WO2013118421A1 - Noise elimination device and muted motor - Google Patents

Noise elimination device and muted motor Download PDF

Info

Publication number
WO2013118421A1
WO2013118421A1 PCT/JP2012/083914 JP2012083914W WO2013118421A1 WO 2013118421 A1 WO2013118421 A1 WO 2013118421A1 JP 2012083914 W JP2012083914 W JP 2012083914W WO 2013118421 A1 WO2013118421 A1 WO 2013118421A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
sensor
noise
actuator
signal
Prior art date
Application number
PCT/JP2012/083914
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 寧
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to JP2013557392A priority Critical patent/JP5975355B2/en
Publication of WO2013118421A1 publication Critical patent/WO2013118421A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations

Definitions

  • the present invention relates to a noise removal device for reducing noise generated by noise sources such as a vehicle drive motor and other motors used in, for example, a hybrid vehicle or an electric vehicle, and a noise reduction motor used in a vehicle drive motor.
  • a damping material is provided between the motor's stator and the housing to secure a passage through which oil for lubrication and cooling can pass, and to minimize transmission of vibrations from the stator to the housing.
  • Motors for automobiles have also been proposed (see, for example, Patent Document 1).
  • this damping material it is said that it is good to form with the material which has elasticity like resin and rubber
  • the object of the present invention is made in view of the above-mentioned problems, and it is possible to reduce low frequency noise among noises generated from a motor which is a noise generation source while using a relatively small vibration absorber.
  • Another object of the present invention is to provide a noise removal device and a noise reduction motor used therein.
  • a noise removal device of the present invention comprises: a vibrating body; a sensor disposed in the vicinity of the vibrating body to detect vibration or noise of the vibrating body; An intermediate member disposed in the vicinity of the sensor, an actuator disposed in the vicinity of the intermediate member, and an adaptive filter that drives the actuator by multiplying a signal of the sensor by a predetermined coefficient. Then, by driving the actuator so as to have a phase opposite to that of the sensor signal, the noise generated by the vibrator is reduced.
  • a second sensor for detecting vibration or noise of a vibrating body at a position away from the vibrating body is provided, and the adaptive filter determines a coefficient from a signal of the second sensor by a predetermined algorithm and calculates the coefficient.
  • the signal of the sensor is multiplied to drive the actuator. And a coefficient is adjusted so that the signal of a 2nd sensor may become small.
  • the adaptive filter of the preferred form of the present invention is an LMS filter, and the algorithm is an LMS (Least Mean Square) algorithm.
  • the sensor is a film-like polymeric piezoelectric element.
  • the senor is concentrically wound around the vibrating body so as to cover the vibrating body, and the actuator is concentrically wound around the sensor so as to cover the sensor. It is supposed to be.
  • the intermediate member is an elastic member that absorbs the vibration of a part of the frequency band of the vibration generated by the vibrator.
  • the noise reduction motor includes a motor, a sensor disposed in the vicinity of the motor for detecting vibration or noise of the motor, an intermediate member disposed in the vicinity of the sensor, and a proximity of the intermediate member. And an actuator.
  • the actuator is driven so as to be in the opposite phase to the sensor signal by the output of the adaptive filter which multiplies the sensor signal by a predetermined coefficient. Also, the predetermined coefficient is adjusted based on the signal of the second sensor disposed at a position different from the sensor.
  • the noise eliminator and the noise reduction motor of the present invention it is possible to reduce relatively low frequency noise generated when the brake of a hybrid car or an electric car is stepped on. Further, the noise removal device and the noise reduction motor of the present invention can also be used as devices for reducing vibration noise of a motor used for driving a lens of a digital camera other than a motor of a car.
  • FIG. 1 is a view for explaining two aspects of noise generated by vibration of a motor 101 mounted on a hybrid vehicle or the like.
  • FIG. 1A when the motor 101 is in contact with the fixed plate, the vibration of the motor 101 is transmitted through the fixed plate to be heard as noise, and mainly low frequency noise is heard.
  • FIG. 1B Another one is shown in FIG.
  • FIG. 1B the vibration of the motor 101 is transmitted directly into the air to be heard as noise, and mainly high frequency noise is heard.
  • motor noises are generated especially when the driver steps on the brakes.
  • a motor used in a hybrid vehicle or the like changes to a generator mode and generates noise when the brake is depressed.
  • the low noise that is generated at that time is a low frequency noise in which the vibration transmitted to the fixed plate is amplified and increased depending on the situation as shown in FIG. 1 FIG. 1A.
  • High frequency noise is less of a problem as it is dampened as it travels through a rigid housing in which the motor is housed, or because it is insulated by a sound absorbing material provided inside the bonnet.
  • the problem is low frequency noise.
  • FIG. 2 is a view for explaining the principle of the noise removal device of the present invention for removing the low frequency noise described above, and shows a case where the low frequency noise is transmitted directly from the motor 101 into the air.
  • the noise of the motor 101 is detected by the microphones 102 and 103 provided at two places.
  • the microphone 102 detects sound in the vicinity of the motor, and the microphone 103 detects sound in a position slightly away from the motor, and both signals are input to the adaptive filter 104.
  • the adaptive filter 104 outputs a signal obtained by multiplying the signal of the microphone 102 by a coefficient to the amplifier 105.
  • the adaptive filter 104 controls the magnitude of the coefficient to be multiplied according to the signal of the microphone 103, and controls the coefficient so that the signal of the microphone 103 becomes 0 without limit. Once the coefficient of the adaptive filter 104 is determined, the microphone 103 does not have to detect sound, and low frequency noise can be removed by the configuration in which the microphone 103 is removed from FIG.
  • some transfer function H (s) exists between the microphone 102 and the microphone 103.
  • the transfer function H (s) and the transfer function of the adaptive filter 104 are adjusted to be the same.
  • the adaptive filter 104 which will be described in detail later, is a filter provided to minimize the signal of the microphone 103, and it is possible to minimize the noise generated by the motor 101 and reaching the microphone 103.
  • FIG. 3 is a view showing a configuration of a noise removal device using a polymer piezoelectric element as a vibration sensor that fixes a motor to a fixed plate and detects a vibration of the fixed plate transmitted from the motor.
  • a film-shaped polymeric piezoelectric element 202 functioning as a vibration sensor is attached to the motor 201 instead of the microphone 102 in FIG. 2, and a film-shaped polymeric piezoelectric element 203 functioning as a vibration sensor instead of the microphone 103 in FIG. It is attached to the fixed plate 208 installed.
  • the time required for the vibration of the motor 201 to be transmitted to the film-shaped polymeric piezoelectric element 203 needs to be longer than the time for signal processing in the adaptive filter 204. Therefore, the film-shaped polymeric piezoelectric element 202 and the film-shaped polymeric piezoelectric element 203 It is necessary to take some distance between them.
  • a signal of vibration of the motor 201 detected by the film-like polymer piezoelectric element 202 is sent to the adaptive filter 204. Then, using the signal of the polymer piezoelectric element 203, the coefficient of the adaptive filter 204 is adjusted as described later with reference to FIG. As a result, the signal of the vibration of the motor 201 detected by the film-like polymer piezoelectric element 202 is multiplied by a coefficient, phase-reversed by the amplifier 205, and supplied to the actuator 206. Since the vibration generated by the actuator 206 acts to cancel the vibration of the motor, the vibration transmitted from the motor 201 to the vibration sensor 203 is reduced and reduced, and the noise generated from the fixed plate 208 is reduced.
  • FIG. 4 shows the structure of a muffling motor in which a film-like polymer piezoelectric element 202 and a film-like actuator 206 are arranged concentrically around the motor 201 as an example of the embodiment of the present invention.
  • a motor 201 having a rotating shaft 200 is provided with a film-like polymeric piezoelectric element 202 wound around the periphery thereof.
  • the film-like polymer piezoelectric element 202 is a piezoelectric element that generates an electrical signal according to the magnitude of the vibration when the vibration of the motor 201 is transmitted.
  • a slightly rigid elastic member 207 such as silicone rubber is wound around the film-like polymer piezoelectric element 202, and an actuator 206 is concentrically wound around the outer periphery of the elastic member 207.
  • the actuator 206 is a piezoelectric element that converts an electrical signal, when it is supplied, into mechanical vibration.
  • the elastic member 207 is set to have a thickness of about 5 to 10 mm, and has an effect of attenuating a relatively high frequency component (for example, a vibration of 1 KHz or more) of the vibration generated by the motor 201. Therefore, the vibration transmitted to the actuator 206 is a relatively low frequency vibration (for example, a vibration of 1 KHz or less), and the relatively low frequency vibration is reduced by the actuator 206.
  • a relatively high frequency component for example, a vibration of 1 KHz or more
  • the elastic member 207 represented by silicon rubber is provided as an intermediate member to be interposed between the film-like polymeric piezoelectric element 202 and the film-like actuator 206, but it is particularly necessary to be an elastic member. Absent. It may be an intermediate member that delays the vibration of the motor 201 by a time corresponding to the time of signal processing in the adaptive filter 204 described later.
  • FIG. 5 is a diagram showing the configuration of the noise removal device including the noise reduction motor of FIG. 4, a microphone 203 for detecting the noise of the noise reduction motor at a position slightly away from the noise reduction motor, an adaptive filter 204 and an amplifier 205.
  • the signals of the microphone 203 and the film-like polymer piezoelectric element 202 are input to the adaptive filter 204, and the output of the adaptive filter 204 is input to the amplifier 205 to drive the actuator 206.
  • FIG. 6 is a schematic block diagram showing an internal configuration of adaptive filter 204. Referring to FIG. Although the microphone 203 is used in place of the vibration sensor 203 in FIG. 3 in FIG. 5, it goes without saying that a piezoelectric element may be used in place of the microphone 203.
  • the signal of the microphone 203 is input to the coefficient correction algorithm 211, and the coefficient obtained by the predetermined algorithm is output to the coefficient adjustment unit 212.
  • the coefficients are adjusted in accordance with the transfer function from the motor 201 to the microphone 203.
  • the signal of the form polymer piezoelectric element 202 which has detected the vibration of the muffling motor becomes the input of the coefficient adjustment unit 212, and this input is multiplied by the coefficient output by the coefficient correction algorithm 211 to become the output of the coefficient adjustment unit 212. It also becomes the output of
  • the output of the adaptive filter 204 is amplified and phase-inverted by the amplifier 205 and supplied to the actuator 206.
  • the predetermined coefficient correction algorithm 211 adjusts the coefficient of the coefficient adjustment unit 212 so that the signal of the microphone 203 becomes zero as much as possible when configured as shown in FIG.
  • the actuator 206 is formed of a film-like polymer piezoelectric element, like the film-like polymer piezoelectric element 202, and vibrates in the opposite phase to the polymer piezoelectric element 202. Therefore, the vibration of the polymer piezoelectric element 202 and the vibration of the actuator 206 are offset, and the noise by the motor approaches 0 without limit.
  • the above is the description of the noise removal device in the embodiment of the present invention.
  • the signal of the microphone 203 is used only for the coefficient adjustment of the coefficient adjusting unit 212 of the adaptive filter 204, it may be removed after the coefficient adjustment is completed. Even if the microphone 203 is removed from FIG. 5, the device functions sufficiently as a noise removal device, and the noise of the motor can be removed. However, since the vibration of the motor 201 is not always the same, the microphone 203 or a piezoelectric element instead thereof may be constantly installed to adjust the coefficient of the adaptive filter 204 in real time.
  • one microphone 203 is provided at a position slightly away from the motor 201.
  • a plurality of microphones for example, four microphones are provided around the motor 201.
  • 203a to 203d may be arranged.
  • FIG. 8 shows waveforms of noise signals obtained by simulating the noise removal apparatus of FIG. 5 when noise removal is performed using the adaptive filter 204 (noise processing ON) and when noise removal is not performed (noise processing OFF). It shows the difference between the two. From FIG. 8, it can be seen that the noise of the motor 201 is extremely effectively removed by combining the adaptive filter 204 and the film-like polymer piezoelectric element 202 and the film-like actuator 206 arranged concentrically. Although this simulation deals with the case where a small motor is used, noise can be similarly eliminated for a motor mounted on a hybrid vehicle or the like.
  • the form of the adaptive filter is not particularly limited in this embodiment, it may be an LMS adaptive filter using an LMS algorithm, or a modified LMS algorithm (Complex Least Mean Square Algorithm) or Normalized LMS algorithm which is a modification thereof. (Normalized Least Mean Square Algorithm) can also be used.
  • LMS algorithms projection algorithm (Projection Algorithm), SHARF algorithm (Simple Hyperstable Adaptive Recursive Filter Algorithm), RLS algorithm (Recursive Least Square Algorithm), FLMS algorithm (Fast Least Mean Square Algorithm), and DCT are used.
  • projection algorithm Projection Algorithm
  • SHARF algorithm Simple Hyperstable Adaptive Recursive Filter Algorithm
  • RLS algorithm Recursive Least Square Algorithm
  • FLMS algorithm Fest Least Mean Square Algorithm
  • DCT Digital Cellular Transform
  • Adaptive Filter using Discrete Cosine Transform Discrete Cosine Transform
  • SAN Filter Single Frequency Adaptive Notch Filter
  • Neural Network Neural Network
  • Genetic Algorithm Genetic Algorithm. be able to.
  • the noise eliminator according to the present invention has been described by taking the motor for motor vehicle such as a hybrid vehicle as an example, the present invention is not limited to the motor for motor vehicle described above.
  • focus adjustment used in a camera It can also be used as a technique for suppressing the vibration noise of the motor for motor use.
  • the present invention is not limited to the embodiments described in the specification, and includes various modifications and applications without departing from the scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention reduces noise signals with a comparatively low frequency from a motor (201) in a hybrid vehicle or electric vehicle, for example. A vibration detection sensor (202) is positioned at a location near the periphery of the motor (201), and in addition to detecting vibrations from the motor, detects vibrations from the motor even at locations slightly distant from the motor. Two detection signals are supplied to a least mean squares (LMS) adaptive filter (204), the phase of an output signal from the LMS adaptive filter (204) is reversed relative to a vibration detection signal for the motor (201), and the output signal is supplied to an actuator (206) positioned concentrically to the motor (201). The actuator (206) is driven so as to attenuate vibrations from the motor.

Description

騒音除去装置及び消音モータNoise removal device and noise reduction motor
 本発明は、例えば、ハイブリッド車または電気自動車に用いられる車両駆動用モータやその他のモータ等の騒音源が発生する騒音を低減させる騒音除去装置及び車両駆動用モータに用いられる消音モータに関する。 The present invention relates to a noise removal device for reducing noise generated by noise sources such as a vehicle drive motor and other motors used in, for example, a hybrid vehicle or an electric vehicle, and a noise reduction motor used in a vehicle drive motor.
 近年、ハイブリッド車、電気自動車あるいは燃料電池自動車のような、車両の推進のためのモータを持つ自動車が増えている。これらの自動車では、モータから発生する騒音や振動を低減させることが乗員にとっての快適性の向上につながることから、この対策として、モータのハウジングの外部に防振材や吸音材を張り付けたり、ハウジングを車体に取り付ける部分に、制振材を介在させたりしている。 In recent years, there are an increasing number of vehicles having a motor for propulsion of the vehicle, such as hybrid vehicles, electric vehicles or fuel cell vehicles. In these vehicles, reducing noise and vibration generated from the motor leads to improved comfort for the occupants, and as a countermeasure, a vibration absorbing material or sound absorbing material is attached to the outside of the motor housing, or the housing The damping material intervenes in the part which attaches to the vehicle body.
 また、モータのステータとハウジングとの間に潤滑や冷却用のオイルが通過可能な経路を確保して、ステータから出る振動がハウジングに伝わるのを極力防ぐように制振材(ダンパ)を設けた自動車用のモータも提案されている(例えば、特許文献1参照)。 In addition, a damping material (damper) is provided between the motor's stator and the housing to secure a passage through which oil for lubrication and cooling can pass, and to minimize transmission of vibrations from the stator to the housing. Motors for automobiles have also been proposed (see, for example, Patent Document 1).
 なお、この制振材としては、適度な硬さに調整された樹脂やゴムのような弾性を有する材料で形成するのがよいとされている。制振材が柔らかければステータの振動が大きくなってステータがハウジングに接触して騒音を発生し、硬ければステータの振動を吸収できずにハウジングへそのままが伝わって騒音が発生するからである。 In addition, as this damping material, it is said that it is good to form with the material which has elasticity like resin and rubber | gum which were adjusted to moderate hardness. If the damping material is soft, the vibration of the stator becomes large and the stator contacts the housing to generate noise, and if it is hard, the vibration of the stator can not be absorbed and the noise is transmitted to the housing as it is. .
特開2006-166554号公報JP, 2006-166554, A
 モータによる騒音のうち比較的高い周波数の騒音は吸音材が吸収して除去できるものの、低い周波数の騒音はエネルギーが高いので吸音材を使ってもあまり吸収されずに除去できないのが現実である。
低い周波数の振動を抑制するために制振材を使うことができるが、その場合は大きな制振材が必要となる。しかし、ガソリンエンジンに加えてモータやインバータを搭載するハイブリッド車のエンジンルームには、モータの外部に大きな制振材を搭載する余裕がないのも現実である。このように、小さな制振材で比較的低い周波数の振動を抑えることは極めて難しいという問題があった。
Although relatively high frequency noise of motor noise can be absorbed and removed by the sound absorbing material, it is a reality that low frequency noise can not be removed without much absorption even using the sound absorbing material because energy is high.
A damping material can be used to suppress low frequency vibrations, but in that case a large damping material is required. However, it is also a reality that in the engine room of a hybrid vehicle equipped with a motor and an inverter in addition to a gasoline engine, there is no room for mounting a large damping material outside the motor. As described above, there is a problem that it is extremely difficult to suppress relatively low frequency vibration with a small damping material.
 本発明の目的は、上記問題点に鑑みてなされたものであり、比較的小さな振動吸収体を用いながら騒音発生源となっているモータから発生する騒音のうち低い周波数の騒音を低減できるようにした、騒音除去装置と、そこに用いる消音モータを提供することである。 The object of the present invention is made in view of the above-mentioned problems, and it is possible to reduce low frequency noise among noises generated from a motor which is a noise generation source while using a relatively small vibration absorber. Another object of the present invention is to provide a noise removal device and a noise reduction motor used therein.
 上記課題を解決し、本発明の目的を達成するため、本発明の騒音除去装置は、振動体と、該振動体の近傍に配置されて該振動体の振動または騒音を検出するセンサと、該センサの近傍に配置された中間部材と、該中間部材の近傍に配置されたアクチュエータと、センサの信号に所定の係数を乗じてアクチュエータを駆動する適応フィルタと、を備える。そして、センサの信号と逆の位相となるようアクチュエータを駆動することにより振動体により発生する騒音を低減するようにする。 In order to solve the above problems and achieve the object of the present invention, a noise removal device of the present invention comprises: a vibrating body; a sensor disposed in the vicinity of the vibrating body to detect vibration or noise of the vibrating body; An intermediate member disposed in the vicinity of the sensor, an actuator disposed in the vicinity of the intermediate member, and an adaptive filter that drives the actuator by multiplying a signal of the sensor by a predetermined coefficient. Then, by driving the actuator so as to have a phase opposite to that of the sensor signal, the noise generated by the vibrator is reduced.
 本発明の好ましい形態では、振動体から離れた位置で振動体の振動または騒音を検出する第2センサを備え、適応フィルタは、所定のアルゴリズムにより第2センサの信号から係数を求め、該係数をセンサの信号に乗じてアクチュエータを駆動するようにしている。そして、第2センサの信号が小さくなるよう係数を調整する。
更に、本発明の好ましい形態の適応フィルタはLMSフィルタであり、アルゴリズムはLMS(Least Mean Square)のアルゴリズムである。また、センサはフィルム状高分子圧電素子である。
In a preferred embodiment of the present invention, a second sensor for detecting vibration or noise of a vibrating body at a position away from the vibrating body is provided, and the adaptive filter determines a coefficient from a signal of the second sensor by a predetermined algorithm and calculates the coefficient. The signal of the sensor is multiplied to drive the actuator. And a coefficient is adjusted so that the signal of a 2nd sensor may become small.
Furthermore, the adaptive filter of the preferred form of the present invention is an LMS filter, and the algorithm is an LMS (Least Mean Square) algorithm. Also, the sensor is a film-like polymeric piezoelectric element.
 また、本発明好ましい形態の一つとして、センサは、振動体を覆うように振動体の周囲に同心円状に券回され、アクチュエータはセンサを覆うようにセンサの周囲に同心円状に巻回されるようになっている。更に、中間部材は振動体が発生する振動のうちの一部の周波数帯の振動を吸収する弾性部材である。 Also, as a preferred embodiment of the present invention, the sensor is concentrically wound around the vibrating body so as to cover the vibrating body, and the actuator is concentrically wound around the sensor so as to cover the sensor. It is supposed to be. Furthermore, the intermediate member is an elastic member that absorbs the vibration of a part of the frequency band of the vibration generated by the vibrator.
 本発明の消音モータは、モータと、該モータの近傍に配置されて該モータの振動または騒音を検出するセンサと、該センサの近傍に配置された中間部材と、該中間部材の近傍に配置されたアクチュエータと、を備える。そして、アクチュエータは、センサの信号に所定の係数を乗じる適応フィルタの出力によってセンサの信号と逆の位相となるよう駆動されるようになっている。また、所定の係数は、センサとは異なる位置に配置された第2センサの信号に基づいて調整されるようにしている。 The noise reduction motor according to the present invention includes a motor, a sensor disposed in the vicinity of the motor for detecting vibration or noise of the motor, an intermediate member disposed in the vicinity of the sensor, and a proximity of the intermediate member. And an actuator. The actuator is driven so as to be in the opposite phase to the sensor signal by the output of the adaptive filter which multiplies the sensor signal by a predetermined coefficient. Also, the predetermined coefficient is adjusted based on the signal of the second sensor disposed at a position different from the sensor.
 上述した本発明の騒音除去装置と消音モータによれば、ハイブリッド自動車や電気自動車などのブレーキを踏んだときに発生する、比較的低周波の騒音を低減することができる。また、本発明の騒音除去装置と消音モータは、自動車のモータ以外にも、デジタルカメラのレンズ駆動に用いられるモータの振動音などを軽減させる装置として用いることもできる。 According to the noise eliminator and the noise reduction motor of the present invention described above, it is possible to reduce relatively low frequency noise generated when the brake of a hybrid car or an electric car is stepped on. Further, the noise removal device and the noise reduction motor of the present invention can also be used as devices for reducing vibration noise of a motor used for driving a lens of a digital camera other than a motor of a car.
モータの騒音を説明する図である。It is a figure explaining the noise of a motor. 本発明の騒音除去装置の原理を説明する図である。It is a figure explaining the principle of the noise removal apparatus of this invention. 振動センサを用いた騒音除去装置の構成を示す図である。It is a figure which shows the structure of the noise removal apparatus using a vibration sensor. 本発明の消音モータの構成を示す図である。It is a figure which shows the structure of the muffling motor of this invention. 図4の消音モータを用いた本発明の騒音除去装置を説明する図である。It is a figure explaining the noise removal apparatus of this invention using the muffling motor of FIG. 適応フィルタの構成を示す図である。It is a figure which shows the structure of an adaptive filter. 複数のマイクを用いる例を示す図である。It is a figure showing an example using a plurality of microphones. シミュレーションにより騒音除去効果を説明する図である。It is a figure explaining a noise removal effect by simulation.
 以下、本発明の騒音除去装置と消音モータの実施形態例について、図面を参照して説明する。騒音除去装置については、騒音源がハイブリッド車等に搭載されたモータである場合を説明する。
 図1は、ハイブリッド車等に搭載されたモータ101が振動して発生する騒音の2つの態様について説明する図である。一つは図1FIG.1Aに示すように、モータ101が固定板に接触しているときにモータ101の振動が固定板を伝わって騒音として聞こえるものであり、主に低周波の騒音が聞こえる。もう一つは、図1FIG.1Bに示すように、モータ101の振動が空気中に直接伝わって騒音として聞こえるものであり、主に高周波の騒音が聞こえる。
Hereinafter, embodiments of the noise removal device and the noise reduction motor of the present invention will be described with reference to the drawings. The noise reduction device will be described in the case where the noise source is a motor mounted on a hybrid vehicle or the like.
FIG. 1 is a view for explaining two aspects of noise generated by vibration of a motor 101 mounted on a hybrid vehicle or the like. One is FIG. 1 FIG. As shown in FIG. 1A, when the motor 101 is in contact with the fixed plate, the vibration of the motor 101 is transmitted through the fixed plate to be heard as noise, and mainly low frequency noise is heard. Another one is shown in FIG. As shown in FIG. 1B, the vibration of the motor 101 is transmitted directly into the air to be heard as noise, and mainly high frequency noise is heard.
 これらのモータの騒音は、特に、運転者がブレーキを踏んだ時に発生する。ハイブリッド車等に用いられるモータは、ブレーキを踏むと発電機モードに変わり騒音が発生する。その時に発生する「ブーッ」という低い音は、モータが図1FIG1Aに示すように、固定板に伝わる振動が状況によっては増幅されて大きくなる低周波の騒音である。 These motor noises are generated especially when the driver steps on the brakes. A motor used in a hybrid vehicle or the like changes to a generator mode and generates noise when the brake is depressed. The low noise that is generated at that time is a low frequency noise in which the vibration transmitted to the fixed plate is amplified and increased depending on the situation as shown in FIG. 1 FIG. 1A.
 高周波の騒音は、モータが格納されている強固な筐体を伝搬するときに減衰し、或いはボンネットの内側に設けられた吸音材で遮音されるので、あまり問題にならない。問題となるのは低周波の騒音である。 High frequency noise is less of a problem as it is dampened as it travels through a rigid housing in which the motor is housed, or because it is insulated by a sound absorbing material provided inside the bonnet. The problem is low frequency noise.
 図2は、上述した低周波の騒音を除去する本発明の騒音除去装置の原理を説明する図であり、モータ101から直接空気中に低周波の騒音が伝わる場合について示している。
 この図において、モータ101の騒音は2か所に設けたマイク102、103により検出される。マイク102はモータ近傍の音を検出し、マイク103はモータから少し離れた位置の音を検出し、何れの信号も適応フィルタ104に入力される。
FIG. 2 is a view for explaining the principle of the noise removal device of the present invention for removing the low frequency noise described above, and shows a case where the low frequency noise is transmitted directly from the motor 101 into the air.
In this figure, the noise of the motor 101 is detected by the microphones 102 and 103 provided at two places. The microphone 102 detects sound in the vicinity of the motor, and the microphone 103 detects sound in a position slightly away from the motor, and both signals are input to the adaptive filter 104.
 適応フィルタ104は、マイク102の信号に係数を乗じた信号を増幅器105に出力する。適応フィルタ104はマイク103の信号に応じて乗じる係数の大きさを制御しており、マイク103の信号が限りなく0になるように係数を制御する。そして、一旦適応フィルタ104の係数が決まれば、マイク103が音を検出する必要はなく、図2からマイク103を除いた構成によって低周波の騒音を除去することができる。 The adaptive filter 104 outputs a signal obtained by multiplying the signal of the microphone 102 by a coefficient to the amplifier 105. The adaptive filter 104 controls the magnitude of the coefficient to be multiplied according to the signal of the microphone 103, and controls the coefficient so that the signal of the microphone 103 becomes 0 without limit. Once the coefficient of the adaptive filter 104 is determined, the microphone 103 does not have to detect sound, and low frequency noise can be removed by the configuration in which the microphone 103 is removed from FIG.
 図2の場合、マイク102とマイク103の間には何らかの伝達関数H(s)が存在する。適応フィルタ104の係数を調整するときは、この伝達関数H(s)と適応フィルタ104の伝達関数が同じになるように調整される。この適応フィルタ104は、詳細を後述するが、マイク103の信号を最小にするために設けたフィルタであり、モータ101によって生じてマイク103に届く騒音を最小限にすることが可能になる。 In the case of FIG. 2, some transfer function H (s) exists between the microphone 102 and the microphone 103. When adjusting the coefficients of the adaptive filter 104, the transfer function H (s) and the transfer function of the adaptive filter 104 are adjusted to be the same. The adaptive filter 104, which will be described in detail later, is a filter provided to minimize the signal of the microphone 103, and it is possible to minimize the noise generated by the motor 101 and reaching the microphone 103.
 図3は、モータを固定板に固定し、モータから伝わる固定板の振動を検出する振動センサとして高分子圧電素子を用いた騒音除去装置の構成を示す図である。図2のマイク102の代わりに振動センサとして機能するフィルム状高分子圧電素子202がモータ201に取り付けられ、図2のマイク103の代わりに振動センサとして機能するフィルム状高分子圧電素子203がモータを設置した固定板208に取り付けられている。なお、モータ201の振動がフィルム状高分子圧電素子203まで伝わる時間を、適応フィルタ204における信号処理の時間以上にする必要があるため、フィルム状高分子圧電素子202とフィルム状高分子圧電素子203の間はある程度の距離をとる必要がある。 FIG. 3 is a view showing a configuration of a noise removal device using a polymer piezoelectric element as a vibration sensor that fixes a motor to a fixed plate and detects a vibration of the fixed plate transmitted from the motor. A film-shaped polymeric piezoelectric element 202 functioning as a vibration sensor is attached to the motor 201 instead of the microphone 102 in FIG. 2, and a film-shaped polymeric piezoelectric element 203 functioning as a vibration sensor instead of the microphone 103 in FIG. It is attached to the fixed plate 208 installed. The time required for the vibration of the motor 201 to be transmitted to the film-shaped polymeric piezoelectric element 203 needs to be longer than the time for signal processing in the adaptive filter 204. Therefore, the film-shaped polymeric piezoelectric element 202 and the film-shaped polymeric piezoelectric element 203 It is necessary to take some distance between them.
 フィルム状高分子圧電素子202で検出されたモータ201の振動の信号は、適応フィルタ204に送られる。そして、高分子圧電素子203の信号を用いて、図6で後述するように、適応フィルタ204の係数が調整される。その結果、フィルム状高分子圧電素子202で検出されたモータ201の振動の信号に係数が乗じられ、増幅器205で位相反転され、アクチュエータ206に供給される。アクチュエータ206が発生させる振動はモータの振動を打ち消すように作用するので、モータ201から振動センサ203に伝わる振動が低減されて小さくなり、固定板208から発生する騒音が低減する。 A signal of vibration of the motor 201 detected by the film-like polymer piezoelectric element 202 is sent to the adaptive filter 204. Then, using the signal of the polymer piezoelectric element 203, the coefficient of the adaptive filter 204 is adjusted as described later with reference to FIG. As a result, the signal of the vibration of the motor 201 detected by the film-like polymer piezoelectric element 202 is multiplied by a coefficient, phase-reversed by the amplifier 205, and supplied to the actuator 206. Since the vibration generated by the actuator 206 acts to cancel the vibration of the motor, the vibration transmitted from the motor 201 to the vibration sensor 203 is reduced and reduced, and the noise generated from the fixed plate 208 is reduced.
 図4は、本発明の実施形態の一例として、フィルム状高分子圧電素子202とフィルム状アクチュエータ206をモータ201の周囲に同心円状に配置した消音モータの構造を示している。 FIG. 4 shows the structure of a muffling motor in which a film-like polymer piezoelectric element 202 and a film-like actuator 206 are arranged concentrically around the motor 201 as an example of the embodiment of the present invention.
 図4に示すように、回転軸200を有するモータ201は、その周囲に巻回されたフィルム状高分子圧電素子202を備える。このフィルム状高分子圧電素子202は、モータ201の振動が伝わると、その振動の大きさに応じた電気信号を発生する圧電素子である。
 フィルム状高分子圧電素子202の周囲には、例えばシリコンゴムのようなやや堅い弾性部材207が巻回され、弾性部材207の外周にアクチュエータ206が同心円状に巻回されている。このアクチュエータ206は、電気信号が供給されると、これを機械的な振動に変換する圧電素子である。
As shown in FIG. 4, a motor 201 having a rotating shaft 200 is provided with a film-like polymeric piezoelectric element 202 wound around the periphery thereof. The film-like polymer piezoelectric element 202 is a piezoelectric element that generates an electrical signal according to the magnitude of the vibration when the vibration of the motor 201 is transmitted.
A slightly rigid elastic member 207 such as silicone rubber is wound around the film-like polymer piezoelectric element 202, and an actuator 206 is concentrically wound around the outer periphery of the elastic member 207. The actuator 206 is a piezoelectric element that converts an electrical signal, when it is supplied, into mechanical vibration.
 弾性部材207は、厚さが5~10mmくらいに設定されており、モータ201によって生じる振動のうち比較的高い周波数成分(例えば、1KHz以上の振動)を減衰させる効果がある。このため、アクチュエータ206に伝わる振動は、比較的低い周波数の振動(例えば、1KHz以下の振動)となり、この比較的低い周波数の振動がアクチュエータ206によって低減されることになる。 The elastic member 207 is set to have a thickness of about 5 to 10 mm, and has an effect of attenuating a relatively high frequency component (for example, a vibration of 1 KHz or more) of the vibration generated by the motor 201. Therefore, the vibration transmitted to the actuator 206 is a relatively low frequency vibration (for example, a vibration of 1 KHz or less), and the relatively low frequency vibration is reduced by the actuator 206.
 なお、図4の例では、フィルム状高分子圧電素子202とフィルム状アクチュエータ206の間に介在させる中間部材として、シリコンゴムに代表される弾性部材207を設けたが、特に弾性部材である必要はない。後述する適応フィルタ204における信号処理の時間に相当する時間だけ、モータ201の振動を遅延させる中間部材であればよい。 In the example of FIG. 4, the elastic member 207 represented by silicon rubber is provided as an intermediate member to be interposed between the film-like polymeric piezoelectric element 202 and the film-like actuator 206, but it is particularly necessary to be an elastic member. Absent. It may be an intermediate member that delays the vibration of the motor 201 by a time corresponding to the time of signal processing in the adaptive filter 204 described later.
 次に図5、図6を参照して、本発明の実施の形態例の騒音除去装置について説明する。
 図5は、図4の消音モータと、消音モータからやや離れた位置で消音モータの騒音を検出するマイク203と、適応フィルタ204と、増幅器205からなる騒音除去装置の構成を示す図である。図に示すように、マイク203とフィルム状高分子圧電素子202の信号が適応フィルタ204に入力され、適応フィルタ204の出力が増幅器205に入力されてアクチュエータ206を駆動する。図6は、適応フィルタ204の内部構成を示す概略ブロック図である。図5では、図3の振動センサ203の代わりにマイク203を用いているが、圧電素子をマイク203の代わりに使ってよいことは言うまでもない。
Next, with reference to FIG. 5 and FIG. 6, the noise removal device of the embodiment of the present invention will be described.
FIG. 5 is a diagram showing the configuration of the noise removal device including the noise reduction motor of FIG. 4, a microphone 203 for detecting the noise of the noise reduction motor at a position slightly away from the noise reduction motor, an adaptive filter 204 and an amplifier 205. As shown in the figure, the signals of the microphone 203 and the film-like polymer piezoelectric element 202 are input to the adaptive filter 204, and the output of the adaptive filter 204 is input to the amplifier 205 to drive the actuator 206. FIG. 6 is a schematic block diagram showing an internal configuration of adaptive filter 204. Referring to FIG. Although the microphone 203 is used in place of the vibration sensor 203 in FIG. 3 in FIG. 5, it goes without saying that a piezoelectric element may be used in place of the microphone 203.
 適応フィルタ204では、図6に示すように、マイク203の信号が係数修正アルゴリズム211に入力され、所定のアルゴリズムにより求められた係数が係数調整部212に出力される。その際に、モータ201からマイク203までの伝達関数に応じて係数が調整される。消音モータの振動を検出したフォルム状高分子圧電素子202の信号は係数調整部212の入力となり、この入力に係数修正アルゴリズム211が出力する係数を乗じて係数調整部212の出力となり、適応フィルタ204の出力ともなる。適応フィルタ204の出力は増幅器205で増幅され位相反転されて、アクチュエータ206に供給される。所定の係数修正アルゴリズム211は図5の構成をしたときに、マイク203の信号が限りなくゼロになるように係数調整部212の係数を調整する。 In the adaptive filter 204, as shown in FIG. 6, the signal of the microphone 203 is input to the coefficient correction algorithm 211, and the coefficient obtained by the predetermined algorithm is output to the coefficient adjustment unit 212. At this time, the coefficients are adjusted in accordance with the transfer function from the motor 201 to the microphone 203. The signal of the form polymer piezoelectric element 202 which has detected the vibration of the muffling motor becomes the input of the coefficient adjustment unit 212, and this input is multiplied by the coefficient output by the coefficient correction algorithm 211 to become the output of the coefficient adjustment unit 212. It also becomes the output of The output of the adaptive filter 204 is amplified and phase-inverted by the amplifier 205 and supplied to the actuator 206. The predetermined coefficient correction algorithm 211 adjusts the coefficient of the coefficient adjustment unit 212 so that the signal of the microphone 203 becomes zero as much as possible when configured as shown in FIG.
 アクチュエータ206は、フィルム状高分子圧電素子202と同様に、フィルム状高分子圧電素子で形成され、また、高分子圧電素子202と逆位相で振動する。したがって、高分子圧電素子202の振動とアクチュエータ206の振動が相殺され、モータによる騒音が限りなく0に近づいていく。
 以上が、本発明の実施形態例における騒音除去装置の説明である。
The actuator 206 is formed of a film-like polymer piezoelectric element, like the film-like polymer piezoelectric element 202, and vibrates in the opposite phase to the polymer piezoelectric element 202. Therefore, the vibration of the polymer piezoelectric element 202 and the vibration of the actuator 206 are offset, and the noise by the motor approaches 0 without limit.
The above is the description of the noise removal device in the embodiment of the present invention.
 ところで、マイク203の信号は適応フィルタ204の係数調整部212の係数調整にのみ用いられるものであるから、一旦係数調整が終了した後は、取り除いてもかまわない。図5からマイク203を取り除いたとしても騒音除去装置として十分に機能し、モータの騒音を除去することができる。しかしながら、モータ201の振動は、常時同じというわけではないから、マイク203あるいはそれに代わる圧電素子を定常的に設置しておき、リアルタイムで適応フィルタ204の係数調整を行うようにしてもよい。 Since the signal of the microphone 203 is used only for the coefficient adjustment of the coefficient adjusting unit 212 of the adaptive filter 204, it may be removed after the coefficient adjustment is completed. Even if the microphone 203 is removed from FIG. 5, the device functions sufficiently as a noise removal device, and the noise of the motor can be removed. However, since the vibration of the motor 201 is not always the same, the microphone 203 or a piezoelectric element instead thereof may be constantly installed to adjust the coefficient of the adaptive filter 204 in real time.
 また、図5の例では、モータ201から少し離れた位置に1個のマイク203を設けた例を示したが、図7のように、モータ201の周囲に複数のマイク、例えば4個のマイク203a~203dを配置してもよい。これにより、モータ201の周囲4方向の騒音振動を拾うことができ、適応フィルタ204のより的確な係数調整を行うことができる。 In the example shown in FIG. 5, one microphone 203 is provided at a position slightly away from the motor 201. However, as shown in FIG. 7, a plurality of microphones, for example, four microphones are provided around the motor 201. 203a to 203d may be arranged. As a result, noise and vibration in four directions around the motor 201 can be picked up, and coefficient adjustment of the adaptive filter 204 can be performed more accurately.
 図8は、図5の騒音除去装置について、適応フィルタ204を用いて騒音除去をしたとき(雑音処理ON)と、騒音除去をしないとき(雑音処理OFF)をシミュレーションした騒音信号の波形であり、両者の違いを示している。
図8から、適応フィルタ204と、同心円状に配置したフィルム状高分子圧電素子202及びフィルム状アクチュエータ206を組み合わせることにより、モータ201の騒音が極めて効果的に除去されることが分かる。
 このシミュレーションでは小さなモータを使った場合を扱っているが、ハイブリッド車等に搭載されるモータについても同様に騒音を除去することができる。
FIG. 8 shows waveforms of noise signals obtained by simulating the noise removal apparatus of FIG. 5 when noise removal is performed using the adaptive filter 204 (noise processing ON) and when noise removal is not performed (noise processing OFF). It shows the difference between the two.
From FIG. 8, it can be seen that the noise of the motor 201 is extremely effectively removed by combining the adaptive filter 204 and the film-like polymer piezoelectric element 202 and the film-like actuator 206 arranged concentrically.
Although this simulation deals with the case where a small motor is used, noise can be similarly eliminated for a motor mounted on a hybrid vehicle or the like.
 本実施形態例では適応フィルタの形式を特に限定していないが、LMSアルゴリズムを用いたLMS適応フィルタとすることができるほか、その変形である複素LMSアルゴリズム (Complex Least Mean Square Algorithm)やNormalized LMSアルゴリズム (Normalized Least Mean Square Algorithm)とすることもできる。 Although the form of the adaptive filter is not particularly limited in this embodiment, it may be an LMS adaptive filter using an LMS algorithm, or a modified LMS algorithm (Complex Least Mean Square Algorithm) or Normalized LMS algorithm which is a modification thereof. (Normalized Least Mean Square Algorithm) can also be used.
 更に、これらのLMSアルゴリズム以外にも、射影アルゴリズム (Projection Algorithm)、SHARFアルゴリズム (Simple Hyperstable Adaptive Recursive Filter Algorithm)、RLSアルゴリズム (Recursive Least Square Algorithm)、FLMSアルゴリズム (Fast Least Mean Square Algorithm)、DCTを用いた適応フィルタ (Adaptive Filter using Discrete Cosine Transform)、SANフィルタ (Single Frequency Adaptive Notch Filter)、ニューラルネットワーク (Neural Network) 、遺伝的アルゴリズム (Genetic Algorithm)のような他の適応型フィルタでも同様な処理を行うことができる。 Furthermore, besides these LMS algorithms, projection algorithm (Projection Algorithm), SHARF algorithm (Simple Hyperstable Adaptive Recursive Filter Algorithm), RLS algorithm (Recursive Least Square Algorithm), FLMS algorithm (Fast Least Mean Square Algorithm), and DCT are used. The same processing is performed with other adaptive filters such as Adaptive Filter using Discrete Cosine Transform, SAN Filter (Single Frequency Adaptive Notch Filter), Neural Network (Neural Network), and Genetic Algorithm. be able to.
 以上、ハイブリッド車のような自動車用モータを例に挙げて、本発明の騒音除去装置を説明したが、本発明は、上記自動車用モータに限られるものではなく、例えばカメラに使用される焦点調整用モータの振動音を抑制する技術としても用いることができる。また、本発明は、明細書で説明した実施の形態例に限られるものではなく、特許請求の範囲の記載を逸脱しない範囲において、種々の変形例、応用例を含むものである。 Although the noise eliminator according to the present invention has been described by taking the motor for motor vehicle such as a hybrid vehicle as an example, the present invention is not limited to the motor for motor vehicle described above. For example, focus adjustment used in a camera It can also be used as a technique for suppressing the vibration noise of the motor for motor use. Further, the present invention is not limited to the embodiments described in the specification, and includes various modifications and applications without departing from the scope of the claims.
101、201・・・モータ、
102、103・・・マイク、
104、204・・・適応フィルタ、
105、205・・・増幅器、
106、206・・・アクチュエータ、
200・・・回転軸
202・・・高分子圧電素子、
203・・・高分子圧電素子またはマイク、
207・・・弾性部材、
208・・・固定板、
211・・係数修正アルゴリズム、
212・・・係数調整部
101, 201 ... motor,
102, 103 ... Mike,
104, 204 ... adaptive filter,
105, 205 ... amplifier,
106, 206 ··· Actuator,
200: rotation shaft 202: polymeric piezoelectric element,
203: Polymer piezoelectric element or microphone
207 ... elastic member,
208 ... fixed plate,
211 · · Coefficient correction algorithm,
212: Coefficient adjustment unit

Claims (12)

  1.  振動体と、該振動体の近傍に配置されて該振動体の振動または騒音を検出するセンサと、
    該センサの近傍に配置された中間部材と、該中間部材の近傍に配置されたアクチュエータと、
    前記センサの信号に所定の係数を乗じて前記アクチュエータを駆動する適応フィルタと、を備え、
     前記センサの信号と逆の位相となるよう前記アクチュエータを駆動することにより前記振動体により発生する騒音を低減することを特徴とする騒音除去装置。
    A vibrator, and a sensor disposed in the vicinity of the vibrator to detect vibration or noise of the vibrator;
    An intermediate member disposed in the vicinity of the sensor, and an actuator disposed in the vicinity of the intermediate member;
    An adaptive filter for driving the actuator by multiplying a signal of the sensor by a predetermined coefficient;
    A noise eliminator characterized by reducing noise generated by the vibrator by driving the actuator so as to have a phase opposite to that of the sensor signal.
  2.  前記振動体から離れた位置で前記振動体の振動または騒音を検出する第2センサを備え、
    前記適応フィルタは、所定のアルゴリズムにより前記第2センサの信号から前記係数を求め、該係数を前記センサの信号に乗じて前記アクチュエータを駆動し、前記第2センサの信号が小さくなるよう前記係数を調整することを特徴とする請求項1に記載の騒音除去装置。
    A second sensor for detecting vibration or noise of the vibrating body at a position away from the vibrating body;
    The adaptive filter determines the coefficient from the signal of the second sensor according to a predetermined algorithm, multiplies the signal of the sensor by the coefficient to drive the actuator, and causes the coefficient to decrease the signal of the second sensor. The noise removal device according to claim 1, wherein the noise is adjusted.
  3.  前記適応フィルタはLMSフィルタであり、前記アルゴリズムがLMS(Least Mean Square)のアルゴリズムであることを特徴とする請求項1または2に記載の騒音除去装置。 The noise reduction device according to claim 1, wherein the adaptive filter is an LMS filter, and the algorithm is an algorithm of LMS (Least Mean Square).
  4.  前記センサはフィルム状高分子圧電素子であることを特徴とする請求項1~3のいずれかに記載の騒音除去装置。 The noise eliminating device according to any one of claims 1 to 3, wherein the sensor is a film-like polymeric piezoelectric element.
  5.  前記センサは、前記振動体を覆うように前記振動体の周囲に同心円状に券回され、前記アクチュエータは前記センサを覆うように前記センサの周囲に同心円状に巻回されることを特徴とする請求項1~4のいずれかに記載の騒音除去装置。 The sensor may be concentrically wound around the vibrator so as to cover the vibrator, and the actuator may be concentrically wound around the sensor so as to cover the sensor. The noise removal device according to any one of claims 1 to 4.
  6.  前記中間部材は前記振動体が発生する振動のうちの一部の周波数帯の振動を吸収する弾性部材であることを特徴とする請求項1~5のいずれかに記載の騒音除去装置。 6. The noise eliminator according to any one of claims 1 to 5, wherein the intermediate member is an elastic member that absorbs vibration of a partial frequency band of the vibration generated by the vibrator.
  7. 前記振動体は、電気自動車またはハイブリッド自動車に搭載されたモータであることを特徴とする請求項1~6のいずれかに記載の騒音除去装置。 The noise eliminator according to any one of claims 1 to 6, wherein the vibrator is a motor mounted on an electric vehicle or a hybrid vehicle.
  8.  モータと、該モータの近傍に配置されて該モータの振動または騒音を検出するセンサと、
    該センサの近傍に配置された中間部材と、
    該中間部材の近傍に配置されたアクチュエータと、を備え、
     前記アクチュエータは、前記センサの信号に所定の係数を乗じる適応フィルタの出力によって前記センサの信号と逆の位相となるよう駆動されることを特徴とする消音モータ。
    A motor, and a sensor disposed in the vicinity of the motor to detect vibration or noise of the motor;
    An intermediate member disposed in the vicinity of the sensor;
    An actuator disposed in the vicinity of the intermediate member;
    The motor according to claim 1, wherein the actuator is driven to be in opposite phase to the signal of the sensor by an output of an adaptive filter which multiplies the signal of the sensor by a predetermined coefficient.
  9.  前記係数は、前記センサとは異なる位置に配置された第2センサの信号に基づいて調整されることを特徴とする請求項8に記載の騒音除去装置。 The noise removal device according to claim 8, wherein the coefficient is adjusted based on a signal of a second sensor disposed at a position different from the sensor.
  10.  前記センサは、フィルム状高分子圧電素子であることを特徴とする請求項8または9に記載の消音モータ。 10. The muffling motor according to claim 8, wherein the sensor is a film-like polymeric piezoelectric element.
  11.  前記センサは、前記モータを覆うように前記モータの周囲に同心円状に券回され、前記アクチュエータは前記センサを覆うように前記センサの周囲に同心円状に券回されることを特徴とする請求項8~10のいずれかに記載の消音モータ。 The sensor may be concentrically wrapped around the motor so as to cover the motor, and the actuator may be concentrically wrapped around the sensor so as to cover the sensor. The noise reduction motor according to any one of 8 to 10.
  12.  前記中間部材は、前記モータが発生する振動のうちの一部の周波数帯の振動を吸収する弾性部材であることを特徴とする請求項8~11のいずれかに記載の消音モータ。 The silencer motor according to any one of claims 8 to 11, wherein the intermediate member is an elastic member that absorbs vibration of a partial frequency band of vibrations generated by the motor.
PCT/JP2012/083914 2012-02-08 2012-12-27 Noise elimination device and muted motor WO2013118421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013557392A JP5975355B2 (en) 2012-02-08 2012-12-27 Noise elimination device and muffler motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-025448 2012-02-08
JP2012025448 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118421A1 true WO2013118421A1 (en) 2013-08-15

Family

ID=48947205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083914 WO2013118421A1 (en) 2012-02-08 2012-12-27 Noise elimination device and muted motor

Country Status (2)

Country Link
JP (1) JP5975355B2 (en)
WO (1) WO2013118421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802575B2 (en) 2019-01-30 2023-10-31 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Vibration/noise reduction device, electric compressor including the vibration/noise reduction device, and vibration/noise reduction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009089B1 (en) * 2017-11-29 2019-08-13 금오공과대학교 산학협력단 Active damper for canceling vibration of manufacturing equipments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210433A (en) * 1995-02-03 1996-08-20 Nok Corp Active mount control device
JPH09159676A (en) * 1995-12-04 1997-06-20 Olympus Optical Co Ltd Medical analyzer
JPH09281975A (en) * 1996-04-09 1997-10-31 Mitsubishi Motors Corp Vibration noise controller
JP2011148332A (en) * 2010-01-19 2011-08-04 Honda Motor Co Ltd Active type vibration noise control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210433A (en) * 1995-02-03 1996-08-20 Nok Corp Active mount control device
JPH09159676A (en) * 1995-12-04 1997-06-20 Olympus Optical Co Ltd Medical analyzer
JPH09281975A (en) * 1996-04-09 1997-10-31 Mitsubishi Motors Corp Vibration noise controller
JP2011148332A (en) * 2010-01-19 2011-08-04 Honda Motor Co Ltd Active type vibration noise control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802575B2 (en) 2019-01-30 2023-10-31 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Vibration/noise reduction device, electric compressor including the vibration/noise reduction device, and vibration/noise reduction method

Also Published As

Publication number Publication date
JP5975355B2 (en) 2016-08-23
JPWO2013118421A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5005765B2 (en) Leakage adjustment of active noise reduction adaptive filter
US20080192948A1 (en) Active Noise Control System
CN110651321A (en) Adjusting device and adjusting method for reducing noise of auxiliary mechanism of vehicle
JP2014514607A (en) Active buffeting control of automobile
JP2007332831A (en) Variable sound pressure adding device
JPH06109072A (en) Vibration suppressing supporting device for power unit
WO2013118421A1 (en) Noise elimination device and muted motor
US9648418B2 (en) Active noise cancellation apparatus
JPH10282966A (en) Noise attenuation device in automobile compartment
JP2004052274A (en) Sound absorption device provided with tunnel micro atmospheric pressure wave reductive function
JP5546795B2 (en) Target wave reduction device
JP2010228641A (en) Noise reducing device in vehicle
JP2010276773A5 (en)
KR20100022329A (en) Active vibration reduction device of in-wheel motor driving wheel
JP5641726B2 (en) Active vibration noise control device
US12002443B2 (en) Sound control device and control method thereof
US11948545B2 (en) Vehicle sound control device and method thereof
JPH04342296A (en) Active type noise controller
JP2589738Y2 (en) Vehicle interior noise reduction device
US20230179917A1 (en) Sound control device of vehicle and method for controlling the same
US20230206891A1 (en) Sound control device of vehicle and control method thereof
KR20230087132A (en) Sound Control Device and Control Method Thereof
JP2564309Y2 (en) Vehicle interior noise reduction device
Bos et al. Active vibration control applied to a tram HVAC unit
Dhaliwal et al. Active structural acoustic control of road noise in a passenger vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867917

Country of ref document: EP

Kind code of ref document: A1