WO2013117057A1 - 参考信号测量方法及装置 - Google Patents

参考信号测量方法及装置 Download PDF

Info

Publication number
WO2013117057A1
WO2013117057A1 PCT/CN2012/074620 CN2012074620W WO2013117057A1 WO 2013117057 A1 WO2013117057 A1 WO 2013117057A1 CN 2012074620 W CN2012074620 W CN 2012074620W WO 2013117057 A1 WO2013117057 A1 WO 2013117057A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
terminal
bandwidth
frequency point
frequency
Prior art date
Application number
PCT/CN2012/074620
Other languages
English (en)
French (fr)
Inventor
朱昀
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013117057A1 publication Critical patent/WO2013117057A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to the field of communications, and in particular to a reference signal measurement method and apparatus.
  • BACKGROUND OF THE INVENTION The mobility of a cellular mobile communication system is based on the measurement of the mobile terminal, that is, the reference signal strength or quality of the current cell and a plurality of neighboring cells is measured by the terminal, and then by the network side, or by the terminal itself. The measurement results are evaluated, and then decisions are made and executed to stay in the original cell or move to the new cell.
  • the terminal measures the signal of the current cell and the neighboring cell, and then reports the measurement result to the base station, where the base station indicates the mobility of the terminal according to a certain algorithm; and the terminal in the non-service state
  • the process is similar.
  • the mobile decision is performed on the terminal itself, and the terminal is not required to report the measurement result to the base station, and the base station does not need to send the mobile decision to the terminal.
  • the measurement of the above-mentioned cells by the terminal can be further divided into different types according to the difference between the cell frequency point and the belonging system: If the frequency of the measurement cell is the same as the current camping cell of the terminal, the measurement is called the same frequency measurement.
  • the measurement cell belongs to a different system from the current camping cell, it is called a different system measurement.
  • the camped cell belongs to a Long Term Evolution (LTE) cell.
  • the other cell belongs to the Universal Mobile Telecommunications System (UMTS) cell.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the measurement for the LTE terminal is implemented as follows:
  • the protocol specifies two measurement bandwidths, namely, six radio resource blocks (Resource Blocks, referred to as RBs) and 50 RBs, and the terminal selects one of them to implement measurement. .
  • the terminal often measures the reference signal strength or quality of 6RB or 50RB at the center based on the center of the frequency band of the current cell.
  • Embodiments of the present invention provide a reference signal measurement method and apparatus, so as to at least solve the related art that a terminal can only measure a reference signal of a cell under two specified measurement bandwidths, and the measurement method is not flexible enough, and the measurement result is not accurate enough. problem.
  • An embodiment of the present invention provides a reference signal measurement method, including: a base station configuring a measurement bandwidth corresponding to a measurement frequency point of a terminal; and a base station transmitting a frequency point and a measurement bandwidth to the terminal.
  • the measurement bandwidth corresponding to the measurement frequency of the terminal is: the base station configures the same frequency point and/or the different frequency point according to the cell currently camped by the terminal; the base station configures and the same frequency point according to the same frequency point and/or the different frequency point. / or the same frequency measurement bandwidth and / or inter-frequency measurement bandwidth corresponding to the different frequency points.
  • the method further includes: the base station sending, by using the primary information unit MIB, the system bandwidth of the cell currently camped by the terminal, where the system bandwidth of the currently camped cell may be As the measurement bandwidth of the currently camped cell or the measurement bandwidth of the same frequency point.
  • the transmitting, by the base station, the frequency point and the measuring bandwidth to the terminal include: the base station transmitting the same-frequency measurement bandwidth on the same-frequency system message block, and transmitting the inter-frequency measurement bandwidth on the inter-frequency system message block.
  • the terminal determines the system bandwidth of the cell according to the system to which the cell belongs.
  • An embodiment of the present invention provides a reference signal measurement method, including: receiving, by a terminal, a frequency point from a base station and a system bandwidth corresponding to a frequency point; the terminal calculates a measurement bandwidth according to the frequency point and the system bandwidth; and the terminal measures the reference signal according to the measurement bandwidth. .
  • the terminal calculates the measurement bandwidth according to the frequency point and the system bandwidth, including: determining the system bandwidth as the measurement bandwidth.
  • the measuring the reference signal according to the measurement bandwidth of the terminal comprises: the terminal sampling the continuous radio resource block over the entire measurement bandwidth; and the terminal measuring the reference signal according to the sampled radio resource block.
  • the measuring the reference signal according to the measurement bandwidth of the terminal comprises: the terminal measuring the reference signal for each frequency point within a preset measurement time. After the terminal measures the reference signal for each frequency point within a preset measurement time, the method further includes: the terminal generates a measurement report according to the measurement result; the terminal reports the measurement report to the upper layer, and performs the next cycle according to the preset measurement time.
  • the measurement wherein the period is the preset measurement time multiplied by the number of frequency points.
  • the terminal determines the system bandwidth of the cell according to the system to which the cell belongs.
  • the embodiment of the present invention provides a reference signal measuring apparatus, which is applied to a base station, and includes: a configuration module, configured to configure a measurement bandwidth corresponding to a measurement frequency point of the terminal; and a sending module, configured to send a frequency point and a measurement bandwidth to the terminal.
  • An embodiment of the present invention provides a reference signal measuring apparatus, which is applied to a terminal, and includes: a receiving module, configured to receive a frequency point from a base station and a system bandwidth corresponding to a frequency point; and a computing module, configured to be based on a frequency point and a system bandwidth Calculating the measurement bandwidth; the measurement module is set to measure the reference signal based on the measurement bandwidth.
  • the measurement bandwidth corresponding to the measurement frequency point of the terminal is flexibly configured by the base station, so that an optimal measurement bandwidth can be set for each specific cell, thereby improving the measurement accuracy of the reference signal.
  • FIG. 1 is a flow chart of a reference signal measuring method according to an embodiment of the present invention
  • FIG. 2 is a flow chart of another reference signal measuring method according to an embodiment of the present invention
  • FIG. 3 is a preferred embodiment according to the present invention.
  • FIG. 4 is a schematic diagram of bandwidth of a specific network deployment according to a preferred embodiment of the present invention
  • FIG. 5 is a schematic diagram of bandwidth of another specific network deployment according to a preferred embodiment of the present invention
  • 6 is a schematic diagram of a specific sampling manner of terminal measurement according to a preferred embodiment of the present invention
  • FIG. 7 is a schematic diagram of another specific sampling mode measured by a terminal according to a preferred embodiment of the present invention
  • FIG. 8 is a preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a heterogeneous network deployment according to a preferred embodiment 3 of the present invention
  • FIG. 10 is a structural block diagram of a reference signal measuring apparatus according to an embodiment of the present invention
  • FIG. 12 is a reference letter in accordance with a preferred embodiment of the present invention.
  • FIG. 13 is a block diagram showing another configuration of the reference signal measuring apparatus in accordance with an embodiment of the present invention
  • FIG. 14 is a block diagram of another specific configuration according to the reference signal measuring apparatus of the preferred embodiment of the present invention
  • 15 is a block diagram 2 showing a specific structure of another reference signal measuring apparatus according to a preferred embodiment of the present invention
  • FIG. 16 is a block diagram 3 showing a specific structure of another reference signal measuring apparatus according to a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart of a reference signal measurement method according to an embodiment of the present invention. As shown in FIG. 1, the following steps S102 to S104 are included. Step S102: The base station configures a measurement bandwidth corresponding to a measurement frequency point of the terminal. Step S104: The base station sends the frequency point and the measurement bandwidth to the terminal.
  • the terminal can only measure the reference signal of the cell under the two measurement bandwidths specified by the protocol, so as to decide whether to migrate to the new cell, the measurement method is not flexible enough, and the measurement result is not accurate enough.
  • the base station flexibly configures the measurement bandwidth corresponding to the measurement frequency point of the terminal, so that an optimal measurement bandwidth can be set for each specific cell, thereby improving the measurement accuracy of the reference signal.
  • the measurement bandwidth can be flexibly configured, and the bandwidth length can be extended for some cells to obtain more accurate measurement results.
  • the foregoing step S102 includes configuring a measurement frequency point of the terminal and configuring a measurement bandwidth corresponding to the measurement frequency point, as follows: The base station configures the same frequency point and/or the different frequency point according to the cell currently camped by the terminal; The point and/or inter-frequency point configuration configures an intra-frequency measurement bandwidth and/or an inter-frequency measurement bandwidth corresponding to the same frequency point and/or the different frequency point.
  • the so-called co-frequency and inter-frequency are referenced by the frequency point of the cell where the base station is located, and the neighboring cell has the same frequency as the frequency of the cell, and the different frequency is different frequency.
  • the measurement bandwidth configured by the base station also includes the same frequency measurement bandwidth and the inter-frequency measurement bandwidth.
  • the base station transmits the intra-frequency measurement bandwidth on the intra-frequency system message block, and transmits the inter-frequency measurement bandwidth on the inter-frequency system message block.
  • the base station sends the frequency point and the measurement bandwidth, and also sends the system bandwidth of the cell currently camped by the terminal to the terminal through the primary information unit MIB, where the system bandwidth of the currently camped cell can be used as the currently camped.
  • the base station sends the system bandwidth of the currently camped cell to the terminal, in addition to transmitting the frequency point and the measurement bandwidth to the terminal.
  • the terminal can use the system bandwidth of the currently camped cell as the measurement bandwidth to the current camp.
  • the cell or the same frequency point is used to measure the reference signal, thus eliminating the step of calculating the measurement bandwidth of the same frequency point, making the measurement of the same frequency point easier.
  • the system bandwidth of the currently camped cell can be broadcasted to all terminals of the cell by being broadcasted in a Management Information Base (MIB).
  • MIB Management Information Base
  • the terminal determines the system bandwidth of the cell according to the system to which the cell belongs.
  • the terminal can use the measurement bandwidth configured in the method shown in FIG. 1 to measure the reference signal; for the non-LTE cell, the base station does not need to send the corresponding measurement bandwidth or system bandwidth, because the bandwidth of the wireless standard of the non-LTE system is Fixed, for example, the bandwidth of the UMTS system is 3.84MHz, the bandwidth of the TD system is 1.28MHz, etc., so the terminal can determine its system bandwidth according to the system to which it belongs.
  • the above determination method is simple and reliable.
  • the embodiment of the present invention further provides a reference signal measurement method. FIG.
  • Step S202 the terminal receives the frequency point from the base station and the system bandwidth corresponding to the frequency point.
  • Step S204 the terminal calculates the measurement bandwidth according to the frequency point and the system bandwidth.
  • Step S206 the terminal measures the reference signal according to the measurement bandwidth.
  • the terminal can only measure the reference signal of the cell under the two measurement bandwidths specified by the protocol, so as to decide whether to migrate to the new cell, the measurement method is not flexible enough, and the measurement result is not accurate enough.
  • the terminal calculates the measurement bandwidth according to the frequency point and the corresponding system bandwidth, and measures the strength or quality of the reference signal according to the calculated measurement bandwidth, which is not limited to the two measurement bandwidths specified by the protocol, and ensures the reference signal.
  • the accuracy of the measurement also provides a preferred embodiment, that is, the terminal calculates the measurement bandwidth according to the frequency point and the system bandwidth, including: determining the system bandwidth as the measurement bandwidth.
  • the terminal directly measures the system bandwidth delivered by the base station as the measurement bandwidth, thereby eliminating the step of calculating the measurement bandwidth. Considering that sometimes only simple measurement is required, the preferred method can be used. Get the measurement results that meet the requirements. When measuring the reference signal, the terminal needs to sample the entire measurement bandwidth.
  • the terminal measures the reference signal according to the measurement bandwidth, including: the terminal samples the continuous radio resource block over the entire measurement bandwidth; the terminal measures according to the sampled radio resource block. Reference signal.
  • the sampling point covers the entire measurement bandwidth, thereby ensuring that the measurement can fully reflect the signal condition in the frequency band, but the terminal does not need to sample and measure each RB on the measurement bandwidth, thereby reducing the workload of the terminal sampling measurement. Saves energy consumption.
  • the terminal must be completed for each frequency measured at a fixed time, generally can be set to 480ms or 240ms 0 Therefore, the terminal according to the measurement bandwidth of the measurement reference signal comprises: a terminal for each frequency set in advance The reference signal is measured during the measurement time.
  • specifying the same measurement time for all frequency points helps to control the total measurement time, obtain overall measurement results in time, and make mobility decisions in time.
  • the method further includes: the terminal generating a measurement report according to the measurement result; the terminal reporting the measurement report to the upper layer, and performing according to the preset measurement time The measurement of the next cycle, wherein the cycle is the preset measurement time multiplied by the number of frequency points. Taking 480ms as an example, if the number of frequency points sent by the base station to the terminal is N (including the same frequency and different frequency points), the time period for the terminal to complete the measurement is N*480ms.
  • the terminal determines the system bandwidth of the cell according to the system to which the cell belongs.
  • the terminal can use the measurement bandwidth configured in the method shown in FIG. 1 to measure the reference signal; for the non-LTE cell, the base station does not need to send the corresponding measurement bandwidth or system bandwidth, because the bandwidth of the wireless standard of the non-LTE system is Fixed, for example, the bandwidth of the UMTS system is 3.84MHz, the bandwidth of the TD system is 1.28MHz, etc., so the terminal can determine its system bandwidth according to the system to which it belongs.
  • the measurement bandwidth of the terminal of the present invention can be flexibly configured, or the measurement bandwidth length is extended for some cells, thereby obtaining more accurate measurement results and providing a more reliable basis for mobility decision;
  • the base station can configure the most suitable measurement bandwidth according to different network deployment scenarios, so that the measurement of the terminal achieves the optimal balance between measurement accuracy and measurement power consumption.
  • the measurement object of the terminal is a reference signal of the cell, and specifically includes a reference signal of a neighboring cell configured in the cell and the system message currently camped by the terminal; specifically, the reference signal strength is measured (Reference Signal Received Power) , referred to as RSRP) or Reference Signal Received Quality (RSRQ for short), the method of the present invention is equally applicable to measuring RSRP and RSRQ, but for convenience of description, in the following preferred embodiment to measure RSRQ For example.
  • FIG. 3 is a flowchart of a reference signal measurement method according to a preferred embodiment of the present invention. As shown in FIG.
  • Step S302 The base station configures the measurement bandwidth according to the specific network deployment, and sends the measurement bandwidth to the terminal. Specifically, the base station needs to configure the measurement frequency of the terminal, including the frequency of the same frequency and the frequency of the different frequency. Accordingly, the measurement bandwidth configured by the base station also includes the same frequency measurement bandwidth and the inter-frequency measurement bandwidth. So-called co-frequency and inter-frequency It is based on the frequency point of the cell where the base station is located, the same is the same frequency, and the different is the different frequency.
  • the measurement bandwidth of the terminal configured by the network side can utilize the information known to the network, and set an optimal measurement bandwidth value for each specific cell, and different cells.
  • the configuration can be flexibly changed to ensure the accuracy of the measurement while reducing the unnecessary measurement of the terminal, achieving the balance between accuracy and measurement power consumption.
  • the following describes two examples of measurement bandwidth configuration in a specific network deployment.
  • 4 is a schematic diagram of bandwidth of a specific network deployment according to a preferred embodiment of the present invention. As shown in FIG. 4, the system bandwidth of celll is BW1, the system bandwidth of cell2 is BW2, and the system bandwidth of cell3 is BW3. When the base station is configured, the measurement bandwidth of cell1 and cell3 is their system bandwidth.
  • the base station For cell2, its system bandwidth is BW2, but its overlap with celll is BW2', in order to truly reflect that the terminal is in cell2. In the case of useful signals and interferences that are left in time, it is only necessary to measure the RSRQ on BW2', so the measurement bandwidth of the base station configuration cell2 is BW2'. In a specific configuration, the base station performs configuration of the same frequency point and the different frequency point according to the cell where the terminal currently camps.
  • the base station configures the same frequency point F1 and the measurement bandwidth BW1 of the same frequency point, and the measurement bandwidths BW2' and BW3 of the different frequency points F2, F3 and corresponding inter-frequency points (here, Fl, F2) F3 is the center frequency of celll, cell2, and cell3 respectively.
  • 5 is a schematic diagram of bandwidth of another specific network deployment according to a preferred embodiment of the present invention. The difference between FIG. 5 and FIG. 4 is that the frequency band of cell 4 is also superimposed on the frequency band of cell 3.
  • the base station is optimally The measurement bandwidth of cell4 is set to BW4, but since the frequency of cell4 and the frequency of cell3 are both F3, and the measurement bandwidth is attached to the frequency point, the measurement bandwidth of the base station for the inter-frequency point F3 configuration is still BW3.
  • the measurement bandwidth information is sent to the terminal along with the frequency point. Specifically, the measurement bandwidth of the same frequency point is sent on a system information block (SIB3) of the same frequency system; the measurement bandwidth of the different frequency point is sent on the inter-frequency system message block (SIB5).
  • SIB3 system information block
  • SIB5 inter-frequency system message block
  • the base station simultaneously delivers the system bandwidth of the currently camped cell of the terminal together with the frequency band and the measurement bandwidth. Still taking the above FIG.
  • Step S304 After receiving the frequency point and measurement bandwidth delivered by the network, the terminal performs RSRQ measurement according to the method. Specifically, the measurement of the terminal is also performed according to the frequency point and the corresponding measurement bandwidth.
  • MIB Master Information Element
  • the bandwidth of the LTE system is measured by the number of RBs, and one RB is the smallest bandwidth unit in the LTE system, and is also a sampling point for the specific measurement performed by the terminal in the present invention, and a specific sampling measurement refers to the terminal measurement.
  • the RSRQ value on an RB The measurement of the terminal must cover all measurement bandwidths corresponding to the frequency point (same frequency point or different frequency point), but the specific sampling method can be flexible.
  • a specific sampling mode of the terminal measurement is performed.
  • the terminal measures a plurality of consecutive RB samples, and a certain number of spare RBs are separated between the groups.
  • FIG. 7 another specific sampling mode is adopted.
  • the measurement bandwidth is equally divided into several smaller measurement units.
  • the terminal randomly selects several RB sampling measurements on each measurement unit, and the sampling may be discontinuous, such as The first sampling unit; or it may be continuous, such as the second sampling unit.
  • the terminal has multiple specific implementation forms for sampling, and the sampling points cover the entire measurement bandwidth, thereby ensuring that the measurement can fully reflect the signal condition in the frequency band, but this does not mean that the terminal must measure the bandwidth.
  • Each RB on the top is sampled and measured, which reduces the workload of the terminal sampling measurement and saves energy consumption.
  • the terminal may also use the system bandwidth of the camped cell as the measurement bandwidth for the currently camped cell or the same.
  • the measurement is performed at the frequency point, and the measurement is performed in the same manner as above, and can be flexible.
  • the measurement process of the terminal the terminal must complete the measurement of each frequency point in a fixed time, generally can be set to 480ms or 240ms. Therefore, giving the terminal the flexibility of specific sampling, on the other hand, also gives the terminal the space for adjusting the sampling bandwidth of different frequency points to ensure that it can complete the measurement within the specified time. Specifying the same measurement time for all frequency points helps to control the total measurement time, obtain overall measurement results in a timely manner, and make mobility decisions in a timely manner.
  • the time period in which the terminal completes the measurement is N*480 ms.
  • the terminal must complete all measurements before the end of this time period, and generate a measurement report to report to the upper layer, and then start the next measurement cycle.
  • the terminal reports the measurement report to the upper layer in the form of a trigger event. For example, if the measured RSRQ value exceeds a certain threshold, or when the RSRQ of the two cells exceeds the threshold, the triggering event is triggered. Give the upper level and carry specific measurement results in the measurement report.
  • FIG. 8 is a flowchart of a reference signal measuring method according to a preferred embodiment 2 of the present invention.
  • the network configures the system bandwidth, and sends the bandwidth to the terminal.
  • Step S804 the terminal performs measurement according to the configured system bandwidth.
  • the base station does not configure the measurement bandwidth of each frequency point, but sends the system bandwidth of each frequency point to the terminal.
  • the network side delivers frequency points F1, F2, F3 and their corresponding bandwidths BW1, BW2, and BW3.
  • the terminal After receiving the frequency and system bandwidth information sent by the network, the terminal has two options: (1) the terminal simply measures the system bandwidth as the measurement bandwidth; or
  • the terminal calculates the measurement bandwidth by itself according to the frequency point and the system bandwidth of each frequency point, and performs measurement by using the calculated measurement bandwidth. Still taking FIG. 4 as an example, Fl, BW1, and F2, and BW2 are known to the terminal, so the terminal can calculate the overlapping frequency band BW2' of cell1 and cell2 as the measurement bandwidth of F2.
  • the terminal knows F3, BW3, and BW4, the overlapping frequency band portion of cell1 and cell3 can be calculated, and the overlapping portions of cell1, cell3, and cell4 can also be calculated, and the terminal can be based on It is necessary to set the measurement bandwidth of F3, BW3 or BW4.
  • FIG. 9 is a schematic diagram of a heterogeneous network deployment according to a preferred embodiment 3 of the present invention.
  • cell1 is an LTE cell and is a currently camped cell of the terminal, with a frequency of F1 and a bandwidth of BW1, cell3.
  • the frequency point is F3
  • the bandwidth is BW3.
  • the cell 1 can still be measured in the manner of the foregoing preferred embodiment 1 or the second preferred embodiment.
  • the base station does not need to send the corresponding measurement bandwidth or the system bandwidth.
  • the bandwidth of the wireless system for the non-LTE system is fixed.
  • the UMTS is 3.84 MHz
  • the TD is 1.28 MHz, etc., so the terminal can determine its system bandwidth according to the system to which it belongs.
  • the preferred embodiment of the present invention can be regarded as further optimization of the preferred embodiment 1.
  • the minimum measurement bandwidth of the network configuration is 6 RB, and when the measurement bandwidth of the network configuration is 6 RB, the terminal can be above and below the 6 RB bandwidth.
  • Several RBs are extended at both ends as an increased measurement bandwidth and measurements are performed. Because 6RB is a small bandwidth, if this measurement bandwidth is used, the measurement error may be too large due to insufficient sample, giving the terminal a certain degree of freedom. Increasing the measurement sample can obtain more accurate measurement under the premise of the terminal power. result.
  • FIG. 10 is a structural block diagram of a reference signal measuring apparatus according to an embodiment of the present invention. As shown in FIG. 10, a configuration module 1002 and a first transmitting module 1004 are included. The structure is described in detail below.
  • the configuration module 1002 is configured to configure a measurement bandwidth corresponding to the measurement frequency point of the terminal.
  • the first sending module 1004 is connected to the configuration module 1002, and is configured to send the frequency point to the terminal and the measurement bandwidth corresponding to the frequency point configured by the configuration module 1002.
  • Figure 11 is a block diagram of a specific structure of a reference signal measuring apparatus according to a preferred embodiment of the present invention. As shown in Figure 11, the configuration module 1002 includes: a first configuration sub-module 10022, configured to be based on a cell configuration in which the terminal currently camps.
  • the second configuration sub-module 10024 is connected to the first configuration sub-module 10022, and is configured to configure and the same frequency point according to the same frequency point and/or the different frequency point configuration configured by the first configuration sub-module 10022. And/or the same frequency measurement bandwidth and/or the inter-frequency measurement bandwidth corresponding to the different frequency points.
  • 12 is a block diagram of a specific structure of a reference signal measuring apparatus according to a preferred embodiment of the present invention. As shown in FIG. 12, the apparatus further includes: a second sending module 1006, connected to the configuration module 1002, configured to send to the terminal through the MIB.
  • the first sending module 1004 includes: a first sending submodule 10042, configured to send a measurement bandwidth of the same frequency point on the same frequency system message block, and send a measurement bandwidth of the different frequency point on the inter-frequency system message block.
  • the embodiment of the present invention further provides a reference signal measuring device, which is applied to a terminal, and the reference signal measuring device can be used to implement the reference signal measuring method shown in FIG. 2 above.
  • FIG. 13 is a structural block diagram of another reference signal measuring apparatus according to an embodiment of the present invention. As shown in FIG.
  • the receiving module 1302 is configured to receive a frequency point from the base station and a system bandwidth corresponding to the frequency point.
  • the calculating module 1304 is connected to the receiving module 1302, and is configured to calculate a measurement bandwidth according to the frequency point and the system bandwidth received by the receiving module 1302. 1306, connected to the calculation module 1304, configured to measure the reference signal according to the measurement bandwidth calculated by the calculation module 1304.
  • FIG. 14 is a block diagram showing a specific structure of another reference signal measuring apparatus according to a preferred embodiment of the present invention. As shown in FIG. 14, the calculating module 1304 includes a calculating submodule 13042, connected to the receiving module 1302, and configured to determine the receiving module 1302.
  • the measurement module 1306 includes: a sampling sub-module 13062, configured to sample consecutive radio resource blocks over the entire measurement bandwidth; a first measurement sub-module 13064, connected to the sampling sub-module 13062, set The reference signal is measured for the radio resource block sampled according to the sampling sub-module 13062.
  • the measurement module 1306 includes: a second measurement sub-module 13066, configured to measure a reference signal for each frequency point within a preset measurement time; and generate a sub-module 13068 to connect to the second measurement
  • the sub-module 13066 is configured to generate a measurement report according to the measurement result of the second measurement sub-module 13066.
  • the report sub-module 13069 is connected to the generation sub-module 13068, and is configured to report the measurement report generated by the generation sub-module 13068 to the upper layer, and according to the preset The measured time is measured for the next cycle.
  • the reference signal measurement device described in the device embodiment corresponds to the foregoing method embodiment, and the specific implementation process has been described in detail in the method embodiment, and details are not described herein again.
  • a reference signal measuring method and apparatus are provided.
  • the measurement bandwidth corresponding to the measurement frequency of the terminal is flexibly configured by the base station, so that an optimal measurement bandwidth can be set for different network deployments, thereby improving the measurement accuracy of the reference signal.
  • the terminal calculates the measurement bandwidth according to the frequency point and its corresponding system bandwidth, and measures the strength or quality of the reference signal according to the calculated measurement bandwidth, which is not limited to the two measurement bandwidths specified by the protocol, and ensures the reference signal measurement.
  • the degree of accuracy Industrial Applicability
  • the measurement bandwidth corresponding to the measurement frequency of the terminal is flexibly configured by the base station, so that an optimal measurement bandwidth can be set for different network deployments, thereby improving the measurement accuracy of the reference signal.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种参考信号测量方法及装置,该方法包括:基站配置与终端的测量频点对应的测量带宽;基站向终端发送频点和测量带宽。本发明实施例通过基站灵活配置与终端的测量频点对应的测量带宽,不仅限于协议规定的两种测量带宽,这样可以对每个具体的小区设置最优的测量带宽,向提升了参考信号的测量准确度。

Description

参考信号测量方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种参考信号测量方法及装置。 背景技术 蜂窝移动通信系统的移动性是建立在移动终端的测量基础上的, 即由终端对当前 小区和众多相邻小区的参考信号强度或者质量进行测量, 之后或者由网络侧, 或者由 终端本身对测量结果进行评估, 继而做出停留在原小区还是移动到新小区的决策并执 行。 具体地, 对于在业务状态下的终端, 由终端对当前小区和相邻小区的信号进行测 量, 然后将测量结果上报给基站, 基站根据一定的算法指示终端的移动; 对于非业务 状态下的终端, 其过程也类似, 区别仅在于移动的判决在终端本身进行, 而不需要终 端将测量结果上报给基站, 也不需要基站将移动决策下发给终端。 从另一个角度, 终端对上述各小区的测量又可以根据小区频点和所属系统的差异 分成不同的类型: 如果测量小区的频点和终端当前驻留小区相同, 那么测量被称为同 频测量; 如果不同, 则被称为异频测量, 如果测量小区与当前驻留小区属于不同的系 统, 则被称为异系统测量, 比如驻留小区属于长期演进 (Long term evolution, 简称为 LTE)小区, 而另一小区属于通用移动通信系统 (Universal Mobile Telecommunications System, 简称为 UMTS) 小区。 现有技术中, 对于 LTE终端的测量是这样实现的: 协议规定了两种测量带宽, 即 6个无线资源块 (Resource Block, 简称为 RB ) 和 50个 RB, 终端选择其中之一来实 现测量。 工程实现中, 终端往往以当前小区的频带中心为基准, 测量在这个中心上的 6RB、 或者是 50RB 的参考信号强度或者质量。 但是, 上述测量方法只在规定的两种 测量带宽下测量, 不够灵活, 测量结果不够精确。 发明内容 本发明实施例提供了一种参考信号测量方法及装置, 以至少解决相关技术中终端 仅可以在规定的两种测量带宽下测量小区的参考信号, 测量方法不够灵活、 测量结果 不够精确的问题。 本发明实施例提供了一种参考信号测量方法, 包括: 基站配置与终端的测量频点 对应的测量带宽; 基站向终端发送频点和测量带宽。 基站配置与终端的测量频点对应的测量带宽包括: 基站根据终端当前驻留的小区 配置同频点和 /或异频点; 基站根据同频点和 /或异频点配置与同频点和 /或异频点对应 的同频测量带宽和 /或异频测量带宽。 在基站配置与终端的测量频点对应的测量带宽之后, 上述方法还包括: 基站通过 主信息单元 MIB向终端发送终端当前驻留的小区的系统带宽, 其中, 当前驻留的小区 的系统带宽可以作为当前驻留的小区的测量带宽或者同频点的测量带宽。 基站向终端发送频点和测量带宽包括: 基站在同频系统消息块上发送同频测量带 宽, 在异频系统消息块上发送异频测量带宽。 在小区是非 LTE小区的情况下, 终端根据小区所属的系统确定小区的系统带宽。 本发明实施例提供了一种参考信号测量方法, 包括: 终端接收到来自基站的频点 和与频点对应的系统带宽; 终端根据频点和系统带宽计算测量带宽; 终端根据测量带 宽测量参考信号。 终端根据频点和系统带宽计算测量带宽包括: 确定系统带宽作为测量带宽。 终端根据测量带宽测量参考信号包括: 终端在整个测量带宽上对连续的无线资源 块进行采样; 终端根据采样的无线资源块测量参考信号。 终端根据测量带宽测量参考信号包括: 终端对每个频点在预先设定的测量时间内 测量参考信号。 在终端对每个频点在预先设定的测量时间内测量参考信号之后, 还包括: 终端根 据测量结果生成测量报告; 终端向高层上报测量报告, 并根据预先设定的测量时间进 行下一周期的测量, 其中, 所述周期是所述预先设定的测量时间乘以频点个数。 在小区是非 LTE小区的情况下, 终端根据小区所属的系统确定小区的系统带宽。 本发明实施例提供了一种参考信号测量装置, 应用于基站, 包括: 配置模块, 设 置为配置与终端的测量频点对应的测量带宽; 发送模块, 设置为向终端发送频点和测 量带宽。 本发明实施例提供了一种参考信号测量装置, 应用于终端, 包括: 接收模块, 设 置为接收来自基站的频点和与频点对应的系统带宽; 计算模块, 设置为根据频点和系 统带宽计算测量带宽; 测量模块, 设置为根据测量带宽测量参考信号。 本发明实施例通过基站灵活配置与终端的测量频点对应的测量带宽, 这样可以对 每个具体的小区设置最优的测量带宽, 从而提升了参考信号的测量准确度。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的参考信号测量方法的流程图; 图 2是根据本发明实施例的另一种参考信号测量方法的流程图; 图 3是根据本发明优选实施例一的参考信号测量方法的流程图; 图 4是根据本发明优选实施例一的具体网络部署的带宽示意图; 图 5是根据本发明优选实施例一的另一种具体网络部署的带宽示意图; 图 6是根据本发明优选实施例一的终端测量的具体采样方式的示意图; 图 7是根据本发明优选实施例一的终端测量的另一种具体采样方式的示意图; 图 8是根据本发明优选实施例二的参考信号测量方法的流程图; 图 9是根据本发明优选实施例三的异构网络部署的示意图; 图 10是根据本发明实施例的参考信号测量装置的结构框图; 图 11是根据本发明优选实施例的参考信号测量装置的结构框图一; 图 12是根据本发明优选实施例的参考信号测量装置的结构框图二; 图 13是根据本发明实施例的另一种参考信号测量装置的结构框图; 图 14是根据本发明优选实施例的另一种参考信号测量装置的具体结构框图一; 图 15是根据本发明优选实施例的另一种参考信号测量装置的具体结构框图二; 图 16是根据本发明优选实施例的另一种参考信号测量装置的具体结构框图三。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明实施例提供了一种参考信号测量方法, 图 1是根据本发明实施例的参考信 号测量方法的流程图, 如图 1所示, 包括如下的步骤 S102至步骤 S104。 步骤 S102, 基站配置与终端的测量频点对应的测量带宽。 步骤 S104, 基站向终端发送频点和测量带宽。 相关技术中, 终端仅可以在协议规定的两种测量带宽下测量小区的参考信号, 以 决策是否迁移到新小区, 测量方法不够灵活, 测量结果不够精确。 本发明实施例中, 基站灵活配置与终端的测量频点对应的测量带宽, 这样可以对每个具体的小区设置最 优的测量带宽, 从而提升了参考信号的测量准确度。 其中, 配置测量带宽可以灵活配 置, 也可以对某些小区扩展测量带宽长度, 从而获得更为精确的测量结果。 其中,上述步骤 S102包括配置终端的测量频点以及配置与该测量频点对应的测量 带宽, 具体如下: 基站根据终端当前驻留的小区配置同频点和 /或异频点; 基站根据同 频点和 /或异频点配置与同频点和 /或异频点对应的同频测量带宽和 /或异频测量带宽。 所谓同频和异频是以基站所在小区的频点为参考,相邻小区与该小区频点相同是同频, 不同的为异频。 相应地, 基站配置的测量带宽也包括同频测量带宽和异频测量带宽。 另外, 基站在同频系统消息块上发送同频测量带宽, 在异频系统消息块上发送异 频测量带宽。 在步骤 S102之后, 基站发送频点和测量带宽的同时, 还通过主信息单元 MIB向 终端发送终端当前驻留的小区的系统带宽, 其中, 当前驻留的小区的系统带宽可以作 为当前驻留的小区的测量带宽或者同频点的测量带宽。 本优选实施方式中, 基站除了 向终端发送频点和测量带宽外, 还发送终端当前驻留小区的系统带宽, 此时, 终端可 以将当前驻留的小区的系统带宽作为测量带宽对当前驻留小区或者同频点来进行参考 信号的测量,这样就省去了计算同频点测量带宽的步骤, 使得同频点的测量更加简便。 工程实现中, 可将当前驻留小区的系统带宽放在主信息单元(Management Information Base, 简称为 MIB) 中广播下发给该小区的所有终端。 需要说明的是, 在小区是非 LTE小区的情况下, 终端根据小区所属的系统确定小 区的系统带宽。 对于 LTE小区, 终端可以利用图 1所示的方法中配置的测量带宽测量 参考信号; 对于非 LTE小区, 基站不需要发送相应的测量带宽或者系统带宽, 因为非 LTE系统的无线制式的带宽都是固定的, 比如 UMTS系统的带宽是 3.84MHz, TD系 统的带宽是 1.28MHz等, 因此终端可以根据其所属的系统来确定其系统带宽。 上述确 定方法简单、 可靠。 本发明实施例还提供了一种参考信号测量方法, 图 2是根据本发明实施例的另一 种参考信号测量方法的流程图, 如图 2所示, 包括如下的步骤 S202至步骤 S206。 步骤 S202, 终端接收到来自基站的频点和与频点对应的系统带宽。 步骤 S204, 终端根据频点和系统带宽计算测量带宽。 步骤 S206, 终端根据测量带宽测量参考信号。 相关技术中, 终端仅可以在协议规定的两种测量带宽下测量小区的参考信号, 以 决策是否迁移到新小区, 测量方法不够灵活, 测量结果不够精确。 本实施例中, 终端 根据频点及其对应的系统带宽计算测量带宽, 并根据计算出的测量带宽测量参考信号 的强度或者质量, 并不局限于协议规定的两种测量带宽, 保证了参考信号测量的准确 程度。 本发明还提供了一种优选实施方式, 即终端根据频点和系统带宽计算测量带宽包 括: 确定系统带宽作为测量带宽。 本优选实施方式中, 终端直接将基站下发的系统带 宽作为测量带宽进行参考信号的测量, 这样省去了计算测量带宽的步骤, 考虑到有时 只需要进行简单测量的情况, 本优选方式即可得到满足要求的测量结果。 终端在测量参考信号时, 还需对整个测量带宽进行采样, 所以, 终端根据测量带 宽测量参考信号包括: 终端在整个测量带宽上对连续的无线资源块进行采样; 终端根 据采样的无线资源块测量参考信号。 采样点覆盖到整个测量带宽, 从而保证了测量能 全面地反映出频段上的信号情况, 但终端无需对测量带宽上的每一个 RB都要进行采 样测量, 从而降低了终端采样测量的工作量, 节省了能量消耗。 终端对每个频点测量都必须在固定的时间内完成, 一般可以设置为 480ms 或者 240ms 0 所以, 终端根据测量带宽测量参考信号包括: 终端对每个频点在预先设定的 测量时间内测量参考信号。 本优选实施例中, 对所有频点规定相同的测量时间有助于 控制总的测量时间, 及时获得整体测量结果, 并及时做出移动性决策。 优选地,在终端对每个频点在预先设定的测量时间内测量参考信号之后,还包括: 终端根据测量结果生成测量报告; 终端向高层上报测量报告, 并根据预先设定的测量 时间进行下一周期的测量,其中,所述周期是所述预先设定的测量时间乘以频点个数。 以 480ms为例, 如果基站向终端下发的频点数为 N (包括同频频点和异频频点), 那 么终端完成测量的时间周期是 N*480ms。 需要说明的是, 在小区是非 LTE小区的情况下, 终端根据小区所属的系统确定小 区的系统带宽。 对于 LTE小区, 终端可以利用图 1所示的方法中配置的测量带宽测量 参考信号; 对于非 LTE小区, 基站不需要发送相应的测量带宽或者系统带宽, 因为非 LTE系统的无线制式的带宽都是固定的, 比如 UMTS系统的带宽是 3.84MHz, TD系 统的带宽是 1.28MHz等, 因此终端可以根据其所属的系统来确定其系统带宽。 由上述实施例可知, 本发明终端的测量带宽可以灵活配置, 或者是对于某些小区 扩展测量带宽长度, 从而获得更为精确的测量结果, 为移动性决策提供更可信的依据; 当这种灵活配置是由网络侧所控制时, 基站可以根据不同的网络部署场景来配置最适 合的测量带宽, 使得终端的测量达到测量准确度和测量耗电之间的最佳平衡。 下面将结合实例对本发明实施例的实现过程进行详细描述。 以下优选实施例中终端的测量对象是小区的参考信号, 具体包括终端当前驻留小 区和系统消息中所配置的相邻小区的参考信号; 具体地, 测量的是参考信号强度 (Reference Signal Received Power,简称为 RSRP)或者参考信号质量(Reference Signal Received Quality, 简称为 RSRQ), 本发明的方法对于测量 RSRP和 RSRQ都是同样适 用的, 但为了描述方便, 在下面的优选实施例中以测量 RSRQ为例。 优选实施例一 图 3是根据本发明优选实施例一的参考信号测量方法的流程图, 如图 3所示, 在 网络配置测量带宽的条件下, 终端按照配置的测量带宽进行 RSRQ测量, 具体包括如 下的步骤 S302至步骤 S304。 步骤 S302, 基站根据具体的网络部署配置测量带宽, 并下发到终端。 具体地, 基站首先需要配置终端的测量频点, 包括同频的频点和异频的频点, 相 应地, 基站配置的测量带宽也包括同频测量带宽和异频测量带宽。 所谓的同频和异频 是以基站所在小区的频点为参考, 相同的为同频, 不同的为异频。 由于网络的运营商 非常了解每个小区的具体部署情况, 因此由网络侧配置终端的测量带宽可以利用到网 络已知的信息, 对每个具体的小区设置最优的测量带宽值, 并且不同小区的配置可以 灵活变换, 在保证测量准确程度的同时又减少了终端不必要的测量, 达到准确度和测 量耗电的平衡。 下面结合两个例子描述具体网络部署下的测量带宽配置。 图 4是根据本发明优选实施例一的具体网络部署的带宽示意图,如图 4所示, celll 的系统带宽为 BW1, cell2的系统带宽为 BW2, cell3的系统带宽为 BW3。基站配置时, 对于 celll和 cell3配置它们的测量带宽即是它们的系统带宽,对于 cell2虽然它的系统 带宽为 BW2, 但是它与 celll的频带重叠部分是 BW2', 为了真实反映出终端在 cell2 驻留时受到的有用信号和干扰的情况, 只需要测量 BW2'上的 RSRQ即可, 因此基站 配置 cell2的测量带宽为 BW2'。 在具体配置时, 基站是根据终端当前所驻留的小区来进行同频点和异频点的配置 的。 比如终端当前驻留在 celll , 那么基站就配置同频频点 F1 和同频点的测量带宽 BW1 , 以及异频点 F2、 F3和对应异频点的测量带宽 BW2'和 BW3 (这里 Fl、 F2、 F3 分别是 celll、 cell2、 cell3的中心频点)。 图 5是根据本发明优选实施例一的另一种具体网络部署的带宽示意图, 图 5所示 与图 4的区别在于在 cell3的频带上还叠加了 cell4的频带,显然,最佳地,基站对 cell4 的测量带宽设置为 BW4,但由于 cell4的频点和 cell3的频点都是 F3,并且测量带宽是 依附于频点的, 所以基站对于异频点 F3配置的测量带宽仍然为 BW3。 基站配置测量带宽完成后就将测量带宽信息连同频点下发给终端。 具体来说, 同频点的测量带宽在同频系统消息块 (System Information Block, 简 称为 SIB3 ) 上发送; 异频点的测量带宽在异频系统消息块 (SIB5 ) 上发送。 更优情况下, 基站在下发频点和测量带宽的同时, 还将终端当前驻留小区的系统 带宽一同下发。仍然以上面的图 5为例, 如果终端此时驻留在 cell4中, 那么基站可将 cell4的系统带宽 BW4—同下发给终端。 工程实现中, 可将驻留小区的系统带宽放在主信息单元 (MIB) 中广播下发给该 小区的所有终端。 步骤 S304, 终端收到网络下发的频点和测量带宽后, 据此进行 RSRQ测量。 具体地, 终端的测量也是依据频点和对应的测量带宽来进行的。 这里需要说明, LTE系统的带宽是以 RB个数为度量的, 一个 RB是 LTE系统中最小的带宽单位, 也 是本发明中终端实施具体测量的一个采样点, 一个具体的采样测量是指终端测量某个 RB上的 RSRQ值。 终端的测量必须覆盖到频点 (同频点或异频点) 所对应的所有测量带宽, 但具体 的采样方式可以是灵活的。 如图 6所示是一种终端测量的具体采样方式, 终端对若干 组连续的 RB采样测量, 组与组之间间隔一定数量的空余 RB。如图 7所示是另一种具 体的采样方式, 测量带宽被等分成若干个更小的测量单元, 终端在每个测量单元上随 机的选取若干个 RB采样测量, 采样可以非连续的, 如第一个采样单元; 也可以是连 续的, 如第二个采样单元。 总之, 终端有多种具体的实现形式来进行采样, 采样点覆盖到整个测量带宽, 从 而保证了测量能全面地反映出所述频段上的信号情况, 但这并不意味着终端必须对测 量带宽上的每一个 RB都要进行采样测量, 从而降低了终端采样测量的工作量, 节省 了能量消耗。 对于步骤 S302中所述的优先情况,如果基站还将终端当前驻留小区的系统带宽下 发给了终端, 那么终端也可以以驻留小区的系统带宽作为测量带宽对当前驻留小区或 者是同频点来执行测量, 测量的具体方式与上面相同, 可以是灵活的。 从另一个角度来看终端的测量过程, 终端对每个频点测量都必须在固定的时间内 完成, 一般可以设置为 480ms或者 240ms。 所以, 给予终端具体采样的灵活性, 从另 一方面也给予了终端对于不同频点的测量带宽调整不同采样策略的空间, 以确保其都 能在规定的时间内完成测量。 对所有频点规定相同的测量时间有助于控制总的测量时间, 及时获得整体测量结 果, 并及时作出移动性决策。 以上面的 480ms为例, 如果基站向终端下发的频点数为 N (包括同频频点和异频频点), 那么终端完成测量的时间周期是 N*480ms。 终端必须在这个时间周期结束之前将所有的测量完成, 并生成测量报告上报给高 层, 然后开始下一个测量周期。 具体来说, 终端向高层上报测量报告是以触发事件的形式来执行, 比如测量的 RSRQ值超过某个门限, 或者是两个小区的 RSRQ超过了门限等调节满足时, 触发某 个触发事件上报给高层, 并在测量报告中携带具体的测量结果。 之后高层根据事件组 合和具体 RSRQ值来决定移动性策略或者是上报给基站。 这些与现有技术并无不同。 优选实施例二 图 8是根据本发明优选实施例二的参考信号测量方法的流程图, 如图 8所示, 包 括如下的步骤 S802在步骤 S804。 步骤 S802, 网络配置系统带宽, 并下发给终端。 步骤 S804, 终端根据配置的系统带宽进行测量。 与上述优选实施例一不同的是基站并没有配置每个频点的测量带宽, 而是将每个 频点的系统带宽下发至终端。 参考图 4的网络场景, 网络侧下发的是频点 Fl, F2, F3 和其对应的带宽 BW1, BW2, BW3。 终端在收到网络下发的频点和系统带宽信息后有两种选择: ( 1 ) 终端简单地以系统带宽作为测量带宽来进行测量; 或者
(2)终端根据频点和各频点的系统带宽自己计算出测量带宽, 并以这个计算出的 测量带宽进行测量。 仍以图 4为例, Fl、 BW1和 F2、 BW2对于终端是已知的, 因此终端可以计算出 celll和 cell2的重叠频带 BW2', 以此作为 F2的测量带宽。而对于图 5中的部署场景, 终端在已知 F3、 BW3、 BW4的情况下, 可以计算出 celll和 cell3的重叠频带部分, 也可以计算出 celll、 cell3、 cell4 共同重叠部分, 而终端可以根据自身的需要来设定 F3的测量带宽, BW3或者是 BW4。 上述方式的好处是进一步地给予终端灵活度结合 自身情况而设定测量带宽。 终端在确定了测量带宽后,执行的具体抽样、测量过程和优选实施例一是相同的, 此处不再赘述。 优选实施例三 图 9是根据本发明优选实施例三的异构网络部署的示意图, 如图 9所示, celll是 LTE小区并且是终端当前驻留小区,频点为 F1,带宽为 BW1, cell3是 UMTS小区(也 可以是 GSM小区, TD-SCDMA小区等, 只需是非 LTE小区), 频点为 F3, 带宽为 BW3。 在这种网络部署下,对于 celll仍然可以用上述优选实施例一或优选实施例二中的 方式来进行测量, 但对于 cell3, 基站不需要发送相应的测量带宽或者是系统带宽, 因 为非 LTE系统的无线制式的带宽都是固定的, 比如对于 UMTS是 3.84MHz, TD是 1.28MHz等, 因此终端可以根据其所属的系统来确定其系统带宽。 优选实施例四 本优选实施例可以看作是优选实施例一的更进一步优化, 网络配置的测量带宽最 小值是 6RB, 并且当网络配置的测量带宽是 6RB时, 终端可以在这 6RB带宽的上下 两端各扩展若干个 RB, 作为增加的测量带宽, 并实施测量。 因为 6RB是一个很小的带宽,如果以此作为测量带宽可能会由于样本不够而造成 测量的误差过大, 给予终端一定的自由度增加测量样本可以在终端电量允许的前提下 获得更加准确的测量结果。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 本发明实施例提供了一种参考信号测量装置, 应用于基站, 该参考信号测量装置 可以用于实现上述图 1所示的参考信号测量方法。图 10是根据本发明实施例的参考信 号测量装置的结构框图, 如图 10所示, 包括配置模块 1002和第一发送模块 1004。 下 面对其结构进行详细描述。 配置模块 1002, 设置为配置与终端的测量频点对应的测量带宽; 第一发送模块 1004, 连接至配置模块 1002, 设置为向终端发送频点和配置模块 1002配置的与频点 对应的测量带宽。 图 11是根据本发明优选实施例的参考信号测量装置的具体结构框图一, 如图 11 所示, 上述配置模块 1002包括: 第一配置子模块 10022, 设置为根据终端当前驻留的 小区配置同频点和 /或异频点; 第二配置子模块 10024, 连接至第一配置子模块 10022, 设置为根据第一配置子模块 10022 配置的同频点和 /或异频点配置与同频点和 /或异频 点对应的同频测量带宽和 /或异频测量带宽。 图 12是根据本发明优选实施例的参考信号测量装置的具体结构框图二, 如图 12 所示, 上述装置还包括: 第二发送模块 1006, 连接至配置模块 1002, 设置为通过 MIB 向终端发送终端当前驻留的小区的系统带宽, 其中, 当前驻留的小区的系统带宽可以 作为当前驻留的小区的测量带宽或者同频点的测量带宽。 优选地, 第一发送模块 1004包括: 第一发送子模块 10042, 设置为在同频系统消 息块上发送同频点的测量带宽, 在异频系统消息块上发送异频点的测量带宽。 本发明实施例还提供了一种参考信号测量装置, 应用于终端, 该参考信号测量装 置可以用于实现上述图 2所示的参考信号测量方法。图 13是根据本发明实施例的另一 种参考信号测量装置的结构框图, 如图 13所示, 包括接收模块 1302、 计算模块 1304 和测量模块 1306。 接收模块 1302, 设置为接收来自基站的频点和与频点对应的系统带宽; 计算模块 1304, 连接至接收模块 1302, 设置为根据接收模块 1302接收的频点和系统带宽计算 测量带宽; 测量模块 1306, 连接至计算模块 1304, 设置为根据计算模块 1304计算的 测量带宽测量参考信号。 图 14是根据本发明优选实施例的另一种参考信号测量装置的具体结构框图一,如 图 14所示, 计算模块 1304包括计算子模块 13042, 连接至接收模块 1302, 设置为确 定接收模块 1302接收的系统带宽作为测量带宽。 优选地, 如图 15所示, 测量模块 1306包括: 采样子模块 13062, 设置为在整个 测量带宽上对连续的无线资源块进行采样; 第一测量子模块 13064, 连接至采样子模 块 13062, 设置为根据采样子模块 13062采样的无线资源块测量参考信号。 优选地, 如图 16所示, 测量模块 1306包括: 第二测量子模块 13066, 设置为对 每个频点在预先设定的测量时间内测量参考信号; 生成子模块 13068, 连接至第二测 量子模块 13066, 设置为根据第二测量子模块 13066的测量结果生成测量报告; 上报 子模块 13069,连接至生成子模块 13068, 设置为向高层上报生成子模块 13068生成的 测量报告, 并根据预先设定的测量时间进行下一周期的测量。 需要说明的是,装置实施例中描述的参考信号测量装置对应于上述的方法实施例, 其具体的实现过程在方法实施例中已经进行过详细说明, 在此不再赘述。 综上所述, 根据本发明的上述实施例, 提供了一种参考信号测量方法及装置。 本 发明实施例通过基站灵活配置与终端的测量频点对应的测量带宽, 这样可以针对不同 的网络部署设置最优的测量带宽, 从而提升了参考信号的测量准确度。 另一方面, 终 端根据频点及其对应的系统带宽计算测量带宽, 并根据计算出的测量带宽测量参考信 号的强度或者质量, 并不局限于协议规定的两种测量带宽, 保证了参考信号测量的准 确程度。 工业实用性 本发明技术方案具备工业实用性。 本发明实施例通过基站灵活配置与终端的测量 频点对应的测量带宽, 这样可以针对不同的网络部署设置最优的测量带宽, 从而提升 了参考信号的测量准确度。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1. 一种参考信号测量方法, 包括:
基站配置与终端的测量频点对应的测量带宽;
所述基站向所述终端发送所述频点和所述测量带宽。
2. 根据权利要求 1所述的方法, 其中, 基站配置与终端的测量频点对应的测量带 宽包括:
所述基站根据所述终端当前驻留的小区配置同频点和 /或异频点; 所述基站根据所述同频点和 /或异频点配置与所述同频点和 /或异频点对应 的同频测量带宽和 /或异频测量带宽。
3. 根据权利要求 2所述的方法, 其中, 在基站配置与终端的测量频点对应的测量 带宽之后, 还包括:
所述基站通过主信息单元 MIB 向所述终端发送所述终端当前驻留的小区 的系统带宽, 其中, 所述当前驻留的小区的系统带宽可以作为所述当前驻留的 小区的测量带宽和 /或所述同频点的测量带宽。
4. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述基站向所述终端发送所 述频点和所述测量带宽包括: 所述基站在同频系统消息块上发送所述同频测量 带宽, 在异频系统消息块上发送所述异频测量带宽。
5. 根据权利要求 1至 3中任一项所述的方法, 其中, 在小区是非 LTE小区的情况 下, 所述终端根据所述小区所属的系统确定所述小区的系统带宽。
6. 一种参考信号测量方法, 包括:
终端接收到来自基站的频点和与所述频点对应的系统带宽; 所述终端根据所述频点和所述系统带宽计算测量带宽;
所述终端根据所述测量带宽测量参考信号。
7. 根据权利要求 6所述的方法, 其中, 所述终端根据所述频点和所述系统带宽计 算测量带宽包括: 确定所述系统带宽作为测量带宽。
8. 根据权利要求 6所述的方法, 其中, 所述终端根据所述测量带宽测量参考信号 包括:
所述终端在整个测量带宽上对连续的无线资源块进行采样; 所述终端根据所述采样的无线资源块测量参考信号。
9. 根据权利要求 6至 8中任一项所述的方法, 其中, 所述终端根据所述测量带宽 测量参考信号包括: 所述终端对每个频点在预先设定的测量时间内测量参考信 号。
10. 根据权利要求 9所述的方法, 其中, 在所述终端对每个频点在预先设定的测量 时间内测量参考信号之后, 还包括:
所述终端根据测量结果生成测量报告;
所述终端向高层上报所述测量报告, 并根据所述预先设定的测量时间进行 下一周期的测量, 其中, 所述周期是所述预先设定的测量时间乘以频点个数。
11. 根据权利要求 6至 8中任一项所述的方法, 其中, 在小区是非 LTE小区的情况 下, 所述终端根据所述小区所属的系统确定所述小区的系统带宽。
12. 一种参考信号测量装置, 应用于基站, 包括:
配置模块, 设置为配置与终端的测量频点对应的测量带宽; 发送模块, 设置为向所述终端发送所述频点和所述测量带宽。
13. 一种参考信号测量装置, 应用于终端, 包括:
接收模块, 设置为接收来自基站的频点和与所述频点对应的系统带宽; 计算模块, 设置为根据所述频点和所述系统带宽计算测量带宽; 测量模块, 设置为根据所述测量带宽测量参考信号。
PCT/CN2012/074620 2012-02-06 2012-04-24 参考信号测量方法及装置 WO2013117057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210025367.X 2012-02-06
CN201210025367XA CN103249076A (zh) 2012-02-06 2012-02-06 参考信号测量方法及装置

Publications (1)

Publication Number Publication Date
WO2013117057A1 true WO2013117057A1 (zh) 2013-08-15

Family

ID=48928241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074620 WO2013117057A1 (zh) 2012-02-06 2012-04-24 参考信号测量方法及装置

Country Status (2)

Country Link
CN (1) CN103249076A (zh)
WO (1) WO2013117057A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103581991B (zh) * 2012-08-09 2019-04-30 中兴通讯股份有限公司 测量参数的指示方法及装置
WO2015109435A1 (zh) * 2014-01-21 2015-07-30 华为技术有限公司 频点测量控制方法及基站、用户设备
CN110830132B (zh) * 2014-11-06 2020-12-08 华为技术有限公司 一种上行发送定时的处理方法、装置及存储介质
CN107786991B (zh) * 2016-08-25 2020-07-03 展讯通信(上海)有限公司 Lte系统中参考信号的测量方法、装置及用户终端
KR102363662B1 (ko) * 2017-06-16 2022-02-16 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법 및 디바이스
WO2019028873A1 (zh) * 2017-08-11 2019-02-14 富士通株式会社 测量配置方法以及装置、测量上报方法以及装置
CN110062413B (zh) * 2019-04-25 2021-10-26 重庆邮电大学 一种解决5g nr终端异频测量的方法
US20220338037A1 (en) * 2019-09-03 2022-10-20 Xiaomi Communications Co., Ltd. Method and apparatus for detecting idc, and method and apparatus for indicating idc detection
WO2024092606A1 (zh) * 2022-11-03 2024-05-10 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536602A (zh) * 2006-01-03 2009-09-16 Lg电子株式会社 在移动通信系统中的支持测量的方法
TW200948106A (en) * 2008-01-30 2009-11-16 Ericsson Telefon Ab L M Measurement bandwidth configuration method
WO2010148403A2 (en) * 2009-06-19 2010-12-23 Qualcomm Incorporated Method and apparatus that facilitates measurement procedures in multicarrier operation
CN101931965A (zh) * 2009-06-22 2010-12-29 大唐移动通信设备有限公司 上报、获取多小区接收功率以及资源配置的方法及装置
CN101998460A (zh) * 2009-08-05 2011-03-30 宏达国际电子股份有限公司 处理量测间隙组态下接收系统信息的方法及其通讯装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001570A1 (ja) * 2008-06-30 2010-01-07 パナソニック株式会社 基地局及び通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536602A (zh) * 2006-01-03 2009-09-16 Lg电子株式会社 在移动通信系统中的支持测量的方法
TW200948106A (en) * 2008-01-30 2009-11-16 Ericsson Telefon Ab L M Measurement bandwidth configuration method
WO2010148403A2 (en) * 2009-06-19 2010-12-23 Qualcomm Incorporated Method and apparatus that facilitates measurement procedures in multicarrier operation
CN101931965A (zh) * 2009-06-22 2010-12-29 大唐移动通信设备有限公司 上报、获取多小区接收功率以及资源配置的方法及装置
CN101998460A (zh) * 2009-08-05 2011-03-30 宏达国际电子股份有限公司 处理量测间隙组态下接收系统信息的方法及其通讯装置

Also Published As

Publication number Publication date
CN103249076A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2013117057A1 (zh) 参考信号测量方法及装置
US20200322071A1 (en) Measurement Method, Terminal, Device, and Access Network Device
JP5714124B2 (ja) 測定能力の報告方法及びue
US20170111831A1 (en) Method and apparatus for enhancing measurement in wireless communication system
US8391861B2 (en) Flexible sharing of measurement gaps
RU2567505C2 (ru) Предоставление отчета измерений mdt не в реальном времени
RU2505943C1 (ru) Предоставление отчетов об измерениях для сот, использующих более одной технологии радиодоступа
CN101127998B (zh) 长期演进系统中终端进行邻小区测量的方法及终端
WO2015196563A1 (zh) 小区测量处理方法、装置、终端及基站
CN106714232B (zh) 非授权载波的测量上报方法和终端及配置方法和基站
WO2016083524A1 (en) Self-organizing network engine for mobility load balancing between wi-fi and cellular networks
CN102209334B (zh) 通信装置与测量控制方法
WO2020164564A1 (zh) 最小化路测技术配置方法和基站
CN111885656A (zh) 一种网络切换方法和设备
CN107801192B (zh) 一种载波聚合辅小区配置方法、基站及网络系统
CN103581945A (zh) 测量配置的处理方法及装置
US10517010B2 (en) Wireless local area network WLAN measurement and reporting method and related device
KR20170082580A (ko) 음성 호 성능 테스팅의 개선
EP3619939A1 (en) Gapless measurement for bandwidth limited/coverage enhancement user equipment
JP5622311B2 (ja) 周波数共用型コグニティブ無線通信システムおよびその方法、コグニティブ無線基地局
CN106792884A (zh) 一种实现测量报告上报的方法及装置
CN110691391A (zh) 接入节点切换、发送信号参数信息的方法、装置及系统
CN112840692B (zh) 小区的测量方法、设备和存储介质
WO2015096059A1 (zh) 网络优化方法及装置
CN114258058A (zh) 测量方法、测量装置、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868002

Country of ref document: EP

Kind code of ref document: A1