WO2013118410A1 - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine Download PDF

Info

Publication number
WO2013118410A1
WO2013118410A1 PCT/JP2012/083332 JP2012083332W WO2013118410A1 WO 2013118410 A1 WO2013118410 A1 WO 2013118410A1 JP 2012083332 W JP2012083332 W JP 2012083332W WO 2013118410 A1 WO2013118410 A1 WO 2013118410A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
internal combustion
combustion engine
turbocharger
cooling system
Prior art date
Application number
PCT/JP2012/083332
Other languages
French (fr)
Japanese (ja)
Inventor
宮下 茂樹
大介 中西
Original Assignee
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社デンソー filed Critical トヨタ自動車株式会社
Priority to DE112012005840.2T priority Critical patent/DE112012005840B4/en
Priority to CN201280069093.2A priority patent/CN104114828B/en
Publication of WO2013118410A1 publication Critical patent/WO2013118410A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/12Turbo charger

Definitions

  • the present invention relates to a cooling device applied to an internal combustion engine with a turbocharger.
  • Patent Document 1 As a cooling device for an internal combustion engine, there is known a cooling system including a cooling system for flowing cooling water in order of an exhaust system of a cylinder head, a turbocharger, a radiator, and a cylinder block (Patent Document 1).
  • Patent Documents 2 to 4 exist as prior art documents related to the present invention.
  • the cooling device of Patent Document 1 has good warm-up performance because the cooling water that has cooled the turbocharger is supplied to the water outlet of the cylinder block. However, since the cooling of the cylinder head intake system after warm-up is not sufficient, there is room for improvement in order to achieve both cooling performance and warm-up performance.
  • an object of the present invention is to provide a cooling device for an internal combustion engine capable of achieving both cooling performance and warm-up performance.
  • the cooling device of the present invention is a cooling device for an internal combustion engine applied to an internal combustion engine with a turbocharger having a cylinder head to which an intake port is formed and a cylinder block to which the cylinder head is connected, to which a turbocharger is attached.
  • Two cooling systems that cool the internal combustion engine and have different set temperatures and are independent from each other, and included in any one of the two cooling systems, the order of the intake port, the turbocharger, and the cylinder block And a cooling circuit for cooling them.
  • the intake port is cooled by one cooling system and knocking of the internal combustion engine can be suppressed, and the other cooling system independent of this cooling system can Since the engine is cooled, the cooling performance during normal operation is high.
  • the heat taken from the turbocharger by the cooling of the turbocharger can be transferred to the cylinder block, so that the warm-up performance is improved. Therefore, both cooling performance and warm-up performance can be achieved.
  • the one cooling system may have a lower set temperature than the other cooling system. According to this aspect, since the intake port can be cooled in a lower temperature region than other cooling systems, the cooling performance is further improved.
  • the one cooling system may have a smaller flow rate of the refrigerant used for cooling than the other cooling system.
  • the heat capacity of one cooling system is smaller than that of the other cooling system, and the temperature of the refrigerant is easily increased, so that the warm-up property is further improved.
  • the internal combustion engine is provided with an intercooler for cooling the air supercharged to the turbocharger, and the cooling circuit is configured to cool the intake port before cooling it.
  • the intercooler may be cooled. According to this aspect, since the intercooler is cooled before cooling the intake port having a high calorific value, it is easy to keep the intercooler at a low temperature.
  • the internal combustion engine is a direct injection type internal combustion engine provided with an injector that directly injects fuel into a cylinder, and the cooling circuit is configured to cool the turbocharger.
  • the injector may be cooled.
  • the injector is heated and the fuel existing inside the injector is vaporized, so that fuel injection cannot be performed well, and the restartability of the internal combustion engine is deteriorated, for example.
  • the injector when the injector is cooled, the fuel existing inside the injector can be prevented from being vaporized, so that the restartability can be prevented from deteriorating.
  • the injector is cooled before the temperature of the refrigerant rises due to the cooling of the turbocharger, the coolability of the injector is high.
  • FIG. 1 is a diagram schematically showing an overall configuration of an internal combustion engine to which a cooling device according to a first embodiment is applied.
  • FIG. 2 is a view schematically showing a part of the internal combustion engine of FIG.
  • FIG. 3 is a diagram schematically showing the overall configuration of the internal combustion engine to which the cooling device according to the second embodiment is applied.
  • FIG. 4 is a diagram schematically showing the overall configuration of the internal combustion engine to which the cooling device according to the third embodiment is applied.
  • FIG. 5 is a view schematically showing a part of the internal combustion engine of FIG.
  • the internal combustion engine 1 is configured as a reciprocating internal combustion engine in which a plurality (one in the figure) of cylinders 2 is provided, and a piston 3 is reciprocally provided in the cylinder 2.
  • the internal combustion engine 1 includes a cylinder block 6 in which each cylinder 2 is formed, and a cylinder head 7 connected to the cylinder block 6 so as to close an upper portion of each cylinder 2.
  • An injector 8 is attached to the cylinder block 6 so that the tip end faces the cylinder 2. Therefore, the internal combustion engine 1 is configured as an in-cylinder direct injection internal combustion engine in which fuel is directly injected into the cylinder 2 by the injector 8.
  • the cylinder head 7 is formed with an intake port 10 through which air flows into the cylinder and an exhaust port 11 through which exhaust gas after combustion is discharged from the cylinder 2.
  • the intake port 10 is opened and closed at a predetermined timing by an intake valve 13 and the exhaust port 11 is opened and closed by an exhaust valve 14, respectively.
  • a spark plug for igniting the air-fuel mixture formed in the cylinder 2 is attached to the cylinder head 7.
  • the internal combustion engine 1 is provided with a turbocharger 15 that supercharges intake air using exhaust energy, and the air compressed by the turbocharger 15 is taken into the cylinder 2 through the intake port 10 and burned. To be served. Further, an intercooler 16 for cooling the air supercharged by the turbocharger 15 is attached to the internal combustion engine 1.
  • the internal combustion engine 1 is applied with a cooling device 20 for cooling each part thereof.
  • the cooling device 20 includes two cooling systems 21 and 22 that are independent of each other.
  • the engine cooling system 21 mainly cools the periphery of the exhaust port 11 of the cylinder head 7.
  • the engine cooling system 21 has a cooling circuit 23 that circulates coolant, which is a refrigerant, along a path indicated by a broken line.
  • the cooling circuit 23 is provided with a heat exchanger 24 for exchanging heat between the cooled coolant and the outside air.
  • the coolant exchanged by the heat exchanger 24 is pumped by a pump 25.
  • the A refrigerant passage 26 is formed in the cylinder head 7 so as to surround the exhaust port 11, and the refrigerant passage 26 constitutes a part of the cooling circuit 23.
  • a cooling circuit 30 downstream of the cylinder head 7 is connected to the heat exchanger 24. As shown in the drawing, the coolant circulates along the cooling circuit 23, so that the periphery of the exhaust port 11 of the cylinder head 7 is cooled.
  • the low-temperature cooling system 22 is set so that the set temperature is lower than that of the engine cooling system 21 described above, and the coolant flow rate is set to be lower than that of the engine cooling system 21.
  • the low-temperature cooling system 22 includes a cooling circuit 30 indicated by a solid line, and the coolant circulates along the cooling circuit 30.
  • the cooling circuit 30 is provided with a heat exchanger 31 for exchanging heat between the cooled coolant and the outside air, and the coolant exchanged in the heat exchanger 31 is pumped by a pump 32.
  • the cooling circuit 30 is branched into two on the downstream side of the pump 32, one branch path 30 a extends to the cylinder head 7 side, and the other branch path 30 b is connected to the intercooler 16.
  • the branch passage 30 a extending toward the cylinder head 7 leads to a refrigerant passage 35 formed in the cylinder head 7 so as to surround the intake port 10, and the refrigerant passage 35 constitutes a part of the cooling circuit 30.
  • the cooling circuit 30 is connected to the turbocharger 15 through the refrigerant passage 35, and the coolant is guided to a passage (not shown) formed inside the turbocharger 15 to cool each part of the turbocharger 15.
  • the cooling circuit 30 downstream of the turbocharger 15 is connected to a water jacket 36 formed in the cylinder block 6.
  • the water jacket 36 is a passage extending so as to surround each cylinder 2.
  • the other branch passage 30b that has cooled the intercooler 16 is joined.
  • the cooling circuit 30 is connected to the heat exchanger 31 downstream of the joining position. In this way, the cooling circuit 30 included in the low-temperature cooling system 22 cools the intake port 10, the turbocharger 15, and the cylinder block 6 in this order.
  • the cooling device 20 Since the cooling device 20 has the above-described configuration, during normal operation after the warm-up of the internal combustion engine 1 is completed, the intake port 10 is cooled by the low-temperature cooling system 22 and knocking of the internal combustion engine 1 can be suppressed. Since the internal combustion engine 1 is cooled by the independent engine cooling system 21, the cooling performance during normal operation is high. When the internal combustion engine 1 is cold before the warm-up is completed, the heat deprived from the turbocharger 15 by the cooling of the turbocharger 15 can be transferred to the cylinder block 6, so that the warm-up property is improved. Therefore, the cooling device 20 can achieve both cooling performance and warm-up performance.
  • the low-temperature cooling system 22 can cool the intake port 10 in a lower temperature region than the engine cooling system 21, so that the cooling performance is further improved. Moreover, since the coolant flow used for cooling in the low-temperature cooling system 22 is smaller than that in the engine cooling system 21, the heat capacity of the low-temperature cooling system 22 is smaller than that in the engine cooling system 21. Accordingly, the temperature of the coolant of the low-temperature cooling system 22 is easily raised, so that the warm-up property is further improved.
  • the low-temperature cooling system 22 corresponds to one cooling system according to the present invention
  • the engine cooling system 21 corresponds to another cooling system according to the present invention.
  • the cooling device 40 has two cooling systems 41 and 42 that are independent of each other.
  • the engine cooling system 41 has the same configuration as the cooling system 21 of the first embodiment.
  • the low-temperature cooling system 42 is set so that the set temperature is lower than that of the engine cooling system 41 and the coolant flow rate is reduced.
  • the low-temperature cooling system 42 includes a cooling circuit 45, and the cooling circuit 45 is provided with a heat exchanger 46 and a pump 47. Unlike the first embodiment, the cooling circuit 45 downstream of the pump 47 is connected to the intercooler 16 without branching. Therefore, the cooling circuit 45 cools the intercooler 16 before cooling the intake port 10.
  • the second mode similar to the first mode, since the cooling is performed in the order of the intake port 10, the turbocharger 15, and the cylinder block 6, the same effect as the first mode can be obtained. Furthermore, according to the second embodiment, since the intercooler 16 is cooled before the intake port 10 having a high calorific value is cooled, it is easy to keep the intercooler 16 at a low temperature.
  • the low-temperature cooling system 42 corresponds to one cooling system according to the present invention
  • the engine cooling system 41 corresponds to the other cooling system according to the present invention.
  • the cooling device 50 has two cooling systems 51 and 52 that are independent of each other.
  • the engine cooling system 51 has the same configuration as the cooling system 21 of the first embodiment.
  • the low-temperature cooling system 52 is set so that the set temperature is lower than that of the engine cooling system 51 and the coolant flow rate is reduced.
  • the low-temperature cooling system 52 includes a cooling circuit 55, and the cooling circuit 55 is provided with a heat exchanger 56 and a pump 57.
  • the cooling circuit 55 branches into two downstream of the pump 57, one branch passage 55 a extends to the cylinder head 7 side, and the other branch passage 55 b is connected to the intercooler 16.
  • a refrigerant passage 58 is formed in the cylinder head 7 so as to surround the intake port 10, and the refrigerant passage 58 is connected to a refrigerant passage 59 formed in the cylinder block 6 so as to surround the injector 8.
  • Each refrigerant passage 58 and 59 constitutes a part of the cooling circuit 55. Therefore, the coolant guided to the cylinder head 7 is guided to the periphery of the intake port 10 and the injector 8 through the refrigerant passages 58 and 59 as shown by arrows in FIG. It is burned. That is, the cooling circuit 55 cools the injector 8 before cooling the turbocharger 15.
  • the same effect as in the first embodiment can be obtained because the intake port 10, the turbocharger 15, and the cylinder block 6 are cooled in the same order as in the first embodiment. Furthermore, according to the third embodiment, since the injector 8 is cooled to prevent the fuel existing in the injector 8 from being vaporized, the fuel injection is not successfully performed by the vaporization, and the restartability of the internal combustion engine 1 can be prevented. Can prevent the situation from getting worse. Further, since the injector 8 is cooled before the temperature of the coolant rises due to the cooling of the turbocharger 15, the coolability of the injector 8 is high.
  • the low-temperature cooling system 52 corresponds to one cooling system according to the present invention
  • the engine cooling system 51 corresponds to the other cooling system according to the present invention.
  • the present invention is not limited to the above embodiment, and can be implemented in various forms within the scope of the gist of the present invention.
  • an in-cylinder direct injection internal combustion engine is exemplified as the internal combustion engine to which the cooling device is applied.
  • the cooling device of the present invention may be applied to any type of internal combustion engine.
  • the present invention can be applied to a port injection type internal combustion engine in which an injector is provided at an intake port, and the present invention can also be applied to an internal combustion engine such as a self-ignition type diesel engine that does not require a spark plug.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

This cooling device (20) is used in an internal combustion engine (1) equipped with a turbocharger (15). The cooling device (20) has two independent cooling systems (21, 22) that cool the internal combustion engine (1) and have mutually different set temperatures. The low-temperature cooling system (22) includes a cooling circuit (30) that cools the intake port (10) of the cylinder head (7), the turbocharger (15), and the cylinder block (6), in this order.

Description

内燃機関の冷却装置Cooling device for internal combustion engine
 本発明は、ターボチャージャ付き内燃機関に適用される冷却装置に関する。 The present invention relates to a cooling device applied to an internal combustion engine with a turbocharger.
 内燃機関の冷却装置として、冷却水をシリンダヘッドの排気系、ターボチャージャ、ラジエータ及びシリンダブロックの順番に流す冷却系統を備えたものが知られている(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2~4が存在する。 As a cooling device for an internal combustion engine, there is known a cooling system including a cooling system for flowing cooling water in order of an exhaust system of a cylinder head, a turbocharger, a radiator, and a cylinder block (Patent Document 1). In addition, Patent Documents 2 to 4 exist as prior art documents related to the present invention.
特開2008-157102号公報JP 2008-157102 A 特開昭59-224414号公報JP 59-224414 A 特開2001-152961号公報JP 2001-152961 A 特開2001-107730号公報JP 2001-107730 A
 特許文献1の冷却装置は、ターボチャージャを冷却した冷却水がシリンダブロックのウォータアウトレットに供給されるため暖機性はよい。しかし、暖機後におけるシリンダヘッドの吸気系に対する冷却が十分といえないから、冷却性能と暖機性との両立を図るには改善の余地がある。 The cooling device of Patent Document 1 has good warm-up performance because the cooling water that has cooled the turbocharger is supplied to the water outlet of the cylinder block. However, since the cooling of the cylinder head intake system after warm-up is not sufficient, there is room for improvement in order to achieve both cooling performance and warm-up performance.
 そこで、本発明は、冷却性能と暖機性との両立を図ることが可能な内燃機関の冷却装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a cooling device for an internal combustion engine capable of achieving both cooling performance and warm-up performance.
 本発明の冷却装置は、吸気ポートが形成されたシリンダヘッドと、シリンダヘッドが接続されるシリンダブロックとを備えターボチャージャが取り付けられたターボチャージャ付き内燃機関に適用される内燃機関の冷却装置において、前記内燃機関を冷却し、設定温度が互いに異なりかつ独立した2つの冷却系統と、前記2つの冷却系統のいずれか一方の冷却系統に含まれ、前記吸気ポート、前記ターボチャージャ及び前記シリンダブロックの順序でこれらを冷却する冷却回路と、を備えたものである。 The cooling device of the present invention is a cooling device for an internal combustion engine applied to an internal combustion engine with a turbocharger having a cylinder head to which an intake port is formed and a cylinder block to which the cylinder head is connected, to which a turbocharger is attached. Two cooling systems that cool the internal combustion engine and have different set temperatures and are independent from each other, and included in any one of the two cooling systems, the order of the intake port, the turbocharger, and the cylinder block And a cooling circuit for cooling them.
 この冷却装置によれば、暖機完了後の通常運転時においては、一方の冷却系統によって吸気ポートが冷却されて内燃機関のノッキングを抑制できるとともに、この冷却系統と独立した他方の冷却系統によって内燃機関が冷却されるので通常運転時の冷却性能が高い。そして、内燃機関の暖機完了前の冷間時においては、ターボチャージャの冷却でターボチャージャから奪った熱をシリンダブロックへ移すことができるため暖機性が向上する。従って、冷却性能と暖機性との両立を図ることができる。 According to this cooling device, during normal operation after the completion of warm-up, the intake port is cooled by one cooling system and knocking of the internal combustion engine can be suppressed, and the other cooling system independent of this cooling system can Since the engine is cooled, the cooling performance during normal operation is high. When the internal combustion engine is warm before completion of warm-up, the heat taken from the turbocharger by the cooling of the turbocharger can be transferred to the cylinder block, so that the warm-up performance is improved. Therefore, both cooling performance and warm-up performance can be achieved.
 本発明の冷却装置の一態様において、前記一方の冷却系統は、前記設定温度が他方の冷却系統に比べて低くてもよい。この態様によれば、他の冷却系統よりも低温域で吸気ポートを冷却できるため冷却性能が更に向上する。 In one aspect of the cooling device of the present invention, the one cooling system may have a lower set temperature than the other cooling system. According to this aspect, since the intake port can be cooled in a lower temperature region than other cooling systems, the cooling performance is further improved.
 本発明の冷却装置の一態様において、前記一方の冷却系統は、冷却に用いる冷媒の流量が他方の冷却系統に比べて少なくてもよい。この場合は一方の冷却系統の熱容量が他方の冷却系統に比べて小さくなって冷媒が昇温し易くなるので暖機性が更に向上する。 In one aspect of the cooling device of the present invention, the one cooling system may have a smaller flow rate of the refrigerant used for cooling than the other cooling system. In this case, the heat capacity of one cooling system is smaller than that of the other cooling system, and the temperature of the refrigerant is easily increased, so that the warm-up property is further improved.
 本発明の冷却装置の一態様において、前記内燃機関には前記ターボチャージャに過給された空気を冷却するためのインタークーラが設けられており、前記冷却回路は、前記吸気ポートを冷却する前に前記インタークーラを冷却してもよい。この態様によれば、発熱量が高い吸気ポートの冷却の前にインタークーラが冷却されるため、インタークーラを低温に保つことが容易である。 In one aspect of the cooling device of the present invention, the internal combustion engine is provided with an intercooler for cooling the air supercharged to the turbocharger, and the cooling circuit is configured to cool the intake port before cooling it. The intercooler may be cooled. According to this aspect, since the intercooler is cooled before cooling the intake port having a high calorific value, it is easy to keep the intercooler at a low temperature.
 本発明の冷却装置の一態様において、前記内燃機関はシリンダ内に燃料を直接噴射するインジェクタが設けられた筒内直接噴射式の内燃機関であり、前記冷却回路は、前記ターボチャージャを冷却する前に前記インジェクタを冷却してもよい。内燃機関の高温運転時においては、インジェクタが加熱されてインジェクタ内部に存在する燃料が気化することにより燃料噴射が上手くできずに、例えば内燃機関の再始動性を悪化させる。この態様によれば、インジェクタが冷却されることによって、インジェクタ内部に存在する燃料の気化を防止できるから再始動性の悪化を抑制できる。また、ターボチャージャの冷却によって冷媒が昇温する前にインジェクタが冷却されるのでインジェクタの冷却性が高い。 In one aspect of the cooling device of the present invention, the internal combustion engine is a direct injection type internal combustion engine provided with an injector that directly injects fuel into a cylinder, and the cooling circuit is configured to cool the turbocharger. Alternatively, the injector may be cooled. During high-temperature operation of the internal combustion engine, the injector is heated and the fuel existing inside the injector is vaporized, so that fuel injection cannot be performed well, and the restartability of the internal combustion engine is deteriorated, for example. According to this aspect, when the injector is cooled, the fuel existing inside the injector can be prevented from being vaporized, so that the restartability can be prevented from deteriorating. Further, since the injector is cooled before the temperature of the refrigerant rises due to the cooling of the turbocharger, the coolability of the injector is high.
図1は第1の形態に係る冷却装置が適用された内燃機関の全体構成を模式的に示した図である。FIG. 1 is a diagram schematically showing an overall configuration of an internal combustion engine to which a cooling device according to a first embodiment is applied. 図2は図1の内燃機関の一部を模式的に示した図である。FIG. 2 is a view schematically showing a part of the internal combustion engine of FIG. 図3は第2の形態に係る冷却装置が適用された内燃機関の全体構成を模式的に示した図である。FIG. 3 is a diagram schematically showing the overall configuration of the internal combustion engine to which the cooling device according to the second embodiment is applied. 図4は第3の形態に係る冷却装置が適用された内燃機関の全体構成を模式的に示した図である。FIG. 4 is a diagram schematically showing the overall configuration of the internal combustion engine to which the cooling device according to the third embodiment is applied. 図5は図4の内燃機関の一部を模式的に示した図である。FIG. 5 is a view schematically showing a part of the internal combustion engine of FIG.
(第1の形態)
 図1及び図2に示すように、内燃機関1は複数(図では一つ)のシリンダ2が設けられ、シリンダ2内にピストン3が往復動自在に設けられたレシプロ式の内燃機関として構成されている。内燃機関1は各シリンダ2が形成されたシリンダブロック6と、各シリンダ2の上部を塞ぐようにしてシリンダブロック6に接続されたシリンダヘッド7とを有する。シリンダブロック6にはインジェクタ8が先端部をシリンダ2内に臨ませるようにして取り付けられている。従って、内燃機関1はインジェクタ8にてシリンダ2内に燃料を直接噴射する筒内直接噴射式の内燃機関として構成される。
(First form)
As shown in FIGS. 1 and 2, the internal combustion engine 1 is configured as a reciprocating internal combustion engine in which a plurality (one in the figure) of cylinders 2 is provided, and a piston 3 is reciprocally provided in the cylinder 2. ing. The internal combustion engine 1 includes a cylinder block 6 in which each cylinder 2 is formed, and a cylinder head 7 connected to the cylinder block 6 so as to close an upper portion of each cylinder 2. An injector 8 is attached to the cylinder block 6 so that the tip end faces the cylinder 2. Therefore, the internal combustion engine 1 is configured as an in-cylinder direct injection internal combustion engine in which fuel is directly injected into the cylinder 2 by the injector 8.
 シリンダヘッド7にはシリンダ内に空気を流入させる吸気ポート10と、燃焼後の排気をシリンダ2から排出させる排気ポート11とがそれぞれ形成されている。吸気ポート10は吸気バルブ13にて、排気ポート11は排気バルブ14にてそれぞれ所定タイミングで開閉される。なお、図示を省略したが、シリンダヘッド7にはシリンダ2内に形成された混合気を着火する点火プラグが取り付けられている。内燃機関1には排気エネルギーを利用して吸気を過給するターボチャージャ15が設けられており、そのターボチャージャ15にて圧縮された空気は吸気ポート10を介してシリンダ2内に取り込まれて燃焼に供される。また、内燃機関1にはターボチャージャ15により過給された空気を冷却するインタークーラ16が取り付けられている。 The cylinder head 7 is formed with an intake port 10 through which air flows into the cylinder and an exhaust port 11 through which exhaust gas after combustion is discharged from the cylinder 2. The intake port 10 is opened and closed at a predetermined timing by an intake valve 13 and the exhaust port 11 is opened and closed by an exhaust valve 14, respectively. Although not shown, a spark plug for igniting the air-fuel mixture formed in the cylinder 2 is attached to the cylinder head 7. The internal combustion engine 1 is provided with a turbocharger 15 that supercharges intake air using exhaust energy, and the air compressed by the turbocharger 15 is taken into the cylinder 2 through the intake port 10 and burned. To be served. Further, an intercooler 16 for cooling the air supercharged by the turbocharger 15 is attached to the internal combustion engine 1.
 図1に示すように、内燃機関1にはその各部を冷却するための冷却装置20が適用されている。冷却装置20は互いに独立した二つの冷却系統21、22備えている。エンジン冷却系統21は主としてシリンダヘッド7の排気ポート11周辺を冷却する。エンジン冷却系統21は破線で示した経路に沿って冷媒であるクーラントを循環させる冷却回路23を有している。冷却回路23には、冷却が終わったクーラントと外気との間で熱交換を行う熱交換器24が設けられており、その熱交換器24にて熱交換されたクーラントはポンプ25にて圧送される。シリンダヘッド7には排気ポート11を取り囲むように形成された冷媒通路26が形成されており、その冷媒通路26は冷却回路23の一部を構成する。シリンダヘッド7の下流の冷却回路30は熱交換器24に接続されている。図示のようにクーラントが冷却回路23に沿って循環するため、シリンダヘッド7の排気ポート11の周辺が冷却される。 As shown in FIG. 1, the internal combustion engine 1 is applied with a cooling device 20 for cooling each part thereof. The cooling device 20 includes two cooling systems 21 and 22 that are independent of each other. The engine cooling system 21 mainly cools the periphery of the exhaust port 11 of the cylinder head 7. The engine cooling system 21 has a cooling circuit 23 that circulates coolant, which is a refrigerant, along a path indicated by a broken line. The cooling circuit 23 is provided with a heat exchanger 24 for exchanging heat between the cooled coolant and the outside air. The coolant exchanged by the heat exchanger 24 is pumped by a pump 25. The A refrigerant passage 26 is formed in the cylinder head 7 so as to surround the exhaust port 11, and the refrigerant passage 26 constitutes a part of the cooling circuit 23. A cooling circuit 30 downstream of the cylinder head 7 is connected to the heat exchanger 24. As shown in the drawing, the coolant circulates along the cooling circuit 23, so that the periphery of the exhaust port 11 of the cylinder head 7 is cooled.
 低温冷却系統22は、上述したエンジン冷却系統21よりも設定温度が低くなるように設定され、かつクーラントの流量がエンジン冷却系統21よりも少なくなるように設定されている。低温冷却系統22は実線で示した冷却回路30を備えており、クーラントは冷却回路30に沿って循環する。 The low-temperature cooling system 22 is set so that the set temperature is lower than that of the engine cooling system 21 described above, and the coolant flow rate is set to be lower than that of the engine cooling system 21. The low-temperature cooling system 22 includes a cooling circuit 30 indicated by a solid line, and the coolant circulates along the cooling circuit 30.
 冷却回路30には冷却後のクーラントと外気との間で熱交換を行う熱交換器31が設けられており、その熱交換器31にて熱交換されたクーラントはポンプ32にて圧送される。冷却回路30はポンプ32の下流側で二つに分岐され、一方の分岐路30aはシリンダヘッド7側に延びており、他方の分岐路30bはインタークーラ16に接続されている。シリンダヘッド7側に延びた分岐路30aは、吸気ポート10を取り囲むようにしてシリンダヘッド7に形成された冷媒通路35に通じており、その冷媒通路35は冷却回路30の一部を構成する。冷媒通路35にクーラントが導かれることにより、吸気ポート10が冷却される。冷却回路30は冷媒通路35を経てターボチャージャ15に接続され、クーラントはターボチャージャ15の内部に形成された不図示の通路に導かれてターボチャージャ15の各部を冷却する。 The cooling circuit 30 is provided with a heat exchanger 31 for exchanging heat between the cooled coolant and the outside air, and the coolant exchanged in the heat exchanger 31 is pumped by a pump 32. The cooling circuit 30 is branched into two on the downstream side of the pump 32, one branch path 30 a extends to the cylinder head 7 side, and the other branch path 30 b is connected to the intercooler 16. The branch passage 30 a extending toward the cylinder head 7 leads to a refrigerant passage 35 formed in the cylinder head 7 so as to surround the intake port 10, and the refrigerant passage 35 constitutes a part of the cooling circuit 30. When the coolant is guided to the refrigerant passage 35, the intake port 10 is cooled. The cooling circuit 30 is connected to the turbocharger 15 through the refrigerant passage 35, and the coolant is guided to a passage (not shown) formed inside the turbocharger 15 to cool each part of the turbocharger 15.
 図1に示すように、ターボチャージャ15の下流の冷却回路30はシリンダブロック6に形成されたウォータジャケット36に接続されている。周知のようにウォータジャケット36は各シリンダ2を取り囲むように延びている通路である。ウォータジャケット36の下流において、インタークーラ16を冷却した他方の分岐路30bが合流している。冷却回路30はその合流位置よりも下流で熱交換器31に接続されている。このように、低温冷却系統22に含まれる冷却回路30は、吸気ポート10、ターボチャージャ15及びシリンダブロック6の順序でこれらを冷却する。 As shown in FIG. 1, the cooling circuit 30 downstream of the turbocharger 15 is connected to a water jacket 36 formed in the cylinder block 6. As is well known, the water jacket 36 is a passage extending so as to surround each cylinder 2. On the downstream side of the water jacket 36, the other branch passage 30b that has cooled the intercooler 16 is joined. The cooling circuit 30 is connected to the heat exchanger 31 downstream of the joining position. In this way, the cooling circuit 30 included in the low-temperature cooling system 22 cools the intake port 10, the turbocharger 15, and the cylinder block 6 in this order.
 冷却装置20は上記構成を有するため、内燃機関1の暖機完了後の通常運転時においては、低温冷却系統22によって吸気ポート10が冷却されて内燃機関1のノッキングを抑制できるとともに、この冷却系統と独立したエンジン冷却系統21によって内燃機関1が冷却されるので通常運転時の冷却性能が高い。そして、内燃機関1の暖機完了前の冷間時においては、ターボチャージャ15の冷却でターボチャージャ15から奪った熱をシリンダブロック6へ移すことができるため暖機性が向上する。従って、冷却装置20は冷却性能と暖機性との両立を図ることができる。 Since the cooling device 20 has the above-described configuration, during normal operation after the warm-up of the internal combustion engine 1 is completed, the intake port 10 is cooled by the low-temperature cooling system 22 and knocking of the internal combustion engine 1 can be suppressed. Since the internal combustion engine 1 is cooled by the independent engine cooling system 21, the cooling performance during normal operation is high. When the internal combustion engine 1 is cold before the warm-up is completed, the heat deprived from the turbocharger 15 by the cooling of the turbocharger 15 can be transferred to the cylinder block 6, so that the warm-up property is improved. Therefore, the cooling device 20 can achieve both cooling performance and warm-up performance.
 また、低温冷却系統22の設定温度がエンジン冷却系統21に比べて低いので、低温冷却系統22はエンジン冷却系統21よりも低温域で吸気ポート10を冷却できるため冷却性能が更に向上する。しかも、低温冷却系統22は、冷却に用いるクーラントの流量がエンジン冷却系統21に比べて少ないので、低温冷却系統22の熱容量がエンジン冷却系統21に比べて小さくなる。従って、低温冷却系統22のクーラントが昇温し易くなるので暖機性が更に向上する。本形態においては、低温冷却系統22が本発明に係る一方の冷却系統に、エンジン冷却系統21が本発明に係る他の冷却系統にそれぞれ相当する。 Further, since the set temperature of the low-temperature cooling system 22 is lower than that of the engine cooling system 21, the low-temperature cooling system 22 can cool the intake port 10 in a lower temperature region than the engine cooling system 21, so that the cooling performance is further improved. Moreover, since the coolant flow used for cooling in the low-temperature cooling system 22 is smaller than that in the engine cooling system 21, the heat capacity of the low-temperature cooling system 22 is smaller than that in the engine cooling system 21. Accordingly, the temperature of the coolant of the low-temperature cooling system 22 is easily raised, so that the warm-up property is further improved. In this embodiment, the low-temperature cooling system 22 corresponds to one cooling system according to the present invention, and the engine cooling system 21 corresponds to another cooling system according to the present invention.
(第2の形態)
 次に、本発明の第2の形態を、図3を参照しながら説明する。第2の形態は冷却装置の一部の形態を除いて第1の形態と共通するので、共通する部材には同一の参照符号を図面に付して説明を省略する。第2の形態に係る冷却装置40は互いに独立な二つの冷却系統41、42を有している。エンジン冷却系統41は第1の形態の冷却系統21と同一の構成である。低温冷却系統42はエンジン冷却系統41に比べて設定温度が低くかつクーラントの流量が少なくなるように設定されている。低温冷却系統42は冷却回路45を含んでおり、その冷却回路45には熱交換器46及びポンプ47が設けられている。ポンプ47の下流の冷却回路45は、第1の形態と異なり分岐せずにインタークーラ16に接続されている。従って、冷却回路45は吸気ポート10を冷却する前にインタークーラ16を冷却することになる。
(Second form)
Next, a second embodiment of the present invention will be described with reference to FIG. Since the second form is common to the first form except for some forms of the cooling device, the same reference numerals are assigned to the common members in the drawings, and the description is omitted. The cooling device 40 according to the second embodiment has two cooling systems 41 and 42 that are independent of each other. The engine cooling system 41 has the same configuration as the cooling system 21 of the first embodiment. The low-temperature cooling system 42 is set so that the set temperature is lower than that of the engine cooling system 41 and the coolant flow rate is reduced. The low-temperature cooling system 42 includes a cooling circuit 45, and the cooling circuit 45 is provided with a heat exchanger 46 and a pump 47. Unlike the first embodiment, the cooling circuit 45 downstream of the pump 47 is connected to the intercooler 16 without branching. Therefore, the cooling circuit 45 cools the intercooler 16 before cooling the intake port 10.
 第2の形態によれば、第1の形態と同様に、吸気ポート10、ターボチャージャ15及びシリンダブロック6の順序で冷却されるから第1の形態と同一の効果を得ることができる。更に、第2の形態によれば、発熱量が高い吸気ポート10の冷却の前にインタークーラ16が冷却されるため、インタークーラ16を低温に保つことが容易である。本形態においては、低温冷却系統42が本発明に係る一方の冷却系統に、エンジン冷却系統41が本発明に係る他の冷却系統にそれぞれ相当する。 According to the second mode, similar to the first mode, since the cooling is performed in the order of the intake port 10, the turbocharger 15, and the cylinder block 6, the same effect as the first mode can be obtained. Furthermore, according to the second embodiment, since the intercooler 16 is cooled before the intake port 10 having a high calorific value is cooled, it is easy to keep the intercooler 16 at a low temperature. In this embodiment, the low-temperature cooling system 42 corresponds to one cooling system according to the present invention, and the engine cooling system 41 corresponds to the other cooling system according to the present invention.
(第3の形態)
 次に、本発明の第3の形態を、図4及び図5を参照しながら説明する。第3の形態は冷却装置の一部の形態を除いて第1の形態と共通するので、共通する部材には同一の参照符号を図面に付して説明を省略する。第3の形態に係る冷却装置50は互い独立な二つの冷却系統51、52を有している。エンジン冷却系統51は第1の形態の冷却系統21と同一の構成である。低温冷却系統52はエンジン冷却系統51に比べて設定温度が低くかつクーラントの流量が少なくなるように設定されている。低温冷却系統52は冷却回路55を含んでおり、その冷却回路55には熱交換器56及びポンプ57が設けられている。冷却回路55はポンプ57の下流で二つに分岐し、一方の分岐路55aがシリンダヘッド7側へ延びており、他方の分岐路55bがインタークーラ16に接続されている。シリンダヘッド7には吸気ポート10を囲むようにして冷媒通路58が形成されており、その冷媒通路58はインジェクタ8を取り囲むようにしてシリンダブロック6に形成された冷媒通路59と繋がっている。各冷媒通路58、59は冷却回路55の一部を構成する。従って、シリンダヘッド7に導かれたクーラントは図5の矢印で示すように、各冷媒通路58、59にて吸気ポート10及びインジェクタ8の周囲に導かれてこれらを冷却し、ターボチャージャ15へ導かれる。つまり、冷却回路55はターボチャージャ15を冷却する前にインジェクタ8を冷却する。
(Third form)
Next, a third embodiment of the present invention will be described with reference to FIGS. Since the third form is common to the first form except for some forms of the cooling device, common members are denoted by the same reference numerals in the drawings, and description thereof is omitted. The cooling device 50 according to the third embodiment has two cooling systems 51 and 52 that are independent of each other. The engine cooling system 51 has the same configuration as the cooling system 21 of the first embodiment. The low-temperature cooling system 52 is set so that the set temperature is lower than that of the engine cooling system 51 and the coolant flow rate is reduced. The low-temperature cooling system 52 includes a cooling circuit 55, and the cooling circuit 55 is provided with a heat exchanger 56 and a pump 57. The cooling circuit 55 branches into two downstream of the pump 57, one branch passage 55 a extends to the cylinder head 7 side, and the other branch passage 55 b is connected to the intercooler 16. A refrigerant passage 58 is formed in the cylinder head 7 so as to surround the intake port 10, and the refrigerant passage 58 is connected to a refrigerant passage 59 formed in the cylinder block 6 so as to surround the injector 8. Each refrigerant passage 58 and 59 constitutes a part of the cooling circuit 55. Therefore, the coolant guided to the cylinder head 7 is guided to the periphery of the intake port 10 and the injector 8 through the refrigerant passages 58 and 59 as shown by arrows in FIG. It is burned. That is, the cooling circuit 55 cools the injector 8 before cooling the turbocharger 15.
 第3の形態によれば、第1の形態と同様に、吸気ポート10、ターボチャージャ15及びシリンダブロック6の順序でこれらが冷却されるから第1の形態と同一の効果を得ることができる。更に、第3の形態によれば、インジェクタ8が冷却されることによって、インジェクタ8内部に存在する燃料の気化を防止できるから、その気化によって燃料噴射がうまく行かずに内燃機関1の再始動性が悪化する事態を防止できる。また、ターボチャージャ15の冷却によってクーラントが昇温する前にインジェクタ8が冷却されるのでインジェクタ8の冷却性が高い。本形態においては、低温冷却系統52が本発明に係る一方の冷却系統に、エンジン冷却系統51が本発明に係る他の冷却系統にそれぞれ相当する。 According to the third embodiment, the same effect as in the first embodiment can be obtained because the intake port 10, the turbocharger 15, and the cylinder block 6 are cooled in the same order as in the first embodiment. Furthermore, according to the third embodiment, since the injector 8 is cooled to prevent the fuel existing in the injector 8 from being vaporized, the fuel injection is not successfully performed by the vaporization, and the restartability of the internal combustion engine 1 can be prevented. Can prevent the situation from getting worse. Further, since the injector 8 is cooled before the temperature of the coolant rises due to the cooling of the turbocharger 15, the coolability of the injector 8 is high. In this embodiment, the low-temperature cooling system 52 corresponds to one cooling system according to the present invention, and the engine cooling system 51 corresponds to the other cooling system according to the present invention.
 本発明は上記形態に限定されず、本発明の要旨の範囲内において種々の形態にて実施できる。上記各形態では、冷却装置が適用される内燃機関として筒内直接噴射式の内燃機関が例示されているが、本発明の冷却装置は適用対象となる内燃機関の形式を問わない。例えば、吸気ポートにインジェクタが設けられたポート噴射式の内燃機関に本発明を適用できるし、点火プラグを要しない自着火型のディーゼル機関等の内燃機関にも本発明を適用できる。 The present invention is not limited to the above embodiment, and can be implemented in various forms within the scope of the gist of the present invention. In each of the above embodiments, an in-cylinder direct injection internal combustion engine is exemplified as the internal combustion engine to which the cooling device is applied. However, the cooling device of the present invention may be applied to any type of internal combustion engine. For example, the present invention can be applied to a port injection type internal combustion engine in which an injector is provided at an intake port, and the present invention can also be applied to an internal combustion engine such as a self-ignition type diesel engine that does not require a spark plug.

Claims (5)

  1.  吸気ポートが形成されたシリンダヘッドと、前記シリンダヘッドが接続されるシリンダブロックとを備えターボチャージャが取り付けられたターボチャージャ付き内燃機関に適用される内燃機関の冷却装置において、
     前記内燃機関を冷却し、設定温度が互いに異なりかつ独立した2つの冷却系統と、
     前記2つの冷却系統のいずれか一方の冷却系統に含まれ、前記吸気ポート、前記ターボチャージャ及び前記シリンダブロックの順序でこれらを冷却する冷却回路と、
    を備えている内燃機関の冷却装置。
    In a cooling device for an internal combustion engine applied to an internal combustion engine with a turbocharger, which includes a cylinder head in which an intake port is formed, and a cylinder block to which the cylinder head is connected, to which a turbocharger is attached.
    Two cooling systems for cooling the internal combustion engine and having different set temperatures and independent from each other;
    A cooling circuit that is included in one of the two cooling systems and cools the intake port, the turbocharger, and the cylinder block in this order;
    A cooling device for an internal combustion engine.
  2.  前記一方の冷却系統は、前記設定温度が前記2つの冷却系統のいずれか他方の冷却系統に比べて低い請求項1の冷却装置。 The cooling apparatus according to claim 1, wherein the one cooling system has a lower set temperature than either one of the two cooling systems.
  3.  前記一方の冷却系統は、冷却に用いる冷媒の流量が前記2つの冷却系統のいずれか他方の冷却系統に比べて少ない請求項1又は2の冷却装置。 The cooling device according to claim 1 or 2, wherein the one cooling system has a smaller flow rate of the refrigerant used for cooling than the other cooling system of the two cooling systems.
  4.  前記内燃機関には前記ターボチャージャに過給された空気を冷却するためのインタークーラが設けられており、
     前記冷却回路は、前記吸気ポートを冷却する前に前記インタークーラを冷却する請求項1~3のいずれか一項の冷却装置。
    The internal combustion engine is provided with an intercooler for cooling the air supercharged to the turbocharger,
    The cooling device according to any one of claims 1 to 3, wherein the cooling circuit cools the intercooler before cooling the intake port.
  5.  前記内燃機関はシリンダ内に燃料を直接噴射するインジェクタが設けられた筒内直接噴射式の内燃機関であり、
     前記冷却回路は、前記ターボチャージャを冷却する前に前記インジェクタを冷却する請求項1~4のいずれか一項の冷却装置。
    The internal combustion engine is an in-cylinder direct injection internal combustion engine provided with an injector that directly injects fuel into a cylinder.
    The cooling device according to any one of claims 1 to 4, wherein the cooling circuit cools the injector before cooling the turbocharger.
PCT/JP2012/083332 2012-02-08 2012-12-21 Cooling device for internal combustion engine WO2013118410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012005840.2T DE112012005840B4 (en) 2012-02-08 2012-12-21 COOLING DEVICE WITH TWO COOLING SYSTEMS FOR COOLING A COMBUSTION ENGINE WITH VARIOUS TEMPERATURE TEMPERATURES
CN201280069093.2A CN104114828B (en) 2012-02-08 2012-12-21 The chiller of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012024832A JP5903917B2 (en) 2012-02-08 2012-02-08 Cooling device for internal combustion engine
JP2012-024832 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118410A1 true WO2013118410A1 (en) 2013-08-15

Family

ID=48947194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083332 WO2013118410A1 (en) 2012-02-08 2012-12-21 Cooling device for internal combustion engine

Country Status (4)

Country Link
JP (1) JP5903917B2 (en)
CN (1) CN104114828B (en)
DE (1) DE112012005840B4 (en)
WO (1) WO2013118410A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052837A1 (en) * 2013-10-11 2015-04-16 三菱重工業株式会社 Engine system provided with intake bypass device
EP3084194A4 (en) * 2013-12-20 2017-07-19 Scania CV AB Cooler arrangement for cooling at least one cylinder of a combustion engine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014004009A1 (en) * 2014-03-20 2015-12-03 Daimler Ag Coolant circuit for cooling an internal combustion engine, in particular for a motor vehicle, and method for operating such a coolant circuit
JP6463139B2 (en) * 2015-01-09 2019-01-30 株式会社Subaru Engine cooling control device
JP6437850B2 (en) * 2015-03-03 2018-12-12 株式会社豊田中央研究所 Engine system
JP6222157B2 (en) * 2015-04-09 2017-11-01 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP6225950B2 (en) 2015-06-23 2017-11-08 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP6315020B2 (en) * 2016-04-05 2018-04-25 トヨタ自動車株式会社 Internal combustion engine
DE102016215310A1 (en) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Method for cooling a reciprocating engine, computer program product and engine
CN108071471A (en) * 2016-11-18 2018-05-25 宝沃汽车(中国)有限公司 Automobile engine parallel connection cooling system and automobile
CN108457736B (en) * 2017-02-22 2021-10-29 罗伯特·博世有限公司 Injector cooling system
DE102018214152B3 (en) 2018-08-22 2019-11-07 Ford Global Technologies, Llc Cooling system for an internal combustion engine, in particular cylinder head cooling with intercooler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137330U (en) * 1983-03-07 1984-09-13 トヨタ自動車株式会社 Cooling structure of turbo charger
JPS62170719A (en) * 1986-01-24 1987-07-27 Fuji Heavy Ind Ltd Cooling device for engine
JPH057930U (en) * 1991-07-10 1993-02-02 ダイハツ工業株式会社 Cooling device for internal combustion engine
JPH11336549A (en) * 1998-05-22 1999-12-07 Fuji Thomson Kk Cooling structure of water-cooled engine
JP2000516324A (en) * 1997-02-24 2000-12-05 ジェネラル モーターズ ド ブラジル リミターダ Independent cooling system for internal combustion engines
JP2007038874A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Cooling system of hybrid vehicle
JP2007231896A (en) * 2006-03-03 2007-09-13 Yamaha Motor Co Ltd Direct injection type engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224414A (en) * 1983-06-01 1984-12-17 Toyota Motor Corp Cooling device for internal-combustion engine with turbo charger
JP2001107730A (en) * 1999-10-08 2001-04-17 Mazda Motor Corp Cooling structure of cylinder injection type engine
JP3699312B2 (en) * 1999-11-19 2005-09-28 ダイハツ工業株式会社 Structure of in-cylinder fuel injection internal combustion engine
AT414155B (en) * 2003-08-05 2006-09-15 Man Nutzfahrzeuge Oesterreich INTERNAL COMBUSTION ENGINE WITH 2-STAGE ABGASTURBOLADER AND CHARGE AIR COOLING BETWEEN LOW AND HIGH PRESSURE COMPRESSORS
JP2008019711A (en) * 2006-07-10 2008-01-31 Toyota Motor Corp Supercharger system of internal combustion engine
JP2008157102A (en) * 2006-12-22 2008-07-10 Toyota Motor Corp Cooling device for internal combustion engine
DE102007051505A1 (en) * 2007-10-29 2009-04-30 Volkswagen Ag Internal combustion engine with exhaust gas turbocharger and intercooler
EP2392794B1 (en) * 2010-06-07 2019-02-27 Ford Global Technologies, LLC Separately cooled turbo charger for maintaining a no-flow strategy of a cylinder block coolant lining

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137330U (en) * 1983-03-07 1984-09-13 トヨタ自動車株式会社 Cooling structure of turbo charger
JPS62170719A (en) * 1986-01-24 1987-07-27 Fuji Heavy Ind Ltd Cooling device for engine
JPH057930U (en) * 1991-07-10 1993-02-02 ダイハツ工業株式会社 Cooling device for internal combustion engine
JP2000516324A (en) * 1997-02-24 2000-12-05 ジェネラル モーターズ ド ブラジル リミターダ Independent cooling system for internal combustion engines
JPH11336549A (en) * 1998-05-22 1999-12-07 Fuji Thomson Kk Cooling structure of water-cooled engine
JP2007038874A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Cooling system of hybrid vehicle
JP2007231896A (en) * 2006-03-03 2007-09-13 Yamaha Motor Co Ltd Direct injection type engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052837A1 (en) * 2013-10-11 2015-04-16 三菱重工業株式会社 Engine system provided with intake bypass device
JP6072277B2 (en) * 2013-10-11 2017-02-01 三菱重工業株式会社 Engine system with intake bypass device
US9797320B2 (en) 2013-10-11 2017-10-24 Mitsubishi Heavy Industries, Ltd. Engine system with intake bypass device
EP3084194A4 (en) * 2013-12-20 2017-07-19 Scania CV AB Cooler arrangement for cooling at least one cylinder of a combustion engine
US10634037B2 (en) 2013-12-20 2020-04-28 Scania Cv Ab Cooler arrangement for cooling at least one cylinder of a combustion engine

Also Published As

Publication number Publication date
JP5903917B2 (en) 2016-04-13
CN104114828A (en) 2014-10-22
DE112012005840T5 (en) 2014-10-16
CN104114828B (en) 2016-10-12
JP2013160195A (en) 2013-08-19
DE112012005840B4 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP5903917B2 (en) Cooling device for internal combustion engine
US20150101549A1 (en) Cooling system for an internal combustion engine
US20120192557A1 (en) Engine System
US20140251252A1 (en) Compression self-ignition engine
US20080196406A1 (en) Homogeneous charge compression ignition engine and air intake and exhaust system thereof
KR101490963B1 (en) Engine system having turbo charger
JP2016519235A (en) Internally cooled internal combustion engine and method
JP2013217229A (en) Intake system for internal combustion engine
US10161290B2 (en) Cooling system for an internal combustion engine
ATE483906T1 (en) COMBUSTION ENGINE COMPRISING AN EXHAUST GAS RECIRCULATION SYSTEM
KR101826564B1 (en) Engine having integrated heat exchanger
JPWO2012176286A1 (en) Control device for internal combustion engine
JP2016113942A (en) Control device for internal combustion engine
US10738680B2 (en) Cylinder head of multi-cylinder engine
US20130247848A1 (en) Engine cooling apparatus
JP2014001703A (en) Cooling system of internal combustion engine
CN109441656B (en) Multi-loop cooling cylinder cover
WO2014122773A1 (en) Internal combustion engine with supercharger
Tanaka et al. Development of Oil-Cooled Engine for Optimization of Engine Cooling System
US10907530B2 (en) Water jacket diverter and method for operation of an engine cooling system
JP2014105573A (en) Exhaust gas recirculation device of engine
WO2012125154A1 (en) Cooling system
JP2016109081A (en) Temperature control device for intercooler
JP2017002767A (en) EGR device
US11598292B1 (en) Engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012005840

Country of ref document: DE

Ref document number: 1120120058402

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868274

Country of ref document: EP

Kind code of ref document: A1