201.
 次に、アンテナ201の位置を算出する第7の方法について説明する。アンテナ位置算出部612は、ある有指向性セクタを形成するアンテナ201の位置を算出する場合、アンテナ201の位置の算出対象となるセクタ識別子を有するPRACH-PD位置情報を、遅延位置情報取得部602から取得する。 Next, a seventh method for calculating the position of the antenna 201 will be described. When calculating the position of the antenna 201 that forms a certain directional sector, the antenna position calculation unit 612 obtains the PRACH-PD position information having the sector identifier for which the position of the antenna 201 is calculated, as the delay position information acquisition unit 602. Get from.
 アンテナ位置算出部612は、取得したあるセクタについてのPRACH-PD位置情報を測位点毎に集計し、図12と同様に、測位点毎に信号数を算出する。集計結果をマッピングすると、図21(a)に示すように、測位点が電波の指向方向に並ぶ性質を有する。更に、PRACH-PD測位により、電波の指向方向に沿った直線上以外の場所にも、測位点が測位されているものとする。 The antenna position calculation unit 612 aggregates the acquired PRACH-PD position information for a certain sector for each positioning point, and calculates the number of signals for each positioning point as in FIG. When the aggregation results are mapped, as shown in FIG. 21A, the positioning points are arranged in the directivity direction of the radio wave. Furthermore, it is assumed that positioning points have been measured at locations other than on a straight line along the direction of radio wave by PRACH-PD positioning.
 そして、アンテナ位置算出部612は、図21(a)に示す各測位点のうち、信号数が多い測位点を多いものから順に2つ抽出する。例えば、測位点T32の信号数が400であり、測位点T35の信号数が200であり、この測位点T32,T35が抽出されたものとする。アンテナ位置算出部612は、図21(b)に示すように、測位点T32と測位点T35とを通る直線L42を求める。 Then, the antenna position calculation unit 612 extracts two positioning points having the largest number of signals from the positioning points shown in FIG. For example, it is assumed that the number of signals at the positioning point T32 is 400, the number of signals at the positioning point T35 is 200, and the positioning points T32 and T35 are extracted. As shown in FIG. 21B, the antenna position calculation unit 612 obtains a straight line L42 passing through the positioning point T32 and the positioning point T35.
 アンテナ位置算出部612は、図21(b)及び図21(c)に示すように、求めた直線L42から所定距離以内にある測位点のうち、直線L40の両端部にそれぞれ位置する測位点T31,T39を求める。これにより、上述したように、PRACH-PD測位を行ったときに、電波の指向方向とは異なる位置に移動機100が測位された場合であっても、これらの測位点をアンテナ位置の候補から除外することができ、アンテナ位置の算出精度を向上させることができる。 As shown in FIGS. 21 (b) and 21 (c), the antenna position calculation unit 612 has positioning points T31 positioned at both ends of the straight line L40 among positioning points within a predetermined distance from the obtained straight line L42. , T39. Thereby, as described above, even when the mobile device 100 is positioned at a position different from the directivity direction of the radio wave when performing PRACH-PD positioning, these positioning points are determined from the antenna position candidates. This can be excluded, and the calculation accuracy of the antenna position can be improved.
 次に、アンテナ位置算出部612は、図21(d)に示すように、測位定点T31の周囲における測位点の分散と、測位定点T39の周囲における測位点の分散とを算出する。そして、アンテナ位置算出部612は、分散の大きい側に位置する測位点T31の位置を、アンテナ201の位置として算出する。これは、直線L42上以外の場所で測位される測位点は、アンテナ201の設置位置の近傍において、特に多く集まることを利用したものである。 Next, as shown in FIG. 21 (d), the antenna position calculation unit 612 calculates the dispersion of the positioning points around the positioning fixed point T31 and the dispersion of the positioning points around the positioning fixed point T39. Then, the antenna position calculation unit 612 calculates the position of the positioning point T31 located on the side with large dispersion as the position of the antenna 201. This is based on the fact that positioning points measured at a place other than on the straight line L42 are gathered particularly in the vicinity of the installation position of the antenna 201.
 なお、上述したアンテナ201の位置を算出する第1~第7の方法のうち、所定の2以上の方法を組み合わせてアンテナ201の位置を算出することもできる。この場合、アンテナ201の位置の算出精度を向上させることができる。 Note that the position of the antenna 201 can be calculated by combining two or more predetermined methods among the first to seventh methods for calculating the position of the antenna 201 described above. In this case, the calculation accuracy of the position of the antenna 201 can be improved.
 次に、アンテナ201の位置を算出する第8の方法について説明する。アンテナ位置算出部612は、アンテナ201の位置の算出対象とするBTS200が形成するセクタが無指向性セクタである場合、アンテナ201の位置の算出対象となるセクタ識別子を有するPRACH-PD位置情報を、遅延位置情報取得部602から取得する。この場合、移動機100の位置は、ほぼ全てがアンテナ201の位置と一致する。このため、アンテナ位置算出部612は、最も信号密度が高い測位点をアンテナ201の位置として算出する。 Next, an eighth method for calculating the position of the antenna 201 will be described. The antenna position calculation unit 612, when the sector formed by the BTS 200 that is the calculation target of the antenna 201 is an omni-directional sector, stores the PRACH-PD position information including the sector identifier that is the calculation target of the antenna 201, Obtained from the delay position information obtaining unit 602. In this case, almost all the positions of the mobile device 100 coincide with the position of the antenna 201. Therefore, the antenna position calculation unit 612 calculates the positioning point with the highest signal density as the position of the antenna 201.
 次に、アンテナ201の位置を算出する第9の方法について説明する。アンテナ位置算出部612は、アンテナ201の位置の算出対象とするBTS200が形成するセクタが無指向性セクタである場合、アンテナ201の位置の算出対象となるセクタ識別子を有するPRACH-PD位置情報を、遅延位置情報取得部602から取得する。 Next, a ninth method for calculating the position of the antenna 201 will be described. The antenna position calculation unit 612, when the sector formed by the BTS 200 that is the calculation target of the antenna 201 is an omni-directional sector, stores the PRACH-PD position information including the sector identifier that is the calculation target of the antenna 201, Obtained from the delay position information obtaining unit 602.
 そしてアンテナ位置算出部612は、最も信号密度が高い測位点(以下「第一位高密度点」という)と、第一位高密度点における信号数との比が5%以上の信号数を有する測位点と、をアンテナ201の位置として算出する。ここで、同じセクタ識別子を持ち、異なる複数のアンテナで運用されているセクタがある。このような場合、第8の方法を用いることで、一つの無指向性セクタに対して複数のアンテナ位置が推定されるが、例えば、勢力エリアを描画するときにはそれぞれのアンテナ位置を中心として勢力エリアを描画する。 The antenna position calculation unit 612 has a signal number in which the ratio between the positioning point with the highest signal density (hereinafter referred to as “first high-density point”) and the number of signals at the first high-density point is 5% or more. The positioning point is calculated as the position of the antenna 201. Here, there are sectors that have the same sector identifier and are operated by different antennas. In such a case, by using the eighth method, a plurality of antenna positions are estimated for one omnidirectional sector. For example, when drawing a power area, the power area is centered on each antenna position. Draw.
 以上のようにして、アンテナ位置算出部612は、アンテナ201の位置を算出する。なお、アンテナ位置算出部612によるアンテナ201の位置の算出は必須ではなく、予め設備情報蓄積部604にアンテナ201の位置を記憶しておくこともできる。 As described above, the antenna position calculation unit 612 calculates the position of the antenna 201. Note that the calculation of the position of the antenna 201 by the antenna position calculation unit 612 is not essential, and the position of the antenna 201 can be stored in the facility information storage unit 604 in advance.
 主勢力エリア推定部613は、遅延情報、PRACH-PD位置情報、又はGPS位置情報に基づいて移動機100の分布を算出し、算出した分布と、アンテナ201の位置とに基づいて、推定対象とするセクタが主勢力となる主勢力エリアの半径を推定する。主勢力エリア推定部613は、取得された情報(遅延情報、PRACH-PD位置情報、又はGPS位置情報)に応じて、以下の方法によって主勢力エリアの半径を推定する。 The main power area estimation unit 613 calculates the distribution of the mobile device 100 based on the delay information, the PRACH-PD position information, or the GPS position information, and determines the estimation target based on the calculated distribution and the position of the antenna 201. The radius of the main power area in which the sector to be the main power is estimated. The main influence area estimation unit 613 estimates the radius of the main influence area by the following method according to the acquired information (delay information, PRACH-PD position information, or GPS position information).
 まず、PRACH-PD位置情報を用いて、推定対象とするセクタが主勢力となる主勢力エリアの半径を推定する場合について説明する。なお、ここでは、推計対象とするセクタは有指向性セクタであるものとする。主勢力エリア推定部613は、あるセクタが主勢力となる主勢力エリアの半径を推定する場合、主勢力エリアを推定する対象となるセクタのセクタ識別子を有するPRACH-PD位置情報(例えば、図6に示す情報)を、遅延位置情報取得部602から取得する。ここでは、セクタ識別子C8のセクタについて主勢力エリアの半径を算出する場合を説明する。 First, the case where the radius of the main power area in which the sector to be estimated is the main power is estimated using the PRACH-PD position information will be described. Here, it is assumed that the sector to be estimated is a directional sector. When estimating the radius of the main power area in which a certain sector is the main power, the main power area estimation unit 613 determines the PRACH-PD position information (for example, FIG. 6) having the sector identifier of the sector for which the main power area is estimated. Is acquired from the delay position information acquisition unit 602. Here, a case where the radius of the main power area is calculated for the sector with the sector identifier C8 will be described.
 そして、主勢力エリア推定部613は、図22に示すように、取得したPRACH-PD位置情報を緯度・経度毎に集計し、緯度・経度毎の信号数を算出する。なお、ここで用いられるPRACH-PD位置情報は、電波の放射方向に沿った直線上に並ぶ測位点についての情報のみを用いることが好ましい。また、電波の放射方向に沿った直線として、信号数が最も多い測位点と2番目に信号数が多い測位点とを結ぶ直線を用いることができる。次に、主勢力エリア推定部613は、主勢力エリアの推定対象となるセクタを形成するアンテナ201の位置情報を取得する。ここでは、アンテナ位置算出部612によって算出されたアンテナ201の位置情報を用いたり、予めアンテナ201の位置情報が設備情報蓄積部604に記憶されている場合には記憶されたアンテナ201の位置情報を用いたりすることができる。 Then, as shown in FIG. 22, the main power area estimation unit 613 adds up the acquired PRACH-PD position information for each latitude and longitude, and calculates the number of signals for each latitude and longitude. The PRACH-PD position information used here preferably uses only information about positioning points arranged on a straight line along the radio wave radiation direction. Further, as a straight line along the radio wave radiation direction, a straight line connecting a positioning point with the largest number of signals and a positioning point with the second largest number of signals can be used. Next, the main power area estimation unit 613 acquires position information of the antenna 201 that forms a sector that is an estimation target of the main power area. Here, the position information of the antenna 201 calculated by the antenna position calculation unit 612 is used, or when the position information of the antenna 201 is stored in the facility information storage unit 604 in advance, the stored position information of the antenna 201 is used. Can be used.
 次に、主勢力エリア推定部613は、移動機100の測位結果の緯度・経度(図22に示す緯度・経度)と、アンテナの位置とに基づいて、アンテナ201と移動機100との間の距離を算出する。そして、主勢力エリア推定部613は、緯度・経度毎に集計したPRACH-PD位置情報から、図23に示すように、セクタ識別子と、アンテナ201と移動機100との距離と、信号数とを対応付けた中間テーブルを算出する。 Next, the main power area estimation unit 613 determines the distance between the antenna 201 and the mobile device 100 based on the latitude / longitude (latitude / longitude shown in FIG. 22) of the positioning result of the mobile device 100 and the position of the antenna. Calculate the distance. Then, as shown in FIG. 23, the main power area estimation unit 613 calculates the sector identifier, the distance between the antenna 201 and the mobile device 100, and the number of signals from the PRACH-PD position information collected for each latitude and longitude. The associated intermediate table is calculated.
 次に、主勢力エリア推定部613は、算出した中間テーブルに基づいて、図24に示すように、横軸を距離、縦軸を信号数とする距離別信号密度分布を求める。そして、主勢力エリア推定部613は、求めた距離別信号密度分布において、アンテナの位置(原点位置)から信号数の累積密度が90%となる部分までの距離Dを求める。主勢力エリア推定部613は、求めた距離Dを、セクタC8(セクタ識別子がC8のセクタ。以下、同様とする。)が主勢力となる主勢力エリアの半径として推定する。 Next, as shown in FIG. 24, the main power area estimation unit 613 obtains a signal density distribution by distance with the horizontal axis as the distance and the vertical axis as the number of signals, based on the calculated intermediate table. Then, the main influence area estimation unit 613 obtains the distance D from the antenna position (origin position) to the portion where the accumulated density of the number of signals is 90% in the obtained signal density distribution by distance. The main power area estimation unit 613 estimates the obtained distance D as the radius of the main power area where the sector C8 (sector identifier C8 sector, hereinafter the same) is the main power.
 次に、PRACH-PD位置情報を用いて、推定対象とするセクタが主勢力となる主勢力エリアの半径を推定する場合の処理の流れを、図25を用いて説明する。まず、主勢力エリア推定部613は、遅延位置情報取得部602から、例えば図6に示すPRACH-PD位置情報を取得する(ステップS201)。次に、主勢力エリア推定部613は、取得したPRACH-PD位置情報を緯度・経度毎に集計し、緯度・経度毎の信号数(図22参照)を算出する(ステップS202)。 Next, the flow of processing when the radius of the main power area in which the sector to be estimated is the main power is estimated using the PRACH-PD position information will be described with reference to FIG. First, the main power area estimation unit 613 acquires, for example, PRACH-PD position information illustrated in FIG. 6 from the delay position information acquisition unit 602 (step S201). Next, the main power area estimation unit 613 totals the acquired PRACH-PD position information for each latitude and longitude, and calculates the number of signals for each latitude and longitude (see FIG. 22) (step S202).
 次に、主勢力エリア推定部613は、主勢力エリアの推定対象となるセクタを形成するアンテナ201の位置情報を取得する(ステップS203)。そして、主勢力エリア推定部613は、アンテナ201と移動機100との間の距離を算出し(ステップS204)、セクタ識別子と、距離と、信号数とを対応付けた中間テーブル(図23参照)を算出する(ステップS205)。 Next, the main power area estimation unit 613 acquires position information of the antenna 201 that forms a sector to be estimated for the main power area (step S203). Then, the main power area estimation unit 613 calculates the distance between the antenna 201 and the mobile device 100 (step S204) and associates the sector identifier, the distance, and the number of signals (see FIG. 23). Is calculated (step S205).
 次に、主勢力エリア推定部613は、中間テーブルから距離別信号密度分布(図24参照)を算出する(ステップS206)。そして、主勢力エリア推定部613は、信号数の累積密度が90%となる部分までの距離Dを求め、求めた距離Dを、セクタC8が主勢力となる主勢力エリアの半径として推定する(ステップS207)。 Next, the main power area estimation unit 613 calculates a signal density distribution by distance (see FIG. 24) from the intermediate table (step S206). Then, the main power area estimation unit 613 calculates the distance D to the portion where the cumulative density of signals is 90%, and estimates the calculated distance D as the radius of the main power area where the sector C8 is the main power ( Step S207).
 以上のように、主勢力エリア推定部613は、取得したPRACH-PD位置情報が有指向性セクタについての情報である場合、このPRACH-PD位置情報に基づいてセクタが主勢力となる主勢力エリアの半径を求めることができる。 As described above, when the acquired PRACH-PD position information is information on the directional sector, the main power area estimation unit 613 has a main power area in which the sector is the main power based on the PRACH-PD position information. Can be obtained.
 次に、遅延情報を用いて、推定対象とするセクタが主勢力となる主勢力エリアの半径を推定する場合について説明する。主勢力エリア推定部613は、あるセクタが主勢力となる主勢力エリアの半径を推定する場合、主勢力エリアを推定する対象となるセクタのセクタ識別子を有する遅延情報(例えば、図4に示す情報)を、遅延位置情報取得部602から取得する。ここでは、セクタ識別子C7のセクタについて主勢力エリアの半径を算出する場合を説明する。また、ここでのセクタは、有指向性セクタ及び無指向性セクタのいずれであってもよい。 Next, a case where the radius of the main power area where the estimation target sector is the main power is estimated using the delay information will be described. When estimating the radius of the main power area in which a certain sector is the main power, the main power area estimation unit 613 has delay information (for example, the information shown in FIG. 4) having the sector identifier of the sector for which the main power area is estimated. ) Is acquired from the delay position information acquisition unit 602. Here, a case where the radius of the main power area is calculated for the sector with the sector identifier C7 will be described. The sector here may be either a directional sector or an omnidirectional sector.
 そして、主勢力エリア推定部613は、図26に示すように、取得した遅延情報を伝播時間毎に集計し、伝播時間毎の信号数を算出する。次に、主勢力エリア推定部613は、伝播時間に基づいてアンテナ201と移動機100との間の距離を算出し、伝播時間毎に集計した遅延情報から、図27に示すように、セクタ識別子と、アンテナ201と移動機100との距離と、信号数とを対応付けた中間テーブルを算出する。 Then, as shown in FIG. 26, the main power area estimation unit 613 aggregates the acquired delay information for each propagation time, and calculates the number of signals for each propagation time. Next, the main power area estimation unit 613 calculates the distance between the antenna 201 and the mobile device 100 based on the propagation time, and uses the sector identifier as shown in FIG. And an intermediate table in which the distance between the antenna 201 and the mobile device 100 is associated with the number of signals.
 次に、主勢力エリア推定部613は、算出した中間テーブルに基づいて、図24に示すように、横軸を距離、縦軸を信号数とする距離別信号密度分布を求める。そして、主勢力エリア推定部613は、求めた距離別信号密度分布において、アンテナの位置(原点位置)から信号数の累積密度が90%となる部分までの距離Dを求める。但し、累積密度として用いた90%の値以外にも、所定の累積密度の値を用いることができる。主勢力エリア推定部613は、求めた距離Dを、セクタC7が主勢力となる主勢力エリアの半径として推定する。 Next, as shown in FIG. 24, the main power area estimation unit 613 obtains a signal density distribution by distance with the horizontal axis as the distance and the vertical axis as the number of signals, based on the calculated intermediate table. Then, the main influence area estimation unit 613 obtains the distance D from the antenna position (origin position) to the portion where the accumulated density of the number of signals is 90% in the obtained signal density distribution by distance. However, a value of a predetermined cumulative density can be used in addition to the 90% value used as the cumulative density. The main power area estimation unit 613 estimates the obtained distance D as the radius of the main power area where the sector C7 is the main power.
 次に、遅延情報を用いて、推定対象とするセクタが主勢力となる主勢力エリアの半径を推定する場合の処理の流れを、図28を用いて説明する。まず、主勢力エリア推定部613は、遅延位置情報取得部602から、例えば図4に示す遅延情報を取得する(ステップS301)。次に、主勢力エリア推定部613は、取得した遅延情報を伝播時間毎に集計し、伝播時間毎の信号数(図26参照)を算出する(ステップS302)。 Next, the flow of processing when the radius of the main power area in which the estimation target sector is the main power is estimated using the delay information will be described with reference to FIG. First, the main power area estimation unit 613 acquires, for example, the delay information illustrated in FIG. 4 from the delay position information acquisition unit 602 (step S301). Next, the main power area estimation unit 613 aggregates the acquired delay information for each propagation time, and calculates the number of signals for each propagation time (see FIG. 26) (step S302).
 次に、主勢力エリア推定部613は、セクタ識別子と、距離と、信号数とを対応付けた中間テーブル(図27参照)を算出する(ステップS303)。そして、主勢力エリア推定部613は、中間テーブルから距離別信号密度分布(図24参照)を算出する(ステップS304)。 Next, the main power area estimation unit 613 calculates an intermediate table (see FIG. 27) in which the sector identifier, the distance, and the number of signals are associated (step S303). Then, the main influence area estimation unit 613 calculates a signal density distribution by distance (see FIG. 24) from the intermediate table (step S304).
 次に、主勢力エリア推定部613は、信号数の累積密度が90%となる部分までの距離Dを求め、求めた距離Dを、セクタC7が主勢力となる主勢力エリアの半径として推定する(ステップS305)。 Next, the main power area estimation unit 613 calculates the distance D to the portion where the cumulative density of signals is 90%, and estimates the calculated distance D as the radius of the main power area where the sector C7 is the main power. (Step S305).
 以上のように、主勢力エリア推定部613は、取得した遅延情報に基づいて、有指向性セクタ及び無指向性セクタが主勢力となる主勢力エリアの半径を求めることができる。 As described above, the main power area estimation unit 613 can obtain the radius of the main power area where the directional sector and the omnidirectional sector are the main power based on the acquired delay information.
 次に、GPS位置情報を用いて、推定対象とするセクタが主勢力となる主勢力エリアの半径を推定する場合について説明する。主勢力エリア推定部613は、あるセクタが主勢力となる主勢力エリアの半径を推定する場合、主勢力エリアを推定する対象となるセクタのセクタ識別子を有するGPS位置情報(例えば、図8に示す情報)を、GPS位置情報取得部601から取得する。ここでは、セクタ識別子C20のセクタについて主勢力エリアの半径を算出する場合を説明する。 Next, the case where the radius of the main power area in which the sector to be estimated is the main power is estimated using the GPS position information will be described. When estimating the radius of the main power area in which a certain sector is the main power, the main power area estimation unit 613 has GPS position information (for example, as shown in FIG. 8) having the sector identifier of the sector for which the main power area is estimated. Information) is acquired from the GPS position information acquisition unit 601. Here, a case where the radius of the main power area is calculated for the sector with the sector identifier C20 will be described.
 主勢力エリア推定部613は、主勢力エリアの推定対象となるセクタを形成するアンテナ201の位置情報を取得する。ここでは、アンテナ位置算出部612によって算出されたアンテナ201の位置情報を用いたり、予めアンテナ201の位置情報が設備情報蓄積部604に記憶されている場合には記憶されたアンテナ201の位置情報を用いたりすることができる。 The main power area estimation unit 613 acquires position information of the antenna 201 that forms a sector that is an estimation target of the main power area. Here, the position information of the antenna 201 calculated by the antenna position calculation unit 612 is used, or when the position information of the antenna 201 is stored in the facility information storage unit 604 in advance, the stored position information of the antenna 201 is used. Can be used.
 主勢力エリア推定部613は、GPS位置情報の緯度・経度(図8に示す緯度・経度)と、アンテナの位置とに基づいて、アンテナ201と移動機100との間の距離を算出する。そして、主勢力エリア推定部613は、GPS位置情報の信号毎に、図24に示すように、横軸を距離、縦軸を信号数とする距離別信号密度分布を求める。 The main power area estimation unit 613 calculates the distance between the antenna 201 and the mobile device 100 based on the latitude / longitude (latitude / longitude shown in FIG. 8) of the GPS position information and the position of the antenna. Then, as shown in FIG. 24, the main influence area estimation unit 613 obtains a signal density distribution by distance with the horizontal axis representing the distance and the vertical axis representing the number of signals, as shown in FIG.
 そして、主勢力エリア推定部613は、求めた距離別信号密度分布において、アンテナの位置(原点位置)から信号数の累積密度が90%となる部分までの距離Dを求める。但し、累積密度として用いた90%の値以外にも、所定の累積密度の値を用いることができる。主勢力エリア推定部613は、求めた距離Dを、セクタC20が主勢力となる主勢力エリアの半径として推定する。 Then, the main power area estimation unit 613 obtains the distance D from the antenna position (origin position) to the portion where the accumulated density of the number of signals is 90% in the obtained signal density distribution by distance. However, a value of a predetermined cumulative density can be used in addition to the 90% value used as the cumulative density. The main power area estimation unit 613 estimates the obtained distance D as the radius of the main power area where the sector C20 is the main power.
 例えば、セクタC20が有指向性セクタである場合、図29(a)に示すように、アンテナ201の位置から半径がDである扇形のエリアR2が、セクタC20が主勢力となる主勢力エリアとして推定される。また、セクタC20が無指向性セクタである場合、図29(b)に示すように、アンテナ201の位置から半径がDである円内のエリアR3が、セクタC20が主勢力となる主勢力エリアとして推定される。 For example, when the sector C20 is a directional sector, as shown in FIG. 29A, a sector area R2 having a radius D from the position of the antenna 201 is a main power area where the sector C20 is the main power. Presumed. Further, when the sector C20 is an omnidirectional sector, as shown in FIG. 29B, an area R3 in a circle having a radius D from the position of the antenna 201 is a main power area where the sector C20 is the main power area. Is estimated as
 放射方向算出部615は、PRACH-PD位置情報に基づいて移動機100の分布を求め、求めた分布に基づいてアンテナ201から放射される電波の放射方向を算出する。なお、放射方向算出部615は、無指向性セクタについて電波の放射方向を算出する処理を行う必要はない。なお、無指向性セクタであるか否かは、セクタ種別判断部611の判断結果や設備情報蓄積部604に記憶されたセクタ種別の情報を用いて判断することができる。ここでは、有指向性セクタを形成するアンテナ201から放射された電波の放射方向を算出するものとする。 The radiation direction calculation unit 615 obtains the distribution of the mobile device 100 based on the PRACH-PD position information, and calculates the radiation direction of the radio wave radiated from the antenna 201 based on the obtained distribution. Note that the radiation direction calculation unit 615 does not need to perform a process of calculating the radiation direction of the radio wave for the omnidirectional sector. Whether or not the sector is an omnidirectional sector can be determined using the determination result of the sector type determination unit 611 and the sector type information stored in the facility information storage unit 604. Here, the radiation direction of the radio wave radiated from the antenna 201 forming the directional sector is calculated.
 具体的には、放射方向算出部615は、あるセクタを形成するアンテナ201の電波の放射方向を算出する場合、算出対象となるアンテナ201によって形成されるセクタのセクタ識別子を有するPRACH-PD位置情報(例えば、図6に示す情報)を、遅延位置情報取得部602から取得する。ここでは、セクタ識別子C8のセクタを形成するアンテナ201から放射される電波の放射方向を算出する場合を説明する。 Specifically, when the radiation direction calculation unit 615 calculates the radiation direction of the radio wave of the antenna 201 that forms a certain sector, the PRACH-PD position information having the sector identifier of the sector formed by the antenna 201 that is the calculation target (For example, information shown in FIG. 6) is acquired from the delay position information acquisition unit 602. Here, a case will be described in which the radiation direction of the radio wave radiated from the antenna 201 forming the sector with the sector identifier C8 is calculated.
 また、放射方向算出部615は、セクタC8を形成するアンテナの位置情報を取得する。ここでは、アンテナ位置算出部612によって算出されたアンテナ201の位置情報を用いたり、予めアンテナ201の位置情報が設備情報蓄積部604に記憶されている場合には記憶されたアンテナ201の位置情報を用いたりすることができる。取得されたPRACH-PD位置情報における移動機100の位置と、アンテナ201の位置とをマッピングすると、図30(a)に示すように、アンテナ201の位置から電波の指向方向に測位点が並ぶ性質を有する。 Also, the radiation direction calculation unit 615 acquires position information of the antenna that forms the sector C8. Here, the position information of the antenna 201 calculated by the antenna position calculation unit 612 is used, or when the position information of the antenna 201 is stored in the facility information storage unit 604 in advance, the stored position information of the antenna 201 is used. Can be used. When the position of the mobile device 100 and the position of the antenna 201 in the acquired PRACH-PD position information are mapped, as shown in FIG. 30A, the positioning points are arranged in the direction of the radio wave from the position of the antenna 201. Have
 放射方向算出部615は、取得したセクタ識別子C8のPRACH-PD位置情報を、測位点毎(緯度・経度毎)に集計し、図31に示すように、測位点毎に信号数を算出する。 Radiation direction calculation unit 615 aggregates the acquired PRACH-PD position information of sector identifier C8 for each positioning point (for each latitude and longitude), and calculates the number of signals for each positioning point as shown in FIG.
 そして、放射方向算出部615は、図31に示す各測位点のうち、信号数が多い測位点を多いものから順に2つ抽出する。例えば、図30(b)に示すように、測位点T42(X2,Y2)の信号数が400であり、測位点T45(X5,Y5)の信号数が200であり、この測位点T42,T45が抽出されたものとする。また、放射方向算出部615は、図30(b)に示すように、測位点T42と測位点T45とを通る直線L43を求める。 And the radiation direction calculation part 615 extracts two positioning points with many signals sequentially from the positioning points shown in FIG. For example, as shown in FIG. 30B, the number of signals at the positioning point T42 (X2, Y2) is 400, and the number of signals at the positioning point T45 (X5, Y5) is 200. The positioning points T42, T45. Is extracted. Further, the radiation direction calculation unit 615 obtains a straight line L43 passing through the positioning point T42 and the positioning point T45 as shown in FIG. 30 (b).
 放射方向算出部615は、アンテナ201の位置と直線L43とより、セクタC8を形成するアンテナ201から放射される電波の放射方向を求める。これは、例えば、図30(c)に示すように、北方向を0度とし、北方向に対する直線L43の角度によって電波の放射方向を表すことができる。なお、放射方向算出部615による放射方向の算出処理は必須ではなく、予め設備情報蓄積部604に保持されたデータを用いて層状分割部605等における処理を行うこともできる。 The radiation direction calculation unit 615 obtains the radiation direction of the radio wave radiated from the antenna 201 forming the sector C8 from the position of the antenna 201 and the straight line L43. For example, as shown in FIG. 30C, the north direction is 0 degree, and the radiation direction of the radio wave can be expressed by the angle of the straight line L43 with respect to the north direction. Note that the radiation direction calculation processing by the radiation direction calculation unit 615 is not essential, and the processing in the layered division unit 605 and the like can be performed using data previously stored in the facility information storage unit 604.
 放射幅算出部616は、GPS位置情報に基づいて移動機100の分布を算出し、算出した分布に基づいて、所定のセクタを形成するアンテナから放射される電波の放射幅を算出する。なお、放射幅算出部616は、無指向性セクタについて電波の放射幅を算出する処理を行う必要はない。なお、無指向性セクタであるか否かは、セクタ種別判断部611の判断結果や設備情報蓄積部604に記憶されたセクタ種別の情報を用いて判断することができる。ここでは、有指向性セクタを形成するアンテナ201から放射された電波の放射幅を算出する場合について説明する。 The radiation width calculation unit 616 calculates the distribution of the mobile device 100 based on the GPS position information, and calculates the radiation width of the radio wave radiated from the antenna forming the predetermined sector based on the calculated distribution. Note that the emission width calculation unit 616 does not need to perform processing for calculating the emission width of radio waves for non-directional sectors. Whether or not the sector is an omnidirectional sector can be determined using the determination result of the sector type determination unit 611 and the sector type information stored in the facility information storage unit 604. Here, the case where the radiation width of the radio wave radiated from the antenna 201 forming the directional sector is calculated will be described.
 具体的には、放射幅算出部616は、放射幅の算出対象となる電波によって形成されるセクタのセクタ識別子を有するGPS位置情報(例えば、図8に示す情報)を、GPS位置情報取得部601から取得する。ここでは、セクタ識別子C20のセクタを形成する電波の放射幅を算出する場合を説明する。 Specifically, the radiation width calculation unit 616 obtains GPS position information (for example, information shown in FIG. 8) having the sector identifier of the sector formed by the radio wave for which the radiation width is to be calculated, as a GPS position information acquisition unit 601. Get from. Here, a case where the radiation width of the radio wave forming the sector of the sector identifier C20 is calculated will be described.
 放射幅算出部616は、放射幅の算出対象となる電波によって形成されるセクタC20を形成するアンテナ201の位置情報を取得する。ここでは、アンテナ位置算出部612によって算出されたアンテナ201の位置情報を用いたり、予めアンテナ201の位置情報が記憶されている場合には記憶されたアンテナ201の位置情報を用いたりすることができる。 The radiation width calculation unit 616 acquires the position information of the antenna 201 that forms the sector C20 formed by the radio wave for which the radiation width is to be calculated. Here, the position information of the antenna 201 calculated by the antenna position calculation unit 612 can be used, or when the position information of the antenna 201 is stored in advance, the stored position information of the antenna 201 can be used. .
 取得されたGPS位置情報における移動機100の位置と、アンテナ201の位置とをマッピングすると、図32(a)に示すように、アンテナ201の位置から電波の放射方向側に所定の広がりで移動機100の測位点が散らばる。 When the position of the mobile device 100 and the position of the antenna 201 in the acquired GPS position information are mapped, as shown in FIG. 32 (a), the mobile device has a predetermined spread from the position of the antenna 201 to the radio wave radiation direction side. 100 positioning points are scattered.
 また、放射幅算出部616は、図32(a)に示すように、アンテナ201の位置を中心とする放射状の複数の扇形領域Sを作成する。この扇形領域Sの半径は、予め定められた所定値を用いたり、主勢力エリア推定部613で推定された主勢力エリアの半径を用いたりすることができる。 Further, the radiation width calculation unit 616 creates a plurality of radial sector regions S centered on the position of the antenna 201 as shown in FIG. As the radius of the fan-shaped region S, a predetermined value set in advance or the radius of the main power area estimated by the main power area estimation unit 613 can be used.
 次に、放射幅算出部616は、抽出したGPS位置情報に含まれる各測位点のうち、アンテナ201との距離が所定距離未満である測位点及びアンテナ201との距離が所定距離以上である測位点、以外の測位点を抽出する。具体的には、図32(b)に示すように、アンテナ201との距離が所定距離未満である領域U1、及び、アンテナ201との距離が所定距離以上である領域U2内の測位点を除外し、残りの測位点を抽出する。これにより、アンテナ201の特性によって生じる、例えば、アンテナ201の近傍において電波の放射方向とは反対側に回り込む電波等によって測位された測位点を除外することができる。 Next, the radiation width calculation unit 616 includes a positioning point whose distance to the antenna 201 is less than a predetermined distance among positioning points included in the extracted GPS position information, and a positioning whose distance to the antenna 201 is equal to or greater than a predetermined distance. A positioning point other than a point is extracted. Specifically, as shown in FIG. 32B, the positioning points in the area U1 where the distance to the antenna 201 is less than the predetermined distance and the area U2 where the distance to the antenna 201 is equal to or larger than the predetermined distance are excluded. Then, the remaining positioning points are extracted. Thereby, for example, a positioning point measured by a radio wave or the like that circulates in the vicinity of the antenna 201 in a direction opposite to the radiation direction of the radio wave, which is caused by the characteristics of the antenna 201, can be excluded.
 放射幅算出部616は、抽出した各測位点に基づいて、図32(c)に示すように、電波の放射方向を基準とした角度を横軸、各扇形領域Sにおける測位点の数(信号数)を縦軸とした信号数の密度分布を作成する。なお、ここで用いる電波の放射方向は、放射方向算出部615によって算出された値を用いたり、予め電波の放射方向が設備情報蓄積部604に記憶されている場合には記憶された電波の放射方向を用いたりすることができる。 Based on each extracted positioning point, the radiation width calculation unit 616 uses the angle with respect to the radio wave radiation direction as a reference, and the number of positioning points (signals) in each sector area S, as shown in FIG. The density distribution of the number of signals is created with the number) as the vertical axis. The radio wave radiation direction used here is the value calculated by the radiation direction calculation unit 615, or when the radio wave radiation direction is stored in the facility information storage unit 604 in advance, the stored radio wave radiation direction is used. Direction can be used.
 放射幅算出部616は、作成した信号数の密度分布に基づいて、電波の放射幅を算出する。まず、電波の放射幅として、角度が0°(電波の放射方向)に対してプラスの角度側の角度範囲を求める手順を説明する。放射幅算出部616は、角度が大きい側から角度が小さい側に向かって角度毎の信号数の合計値を求める。そして、放射幅算出部616は、信号数の合計値が、全信号数の5%となる角度を求める。図32(c)に示す例では、角度30°が求められたものとする。放射幅算出部616は、このようにして求められた信号数の合計値が全信号数の5%となる角度を、電波の放射幅におけるプラスの角度側の角度境界とする。次に、電波の放射幅として、角度が0°に対してマイナスの角度側の角度範囲を求める手順を説明する。上記と同様に、放射幅算出部616は、角度が小さい側から大きい側に向かって角度毎の信号数の合計値を求める。そして、放射幅算出部616は、信号数の合計値が、全信号数の5%となる角度を求める。図32(c)に示す例では、角度-30°が求められたものとする。放射幅算出部616は、このようにして求められた信号数の合計値が全信号数の5%となる角度を、電波の放射幅におけるマイナスの角度側の角度境界とする。そして、放射幅算出部616は、プラスの角度側の角度境界30°と、マイナスの角度側の角度境界-30°との間の角度範囲である60°を、電波の放射幅として算出する。 The radiation width calculator 616 calculates the radiation width of the radio wave based on the created density distribution of the number of signals. First, a procedure for obtaining an angle range on the positive angle side with respect to 0 ° (radiation direction of radio waves) as the radio wave emission width will be described. The radiation width calculation unit 616 obtains the total value of the number of signals for each angle from the larger angle side toward the smaller angle side. Then, the radiation width calculation unit 616 obtains an angle at which the total value of the number of signals is 5% of the total number of signals. In the example shown in FIG. 32C, it is assumed that an angle of 30 ° is obtained. The radiation width calculation unit 616 sets an angle at which the total value of the number of signals thus obtained is 5% of the total number of signals as an angle boundary on the positive angle side in the radio wave radiation width. Next, a procedure for obtaining an angle range on the negative angle side with respect to 0 ° as the radio wave emission width will be described. Similarly to the above, the radiation width calculation unit 616 calculates the total value of the number of signals for each angle from the smaller angle side to the larger side. Then, the radiation width calculation unit 616 obtains an angle at which the total value of the number of signals is 5% of the total number of signals. In the example shown in FIG. 32C, it is assumed that an angle of −30 ° is obtained. The emission width calculation unit 616 sets the angle at which the total value of the number of signals obtained in this way is 5% of the total number of signals as an angle boundary on the minus angle side in the emission width of the radio wave. Then, the radiation width calculation unit 616 calculates 60 ° which is an angle range between the angle boundary 30 ° on the plus angle side and the angle boundary −30 ° on the minus angle side as the radiation width of the radio wave.
 なお、放射幅算出部616は、プラスの角度側の角度境界とマイナスの角度側の角度境界とをそれぞれの角度の絶対値を同じとしながら角度0度に向かって徐々に近づけ、プラスの角度側の角度境界とマイナスの角度側の角度境界とで挟まれる角度毎の信号数の合計値が全信号数の90%(この90%の値は一例であり、他の値を用いてもよい)となる時のそれぞれの角度境界を、電波の放射幅におけるプラスの角度側の角度境界、及び、マイナスの角度側の角度境界とすることもできる。 The radial width calculator 616 gradually approaches the positive angle side boundary and the negative angle side angle boundary toward the angle 0 degree while keeping the absolute values of the respective angles the same. The total value of the number of signals for each angle sandwiched between the angle boundary and the angle boundary on the negative angle side is 90% of the total number of signals (this 90% value is an example, and other values may be used). Each of the angle boundaries at the time can be an angle boundary on the plus angle side and an angle boundary on the minus angle side in the radiation width of the radio wave.
 なお、上記では、信号数の合計値を求める際に全信号数の5%となる角度を用いたが、5%に限らず、他の値を用いてもよい。例えば、セクタのトラヒック情報等を用いて算出した人口を本実施形態で作成した主勢力エリアに対して割り当てるような場合には、以下の方法により放射幅を求めることが好ましい。ここでは、図32(c)に示す密度分布のグラフを簡略化した密度分布のグラフ(図33参照)を用いて説明する。セクタ内のトラヒック情報等を用いて人口を算出する場合、主勢力エリア内に一様に人口が分布されていると仮定し、統計処理を行うことが考えられる。即ち、図32(a)に示す各扇形領域Sにおいて、測位点の数が多い(人口が多い)扇形領域Sは、実際よりも移動機100の数が少ないものとして統計処理等が行われ、測位点の数が少ない(人口が少ない)扇形領域Sは、実際より移動機100の数が多いものとして統計処理等が行われる。 In the above description, an angle that is 5% of the total number of signals is used when obtaining the total value of the number of signals. However, the angle is not limited to 5%, and other values may be used. For example, when the population calculated using the traffic information of the sector is allocated to the main power area created in the present embodiment, it is preferable to obtain the radiation width by the following method. Here, the density distribution graph shown in FIG. 32C will be described using a simplified density distribution graph (see FIG. 33). When calculating the population using traffic information in the sector, it is conceivable to perform statistical processing assuming that the population is uniformly distributed in the main power area. That is, in each sector area S shown in FIG. 32A, the sector area S having a larger number of positioning points (having a larger population) is subjected to statistical processing, etc., assuming that the number of mobile devices 100 is smaller than the actual number. The fan-shaped area S having a small number of positioning points (small population) is subjected to statistical processing and the like assuming that the number of mobile devices 100 is larger than the actual number.
 このように、所定放射幅内に一様に移動機100が分布しているものとする場合、扇形領域S毎に、実際の移動機100の数を増減させることとなるため、この増減の際に誤差が生じることがある。この誤差が小さくなるように放射幅を算出する場合、図33(a)に示す、三角形St(詳しくは図33(b)参照)内の信号数の総数と、放射幅に基づいて得られる長方形Ss(詳しくは図33(c)参照)内の信号数の総数とが同じとなることが好ましい。 As described above, when the mobile devices 100 are uniformly distributed within a predetermined radiation width, the actual number of mobile devices 100 is increased or decreased for each sector area S. May cause errors. When calculating the radiation width so as to reduce this error, a rectangle obtained based on the total number of signals in the triangle St (see FIG. 33B for details) and the radiation width shown in FIG. It is preferable that the total number of signals in Ss (refer to FIG. 33C for details) is the same.
 この長方形Ssは、原点を通る横軸及び縦軸と、横軸方向に延びる直線Lsと、縦軸方向に延びる直線Lskとによって形成される。この直線Lskが示す角度(直線Lskと横軸との交点において横軸が示す角度)が、電波の放射幅を決定する際の一方側の角度の境界となる。以下、直線Lskと横軸との交点において横軸が示す角度を角度kという。なお、長方形Ss内の信号数の総数は、直線Lsを積分することにより求めることができる。また、この直線Lsは、以下の式(1),式(2)によって表すことができる。
 Ls=h(d≦k,h=三角形St内の信号数の総数/k)  (1)
 Ls=0(d>k)  (2)
The rectangle Ss is formed by a horizontal axis and a vertical axis passing through the origin, a straight line Ls extending in the horizontal axis direction, and a straight line Lsk extending in the vertical axis direction. The angle indicated by the straight line Lsk (the angle indicated by the horizontal axis at the intersection of the straight line Lsk and the horizontal axis) is the boundary of the angle on one side when the radio wave radiation width is determined. Hereinafter, the angle indicated by the horizontal axis at the intersection of the straight line Lsk and the horizontal axis is referred to as an angle k. Note that the total number of signals in the rectangle Ss can be obtained by integrating the straight line Ls. The straight line Ls can be expressed by the following formulas (1) and (2).
Ls = h (d ≦ k, h = total number of signals in triangle St / k) (1)
Ls = 0 (d> k) (2)
 三角形Stは、原点を通る横軸及び縦軸と、信号数の傾きLtとによって形成される。 The triangle St is formed by a horizontal axis and a vertical axis passing through the origin, and an inclination Lt of the number of signals.
 従って、三角形St内の信号数の総数と、長方形Ss内の信号数の総数とが同じとなるようにするためには、以下の式(3)を満たす角度kを求めることとなる。
Figure JPOXMLDOC01-appb-M000001
 
Therefore, in order to make the total number of signals in the triangle St equal to the total number of signals in the rectangle Ss, an angle k satisfying the following expression (3) is obtained.
Figure JPOXMLDOC01-appb-M000001
 式(3)を用いて求められた角度kが、放射幅を決定する際の一方側の角度(ここでは電波の放射方向に対してプラス側の角度)の境界となる。同様に、式(3)を用いて、放射幅を決定する際の他方側の角度(ここでは電波の放射方向に対してマイナス側の角度)の境界を求める。このように、放射幅算出部616は、式(3)を用いて、セクタ内の人口を算出する場合に特に適した電波の放射幅を算出することができる。なお、放射幅算出部616による放射幅の算出処理は必須ではなく、予め設備情報蓄積部604に保持されたデータを用いて層状分割部605等における処理を行うこともできる。 The angle k obtained using the equation (3) is a boundary of one side angle (here, an angle on the plus side with respect to the radio wave radiation direction) when determining the radiation width. Similarly, using equation (3), the boundary of the angle on the other side when determining the radiation width (here, the angle on the minus side with respect to the radio wave radiation direction) is obtained. In this way, the emission width calculation unit 616 can calculate the emission width of the radio wave particularly suitable for calculating the population in the sector using the equation (3). Note that the radiation width calculation processing by the radiation width calculation unit 616 is not essential, and the processing in the layered division unit 605 or the like can be performed using data previously stored in the facility information storage unit 604.
 層幅算出部617は、PRACH-PD測位方式を用いて得られた有指向性セクタについてのPRACH-PD位置情報に基づいて、層状分割部605においてセクタを層毎に分割する際に用いられる層幅を算出する。上述のように、有指向性セクタについてのPRACH-PD位置情報が示す各移動機100の位置(移動機100の測位点)は、図5に示すように、電波の指向方向に沿った直線L上でほぼ等間隔に並ぶ性質を有する。詳しくは後述する層状分割部605は、PRACH-PD位置情報が示す各移動機100の位置に基づいて、セクタを層毎に分割する。 The layer width calculation unit 617 is a layer used when the layer division unit 605 divides the sector for each layer based on the PRACH-PD position information about the directional sector obtained by using the PRACH-PD positioning method. Calculate the width. As described above, the position of each mobile device 100 (positioning point of the mobile device 100) indicated by the PRACH-PD position information for the directional sector is a straight line L along the directivity direction of the radio wave as shown in FIG. It has the property of being arranged at approximately equal intervals above. In detail, a layer division unit 605 described later divides a sector for each layer based on the position of each mobile device 100 indicated by the PRACH-PD position information.
 しかしながら、例えば、ある位置において移動機100が存在しなかった場合(移動機100とアンテナ201とがある距離だけ離れた位置に移動機100が存在しなかった場合)には、測位点が直線L1上で等間隔に並ばず、図34に示すように、測位点が一部欠落した状態となる。図34では、位置P3において移動機100が測位されなかった状態を示している。この場合、層状分割部605は、セクタを層毎に適切に分割することはできない。そこで、層幅算出部617は、層状分割部605がセクタを分割する際の層幅を求める。 However, for example, when the mobile device 100 does not exist at a certain position (when the mobile device 100 does not exist at a certain distance from the mobile device 100 and the antenna 201), the positioning point is a straight line L1. As shown in FIG. 34, the positioning points are partially missing as shown in FIG. FIG. 34 shows a state where the mobile device 100 has not been positioned at the position P3. In this case, the layer dividing unit 605 cannot appropriately divide the sector for each layer. Therefore, the layer width calculation unit 617 obtains the layer width when the layer division unit 605 divides the sector.
 具体的には層幅算出部617は、遅延位置情報取得部602から、層幅の算出対象となるセクタ識別子を有するPRACH-PD位置情報を取得する。そして、層幅算出部617は、取得したPRACH-PD位置情報を、移動機100の測位点(移動機100の位置)毎に集計し、図35に示す集計結果を得る。ここでは、セクタ識別子がC30のセクタを層幅の分割対象とする。この集計結果をマッピングすると、図36(a)に示すように、測位点P1と測位点P2の間、測位点P7と測位点P8の間、及び、測位点P9と測位点P10の間が他の測位点間の長さ(例えば、測位点P2と測位点P3との間の長さ)よりも長くなっている。 Specifically, the layer width calculation unit 617 acquires the PRACH-PD position information having the sector identifier for which the layer width is to be calculated, from the delay position information acquisition unit 602. Then, the layer width calculation unit 617 totals the acquired PRACH-PD position information for each positioning point of the mobile device 100 (the position of the mobile device 100), and obtains the total result shown in FIG. Here, the sector with the sector identifier C30 is the division target of the layer width. When the total results are mapped, as shown in FIG. 36 (a), there are other positions between the positioning point P1 and the positioning point P2, between the positioning point P7 and the positioning point P8, and between the positioning point P9 and the positioning point P10. It is longer than the length between the positioning points (for example, the length between the positioning point P2 and the positioning point P3).
 次に、層幅算出部617は、各測位点間の距離を求め、図37に示す算出結果を得る。ここでは、例えば、測位点P1と測位点P2との距離が245.20×3m、測位点P2と測位点P3との距離が243.23m、・・・、測位点P9と測位点P10との距離が246.05×2m、測位点P10と測位点P11との距離が244.85mであるものとする。この距離の算出結果を図36(b)に示す。 Next, the layer width calculation unit 617 obtains the distance between each positioning point and obtains the calculation result shown in FIG. Here, for example, the distance between the positioning point P1 and the positioning point P2 is 245.20 × 3 m, the distance between the positioning point P2 and the positioning point P3 is 243.23 m,..., And the positioning point P9 and the positioning point P10 It is assumed that the distance is 246.05 × 2 m and the distance between the positioning point P10 and the positioning point P11 is 244.85 m. The calculation result of this distance is shown in FIG.
 次に、層幅算出部617は、算出された各測位点間の距離のうち、最頻値を求める。ここでは、例えば、245mが最頻値であっものとする。なお、最頻値以外にも、他の方法によって求められた値を用いてもよい。例えば、各測位点間の距離を距離が短いものから順に並べ、並べた順の中間に対応する測位点間の距離を用いてもよい。層幅算出部617は、求められた測位点間の距離(ここでは245m)を、層状分割部605がセクタC30を層状に分割する際の層幅として算出する。なお、層幅算出部617による層幅の算出処理は必須ではなく、予め設備情報蓄積部604に保持されたデータを用いて層状分割部605等における処理を行うこともできる。 Next, the layer width calculation unit 617 obtains the mode value among the calculated distances between the positioning points. Here, for example, 245 m is the mode value. In addition to the mode value, a value obtained by another method may be used. For example, the distances between the positioning points may be arranged in order from the shortest distance, and the distances between the positioning points corresponding to the middle of the arranged order may be used. The layer width calculation unit 617 calculates the obtained distance between the positioning points (here, 245 m) as the layer width when the layer division unit 605 divides the sector C30 into layers. Note that the layer width calculation processing by the layer width calculation unit 617 is not essential, and the processing in the layered division unit 605 and the like can be performed using data previously stored in the facility information storage unit 604.
 なお、PRACH-PD測位では、測位点が図34に示すように直線L1上に並ばず、直線L1上以外の場所に移動機100が測位される場合がある。これは、移動機100がセクタの境界に存在する場合に、セクタ間の中心位置に移動機100の測位点が近似されること等に起因する。この場合、層幅算出部617は、測位点毎に信号数(移動機100の端末数)を求め、求めた信号数が多いものから順に2つの測位点を抽出する。そして、層幅算出部617は、抽出した測位点を通る直線を求め、求めた直線上の測位点の間隔に基づいて、層幅を求めてもよい。 In the PRACH-PD positioning, the positioning points are not aligned on the straight line L1 as shown in FIG. 34, and the mobile device 100 may be positioned at a place other than the straight line L1. This is due to the fact that the positioning point of the mobile device 100 is approximated to the center position between sectors when the mobile device 100 exists at the sector boundary. In this case, the layer width calculation unit 617 obtains the number of signals (number of terminals of the mobile device 100) for each positioning point, and extracts two positioning points in order from the largest number of obtained signals. Then, the layer width calculation unit 617 may obtain a straight line that passes through the extracted positioning points, and may obtain the layer width based on the distance between the positioning points on the obtained straight line.
 設備変更検出部603は、セクタ種別判断部611において判断されたセクタ種別、アンテナ位置算出部612において算出されたアンテナ201の位置情報、主勢力エリア推定部613において推定された主勢力エリアの半径、放射方向算出部615において算出された電波の放射方向、放射幅算出部616において算出された電波の放射幅、層幅算出部617において算出された層幅を取得する。そして、設備変更検出部603は、取得したこれらの情報と、設備情報蓄積部604に記憶された情報との比較を行い、変更がある場合には、設備情報蓄積部604に記憶された情報を更新する。なお、設備変更検出部603は、計算処理量を削減するために効果的であるが、上記設備変更検出部603なしで、セクタ種別の算出結果等を設備情報蓄積部604に保存してもよい。 The equipment change detection unit 603 includes the sector type determined by the sector type determination unit 611, the position information of the antenna 201 calculated by the antenna position calculation unit 612, the radius of the main power area estimated by the main power area estimation unit 613, The radio wave radiation direction calculated by the radiation direction calculation unit 615, the radio wave radiation width calculated by the radiation width calculation unit 616, and the layer width calculated by the layer width calculation unit 617 are acquired. And the equipment change detection part 603 compares these acquired information with the information memorize | stored in the equipment information storage part 604, and when there is a change, the information memorize | stored in the equipment information storage part 604 is used. Update. The equipment change detection unit 603 is effective for reducing the amount of calculation processing, but without the equipment change detection unit 603, the sector type calculation result or the like may be stored in the equipment information storage unit 604. .
 このように、設備変更検出部603によってアンテナやセクタについての各種の情報が更新される。従って、作業者等によってBTS200の設備情報(アンテナやセクタについての各種の情報)等が入力されることを待つことなく、アンテナやセクタについての実際の各種情報を得ることができる。 In this way, various information about the antenna and the sector is updated by the equipment change detection unit 603. Therefore, various actual information about the antenna and the sector can be obtained without waiting for the operator to input the facility information (various information about the antenna and the sector) of the BTS 200.
 設備情報蓄積部604は、BTS200の設備に関する情報等を記憶するものであり、具体的には、セクタ種別、アンテナ201の位置情報、対象とするセクタを主勢力とする主勢力エリアの半径、アンテナ201から放射される電波の放射方向及び電波の放射幅、層幅算出部617によって算出された層幅を記憶する。 The facility information storage unit 604 stores information related to the facilities of the BTS 200. Specifically, the sector information, the position information of the antenna 201, the radius of the main power area whose main power is the target sector, the antenna The radio wave emission direction, radio wave emission width, and layer width calculated by the layer width calculation unit 617 are stored.
 層状分割部605は、対象となるセクタを、層状に分割する。まず、対象となるセクタが有指向性セクタであり、PRACH-PD位置情報(図6参照)が取得されている場合に、層状分割部605がセクタを層状に分割する処理を説明する。 The layer division unit 605 divides the target sector into layers. First, a description will be given of processing in which the layer dividing unit 605 divides a sector into layers when the target sector is a directional sector and PRACH-PD position information (see FIG. 6) is acquired.
 層状分割部605は、遅延位置情報取得部602から分割対象となるセクタのセクタ識別子を有するPRACH-PD位置情報(図6参照)を取得する。ここでは、セクタ識別子がC8の有指向性セクタを層状に分割するものとする。層状分割部605は、設備情報蓄積部604に記憶されたセクタC8を形成するアンテナ201の位置情報と、設備情報蓄積部604に記憶されたセクタC8を形成するアンテナ201から放射される電波の放射方向と、主勢力エリア推定部613によって推定されたセクタC8が主勢力となる主勢力エリアの半径と、放射幅算出部616によって算出されたセクタC8を形成するアンテナ201から放射された電波の放射幅とを取得する。 The layered division unit 605 acquires PRACH-PD position information (see FIG. 6) having the sector identifier of the sector to be divided from the delay position information acquisition unit 602. Here, it is assumed that the directional sector whose sector identifier is C8 is divided into layers. The layered division unit 605 radiates radio waves radiated from the antenna 201 forming the sector C8 stored in the facility information storage unit 604 and the position information of the antenna 201 forming the sector C8 stored in the facility information storage unit 604. Direction, the radius of the main power area in which the sector C8 estimated by the main power area estimation unit 613 is the main power, and the radiation of the radio wave radiated from the antenna 201 forming the sector C8 calculated by the radiation width calculation unit 616 Get the width and.
 そして、層状分割部605は、取得された情報に基づいて、分割するセクタC8の形状を特定する。具体的には、図38(a)に示すように、層状分割部605は、アンテナ201の位置情報と、電波の放射方向と、主勢力エリアの半径と、電波の放射幅とを用いて扇形の領域を作成する。即ち、この扇形の領域が、セクタC8の範囲となる。 Then, the layer division unit 605 identifies the shape of the sector C8 to be divided based on the acquired information. Specifically, as shown in FIG. 38 (a), the layered division unit 605 uses a position information of the antenna 201, a radio wave radiation direction, a radius of the main power area, and a radio wave radiation width to form a sector. Create an area for. That is, this sector-shaped area becomes the range of sector C8.
 次に、層状分割部605は、図38(b)に示すように、アンテナ201を中心とした円弧状の線をPRACH-PD位置情報の各測位点を通るように複数引いて、扇形のセクタC8を層状に分割する。なお、ここで用いる測位点は、電波の放射方向に沿って直線上に並ぶ測位点のみを用いるものとする。また、取得したPRACH-PD位置情報の測位点が、図34に示すように一部欠落している場合(測位点が等間隔に並んでいない場合)には、欠落している部分については層幅算出部617によって算出された層幅を用いて層状に分割する。 Next, as shown in FIG. 38 (b), the layer division unit 605 draws a plurality of arc-shaped lines centering on the antenna 201 so as to pass through each positioning point of the PRACH-PD position information, thereby forming sector sectors. Divide C8 into layers. Note that only the positioning points arranged on a straight line along the radiation direction of radio waves are used as the positioning points used here. In addition, when some of the positioning points of the acquired PRACH-PD position information are missing as shown in FIG. 34 (when the positioning points are not arranged at equal intervals), the missing parts are not layered. Dividing into layers using the layer width calculated by the width calculation unit 617.
 図38(b)では、扇形の半径の線と円弧状の線とによってセクタC8が7個の分割エリアS1~S7に分割された状態を示している。また、層状分割部605は、各分割エリアS1~S7について、各分割エリアを代表する代表点を求める。例えば、図38(b)に示すように、電波の放射方向を示す直線L2と、各分割エリアS1~S7の外縁との交点(移動機100の測位点)のうちアンテナ201に近い側の交点の座標を代表点とする。例えば、分割エリアS2の代表点は、分割エリアS2の外縁と直線L2との交点のうちアンテナ201に近い側の交点M2が、分割エリアS2の代表点(以下「代表点M2」と呼ぶ)となる。同様に、層状分割部605は、分割エリアS1,S3~S7の代表点M1,M3~M7の座標を求める。なお、代表点M1は、アンテナ201の位置となる。この場合、各代表点は、移動機100の測位点と対応している。なお、代表点の他の例として、隣接する測位点間の中点を代表点とすることもできる。 FIG. 38B shows a state in which the sector C8 is divided into seven divided areas S1 to S7 by a fan-shaped radius line and an arc-shaped line. Further, the layered division unit 605 obtains representative points representing each divided area for each divided area S1 to S7. For example, as shown in FIG. 38B, of the intersections (positioning points of the mobile device 100) between the straight line L2 indicating the radio wave radiation direction and the outer edges of the divided areas S1 to S7, the intersection on the side closer to the antenna 201 Is the representative point. For example, the representative point of the divided area S2 is an intersection M2 on the side closer to the antenna 201 among the intersections of the outer edge of the divided area S2 and the straight line L2, and the representative point of the divided area S2 (hereinafter referred to as “representative point M2”) Become. Similarly, the layered division unit 605 obtains the coordinates of the representative points M1, M3 to M7 of the divided areas S1, S3 to S7. The representative point M1 is the position of the antenna 201. In this case, each representative point corresponds to a positioning point of mobile device 100. As another example of the representative point, a midpoint between adjacent positioning points can be used as the representative point.
 層状分割部605は、図39に示すように、セクタ識別子と、算出した代表点の座標(緯度・経度)と、分割エリア情報(分割エリアを示すポリゴン情報)とを対応付けた情報を算出する。 As shown in FIG. 39, the layered division unit 605 calculates information in which the sector identifier, the calculated coordinates of the representative point (latitude / longitude), and the divided area information (polygon information indicating the divided area) are associated with each other. .
 次に、対象となるセクタが有指向性セクタであり、遅延情報(図4参照)が取得されている場合に、層状分割部605がセクタを層状に分割する処理を説明する。 Next, a description will be given of processing in which the layer dividing unit 605 divides a sector into layers when the target sector is a directional sector and delay information (see FIG. 4) is acquired.
 層状分割部605は、遅延位置情報取得部602から分割対象となるセクタのセクタ識別子を有する遅延情報(図4参照)を取得する。ここでは、セクタ識別子がC7の有指向性セクタを層状に分割するものとする。層状分割部605は、設備情報蓄積部604に記憶されたセクタC7を形成するアンテナ201の位置情報と、設備情報蓄積部604に記憶されたセクタC7を形成するアンテナ201から放射される電波の放射方向と、主勢力エリア推定部613によって推定されたセクタC7が主勢力となる主勢力エリアの半径と、放射幅算出部616によって算出されたセクタC7を形成するアンテナ201から放射された電波の放射幅とを取得する。 The layered division unit 605 acquires delay information (see FIG. 4) having the sector identifier of the sector to be divided from the delay position information acquisition unit 602. Here, it is assumed that the directional sector whose sector identifier is C7 is divided into layers. The layered division unit 605 radiates radio waves radiated from the antenna 201 forming the sector C7 stored in the facility information storage unit 604 and the position information of the antenna 201 forming the sector C7 stored in the facility information storage unit 604. Direction, the radius of the main power area in which the sector C7 is the main power estimated by the main power area estimation unit 613, and the radiation of the radio wave radiated from the antenna 201 forming the sector C7 calculated by the radiation width calculation unit 616 Get the width and.
 そして、層状分割部605は、取得された情報に基づいて、分割するセクタC7の形状を特定する。この特定の方法は、図38(a)を用いて説明した、分割対象のセクタが有指向性セクタ且つPRACH-PD位置情報が取得されている場合と同じ方法を用いることができる。 Then, the layer division unit 605 identifies the shape of the sector C7 to be divided based on the acquired information. As this specific method, the same method as described with reference to FIG. 38A when the division target sector is a directional sector and the PRACH-PD position information is acquired can be used.
 次に、層状分割部605は、設備情報蓄積部604から、セクタC7(有指向性セクタ且つ遅延情報が取得されるセクタ)を分割する際に用いる層幅についての情報を取得する。なお、層幅として、遅延情報に含まれる伝播時間に基づいて得られる長さ(例えば、1遅延量あたりの離間距離)を用いることもできる。そして、層状分割部605は、取得した層幅の情報に基づいて、図40に示すように、アンテナ201を中心とした円弧状の線を複数引き、扇形のセクタC7を層状に分割する。 Next, the layer division unit 605 acquires information on the layer width used when dividing the sector C7 (a directional sector and a sector from which delay information is acquired) from the facility information storage unit 604. As the layer width, a length (for example, a separation distance per delay amount) obtained based on the propagation time included in the delay information can also be used. Then, as shown in FIG. 40, the layered division unit 605 draws a plurality of arc-shaped lines around the antenna 201 to divide the sector sector C7 into layers, as shown in FIG.
 図40では、扇形の半径の線と円弧状の線とによってセクタC7が7個の分割エリアS11~S17に分割された状態を示している。また、層状分割部605は、各分割エリアS11~S17について、各分割エリアを代表する代表点を求める。例えば、図40に示すように、電波の放射方向を示す直線L3と、各分割エリアS11~S17の外縁との交点のうちアンテナ201に近い側の交点の座標を代表点とする。例えば、分割エリアS12の代表点は、分割エリアS12の外縁と直線L3との交点のうちアンテナ201に近い側の交点M12が、分割エリアS12の代表点(以下「代表点M12」と呼ぶ)となる。同様に、層状分割部605は、分割エリアS11,S13~S17の代表点M11,M13~M17の座標を求める。なお、代表点M11は、アンテナ201の位置となる。 FIG. 40 shows a state where the sector C7 is divided into seven divided areas S11 to S17 by fan-shaped radius lines and arc-shaped lines. In addition, the layered division unit 605 obtains representative points representing each divided area for each divided area S11 to S17. For example, as shown in FIG. 40, the coordinates of the intersection point closer to the antenna 201 among the intersection points of the straight line L3 indicating the radiation direction of the radio wave and the outer edges of the divided areas S11 to S17 are set as representative points. For example, the representative point of the divided area S12 is the intersection point M12 on the side closer to the antenna 201 among the intersection points of the outer edge of the divided area S12 and the straight line L3, as a representative point of the divided area S12 (hereinafter referred to as “representative point M12”). Become. Similarly, the layered dividing unit 605 obtains the coordinates of the representative points M11, M13 to M17 of the divided areas S11, S13 to S17. The representative point M11 is the position of the antenna 201.
 層状分割部605は、図41に示すように、セクタ識別子と、算出した代表点の座標(緯度・経度)と、伝播時間と、分割エリア情報(分割エリアを示すポリゴン情報)とを対応付けた情報を算出する。なお、各分割エリアは、セクタ識別子及び代表点の座標(緯度・経度)を用いて互いに識別することができる。また、各分割エリアを識別するための分割エリア識別子を図41に示す情報に付加してもよい。 As shown in FIG. 41, the layered division unit 605 associates sector identifiers, calculated representative point coordinates (latitude / longitude), propagation time, and divided area information (polygon information indicating divided areas). Calculate information. Each divided area can be identified from each other using the sector identifier and the coordinates (latitude / longitude) of the representative point. Further, a divided area identifier for identifying each divided area may be added to the information shown in FIG.
 次に、対象となるセクタが無指向性セクタであり、遅延情報(図4参照)が取得されている場合に、層状分割部605がセクタを層状に分割する処理を説明する。 Next, a description will be given of processing in which the layer dividing unit 605 divides a sector into layers when the target sector is an omni-directional sector and delay information (see FIG. 4) is acquired.
 層状分割部605は、遅延位置情報取得部602から分割対象となるセクタのセクタ識別子を有する遅延情報(図4参照)を取得する。ここでは、セクタ識別子がC7の無指向性セクタを層状に分割するものとする。層状分割部605は、設備情報蓄積部604に記憶されたセクタC7を形成するアンテナ201の位置情報と、主勢力エリア推定部613によって推定されたセクタC7が主勢力となる主勢力エリアの半径とを取得する。 The layered division unit 605 acquires delay information (see FIG. 4) having the sector identifier of the sector to be divided from the delay position information acquisition unit 602. Here, it is assumed that the omnidirectional sector having the sector identifier C7 is divided into layers. The layer division unit 605 includes the position information of the antenna 201 forming the sector C7 stored in the facility information storage unit 604, the radius of the main power area where the sector C7 estimated by the main power area estimation unit 613 is the main power, and To get.
 そして、層状分割部605は、取得された情報に基づいて、分割するセクタC7の形状を特定する。ここでは、対象となるセクタC7が無指向性セクタであるため、図42に示すように、セクタC7はアンテナ201の位置を中心とし、主勢力エリア推定部613によって推定された主勢力エリアの半径の長さを半径とする、円形となる。 Then, the layer division unit 605 identifies the shape of the sector C7 to be divided based on the acquired information. Here, since the target sector C7 is an omnidirectional sector, as shown in FIG. 42, the sector C7 is centered on the position of the antenna 201 and the radius of the main power area estimated by the main power area estimation unit 613 is obtained. It becomes circular with the length of.
 次に、層状分割部605は、設備情報蓄積部604から、セクタC7(無指向性セクタ且つ遅延情報が取得されるセクタ)を分割する際に用いる層幅についての情報を取得する。なお、層幅として、伝播時間に基づいて得られる長さ(例えば、1遅延量あたりの離間距離)を用いることもできる。そして、層状分割部605は、取得した層幅の情報に基づいて、図42に示すように、アンテナ201を中心とした円形の線を複数引き、円形のセクタC7を層状に分割する。 Next, the layer division unit 605 acquires information about the layer width used when dividing the sector C7 (a non-directional sector and a sector from which delay information is acquired) from the facility information storage unit 604. As the layer width, a length obtained based on the propagation time (for example, a separation distance per delay amount) can be used. Then, the layer dividing unit 605 draws a plurality of circular lines around the antenna 201 based on the acquired layer width information, and divides the circular sector C7 into layers.
 図42では、円形のセクタC7が3個の分割エリアS21~S23に分割された状態を示している。なお、分割エリアS21は円形、分割エリアS22,S23は環状となる。 FIG. 42 shows a state in which the circular sector C7 is divided into three divided areas S21 to S23. The divided area S21 is circular, and the divided areas S22 and S23 are annular.
 なお、対象となるセクタが無指向性セクタであり、PRACH-PD位置情報(図7参照)が取得されている場合、層状分割部605は、当該セクタを層状に分割する処理は行わない。 If the target sector is an omni-directional sector and PRACH-PD position information (see FIG. 7) has been acquired, the layer division unit 605 does not perform the process of dividing the sector into layers.
 なお、層状分割部605は、セクタを層状に分割する際に、海に対応する部分を除外して分割エリアを求めてもよい。なお、海以外にも、例えば、湖、皇居等の人口等の算出対象としない領域を除外して分割エリアを求めてもよい。即ち、図43(a)に示すように、扇形のセクタC8と海岸線K(図中、海岸線Kより右側が海、左側が陸とする。)とが重なっている場合、図43(b)に示すように、海の部分と重なる分割エリアS6,S7については、海に対応する部分を除外して分割エリアS6,S7の分割エリア情報(ポリゴン情報)を求める。この地図情報(海岸線Kについての情報)は、予め層状分割部605が記憶しておくことができる。 In addition, when dividing the sector into layers, the layer division unit 605 may obtain a division area by excluding a portion corresponding to the sea. In addition to the sea, for example, divided areas may be obtained by excluding regions that are not subject to calculation such as populations such as lakes and imperial palaces. That is, as shown in FIG. 43 (a), when the sector sector C8 and the coastline K (in the figure, the right side from the coastline K is the sea and the left side is the land) overlap, As shown, for the divided areas S6 and S7 overlapping the sea part, the divided area information (polygon information) of the divided areas S6 and S7 is obtained by excluding the part corresponding to the sea. This map information (information about the coastline K) can be stored in advance by the layered division unit 605.
 層内人口算出部606は、層状分割部605によって分割された分割エリア毎の人口(所定の値)を求める。例えば、対象とするセクタが有指向性セクタでありPRACH-PD位置情報(図6参照)が取得されている場合、図22に示すように、PRACH-PD位置情報に基づき、測位点毎の端末数を算出する。そして、層内人口算出部606は、測位点毎の移動機100の端末数を人口に変換する。具体的には、層内人口算出部606が、測位点毎の端末数に拡大係数を乗算することで、測位点毎の人口を得る。この拡大係数は、算出された端末数を人口に変換するための係数である。なお、上記の拡大係数は、人口を推計する単位である人口推計単位毎に導出してもよい。上記の「人口推計単位」としては、例えば、属性、場所、時間帯などが挙げられ、住所の都道府県毎、5才刻み年齢層毎、男女毎、時間帯として1時間毎などを採用してもよい。また、拡大係数は、一例として、「在圏率と端末の普及率との積(即ち、人口に対する在圏数の比率)」の逆数を用いることができる。ここで「在圏率」とは、契約台数に対する在圏数の比率を意味し、「普及率」とは人口に対する契約台数の比率を意味する。このような拡大係数は、上記の人口推計単位毎に導出することが望ましいが、必須ではない。また、拡大係数は、例えば、以下のように特徴量および集計時間帯の時間長に基づいて推計された端末数(在圏数)を用いて導出してもよい。ここで、特徴量は、生成された遅延情報又はPRACH-PD位置情報についての推定生成密度に対応する情報である。特徴量の詳細については後述する。また、集計時間帯とは、人口を算出する対象となる時間帯(例えば、1時間等)である。即ち、遅延情報又はPRACH-PD位置情報から特徴量を求め、特徴量および集計時間帯の時間長に基づいて、拡大係数算出単位毎の端末数を集計することでユーザ数ピラミッドデータを得るとともに、統計データ(例えば住民基本台帳など)として予め求められた同じ拡大係数算出単位における人口ピラミッドデータを取得する。そして、ユーザ数ピラミッドデータ及び人口ピラミッドデータにおいて拡大係数算出単位毎の遅延情報又はPRACH-PD位置情報の取得率(即ち、在圏数/人口)を算出する。ここで得られた「遅延情報又はPRACH-PD位置情報の取得率(即ち、在圏数/人口)」が、前述した「在圏率と端末の普及率との積」に相当する。このようにして得られた「遅延情報又はPRACH-PD位置情報の取得率」の逆数を拡大係数として導出することができる。なお、拡大係数を算出する拡大係数算出単位としては、一例として、住所の都道府県毎、5才又は10才刻み年齢層毎、男女毎、時間帯として1時間毎などを採用してもよいし、これらの2つ以上を組み合わせたものを採用してもよい。例えば、拡大係数算出単位を「東京都在住の20才台の男性」とした場合、日本全国における、東京都在住の(即ち、ユーザ属性における住所情報が東京都である)20才台の男性に該当する遅延情報又はPRACH-PD位置情報を抽出して端末数を集計することでユーザ数ピラミッドデータを得るとともに、統計データから東京都在住の20才台の男性に関する人口ピラミッドデータを取得する。なお、上記ユーザ数ピラミッドデータを得る際に、「東京都在住」という条件については、東京都に在圏するユーザの遅延情報、PRACH-PD位置情報又はGPS位置情報だけを抽出するのではなく、ユーザ属性における住所情報が東京都である遅延情報、PRACH-PD位置情報又はGPS位置情報を抽出する。そして、ユーザ数ピラミッドデータ及び人口ピラミッドデータから拡大係数算出単位(ここでは東京都在住の20才台の男性)の遅延情報又はPRACH-PD位置情報の取得率(即ち、在圏数/人口)を算出し、得られた「遅延情報又はPRACH-PD位置情報の取得率」の逆数を拡大係数として導出することができる。なお、本願では、拡大係数算出単位と人口推計単位とが等しいものとして説明しているが、これはあくまでも一例であり、これに限られるものではない。 The intra-tier population calculation unit 606 obtains the population (predetermined value) for each divided area divided by the layered division unit 605. For example, when the target sector is a directional sector and PRACH-PD position information (see FIG. 6) is acquired, as shown in FIG. 22, the terminal for each positioning point is based on the PRACH-PD position information. Calculate the number. Then, the in-story population calculation unit 606 converts the number of terminals of the mobile device 100 for each positioning point into a population. Specifically, the population calculation unit 606 in the stratum obtains the population for each positioning point by multiplying the number of terminals for each positioning point by the expansion coefficient. This expansion coefficient is a coefficient for converting the calculated number of terminals into a population. In addition, you may derive | lead-out said expansion coefficient for every population estimation unit which is a unit which estimates a population. Examples of the above “population estimation unit” include, for example, attributes, places, time zones, etc., adopting each address prefecture, every 5 years of age, every gender, every hour, etc. Also good. As an example of the expansion coefficient, the reciprocal of “the product of the coverage ratio and the terminal penetration rate (that is, the ratio of the number of areas in the population)” can be used. Here, the “area ratio” means the ratio of the area number to the contracted number, and the “popularity ratio” means the ratio of the contracted number to the population. Such an expansion coefficient is desirably derived for each population estimation unit, but is not essential. In addition, the expansion coefficient may be derived using, for example, the number of terminals (the number of visited areas) estimated based on the feature amount and the time length of the total time period as follows. Here, the feature amount is information corresponding to the estimated generation density for the generated delay information or PRACH-PD position information. Details of the feature amount will be described later. Further, the total time zone is a time zone (for example, 1 hour) that is a target for calculating the population. That is, the feature amount is obtained from the delay information or the PRACH-PD position information, and based on the feature amount and the time length of the totaling time zone, the number of terminals for each expansion coefficient calculation unit is totaled to obtain the user number pyramid data, Population pyramid data in the same expansion coefficient calculation unit obtained in advance as statistical data (for example, the Basic Resident Register) is acquired. Then, the acquisition rate of delay information or PRACH-PD position information for each expansion coefficient calculation unit (that is, the number of areas / population) is calculated in the user number pyramid data and the population pyramid data. The “delay information or PRACH-PD location information acquisition rate (that is, the number of areas / population)” obtained here corresponds to the “product of the area ratio and the terminal penetration rate” described above. The reciprocal of the “delay information or PRACH-PD position information acquisition rate” obtained in this way can be derived as an expansion coefficient. In addition, as an enlargement factor calculation unit for calculating the enlargement factor, for example, every prefecture of the address, every 5 or 10 years, every age group, every gender, every hour as a time zone, etc. may be adopted. A combination of two or more of these may be employed. For example, if the enlargement coefficient calculation unit is “male in the 20s in Tokyo”, the males in the 20s in Japan who live in Tokyo (that is, the address information in the user attribute is Tokyo). The corresponding delay information or PRACH-PD position information is extracted and the number of terminals is totaled to obtain the user number pyramid data, and the population pyramid data related to a 20-year-old man living in Tokyo is obtained from the statistical data. When obtaining the above-mentioned user pyramid data, for the condition of “resident in Tokyo”, instead of extracting only delay information, PRACH-PD position information or GPS position information of users residing in Tokyo, Delay information, PRACH-PD position information, or GPS position information whose address information in the user attribute is Tokyo are extracted. The delay rate or PRACH-PD location information acquisition rate (ie, the number of people in the area / population) of the enlargement factor calculation unit (here, men in the 20s living in Tokyo) is calculated from the user number pyramid data and the population pyramid data. The reciprocal number of the “acquisition rate of delay information or PRACH-PD position information” obtained and calculated can be derived as an expansion coefficient. In the present application, the enlargement coefficient calculation unit and the population estimation unit are described as being equal. However, this is merely an example, and the present invention is not limited to this.
 ここで、各測位点と各分割エリアとの対応関係について説明する。PRACH-PD位置情報に基づいて有指向性セクタを層毎に分割した場合、図39に示すように、各分割エリアには代表点(緯度・経度)が対応付けられている。各分割エリアの人口を算出する場合、概念的には、各分割エリアに対応付けられた代表点と、PRACH-PD位置情報の測位点と、を所定条件に基づいて関連付けることで、分割エリア毎の人口を求める。具体的には、例えば、アンテナ201の位置を示す測位点における人口が図38(b)の分割エリアS1内の人口、次にアンテナ201の位置に近い位置を示す測位点における人口が分割エリアS2内の人口のように、測位点の座標(緯度・経度)毎の人口を、各分割エリアの人口として算出する。より詳細には、測位点からの距離が最小となる代表点が指し示す分割エリアにその測位点における人口を割り当てる。そして、層内人口算出部606は、図44に示すように、セクタ識別子と、分割エリアの識別子と、人口とを対応付ける。 Here, the correspondence between each positioning point and each divided area will be described. When the directional sector is divided for each layer based on the PRACH-PD position information, as shown in FIG. 39, representative points (latitude / longitude) are associated with each divided area. When calculating the population of each divided area, conceptually, by associating the representative points associated with each divided area with the positioning points of the PRACH-PD position information based on a predetermined condition, Seeking the population of Specifically, for example, the population at the positioning point indicating the position of the antenna 201 is within the divided area S1 in FIG. 38B, and the population at the positioning point indicating the position close to the position of the antenna 201 is the divided area S2. Like the population inside, the population for each coordinate (latitude / longitude) of the positioning point is calculated as the population of each divided area. More specifically, the population at the positioning point is assigned to the divided area indicated by the representative point having the smallest distance from the positioning point. Then, as shown in FIG. 44, the in-layer population calculation unit 606 associates the sector identifier, the divided area identifier, and the population.
 また、対象とするセクタが有指向性セクタであり遅延情報(図4参照)が取得されている場合、図26に示すように、遅延情報を伝播時間毎に集計し、伝播時間毎の信号数を算出する。この信号数が伝播時間毎の移動機100の端末数となる。そして、層内人口算出部606は、上述したのと同様に、伝播時間毎の端末数に拡大係数を乗算することで伝播時間毎の人口を得る。ここで、遅延情報に基づいて有指向性セクタを層毎に分割した場合、図41に示すように、各分割エリアには伝播時間に関する情報が対応付けられている。各分割エリアの人口を算出する場合、概念的には、各分割エリアに対応付けられた伝播時間と、遅延情報の伝播時間と、を所定条件に基づいて関連付ける(例えば、伝播時間が最も近い分割エリアに関連付ける等)ことで、分割エリア毎の人口を求める。具体的には、例えば、最も短い伝播時間に対応する人口が図40の分割エリアS11における人口、次に短い伝播時間に対応する人口が分割エリアS12内に対応する人口のように、伝播時間毎の人口を、各分割エリアにおける人口として算出する。そして、層内人口算出部606は、図45に示すように、セクタ識別子と、分割エリアの識別子と、人口とを対応付ける。 If the target sector is a directional sector and delay information (see FIG. 4) is acquired, the delay information is aggregated for each propagation time as shown in FIG. 26, and the number of signals for each propagation time. Is calculated. This number of signals is the number of terminals of mobile device 100 for each propagation time. Then, in the same manner as described above, the in-layer population calculation unit 606 obtains the population for each propagation time by multiplying the number of terminals for each propagation time by the expansion coefficient. Here, when the directional sector is divided for each layer based on the delay information, as shown in FIG. 41, information on the propagation time is associated with each divided area. When calculating the population of each divided area, conceptually, the propagation time associated with each divided area is associated with the propagation time of delay information based on a predetermined condition (for example, the division with the closest propagation time). By associating with an area, etc.), the population for each divided area is obtained. Specifically, for example, the population corresponding to the shortest propagation time is the population in the divided area S11 in FIG. 40, and the population corresponding to the next shortest propagation time is the population corresponding to the divided area S12. Is calculated as the population in each divided area. Then, as shown in FIG. 45, the in-layer population calculation unit 606 associates the sector identifier, the divided area identifier, and the population.
 また、対象とするセクタが無指向性セクタであり遅延情報(図4参照)が取得されている場合、上述した、対象とするセクタが有指向性セクタであり遅延情報が取得されている場合と同様に、遅延情報を伝播時間毎に集計し、伝播時間毎の信号数を算出する。この信号数が測位点毎の移動機100の端末数となる。そして、層内人口算出部606は、上述したのと同様に、伝播時間毎の端末数に拡大係数を乗算することで伝播時間毎の人口を得る。ここで、遅延情報に基づいて無指向性セクタを層毎に分割した場合、各分割エリアには伝播時間に関する情報が対応付けられている。各分割エリアの人口を算出する場合、概念的には、各分割エリアに対応付けられた伝播時間と、遅延情報の伝播時間と、を所定条件に基づいて関連付けることで、分割エリア毎の人口を求める。具体的には、例えば、最も短い伝播時間に対応する人口が図42の分割エリアS21における人口、次に短い伝播時間に対応する人口が分割エリアS22における人口のように、伝播時間毎の人口を、各分割エリアにおける人口として算出する。なお、伝播時間に対応する人口を、分割エリアに対して1対1で対応付けられない場合、伝播時間が最も近い分割エリアに人口を対応付ける。そして、層内人口算出部606は、図46に示すように、セクタ識別子と、分割エリアの識別子と、人口とを対応付ける。 Further, when the target sector is an omnidirectional sector and delay information (see FIG. 4) is acquired, the above-described case where the target sector is a directional sector and delay information is acquired. Similarly, delay information is aggregated for each propagation time, and the number of signals for each propagation time is calculated. This number of signals is the number of terminals of the mobile device 100 for each positioning point. Then, in the same manner as described above, the in-layer population calculation unit 606 obtains the population for each propagation time by multiplying the number of terminals for each propagation time by the expansion coefficient. Here, when the omnidirectional sector is divided for each layer based on the delay information, information on the propagation time is associated with each divided area. When calculating the population of each divided area, conceptually, by associating the propagation time associated with each divided area with the propagation time of the delay information based on a predetermined condition, the population for each divided area can be calculated. Ask. Specifically, for example, the population corresponding to the shortest propagation time is the population in the divided area S21 in FIG. 42, and the population corresponding to the next shortest propagation time is the population in the divided area S22. Calculate as the population in each divided area. If the population corresponding to the propagation time cannot be associated with the divided area on a one-to-one basis, the population is associated with the divided area with the closest propagation time. Then, as shown in FIG. 46, the in-layer population calculation unit 606 associates the sector identifier, the divided area identifier, and the population.
 なお、層内人口算出部606が測位点毎の人口や伝播時間毎の人口を算出し、測位点毎の人口や伝播時間毎の人口を各分割エリアに割り当てるものとしたが、他の装置等から、測位点毎の人口や伝播時間毎の人口を取得してもよい。即ち、層状領域を作成するのに用いる位置情報と、人口を算出するのに用いる位置情報は、同じ時系列のものである必要はない。例えば、ある一ヶ月間の位置情報を用いて、層状領域を作成し、現時点の位置情報を用いて算出した人口を割り当てることができる。また、本実施形態では、人口を各分割エリアに割り当てるものとしたが、人口以外にも、例えば、在圏数、需要数等、位置情報に対応付けられた数値であれば他の値を各分割エリアに割り当てることもできる。また、第1の測位(PRACH-PD測位)による位置情報に基づいて算出した人口を割り当てることについて説明したが、これに限られるものではなく、その他の測位による位置情報であっても適用可能である。例えば、GPS測位による位置情報に対応付けられた人口については、GPS情報(座標情報)からの距離が最小となる代表点が指し示す分割エリアに割り当てることができる。 The in-story population calculation unit 606 calculates the population for each positioning point and the population for each propagation time, and assigns the population for each positioning point and the population for each propagation time to each divided area. From this, the population for each positioning point and the population for each propagation time may be acquired. That is, the position information used to create the layered region and the position information used to calculate the population do not have to be in the same time series. For example, a layered region can be created using location information for a certain month, and a population calculated using current location information can be assigned. Further, in this embodiment, the population is assigned to each divided area. However, in addition to the population, for example, other values may be assigned to other values as long as they are numerical values associated with the location information, such as the number of located areas and the number of demands. It can also be assigned to divided areas. In addition, the allocation of the population calculated based on the position information by the first positioning (PRACH-PD positioning) has been described. However, the present invention is not limited to this, and position information by other positioning is applicable. is there. For example, a population associated with position information obtained by GPS positioning can be assigned to a divided area indicated by a representative point having a minimum distance from GPS information (coordinate information).
 算出単位エリア変換部607は、セクタを層状に分割することで形成された分割エリア毎の人口を、人口分布を算出する人口分布算出単位エリア毎の人口に変換する。この変換の際に、算出単位エリア変換部607は、変換テーブルを用いる。この変換テーブルは、一の層の面積と、一の層内に含まれる人口分布算出単位エリア毎の面積と、の面積比を層毎に算出したものである。なお、分割エリアにおいて海等に対応する部分を除外した場合には、除外した後の後の分割エリアの面積と、人口分布算出単位エリアの面積との比を用いる。この変換テーブルは、予め算出単位エリア変換部607が算出しておくことができる。 The calculation unit area conversion unit 607 converts the population for each divided area formed by dividing the sector into layers into a population for each population distribution calculation unit area for calculating the population distribution. At the time of this conversion, the calculation unit area conversion unit 607 uses a conversion table. In this conversion table, the area ratio between the area of one layer and the area of each population distribution calculation unit area included in one layer is calculated for each layer. When a portion corresponding to the sea or the like is excluded from the divided area, a ratio between the area of the divided area after the exclusion and the area of the population distribution calculation unit area is used. This conversion table can be calculated in advance by the calculation unit area conversion unit 607.
 以下、変換テーブルの具体例について説明する。ここでは、図47(a)に示す扇形のセクタC8の各分割エリアS1~S7内の人口を、図47(b)に示す人口分布算出単位エリアM1~M16毎の人口に変換する変換テーブルを求める場合について説明する。セクタC8の分割エリアS1~S7と、人口分布算出単位エリアM1~M16とを地理的に重ねると、図47(c)に示すように、複数の分割エリアに一つの人口分布算出単位エリアが跨る場合がある。 Hereinafter, a specific example of the conversion table will be described. Here, a conversion table for converting the population in each of the divided areas S1 to S7 of the sector S8 shown in FIG. 47 (a) into the population for each of the population distribution calculation unit areas M1 to M16 shown in FIG. 47 (b). The case where it asks is explained. When the divided areas S1 to S7 of the sector C8 and the population distribution calculation unit areas M1 to M16 are geographically overlapped, one population distribution calculation unit area spans a plurality of divided areas as shown in FIG. 47 (c). There is a case.
 算出単位エリア変換部607は、人口分布算出単位エリアM1~M16毎に、人口分布算出単位エリアと地理的に重なる分割エリアの面積比を求める。この面積比は、以下の式(4)によって求めることができる
 面積比=(分割エリアと人口分布算出単位エリアとが重なる面積)/(分割エリアの面積)  (4)
 算出単位エリア変換部607は、この面積比を、人口分布算出単位エリアM1~M16のそれぞれに対し、分割エリアS1~S7毎に求める。そして、算出単位エリア変換部607は、求めた面積比を用いて、図48に示すように、人口分布算出単位エリアの識別子と、分割エリアの識別子と、面積比とを対応付けて変換テーブルを作成する。
The calculation unit area conversion unit 607 obtains the area ratio of the divided areas geographically overlapping with the population distribution calculation unit area for each of the population distribution calculation unit areas M1 to M16. This area ratio can be obtained by the following formula (4): Area ratio = (area where the divided area and population distribution calculation unit area overlap) / (area of the divided area) (4)
The calculation unit area conversion unit 607 obtains this area ratio for each of the divided areas S1 to S7 for each of the population distribution calculation unit areas M1 to M16. Then, as shown in FIG. 48, the calculation unit area conversion unit 607 associates the identifier of the population distribution calculation unit area, the identifier of the divided area, and the area ratio with each other by using the obtained area ratio. create.
 算出単位エリア変換部607は、人口を変換する際に、図48に示す変換テーブルを行列形式で表した変換行列(図49)を用いる。この変換行列は、行方向が分割エリアS1~S7、列方向が人口分布算出単位エリアM1~M16となっている。 The calculation unit area conversion unit 607 uses a conversion matrix (FIG. 49) that represents the conversion table shown in FIG. 48 in a matrix format when converting the population. In this conversion matrix, the row direction is divided areas S1 to S7, and the column direction is population distribution calculation unit areas M1 to M16.
 例えば、図47(a)に示す分割エリアS1~S7内にそれぞれ100人ずつ人が存在していた場合を例に説明する。算出単位エリア変換部607は、図50に示すように、変換行列に分割エリアS1~S7毎の人口(100人)を乗算し、行列計算を行うことで、人口分布算出単位エリアM1~M16毎の人口を求める。この変換行列を用いた変換処理により、図51に示すように、人口分布算出単位エリアM1~M16毎の人口を算出することができる。これにより、セクタよりも小さいエリアである分割エリア毎(層毎)の人口に基づいて、人口分布算出単位エリア毎の人口を求めることができる。 For example, a case where there are 100 persons each in the divided areas S1 to S7 shown in FIG. 47A will be described as an example. As shown in FIG. 50, the calculation unit area conversion unit 607 multiplies the conversion matrix by the population (100 people) for each of the divided areas S1 to S7 and performs matrix calculation to thereby calculate the population distribution calculation unit areas M1 to M16. Seeking the population of By the conversion process using this conversion matrix, the population for each of the population distribution calculation unit areas M1 to M16 can be calculated as shown in FIG. Thereby, the population for every population distribution calculation unit area can be calculated | required based on the population for every division area (for every layer) which is an area smaller than a sector.
 上記では、セクタが扇形の場合を例に説明したが、セクタ形状が丸型となる無指向性セクタの場合であっても同様に、変換テーブル及び変換行列を求め、変換行列を用いて人口分布算出単位エリア毎の人口を算出することができる。 In the above, the case where the sector is a sector has been described as an example, but even in the case of a non-directional sector where the sector shape is a circular shape, similarly, a conversion table and a conversion matrix are obtained, and the population distribution using the conversion matrix is obtained. The population for each calculation unit area can be calculated.
 人口出力部609は、算出単位エリア変換部607で変換された人口分布算出単位エリア毎の人口を、図示しない他の統計装置等に出力する。出力された人口分布算出単位エリア毎の人口は、例えば、店舗開発、道路交通調査、災害対策、環境対策等に利用される。 The population output unit 609 outputs the population for each population distribution calculation unit area converted by the calculation unit area conversion unit 607 to another statistical device (not shown). The output population for each population distribution calculation unit area is used for, for example, store development, road traffic survey, disaster countermeasures, environmental countermeasures, and the like.
 本実施形態は以上のように構成され、移動機と基地局との間で送受信される電波の伝播時間に基づいて、層状分割部605によってセクタが層状に分割される。層内人口算出部606によって、分割された層毎に人口が算出される。このように、分割された層毎に人口を算出することで、セクタよりも狭いエリアである層毎の人口を求めることができ、セクタ内における人口の分布偏りをより正確に把握することができる。また、本実施形態では、セクタ間のオーバーラップを許容することができる(セクタの領域が排他的とはならない)ため、セクタ同士の領域を個別に求めることができる。そのため、例えば、セクタが増設・廃設された場合や、セクタが工事中・故障した場合であっても、そのセクタの周辺のセクタ領域を再度推定する必要がなく、処理工数を削減することができる。 This embodiment is configured as described above, and the sector is divided into layers by the layer division unit 605 based on the propagation time of radio waves transmitted and received between the mobile device and the base station. The population calculation unit 606 calculates the population for each divided layer. Thus, by calculating the population for each divided layer, the population for each layer, which is an area narrower than the sector, can be obtained, and the distribution distribution of the population in the sector can be grasped more accurately. . Further, in the present embodiment, it is possible to allow overlap between sectors (the areas of the sectors are not exclusive), so the areas of the sectors can be obtained individually. Therefore, for example, even when a sector is added or removed, or when a sector is under construction or has a failure, there is no need to re-estimate the sector area around that sector, reducing the number of processing steps. it can.
 また、算出単位エリア変換部607が、層毎の人口を、人口分布算出単位エリア毎の人口に変換する。これにより、層毎の人口から、人口分布算出単位エリア毎の人口を求めることができる。即ち、セクタよりも狭いエリアである層毎の人口に基づいて人口分布算出単位エリア毎の人口を算出することで、セクタ内における人口の分布偏り等を考慮してより正確に人口分布算出単位エリア毎の人口を求めることができる。ここで、例えば、セクタ間のオーバーラップが許容できない場合には、周波数帯毎に別々のセクタ勢力エリアを推定して人口分布算出単位エリア毎の人口を求める必要がある。これに対し、本実施形態では、セクタ間、又はセクタを層状に分割した層状の領域間のオーバーラップを許容することができる、即ち、周波数帯やセクタの違いを考慮することなく、人口を求めることができる。このため本実施形態では、人口分布算出単位エリア毎の人口を効率よく求めることができる。 Further, the calculation unit area conversion unit 607 converts the population for each layer into the population for each population distribution calculation unit area. Thereby, the population for every population distribution calculation unit area can be calculated | required from the population for every layer. In other words, by calculating the population for each population distribution calculation unit area based on the population of each layer, which is an area narrower than the sector, the population distribution calculation unit area can be more accurately taken into account in terms of population distribution bias within the sector. Each population can be determined. Here, for example, when the overlap between sectors is unacceptable, it is necessary to estimate the population of each population distribution calculation unit area by estimating different sector power areas for each frequency band. On the other hand, in this embodiment, it is possible to allow overlap between sectors or between layered regions obtained by dividing the sector into layers, that is, obtain the population without considering the difference in frequency band or sector. be able to. For this reason, in this embodiment, the population for every population distribution calculation unit area can be calculated | required efficiently.
 また、算出単位エリア変換部607が、人口分布算出単位エリアと地理的に重なる分割エリアの面積比を用いて変換テーブル算出する。そして、算出単位エリア変換部607が、変換テーブルを行列形式で表した変換行列を用いて人口の算出単位のエリア変換を行うことで、簡易な計算によってすばやく変換を行うことができる。 Also, the calculation unit area conversion unit 607 calculates the conversion table using the area ratio of the divided areas that overlap geographically with the population distribution calculation unit area. And the calculation unit area conversion part 607 can perform conversion quickly by simple calculation by performing area conversion of the calculation unit of a population using the conversion matrix which represented the conversion table in the matrix form.
 また、層内人口算出部606は、遅延情報やPRACH-PD位置情報の信号数に基づいて移動機の端末数を求め、求めた移動機の端末数から人口を求める。このように、電波の伝播時間に基づいて得られる遅延情報やPRACH-PD位置情報に基づいて、人口を算出することができる。 Also, the in-story population calculation unit 606 obtains the number of mobile terminals based on the number of signals of delay information and PRACH-PD position information, and obtains the population from the obtained number of mobile terminals. Thus, the population can be calculated based on the delay information obtained based on the propagation time of radio waves and the PRACH-PD position information.
 また、分割対象のセクタが有指向性セクタ又は無指向性セクタであり遅延情報が取得されている場合、層状分割部605は、伝播時間に基づいてセクタを分割することで、セクタをより適切に分割することができる。 In addition, when the division target sector is a directional sector or an omnidirectional sector and delay information is acquired, the layered division unit 605 divides the sector based on the propagation time, thereby making the sector more appropriate. Can be divided.
 また、分割対象のセクタが有指向性セクタでありPRACH-PD位置情報が取得されている場合、層状分割部605は、PRACH-PD位置情報に含まれる座標情報(測位点)に基づいてセクタを分割する。これにより、セクタをより適切に分割することができる。 When the division target sector is a directional sector and the PRACH-PD position information is acquired, the layered division unit 605 selects a sector based on the coordinate information (positioning point) included in the PRACH-PD position information. To divide. Thereby, a sector can be divided more appropriately.
 また、放射幅算出部616が、GPS位置情報によって得られる分割対象のセクタに在圏する移動機100の分布、アンテナの位置、及び、電波の放射方向、に基づいて、電波の放射幅を算出する。これにより、電波の放射幅を取得できない場合であっても、移動機100の分布、アンテナの位置、及び、電波の放射方向に基づいて電波の放射幅を求めることができる。 Further, the emission width calculation unit 616 calculates the emission width of the radio wave based on the distribution of the mobile devices 100 located in the sector to be divided obtained from the GPS position information, the position of the antenna, and the emission direction of the radio wave. To do. Thereby, even if it is a case where the radio wave radiation width cannot be acquired, the radio wave radiation width can be obtained based on the distribution of the mobile device 100, the position of the antenna, and the radio wave radiation direction.
 また、分割対象のセクタが有指向性セクタ或いは無指向性セクタであり遅延情報が取得されている場合、主勢力エリア推定部613が、遅延情報に基づいて、分割対象のセクタが主勢力となる主勢力エリアの半径を推定する。これにより、分割対象のセクタが主勢力となる主勢力エリアの半径が取得できない場合であっても、遅延情報に基づいて主勢力エリアの半径を求めることができる。 When the division target sector is a directional sector or an omnidirectional sector and the delay information is acquired, the main power area estimation unit 613 uses the division information as the main power based on the delay information. Estimate the radius of the main power area. Thereby, even when the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the radius of the main power area can be obtained based on the delay information.
 また、分割の対象とするセクタが有指向性セクタである場合、主勢力エリア推定部613が、PRACH-PD位置情報、及び、アンテナの位置、に基づいて、分割対象のセクタが主勢力となる主勢力エリアの半径を推定する。これにより、分割対象のセクタが主勢力となる主勢力エリアの半径が取得できない場合であっても、PRACH-PD位置情報に含まれる座標情報(測位点)、及び、アンテナの位置に基づいて主勢力エリアの半径を求めることができる。 Also, when the sector to be divided is a directional sector, the main power area estimation unit 613 uses the PRACH-PD position information and the antenna position as the main power of the division target sector. Estimate the radius of the main power area. As a result, even if the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the main information is based on the coordinate information (positioning point) included in the PRACH-PD position information and the antenna position. The radius of the power area can be obtained.
 また、主勢力エリア推定部613が、GPS位置情報から得られる分割対象のセクタに在圏する移動機の分布、及び、アンテナの位置、に基づいて、分割対象のセクタが主勢力となる主勢力エリアの半径を推定する。これにより、分割対象のセクタが主勢力となる主勢力エリアの半径が取得できない場合であっても、GPS位置情報から得られる移動機の分布、及び、アンテナの位置に基づいて、主勢力エリアの半径を求めることができる。 In addition, the main power area estimation unit 613 determines the main power that the division target sector is the main power based on the distribution of mobile stations located in the division target sector obtained from the GPS position information and the antenna position. Estimate the radius of the area. As a result, even if the radius of the main power area in which the sector to be divided is the main power cannot be acquired, the distribution of the mobile device obtained from the GPS position information and the position of the antenna The radius can be determined.
 また、分割の対象とするセクタが有指向性セクタでありPRACH-PD位置情報が取得されている場合、層幅算出部617が、PRACH-PD位置情報の測位点の配列間隔に基づいて、層状分割部605によってセクタを分割する際の層幅を算出する。この場合には、例えば、偶然ある位置に移動機100が存在せずにある位置で移動機100が測位されなかった場合であっても、層幅算出部617で算出された層幅を用いることで、セクタをより適切に分割することができる。 In addition, when the sector to be divided is a directional sector and the PRACH-PD position information is acquired, the layer width calculation unit 617 performs layered processing based on the arrangement interval of the positioning points of the PRACH-PD position information. The dividing unit 605 calculates the layer width when the sector is divided. In this case, for example, the layer width calculated by the layer width calculation unit 617 is used even when the mobile device 100 does not exist at a certain position and the mobile device 100 is not measured at a certain position. Thus, the sector can be divided more appropriately.
 以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。例えば、層内人口算出部606が移動機の端末数を算出する際に、特徴量を用いることができる。以下、特徴量を用いて移動機の端末数を算出する処理の詳細について説明する。なお、この特徴量は、層内人口算出部606が人口を算出する際に用いた拡大係数を求める際にも用いることができる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and may be modified without changing the gist described in each claim. For example, the feature amount can be used when the in-layer population calculation unit 606 calculates the number of terminals of the mobile device. Hereinafter, the details of the process of calculating the number of terminals of the mobile device using the feature amount will be described. This feature amount can also be used when the enlargement coefficient used when the in-layer population calculation unit 606 calculates the population.
 「特徴量」とは、上述したように、生成された遅延情報又はPRACH-PD位置情報についての推定生成密度に対応する情報である。また、ここでの「推定生成密度」とは、当該遅延情報又はPRACH-PD位置情報を生成した移動機100が、遅延情報又はPRACH-PD位置情報が生成された時刻周辺で単位時間あたりに生成する遅延情報又はPRACH-PD位置情報の数の推定値を意味する。 The “feature amount” is information corresponding to the estimated generation density of the generated delay information or PRACH-PD position information as described above. Further, the “estimated generation density” here is generated per unit time around the time when the delay information or the PRACH-PD position information is generated by the mobile device 100 that generated the delay information or the PRACH-PD position information. It is an estimated value of the number of delay information or PRACH-PD position information.
 この特徴量は、概念的には以下のようにして求めることができる。即ち、移動機を識別する端末識別子と、移動機の位置に関する位置情報と、位置情報が取得された位置取得時刻情報と、を含む位置データを取得する位置データ取得手段と、ある第1の位置データについて、当該第1の位置データと同一の識別情報を含む位置データのうち、当該第1の位置データの直前の位置データである第2の位置データの位置取得時刻情報、及び当該第1の位置データの直後の位置データである第3の位置データの位置取得時刻情報を取得する前後位置データ取得手段と、第1の位置データの位置取得時刻情報、第2の位置データの位置取得時刻情報及び第3の位置データの位置取得時刻情報のうち2つ以上に基づいて、第1の位置データについての特徴量を計算する特徴量計算手段と、観測すべき観測期間に関する観測開始時刻以降であり且つ観測終了時刻以前である位置取得時刻情報を含み、且つ観測すべき観測エリアに関する観測エリア情報に対応づけられる位置情報を含む1乃至複数の位置データを、観測対象位置データとして取得する観測対象取得手段と、観測対象位置データについての特徴量、及び観測開始時刻と観測終了時刻との差である観測期間長に基づいて、観測期間中に観測エリアに在圏した端末数を推計する端末数推計手段と、を備えることで特徴量を求めることができる。
 また、端末数を人口に変換するための拡大係数を記憶した拡大係数記憶手段、をさらに備え、端末数推計手段は、観測対象位置データについての特徴量、観測期間長、及び拡大係数に基づいて、観測期間中に観測エリアに在圏した人口を推計する、ことができる。
This feature amount can be conceptually obtained as follows. That is, position data acquisition means for acquiring position data including a terminal identifier for identifying a mobile device, position information regarding the position of the mobile device, and position acquisition time information from which the position information was acquired, and a certain first position Among the position data including the same identification information as the first position data, the position acquisition time information of the second position data that is the position data immediately before the first position data, and the first Position data acquisition means for acquiring the position acquisition time information of the third position data which is position data immediately after the position data, the position acquisition time information of the first position data, and the position acquisition time information of the second position data And the feature amount calculation means for calculating the feature amount of the first position data based on two or more of the position acquisition time information of the third position data, and the observation about the observation period to be observed. One or more position data including position acquisition time information after the start time and before the observation end time and including position information associated with the observation area information related to the observation area to be observed is set as observation target position data. Based on the observation target acquisition means to be acquired, the feature amount of the observation target position data, and the observation period length that is the difference between the observation start time and the observation end time, the number of terminals in the observation area during the observation period is calculated. The feature quantity can be obtained by providing terminal number estimation means for estimation.
Further, the image processing apparatus further includes an expansion coefficient storage unit that stores an expansion coefficient for converting the number of terminals into a population, and the terminal number estimation unit is based on the feature amount, the observation period length, and the expansion coefficient of the observation target position data. It is possible to estimate the population residing in the observation area during the observation period.
 次に、特徴量を算出する具体的な処理について説明する。以下において、遅延情報及びPRACH-PD位置情報を総称して「第1の測位位置情報」と呼び、層内人口算出部606が第1の測位位置情報から特徴量を算出し、分割エリア内の移動機の端末数を算出する処理について説明する。 Next, specific processing for calculating the feature amount will be described. Hereinafter, the delay information and the PRACH-PD position information are collectively referred to as “first positioning position information”, and the population calculation unit 606 in the stratum calculates a feature amount from the first positioning position information, Processing for calculating the number of terminals of the mobile device will be described.
 層内人口算出部606は、第1の測位位置情報が取得(測位)された時刻が集計時間帯の集計開始時刻以降であり且つ集計終了時刻以前である1又は複数の第1の測位位置情報を、集計対象位置情報として取得する。なお、集計時間帯は、層内人口算出部606において人口を得ようとする時間帯である。 The in-story population calculation unit 606 has one or more pieces of first positioning position information in which the time when the first positioning position information is acquired (positioning) is after the counting start time in the counting time zone and before the counting end time. Is acquired as the aggregation target position information. The total time zone is a time zone in which the population is calculated in the in-layer population calculation unit 606.
 層内人口算出部606は、特徴量を求める対象の集計対象位置情報(以下「第1の集計対象位置情報」という)について、当該第1の集計対象位置情報と同一の端末識別子を含む集計対象位置情報のうち、当該第1の集計対象位置情報の直前の集計対象位置情報(以下「第2の集計対象位置情報」という)が取得された時刻、及び当該第1の集計対象位置情報の直後の集計対象位置情報(以下「第3の集計対象位置情報」という)が取得された時刻を取得する。なお、層内人口算出部606は、第2又は第3の集計対象位置情報の全体を取得することは必須ではなく、少なくとも、第1の測位位置情報に含まれる時刻についての情報を取得すればよい。また、第1の測位位置情報には、移動機を識別するための端末識別子が付加されているものとする。 The population calculation unit 606 within the stratum includes the same terminal identifier as the first aggregation target position information for the aggregation target position information (hereinafter referred to as “first aggregation target position information”) for which the feature amount is to be obtained. Among the position information, the time when the aggregation target position information immediately before the first aggregation target position information (hereinafter referred to as “second aggregation target position information”) is acquired, and immediately after the first aggregation target position information. The time at which the total object position information (hereinafter referred to as “third total object position information”) is acquired. In addition, it is not essential for the in-story population calculation unit 606 to acquire the entire second or third aggregation target position information, and at least information about the time included in the first positioning position information may be acquired. Good. Further, it is assumed that a terminal identifier for identifying the mobile device is added to the first positioning position information.
 層内人口算出部606は、第1の集計対象位置情報それぞれについての特徴量を計算する。例えば、層内人口算出部606は、第2の集計対象位置情報が取得された時刻と第3の集計対象位置情報が取得された時刻との差を、当該第1の集計対象位置情報についての特徴量として計算する。また、層内人口算出部606は、第2の集計対象位置情報が取得された時刻が異常値である場合、ここでは一例として第1の集計対象位置情報が取得された刻と第2の集計対象位置情報が取得された時刻との差が所定の基準値(例えば1時間)より大きい場合に、第1の集計対象位置情報が取得された時刻から予め定められた時間(例えば1時間)だけ過去に遡った時刻を第2の集計対象位置情報が取得された時刻として用いて、第1の集計対象位置情報についての特徴量を計算する。同様に、層内人口算出部606は、第3の集計対象位置情報が取得された時刻が異常値である場合、ここでは一例として第1の集計対象位置情報が取得された時刻と第3の集計対象位置情報が取得された時刻との差が所定の基準値(例えば1時間)より大きい場合に、第1の集計対象位置情報が取得された時刻から予め定められた時間(例えば1時間)だけ未来に進めた時刻を第3の集計対象位置情報が取得された時刻として用いて、第1の集計対象位置情報についての特徴量を計算する。このような第2、第3の集計対象位置情報が取得された時刻が異常値である場合の処理は、必須の処理ではないが、上記処理を行うことで、移動機100が圏外に位置していることや移動機100の電源がオフされていること等に起因して第1の測位位置情報の取得時間間隔が異常に長くなった際に、当該異常に長くなった取得時間間隔による影響が過大に出ることを防ぐことができる。また、層内人口算出部606は、図52に示すように、端末識別子を含む第1の測位位置情報(ここでは、第1の測位位置情報が遅延情報である場合を示す)と、算出した特徴量と、を対応付けたデータベースを作成する。 The in-story population calculation unit 606 calculates a feature amount for each of the first aggregation target position information. For example, the in-layer population calculation unit 606 calculates the difference between the time when the second aggregation target position information is acquired and the time when the third aggregation target position information is acquired for the first aggregation target position information. Calculate as a feature. In addition, when the time when the second aggregation target position information is acquired is an abnormal value, the in-layer population calculation unit 606, as an example, the time when the first aggregation target position information is acquired and the second aggregation When the difference from the time when the target position information is acquired is larger than a predetermined reference value (for example, 1 hour), only a predetermined time (for example, 1 hour) from the time when the first aggregation target position information is acquired. A feature amount for the first aggregation target position information is calculated using a time that goes back in the past as the time when the second aggregation target position information is acquired. Similarly, when the time when the third aggregation target position information is acquired is an abnormal value, the in-layer population calculation unit 606, as an example, the time when the first aggregation target position information is acquired and the third When the difference from the time when the aggregation target position information is acquired is larger than a predetermined reference value (for example, 1 hour), a predetermined time (for example, 1 hour) from the time when the first aggregation target position information is acquired. The feature amount for the first aggregation target position information is calculated using the time advanced only in the future as the time when the third aggregation target position information is acquired. The process when the time at which the second and third aggregation target position information is acquired is an abnormal value is not an essential process, but by performing the above process, the mobile device 100 is located outside the service area. When the acquisition time interval of the first positioning position information becomes abnormally long due to the fact that the mobile device 100 is turned off or the mobile device 100 is powered off, etc., the influence of the abnormally long acquisition time interval Can be prevented from coming out excessively. In addition, as shown in FIG. 52, the in-layer population calculation unit 606 calculates first positioning position information including a terminal identifier (here, a case where the first positioning position information is delay information) is calculated. A database in which feature quantities are associated is created.
 層内人口算出部606は、第1の測位位置情報についての特徴量、及び集計開始時刻と集計終了時刻との差である集計時間帯の時間長に基づいて、端末数を推計する。詳細には、層内人口算出部606は、例えば、第1の測位位置情報が遅延情報である場合、図52に示す遅延情報に特徴量を対応付けたデータにおいて、伝播時間が同じ遅延情報を抽出し、抽出した遅延情報に対応付けられた特徴量に基づいて端末数を推計する。この端末数が、伝播時間に対応する移動機100の端末数となる。同様に、例えば、第1の測位位置情報がPRACH-PD位置情報である場合、PRACH-PD位置情報に特徴量を対応付けたデータにおいて、緯度・経度が同じ(測位点が同じ)PRACH-PD位置情報を抽出し、抽出したPRACH-PD位置情報に対応付けられた特徴量に基づいて端末数を推計する。この端末数が、測位点における移動機100の端末数となる。 The in-story population calculation unit 606 estimates the number of terminals based on the feature amount of the first positioning position information and the time length of the counting time zone that is the difference between the counting start time and the counting end time. Specifically, for example, when the first positioning position information is delay information, the in-layer population calculation unit 606 uses the delay information illustrated in FIG. The number of terminals is estimated based on the feature amount associated with the extracted delay information. This number of terminals is the number of terminals of mobile device 100 corresponding to the propagation time. Similarly, for example, when the first positioning position information is PRACH-PD position information, PRACH-PD having the same latitude and longitude (same positioning points) in the data in which the feature amount is associated with the PRACH-PD position information. The position information is extracted, and the number of terminals is estimated based on the feature amount associated with the extracted PRACH-PD position information. This number of terminals is the number of terminals of the mobile device 100 at the positioning point.
 詳細は後述するが、層内人口算出部606は、端末数を推計する際に、伝播時間が同一の遅延情報の特徴量の総和、或いは、緯度・経度が同一のPRACH-PD位置情報の特徴量の総和を集計時間帯の時間長の2倍によって除して得られた数値を端末数として推計する。 As will be described in detail later, when calculating the number of terminals, the in-story population calculation unit 606 calculates the total number of feature amounts of delay information with the same propagation time, or features of PRACH-PD position information with the same latitude and longitude. The numerical value obtained by dividing the total amount by twice the time length of the totaling time zone is estimated as the number of terminals.
 [端末数推計の考え方および計算方法]
 ここで、端末数推計の考え方および計算方法を説明する。図53に示すモデルのように、ある集計時間帯(長さT)の間に、n個の移動機a,a,…,aが分割エリアSを通過し、各移動機aの集計時間帯内の分割エリアSの滞在時間がt(0<t≦T)であったとする。このとき、分割エリアSに存在する端末数m(実際には分割エリアSに存在する端末数mの集計時間帯内における平均値)は、以下の式(5)で表わされる。
Figure JPOXMLDOC01-appb-M000002
 
即ち、各移動機aの集計時間帯内の分割エリアSの滞在時間tの総和を集計時間帯の長さTで除した結果を、端末数mとして推計する。ただし、移動機aの集計時間帯内の分割エリアSの滞在時間tの真の値は観測不能であるが、各移動機aについての第1の測位位置情報は取得可能である。
[Concept of terminal number estimation and calculation method]
Here, the concept and calculation method of terminal number estimation will be described. As model shown in Figure 53, during a certain aggregate time slot (length T), n pieces of the mobile device a 1, a 2, ..., a n passes through the divided area S, each mobile station a i It is assumed that the stay time of the divided area S in the total time zone is t i (0 <t i ≦ T). At this time, the number of terminals m existing in the divided area S (actually the average value of the number m of terminals existing in the divided area S within the total time period) is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000002

That is, the result of dividing by the length T of the aggregate time slot the sum of residence time t i of the divided area S in the aggregate time slot for each mobile station a i, estimating the number of terminals m. However, the true value of the residence time t i of the divided area S in the aggregate time slot of the mobile station and a i is a unobservable, first positioning position information for each mobile station a i can be acquired.
 集計時間帯内に取得された移動機aについての第1の測位位置情報のうち、分割エリアSに対応付けられた第1の測位位置情報を、時刻順に
Figure JPOXMLDOC01-appb-M000003
 
(xは、集計時間帯内に取得された移動機aについての第1の測位位置情報のうち、分割エリアSに対応付けられた第1の測位位置情報の総数)とすると、端末数の推計とは、取得された第1の測位位置情報qij(jは1以上x以下の整数)からmの値を推計することに他ならない。
Of the first positioning position information for the mobile device a i acquired within the counting time period, the first positioning position information associated with the divided area S is sorted in time order.
Figure JPOXMLDOC01-appb-M000003

(X i is the total number of first positioning position information associated with the divided area S among the first positioning position information for the mobile device a i acquired within the total time period), the number of terminals Is an estimation of the value of m from the acquired first positioning position information q ij (j is an integer not less than 1 and not more than x i ).
 さて、図54に基づき端末数推計の計算方法を説明する。移動機aの第1の測位位置情報qijが取得される密度(即ち、単位時間あたりの第1の測位位置情報数)をpとする。このとき、第1の測位位置情報が取得される確率が分割エリアに対して独立であれば、集計時間帯内に取得された移動機aについての第1の測位位置情報のうち、分割エリアSに対応付けられた第1の測位位置情報の総数xの期待値E(x)は、E(x)=t×pであるため、移動機aの集計時間帯内の分割エリアSの滞在時間tの期待値E(t)について以下の式(6)が成立する。
E(t)=x/p  (6)
ここで、第1の測位位置情報qijの取得時刻をuijとしたとき、第1の測位位置情報qijの密度pijは、以下の式(7)で与えられる。
ij=2/(ui(j+1)-ui(j-1))  (7)
ここで、第1の測位位置情報qijを第1の集計対象位置情報とすると、第1の測位位置情報qi(j-1)は第2の集計対象位置情報、第1の測位位置情報qi(j+1)は第3の集計対象位置情報に相当する。本変形例では、第2の集計対象位置情報qi(j-1)の送信時刻ui(j-1)と第3の集計対象位置情報qi(j+1)の送信時刻ui(j+1)の差、即ち、上記式(7)の(ui(j+1)-ui(j-1))を、第1の集計対象位置情報についての特徴量wijとする。そのため、上記式(7)は、以下となる。即ち、特徴量wijは、密度pijの逆数に対応づけて算出することができる。
ij=2/(ui(j+1)-ui(j-1))=2/wij (8)
 このとき密度pは、
Figure JPOXMLDOC01-appb-M000004
 
で与えられるため、端末数mの推計値E(m)は以下の式(10)で計算することができる。
Figure JPOXMLDOC01-appb-M000005
 
 図54の例に示すように、集計時間帯内であり且つ移動機aが分割エリアSに滞在していた期間内に、第1の測位位置情報qi1、qi2、qi3が取得され、第1の測位位置情報qi1の直前に第1の測位位置情報qi0を、第1の測位位置情報qi3の直後に第1の測位位置情報qi4が取得されたものとし、第1の測位位置情報qi0、qi1、qi2、qi3、qi4の取得時刻をそれぞれui0、ui1、ui2、ui3、ui4とすると、上記の考え方は、移動機aの集計時間帯内の分割エリアSの滞在時間tを、(ui0とui1の中点)から(ui3とui4の中点)までの期間として推計することに相当する。なお、集計時間帯内ではないものの、分割エリアSへの滞在中に移動機aについての第1の測位位置情報qi4が取得されている。但し、滞在時間tの推計量の不偏性を維持するために、ここでは一例として、滞在時間tの終了時刻を集計時間帯Tの終了時刻と同じとして推計することは行わない処理を説明する。
Now, a method for calculating the number of terminals will be described with reference to FIG. Let p i be the density at which the first positioning position information q ij of the mobile device a i is acquired (that is, the first number of positioning position information per unit time). At this time, if the probability that the first positioning position information is acquired is independent of the divided area, the divided area is included in the first positioning position information about the mobile device a i acquired within the total time period. Since the expected value E (x i ) of the total number x i of the first positioning position information associated with S is E (x i ) = t i × pi, it is within the total time zone of the mobile device a i sectional area S stay expectation E (t i) the following expression for the time t i of the (6) is established.
E (t i ) = x i / p i (6)
Here, when the acquisition time of the first positioning position information q ij was u ij, density p ij of the first positioning position information q ij is given by the following equation (7).
p ij = 2 / (u i (j + 1) −u i (j−1) ) (7)
Here, if the first positioning position information q ij is the first aggregation target position information, the first positioning position information q i (j−1) is the second aggregation target position information, the first positioning position information. q i (j + 1) corresponds to the third tabulation target position information. In this modification, the transmission time u i (j−1) of the second aggregation target position information q i (j−1) and the transmission time u i (j + 1) of the third aggregation target position information q i (j + 1). , That is, (u i (j + 1) −u i (j−1) ) in the above equation (7) is used as the feature quantity w ij for the first tabulation target position information. Therefore, the above formula (7) is as follows. That is, the feature quantity w ij can be calculated in association with the reciprocal of the density p ij .
p ij = 2 / (u i (j + 1) −u i (j−1) ) = 2 / w ij (8)
At this time, the density p i is
Figure JPOXMLDOC01-appb-M000004

Therefore, the estimated value E (m) of the number of terminals m can be calculated by the following equation (10).
Figure JPOXMLDOC01-appb-M000005

As shown in the example of FIG. 54, the first positioning position information q i1 , q i2 , q i3 is acquired within the counting time period and within the period in which the mobile device a i stays in the divided area S. The first positioning position information q i0 is acquired immediately before the first positioning position information q i1 , and the first positioning position information q i4 is acquired immediately after the first positioning position information q i3 . of When positioning position information q i0, q i1, q i2 , q i3, q acquisition time each u i0 of i4, u i1, u i2, u i3, u i4, above idea, the mobile station a i the residence time t i of the divided area S in the aggregate time slot corresponds to estimate as the period from to (u i0 and the midpoint of the u i1) (midpoint of u i3 and u i4). Note that the first positioning position information q i4 for the mobile device a i is acquired during the stay in the divided area S, although it is not within the total time zone. However, in order to maintain the unbiasedness of the estimation of the stay time t i , here, as an example, a process that does not estimate the end time of the stay time t i as the end time of the total time period T is described. To do.
 以上のように、層内人口算出部606は、第1の測位位置情報である遅延情報及びPRACH-PD位置情報から特徴量を求め、求めた特徴量から分割エリア内の移動機の端末数を算出することができる。この場合には、より正確に、分割エリア内の端末数を算出することができる。 As described above, the in-story population calculation unit 606 obtains a feature amount from the delay information and the PRACH-PD location information as the first positioning location information, and calculates the number of mobile terminals in the divided area from the obtained feature amount. Can be calculated. In this case, the number of terminals in the divided area can be calculated more accurately.
 次に、特徴量に関する変形例を述べる。前述した特徴量の算出方法においては、特徴量を求める対象の集計対象位置情報(第1の集計対象位置情報)の前後の集計対象位置情報の時間差(第2の集計対象位置情報と第3の集計対象位置情報との時間差)を、第1の集計対象位置情報の特徴量として算出する例を示した。これを式で表すと、特徴量は、以下の式(11)で表すことができる。なお、以下の式(11)は、前述した式(8)を変形しただけであり、式(8)と等価である(即ち、式(8)の考え方を変更したものではない)。
ij=ui(j+1)-ui(j-1) (11)
Next, a modified example regarding the feature amount will be described. In the feature amount calculation method described above, the time difference between the aggregation target position information before and after the aggregation target position information (first aggregation target position information) for which the feature amount is to be obtained (second aggregation target position information and third information). An example is shown in which the time difference with respect to the aggregation target position information is calculated as the feature amount of the first aggregation target position information. When this is expressed by an equation, the feature amount can be expressed by the following equation (11). In addition, the following formula | equation (11) is only the deformation | transformation of the formula (8) mentioned above, and is equivalent to a formula (8) (namely, it is not what changed the way of thinking of a formula (8)).
w ij = u i (j + 1) −u i (j−1) (11)
 本変形例では、上記の第1の集計対象位置情報の特徴量を求める場合、第2の集計対象位置情報及び第3の集計対象位置情報についての種別情報(例えば後述する第1の測位位置情報(遅延情報、PRACH-PD位置情報)の生成要因(生成タイミング))を考慮する。具体的には、第3の集計対象位置情報と第1の集計対象位置情報との時間差に対し、第3の集計対象位置情報の種別情報(ここでは生成要因)に対応する補正係数αを乗算した値を算出するとともに、第1の集計対象位置情報と第2の集計対象位置情報との時間差に対し、第2の集計対象位置情報の種別情報(ここでは生成要因)に対応する補正係数βを乗算した値を算出する。ただし、上記以外に、第1の集計対象位置情報の種別情報に応じて補正係数α又はβを定めても良いし、また、第1および第2の集計対象位置情報の種別情報に応じて補正係数βを定めても、第1および第3の集計対象位置情報の種別情報に応じて補正係数αを定めてもよい。そして、これらの乗算で得られた値を合算した値を第1の集計対象位置情報の特徴量とする。この特徴量の算出処理を式で表すと、以下の式(12)で表される。
ij=α(ui(j+1)-uij)+β(uij-ui(j-1)) (12)
In the present modification, when the feature amount of the first aggregation target position information is obtained, type information about the second aggregation target position information and the third aggregation target position information (for example, first positioning position information described later). (Delay information, PRACH-PD position information generation factor (generation timing)) is considered. Specifically, the time difference between the third aggregation target position information and the first aggregation target position information is multiplied by a correction coefficient α corresponding to the type information (generation factor here) of the third aggregation target position information. And calculating a correction coefficient β corresponding to the type information (here, the generation factor) of the second aggregation target position information with respect to the time difference between the first aggregation target position information and the second aggregation target position information. The value multiplied by is calculated. However, in addition to the above, the correction coefficient α or β may be determined according to the type information of the first aggregation target position information, or the correction coefficient α or β may be corrected according to the type information of the first and second aggregation target position information. Even if the coefficient β is determined, the correction coefficient α may be determined according to the type information of the first and third totaling target position information. Then, a value obtained by adding the values obtained by these multiplications is set as a feature amount of the first aggregation target position information. This feature amount calculation process is expressed by the following equation (12).
w ij = α (u i (j + 1) −u ij ) + β (u ij −u i (j−1) ) (12)
 第2の集計対象位置情報及び第3の集計対象位置情報についての種別情報としては、例えば、第2の集計対象位置情報及び第3の集計対象位置情報となる第1の測位位置情報の生成要因に関する情報が挙げられ、この生成要因に関する情報は、生成された第1の測位位置情報に含まれている。第1の測位位置情報の生成要因としては、前述したPRACH-PD測位方式を用いた測位が行われるタイミングである、移動機100の発信時、着信時、又はハンドオーバ時等が挙げられ、これらの生成要因に対応して、補正係数αおよびβの設定値を予め定めておく。そして、第3の集計対象位置情報の生成要因に関する情報に応じて第3の集計対象位置情報についての補正係数αを設定し、第2の集計対象位置情報の生成要因に関する情報に応じて第2の集計対象位置情報についての補正係数βを設定すればよい。なお、補正係数α、βはともに、0以上2以下の値に予め定めておいてもよい。但し、この数値範囲は必須ではない。 As the type information about the second aggregation target position information and the third aggregation target position information, for example, the generation factor of the first positioning position information that becomes the second aggregation target position information and the third aggregation target position information The information on the generation factor is included in the generated first positioning position information. The generation factors of the first positioning position information include the timing at which positioning using the above-described PRACH-PD positioning method is performed, such as when the mobile device 100 originates, receives an incoming call, or performs a handover. Corresponding to the generation factor, set values of the correction coefficients α and β are determined in advance. Then, a correction coefficient α for the third aggregation target position information is set according to the information about the generation factor of the third aggregation target position information, and the second is set according to the information about the generation factor of the second aggregation target position information. It is sufficient to set the correction coefficient β for the total target position information. Both the correction coefficients α and β may be set in advance to a value of 0 or more and 2 or less. However, this numerical range is not essential.
 例えば、端末の位置と第1の測位位置情報の生成契機とが無関係である場合、現在の分割エリアに滞在していた時間の期待値は、当該第1の測位位置情報の生成の前後で同じと考えられる。一方、例えばハンドオーバを契機として生成された第1の測位位置情報の場合等、少なくとも当該第1の測位位置情報が生成される前は、端末が現在の分割エリアに滞在していなかったと判断できる場合がある。このような場合、当該第1の測位位置情報が生成される前に端末が現在の分割エリアに滞在していた時間を0と考え、第1の集計対象位置情報の種別情報(生成要因)が「ハンドオーバ」であれば、上記式(12)における補正係数β(即ち、直前の集計対象位置情報との時間差に関する補正係数β)を0に設定することができる。これにより、より実態に即した特徴量を算出できる。 For example, when the position of the terminal and the generation timing of the first positioning position information are irrelevant, the expected value of the time spent in the current divided area is the same before and after the generation of the first positioning position information. it is conceivable that. On the other hand, when it can be determined that the terminal has not stayed in the current divided area at least before the first positioning position information is generated, for example, in the case of the first positioning position information generated in response to a handover There is. In such a case, the time during which the terminal stayed in the current divided area before the first positioning position information is generated is considered as 0, and the type information (generation factor) of the first aggregation target position information is In the case of “handover”, the correction coefficient β (that is, the correction coefficient β related to the time difference from the immediately previous aggregation target position information) in the equation (12) can be set to zero. As a result, it is possible to calculate a feature amount that is more realistic.
 このように、集計対象位置情報(第1の集計対象位置情報)についての特徴量を算出する場合、第1の集計対象位置情報の前後の集計対象位置情報である第2及び第3の集計対象位置情報についての種別情報(一例として第1の測位位置情報の生成要因)に応じて、第2の集計対象位置情報と第3の集計対象位置情報との時間差を補正し、補正した時間差を用いて特徴量を算出する。これにより、第1の測位位置情報の種別情報に基づいて特徴量をより精度よく算出することができる。 In this way, when calculating the feature amount for the total target position information (first total target position information), the second and third total targets that are the total target position information before and after the first total target position information. The time difference between the second aggregation target position information and the third aggregation target position information is corrected according to the type information about the position information (for example, the generation factor of the first positioning position information), and the corrected time difference is used. To calculate the feature amount. Thereby, the feature amount can be calculated with higher accuracy based on the type information of the first positioning position information.
 また、層状分割部605は、図38や図42に示すように、扇形や円形のセクタを層状に分割するものとしたが、扇形や円形のセクタに限らず、例えば、多角形のセクタや楕円形のセクタ等を層状に分割してもよい。 Further, as shown in FIG. 38 and FIG. 42, the layer division unit 605 divides a sector or a circular sector into a layer, but is not limited to a sector or a circular sector. The sector of the shape may be divided into layers.
 また、実施形態では、層内人口算出部606が移動機100の端末数から人口を求めるものとしたが、人口を求めずに、分割エリア毎の端末数(所定の値)を求めてもよい。この場合であっても、実施形態と同様に、セクタ内における移動機の分布偏りをより正確に把握することができる。 In the embodiment, the in-story population calculation unit 606 obtains the population from the number of terminals of the mobile device 100. However, the number of terminals (predetermined value) for each divided area may be obtained without obtaining the population. . Even in this case, similarly to the embodiment, it is possible to grasp the distribution deviation of the mobile devices in the sector more accurately.
 100…移動機、200…BTS(基地局)、201…アンテナ、600…人口算出装置(層別割当装置)、601…GPS位置情報取得部(第2の対応情報取得手段)、602…遅延位置情報取得部(第1の対応情報取得手段)、605…層状分割部(層状分割手段)、606…層内人口算出部(層別割当手段)、607…算出単位エリア変換部(算出単位エリア変換手段)、613…主勢力エリア推定部(主勢力エリア推定手段)、616…放射幅算出部(放射幅算出手段)、617…層幅算出部(層幅算出手段)。 DESCRIPTION OF SYMBOLS 100 ... Mobile device, 200 ... BTS (base station), 201 ... Antenna, 600 ... Population calculation apparatus (stratified allocation apparatus), 601 ... GPS position information acquisition part (2nd correspondence information acquisition means), 602 ... Delay position Information acquisition unit (first correspondence information acquisition unit), 605... Layered division unit (layered division unit), 606... Population calculation unit (stratified allocation unit), 607 ... calculation unit area conversion unit (calculation unit area conversion) Means), 613 ... main power area estimation unit (main power area estimation means), 616 ... radiation width calculation unit (radiation width calculation means), 617 ... layer width calculation unit (layer width calculation means).

Claims (19)

  1.  移動機と基地局との間で送受信される電波の伝播時間に基づいて前記基地局によって形成されるセクタを層状に分割する層状分割手段と、
     前記層状分割手段で分割された層毎に、所定の測位によって得られる前記移動機の測位位置情報に対応付けられた所定の値を割り当てる層別割当手段と、
    を備える層別割当装置。
    Layered dividing means for dividing the sector formed by the base station into layers based on the propagation time of radio waves transmitted and received between the mobile device and the base station;
    For each layer divided by the layered dividing means, a layer-by-layer assignment means for assigning a predetermined value associated with the positioning position information of the mobile device obtained by predetermined positioning;
    A stratified allocation device comprising:
  2.  前記層毎に割り当てられた前記所定の値を、分布算出単位エリア毎の値に変換する算出単位エリア変換手段を更に備える請求項1に記載の層別割当装置。 The stratified allocation device according to claim 1, further comprising calculation unit area conversion means for converting the predetermined value allocated to each layer into a value for each distribution calculation unit area.
  3.  前記算出単位エリア変換手段は、一の前記層の面積と、前記一の層内に含まれる前記分布算出単位エリア毎の面積と、の面積比に基づいて、前記層毎の前記所定の値を前記分布算出単位エリア毎の前記所定の値に変換する、
    請求項2に記載の層別割当装置。
    The calculation unit area conversion means calculates the predetermined value for each layer based on an area ratio between the area of one layer and the area for each distribution calculation unit area included in the one layer. Converting to the predetermined value for each distribution calculation unit area,
    The stratified allocation device according to claim 2.
  4.  前記所定の測位によって得られる移動機の測位位置情報、及び、前記移動機が在圏するセクタのセクタ識別子、が対応付けられた対応情報を取得する対応情報取得手段を更に備え、
     前記層別割当手段は、前記対応情報取得手段で取得された前記対応情報のうち、分割対象とする前記セクタの前記セクタ識別子に対応付けられた前記測位位置情報に基づいて、各層に割り当てられた前記所定の値を算出する、
    請求項1~3のいずれか一項に記載の層別割当装置。
    Correspondence information acquisition means for acquiring correspondence information in which the positioning position information of the mobile device obtained by the predetermined positioning and the sector identifier of the sector where the mobile device is located are associated,
    The stratified allocation unit is allocated to each layer based on the positioning position information associated with the sector identifier of the sector to be divided among the correspondence information acquired by the correspondence information acquisition unit. Calculating the predetermined value;
    The stratified allocation device according to any one of claims 1 to 3.
  5.  前記対応情報取得手段は、
     前記所定の測位が、前記移動機と前記基地局との間で送受信される電波の伝播時間に基づく第1の測位であり、前記測位位置情報が、前記第1の測位によって得られる第1の測位位置情報であり、前記対応情報が、前記第1の測位位置情報と前記セクタ識別子とが対応付けられた第1の対応情報である場合に、前記第1の対応情報を取得する第1の対応情報取得手段、
    を含む請求項4に記載の層別割当装置。
    The correspondence information acquisition means includes
    The predetermined positioning is a first positioning based on a propagation time of a radio wave transmitted and received between the mobile device and the base station, and the positioning position information is obtained by the first positioning. First positioning information is obtained when the correspondence information is first correspondence information in which the first positioning position information and the sector identifier are associated with each other. Corresponding information acquisition means,
    The stratified allocation device according to claim 4 containing.
  6.  前記分割対象のセクタは有指向性セクタ又は無指向性セクタであり、
     前記第1の測位位置情報は、前記伝播時間に関する伝播時間情報を含み、
     前記層状分割手段は、前記伝播時間に基づいて定められた所定の間隔で前記セクタを分割する、
    請求項5に記載の層別割当装置。
    The sector to be divided is a directional sector or an omnidirectional sector,
    The first positioning position information includes propagation time information related to the propagation time,
    The layered dividing means divides the sector at a predetermined interval determined based on the propagation time;
    The stratified allocation device according to claim 5.
  7.  前記分割対象のセクタは有指向性セクタであり、
     前記第1の測位位置情報は、前記伝播時間に対応する前記移動機の座標情報を含み、
     前記層状分割手段は、前記分割対象のセクタのセクタ識別子に対応する前記第1の測位位置情報の前記座標情報の位置に基づいて前記セクタを分割する、
    請求項5に記載の層別割当装置。
    The sector to be divided is a directional sector,
    The first positioning position information includes coordinate information of the mobile device corresponding to the propagation time,
    The layered dividing means divides the sector based on the position of the coordinate information of the first positioning position information corresponding to a sector identifier of the sector to be divided.
    The stratified allocation device according to claim 5.
  8.  前記第1の対応情報のうち、前記分割対象のセクタのセクタ識別子に対応付けられた複数の前記第1の測位位置情報に含まれる前記伝播時間に対応する前記移動機の座標情報の配列間隔に基づいて、前記層状分割手段によって分割する層の層幅を算出する層幅算出手段を更に備え、
     前記層状分割手段は、前記層幅算出手段によって算出された層幅を用いて前記セクタを分割する、
    請求項5に記載の層別割当装置。
    Among the first correspondence information, an arrangement interval of the coordinate information of the mobile device corresponding to the propagation time included in the plurality of first positioning position information associated with the sector identifier of the sector to be divided Based on, further comprising a layer width calculating means for calculating the layer width of the layer divided by the layered dividing means,
    The layered dividing unit divides the sector using the layer width calculated by the layer width calculating unit.
    The stratified allocation device according to claim 5.
  9.  前記第1の対応情報取得手段で取得された前記第1の対応情報のうち、所定の前記セクタ識別子に対応付けられた前記第1の測位位置情報によって得られる前記移動機の分布、及び、前記所定のセクタ識別子に対応するセクタを形成する基地局のアンテナの位置、に基づいて、前記所定のセクタ識別子に対応するセクタが主勢力となる主勢力エリアの半径を推定する主勢力エリア推定手段を更に備え、
     前記層状分割手段は、前記主勢力エリア推定手段で推定された前記主勢力エリアの半径を用いて前記セクタの形状を特定する、
    請求項5に記載の層別割当装置。
    Of the first correspondence information obtained by the first correspondence information obtaining means, the distribution of the mobile devices obtained by the first positioning position information associated with the predetermined sector identifier, and Main power area estimation means for estimating a radius of a main power area in which the sector corresponding to the predetermined sector identifier is the main power based on the position of the antenna of the base station forming the sector corresponding to the predetermined sector identifier In addition,
    The layered division means specifies the shape of the sector using the radius of the main power area estimated by the main power area estimation means.
    The stratified allocation device according to claim 5.
  10.  前記第1の対応情報取得手段で取得された前記第1の対応情報のうち、所定の前記セクタ識別子に対応付けられた前記第1の測位位置情報によって得られる前記移動機の分布、及び、前記所定のセクタ識別子に対応するセクタを形成する基地局のアンテナの位置、に基づいて、前記所定のセクタ識別子に対応するセクタが主勢力となる主勢力エリアの半径を推定する主勢力エリア推定手段を更に備え、
     前記層状分割手段は、前記主勢力エリア推定手段で推定された前記主勢力エリアの半径を用いて前記セクタの形状を特定する、
    請求項6に記載の層別割当装置。
    Of the first correspondence information obtained by the first correspondence information obtaining means, the distribution of the mobile devices obtained by the first positioning position information associated with the predetermined sector identifier, and Main power area estimation means for estimating a radius of a main power area in which the sector corresponding to the predetermined sector identifier is the main power based on the position of the antenna of the base station forming the sector corresponding to the predetermined sector identifier In addition,
    The layered division means specifies the shape of the sector using the radius of the main power area estimated by the main power area estimation means.
    The stratified allocation device according to claim 6.
  11.  前記第1の対応情報取得手段で取得された前記第1の対応情報のうち、所定の前記セクタ識別子に対応付けられた前記第1の測位位置情報によって得られる前記移動機の分布、及び、前記所定のセクタ識別子に対応するセクタを形成する基地局のアンテナの位置、に基づいて、前記所定のセクタ識別子に対応するセクタが主勢力となる主勢力エリアの半径を推定する主勢力エリア推定手段を更に備え、
     前記層状分割手段は、前記主勢力エリア推定手段で推定された前記主勢力エリアの半径を用いて前記セクタの形状を特定する、
    請求項7に記載の層別割当装置。
    Of the first correspondence information obtained by the first correspondence information obtaining means, the distribution of the mobile devices obtained by the first positioning position information associated with the predetermined sector identifier, and Main power area estimation means for estimating a radius of a main power area in which the sector corresponding to the predetermined sector identifier is the main power based on the position of the antenna of the base station forming the sector corresponding to the predetermined sector identifier In addition,
    The layered division means specifies the shape of the sector using the radius of the main power area estimated by the main power area estimation means.
    The stratified allocation device according to claim 7.
  12.  前記主勢力エリア推定手段は、前記第1の対応情報のうち、前記分割対象のセクタのセクタ識別子に対応付けられた前記第1の測位位置情報に含まれる前記伝播時間情報に基づいて、前記分割対象のセクタが主勢力となる主勢力エリアの半径を推定する、
    請求項10に記載の層別割当装置。
    The main influence area estimation means is based on the propagation time information included in the first positioning position information associated with a sector identifier of the division target sector in the first correspondence information. Estimate the radius of the main power area where the target sector is the main power,
    The stratified allocation device according to claim 10.
  13.  前記主勢力エリア推定手段は、前記第1の対応情報のうち、前記分割対象のセクタのセクタ識別子に対応付けられた前記第1の測位位置情報に含まれる前記座標情報、及び、前記分割対象のセクタを形成する基地局のアンテナの位置、に基づいて、前記分割対象のセクタが主勢力となる主勢力エリアの半径を推定する、
    請求項11に記載の層別割当装置。
    The main power area estimation means includes the coordinate information included in the first positioning position information associated with a sector identifier of the sector to be divided among the first correspondence information, and the division target Based on the position of the antenna of the base station forming the sector, the radius of the main power area where the sector to be divided becomes the main power is estimated,
    The stratified allocation device according to claim 11.
  14.  前記対応情報取得手段は、
     前記所定の測位が、前記移動機と前記基地局との間で送受信される電波の伝播時間に基づく測位とは異なる第2の測位であり、前記測位位置情報が、前記第2の測位によって得られる第2の測位位置情報であり、前記対応情報が、前記第2の測位位置情報と前記セクタ識別子とが対応付けられた第2の対応情報である場合に、前記第2の対応情報を取得する第2の対応情報取得手段、
    を含む請求項4に記載の層別割当装置。
    The correspondence information acquisition means includes
    The predetermined positioning is a second positioning different from a positioning based on a propagation time of radio waves transmitted and received between the mobile device and the base station, and the positioning position information is obtained by the second positioning. Second positioning information is obtained, and the second correspondence information is acquired when the correspondence information is second correspondence information in which the second positioning position information and the sector identifier are associated with each other. Second correspondence information acquisition means for
    The stratified allocation device according to claim 4 containing.
  15.  前記第2の対応情報取得手段で取得された前記第2の対応情報のうち、所定の前記セクタ識別子に対応付けられた前記第2の測位位置情報によって得られる前記移動機の分布、及び、前記所定のセクタ識別子に対応するセクタを形成する基地局のアンテナの位置、に基づいて、前記所定のセクタ識別子に対応するセクタが主勢力となる主勢力エリアの半径を推定する主勢力エリア推定手段を更に備え、
     前記層状分割手段は、前記主勢力エリア推定手段で推定された前記主勢力エリアの半径を用いて前記セクタの形状を特定する、
    請求項14に記載の層別割当装置。
    Of the second correspondence information obtained by the second correspondence information obtaining means, the distribution of the mobile devices obtained by the second positioning position information associated with the predetermined sector identifier, and Main power area estimation means for estimating a radius of a main power area in which the sector corresponding to the predetermined sector identifier is the main power based on the position of the antenna of the base station forming the sector corresponding to the predetermined sector identifier In addition,
    The layered division means specifies the shape of the sector using the radius of the main power area estimated by the main power area estimation means.
    The stratified allocation device according to claim 14.
  16.  前記主勢力エリア推定手段は、前記第2の測位によって得られる前記分割対象のセクタに在圏する前記移動機の分布、及び、前記分割対象のセクタを形成する基地局のアンテナの位置、に基づいて、前記分割対象のセクタが主勢力となる主勢力エリアの半径を推定する、
    請求項15に記載の層別割当装置。
    The main power area estimation means is based on the distribution of the mobile station located in the division target sector obtained by the second positioning and the position of the antenna of the base station forming the division target sector. A radius of a main power area in which the sector to be divided becomes a main power,
    The stratified allocation device according to claim 15.
  17.  前記第2の対応情報のうち、前記所定のセクタ識別子に対応付けられた前記第2の測位位置情報によって得られる前記移動機の分布に基づいて、前記所定のセクタ識別子に対応するセクタを形成する基地局のアンテナから放射される電波の放射幅を算出する放射幅算出手段を更に備える請求項15に記載の層別割当装置。 Of the second correspondence information, a sector corresponding to the predetermined sector identifier is formed based on the distribution of the mobile devices obtained by the second positioning position information associated with the predetermined sector identifier. The stratified allocation device according to claim 15, further comprising radiation width calculating means for calculating a radiation width of a radio wave radiated from an antenna of a base station.
  18.  前記所定の値は、人口であることを特徴とする請求項1~17のいずれか一項に記載の層別割当装置。 The stratified allocation device according to any one of claims 1 to 17, wherein the predetermined value is a population.
  19.  移動機と基地局との間で送受信される電波の伝播時間に基づいて前記基地局によって形成されるセクタを層状に分割する層状分割ステップと、
     前記層状分割ステップで分割された層毎に、所定の測位によって得られる前記移動機の測位位置情報に対応付けられた所定の値を割り当てる層別割当ステップと、
    を含む層別割当方法。
    A layered division step of dividing the sector formed by the base station into layers based on the propagation time of radio waves transmitted and received between the mobile device and the base station;
    For each layer divided in the layered division step, an allocation step by layer for assigning a predetermined value associated with the positioning position information of the mobile device obtained by predetermined positioning;
    Stratified allocation method including
PCT/JP2013/052481 2012-02-08 2013-02-04 Stratified allocation device and stratified allocation unit WO2013118682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012025598A JP5690757B2 (en) 2012-02-08 2012-02-08 Stratified allocation device
JP2012-025598 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118682A1 true WO2013118682A1 (en) 2013-08-15

Family

ID=48947446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052481 WO2013118682A1 (en) 2012-02-08 2013-02-04 Stratified allocation device and stratified allocation unit

Country Status (2)

Country Link
JP (1) JP5690757B2 (en)
WO (1) WO2013118682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11861629B2 (en) 2018-04-20 2024-01-02 Acxiom Llc Global urbanicity measurement machine and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197551A (en) * 2000-01-12 2001-07-19 Ntt Docomo Inc Mobile communication system and method for configuring cell sector for the mobile communication system
JP2002345013A (en) * 2001-05-14 2002-11-29 Matsushita Electric Ind Co Ltd Radio base station device for cellular system
JP2003244754A (en) * 2002-02-20 2003-08-29 Ntt Docomo Inc Base station and communication method
US20060084474A1 (en) * 2004-10-18 2006-04-20 Interdigital Technology Corporation Method and system for managing a cell sectorized by both an angle in azimuth and a distance from a base station
JP2008233066A (en) * 2007-02-23 2008-10-02 Ntt Docomo Inc Positioning system, positioning method and positioning program
WO2012015041A1 (en) * 2010-07-29 2012-02-02 株式会社エヌ・ティ・ティ・ドコモ Information analysis device and information analysis method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159048A (en) * 2000-11-22 2002-05-31 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd Cdma mobile communication system
JP5285497B2 (en) * 2009-03-12 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method and radio base station
US9392621B2 (en) * 2009-06-26 2016-07-12 Qualcomm Incorporated Initiating a random access procedure for determining communication parameters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197551A (en) * 2000-01-12 2001-07-19 Ntt Docomo Inc Mobile communication system and method for configuring cell sector for the mobile communication system
JP2002345013A (en) * 2001-05-14 2002-11-29 Matsushita Electric Ind Co Ltd Radio base station device for cellular system
JP2003244754A (en) * 2002-02-20 2003-08-29 Ntt Docomo Inc Base station and communication method
US20060084474A1 (en) * 2004-10-18 2006-04-20 Interdigital Technology Corporation Method and system for managing a cell sectorized by both an angle in azimuth and a distance from a base station
JP2008233066A (en) * 2007-02-23 2008-10-02 Ntt Docomo Inc Positioning system, positioning method and positioning program
WO2012015041A1 (en) * 2010-07-29 2012-02-02 株式会社エヌ・ティ・ティ・ドコモ Information analysis device and information analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11861629B2 (en) 2018-04-20 2024-01-02 Acxiom Llc Global urbanicity measurement machine and method

Also Published As

Publication number Publication date
JP2013162498A (en) 2013-08-19
JP5690757B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5613267B2 (en) Terminal number estimation device and terminal number estimation method
WO2017107800A1 (en) Method of acquiring route hotspot of traffic road and device
KR101301979B1 (en) Method and apparatus for measuring location using access point, and method for estimating location coordinate of access point
KR101293659B1 (en) Method and apparatus for updating information of access point
CN108181607A (en) Localization method, device and computer readable storage medium based on fingerprint base
KR101280290B1 (en) Method and apparatus for measuring location using access point
CN105933294A (en) Network user positioning method, device and terminal
JP5425319B2 (en) Area range estimation apparatus and area range estimation method
CN110831019A (en) Base station planning method, base station planning device, computer equipment and storage medium
CN108111965B (en) Method and device for determining position of base station
KR101435663B1 (en) Method and apparatus for collecting information of access point, position measurement apparatus and method using the access point
JP5613171B2 (en) Method and apparatus for fingerprint positioning
EP2422213A1 (en) A method of improved positioning
JP2017524902A (en) Route planning method, apparatus and storage medium for navigation system
CN103929751B (en) Method and device for determining pair of cells located in different networks and covering same area
US20120150490A1 (en) Management server, communication system and statistical processing method
WO2020024597A1 (en) Indoor positioning method and apparatus
CN107231615A (en) A kind of localization method and system based on network fingerprinting
US10454597B1 (en) Systems and methods for locating telecommunication cell sites
CN103404177A (en) Nodes and methods for positioning
WO2018113969A1 (en) Method and system for evaluating catchment areas associated with a transport hub by means of data of a telecommunication network
WO2013174013A1 (en) Method, server and system for determining site
JP5690757B2 (en) Stratified allocation device
WO2023214176A1 (en) A method of fast path loss calculation considering environmental factors
CN109874149A (en) Localization method, device and the computer readable storage medium of mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747177

Country of ref document: EP

Kind code of ref document: A1