WO2013118371A1 - 固体電解コンデンサ - Google Patents
固体電解コンデンサ Download PDFInfo
- Publication number
- WO2013118371A1 WO2013118371A1 PCT/JP2012/080313 JP2012080313W WO2013118371A1 WO 2013118371 A1 WO2013118371 A1 WO 2013118371A1 JP 2012080313 W JP2012080313 W JP 2012080313W WO 2013118371 A1 WO2013118371 A1 WO 2013118371A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- mass
- tungsten
- anode body
- tungsten dioxide
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 62
- 239000007787 solid Substances 0.000 title claims abstract description 34
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten(iv) oxide Chemical compound O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 claims abstract description 120
- 239000000843 powder Substances 0.000 claims abstract description 77
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 41
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 27
- 239000010703 silicon Substances 0.000 claims abstract description 27
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 24
- 239000010937 tungsten Substances 0.000 claims abstract description 24
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 5
- 239000000779 smoke Substances 0.000 abstract description 28
- 238000002485 combustion reaction Methods 0.000 abstract 1
- 239000007774 positive electrode material Substances 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 8
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 6
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- BFRGSJVXBIWTCF-UHFFFAOYSA-N niobium monoxide Chemical compound [Nb]=O BFRGSJVXBIWTCF-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- VPCCKEJZODGJBT-UHFFFAOYSA-K iron(3+) phenylmethanesulfonate Chemical compound [Fe+3].[O-]S(=O)(=O)Cc1ccccc1.[O-]S(=O)(=O)Cc1ccccc1.[O-]S(=O)(=O)Cc1ccccc1 VPCCKEJZODGJBT-UHFFFAOYSA-K 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/12—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
- H01G9/0525—Powder therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
Definitions
- the present invention relates to a solid electrolytic capacitor having tungsten dioxide as a main component of an anode body. More specifically, an anode body of a capacitor comprising a powder sintered body containing tungsten dioxide as a main component, tungsten dioxide powder 80 mass% or more and silicon powder 3.4 mass% or less as a raw material of the sintered body.
- the present invention relates to a powder to be contained, a solid electrolytic capacitor using the anode body, and a manufacturing method thereof.
- a solid electrolytic capacitor includes a conductor (anode body) as one electrode, a dielectric layer formed on the surface of the electrode, and the other electrode (semiconductor layer) provided thereon.
- a capacitor it is possible to produce a sintered body from a powder containing tungsten as a main component, and to produce a solid electrolytic capacitor using the sintered body as an anode. can get. And this capacitor
- condenser can be mounted in an electronic device as a small circuit component.
- this capacitor may emit smoke when a solid current is shorted due to some external factor and a large current flows. For these reasons, there has been a demand for a solid electrolytic capacitor that is short-circuited and hardly emits smoke or fire even when the circuit current is further increased.
- a capacitor using niobium monoxide as an anode body has been proposed as a solid electrolytic capacitor that hardly emits smoke or ignite (Patent Document 1 of International Publication No. 2007/020464; Patent Document 1).
- Patent Document 1 of International Publication No. 2007/020464; Patent Document 1
- the niobium monoxide anode body has a low CV value per volume, and it has been difficult to obtain a capacitor having a smaller size and a higher capacity than a conventional solid electrolytic capacitor such as a tantalum solid electrolytic capacitor.
- An object of the present invention is to provide a small and high-capacity solid electrolytic capacitor that hardly emits smoke or ignites.
- Smoke in solid electrolytic capacitors is caused by the burning of the material used as the anode.
- Tungsten has a slightly larger smoke generation current (amount of current that begins to generate smoke) than anode materials such as tantalum and niobium.
- the present invention has been completed by finding that it is difficult to emit smoke when used, and that a capacitor having a much larger smoke current can be obtained. That is, the present invention relates to an anode body of capacitors 1 to 7 described below, 8 to 11 powders, 12 electrolytic capacitors, and 13 to 16 anode bodies as raw materials for the anode body.
- An anode body of a capacitor containing 80% by mass or more of tungsten dioxide [2] The anode body according to claim 1, which contains silicon element and has a content of 3.4% by mass or less. [3] The anode body according to item 1 or 2, which contains metallic tungsten. [4] The anode body according to any one of items 1 to 3, wherein the anode body is a sintered body. [5] The anode body according to item 4, wherein the sintered body has a volume of 30 mm 3 or more and contains 1.5 to 3.4% by mass of silicon element.
- the anode body according to item 4 wherein the sintered body has a volume of 10 mm 3 or more and less than 30 mm 3 and contains 0.5 to 2.4% by mass of silicon element.
- An electrolytic capacitor using an anode body containing 80% by mass or more of tungsten dioxide of the present invention has a high capacity and can be manufactured at a low cost. 7.3 mm x width 4.3 mm x height 1.8 mm), and no smoke is generated even if about 9 A) flows. Moreover, by containing 3.4 mass% or less of silicon element, chipping and cracking of the solid electrolytic capacitor element are reduced, and the yield of the solid capacitor product is improved.
- Tungsten has a slightly larger smoke generation current than materials such as tantalum and niobium, and is less likely to emit smoke. Sintered and used as anode body.
- a sintered body of tungsten dioxide that can easily obtain a wide electrode area as the anode body.
- the sintered body of tungsten dioxide can be obtained by sintering tungsten dioxide powder.
- the tungsten dioxide powder is sintered as a granulated powder as it is, or preferably granulated.
- the tungsten dioxide powder may contain impurities such as metallic tungsten generated in the process of producing the tungsten dioxide powder, in addition to the silicon element that brings about the effect described later in the sintered body.
- the tungsten dioxide powder can be produced by reducing tungsten trioxide powder or ammonium tungstate powder while adjusting the hydrogen concentration. If reduced too much, a part of metal tungsten powder is generated. It is also possible to produce tungsten dioxide by a reduction reaction of tungsten trioxide with tungsten.
- the average particle diameter (D 50 ) of the tungsten dioxide powder can be adjusted by the concentration of the reducing agent, etc., and is preferably in the range of 0.1 to 3 ⁇ m.
- a powder having a BET specific surface area of 0.1 to 20 m 2 / g can be obtained.
- these average particle diameters and BET specific surface areas can be measured by the method of the Example mentioned later.
- the anode body of the present invention may contain metallic tungsten as long as the content of tungsten dioxide is 80% by mass or more.
- Metal tungsten is also zero-valent tungsten.
- a method for producing such an anode body for example, when producing tungsten dioxide powder, a method of producing an anode body without removing metal tungsten partially generated due to excessive reduction, or tungsten dioxide powder. And a method of preparing an anode body using a mixed powder obtained by mixing a metal tungsten powder with the above. Normally, the smoke generation current decreases as the tungsten dioxide content decreases, but does not decrease significantly if the tungsten dioxide content is 80% by mass or more.
- the content ratio of tungsten dioxide, metal tungsten and silicon element in the anode body is a mixture ratio of tungsten dioxide powder, metal tungsten powder and silicon powder as raw materials, Usually almost the same.
- the silicon element reacts during the heat treatment when creating granulated powder or sintered body, and tungsten silicide (mainly W 5 Si 3 ) is generated on the surface of the granulated powder or sintered body. To do.
- the present invention after forming a molded body from powder mainly composed of tungsten dioxide, it is sintered to form a sintered body. If silicon element is added to the powder containing tungsten dioxide as a main component, chipping and cracking during molding are reduced, and a sintered body having a good shape can be produced. In order to reduce chipping and cracks, it is better to increase the silicon element content. However, if the silicon element content is excessive, the electrical performance of the capacitor to be produced tends to deteriorate. As a guide, the silicon element content is 3.4% by mass or less, preferably 0.1 to 3.4% by mass, based on the powder or sintered body containing tungsten dioxide as a main component.
- the optimal content of silicon element depends on the size of the sintered body, it may be determined in advance by preliminary experiments. The larger the sintered body, the more likely it is that chipping and cracking occur, so it is preferable to add more silicon element. If the sintered body is small, the frequency of chipping and cracking is not so high, so the electrical characteristics of the capacitor can be improved. In preference, it is preferable to add a little silicon element. When the silicon content at which chipping and cracking hardly occur in various volumes of sintered bodies was measured, 1.5 to 3.4 mass% for sintered bodies with a volume of 30 mm 3 or more, less than 30 mm 3 and 10 mm 3 or more.
- the silicon content is more preferably in the above range depending on the volume of the sintered body.
- a solid electrolytic capacitor is formed by using the anode body of the present invention as one electrode and a dielectric interposed between the counter electrode (cathode).
- the dielectric is formed on the surface of the anode body (including the surface in the pores), for example, by electrolytic oxidation of the anode body.
- the counter electrode is formed, for example, by laminating a semiconductor layer such as a conductive polymer on a dielectric.
- the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to the following description.
- the particle diameter, specific surface area, and smoke generation current value were measured by the following methods.
- Particle size The particle size distribution was measured by a laser diffraction scattering method using HRA9320-X100 manufactured by Microtrac Co., and the average particle size was a particle size value (D 50 ; ⁇ m) corresponding to a cumulative volume% of 50 volume%.
- Smoke current value A voltage of 29 V was applied to the manufactured solid electrolytic capacitor from a power source with a maximum current of 1 A for a maximum of 1 second to completely short the capacitor. Next, a current value at which the capacitor started to smoke after being left at each voltage for 2 minutes at a step-up step of 0.5 A from an external power source was measured. Ten capacitors were measured, and the smallest current value at which smoke began to be emitted was taken as the smoke current value.
- Example 1 [Preparation of powder and sintered body] Under reduced pressure at 920 ° C. and 10 ⁇ 2 Pa, the tungsten trioxide powder was reduced with tungsten powder to obtain tungsten dioxide powder having an average particle size of 0.7 ⁇ m (specific surface area: 3.1 m 2 / g). The obtained tungsten dioxide powder was mixed with 0.5% by mass of a commercially available silicon powder having an average particle diameter of 1 ⁇ m to obtain a raw material powder. The raw material powder was allowed to stand at 1350 ° C. under reduced pressure at 10 ⁇ 2 Pa for 20 minutes and returned to room temperature to obtain a lump.
- This lump was crushed with a hammer mill and sieved to a particle size of 20 to 240 ⁇ m to obtain a granulated powder having an average particle size of 120 ⁇ m.
- a granulated powder having an average particle size of 120 ⁇ m.
- a lead wire made of tungsten having a diameter of 0.29 mm and a length of 12 mm
- a rectangular parallelepiped shaped body in which 8 mm of the lead wire was planted outside was produced.
- the molded body was placed in a vacuum heating furnace, and sintered for 30 minutes sintered under vacuum at 1420 ° C. to 10 -2 Pa.
- a solid electrolytic capacitor was produced as follows. Using the jig described in Example 1 of International Publication No. 2010/107011 (US2012 / 014036 A1), the maximum current amount at 10 ° C. for 5 hours in a chemical conversion solution (0.1 mass% nitric acid aqueous solution) An anode body was formed at 2 mA / piece and a maximum voltage of 10 V, and a dielectric layer was formed on the surface.
- the anode body on which the dielectric layer was formed was immersed in a 5% by mass 3,4-ethylenedioxythiophene (hereinafter abbreviated as EDTH) ethanol solution and then dried at room temperature. Next, it was immersed in a separately prepared 10% by mass aqueous solution of iron (III) toluenesulfonate, and pulled up and dried at 60 ° C. for 10 minutes. The operation from the immersion in the EDTH ethanol solution to the drying at 60 ° C. was further repeated 4 times (5 times in total) to obtain a treated body.
- EDTH 3,4-ethylenedioxythiophene
- a semiconductor layer made of a conductive polymer was formed by electrolytic polymerization as follows. After immersing the treated body in a 20% by mass EDTH ethanol solution, separately prepared electrolytic polymerization solution (from 0.4% by mass EDTH and 0.6% by mass anthraquinone sulfonic acid containing 70 parts by mass of water and 30 parts by mass of ethylene glycol) Were immersed in a stainless steel (SUS303) container in which the upper surface of the treated body coincided with the liquid surface, and electrolytic polymerization was performed at 20 ° C. and 15 ⁇ A for 45 minutes. After lifting the treated body from the electrolytic polymerization solution, washing with water, washing with ethanol, and drying were sequentially performed.
- electrolytic polymerization solution from 0.4% by mass EDTH and 0.6% by mass anthraquinone sulfonic acid containing 70 parts by mass of water and 30 parts by mass of ethylene glycol
- this treated body is post-formed in the dielectric layer forming solution under the conditions of 20 ° C., 15 minutes, maximum voltage 6.5 V, maximum current 0.1 mA / piece, and then washed with water, ethanol, Drying was performed sequentially. From the immersion in the 20% by mass EDTH ethanol solution to the steps up to here were further repeated 6 times (7 times in total) to form a semiconductor layer on the dielectric layer. However, the maximum current during electrolytic polymerization was set to 25 ⁇ A for the first time, 35 ⁇ A for the second time, and 50 ⁇ A for the third to seventh times. Furthermore, a carbon layer and a silver paste layer were sequentially laminated on the semiconductor layer to form an electrode layer, thereby producing a solid electrolytic capacitor element.
- Two solid electrolytic capacitor elements were placed in the same direction on a lead frame having a thickness of 100 ⁇ m tin-plated on a separately prepared surface.
- the lead wire was cut
- the lead wire of the mounted element was connected to the anode lead and cathode lead of the lead frame electrically and mechanically by resistance welding, and the electrode layer of the element was solidified by silver paste.
- the lead frame to which the element is connected is sealed with a resin by transfer molding according to a standard method, and after aging, the lead frame is cut at a predetermined portion and bent to obtain a size of 7.3 ⁇ 4.3 ⁇ 1.9 mm.
- Sixty-four chip-shaped tungsten dioxide solid electrolytic capacitors having a rated voltage of 2.5 V were produced. Note that CV3400SE resin manufactured by Matsushita Electric Works (currently Panasonic Electric Works) was used as the transfer molding sealing resin.
- Examples 2-6, Comparative Examples 1-2 In place of the raw material powder of Example 1, mixed powder of tungsten dioxide powder produced in the same manner as in Example 1 and commercially available tungsten powder having an average particle size of 0.5 ⁇ m was used. Solid electrolytic capacitors of Examples 2 to 6 and Comparative Examples 1 and 2 were produced in the same manner as Example 1 except that raw material powder mixed with mass% was used. The mixing ratio of the tungsten powder was adjusted so that the content (mass%) of tungsten dioxide in the raw material powder was the value shown in Table 1. The mass of the sintered body was 29 mg in Examples 2 to 6 and 38 mg in Comparative Examples 1 and 2.
- Examples 7-11 Solid electrolytic capacitors of Examples 7 to 11 were produced in the same manner as Examples 1 to 4 and 6, except that silicon was not added when producing the raw material powder. The sintered body mass was 29 mg in all cases.
- Comparative Example 3 Instead of tungsten dioxide powder in Example 1, tungsten powder having an average particle size of 0.7 ⁇ m obtained by completely reducing ammonium tungstate with hydrogen was used, and the temperature for obtaining a mass and the temperature for obtaining a sintered body were set. A chip-shaped tungsten solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the temperature was 1380 ° C. and 1520 ° C., respectively. The sintered body mass was 58 mg.
- Comparative Example 4 A chip-like tungsten solid electrolytic capacitor was obtained in the same manner as in Comparative Example 3 except that silicon powder was not mixed when obtaining a lump in Comparative Example 3.
- the sintered body mass was 58 mg.
- Comparative Example 5 A chip-shaped tungsten solid electrolytic capacitor was obtained in the same manner as in Comparative Example 3 except that the sintering temperature in Comparative Example 3 was 1380 ° C. and the mass of the sintered body was 33 mg.
- Comparative Example 6 Instead of tungsten dioxide powder in Example 1, powder obtained by granulating tantalum powder having an average particle diameter of 0.7 ⁇ m obtained by sodium reduction of potassium fluorinated tantalate (no silicon powder added) was used. A chip-shaped tantalum solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the sintering temperature was 1390 ° C. The sintered body mass was 40 mg.
- the content is preferably 2% by mass or more, and more preferably 10% by mass or more.
- Table 2 shows the number of chips and cracks in the sintered bodies of Examples 1 to 3 and 7 to 9.
- the number% in each example is that 100 sintered bodies are selected and observed with a magnifying glass, and there are 2 or more cracks and cracks with a minimum length of 0.1 mm or more found on the 6 surfaces of the sintered body. It is the ratio of the sintered body to be.
- the chip and the crack seen over two or more sides were counted as one piece. From Table 2, it can be seen that when the volume is less than 10 mm 3 , adding silicon to tungsten dioxide significantly reduces the number of chipped and cracked solid electrolytic capacitors and improves the yield of solid electrolytic capacitor products.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
固体電解コンデンサは、導電体(陽極体)を一方の電極とし、その電極の表層に形成した誘電体層とその上に設けられた他方の電極(半導体層)とで構成される。
このようなコンデンサとして、タングステンを主成分とする粉体から焼結体を作製し、その焼結体を陽極として固体電解コンデンサを作製することが可能であり、小型で高容量かつ安価なコンデンサが得られる。そしてこのコンデンサは、小型回路部品として電子機器に搭載することができる。
すなわち、本発明は下記1~7のコンデンサの陽極体、前記陽極体の原料となる8~11の粉体、12の電解コンデンサ、13~16の陽極体の製造方法に関する。
[2] ケイ素元素を含み、その含有量が3.4質量%以下である請求項1に記載の陽極体。
[3] 金属タングステンを含む前項1または2に記載の陽極体。
[4] 陽極体が焼結体からなる前項1~3のいずれかに記載の陽極体。
[5] 焼結体が体積30mm3以上であり、ケイ素元素を1.5~3.4質量%含む前項4に記載の陽極体。
[6] 焼結体が体積10mm3以上30mm3未満であり、ケイ素元素を0.5~2.4質量%含む前項4に記載の陽極体。
[7] 焼結体が体積10mm3未満であり、ケイ素元素を0.1~1.4質量%含む前項4に記載の陽極体。
[8] 前項4に記載の焼結体の原料となる、少なくとも二酸化タングステン粉及びケイ素粉の混合物を含む粉体であって、前記混合物中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下である粉体。
[9] 金属タングステン粉を含む前項8に記載の粉体。
[10] 二酸化タングステン粉の平均粒子径が0.1~3μmである前項8または9に記載の粉体。
[11] 二酸化タングステン粉のBET比表面積が0.1~20m2/gである前項8~10のいずれかに記載の粉体。
[12] 前項1~7に記載の陽極体を一方の電極とし、対電極との間に介在する誘電体とから構成される電解コンデンサ。
[13] 二酸化タングステンを80質量%以上含む原料粉を焼結することを特徴とするコンデンサの陽極体の製造方法。
[14] 原料粉を造粒してから焼結する前項13に記載の陽極体の製造方法。
[15] 原料粉中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下となるように、少なくとも二酸化タングステン粉及びケイ素粉を混合して原料粉を得る前項13または14に記載の陽極体の製造方法。
[16] 金属タングステン粉を混合することを含む前項15に記載の陽極体の製造方法。
二酸化タングステン粉は、その粉のまま、あるいは好ましくは造粒して造粒粉として焼結される。なお、この二酸化タングステン粉には焼結体に後述する効果もたらすケイ素元素の外、二酸化タングステン粉作製の過程で生じる金属タングステンなどの不純物が含まれていてもよい。
また、三酸化タングステンのタングステンによる還元反応で二酸化タングステンを作製することも可能である。
また、ケイ素元素は、金属タングステンが存在すると、造粒粉や焼結体作成時の熱処理時に反応してケイ化タングステン(主にW5Si3)が造粒粉や焼結体の表面に生成する。
本発明において、粒子径、比表面積、及び発煙電流値は以下の方法で測定した。
マイクロトラック社製HRA9320-X100を用い、粒度分布をレーザー回折散乱法で測定し、その累積体積%が、50体積%に相当する粒径値(D50;μm)を平均粒径とした。
NOVA2000E(SYSMEX社)を用いBET法で測定した。
作製した固体電解コンデンサに最大電流1Aの電源から29Vの電圧を最大1秒間印加して、コンデンサを完全にショートさせた。次いで、このコンデンサに外部電源から0.5Aずつの昇圧ステップで各電圧に2分放置して発煙し始める電流値を測定した。10個のコンデンサを測定し、この中で発煙し始める最も小さい電流値を発煙電流値とした。
[粉及び焼結体の作製]
920℃,10-2Paに減圧下、三酸化タングステン粉をタングステン粉で還元し、平均粒径0.7μm(比表面積3.1m2/g)の二酸化タングステン粉を得た。
得られた二酸化タングステン粉に市販の平均粒径1μmのケイ素粉を0.5質量%混合し、これを原料粉とした。
原料粉を、10-2Paに減圧下1350℃で20分放置し、室温に戻して、塊状物を得た。この塊状物をハンマーミルで解砕し、粒径20~240μmを篩分し、平均粒径120μmの造粒粉を得た。この造粒粉と、直径0.29mm,長さ12mmタングステン製のリード線とを用いて、リード線の8mmが外側に植立した直方体形状の成形体を作製した。さらに、真空加熱炉に成形体を入れ、10-2Paに減圧下1420℃で30分間焼結した。室温に戻した後に炉から取り出し、大きさ0.99±0.02×1.51±0.03×4.45±0.06mm(体積6.7mm3)で、リード線が0.99×1.51面に植立した、質量29mgの二酸化タングステン焼結体を得た。
得られた二酸化タングステン焼結体をコンデンサの陽極体として用い、下記の通り固体電解コンデンサの作製を行った。
国際公開第2010/107011号パンフレット(US2012/014036 A1)の実施例1に記載されている冶具を用い、化成液(0.1質量%硝酸水溶液)中で、10℃、5時間、最大電流量2mA/個、最大電圧10Vで、陽極体を化成し、その表面に誘電体層を形成した。
誘電体層を形成した陽極体を、5質量%の3,4-エチレンジオキシチオフェン(以下、EDTHと略す。)エタノール溶液に浸漬し、その後室温乾燥した。次に、別途用意した10質量%のトルエンスルホン酸鉄(III)水溶液に浸漬し、引き上げた後に60℃で10分乾燥させた。前記EDTHエタノール溶液への浸漬から60℃での乾燥までの操作をさらに4回(合計5回)繰り返して処理体を得た。
処理体を20質量%EDTHエタノール溶液に浸漬した後、別途用意した電解重合液(0.4質量%EDTH及び0.6質量%アントラキノンスルホン酸を含む、水70質量部とエチレングリコール30質量部からなる混合溶媒)が入ったステンレス(SUS303)容器に、処理体上面が液面と一致する位置まで浸漬し、20℃、15μA、45分間、電解重合を行った。処理体を電解重合液から引き上げた後、水洗、エタノール洗浄、乾燥を順次行った。次にこの処理体を、前記誘電体層形成液中で、20℃、15分、最大電圧6.5V、最大電流0.1mA/個の条件で後化成を行い、次いで、水洗、エタノール洗浄、乾燥を順次行った。
前記20質量%EDTHエタノール溶液への浸漬からここまでの工程までをさらに6回(合計7回)繰り返し、誘電体層上に半導体層を形成した。ただし、電解重合時の最大電流は、1回目25μA、2回目35μA、3~7回目50μAとした。
さらに、半導体層上にカーボン層と銀ペースト層を順次積層し電極層を形成して固体電解コンデンサ素子を作製した。
載置された素子のリード線は抵抗溶接により、素子の電極層は銀ペーストの固化により、電気的かつ機械的にリードフレームの陽極リード及び陰極リードにそれぞれ接続した。
素子を接続したリードフレームを、定法に従ってトランスファー成形により樹脂で封止し、エージング後、リードフレームを所定部で切断し曲げ加工を行って、大きさ7.3×4.3×1.9mmで定格電圧2.5Vのチップ状二酸化タングステン固体電解コンデンサを64個作製した。なお、トランスファー成形の封止樹脂には、松下電工(現パナソニック電工)製CV3400SE樹脂を使用した。
実施例1の原料粉の代わりに、実施例1と同様に作製した二酸化タングステン粉と市販の平均粒径0.5μmのタングステン粉との混合粉に、実施例1と同様にケイ素粉0.5質量%を混合した原料粉を用いた以外は実施例1と同様にして実施例2~6、比較例1~2の固体電解コンデンサを作製した。タングステン粉の混合割合は、原料粉における二酸化タングステンの含有量(質量%)が表1の値となるように調整した。焼結体質量は、実施例2~6が29mg、比較例1~2が38mgであった。
原料粉を作製する時にケイ素を加えなかった以外は実施例1~4、6と同様にして実施例7~11の固体電解コンデンサを作製した。焼結体質量はすべて29mgであった。
実施例1で二酸化タングステン粉の代わりに、タングステン酸アンモニウムを水素で完全に還元して得た平均粒径0.7μmのタングステン粉を使用し、塊状物を得る温度と焼結体を得る温度をそれぞれ1380℃、1520℃とした以外は実施例1と同様にしてチップ状タングステン固体電解コンデンサを得た。焼結体質量は58mgであった。
比較例3で塊状物を得るときにケイ素粉を混合しなかった以外は、比較例3と同様にしてチップ状タングステン固体電解コンデンサを得た。焼結体質量は58mgであった。
比較例3で焼結温度を1380℃とし、焼結体質量を33mgとした以外は、比較例3と同様にしてチップ状タングステン固体電解コンデンサを得た。
実施例1で二酸化タングステン粉の代わりに、フッ化タンタル酸カリウムをナトリウム還元して得た平均粒径0.7μmのタンタル粉を造粒した粉(ケイ素粉を添加していない)を使用し、焼結温度を1390℃とした以外は実施例1と同様にしてチップ状タンタル固体電解コンデンサを得た。焼結体質量は40mgであった。
実施例1~11及び比較例1~6の結果を表1に示す。
(1)二酸化タングステンの割合と発煙電流値の関係
二酸化タングステンの割合が80質量%以上であれば、ケイ素0.5質量%を含む場合(実施例1~6)も含まない場合(実施例7~11)も、発煙電流値は8.5A以上である。これは、タングステンのみを用いた場合(比較例3)の発煙電流値4Aに比べ、顕著に大きい。二酸化タングステンの割合が75質量%以下の場合(比較例1~2)は、金属タングステンのみの場合(比較例4)及び金属タングステンに0.5質量%のケイ素を含む場合(比較例3)と同レベルである。
(2)金属タングステンの割合とコンデンサ容量の関係
金属タングステンの割合が、0質量%(実施例7)から100質量%(比較例3~4)と増えるにつれて、ケイ素を含むか否かに関係なく、コンデンサ容量は480μFレベルから740μFレベルまで上昇する。しかし、上記(1)の通り、二酸化タングステンの割合が75質量%以下では(比較例1,2など)発煙電流値が著しく低下する。したがって、大きな発煙電流値が得られる範囲で(すなわち、二酸化タングステンの含有量が80質量%以上の範囲で)、より大きな容量を得るには、原料粉または陽極体中の金属タングステンの含有量を2質量%以上にすることが好ましく、10質量%以上にすることがより好ましい。
(3)その他
本発明の二酸化タングステンを80質量%以上含むコンデンサの陽極体を用いた固体電解コンデンサは同サイズのタンタルコンデンサ(比較例6)よりも容量が大きく、発煙電流値が格段に高いため大電流が流れてもきわめて発煙しにくい。
Claims (16)
- 二酸化タングステンを80質量%以上含むコンデンサの陽極体。
- ケイ素元素を含み、その含有量が3.4質量%以下である請求項1に記載の陽極体。
- 金属タングステンを含む請求項1または2に記載の陽極体。
- 陽極体が焼結体からなる請求項1~3のいずれかに記載の陽極体。
- 焼結体が体積30mm3以上であり、ケイ素元素を1.5~3.4質量%含む請求項4に記載の陽極体。
- 焼結体が体積10mm3以上30mm3未満であり、ケイ素元素を1.5~2.4質量%含む請求項4に記載の陽極体。
- 焼結体が体積10mm3未満であり、ケイ素元素を0.1~1.4質量%含む請求項4に記載の陽極体。
- 請求項4に記載の焼結体の原料となる、少なくとも二酸化タングステン粉及びケイ素粉の混合物を含む粉体であって、前記混合物中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下である粉体。
- 金属タングステン粉を含む請求項8に記載の粉体。
- 二酸化タングステン粉の平均粒子径が0.1~3μmである請求項8または9に記載の粉体。
- 二酸化タングステン粉のBET比表面積が0.1~20m2/gである請求項8~10のいずれかに記載の粉体。
- 請求項1~7に記載の陽極体を一方の電極とし、対電極との間に介在する誘電体とから構成される固体電解コンデンサ。
- 二酸化タングステンを80質量%以上含む原料粉を焼結することを特徴とするコンデンサの陽極体の製造方法。
- 原料粉を造粒してから焼結する請求項13に記載の陽極体の製造方法。
- 原料粉中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下となるように、少なくとも二酸化タングステン粉及びケイ素粉を混合して原料粉を得る請求項13または14に記載の陽極体の製造方法。
- 金属タングステン粉を混合することを含む請求項15に記載の陽極体の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/377,361 US9396881B2 (en) | 2012-02-08 | 2012-11-22 | Solid electrolytic capacitor |
JP2013514439A JP5350564B1 (ja) | 2012-02-08 | 2012-11-22 | 固体電解コンデンサ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012025023 | 2012-02-08 | ||
JP2012-025023 | 2012-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118371A1 true WO2013118371A1 (ja) | 2013-08-15 |
Family
ID=48947158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080313 WO2013118371A1 (ja) | 2012-02-08 | 2012-11-22 | 固体電解コンデンサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US9396881B2 (ja) |
JP (1) | JP5350564B1 (ja) |
WO (1) | WO2013118371A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014053387A (ja) * | 2012-09-05 | 2014-03-20 | Nippon Chemicon Corp | 固体電解コンデンサの製造方法 |
WO2015093154A1 (ja) * | 2013-12-20 | 2015-06-25 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体、及び電解コンデンサ |
WO2015093155A1 (ja) * | 2013-12-20 | 2015-06-25 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体、及び電解コンデンサ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004349658A (ja) * | 2002-07-26 | 2004-12-09 | Sanyo Electric Co Ltd | 電解コンデンサ |
JP2008291157A (ja) * | 2007-05-28 | 2008-12-04 | Sumitomo Metal Mining Co Ltd | 青色微粒子分散体及びそれを用いた物品 |
JP2010123494A (ja) * | 2008-11-21 | 2010-06-03 | Toyota Central R&D Labs Inc | リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法 |
JP2011124118A (ja) * | 2009-12-11 | 2011-06-23 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI225656B (en) | 2002-07-26 | 2004-12-21 | Sanyo Electric Co | Electrolytic capacitor and a fabrication method therefor |
CN1883021B (zh) * | 2003-11-13 | 2011-04-06 | 昭和电工株式会社 | 固体电解电容器 |
EP1915764A1 (en) | 2005-08-19 | 2008-04-30 | Avx Limited | Polymer based solid state capacitors and a method of manufacturing them |
US8080335B2 (en) * | 2006-06-09 | 2011-12-20 | Canon Kabushiki Kaisha | Powder material, electrode structure using the powder material, and energy storage device having the electrode structure |
US9825337B2 (en) * | 2009-06-17 | 2017-11-21 | Sony Corporation | Non-aqueous electrolyte battery including an amorphous material |
JPWO2011013375A1 (ja) * | 2009-07-29 | 2013-01-07 | 昭和電工株式会社 | 固体電解コンデンサの製造方法 |
JP2012204155A (ja) * | 2011-03-25 | 2012-10-22 | Seiko Instruments Inc | 非水電解質二次電池 |
-
2012
- 2012-11-22 US US14/377,361 patent/US9396881B2/en not_active Expired - Fee Related
- 2012-11-22 JP JP2013514439A patent/JP5350564B1/ja not_active Expired - Fee Related
- 2012-11-22 WO PCT/JP2012/080313 patent/WO2013118371A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004349658A (ja) * | 2002-07-26 | 2004-12-09 | Sanyo Electric Co Ltd | 電解コンデンサ |
JP2008291157A (ja) * | 2007-05-28 | 2008-12-04 | Sumitomo Metal Mining Co Ltd | 青色微粒子分散体及びそれを用いた物品 |
JP2010123494A (ja) * | 2008-11-21 | 2010-06-03 | Toyota Central R&D Labs Inc | リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法 |
JP2011124118A (ja) * | 2009-12-11 | 2011-06-23 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014053387A (ja) * | 2012-09-05 | 2014-03-20 | Nippon Chemicon Corp | 固体電解コンデンサの製造方法 |
WO2015093154A1 (ja) * | 2013-12-20 | 2015-06-25 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体、及び電解コンデンサ |
WO2015093155A1 (ja) * | 2013-12-20 | 2015-06-25 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体、及び電解コンデンサ |
Also Published As
Publication number | Publication date |
---|---|
US9396881B2 (en) | 2016-07-19 |
JP5350564B1 (ja) | 2013-11-27 |
JPWO2013118371A1 (ja) | 2015-05-11 |
US20150016026A1 (en) | 2015-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6835225B2 (en) | Niobium sintered body, production method therefor, and capacitor using the same | |
JP4809463B2 (ja) | タンタル焼結体の製造方法及びコンデンサの製造方法 | |
JP4655689B2 (ja) | 固体電解コンデンサ及びその用途 | |
JP5350564B1 (ja) | 固体電解コンデンサ | |
JP4521849B2 (ja) | コンデンサ用ニオブ粉と該ニオブ粉を用いた焼結体および該焼結体を用いたコンデンサ | |
JP5752270B2 (ja) | タングステンコンデンサの陽極及びその製造方法 | |
US9892861B2 (en) | Anode body for solid electrolytic capacitor | |
JP6012115B2 (ja) | 固体電解コンデンサ素子の製造方法 | |
WO2001081029A1 (fr) | Niobium en poudre, briquette frittee a base de niobium en poudre et condensateur | |
JP4596541B2 (ja) | 固体電解コンデンサ用陽極体および固体電解コンデンサ | |
JP2010265549A (ja) | コンデンサ用ニオブ粉 | |
JP4930958B2 (ja) | コンデンサの製造方法 | |
JP4694642B2 (ja) | コンデンサおよびその製造方法 | |
JP2001307963A (ja) | コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ | |
US20160336116A1 (en) | Method for producing tungsten solid electrolytic capacitor element | |
JP2010261106A (ja) | コンデンサ用ニオブ焼結体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013514439 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867995 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14377361 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12867995 Country of ref document: EP Kind code of ref document: A1 |