WO2013118371A1 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
WO2013118371A1
WO2013118371A1 PCT/JP2012/080313 JP2012080313W WO2013118371A1 WO 2013118371 A1 WO2013118371 A1 WO 2013118371A1 JP 2012080313 W JP2012080313 W JP 2012080313W WO 2013118371 A1 WO2013118371 A1 WO 2013118371A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mass
tungsten
anode body
tungsten dioxide
Prior art date
Application number
PCT/JP2012/080313
Other languages
English (en)
French (fr)
Inventor
内藤 一美
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/377,361 priority Critical patent/US9396881B2/en
Priority to JP2013514439A priority patent/JP5350564B1/ja
Publication of WO2013118371A1 publication Critical patent/WO2013118371A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer

Definitions

  • the present invention relates to a solid electrolytic capacitor having tungsten dioxide as a main component of an anode body. More specifically, an anode body of a capacitor comprising a powder sintered body containing tungsten dioxide as a main component, tungsten dioxide powder 80 mass% or more and silicon powder 3.4 mass% or less as a raw material of the sintered body.
  • the present invention relates to a powder to be contained, a solid electrolytic capacitor using the anode body, and a manufacturing method thereof.
  • a solid electrolytic capacitor includes a conductor (anode body) as one electrode, a dielectric layer formed on the surface of the electrode, and the other electrode (semiconductor layer) provided thereon.
  • a capacitor it is possible to produce a sintered body from a powder containing tungsten as a main component, and to produce a solid electrolytic capacitor using the sintered body as an anode. can get. And this capacitor
  • condenser can be mounted in an electronic device as a small circuit component.
  • this capacitor may emit smoke when a solid current is shorted due to some external factor and a large current flows. For these reasons, there has been a demand for a solid electrolytic capacitor that is short-circuited and hardly emits smoke or fire even when the circuit current is further increased.
  • a capacitor using niobium monoxide as an anode body has been proposed as a solid electrolytic capacitor that hardly emits smoke or ignite (Patent Document 1 of International Publication No. 2007/020464; Patent Document 1).
  • Patent Document 1 of International Publication No. 2007/020464; Patent Document 1
  • the niobium monoxide anode body has a low CV value per volume, and it has been difficult to obtain a capacitor having a smaller size and a higher capacity than a conventional solid electrolytic capacitor such as a tantalum solid electrolytic capacitor.
  • An object of the present invention is to provide a small and high-capacity solid electrolytic capacitor that hardly emits smoke or ignites.
  • Smoke in solid electrolytic capacitors is caused by the burning of the material used as the anode.
  • Tungsten has a slightly larger smoke generation current (amount of current that begins to generate smoke) than anode materials such as tantalum and niobium.
  • the present invention has been completed by finding that it is difficult to emit smoke when used, and that a capacitor having a much larger smoke current can be obtained. That is, the present invention relates to an anode body of capacitors 1 to 7 described below, 8 to 11 powders, 12 electrolytic capacitors, and 13 to 16 anode bodies as raw materials for the anode body.
  • An anode body of a capacitor containing 80% by mass or more of tungsten dioxide [2] The anode body according to claim 1, which contains silicon element and has a content of 3.4% by mass or less. [3] The anode body according to item 1 or 2, which contains metallic tungsten. [4] The anode body according to any one of items 1 to 3, wherein the anode body is a sintered body. [5] The anode body according to item 4, wherein the sintered body has a volume of 30 mm 3 or more and contains 1.5 to 3.4% by mass of silicon element.
  • the anode body according to item 4 wherein the sintered body has a volume of 10 mm 3 or more and less than 30 mm 3 and contains 0.5 to 2.4% by mass of silicon element.
  • An electrolytic capacitor using an anode body containing 80% by mass or more of tungsten dioxide of the present invention has a high capacity and can be manufactured at a low cost. 7.3 mm x width 4.3 mm x height 1.8 mm), and no smoke is generated even if about 9 A) flows. Moreover, by containing 3.4 mass% or less of silicon element, chipping and cracking of the solid electrolytic capacitor element are reduced, and the yield of the solid capacitor product is improved.
  • Tungsten has a slightly larger smoke generation current than materials such as tantalum and niobium, and is less likely to emit smoke. Sintered and used as anode body.
  • a sintered body of tungsten dioxide that can easily obtain a wide electrode area as the anode body.
  • the sintered body of tungsten dioxide can be obtained by sintering tungsten dioxide powder.
  • the tungsten dioxide powder is sintered as a granulated powder as it is, or preferably granulated.
  • the tungsten dioxide powder may contain impurities such as metallic tungsten generated in the process of producing the tungsten dioxide powder, in addition to the silicon element that brings about the effect described later in the sintered body.
  • the tungsten dioxide powder can be produced by reducing tungsten trioxide powder or ammonium tungstate powder while adjusting the hydrogen concentration. If reduced too much, a part of metal tungsten powder is generated. It is also possible to produce tungsten dioxide by a reduction reaction of tungsten trioxide with tungsten.
  • the average particle diameter (D 50 ) of the tungsten dioxide powder can be adjusted by the concentration of the reducing agent, etc., and is preferably in the range of 0.1 to 3 ⁇ m.
  • a powder having a BET specific surface area of 0.1 to 20 m 2 / g can be obtained.
  • these average particle diameters and BET specific surface areas can be measured by the method of the Example mentioned later.
  • the anode body of the present invention may contain metallic tungsten as long as the content of tungsten dioxide is 80% by mass or more.
  • Metal tungsten is also zero-valent tungsten.
  • a method for producing such an anode body for example, when producing tungsten dioxide powder, a method of producing an anode body without removing metal tungsten partially generated due to excessive reduction, or tungsten dioxide powder. And a method of preparing an anode body using a mixed powder obtained by mixing a metal tungsten powder with the above. Normally, the smoke generation current decreases as the tungsten dioxide content decreases, but does not decrease significantly if the tungsten dioxide content is 80% by mass or more.
  • the content ratio of tungsten dioxide, metal tungsten and silicon element in the anode body is a mixture ratio of tungsten dioxide powder, metal tungsten powder and silicon powder as raw materials, Usually almost the same.
  • the silicon element reacts during the heat treatment when creating granulated powder or sintered body, and tungsten silicide (mainly W 5 Si 3 ) is generated on the surface of the granulated powder or sintered body. To do.
  • the present invention after forming a molded body from powder mainly composed of tungsten dioxide, it is sintered to form a sintered body. If silicon element is added to the powder containing tungsten dioxide as a main component, chipping and cracking during molding are reduced, and a sintered body having a good shape can be produced. In order to reduce chipping and cracks, it is better to increase the silicon element content. However, if the silicon element content is excessive, the electrical performance of the capacitor to be produced tends to deteriorate. As a guide, the silicon element content is 3.4% by mass or less, preferably 0.1 to 3.4% by mass, based on the powder or sintered body containing tungsten dioxide as a main component.
  • the optimal content of silicon element depends on the size of the sintered body, it may be determined in advance by preliminary experiments. The larger the sintered body, the more likely it is that chipping and cracking occur, so it is preferable to add more silicon element. If the sintered body is small, the frequency of chipping and cracking is not so high, so the electrical characteristics of the capacitor can be improved. In preference, it is preferable to add a little silicon element. When the silicon content at which chipping and cracking hardly occur in various volumes of sintered bodies was measured, 1.5 to 3.4 mass% for sintered bodies with a volume of 30 mm 3 or more, less than 30 mm 3 and 10 mm 3 or more.
  • the silicon content is more preferably in the above range depending on the volume of the sintered body.
  • a solid electrolytic capacitor is formed by using the anode body of the present invention as one electrode and a dielectric interposed between the counter electrode (cathode).
  • the dielectric is formed on the surface of the anode body (including the surface in the pores), for example, by electrolytic oxidation of the anode body.
  • the counter electrode is formed, for example, by laminating a semiconductor layer such as a conductive polymer on a dielectric.
  • the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to the following description.
  • the particle diameter, specific surface area, and smoke generation current value were measured by the following methods.
  • Particle size The particle size distribution was measured by a laser diffraction scattering method using HRA9320-X100 manufactured by Microtrac Co., and the average particle size was a particle size value (D 50 ; ⁇ m) corresponding to a cumulative volume% of 50 volume%.
  • Smoke current value A voltage of 29 V was applied to the manufactured solid electrolytic capacitor from a power source with a maximum current of 1 A for a maximum of 1 second to completely short the capacitor. Next, a current value at which the capacitor started to smoke after being left at each voltage for 2 minutes at a step-up step of 0.5 A from an external power source was measured. Ten capacitors were measured, and the smallest current value at which smoke began to be emitted was taken as the smoke current value.
  • Example 1 [Preparation of powder and sintered body] Under reduced pressure at 920 ° C. and 10 ⁇ 2 Pa, the tungsten trioxide powder was reduced with tungsten powder to obtain tungsten dioxide powder having an average particle size of 0.7 ⁇ m (specific surface area: 3.1 m 2 / g). The obtained tungsten dioxide powder was mixed with 0.5% by mass of a commercially available silicon powder having an average particle diameter of 1 ⁇ m to obtain a raw material powder. The raw material powder was allowed to stand at 1350 ° C. under reduced pressure at 10 ⁇ 2 Pa for 20 minutes and returned to room temperature to obtain a lump.
  • This lump was crushed with a hammer mill and sieved to a particle size of 20 to 240 ⁇ m to obtain a granulated powder having an average particle size of 120 ⁇ m.
  • a granulated powder having an average particle size of 120 ⁇ m.
  • a lead wire made of tungsten having a diameter of 0.29 mm and a length of 12 mm
  • a rectangular parallelepiped shaped body in which 8 mm of the lead wire was planted outside was produced.
  • the molded body was placed in a vacuum heating furnace, and sintered for 30 minutes sintered under vacuum at 1420 ° C. to 10 -2 Pa.
  • a solid electrolytic capacitor was produced as follows. Using the jig described in Example 1 of International Publication No. 2010/107011 (US2012 / 014036 A1), the maximum current amount at 10 ° C. for 5 hours in a chemical conversion solution (0.1 mass% nitric acid aqueous solution) An anode body was formed at 2 mA / piece and a maximum voltage of 10 V, and a dielectric layer was formed on the surface.
  • the anode body on which the dielectric layer was formed was immersed in a 5% by mass 3,4-ethylenedioxythiophene (hereinafter abbreviated as EDTH) ethanol solution and then dried at room temperature. Next, it was immersed in a separately prepared 10% by mass aqueous solution of iron (III) toluenesulfonate, and pulled up and dried at 60 ° C. for 10 minutes. The operation from the immersion in the EDTH ethanol solution to the drying at 60 ° C. was further repeated 4 times (5 times in total) to obtain a treated body.
  • EDTH 3,4-ethylenedioxythiophene
  • a semiconductor layer made of a conductive polymer was formed by electrolytic polymerization as follows. After immersing the treated body in a 20% by mass EDTH ethanol solution, separately prepared electrolytic polymerization solution (from 0.4% by mass EDTH and 0.6% by mass anthraquinone sulfonic acid containing 70 parts by mass of water and 30 parts by mass of ethylene glycol) Were immersed in a stainless steel (SUS303) container in which the upper surface of the treated body coincided with the liquid surface, and electrolytic polymerization was performed at 20 ° C. and 15 ⁇ A for 45 minutes. After lifting the treated body from the electrolytic polymerization solution, washing with water, washing with ethanol, and drying were sequentially performed.
  • electrolytic polymerization solution from 0.4% by mass EDTH and 0.6% by mass anthraquinone sulfonic acid containing 70 parts by mass of water and 30 parts by mass of ethylene glycol
  • this treated body is post-formed in the dielectric layer forming solution under the conditions of 20 ° C., 15 minutes, maximum voltage 6.5 V, maximum current 0.1 mA / piece, and then washed with water, ethanol, Drying was performed sequentially. From the immersion in the 20% by mass EDTH ethanol solution to the steps up to here were further repeated 6 times (7 times in total) to form a semiconductor layer on the dielectric layer. However, the maximum current during electrolytic polymerization was set to 25 ⁇ A for the first time, 35 ⁇ A for the second time, and 50 ⁇ A for the third to seventh times. Furthermore, a carbon layer and a silver paste layer were sequentially laminated on the semiconductor layer to form an electrode layer, thereby producing a solid electrolytic capacitor element.
  • Two solid electrolytic capacitor elements were placed in the same direction on a lead frame having a thickness of 100 ⁇ m tin-plated on a separately prepared surface.
  • the lead wire was cut
  • the lead wire of the mounted element was connected to the anode lead and cathode lead of the lead frame electrically and mechanically by resistance welding, and the electrode layer of the element was solidified by silver paste.
  • the lead frame to which the element is connected is sealed with a resin by transfer molding according to a standard method, and after aging, the lead frame is cut at a predetermined portion and bent to obtain a size of 7.3 ⁇ 4.3 ⁇ 1.9 mm.
  • Sixty-four chip-shaped tungsten dioxide solid electrolytic capacitors having a rated voltage of 2.5 V were produced. Note that CV3400SE resin manufactured by Matsushita Electric Works (currently Panasonic Electric Works) was used as the transfer molding sealing resin.
  • Examples 2-6, Comparative Examples 1-2 In place of the raw material powder of Example 1, mixed powder of tungsten dioxide powder produced in the same manner as in Example 1 and commercially available tungsten powder having an average particle size of 0.5 ⁇ m was used. Solid electrolytic capacitors of Examples 2 to 6 and Comparative Examples 1 and 2 were produced in the same manner as Example 1 except that raw material powder mixed with mass% was used. The mixing ratio of the tungsten powder was adjusted so that the content (mass%) of tungsten dioxide in the raw material powder was the value shown in Table 1. The mass of the sintered body was 29 mg in Examples 2 to 6 and 38 mg in Comparative Examples 1 and 2.
  • Examples 7-11 Solid electrolytic capacitors of Examples 7 to 11 were produced in the same manner as Examples 1 to 4 and 6, except that silicon was not added when producing the raw material powder. The sintered body mass was 29 mg in all cases.
  • Comparative Example 3 Instead of tungsten dioxide powder in Example 1, tungsten powder having an average particle size of 0.7 ⁇ m obtained by completely reducing ammonium tungstate with hydrogen was used, and the temperature for obtaining a mass and the temperature for obtaining a sintered body were set. A chip-shaped tungsten solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the temperature was 1380 ° C. and 1520 ° C., respectively. The sintered body mass was 58 mg.
  • Comparative Example 4 A chip-like tungsten solid electrolytic capacitor was obtained in the same manner as in Comparative Example 3 except that silicon powder was not mixed when obtaining a lump in Comparative Example 3.
  • the sintered body mass was 58 mg.
  • Comparative Example 5 A chip-shaped tungsten solid electrolytic capacitor was obtained in the same manner as in Comparative Example 3 except that the sintering temperature in Comparative Example 3 was 1380 ° C. and the mass of the sintered body was 33 mg.
  • Comparative Example 6 Instead of tungsten dioxide powder in Example 1, powder obtained by granulating tantalum powder having an average particle diameter of 0.7 ⁇ m obtained by sodium reduction of potassium fluorinated tantalate (no silicon powder added) was used. A chip-shaped tantalum solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the sintering temperature was 1390 ° C. The sintered body mass was 40 mg.
  • the content is preferably 2% by mass or more, and more preferably 10% by mass or more.
  • Table 2 shows the number of chips and cracks in the sintered bodies of Examples 1 to 3 and 7 to 9.
  • the number% in each example is that 100 sintered bodies are selected and observed with a magnifying glass, and there are 2 or more cracks and cracks with a minimum length of 0.1 mm or more found on the 6 surfaces of the sintered body. It is the ratio of the sintered body to be.
  • the chip and the crack seen over two or more sides were counted as one piece. From Table 2, it can be seen that when the volume is less than 10 mm 3 , adding silicon to tungsten dioxide significantly reduces the number of chipped and cracked solid electrolytic capacitors and improves the yield of solid electrolytic capacitor products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本願発明は、(1)二酸化タングステンを80質量%以上含み、好ましくはケイ素元素を3.4質量%以下の量含有する焼結体からなるコンデンサの陽極体、(2)前記焼結体の原料となる、二酸化タングステン粉及びケイ素粉の混合物からなる二酸化タングステン粉含量が80質量%以上、ケイ素粉含量が3.4質量%以下で金属タングステン粉を含んでもよい粉体、(3)前記粉体を焼結するコンデンサの陽極体の製造方法、及び(4)前記陽極体を一方の電極とし、対電極との間に介在する誘電体とから構成される電解コンデンサに関する。本願発明によれば、陽極材料の燃焼による発煙の生じない発煙電流の大きい固体電解コンデンサを提供することが可能である。

Description

固体電解コンデンサ
 本発明は、二酸化タングステンを陽極体の主成分とする固体電解コンデンサに関する。さらに詳しく言えば、二酸化タングステンを主成分とする粉体の焼結体からなるコンデンサの陽極体、前記焼結体の原料となる、二酸化タングステン粉80質量%以上、ケイ素粉3.4質量%以下含有する粉体、前記陽極体を用いた固体電解コンデンサ、及びその製造方法に関する。
 携帯電話やパーソナルコンピュータ等の電子機器の形状の小型化、高速化、軽量化に伴い、これらの電子機器に使用されるコンデンサは、より小型で軽く、より大きな容量、より低いESRが求められている。
 固体電解コンデンサは、導電体(陽極体)を一方の電極とし、その電極の表層に形成した誘電体層とその上に設けられた他方の電極(半導体層)とで構成される。
 このようなコンデンサとして、タングステンを主成分とする粉体から焼結体を作製し、その焼結体を陽極として固体電解コンデンサを作製することが可能であり、小型で高容量かつ安価なコンデンサが得られる。そしてこのコンデンサは、小型回路部品として電子機器に搭載することができる。
 しかし、このコンデンサは従来の固体電解コンデンサと同様に、何らかの外的要因により固体電解コンデンサがショートし、大電流が流れると発煙することがある。このような理由から、たとえショートし、回路電流がさらに大きくなっても発煙や発火しにくい固体電解コンデンサが望まれていた。
 このような発煙や発火しにくい固体電解コンデンサとして一酸化ニオブを陽極体に用いたコンデンサが提案されている(国際公開第2007/020464号パンフレット;特許文献1)。しかし、一酸化ニオブの陽極体は体積当たりのCV値が低く、タンタル固体電解コンデンサなど従来の固体電解コンデンサよりも小型高容量なコンデンサを得ることは困難であった。
国際公開第2007/020464号パンフレット
 本発明の課題は、発煙や発火しにくく、小型で高容量な固体電解コンデンサを提供することにある。
 固体電解コンデンサの発煙は、陽極として使用される材料が燃焼することにより生ずる。タングステンは、タンタルやニオブなどの陽極体材料に比較して発煙電流(発煙し始める電流量)が幾分大きく発煙しにくいが、本発明者は導電性を有する二酸化タングステンを陽極体の主要材料として用いるとより発煙しにくくなり、はるかに発煙電流の大きいコンデンサを得ることができることを見出し本発明を完成した。
 すなわち、本発明は下記1~7のコンデンサの陽極体、前記陽極体の原料となる8~11の粉体、12の電解コンデンサ、13~16の陽極体の製造方法に関する。
[1] 二酸化タングステンを80質量%以上含むコンデンサの陽極体。
[2] ケイ素元素を含み、その含有量が3.4質量%以下である請求項1に記載の陽極体。
[3] 金属タングステンを含む前項1または2に記載の陽極体。
[4] 陽極体が焼結体からなる前項1~3のいずれかに記載の陽極体。
[5] 焼結体が体積30mm3以上であり、ケイ素元素を1.5~3.4質量%含む前項4に記載の陽極体。
[6] 焼結体が体積10mm3以上30mm3未満であり、ケイ素元素を0.5~2.4質量%含む前項4に記載の陽極体。
[7] 焼結体が体積10mm3未満であり、ケイ素元素を0.1~1.4質量%含む前項4に記載の陽極体。
[8] 前項4に記載の焼結体の原料となる、少なくとも二酸化タングステン粉及びケイ素粉の混合物を含む粉体であって、前記混合物中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下である粉体。
[9] 金属タングステン粉を含む前項8に記載の粉体。
[10] 二酸化タングステン粉の平均粒子径が0.1~3μmである前項8または9に記載の粉体。
[11] 二酸化タングステン粉のBET比表面積が0.1~20m2/gである前項8~10のいずれかに記載の粉体。
[12] 前項1~7に記載の陽極体を一方の電極とし、対電極との間に介在する誘電体とから構成される電解コンデンサ。
[13] 二酸化タングステンを80質量%以上含む原料粉を焼結することを特徴とするコンデンサの陽極体の製造方法。
[14] 原料粉を造粒してから焼結する前項13に記載の陽極体の製造方法。
[15] 原料粉中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下となるように、少なくとも二酸化タングステン粉及びケイ素粉を混合して原料粉を得る前項13または14に記載の陽極体の製造方法。
[16] 金属タングステン粉を混合することを含む前項15に記載の陽極体の製造方法。
 本発明の二酸化タングステンを80質量%以上含む陽極体を用いた電解コンデンサは高容量であり、低コストで製造することができ、ショートして大電流(例えば、ケースの大きさがVサイズ(長さ7.3mm×幅4.3mm×高さ1.8mm)で、約9A)が流れても発煙しない。また、ケイ素元素を3.4質量%以下含有させることにより、固体電解コンデンサ素子の欠けやヒビが少なくなり、固体コンデンサ製品の歩留まりが向上する。
 タングステンは、タンタルやニオブなどの材料に比較して発煙電流が、幾分大きく、発煙しにくいが、本発明では、より発煙しにくい二酸化タングステンを主要成分(80質量%以上)として含む粉体を焼結して陽極体として使用する。
 本発明では、陽極体として、広い電極面積を得やすい二酸化タングステンの焼結体を用いることが好ましい。二酸化タングステンの焼結体は、二酸化タングステン粉を焼結して得ることができる。
 二酸化タングステン粉は、その粉のまま、あるいは好ましくは造粒して造粒粉として焼結される。なお、この二酸化タングステン粉には焼結体に後述する効果もたらすケイ素元素の外、二酸化タングステン粉作製の過程で生じる金属タングステンなどの不純物が含まれていてもよい。
 二酸化タングステン粉としては、市販品を使用できるほか、例えば、三酸化タングステン粉やタングステン酸アンモニウム粉を水素濃度を調整しながら還元することにより二酸化タングステン粉を製造することができる。還元しすぎると金属タングステン粉が一部生じる。
 また、三酸化タングステンのタングステンによる還元反応で二酸化タングステンを作製することも可能である。
 これらの製造方法の場合、二酸化タングステン粉の平均粒径(D50)は、還元剤の濃度等により調整でき、0.1~3μmの範囲が好ましい。また、BET比表面積として、0.1~20m2/gの粉を得ることができる。なお、これら平均粒径やBET比表面積は、後述する実施例の方法で測定することができる。
 本発明の陽極体は、二酸化タングステンの含有量が80質量%以上であれば、金属タングステンが含有されていてもよい。なお、金属タングステンは、0価のタングステンでもある。このような陽極体の作製法としては、例えば、二酸化タングステン粉作製時に、還元が進み過ぎて部分的に生じた金属タングステンを除去せずにそのまま用いて陽極体を作成する方法や、二酸化タングステン粉に金属タングステン粉を混合した混合粉を用いて陽極体を作成する方法などが挙げられる。通常、発煙電流は、二酸化タングステン含有量が減るほど低下するが、二酸化タングステン含有量が80質量%以上であれば大きくは低下しない。
 なお、二酸化タングステン含有量が80質量%以上であれば、陽極体中の二酸化タングステン、金属タングステン及びケイ素元素の含有比率は、原料となる二酸化タングステン粉、金属タングステン粉及びケイ素粉の混合割合と、通常ほとんど同じである。
 また、ケイ素元素は、金属タングステンが存在すると、造粒粉や焼結体作成時の熱処理時に反応してケイ化タングステン(主にW5Si3)が造粒粉や焼結体の表面に生成する。
 本発明では、二酸化タングステンを主成分とする粉から成形体を作製後、焼結して焼結体にする。二酸化タングステンを主成分とする粉にケイ素元素を加えておくと成形時の欠けやヒビが少なくなり、形状の良好な焼結体を作製することができる。欠けやヒビを少なくするためにはケイ素元素含有量を増やした方がよいが、ケイ素元素含有量が多すぎると作製されるコンデンサの電気的性能が劣化する傾向にある。目安として、ケイ素元素含有量は、二酸化タングステンを主成分とする粉または焼結体に対して、3.4質量%以下、好ましくは0.1~3.4質量%である。
 さらに、ケイ素元素の最適な含有量は焼結体の大きさによるので、予め予備実験により決定すればよい。焼結体が大きいほど、欠けやヒビが発生しやすいのでケイ素元素を多めに添加することが好ましく、焼結体が小さければ、欠けやヒビの発生頻度がそれほど高くないのでコンデンサの電気的特性を優先して、ケイ素元素を少なめに添加することが好ましい。種々の体積の焼結体で欠けやヒビの発生がほとんど無くなる珪素含有量を測定したところ、体積30mm3以上の焼結体では1.5~3.4質量%、30mm3未満10mm3以上の焼結体では0.5~2.4質量%、10mm3未満の焼結体では0.1~1.4質量%であった。したがって、ケイ素含有量は焼結体の体積に応じて、前記範囲にすることがより好ましい。
 本発明の陽極体を一方の電極とし、対電極(陰極)との間に介在する誘電体とから固体電解コンデンサが形成される。誘電体は、例えば、陽極体を電解酸化することにより、陽極体表面(細孔内表面を含む)上に形成される。対電極は、例えば、導電性高分子等の半導体層を誘電体上に積層することにより形成される。
 以下に実施例及び比較例を挙げて本発明を説明するが、下記の記載により本発明は何ら限定されるものではない。
 本発明において、粒子径、比表面積、及び発煙電流値は以下の方法で測定した。
粒子径:
 マイクロトラック社製HRA9320-X100を用い、粒度分布をレーザー回折散乱法で測定し、その累積体積%が、50体積%に相当する粒径値(D50;μm)を平均粒径とした。
比表面積:
 NOVA2000E(SYSMEX社)を用いBET法で測定した。
発煙電流値:
 作製した固体電解コンデンサに最大電流1Aの電源から29Vの電圧を最大1秒間印加して、コンデンサを完全にショートさせた。次いで、このコンデンサに外部電源から0.5Aずつの昇圧ステップで各電圧に2分放置して発煙し始める電流値を測定した。10個のコンデンサを測定し、この中で発煙し始める最も小さい電流値を発煙電流値とした。
実施例1:
[粉及び焼結体の作製]
 920℃,10-2Paに減圧下、三酸化タングステン粉をタングステン粉で還元し、平均粒径0.7μm(比表面積3.1m2/g)の二酸化タングステン粉を得た。
 得られた二酸化タングステン粉に市販の平均粒径1μmのケイ素粉を0.5質量%混合し、これを原料粉とした。
 原料粉を、10-2Paに減圧下1350℃で20分放置し、室温に戻して、塊状物を得た。この塊状物をハンマーミルで解砕し、粒径20~240μmを篩分し、平均粒径120μmの造粒粉を得た。この造粒粉と、直径0.29mm,長さ12mmタングステン製のリード線とを用いて、リード線の8mmが外側に植立した直方体形状の成形体を作製した。さらに、真空加熱炉に成形体を入れ、10-2Paに減圧下1420℃で30分間焼結した。室温に戻した後に炉から取り出し、大きさ0.99±0.02×1.51±0.03×4.45±0.06mm(体積6.7mm3)で、リード線が0.99×1.51面に植立した、質量29mgの二酸化タングステン焼結体を得た。
[固体電解コンデンサの作製]
 得られた二酸化タングステン焼結体をコンデンサの陽極体として用い、下記の通り固体電解コンデンサの作製を行った。
 国際公開第2010/107011号パンフレット(US2012/014036 A1)の実施例1に記載されている冶具を用い、化成液(0.1質量%硝酸水溶液)中で、10℃、5時間、最大電流量2mA/個、最大電圧10Vで、陽極体を化成し、その表面に誘電体層を形成した。
 誘電体層を形成した陽極体を、5質量%の3,4-エチレンジオキシチオフェン(以下、EDTHと略す。)エタノール溶液に浸漬し、その後室温乾燥した。次に、別途用意した10質量%のトルエンスルホン酸鉄(III)水溶液に浸漬し、引き上げた後に60℃で10分乾燥させた。前記EDTHエタノール溶液への浸漬から60℃での乾燥までの操作をさらに4回(合計5回)繰り返して処理体を得た。
 次いで、電解重合により電導性高分子からなる半導体層を次のようにして形成した。
 処理体を20質量%EDTHエタノール溶液に浸漬した後、別途用意した電解重合液(0.4質量%EDTH及び0.6質量%アントラキノンスルホン酸を含む、水70質量部とエチレングリコール30質量部からなる混合溶媒)が入ったステンレス(SUS303)容器に、処理体上面が液面と一致する位置まで浸漬し、20℃、15μA、45分間、電解重合を行った。処理体を電解重合液から引き上げた後、水洗、エタノール洗浄、乾燥を順次行った。次にこの処理体を、前記誘電体層形成液中で、20℃、15分、最大電圧6.5V、最大電流0.1mA/個の条件で後化成を行い、次いで、水洗、エタノール洗浄、乾燥を順次行った。
 前記20質量%EDTHエタノール溶液への浸漬からここまでの工程までをさらに6回(合計7回)繰り返し、誘電体層上に半導体層を形成した。ただし、電解重合時の最大電流は、1回目25μA、2回目35μA、3~7回目50μAとした。
 さらに、半導体層上にカーボン層と銀ペースト層を順次積層し電極層を形成して固体電解コンデンサ素子を作製した。
 別途用意した表面に錫メッキした厚さ100μmのリードフレームに、固体電解コンデンサ素子を2個ずつ方向を揃えて載置した。載置する際、リード線をリードフレームに合わせて予め切断しておいた。また、焼結体の1.51×4.45mm面がリードフレーム側に向くように載置した。
 載置された素子のリード線は抵抗溶接により、素子の電極層は銀ペーストの固化により、電気的かつ機械的にリードフレームの陽極リード及び陰極リードにそれぞれ接続した。
 素子を接続したリードフレームを、定法に従ってトランスファー成形により樹脂で封止し、エージング後、リードフレームを所定部で切断し曲げ加工を行って、大きさ7.3×4.3×1.9mmで定格電圧2.5Vのチップ状二酸化タングステン固体電解コンデンサを64個作製した。なお、トランスファー成形の封止樹脂には、松下電工(現パナソニック電工)製CV3400SE樹脂を使用した。
実施例2~6、比較例1~2:
 実施例1の原料粉の代わりに、実施例1と同様に作製した二酸化タングステン粉と市販の平均粒径0.5μmのタングステン粉との混合粉に、実施例1と同様にケイ素粉0.5質量%を混合した原料粉を用いた以外は実施例1と同様にして実施例2~6、比較例1~2の固体電解コンデンサを作製した。タングステン粉の混合割合は、原料粉における二酸化タングステンの含有量(質量%)が表1の値となるように調整した。焼結体質量は、実施例2~6が29mg、比較例1~2が38mgであった。
実施例7~11:
 原料粉を作製する時にケイ素を加えなかった以外は実施例1~4、6と同様にして実施例7~11の固体電解コンデンサを作製した。焼結体質量はすべて29mgであった。
比較例3:
 実施例1で二酸化タングステン粉の代わりに、タングステン酸アンモニウムを水素で完全に還元して得た平均粒径0.7μmのタングステン粉を使用し、塊状物を得る温度と焼結体を得る温度をそれぞれ1380℃、1520℃とした以外は実施例1と同様にしてチップ状タングステン固体電解コンデンサを得た。焼結体質量は58mgであった。
比較例4:
 比較例3で塊状物を得るときにケイ素粉を混合しなかった以外は、比較例3と同様にしてチップ状タングステン固体電解コンデンサを得た。焼結体質量は58mgであった。
比較例5:
 比較例3で焼結温度を1380℃とし、焼結体質量を33mgとした以外は、比較例3と同様にしてチップ状タングステン固体電解コンデンサを得た。
比較例6:
 実施例1で二酸化タングステン粉の代わりに、フッ化タンタル酸カリウムをナトリウム還元して得た平均粒径0.7μmのタンタル粉を造粒した粉(ケイ素粉を添加していない)を使用し、焼結温度を1390℃とした以外は実施例1と同様にしてチップ状タンタル固体電解コンデンサを得た。焼結体質量は40mgであった。
 各例で作製した固体電解コンデンサについて、容量及び発煙電流値を測定した。なお、容量は、アジレント製LCRメーターを用い、2.5Vの直流を印加して、室温、120Hzで測定した。
 実施例1~11及び比較例1~6の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、以下のことが言える。
(1)二酸化タングステンの割合と発煙電流値の関係
 二酸化タングステンの割合が80質量%以上であれば、ケイ素0.5質量%を含む場合(実施例1~6)も含まない場合(実施例7~11)も、発煙電流値は8.5A以上である。これは、タングステンのみを用いた場合(比較例3)の発煙電流値4Aに比べ、顕著に大きい。二酸化タングステンの割合が75質量%以下の場合(比較例1~2)は、金属タングステンのみの場合(比較例4)及び金属タングステンに0.5質量%のケイ素を含む場合(比較例3)と同レベルである。
(2)金属タングステンの割合とコンデンサ容量の関係
 金属タングステンの割合が、0質量%(実施例7)から100質量%(比較例3~4)と増えるにつれて、ケイ素を含むか否かに関係なく、コンデンサ容量は480μFレベルから740μFレベルまで上昇する。しかし、上記(1)の通り、二酸化タングステンの割合が75質量%以下では(比較例1,2など)発煙電流値が著しく低下する。したがって、大きな発煙電流値が得られる範囲で(すなわち、二酸化タングステンの含有量が80質量%以上の範囲で)、より大きな容量を得るには、原料粉または陽極体中の金属タングステンの含有量を2質量%以上にすることが好ましく、10質量%以上にすることがより好ましい。
(3)その他
 本発明の二酸化タングステンを80質量%以上含むコンデンサの陽極体を用いた固体電解コンデンサは同サイズのタンタルコンデンサ(比較例6)よりも容量が大きく、発煙電流値が格段に高いため大電流が流れてもきわめて発煙しにくい。
 実施例1~3、7~9の焼結体の欠けとヒビの個数を表2に示した。各例の個数%は、焼結体100個を選択し、拡大鏡で観察して、焼結体の6面に見られる最小長さ0.1mm以上の欠けとヒビの個数が2個以上存在する焼結体の割合である。なお、2つ以上の面に渡って見られる欠けやヒビは1個と数えた。表2から、体積が10mm3未満の場合、二酸化タングステンにケイ素を添加することにより、欠けとヒビのある固体電解コンデンサの数が著しく減少し、固体電解コンデンサ製品の歩留まりが向上することが分かる。
Figure JPOXMLDOC01-appb-T000002

Claims (16)

  1.  二酸化タングステンを80質量%以上含むコンデンサの陽極体。
  2.  ケイ素元素を含み、その含有量が3.4質量%以下である請求項1に記載の陽極体。
  3.  金属タングステンを含む請求項1または2に記載の陽極体。
  4.  陽極体が焼結体からなる請求項1~3のいずれかに記載の陽極体。
  5.  焼結体が体積30mm3以上であり、ケイ素元素を1.5~3.4質量%含む請求項4に記載の陽極体。
  6.  焼結体が体積10mm3以上30mm3未満であり、ケイ素元素を1.5~2.4質量%含む請求項4に記載の陽極体。
  7.  焼結体が体積10mm3未満であり、ケイ素元素を0.1~1.4質量%含む請求項4に記載の陽極体。
  8.  請求項4に記載の焼結体の原料となる、少なくとも二酸化タングステン粉及びケイ素粉の混合物を含む粉体であって、前記混合物中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下である粉体。
  9.  金属タングステン粉を含む請求項8に記載の粉体。
  10.  二酸化タングステン粉の平均粒子径が0.1~3μmである請求項8または9に記載の粉体。
  11.  二酸化タングステン粉のBET比表面積が0.1~20m2/gである請求項8~10のいずれかに記載の粉体。
  12.  請求項1~7に記載の陽極体を一方の電極とし、対電極との間に介在する誘電体とから構成される固体電解コンデンサ。
  13.  二酸化タングステンを80質量%以上含む原料粉を焼結することを特徴とするコンデンサの陽極体の製造方法。
  14.  原料粉を造粒してから焼結する請求項13に記載の陽極体の製造方法。
  15.  原料粉中の二酸化タングステン粉含有量が80質量%以上、ケイ素粉含有量が3.4質量%以下となるように、少なくとも二酸化タングステン粉及びケイ素粉を混合して原料粉を得る請求項13または14に記載の陽極体の製造方法。
  16.  金属タングステン粉を混合することを含む請求項15に記載の陽極体の製造方法。
PCT/JP2012/080313 2012-02-08 2012-11-22 固体電解コンデンサ WO2013118371A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/377,361 US9396881B2 (en) 2012-02-08 2012-11-22 Solid electrolytic capacitor
JP2013514439A JP5350564B1 (ja) 2012-02-08 2012-11-22 固体電解コンデンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012025023 2012-02-08
JP2012-025023 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118371A1 true WO2013118371A1 (ja) 2013-08-15

Family

ID=48947158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080313 WO2013118371A1 (ja) 2012-02-08 2012-11-22 固体電解コンデンサ

Country Status (3)

Country Link
US (1) US9396881B2 (ja)
JP (1) JP5350564B1 (ja)
WO (1) WO2013118371A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053387A (ja) * 2012-09-05 2014-03-20 Nippon Chemicon Corp 固体電解コンデンサの製造方法
WO2015093154A1 (ja) * 2013-12-20 2015-06-25 昭和電工株式会社 タングステン粉、コンデンサの陽極体、及び電解コンデンサ
WO2015093155A1 (ja) * 2013-12-20 2015-06-25 昭和電工株式会社 タングステン粉、コンデンサの陽極体、及び電解コンデンサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349658A (ja) * 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
JP2008291157A (ja) * 2007-05-28 2008-12-04 Sumitomo Metal Mining Co Ltd 青色微粒子分散体及びそれを用いた物品
JP2010123494A (ja) * 2008-11-21 2010-06-03 Toyota Central R&D Labs Inc リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法
JP2011124118A (ja) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI225656B (en) 2002-07-26 2004-12-21 Sanyo Electric Co Electrolytic capacitor and a fabrication method therefor
CN1883021B (zh) * 2003-11-13 2011-04-06 昭和电工株式会社 固体电解电容器
EP1915764A1 (en) 2005-08-19 2008-04-30 Avx Limited Polymer based solid state capacitors and a method of manufacturing them
US8080335B2 (en) * 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
US9825337B2 (en) * 2009-06-17 2017-11-21 Sony Corporation Non-aqueous electrolyte battery including an amorphous material
JPWO2011013375A1 (ja) * 2009-07-29 2013-01-07 昭和電工株式会社 固体電解コンデンサの製造方法
JP2012204155A (ja) * 2011-03-25 2012-10-22 Seiko Instruments Inc 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349658A (ja) * 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
JP2008291157A (ja) * 2007-05-28 2008-12-04 Sumitomo Metal Mining Co Ltd 青色微粒子分散体及びそれを用いた物品
JP2010123494A (ja) * 2008-11-21 2010-06-03 Toyota Central R&D Labs Inc リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法
JP2011124118A (ja) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd 非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053387A (ja) * 2012-09-05 2014-03-20 Nippon Chemicon Corp 固体電解コンデンサの製造方法
WO2015093154A1 (ja) * 2013-12-20 2015-06-25 昭和電工株式会社 タングステン粉、コンデンサの陽極体、及び電解コンデンサ
WO2015093155A1 (ja) * 2013-12-20 2015-06-25 昭和電工株式会社 タングステン粉、コンデンサの陽極体、及び電解コンデンサ

Also Published As

Publication number Publication date
US9396881B2 (en) 2016-07-19
JP5350564B1 (ja) 2013-11-27
JPWO2013118371A1 (ja) 2015-05-11
US20150016026A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US6835225B2 (en) Niobium sintered body, production method therefor, and capacitor using the same
JP4809463B2 (ja) タンタル焼結体の製造方法及びコンデンサの製造方法
JP4655689B2 (ja) 固体電解コンデンサ及びその用途
JP5350564B1 (ja) 固体電解コンデンサ
JP4521849B2 (ja) コンデンサ用ニオブ粉と該ニオブ粉を用いた焼結体および該焼結体を用いたコンデンサ
JP5752270B2 (ja) タングステンコンデンサの陽極及びその製造方法
US9892861B2 (en) Anode body for solid electrolytic capacitor
JP6012115B2 (ja) 固体電解コンデンサ素子の製造方法
WO2001081029A1 (fr) Niobium en poudre, briquette frittee a base de niobium en poudre et condensateur
JP4596541B2 (ja) 固体電解コンデンサ用陽極体および固体電解コンデンサ
JP2010265549A (ja) コンデンサ用ニオブ粉
JP4930958B2 (ja) コンデンサの製造方法
JP4694642B2 (ja) コンデンサおよびその製造方法
JP2001307963A (ja) コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
US20160336116A1 (en) Method for producing tungsten solid electrolytic capacitor element
JP2010261106A (ja) コンデンサ用ニオブ焼結体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14377361

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867995

Country of ref document: EP

Kind code of ref document: A1