WO2013117796A1 - Procedimiento de instalación y mantenimiento de estructura flotante monolítica para soporte de aerogenerador - Google Patents

Procedimiento de instalación y mantenimiento de estructura flotante monolítica para soporte de aerogenerador Download PDF

Info

Publication number
WO2013117796A1
WO2013117796A1 PCT/ES2013/070079 ES2013070079W WO2013117796A1 WO 2013117796 A1 WO2013117796 A1 WO 2013117796A1 ES 2013070079 W ES2013070079 W ES 2013070079W WO 2013117796 A1 WO2013117796 A1 WO 2013117796A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating structure
installation
wind turbine
water
carried out
Prior art date
Application number
PCT/ES2013/070079
Other languages
English (en)
French (fr)
Inventor
Climent Molins Borrell
Josep REBOLLO PERICOT
Alexis CAMPOS HORTIGÜELA
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201230199A external-priority patent/ES2422664B2/es
Priority claimed from ES201230390A external-priority patent/ES2439777A1/es
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Publication of WO2013117796A1 publication Critical patent/WO2013117796A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B2021/505Methods for installation or mooring of floating offshore platforms on site
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/442Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the main object of the invention relates to a procedure for the installation and maintenance of a hollow monolithic floating structure for the support of high-power wind turbines or other elements. It is part of the field of renewable energy, specifically marine wind energy, raising its usefulness for installation in deep sea areas and far from the coast.
  • the procedure includes both the installation of the structure and its maintenance, including said maintenance, the replacement, complete or partial, of wind turbines or other elements previously installed on the floating structure. Maintenance is especially useful considering that the support structures have, in general, a longer useful life than the elements installed in them, allowing a significant reduction in the costs due to these structures in the operation of marine wind farms.
  • Patent application US20060165493 describes a design formed by 3 differentiated flotation points, with an active ballast fluid transfer system between them that results in significant maintenance costs, in addition to the increase in cost due to the existence of multiple points of flotation
  • Other designs such as those presented in WO20101 10329 and WO20101 10330 maintain a philosophy similar to that proposed in WO2006132539, introducing installation methods that facilitate its placement in the final location.
  • the base material of the construction is steel, and in those in which the stability is generated by a pair of adrizante forces, achieved through the descent of the center of gravity through the addition of ballast, a structure is clearly distinguished bottom submerged totally or partially, dedicated to the functions of float and container of ballasting material, and an upper aerial structure in charge of supporting the wind turbine at the desired height above the average sea level, connected to each other by different types of connections,
  • the construction method used for its installation is to transport the lower structure to the anchorage area, where once its verticality and stability is weighted and guaranteed, the upper structure is connected and then the wind turbine.
  • the system differs from what was said, proposing a telescopic tower system, so that the flotation structure is transported and anchored, which houses the upper tower inside. Once the bottom structure is anchored, the wind turbine is placed on the inner tower section that protrudes from it and is subsequently hoisted by a pulley system.
  • the present invention concerns an installation procedure
  • the present invention refers to the construction process for the transport and anchoring of a monolithic floating structure type SPAR for the support of wind turbines or other elements.
  • the upper area must be sealed to prevent flooding, as well as the different side holes, and proceed to fill the dry dock, causing the structure to float in a horizontal position.
  • the connection Prior to filling, and with the intention of being able to perform the tasks of connecting the fixing cables to the dry structure, the connection is carried out, keeping the opposite end of the cables attached to a buoy or similar floating element.
  • tugboats are removed from the dry dock and transported in that same position to the place of anchorage.
  • the cables are wound to facilitate navigation, keeping their opposite ends floating aft of the structure.
  • the cables are deployed in their final plan position, still keeping their ends floating.
  • the internal waterlogging of the hollow structure is carried out with water, to produce the controlled sinking of the same, both in the speed of water filling and in the global movements of change of position of the structure as a whole, from horizontal flotation to Vertical flotation, which supposes a process of adrizado of the structure of support, maintaining during all the time the greater part of the structure submerged.
  • the operation ends with the structure positioned vertically and where only a small section of the structure, not exceeding 30 m, protrudes from the sea surface, so that the wind turbine assembly operations can be carried out at a height approximately equal to the of the working deck of a boat, avoiding the difficulties of working at great heights, where any small oscillation of the system translates into large displacements of the coronation with the consequent difficulties for the coupling of the wind turbine and its blades, not to mention the safety of the operators They perform these tasks.
  • the vessel proposed for the coupling of the wind turbine to the structure is a catamaran type boat or similar, so that once the SPAR type structure is sunk to the level necessary for the bushing assembly operation and the blades it is coupled to the boat, which has a hydraulic system for fixing the structure.
  • the boat itself must have a crane bridge over its deck, by which both the wind turbine and the rotor blades are placed.
  • This vessel can house on its deck both the blades and the wind turbine itself, minimizing the necessary trips between the anchoring point and the center of operations on land.
  • the water inside the structure is evacuated so that it begins to emerge until reaching the desired height above the level of the sea.
  • evacuation points will be placed along the wall of the structure that will eventually be above sea level, so that during the development of the operation, the water should not be elevated to levels much higher than those of the sea surface.
  • evacuation points are solved by hollow stainless steel parts, embedded in the structure during the concreting phase, which allow the exterior of the structure to be connected with its interior and at the ends of which there are joints for the coupling of the evacuation hoses and the corresponding sealing caps.
  • the solid ballast is added to the bottom of the structure. This operation is carried out through the access door to the interior of the structure, where through a A barge with a conveyor belt system introduces the solid ballast in a granular form and is dropped to the bottom through a plastic tube with a diameter between 1 and 2 meters. Since the structure is flooded, the fall of the material is damped by water, in addition to the friction that is generated between the tube and the material, avoiding a damaging impact on the structure at the bottom of it.
  • the water inside must be evacuated to the outside by means of a pump system, so that the added weight is compensated with the extraction of water, until the final weight of permanent ballast desired.
  • the seabed fasteners are installed, either by their own weight, anchors or suction piles. In this operation there is still a remnant of water inside the structure so that its final waterline is submerged, and after the installation of the marine fixations, water continues to be evacuated, thus adjusting both the waterline desired as the initial preload of the tie wires.
  • the maintenance of the floating structure of the process proposed by the present invention comprises the replacement or removal of the wind turbine or other element supported by the floating structure by means of a vertical descent of the floating structure until reaching a maximum height above sea level of 20m, through the controlled flooding of its interior, and a subsequent realization of an emersion process of the floating structure, once the wind turbine or other element has been replaced or removed, by means of the evacuation of the water inside.
  • the present invention refers, according to an exemplary embodiment, to the process of replacing a wind turbine in a SPAR monolithic floating structure anchored. Since they are large structures, the order of 150-300 meters in length is not feasible for transport to land, to replace wind turbines.
  • the assembly of wind turbines on the different prototypes of floating support structures / platforms is carried out through the use of large marine cranes on floating pontoons, assuming an enormous cost of mobilizing them as well as a significant safety risk of the operation.
  • the experience in floating platforms lies in the oil industry, where the platforms are massive structures, with great stability and work platforms that allow to house their own cranes, so the problem arises with this new concept of support structures , much less massive and that require more efficient and safe assembly techniques.
  • the present invention is based, as regards said replacement or removal, on the controlled flooding of the floating structure so that the coronation of the structure is located at a height above the mean sea level (NMM) of between and 20m.
  • NMM mean sea level
  • This height corresponds to the height of the working platform of a catamaran or similar type of vessel, so that the vessel is fixed to the structure by means of a system incorporated in the space between the hulls of the vessel, leaving the coronation of the structure at a height easily accessible from the work deck.
  • NMM mean sea level
  • the vessel must have a crane system, such as a crane bridge over the deck, which allows the removal of the existing wind turbine and the assembly of the new one, as well as jacks located on the deck, tangent to the perimeter of the structure, that allow a correct subjection of the structure to the boat.
  • a crane system such as a crane bridge over the deck, which allows the removal of the existing wind turbine and the assembly of the new one, as well as jacks located on the deck, tangent to the perimeter of the structure, that allow a correct subjection of the structure to the boat.
  • the boat can be decoupled from the structure and by evacuating the interior water it is restored to its original position.
  • the structure is completely stable due to the weight of ballast in its interior, so that the fact of flooding increases its stability by increasing the pendulum effect on it.
  • the structures must have a total tightness throughout its entire length. This must be especially taken into account in the section that stands out over the ML, since during operating conditions it is not essential but must be provided for these future interventions.
  • the necessary pumping height is reduced, maximizing the efficiency of water extraction.
  • the necessary pumping height can exceed 100m, from the bottom of the structure to the NMM.
  • FFIIGG 11 TTrraannssppoorrttee ddee llaa eessttrruuccttuurraa eenn hhoorriizzoonnttaall mmeeddiiaannttee rreemmoollccaaddoorr ,
  • FFIIGG 22 : PPrroocceessoo ddee eerreecccciióón ,
  • FFIIGG 33 AAccooppllaammiieennttoo bbaarrccaazzaa ddee mmoonnttaajjee ddee aaeerrooggeenneerraaddoorr aa llaa eessttrruuccttuurraa ..
  • FFIIGG 44 IInnssttaallaactionióon ddeell aaeerrooggeenneerraaddoorr yy ssuuss ppaallaass ,.
  • FFIIGG 55 EEmmeerrssiióón ddee llaa eessttrruuccttuurraa ,
  • FFIIGG 77 AAjjuussttee ddee tteennssiióón eenn llooss aammaarrrreess ,.
  • FFIIGG 88 SSiittuuaactioniin iinniicciiaall where eessttrruuccttuurraa eenn ppoossiic Termsón where ooppeerraaction
  • FFIIGG 99 PPrroocceessoo ddee iinnuunnddaaction ccoonnttrroollaaddaa yy ddeesscceennssoo ddeell ffuussttee ddee llaa eessttrruuccttuurraa fflloottaannttee aauuttoo eeqquuiilliibbrraadda
  • FFIIGG 1100 AAccooppllaammiieennttoo bbaarrccaazzaa ddee mmoonnttaajjee oo mmaanntteenniimmiieennttoo ddee aaeerrooggeenneerraaddoorr aa llaa eessttrruuccttuurraa ..
  • FFIIGG 11 11 :: EEmmeerrssiióónn ddee llaa eessttrruuccttuurraa ..
  • FFIIGG 1122 RReeaajjuussttee ddee llaa tteennssiióón eenn aammaarrrreess yy rreessttiittuucciión ddee llaa ccoottaa ddee llaa SSPPAARR ..
  • Figure 2 shows the process for the initial funding of the structure.
  • the interior of the structure (24) is flooded in a controlled manner so that it loses flotation and immerse yourself in the water while adopting a vertical configuration.
  • the movement of the structure must be controlled through an auxiliary vessel by means of a control cable fixed to itself and to the base of the structure (22). By means of said cable it is controlled that the process is carried out at low speed, avoiding sudden movements, both due to possible air displacements inside or due to a pendulum effect.
  • the ends of the cables that are floating (23) must be positioned on the ground so as not to interfere with the anchoring process.
  • the partial immersion of the structure in the water will be carried out in a way that emerges as little as possible on the surface of the sea (21), avoiding to the maximum that the structure works cantilever out of the water.
  • FIG 3 shows the coupling of a catamaran boat (32) against the structure.
  • the only ballast available to the structure is the water previously injected inside (34).
  • the vessel has a crane bridge on its deck (31) and space to house the wind turbine or its blades (33 ).
  • Figure 4 shows the assembly scheme of the wind turbine blades, so that due to its dimensions one of the blades must be partially submerged (41). Both the assembly of blades and that of the wind turbine itself will be carried out by means of the crane bridge, avoiding the need to perform work at great heights. Water inside the floating structure has been indicated in this figure with reference (34).
  • FIG 5 shows the emersion sequence of the structure once the wind turbine is installed with its blades.
  • a pumping and water extraction system 51
  • the water inside will be extracted (52), in a controlled way, so that the structure gains floating and emerges.
  • the catamaran-type vessel 53) remains fixed to the structure in a way that allows it to be controlled for possible movements.
  • the evacuation of water to the outside (54) will be carried out through holes prepared in the concrete that allow them to be sealed while they are submerged and that can then be opened to prevent the pumps from propelling the water at large levels over the NMM
  • Figure 6 shows the process of adding solid ballast to the structure.
  • Figure 7 shows the final anchoring process in which once the structure is already stable by itself, the anchors are installed in the seabed. During the operation, the ends of the moorings (71) are kept floating waiting for the execution of their fixation to the bottom, placed in their final plant position. Once the bottom anchors are installed, the preload on the moorings is adjusted by adjusting the structure's waterline (72) by evacuating the remaining internal water.
  • Figures 8 to 12 illustrate the procedure proposed by the present invention, as regards the maintenance of the floating structure, for an exemplary embodiment for which it comprises the replacement or removal of a wind turbine or other element supported by the floating structure.
  • the SPAR structure (1 1) in original configuration is anchored with a certain lower solid ballast (1 12) and fixed to the seabed by means of the corresponding mooring lines (13).
  • Figure 9 shows the process of flooding the structure. The process is carried out by adding water inside (121) it is enough that the coronation of the structure is at most 20 meters above the NMM, Due to the existence of solid ballast, the structure is at all times self stable, no auxiliary element being necessary to guarantee its stability.
  • Figure 10 shows the coupling of a catamaran boat (32) against the structure.
  • the process of maintenance or replacement of the wind turbine is carried out by means of a crane bridge or similar (31) located on the deck of the boat.
  • Figure 1 1 shows the process of emersion of the structure by evacuating the interior water through a pumping system (142) that allows the water to be raised up to a few meters above the NMM, in order to ensure that the level
  • a pumping system 142
  • the internal and external water outlet must be kept as stable as possible, a series of holes are arranged in the side walls of the structure (43) that, as it is emerging, are used as evacuation points for pumping outside ( 141) as soon as they emerge.
  • Figure 12 shows the tension adjustment in the mooring cables, so that by adjusting the level of internal water remaining (151) and thanks to the variation in flotation that this entails, the moorings are tightened to a greater or lesser extent ( 152), being able to vary the level of the set, with respect to the initial position, if the changes of mass of the set require it.

Abstract

Procedimiento de instalación y mantenimiento de estructura flotante monolítica para soporte de aerogenerador en zonas marítimas de gran profundidad y alejadas de la costa, donde la instalación consiste en el fondeo de la estructura (11) desde una posición horizontal de transporte hasta la vertical mediante la inundación controlada de su interior, de forma que el tramo emergente sobre la superficie marina sea mínimo, para que el montaje del aerogenerador a instalar se realice a través de una embarcación tipo catamarán. El mantenimiento comprende la sustitución o remoción del aerogenerador u otro elemento soportado por la estructura flotante (11) mediante un descenso vertical de la estructura flotante (11) hasta alcanzar una altura máxima sobre el nivel medio del mar de 20m, mediante la inundación controlada de su interior, y la realización de un proceso de emersión de la estructura flotante (11), mediante la evacuación del agua de su interior.

Description

PROCEDIMIENTO DE INSTALACIÓN Y MANTENIMIENTO DE ESTRUCTURA LU I ΑΙΜ j t: iVsUr¾ULi s l «A rA A UrU j fc: Uc At U tí i:KAUU
Obgeto de la invención
El objeto principal de la invención se refiere a un procedimiento de instalación y mantenimiento de una estructura flotante monolítica hueca para el soporte de aerogeneradores de gran potencia u otros elementos. Se enmarca en el ámbito de las energías renovables, en concreto energía eólica marina, planteando su utilidad para la instalación en zonas marítimas de gran profundidad y alejadas de la costa.
El procedimiento incluye tanto la instalación de la estructura como su mantenimiento, incluyendo dicho mantenimiento la sustitución, completa o parcial, de aerogeneradores u otros elementos previamente instalados sobre la estructura flotante. El mantenimiento es de especial utilidad teniendo en cuenta que las estructuras de soporte disponen, en general, de una mayor vida útil que los elementos instalados en ellas, permitiendo una reducción significativa de los costes debidos a dichas estructuras en la explotación de parques eóiicos marinos.
Aplicable a estructuras tipo SPAR flotantes, huecas en su interior y auto estables, por estar el centro de gravedad del conjunto, por debajo del centro de flotación.
Antecedentes de la invención
En el contexto que la tendencia global se decanta por el uso de las energías renovables, de entre ellas la tecnología referente a la obtención de energía eléctrica a partir del viento ha sufrido en un corto período de tiempo un importante impulso tecnológico y de l÷D.
Los avances más significativos se han traducido, y siguen traduciéndose, en aerogeneradores con potencias mucho más elevadas que las de sus predecesores, de mayor diámetro, más pesados y con mayor vida útil. Éste hecho ha permitido el planteamiento y explotación de diseños de estructuras para el soporte de aerogeneradores situados en el mar, donde los costes relativos a la cimentación necesaria para estas estructuras son considerablemente más importantes que en las estructuras cimentadas en tierra (onshore) y que con la existencia de aerogeneradores de gran potencia, que por otra parte no requieren de estructuras de soporte significativamente más costosas que para sus predecesores, permiten desde un punto de vista comercial absorber los costes extra derivados del emplazamiento en el mar a cambio de una mayor potencia instalada.
Pese a las numerosas ventajas que la tecnología de la aerogeneración marina ha demostrado tener hasta el momento, éstas se han visto frenadas por la dificultad de hallar ubicaciones marinas con condiciones de viento favorables y a su vez con batimetrías que permitan la fijación y cimentación de éstas estructuras, en profundidades máximas del orden de los 50m, a cierta distancia de la costa, donde sea posible la instalación de grandes parques eólicos offshore que no generen un importante impacto, principalmente visual desde el punto de vista de la aceptación social de la infraestructura.
Es en este punto donde cobra sentido el diseño de plataformas flotantes para el soporte de aerogeneradores, puesto que permiten la instalación de grandes parques eólicos alejados de la costa y con independencia de la profundidad de la zona considerada.
Hasta la fecha se han desarrollado algunas patentes en cuanto a diferentes diseños de plataformas flotantes para dicho fin, de las cuales cabe destacar las solicitudes internacionales WO2010106208 y WO2006132539, que por su simplicidad permiten garantizar la estabilidad del sistema sin necesidad de recurrir a elementos activos de control de estabilidad más allá de los propios relativos a los aerogeneradores.
La solicitud de patente US20060165493 describe un diseño formado por 3 puntos de flotación diferenciados, con un sistema activo de transferencia de fluido de lastrado entre ellos que se traduce en importantes costos de mantenimiento, además del aumento de coste debido a la existencia de los múltiples puntos de flotación. Otros diseños como los presentados en WO20101 10329 y WO20101 10330 mantienen una filosofía parecida al propuesto en WO2006132539, introduciendo métodos de instalación que permiten facilitar su colocación en el emplazamiento definitivo.
En los casos anteriores el material base de la construcción es el acero, y en aquellos en que la estabilidad es generada mediante un par de fuerzas adrizante, conseguido a través del descenso del centro de gravedad mediante el añadido de lastre, se diferencian claramente una estructura inferior sumergida total o parcialmente, dedicada a la funciones de flotador y contenedor de material de lastrado, y una estructura superior aérea encargada de soportar el aerogenerador a la altura deseada sobre el nivel medio del mar, conectadas entre sí mediante distintos tipos de conexiones,
En éstas, el método constructivo que se emplea para su instalación es transportar la estructura inferior hasta la zona de fondeo, donde una vez lastrada y garantizada su verticalidad y estabilidad, se conecta la estructura superior y posteriormente el aerogenerador.
En el caso de las solicitudes internacionales WO20101 10329 y WO20101 10330, el sistema difiere a lo comentado, proponiendo un sistema telescópico de torre, de forma que se transporta y fondea la estructura de flotación, que en su interior alberga la torre superior. Una vez fondeada la estructura inferior, se coloca el aerogenerador sobre el tramo de torre interior que sobresale de ésta y posteriormente se iza mediante un sistema de poleas.
Todos estos sistemas, tanto el de conexión de ambas estructuras en la mar como el de izado telescópico, son aplicables a estructuras de acero, donde el peso de la torre superior es muy inferior al de una de hormigón y a la parte inferior sumergida y lastrada, siendo posible técnica y económicamente el uso de embarcaciones-grúa para su izado y ensamblaje.
En el caso del diseño de estructuras construidas totalmente en hormigón, como la descrita en la solicitud de patente P201 132097, o de mayor envergadura en acero, deben plantearse nuevos métodos de instalación que permitan transportar y fondear estructuras monolíticas huecas, sin necesidad de separar el sistema en una estructura inferior y otra superior, eliminando el problema de necesidad de grandes grúas sobre grandes buques o plataformas, debido al peso de una estructura y minimizando las duras, y técnicamente complejas, tareas de acoplamiento de elementos de grandes dimensiones en alta mar.
Los estudios y prototipos realizados en el ámbito de los parques eólicos mannos flotantes han puesto de manifiesto que uno de los mayores costes en su construcción radica en la propia estructura de soporte de los aerogeneradores, que debido a sus grandes dimensiones y características específicas encarecen de forma significativa el coste de las instalaciones.
Éste ha sido uno de los principales motivos por los que la industria ha apostado firmemente en el diseño y fabricación de aerogeneradores de gran potencia, que permitan suplir parte de este sobrecoste a cambio de aumentar la potencia instalada.
Pese a ello, no podemos obviar el hecho que los aerogeneradores disponen de una vida útil limitada a un cierto número de horas de funcionamiento, que en el caso de infraestructuras marinas se ve reducida debido a la fuerte agresividad del ambiente y la mayor proporción de horas de producción respecto a las instalaciones terrestres.
Sin embargo, existe una gran experiencia en el mundo sobre la construcción de estructuras marinas, bien sean de acero, hormigón u otros materiales, siendo factible la construcción de estructuras muy durables en estos tipos de ambiente, sin suponer un gran coste adicional, especialmente en el caso de estructuras de hormigón.
Bajo este planteamiento parece lógico plantearse aprovechar las estructuras de soporte durante la explotación de los parques eólicos marinos, de forma que la vida útil de los parques no sea restringida por los propios aerogeneradores sino por las estructuras de soporte, que sólo deberán ser sustituidas cuando el daño, por fatiga en determinados elementos, alcance determinados umbrales. De esta forma se puede prolongar notoriamente la vida útil de los parques eólicos marinos, permitiendo sustituir los aerogeneradores sin necesidad de nuevas y costosas estructuras de soporte.
Actualmente existen documentos de patente, tales como US201 1 139056A1 y CN102161375A, donde se plantea el transporte del tramo aéreo de la estructura yyaa eennssaammbbllaaddoo aall aaeerrooggeenneerraaddoorr,, ttrraattáánnddoossee ddee uunnaa ssoollaa ppiieezzaa ppoossiicciioonnaaddaa eenn vveerrttiiccaall,, ssoobbrree bbaarrccaazzaass ttiippoo ccaattaammaarráánn ddee ffoorrmmaa qquuee ppoossiicciioonnáánnddoossee ssoobbrree eell eelleemmeennttoo ssuummeerrggiiddoo ppeerrmmiittee ccoonneeccttaarr llaa ttoorrrree ssuuppeerriioorr ssiinn nneecceessiiddaadd ddee ggrraannddeess ggrrúúaass yy lliimmiittaannddoo llaass ooppeerraacciioonneess eenn aallttaa mmaarr aa uunnaa ssoollaa ccoonneexxiióónn.. EEssttooss
55 ddooccuummeennttooss ddee ppaatteennttee nnoo ccoonntteemmppllaann eell hheecchhoo ddee qquuee ssee ttrraattee ddee uunnaa eessttrruuccttuurraa mmoonnoollííttiiccaa,, ssiinnoo qquuee ssuuppoonneenn qquuee eell eelleemmeennttoo fflloottaannttee oo ffiijjaaddoo aall ffoonnddoo yyaa ssee hhaallllaa iinnssttaallaaddoo,, ppoorr lloo qquuee nnoo ssoonn aapplliiccaabblleess aa eelleemmeennttooss mmaassiivvooss mmoonnoollííttiiccooss qquuee ddeebbeenn ttrraattaarrssee ccoommoo uunnaa ssoollaa ppiieezzaa.. AAddeemmááss,, llaass ppaatteenntteess rreeffeerriiddaass pprreesseennttaann eell iinnccoonnvveenniieennttee ddee tteenneerr qquuee ttrraannssppoorrttaarr uunnaa mmaassaa mmuuyy iimmppoorrttaannttee ccoonn uunn lloo bbaarriicceennttrroo eelleevvaaddoo ssoobbrree eell NNMMMM,, lloo qquuee eexxiiggiirrííaa eell eemmpplleeoo ddee ggrraannddeess eemmbbaarrccaacciioonneess eessppeecciiaalleess..
Figure imgf000007_0001
La presente invención concierne a un procedimiento de instalación y
15 mantenimiento de estructura flotante tipo SPAR monolítica para el soporte de aerogeneradores u otros elementos, donde dicha instalación se lleva a cabo mediante el fondeo de la estructura flotante desde una posición horizontal hasta posicionarla en vertical mediante la inundación controlada de su interior, de forma que el tramo emergente sobre la superficie marina sea como máximo de 30
20 metros.
Diferentes ejemplos de realización del procedimiento de la presente invención, por lo que se refiere a la instalación de la estructura flotante y del montaje del aerogenerador u otro elemento sobre la misma, se hallan descritos con referencia a las reivindicaciones 2 a 8, y en los siguientes párrafos.
25
La presente invención hace referencia al proceso constructivo para el transporte y fondeo de una estructura flotante monolítica tipo SPAR para el soporte de aerogeneradores u otros elementos.
Puesto que al tratarse de estructuras de gran tamaño, del orden de 150- 30 300 metros de longitud, y muy pesadas, no es posible su transporte por vía terrestre de ningún modo, la construcción de la estructura debe realizarse en un dique seco que permita una conexión directa con el mar, pudiendo transportar la estructura como un elemento flotante en configuración horizontal.
Una vez la estructura ha sido construida y está lista para ser transportada, debe sellarse la zona superior para evitar su inundación, igual que los diferentes orificios laterales, y proceder al llenado del dique seco, provocando la flotación de la estructura en posición horizontal. Previamente al llenado, y con la intención de poder realizar las tareas de conexión de cables de fijación a la estructura en seco, se procede a su conexión, manteniendo el extremo opuesto de los cables unido a un elemento de flotación tipo boya o similar.
Una vez la estructura se encuentra flotando en posición horizontal, mediante remolcadores se procede a su extracción del dique seco y se transporta en esa misma posición hasta el lugar de fondeo. Durante el proceso de transporte, los cables se encuentran enrollados para facilitar la navegación, manteniendo sus extremos opuestos flotando a popa de la estructura.
Una vez alcanzadas las coordenadas de fondeo, se despliegan los cables en su posición final en planta, manteniendo aún sus extremos flotando.
A continuación se procede al anegamiento interior de la estructura hueca con agua, para producir el hundimiento controlado de la misma, tanto en la velocidad de llenado de agua como en los movimientos globales de cambio de posición del conjunto de la estructura, de flotación horizontal a flotación vertical, que suponen un proceso de adrizado de la estructura de soporte, manteniendo durante todo el tiempo la mayor parte de la estructura sumergida.
En la fase de erección del sistema, se bombea agua en su interior de forma que la estructura va adoptando una cierta inclinación hasta alcanzar la posición vertical. Esta operación se prevé realizarla con la ayuda de una embarcación o boya auxiliar que controle el movimiento de hundimiento de la base de la estructura a través de un sistema de cables conectados a la embarcación y la estructura.
La operación finaliza con la estructura posicionada en vertical y donde tan solo sobresale de la superficie marina un pequeño tramo de la estructura, no superior a 30 m, lo necesario para que las operaciones de montaje del aerogenerador se puedan realizar a una altura aproximadamente igual a la de la cubierta de trabajo de una embarcación, evitando las dificultades de trabajar a grandes alturas, donde cualquier pequeña oscilación del sistema se traduce en grandes desplazamientos de la coronación con las consiguientes dificultades para el acoplamiento del aerogenerador y sus palas, sin mencionar la seguridad de los operarios que realizan dichas tareas.
La embarcación planteada para el acoplamiento del aerogenerador a la estructura es una embarcación de tipo catamarán o similar, de forma que una vez la estructura tipo SPAR se encuentra hundida hasta la cota necesaria para la operación de montaje del buje y las palas ésta se acopla a la embarcación, que dispone de un sistema hidráulico de fijación a la estructura.
La propia embarcación debe disponer de un puente grúa sobre su cubierta, mediante el cual se colocan tanto el aerogenerador como las palas del rotor. Esta embarcación puede albergar en su cubierta tanto las palas como el aerogenerador propiamente dicho, minimizando los viajes necesarios entre el punto de fondeo y el centro de operaciones en tierra.
Una vez instalado el aerogenerador y sus palas, al menos una de las cuales puede quedar sumergida bajo la superficie marina, se procede a evacuar el agua del interior de la estructura de forma que ésta empiece a emerger hasta alcanzar la altura deseada sobre el nivel del mar.
Con el fin de maximizar el rendimiento del sistema de bombeo de agua, se colocaran diferentes puntos de evacuación a lo largo del paramento de la estructura que finalmente va a quedar por encima del nivel de mar, de forma que durante el desarrollo de la operación, el agua no deba ser elevada hasta cotas muy superiores a las de la superficie marina. Éstos puntos de evacuación se solucionan mediante piezas de acero inoxidable huecas, embebidas en la estructura durante la fase de hormigonado, que permiten conectar el exterior de la estructura con su interior y en cuyos extremos disponen de uniones para el acoplamiento de las mangueras de evacuación y las tapas de sellado correspondientes.
Una vez elevada la estructura a la cota del rotor deseada, se procede a añadir el lastre sólido en el fondo de la estructura. Esta operación se realiza a través de la puerta de acceso al interior de la estructura, donde mediante una barcaza con un sistema de cintas transportadoras se introduce el lastre sólido en forma granular y se deja caer hasta el fondo a través de un tubo plástico de diámetro entre 1 y 2 metros. Dado que la estructura se encuentra inundada, la caída del material queda amortiguada por el agua, además de por el propio rozamiento que se genera entre el tubo y el material, evitando un impacto perjudicial sobre la estructura en el fondo de ¡a misma.
De forma simultánea al llenado de la estructura con material sólido, el agua en su interior debe ir evacuándose al exterior mediante un sistema de bombas, de forma que se vaya compensando el peso añadido con ¡a extracción de agua, hasta conseguir el peso final de lastrado permanente deseado.
Una vez todo el material solido ha sido añadido, se procede a la instalación de ¡as fijaciones ai fondo marino, bien sean ¡astre por peso propio, ancias o pilotes de succión. En esta operación todavía existe un remanente de agua en el interior de la estructura de forma que su línea de flotación final se encuentra sumergida, y posteriormente a la instalación de las fijaciones marinas, se continúa evacuando agua ajustando de esta forma tanto la línea de flotación deseada como la precarga inicial de ¡os cables de amarre.
Por lo que se refiere ai mantenimiento de la estructura flotante del procedimiento propuesto por la presente invención, éste comprende la sustitución o remoción del aerogenerador u otro elemento soportado por la estructura flotante mediante ¡a realización de un descenso vertical de ¡a estructura flotante hasta alcanzar una altura máxima sobre el nivel del mar de 20m, mediante la inundación controlada de su interior, y ¡a realización posterior de un proceso de emersión de ¡a estructura flotante, una vez sustituido o removido el aerogenerador u otro elemento, mediante la evacuación del agua de su interior.
Diferentes ejemplos de realización del procedimiento de la presente invención, por ¡o que se refiere al mantenimiento de la estructura flotante, se hallan descritos con referencia a las reivindicaciones 10 a 12, y en ¡os siguientes párrafos.
Tal y como se ha indicado, la presente invención hace referencia, según un ejemplo de realización, al proceso de sustitución de un aerogenerador en una estructura flotante monolítica tipo SPAR fondeada. Puesto que al tratarse de estructuras de gran tamaño, del orden de 150-300 metros de longitud no es viable su transporte hasta tierra, para sustituir los aerogeneradores. En la actualidad, el montaje de los aerogeneradores sobre los distintos prototipos de estructuras/plataformas de soporte flotantes se realiza mediante el uso de grandes grúas marinas sobre pontones flotantes, suponiendo un enorme coste de movilización de las mismas así como un riesgo importante para la seguridad de la operación. La experiencia existente en plataformas flotantes radica de la industria del petróleo, donde las plataformas son estructuras masivas, con una gran estabilidad y plataformas de trabajo que permiten albergar sus propias grúas, por lo que el problema se presenta con este nuevo concepto de estructuras de soporte, mucho menos masivas y que requieren técnicas de montaje más eficientes y seguras.
La presente invención se basa, por lo que se refiere a dicha sustitución o remoción, en la inundación controlada de la estructura flotante de forma que la coronación de la estructura quede situada a una altura sobre el nivel medio del mar (NMM) de entre 5 y 20m. Dicha altura corresponde a la altura de la plataforma de trabajo de una embarcación de tipo catamarán o similar, de manera que la embarcación se fija a la estructura mediante un sistema incorporado en el espacio entre los cascos de la embarcación, quedando la coronación de la estructura a una altura fácilmente accesible desde la cubierta de trabajo. Además, al quedar fijada la estructura y la embarcación, el sistema es mucho menos sensible a las oscilaciones provocadas por el oleaje y el viento, facilitando enormemente las tareas a realizar y aumentando la seguridad de las operaciones.
La embarcación debe disponer de un sistema de grúa, como puede ser un puente grúa sobre la cubierta, que permita la desinstalación del aerogenerador existente y el montaje del nuevo, así como de gatos situados sobre la cubierta, tangentes a el perímetro de la estructura, que permitan una correcta sujeción de la estructura a la embarcación.
Una vez removido o sustituido el aerogenerador, la embarcación puede desacoplarse de la estructura y mediante la evacuación del agua interior se restituye a su posición original. Durante todo e! proceso, la estructura es completamente estable debido al peso de lastrado existente en su interior, de modo que el hecho de proceder a su inundación aumenta su estabilidad al aumentar el efecto péndulo sobre ésta.
Además, al tratarse de un desplazamiento puramente vertical, no es necesario desconectar la estructura de sus puntos de amarre, pudiendo ajustar finalmente la tensión en ellos a través del bombeo de agua interior, absorbiendo las más que probables variaciones de peso entre el antiguo aerogenerador y el nuevo.
Debido al proceso planteado, las estructuras deben presentar una total estanqueidad en toda la longitud de la misma. Esto debe tenerse especialmente en cuenta en el tramo que sobresale sobre el NM , puesto que durante condiciones de explotación no es imprescindible pero que debe preverse para estas futuras intervenciones.
Pese a la necesidad de estanqueidad, también resulta interesante disponer de salidas al exterior a lo largo del tramo superior durante el proceso de emergido de la estructura, con el fin de evitar sistemas de bombeo sobredimensionados para elevar el agua bombeada hasta la coronación de la estructura, que puede llegar a unos 90m sobre el NMM.
Añadiendo una serie de aberturas laterales, que puedan ser selladas, en el tramo que finalmente queda sobre el NMM, se reduce la altura necesaria de bombeo, maximizando la eficiencia de la extracción de agua. Pese a éste hecho, la altura necesaria de bombeo puede superar los 100m, des del fondo de la estructura hasta el NMM.
Durante el proceso de llenado y vaciado de agua, del interior del fuste, en ningún momento se pierde la condición de equilibrio de flotación, que hace que el centro de gravedad del conjunto (masa de la estructura, del aerogenerador, de! lastre y del agua) están por debajo del centro de gravedad del volumen de agua desplazado, garantizándose siempre la auto estabilidad y que el fuste se mantenga vertical sin posibilidad de que se tumbe o se hunda. BBRREEVVEE DDEESSCCRRIIPPCCIIÓÓNN DDEE LLAASS FFIIGGUURRAASS
SSeegguuiiddaammeennttee ssee ddeessccrriibbeenn bbrreevveemmeennttee llaass ffiigguurraass qquuee aayyuuddaann aa ccoommpprreennddeerr mmeejjoorr llaa iinnvveenncciióónn yy qquuee ssee eennccuueennttrraann ddiirreeccttaammeennttee rreellaacciioonnaaddaass ccoonn llaa iinnvveenncciióónn,, pprreesseennttaaddaass aa mmooddoo ddee eejjeemmpplloo,, ssiinn sseerr lliimmiittaanntteess ddee ééssttaa,.
55 FFIIGG 11 :: TTrraannssppoorrttee ddee llaa eessttrruuccttuurraa eenn hhoorriizzoonnttaall mmeeddiiaannttee rreemmoollccaaddoorr,,
FFIIGG 22:: PPrroocceessoo ddee eerreecccciióónn,,
FFIIGG 33:: AAccooppllaammiieennttoo bbaarrccaazzaa ddee mmoonnttaajjee ddee aaeerrooggeenneerraaddoorr aa llaa eessttrruuccttuurraa..
FFIIGG 44:: IInnssttaallaacciióónn ddeell aaeerrooggeenneerraaddoorr yy ssuuss ppaallaass,.
FFIIGG 55:: EEmmeerrssiióónn ddee llaa eessttrruuccttuurraa,,
lloo FFIIGG 66:: FFiijjaacciióónn ddee aammaarrrreess aall ffoonnddoo mmaarriinnoo..
FFIIGG 77:: AAjjuussttee ddee tteennssiióónn eenn llooss aammaarrrreess,.
FFIIGG 88:: SSiittuuaacciióónn iinniicciiaall ddee llaa eessttrruuccttuurraa eenn ppoossiicciióónn ddee ooppeerraacciióónn
FFIIGG 99:: PPrroocceessoo ddee iinnuunnddaacciióónn ccoonnttrroollaaddaa yy ddeesscceennssoo ddeell ffuussttee ddee llaa eessttrruuccttuurraa fflloottaannttee aauuttoo eeqquuiilliibbrraaddaa
1155 FFIIGG 1100:: AAccooppllaammiieennttoo bbaarrccaazzaa ddee mmoonnttaajjee oo mmaanntteenniimmiieennttoo ddee aaeerrooggeenneerraaddoorr aa llaa eessttrruuccttuurraa..
FFIIGG 11 11 :: EEmmeerrssiióónn ddee llaa eessttrruuccttuurraa..
FFIIGG 1122:: RReeaajjuussttee ddee llaa tteennssiióónn eenn aammaarrrreess yy rreessttiittuucciióónn ddee llaa ccoottaa ddee llaa SSPPAARR..
Figure imgf000013_0001
En las Figuras 1 a 7 se ilustra el procedimiento propuesto por la presente invención, por lo que se refiere a la instalación de la estructura flotante, según un ejemplo de realización.
Tal y como se observa en la figura 1 , la estructura será transportada en
25 posición horizontal (1 1 ) mediante remolcadores (12). Para el transporte de la estructura, ésta deberá sellarse previamente con el fin de aprovechar su flotación para el transporte. Durante el transporte, los cables de fijación al lecho marino se transportan juntamente con la estructura, ya conectados a ésta, y mediante un sistema de boya en su extremo posterior se mantienen a flote.
30 En la figura 2 se observa el proceso para el fondeo inicial de la estructura.
Una vez alcanzado el punto de fondeo, se procede a inundar el interior de la estructura (24) de forma controlada de tal modo que ésta vaya perdiendo flotación y se sumerja en el agua a la vez que adopta una configuración vertical. El movimiento de la estructura deberá ser controlado a través de una embarcación auxiliar mediante un cable de control fijado a sí misma y a la base de la estructura (22). Mediante dicho cable se controla que el proceso se realice a poca velocidad, evitando movimientos bruscos, tanto por posibles desplazamientos de aire en el interior o por efecto péndulo. Durante el fondeo, los extremos de los cables que se hallan flotando (23) deberán posicionarse en planta de forma que no interfieran con el proceso de fondeo. La inmersión parcial de la estructura en el agua se realizará de forma emerja el mínimo tramo posible sobre la superficie del mar (21 ), evitando al máximo que la estructura trabaje en voladizo fuera del agua.
En la figura 3 se muestra el acoplamiento de una embarcación tipo catamarán (32) contra la estructura. En esta fase, el único lastre de que dispone la estructura es el agua previamente inyectada en su interior (34), La embarcación dispone de un puente grúa en su cubierta (31 ) y espacio para albergar el aerogenerador o las palas del mismo (33).
En la figura 4 se muestra el esquema de montaje de las palas del aerogenerador, de forma que debido a sus dimensiones una de las palas deberá quedar sumergida parcialmente (41 ). Tanto el montaje de palas como el del propio aerogenerador se realizará mediante el puente grúa, evitando la necesidad de realizar trabajos a grandes alturas. El agua del interior de la estructura flotante se ha indicado en esta figura con la referencia (34).
En la figura 5 se muestra la secuencia de emersión de la estructura una vez instalado el aerogenerador con sus palas. Mediante un sistema de bombeo y extracción de aguas (51 ) se extraerá el agua del interior (52), de forma controlada, para que la estructura gane flotación y emerja. Durante el proceso, al no disponer todavía del lastrado sólido necesario, es imprescindible que la embarcación de tipo catamarán (53) se mantenga fijada a la estructura de forma que permita controlar los posibles movimientos de ésta. La evacuación de agua al exterior (54) se realizará a través de orificios preparados en el hormigón que permitan sellarlos mientras se encuentren sumergido y que posteriormente pueden ser abiertos para evitar que las bombas deban impulsar el agua a grandes cotas sobre el NMM, En la figura 6 se muestra el proceso de añadido de lastre sólido a la estructura. Éste se realizará a través de la puerta de acceso a la estructura mediante la introducción de material de lastre granular a través de cintas transportadoras (64) situadas en una embarcación tipo catamarán acoplada a la estructura. Las cintas reciben el material de una tolva situada en la embarcación (65) que a su vez requiere de una segunda embarcación auxiliar (66) donde se transporta el material i se va traspasando a la tolva mediante una giratoria o similar. Una vez el material ha sido introducido en el interior, éste se deja caer sobre un embudo (61 ) que recibe el material y lo dirige hacia un tubo plástico de 1 a 2 metros de diámetro (62), colocado a través del interior de la estructura con cierta sinuosidad y finalizando a pocos metros del fondo de la estructura. El material que cae a través del tubo pierde parte de su energía por el propio rozamiento con las paredes y finalmente el impacto contra el agua existente en el interior (67) acaba de amortiguar la caída, depositándose libremente el material en el fondo de la estructura. Durante el proceso deberá irse evacuando el volumen de agua equivalente al peso de lastre que se vaya añadiendo medíante un sistema de bombeo (63).
En la figura 7 se representa el proceso final del fondeo en el que una vez la estructura ya es estable por sí misma, se procede a la instalación de los anclajes en el lecho marino. Durante la operación, los extremos de los amarres (71 ) se mantienen flotando a la espera de la ejecución de su fijación al fondo, colocados en su posición final en planta. Una vez instalados los anclajes del fondo, se ajusta la precarga en los amarres mediante el ajuste de la línea de flotación de la estructura (72) mediante la evacuación del agua interior restante.
En las Figuras 8 a 12 se ilustra el procedimiento propuesto por la presente invención, por lo que se refiere al mantenimiento de la estructura flotante, para un ejemplo de realización para el que éste comprende la sustitución o remoción de un aerogenerador u otro elemento soportado por la estructura flotante.
Tal y como se observa en la figura 8, la estructura SPAR (1 1 ) en configuración original se halla fondeada con un cierto lastrado sólido inferior (1 12) y fijada al lecho marino mediante las correspondientes líneas de amarre (13). En la figura 9 se observa el proceso de inundación de la estructura. El proceso se realiza mediante el añadido de agua en su interior (121 ) basta que la coronación de la estructura se encuentra a como máximo 20 metros sobre el NMM, Debido a la existencia de lastrado sólido, la estructura es en todo momento auto estable, no siendo necesario ningún elemento auxiliar para garantizar su estabilidad.
En la figura 10 se muestra el acoplamiento de una embarcación tipo catamarán (32) contra la estructura. El proceso de mantenimiento o sustitución del aerogenerador se realiza mediante un puente grúa o similar (31 ) situado sobre la cubierta de la embarcación.
En la figura 1 1 se muestra el proceso de emersión de la estructura mediante la evacuación del agua interior a través de un sistema de bombeo (142) que permite elevar el agua hasta pocos metros sobre el NMM, Con el fin de garantizar que la cota de salida del agua interior al exterior se mantenga lo más estable posible, se disponen una serie de orificios en los paramentos laterales de la estructura (43) que tal y como esta va emergiendo se utilizan a modo de puntos de evacuación del bombeo al exterior (141 ) en cuanto estos emerjan.
En la figura 12 se muestra el ajuste de tensión en los cables de amarre, de forma que ajustando el nivel de agua interior remanente (151 ) y gracias a la variación en la flotación que esto supone se tensan en mayor o menor medida los amarres (152), pudiendo variarse la cota del conjunto, respecto a la posición inicial, si los cambios de masa del conjunto lo requieren.

Claims

REIVINDICACIONES
1. Procedimiento de instalación y mantenimiento de estructura flotante tipo SPAR monolítica para el soporte de aerogeneradores u otros elementos, caracterizado porque dicha instalación se lleva a cabo mediante el fondeo de la estructura flotante (1 1 ) desde una posición horizontal hasta posicionarla en vertical mediante la inundación controlada de su interior, de forma que el tramo emergente (21 ) sobre la superficie marina sea como máximo de 30 metros.
2. Procedimiento de acuerdo a la reivindicación 1 , donde, por lo que se refiere a dicha instalación, el movimiento de descenso y rotación que sigue la estructura flotante (1 1 ) durante el paso desde dicha posición horizontal hasta dicha posición vertical es controlado a través de cables (22) desde una o varias embarcaciones o boyas auxiliares.
3. Procedimiento de acuerdo a la reivindicación 1 , donde dicha instalación comprende el montaje, en la estructura flotante (1 1 ), del aerogenerador (33) o el elemento a instalar en la coronación del mismo, se realiza a través de una embarcación tipo catamarán (32) o similar, que se acople a la estructura flotante (1 1 ) y permita la instalación de dichos elementos desde la cubierta a través de un puente grúa (31 ) o similar.
4. Procedimiento de acuerdo a las reivindicaciones 1 , donde, por lo que se refiere a dicha instalación, el proceso de emergido de la estructura flotante (1 1 ), una vez instalado el aerogenerador (33), se realiza mediante extracción del agua interior (34, 42, 52) de la estructura flotante (1 1 ).
5. Procedimiento de acuerdo a la reivindicación 4, donde, por lo que se refiere a dicha instalación, el proceso de extracción de agua para la emersión de la estructura flotante (1 1 ) se realiza a través de diversas válvulas a lo largo de su altura, dispuestas en su paramento.
6. Procedimiento de acuerdo con una cualquiera de las reivindicaciones 3 a 5, que comprende, por lo que se refiere a dicha instalación, la realización de un proceso de adición de material sólido de lastrado en el interior de la estructura flotante (1 1 ) a través de una apertura lateral de la misma.
7. Procedimiento de acuerdo a la reivindicación 6, donde, por lo que se refiere a dicha instalación, el material sólido de lastrado es conducido hacia el fondo de la estructura flotante (1 1 ) a través de un sistema tubular (62) interno a la estructura flotante (1 1 ) que a su vez frena el material sólido de lastrado por rozamiento, el cual es también frenado por el posterior impacto con el agua existente en su interior.
8. Procedimiento de acuerdo a la reivindicación 1 , que comprende, por lo que se refiere a dicha instalación, amarrar la estructura flotante (1 1 ) mediante unos cables de amarre fijados al lecho marino, y realizar un ajuste de la fuerza en dichos cables de amarre mediante el ajuste de la línea de flotación de la estructura.
9. Procedimiento según la reivindicación 1 , caracterizado porque dicho mantenimiento comprende la sustitución o remoción del aerogenerador u otro elemento soportado por la estructura flotante (1 1 ) mediante la realización de un descenso vertical de la estructura flotante hasta alcanzar una altura máxima sobre el nivel medio del mar de 20m, mediante la inundación controlada de su interior, y la realización posterior de un proceso de emersión de la estructura flotante (1 1 ), una vez sustituido o removido el aerogenerador u otro elemento, mediante la evacuación del agua de su interior.
10. Procedimiento de acuerdo a la reivindicación 9, donde el desmontaje del aerogenerador u otro elemento y, en su caso, posterior montaje se realiza a través de una embarcación tipo catamarán (32) o similar, acoplada a la estructura flotante (1 1 ) y que permita la instalación de dicho aerogenerador o elemento desde la cubierta a través de un puente grúa (31 ) o similar.
1 1 . Procedimiento de acuerdo a la reivindicaciones 9, donde la extracción de agua para la emersión de la estructura flotante (1 1 ) se realiza a través de diversas válvulas (142) a lo largo de su altura, dispuestas en su paramento, y que a su vez permiten mantener la estanqueidad cuando sea necesario.
12. Procedimiento de acuerdo a la reivindicación 9, 10 u 1 1 , que comprende realizar un reajuste de la fuerza en unos cables de amarre (152) de la estructura flotante (1 1 ) al lecho marino mediante el ajuste de la línea de flotación de la estructura flotante (1 1 ), vanando el lastre de agua de su interior (151 ), hasta que los cables de amarre (152) adquieran la tensión apropiada.
PCT/ES2013/070079 2012-02-10 2013-02-11 Procedimiento de instalación y mantenimiento de estructura flotante monolítica para soporte de aerogenerador WO2013117796A1 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201230199A ES2422664B2 (es) 2012-02-10 2012-02-10 Procedimiento de instalación de estructura flotante monolítica para soporte de aerogenerador
ESP201230199 2012-02-10
ES201230390A ES2439777A1 (es) 2012-03-14 2012-03-14 Proceso de sustitucion o remoción de aerogenerador en estructuras flotantes monolíticas tipo spar
ESP201230390 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013117796A1 true WO2013117796A1 (es) 2013-08-15

Family

ID=48946937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070079 WO2013117796A1 (es) 2012-02-10 2013-02-11 Procedimiento de instalación y mantenimiento de estructura flotante monolítica para soporte de aerogenerador

Country Status (1)

Country Link
WO (1) WO2013117796A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722196A1 (en) 2019-04-09 2020-10-14 Mitsubishi Heavy Industries, Ltd. Semi-submersible type floating substructure and wind turbine offshore installation method using semi-submersible type floating substructure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328589A (ja) * 2000-05-19 2001-11-27 Hitachi Zosen Corp 海洋深層水採取装置
KR20100057550A (ko) * 2010-04-22 2010-05-31 대우조선해양 주식회사 부유식 풍력발전기 및 그 설치 방법
WO2011083021A2 (en) * 2010-01-07 2011-07-14 Vestas Wind Systems A/S Method of erecting a floating off-shore wind turbine and a floating off-shore wind turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328589A (ja) * 2000-05-19 2001-11-27 Hitachi Zosen Corp 海洋深層水採取装置
WO2011083021A2 (en) * 2010-01-07 2011-07-14 Vestas Wind Systems A/S Method of erecting a floating off-shore wind turbine and a floating off-shore wind turbine
KR20100057550A (ko) * 2010-04-22 2010-05-31 대우조선해양 주식회사 부유식 풍력발전기 및 그 설치 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722196A1 (en) 2019-04-09 2020-10-14 Mitsubishi Heavy Industries, Ltd. Semi-submersible type floating substructure and wind turbine offshore installation method using semi-submersible type floating substructure
US11519388B2 (en) 2019-04-09 2022-12-06 Mitsubishi Heavy Industries, Ltd. Semi-submersible type floating substructure and wind turbine offshore installation method using semi-submersible type floating substructure

Similar Documents

Publication Publication Date Title
ES2643906T3 (es) Plataforma de alta mar estabilizada por columnas con planchas de atrapamiento de agua y sistema de amarre asimétrico para soporte de turbinas eólicas de alta mar
US10774813B2 (en) Floating structure and method of installing same
EP1676029B1 (en) Power generation assemblies
ES2516590B1 (es) Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
KR102231461B1 (ko) 부유식 풍력 발전 플랜트
EP2604501B1 (en) System of anchoring and mooring of floating wind turbine towers and corresponding methods for towing and erecting thereof
US11203398B2 (en) Buoy and installation method for the buoy
JP2017516945A (ja) 風力タービン用浮体式下部構造およびそれの設置方法
EP3498586B1 (en) Stabilized floating platform structure
WO2014205603A1 (en) Platform for tidal turbines
GB2542548A (en) System and method
CN108454799B (zh) 一种海上风电浮式基础浮运施工方法
GB2459172A (en) A stable deep water floating platform
WO2013117796A1 (es) Procedimiento de instalación y mantenimiento de estructura flotante monolítica para soporte de aerogenerador
ES2422664B2 (es) Procedimiento de instalación de estructura flotante monolítica para soporte de aerogenerador
ES2439777A1 (es) Proceso de sustitucion o remoción de aerogenerador en estructuras flotantes monolíticas tipo spar
WO2024074767A1 (en) Free-floating wind turbine and wind farm comprising a plurality of the same
JPWO2013084878A1 (ja) 浮体式風車設備の部品搬送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746129

Country of ref document: EP

Kind code of ref document: A1