WO2013115360A1 - Conductive adhesive and electronic device using same - Google Patents

Conductive adhesive and electronic device using same Download PDF

Info

Publication number
WO2013115360A1
WO2013115360A1 PCT/JP2013/052348 JP2013052348W WO2013115360A1 WO 2013115360 A1 WO2013115360 A1 WO 2013115360A1 JP 2013052348 W JP2013052348 W JP 2013052348W WO 2013115360 A1 WO2013115360 A1 WO 2013115360A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive adhesive
resin
epoxy resin
total
carbon
Prior art date
Application number
PCT/JP2013/052348
Other languages
French (fr)
Japanese (ja)
Inventor
内田 博
篠崎 研二
圭孝 石橋
克昭 菅沼
Original Assignee
昭和電工株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 国立大学法人大阪大学 filed Critical 昭和電工株式会社
Priority to JP2013556513A priority Critical patent/JP6080776B2/en
Publication of WO2013115360A1 publication Critical patent/WO2013115360A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/12Polycondensates containing more than one epoxy group per molecule of polycarboxylic acids with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0215Metallic fillers

Definitions

  • the present invention relates to a conductive adhesive and an electronic device using the same.
  • conductive adhesives are often used in place of solder for assembling semiconductor elements and various electric / electronic components or bonding them to substrates.
  • Many of such conductive adhesives usually contain an epoxy resin and conductive metal particles.
  • Patent Document 1 listed below discloses a metal filler containing copper as a conductive adhesive having sufficient strength and conductivity, an epoxy compound, a novolac-type phenol resin, and a low-molecular polyhydric phenol compound. And a conductive adhesive containing a curing agent as essential components is described.
  • Patent Document 2 describes a conductive adhesive containing an epoxy resin and a phenol resin that are liquid at room temperature as a conductive adhesive having better adhesive strength.
  • the above conventional technique has a problem that the reliability of the conductive adhesive cannot be ensured due to significant migration or the like caused by halogen such as chlorine contained in the epoxy compound (resin) to be used.
  • An object of the present invention is to provide a conductive adhesive that hardly causes deterioration of a bonded portion due to halogen and an electronic device using the conductive adhesive.
  • the binder resin includes an epoxy resin, and the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin.
  • the total is 300 ppm by mass or less.
  • the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin is 50 mass ppm or less.
  • the epoxy resin is obtained by epoxidizing a carbon-carbon double bond of a raw material compound (substrate) having a carbon-carbon double bond with a peroxide as an oxidizing agent.
  • the raw material compound (substrate) is a compound having two or more allyl ether groups.
  • the content of the binder resin in the conductive adhesive is 5 to 99% by volume.
  • the conductive filler is at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum, palladium, or particles or fibers made of an alloy of the plurality of metals, gold, palladium on the metal surface , Metal particles or fibers plated with any of silver, resin core balls plated with any of nickel, gold, palladium, and silver on resin balls, or particles or fibers of carbon or graphite.
  • One embodiment of the present invention is an electronic device, which joins a semiconductor element, a solar panel, a thermoelectric element, a chip component, a discrete component, or a combination thereof to any of the substrates by any one of the conductive adhesives described above. It is implemented.
  • the electronic device is characterized in that the wiring of the film antenna, the keyboard membrane, the touch panel, and the RFID antenna is formed and connected to the substrate by any one of the above-described conductive adhesives.
  • the present invention it is possible to suppress degradation of the bonded portion derived from halogen during assembly of a semiconductor element and various electric / electronic components or bonding to a substrate.
  • the conductive adhesive according to this embodiment includes a resin that functions as a conductive filler and a binder, the resin includes an epoxy resin, and the total of the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin is 300 mass ppm or less. It is characterized by being.
  • the total of the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin is preferably 50 mass ppm or less, and more preferably 10 mass ppm or less.
  • the epoxy resin can be obtained, for example, by epoxidizing a carbon-carbon double bond of a raw material compound (substrate) having a carbon-carbon double bond using peroxide as an oxidizing agent.
  • a compound having a carbon-chlorine bond is not used as a raw material. Therefore, the epoxy resin as the binder resin constituting the conductive adhesive according to the embodiment of the present invention is And substantially free of compounds containing carbon-chlorine bonds in the molecule.
  • substantially free means that a compound containing a carbon-chlorine bond is not used as a raw material used for synthesizing an epoxy resin, that is, such a compound in an epoxy resin and a reaction product thereof. It means that the content of is zero.
  • the oxidizing agent include hydrogen peroxide and peracetic acid, but hydrogen peroxide that is inexpensive and easy to handle is more preferable.
  • epoxy resin refers to a binder component of a conductive adhesive, that is, a compound having an oxirane ring constituting a cured product, and includes any of a monomer, an oligomer, and a polymer.
  • Examples of the raw material compound (substrate) having a carbon-carbon double bond include a cycloalkene having 4 to 12 carbon atoms, an unconjugated cycloalkadiene, cycloalkatriene, or cycloalkatetraene having 6 to 12 carbon atoms, or And compounds having an allyl ether group.
  • raw material compounds include phenyl allyl ethers, cresol monoallyl ethers, cyclohexenes, cyclooctenes, and the like, for example, bisphenol-A diallyl ether, allyl ether compounds of novolac phenolic resins, cyclohexane Dimethanol diallyl ether, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether, 3,4-epoxycyclohexane-1-carboxylic acid allyl ester, 3,4-cyclohexenylmethyl-3 ′, 4′-cyclohexene carboxylate, etc. Can be illustrated.
  • a compound having two or more allyl ether groups it is preferable to use a compound having two or more allyl ether groups.
  • a glycidyl ether compound obtained by epoxidizing a compound represented by the following general formula (1) with an oxidizing agent such as hydrogen peroxide is used. is there.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 4 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, or R 1 And R 2 together form a cycloalkane having 3 to 12 carbon atoms
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, carbon A cycloalkyl group having 4 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • n represents an integer of 0 or 1.
  • Such compounds include bisphenol-A diallyl ether, bisphenol-F diallyl ether, 2,6,2 ', 6'-tetramethylbisphenol-A diallyl ether, 2,2'-diallyl bisphenol- A diallyl ether, 2,2'-di-t-butylbisphenol-A diallyl ether, 3,3 ', 5,5'-tetramethylbiphenyl-4,4'-diallyl ether, 2,2'-diisopropylbiphenol diallyl Ether, 4,4′-ethylidene bisphenol diallyl ether, 4,4′-cyclohexylidene bisphenol diallyl ether, 4,4 ′-(1- ⁇ -methylbenzylidene) bisphenol diallyl ether, 4,4 ′-(3,3 , 5-Trimethylcyclohexylidene) bisphe Over Luzia Lil ether, 4,4 '- (1-methyl - benzylidene) bisphenol diallyl
  • biphenyl diallyl ether having an aromatic ring and two allyl ether groups examples include 2,2'-biphenyl diallyl ether and tetramethylbiphenyl diallyl ether.
  • Aliphatic polyallyl ethers having two or more allyl ether groups can also be used. Specifically, 1,5-pentanediol diallyl ether, 1,6-hexanediol diallyl ether, 1,9- Nonanediol diallyl ether, 1,10-decanediol diallyl ether, neopentyl glycol diallyl ether, glycerin triallyl ether, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether and the like can be mentioned.
  • alicyclic diolefin having two allyl ether groups include 1,4-cyclohexanedimethanol diallyl ether and tricyclo [5.2.1.0 2,6 ] decandimethanol diallyl ether. Can be mentioned.
  • the resin functioning as a binder may include other thermoplastic resins and thermosetting resins in addition to the epoxy resin.
  • the thermoplastic resin include acrylic resin, ethyl cellulose, polyester, polysulfone, phenoxy resin, and polyimide.
  • thermosetting resins include amino resins such as urea resins, melamine resins, and guanamine resins; oxetane resins; phenol resins such as resol types and novolac types; and silicone-modified organic resins such as silicone epoxies and silicone polyesters. Is done.
  • thermoplastic resins and thermosetting resins which function as a binder, preferably have a low chlorine concentration and bromine concentration, and are the sum of the total chlorine concentration and the total bromine concentration relative to the total amount of the resin functioning as the binder. Is preferably 300 ppm by mass or less. More preferably, it is 50 mass ppm or less, More preferably, it is 10 mass ppm or less.
  • epoxy resins bisphenol A type and bisphenol F type epoxy resins are used because excellent adhesiveness and excellent heat resistance can be obtained even if the blending amount of the resin is suppressed to an amount that does not impair the conductivity. preferable. Further, from the same viewpoint, a resol type phenol resin may be mixed.
  • the vehicle When a resin that is liquid at room temperature is used as the resin, the vehicle can be obtained without using an organic solvent, and the drying step can be omitted. For this reason, it is preferable to use a liquid epoxy resin.
  • Liquid epoxy resins include bisphenol A type epoxy resins having an average molecular weight of about 400 or less; branched polyfunctional bisphenol A type epoxy resins such as p-glycidoxyphenyldimethyltolylbisphenol A diglycidyl ether; bisphenol F type Epoxy resin; phenol novolac type epoxy resin having an average molecular weight of about 570 or less; 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,9-nonanediol diglycidyl ether, 1, 10-decanediol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether Aliphatic polyglycidyl ethers such as vinyl
  • the liquid epoxy resin is compatible within the range in which the mixed system exhibits fluidity, and within a range in which the total chlorine concentration and total bromine concentration with respect to the total amount of the epoxy resin is 300 ppm by mass or less.
  • a resin having a solid or ultra-high viscosity may be mixed and used. Examples of such resins include high molecular weight bisphenol A type epoxy resins, diglycidyl biphenyl, novolac epoxy resins, and epoxy resins such as tetrabromobisphenol A type epoxy resins; novolak phenol resins and the like.
  • a self-curing resin may be used, or a curing agent or a curing accelerator may be used.
  • curing agents usually used for the epoxy resin include acid anhydrides, polyamines, polyphenol compounds, and the like.
  • a curing agent specifically in the case of an acid anhydride, hexahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride Acid, 5-norbornene-2,3-dicarboxylic acid anhydride, norbornane-2,3-dicarboxylic acid anhydride, methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, methyl- In addition to 3,6-endomethylenehexahydrophthalic anhydride, dodecenyl succinic anhydride and alicyclic compounds having conjugated double bonds such as ⁇ -terpinene and allooci
  • Polyamines include aliphatic amines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, m-xylylenediamine, p-xylylenediamine, hydrogenated
  • aromatic amine examples include m-phenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
  • phenol resin such as a phenol novolak resin or a cresol novolak resin, polyvinyl phenol, or the like is used.
  • a curing accelerator such as imidazole or dicyandiamide can be used in combination. Needless to say, it is preferable that the content of chlorine and bromine is low in these curing agents and curing accelerators.
  • the conductive filler used in the conductive adhesive of this embodiment is made of at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum, and palladium, or an alloy of the plurality of metals.
  • Particles or fibers, metal particles or fibers plated with gold, palladium or silver on the metal surface, resin core balls plated with nickel, gold, palladium or silver on resin balls, carbon or graphite It is preferably a particle or fiber, but is not limited thereto, and may be used as long as it can exhibit electrical conductivity and does not significantly deteriorate the adhesiveness (to the extent that it cannot be used as an adhesive). it can.
  • the shape of the conductive filler is not particularly limited, and in the case of particles, various shapes such as a spherical shape, a flat plate shape (flat shape), and a rod shape can be used.
  • a preferable particle diameter is 5 nm to 20 ⁇ m.
  • the particle diameter here is a number-based D50 (median diameter) particle measured by a laser diffraction / scattering method when the particle diameter is 500 nm or more, and by a dynamic light scattering method when it is less than 500 nm. Means diameter.
  • fibers those having a diameter of 0.1 to 3 ⁇ m, a length of 1 to 10 ⁇ m, and an aspect ratio of 5 to 100 are preferable.
  • the compounding amount of the resin in the conductive adhesive is preferably 5 to 99% by volume with respect to the total of the resin and the conductive filler, from the printability and the conductivity of the conductive layer obtained by curing.
  • the content is more preferably 40 to 85% by volume, and still more preferably 60 to 75% by volume.
  • the binder resin content is preferably 95 to 99% by volume.
  • the anisotropic conductive connection refers to a connection that is conductive between opposing electrodes (vertical direction) and insulative between adjacent electrodes (horizontal direction). An anisotropic conductive adhesive is used by being sandwiched between electrodes electrically connected by anisotropic conductive connection.
  • the conductive adhesive of the present embodiment is selected from the type and amount of the binder resin including the conductive filler and the epoxy resin, and if necessary, by using a diluent, a printing method or application to an element, a substrate, etc. Depending on the method, it can be adjusted to an appropriate viscosity.
  • a diluent for example, in the case of screen printing, an organic solvent having a boiling point of 200 ° C. or higher is preferably used as a diluent. Examples of such an organic solvent include diethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, and diethylene glycol monobutyl ether. Can be mentioned.
  • the preferred viscosity of the conductive adhesive is 20 Pa ⁇ s to 500 Pa ⁇ s as measured at 25 ° C. with a rheometer.
  • the conductive adhesive of the present embodiment includes an aluminum chelate compound such as diisopropoxy (ethylacetoacetate) aluminum as a dispersion aid, if necessary, such as isopropyltriisostearoyl titanate.
  • An aliphatic polycarboxylic acid ester; an unsaturated fatty acid amine salt; a surfactant such as sorbitan monooleate; or a polymer compound such as a polyesteramine salt or polyamide may be used.
  • the conductive adhesive of the present embodiment can be prepared by uniformly mixing the blended components by a mixing means such as a reika machine, a propeller stirrer, a kneader, a roll, and a pot mill.
  • a mixing means such as a reika machine, a propeller stirrer, a kneader, a roll, and a pot mill.
  • Preparation temperature is not specifically limited, For example, it can prepare at normal temperature.
  • the conductive adhesive of the present embodiment can be printed or applied to the substrate by any method such as screen printing, gravure printing, dispensing, or the like.
  • an organic solvent is used as a diluent, the organic solvent is volatilized after printing or coating at room temperature or by heating.
  • the resin is usually heated at 70 to 250 ° C., for example, in the case of an epoxy resin using a phenol resin as a curing agent, for 2 to 30 minutes depending on the type of the resin and the curing agent or curing accelerator.
  • a conductive pattern can be formed on a necessary portion of the substrate surface.
  • an electronic device in which a semiconductor element, a solar panel, a thermoelectric element, a chip part, a discrete part, or a combination thereof is mounted on a substrate can be formed.
  • the conductive adhesive of the present embodiment it is also possible to form an electronic device in which a film antenna, a keyboard membrane, a touch panel, and an RFID antenna are formed and connected to a substrate.
  • the conductive filler used in the examples is the following two types of silver particles.
  • N300 Toxen Industries Co., Ltd. silver particle (flat plate)
  • D50 470 nm
  • EHD Silver particles (spherical) manufactured by Mitsui Mining & Smelting Co., Ltd.
  • D50 620 nm
  • D50 is a number-based median diameter measured by N300 using a dynamic light scattering method and EHD using a laser diffraction / scattering method.
  • N300 had a number average value of 30 nm obtained by observing 10 points by SEM while changing the observation location at a magnification of 30,000 times.
  • the epoxy equivalent, number average molecular weight, total chlorine concentration and total bromine concentration were determined by the following methods, respectively.
  • the epoxy equivalent was determined according to JIS-K7236. Weigh 0.1 to 0.2 g of the sample, put it in an Erlenmeyer flask, and add 10 mL of chloroform to dissolve. Next, 20 mL of acetic acid is added, followed by 10 mL of tetraethylammonium bromide solution (100 g of tetraethylammonium bromide dissolved in 400 mL of acetic acid). 4 to 6 drops of crystal violet indicator was added to this solution, and titrated with a 0.1 mol / L perchloric acid acetic acid solution. Based on the titration result, the epoxy equivalent was determined according to the following formula.
  • Epoxy equivalent (g / eq) (1000 ⁇ m) / ⁇ (V1 ⁇ V0) ⁇ c ⁇ m: weight of the sample (g)
  • V0 Amount of perchloric acid acetic acid solution consumed for titration to the end point in the blank test (mL)
  • V1 Amount of perchloric acid acetic acid solution consumed for titration to the end point (mL)
  • c Concentration of perchloric acid acetic acid solution (0.1 mol / L)
  • GPC gel permeation chromatography
  • Total chlorine concentration and total bromine concentration were measured by burning and decomposing the epoxy compound at a high temperature of 800 ° C. or higher, absorbing the decomposed gas in ultrapure water, etc., and quantifying it by ion chromatography (pretreatment combustion apparatus) AGF-100 (manufactured by Mitsubishi Chemical Analytic Co., Ltd.), gas adsorption device GA-100 (manufactured by Mitsubishi Chemical Analytic Co., Ltd.), ion chromatograph ICS-100 (manufactured by Dionex Corporation)).
  • Synthesis example 2 Synthesis of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-glycidyl ether 3,3 ′, 5,5′-tetramethyl-4,4′-biphenyl was added to a 2000 ml eggplant type flask. Diol (China: Gansu Chemical Research Institute) 150g (0.619mol), 50% water content 5% -Pd / C (Pd / C with 5% by mass of Pd with respect to the total mass of Pd and C was impregnated with water. The mass of water is 50% by mass with respect to the total mass of Pd / C and water) -STD type (manufactured by N.E.
  • the distillate is a solid having a melting point of 51.7 ° C., and the viscosity at 60 ° C. measured by a rheometer (Phisica MCR301 manufactured by Anton Paar Co., Ltd .: CP25-2, 25 mm diameter, angle 2 °) is 29 mPa ⁇ s. Met.
  • Synthesis example 3 Synthesis of bisphenol-A-glycidyl ether In a 2000 ml eggplant-shaped flask, 148.4 g (0.650 mol) of bisphenol-A (manufactured by Mitsui Chemicals), 50% water content 5% -Pd / C-STD type (N.
  • 45% aqueous hydrogen peroxide (53.92 g, 713.5 mmol) was added dropwise over 4 hours using a 100 mL dropping funnel (the pH was adjusted to 10 to 10 hours so that the reaction temperature did not exceed 30 ° C. for 4 hours during this period). Then, the mixture was stirred for 4 hours while controlling the pH to 10.5 (acetonitrile concentration at the end of the reaction was 3.5 mol%).
  • the reaction solution was diluted with pure water (100 g), and the solvent was distilled off under reduced pressure. The residue was extracted with ethyl acetate (100 g), pure water (100 g) was added again, and a liquid separation operation was performed.
  • Ethyl acetate was distilled off with an evaporator to obtain the desired epoxidation product.
  • the chlorine concentration measured in the same manner as in Synthesis Example 1 was 6 ppm by mass, the total bromine concentration was less than 1 ppm by mass, and the epoxy equivalent was 178 g / eq. there were.
  • connection resistance (m ⁇ ) of the circuit sample is measured by a tester (manufactured by SANWA, model: PC500a RS-232C).
  • connection resistance was almost the same value in the example and the comparative example, and the connection strength was a little lower in the example 1, but the other examples were almost the same value as the comparative example.
  • the migration time was more than 10 minutes in all the examples, compared with 0.1 minutes in the comparative example.

Abstract

[Problem] To provide: a conductive adhesive which is not susceptible to deterioration in a bonded portion caused by a halogen; and an electronic device which uses the conductive adhesive. [Solution] A conductive adhesive, which contains a conductive filler and a binder resin, and wherein the binder resin contains an epoxy resin in which the sum of the total chlorine concentration and the total bromine concentration is 300 ppm by mass or less relative to the total amount of the epoxy resin contained in the binder resin. This epoxy resin preferably has a sum of the total chlorine concentration and the total bromine concentration of 50 ppm by mass or less, and is preferably obtained by epoxidizing a carbon-carbon double bond of a starting material compound (a base material) that has a carbon-carbon double bond, while using hydrogen peroxide as an oxidant.

Description

導電性接着剤及びそれを使用した電子機器Conductive adhesive and electronic device using the same
 本発明は、導電性接着剤及びそれを使用した電子機器に関する。 The present invention relates to a conductive adhesive and an electronic device using the same.
 近年、半導体素子および各種電気電子部品の組立あるいは基板への接着には、はんだに代わって導電性接着剤が多用されている。このような導電性接着剤の多くは、通常、エポキシ樹脂と導電性金属粒子等を含有する。 In recent years, conductive adhesives are often used in place of solder for assembling semiconductor elements and various electric / electronic components or bonding them to substrates. Many of such conductive adhesives usually contain an epoxy resin and conductive metal particles.
 また、下記特許文献1には、十分な強度と導電性を有する導電性接着剤として銅を含有する金属フィラーと、エポキシ化合物と、ノボラック型フェノ-ル樹脂と、低分子多価フェノ-ル化合物と、硬化剤とを必須成分とする導電性接着剤が記載されている。また、下記特許文献2には、より接着強度に優れた導電性接着剤として室温で液状のエポキシ樹脂とフェノール樹脂とを含有させた導電性接着剤が記載されている。 Patent Document 1 listed below discloses a metal filler containing copper as a conductive adhesive having sufficient strength and conductivity, an epoxy compound, a novolac-type phenol resin, and a low-molecular polyhydric phenol compound. And a conductive adhesive containing a curing agent as essential components is described. Patent Document 2 below describes a conductive adhesive containing an epoxy resin and a phenol resin that are liquid at room temperature as a conductive adhesive having better adhesive strength.
特開2000-192000号公報Japanese Unexamined Patent Publication No. 2000-192000 特開2009-7453号公報JP 2009-7453 A
 しかし、上記従来の技術においては、使用するエポキシ化合物(樹脂)に含有される塩素等のハロゲンにより、マイグレーション等が著しく生じ、導電性接着剤の信頼性が確保できないという問題があった。 However, the above conventional technique has a problem that the reliability of the conductive adhesive cannot be ensured due to significant migration or the like caused by halogen such as chlorine contained in the epoxy compound (resin) to be used.
 本発明の目的は、ハロゲンによる接着部分の劣化が生じにくい導電性接着剤及びそれを使用した電子機器を提供することにある。 An object of the present invention is to provide a conductive adhesive that hardly causes deterioration of a bonded portion due to halogen and an electronic device using the conductive adhesive.
 上記目的を達成するために、本発明の一実施形態は、導電フィラーおよびバインダー樹脂を含む導電性接着剤において、バインダー樹脂がエポキシ樹脂を含み、当該エポキシ樹脂全量に対する全塩素濃度及び全臭素濃度の合計が300質量ppm以下であることを特徴とする。 In order to achieve the above object, according to an embodiment of the present invention, in a conductive adhesive including a conductive filler and a binder resin, the binder resin includes an epoxy resin, and the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin. The total is 300 ppm by mass or less.
 また、上記のエポキシ樹脂全量に対する全塩素濃度及び全臭素濃度の合計が50質量ppm以下であることを特徴とする。 Further, the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin is 50 mass ppm or less.
 また、上記エポキシ樹脂が、過酸化物を酸化剤として炭素-炭素二重結合を有する原料化合物(基質)の炭素-炭素二重結合をエポキシ化して得られたものであることを特徴とする。また、上記原料化合物(基質)がアリルエーテル基を二個以上有する化合物であることを特徴とする。 Further, the epoxy resin is obtained by epoxidizing a carbon-carbon double bond of a raw material compound (substrate) having a carbon-carbon double bond with a peroxide as an oxidizing agent. Further, the raw material compound (substrate) is a compound having two or more allyl ether groups.
 また、上記導電性接着剤におけるバインダー樹脂の含有量が5~99体積%であることを特徴とする。 The content of the binder resin in the conductive adhesive is 5 to 99% by volume.
 また、上記導電フィラーが、金、銀、銅、ニッケル、アルミニウム、パラジウムからなる群から選択される少なくとも一種の金属、または前記複数の金属の合金よりなる粒子または繊維、前記金属表面に金、パラジウム、銀のいずれかがめっきされた金属粒子または繊維、樹脂ボールにニッケル、金、パラジウム、銀のいずれかがめっきされた樹脂コアボール、カーボンまたはグラファイトの粒子または繊維であることを特徴とする。 The conductive filler is at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum, palladium, or particles or fibers made of an alloy of the plurality of metals, gold, palladium on the metal surface , Metal particles or fibers plated with any of silver, resin core balls plated with any of nickel, gold, palladium, and silver on resin balls, or particles or fibers of carbon or graphite.
 また、本発明の一実施形態は、電子機器であって、上記いずれかの導電性接着剤により、半導体素子、ソーラーパネル、熱電素子、チップ部品、ディスクリート部品またはこれらの組合せを接合し、基板に実装したことを特徴とする。また、電子機器であって、上記いずれかの導電性接着剤により、フィルムアンテナ、キーボードメンブレン、タッチパネル、RFIDアンテナの配線形成及び基板への接続を行ったことを特徴とする。 One embodiment of the present invention is an electronic device, which joins a semiconductor element, a solar panel, a thermoelectric element, a chip component, a discrete component, or a combination thereof to any of the substrates by any one of the conductive adhesives described above. It is implemented. In addition, the electronic device is characterized in that the wiring of the film antenna, the keyboard membrane, the touch panel, and the RFID antenna is formed and connected to the substrate by any one of the above-described conductive adhesives.
 本発明によれば、半導体素子および各種電気電子部品の組立あるいは基板への接着の際に、ハロゲンに由来する接着部分の劣化を抑制することができる。 According to the present invention, it is possible to suppress degradation of the bonded portion derived from halogen during assembly of a semiconductor element and various electric / electronic components or bonding to a substrate.
 以下、本発明を実施するための形態(以下、実施形態という)を説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.
 本実施形態にかかる導電性接着剤は、導電フィラーおよびバインダーとして機能する樹脂を含み、上記樹脂がエポキシ樹脂を含み、当該エポキシ樹脂全量に対する全塩素濃度及び全臭素濃度の合計が300質量ppm以下であることを特徴とする。 The conductive adhesive according to this embodiment includes a resin that functions as a conductive filler and a binder, the resin includes an epoxy resin, and the total of the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin is 300 mass ppm or less. It is characterized by being.
 エポキシ樹脂全量に対する全塩素濃度及び全臭素濃度の合計は、好ましくは50質量ppm以下であり、さらに好ましくは10質量ppm以下である。 The total of the total chlorine concentration and the total bromine concentration with respect to the total amount of the epoxy resin is preferably 50 mass ppm or less, and more preferably 10 mass ppm or less.
 ここで、上記エポキシ樹脂は、例えば過酸化物を酸化剤として炭素-炭素二重結合を有する原料化合物(基質)の炭素-炭素二重結合をエポキシ化することにより得ることができる。この方法によると従来のエピハロヒドリンを用いるエポキシ樹脂の製造方法と異なり原料に炭素-塩素結合を有する化合物を使用しないため、本発明の実施形態の導電性接着剤を構成するバインダー樹脂としてのエポキシ樹脂は、分子内に炭素-塩素結合を含む化合物を実質的に含まない。本明細書において「実質的に含まない」とは、エポキシ樹脂を合成するために用いる原料に炭素-塩素結合を含む化合物を使用しない、すなわち、エポキシ樹脂中のそのような化合物およびその反応生成物の含有量がゼロであることを意味する。酸化剤としては過酸化水素、過酢酸等が挙げられるが、安価で取り扱いが容易な過酸化水素がより好ましい。特に過酸化水素の10~60質量%水溶液を用いることが反応性および取り扱い性の点で好ましい。この方法では原料に塩素および臭素を含まないので塩素および臭素の含有量が少ないエポキシ樹脂が得られる。本明細書において「エポキシ樹脂」とは導電性接着剤のバインダー成分、すなわち硬化物を構成するオキシラン環を有する化合物を指し、モノマー、オリゴマー、ポリマーのいずれをも含む。 Here, the epoxy resin can be obtained, for example, by epoxidizing a carbon-carbon double bond of a raw material compound (substrate) having a carbon-carbon double bond using peroxide as an oxidizing agent. According to this method, unlike the conventional epoxy resin production method using epihalohydrin, a compound having a carbon-chlorine bond is not used as a raw material. Therefore, the epoxy resin as the binder resin constituting the conductive adhesive according to the embodiment of the present invention is And substantially free of compounds containing carbon-chlorine bonds in the molecule. In the present specification, “substantially free” means that a compound containing a carbon-chlorine bond is not used as a raw material used for synthesizing an epoxy resin, that is, such a compound in an epoxy resin and a reaction product thereof. It means that the content of is zero. Examples of the oxidizing agent include hydrogen peroxide and peracetic acid, but hydrogen peroxide that is inexpensive and easy to handle is more preferable. In particular, it is preferable to use a 10 to 60% by mass aqueous solution of hydrogen peroxide in terms of reactivity and handling. In this method, since the raw material does not contain chlorine and bromine, an epoxy resin having a low chlorine and bromine content can be obtained. In this specification, “epoxy resin” refers to a binder component of a conductive adhesive, that is, a compound having an oxirane ring constituting a cured product, and includes any of a monomer, an oligomer, and a polymer.
 炭素-炭素二重結合を有する原料化合物(基質)としては、炭素数4から12のシクロアルケン、共役していない炭素数6から12のシクロアルカジエン、シクロアルカトリエン、またはシクロアルカテトラエン、あるいは、アリルエーテル基を有する化合物が挙げられる。アリルエーテル基とは、CH=CH-CH-0-で表される官能基をいう。 Examples of the raw material compound (substrate) having a carbon-carbon double bond include a cycloalkene having 4 to 12 carbon atoms, an unconjugated cycloalkadiene, cycloalkatriene, or cycloalkatetraene having 6 to 12 carbon atoms, or And compounds having an allyl ether group. The allyl ether groups, refers to a functional group represented by CH 2 = CH-CH 2 -0- .
 このような原料化合物(基質)としては、フェニルアリルエーテル類、クレゾールモノアリルエーテル類、シクロヘキセン類、シクロオクテン類等であり、例えばビスフェノール-Aジアリルエーテル、ノボラック型フェノール系樹脂のアリルエーテル化合物、シクロヘキサンジメタノールジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、3,4-エポキシシクロヘキサン-1-カルボン酸アリルエステル、3、4-シクロヘキセニルメチル-3’、4’-シクロヘキセンカルボキシレート等を例示できる。 Examples of such raw material compounds (substrates) include phenyl allyl ethers, cresol monoallyl ethers, cyclohexenes, cyclooctenes, and the like, for example, bisphenol-A diallyl ether, allyl ether compounds of novolac phenolic resins, cyclohexane Dimethanol diallyl ether, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether, 3,4-epoxycyclohexane-1-carboxylic acid allyl ester, 3,4-cyclohexenylmethyl-3 ′, 4′-cyclohexene carboxylate, etc. Can be illustrated.
 これらの中でも、アリルエーテル基を二個以上有する化合物を使用することが好ましく、例えば、以下の一般式(1)で表される化合物を過酸化水素等の酸化剤によりエポキシ化したグリシジルエーテル化合物がある。 Among these, it is preferable to use a compound having two or more allyl ether groups. For example, a glycidyl ether compound obtained by epoxidizing a compound represented by the following general formula (1) with an oxidizing agent such as hydrogen peroxide is used. is there.
Figure JPOXMLDOC01-appb-C000001
{式中、R及びRは、各々独立して水素原子、炭素数1~6のアルキル基又は炭素数4~6のシクロアルキル基、炭素数6~14のアリール基、あるいは、RとRは一緒になって炭素数3~12のシクロアルカンを形成し、R、R、R及びRは、各々独立して水素原子、炭素数1から10のアルキル基、炭素数4~6のシクロアルキル基又は炭素数6~14のアリール基であり、nは0又は1の整数を表す。}
Figure JPOXMLDOC01-appb-C000001
{Wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 4 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, or R 1 And R 2 together form a cycloalkane having 3 to 12 carbon atoms, and R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, carbon A cycloalkyl group having 4 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms, and n represents an integer of 0 or 1. }
 このような化合物としては、具体的には、ビスフェノール-Aジアリルエーテル、ビスフェノール-Fジアリルエーテル、2,6,2’,6’-テトラメチルビスフェノール-Aジアリルエーテル、2,2’-ジアリルビスフェノール-Aジアリルエーテル、2,2’-ジ-t-ブチルビスフェノール-Aジアリルエーテル、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジアリルエーテル、2,2’-ジイソプロピルビフェノールジアリルエーテル、4,4’-エチリデンビスフェノールジアリルエーテル、4,4’-シクロヘキシリデンビスフェノールジアリルエーテル、4,4’-(1-α-メチルベンジリデン)ビスフェノールジアリルエーテル、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビスフェノールジアリルエーテル、4,4’-(1-メチル-ベンジリデン)ビスフェノールジアリルエーテルなどが挙げられる。 Specific examples of such compounds include bisphenol-A diallyl ether, bisphenol-F diallyl ether, 2,6,2 ', 6'-tetramethylbisphenol-A diallyl ether, 2,2'-diallyl bisphenol- A diallyl ether, 2,2'-di-t-butylbisphenol-A diallyl ether, 3,3 ', 5,5'-tetramethylbiphenyl-4,4'-diallyl ether, 2,2'-diisopropylbiphenol diallyl Ether, 4,4′-ethylidene bisphenol diallyl ether, 4,4′-cyclohexylidene bisphenol diallyl ether, 4,4 ′-(1-α-methylbenzylidene) bisphenol diallyl ether, 4,4 ′-(3,3 , 5-Trimethylcyclohexylidene) bisphe Over Luzia Lil ether, 4,4 '- (1-methyl - benzylidene) bisphenol diallyl ether.
 芳香環を有し、かつアリルエーテル基を二個有するビフェニル型ジアリルエーテルとしては、具体的には、2,2’-ビフェニルジアリルエーテル、テトラメチルビフェニルジアリルエーテルなどが挙げられる。 Specific examples of the biphenyl diallyl ether having an aromatic ring and two allyl ether groups include 2,2'-biphenyl diallyl ether and tetramethylbiphenyl diallyl ether.
 また、クレゾールノボラック樹脂やフェノールノボラック樹脂のようなポリフェノールをアリルエーテル化した化合物も用いることができる。 Also, compounds obtained by allyl etherification of polyphenols such as cresol novolac resins and phenol novolac resins can be used.
 また、アリルエーテル基を二個またはそれ以上有する脂肪族ポリアリルエーテルも用いることができ、具体的には、1,5-ペンタンジオールジアリルエーテル、1,6-ヘキサンジオールジアリルエーテル、1,9-ノナンジオールジアリルエーテル、1,10-デカンジオールジアリルエーテル、ネオペンチルグリコールジアリルエーテル、グリセリントリアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテルなどが挙げられる。 Aliphatic polyallyl ethers having two or more allyl ether groups can also be used. Specifically, 1,5-pentanediol diallyl ether, 1,6-hexanediol diallyl ether, 1,9- Nonanediol diallyl ether, 1,10-decanediol diallyl ether, neopentyl glycol diallyl ether, glycerin triallyl ether, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether and the like can be mentioned.
 アリルエーテル基を二個有する脂環式ジオレフィンとしては、具体的には、1,4-シクロヘキサンジメタノールジアリルエーテル、トリシクロ[5.2.1.02,6]デカンジメタノールジアリルエーテルなどが挙げられる。 Specific examples of the alicyclic diolefin having two allyl ether groups include 1,4-cyclohexanedimethanol diallyl ether and tricyclo [5.2.1.0 2,6 ] decandimethanol diallyl ether. Can be mentioned.
 また、バインダーとして機能する樹脂には、上記エポキシ樹脂に加えて、他の熱可塑性樹脂及び熱硬化性樹脂を含んでもよい。熱可塑性樹脂としては、アクリル樹脂、エチルセルロース、ポリエステル、ポリスルホン、フェノキシ樹脂、ポリイミドなどが例示される。熱硬化性樹脂としては、尿素樹脂、メラミン樹脂、グアナミン樹脂のようなアミノ樹脂;オキセタン樹脂;レゾール型、ノボラック型のようなフェノール樹脂;シリコーンエポキシ、シリコーンポリエステルのようなシリコーン変性有機樹脂などが例示される。これらの他の熱可塑性樹脂及び熱硬化性樹脂も含有する、バインダーとして機能する樹脂は、塩素濃度および臭素濃度が低いものが好ましく、バインダーとして機能する樹脂全量に対する全塩素濃度及び全臭素濃度の合計が300質量ppm以下であることが好ましい。より好ましくは50質量ppm以下であり、さらに好ましくは10質量ppm以下である。 In addition, the resin functioning as a binder may include other thermoplastic resins and thermosetting resins in addition to the epoxy resin. Examples of the thermoplastic resin include acrylic resin, ethyl cellulose, polyester, polysulfone, phenoxy resin, and polyimide. Examples of thermosetting resins include amino resins such as urea resins, melamine resins, and guanamine resins; oxetane resins; phenol resins such as resol types and novolac types; and silicone-modified organic resins such as silicone epoxies and silicone polyesters. Is done. These other thermoplastic resins and thermosetting resins, which function as a binder, preferably have a low chlorine concentration and bromine concentration, and are the sum of the total chlorine concentration and the total bromine concentration relative to the total amount of the resin functioning as the binder. Is preferably 300 ppm by mass or less. More preferably, it is 50 mass ppm or less, More preferably, it is 10 mass ppm or less.
 エポキシ樹脂としては、樹脂の配合量を導電性を損ねない量に抑えても、優れた接着性が得られるとともに、優れた耐熱性も得られることから、ビスフェノールA型およびビスフェノールF型エポキシ樹脂が好ましい。また、同様の観点から、レゾール型フェノール樹脂を混合してもよい。 As epoxy resins, bisphenol A type and bisphenol F type epoxy resins are used because excellent adhesiveness and excellent heat resistance can be obtained even if the blending amount of the resin is suppressed to an amount that does not impair the conductivity. preferable. Further, from the same viewpoint, a resol type phenol resin may be mixed.
 樹脂として、常温で液状である樹脂を用いると、有機溶媒を用いないでビヒクルとすることができ、乾燥工程を省略できる。このため、液状エポキシ樹脂を使用するのが好適である。 When a resin that is liquid at room temperature is used as the resin, the vehicle can be obtained without using an organic solvent, and the drying step can be omitted. For this reason, it is preferable to use a liquid epoxy resin.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの;p-グリシドキシフェニルジメチルトリルビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;フェノールノボラック型エポキシ樹脂の平均分子量が約570以下のもの;1,5-ペンタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1,9-ノナンジオールジグリシジルエーテル、1,10-デカンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルなどの脂肪族ポリグリシジルエーテル;ビニル(3,4-シクロヘキセン)ジオキシド、3,4-エポキシシクロヘキシルカルボン酸(3,4-エポキシシクロヘキシル)メチル、アジピン酸ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)、2-(3,4-エポキシシクロヘキシル)5,1-スピロ(3,4-エポキシシクロヘキシル)-m-ジオキサンの少なくとも一種を構成成分としてなる脂環式エポキシ樹脂が例示される。 Liquid epoxy resins include bisphenol A type epoxy resins having an average molecular weight of about 400 or less; branched polyfunctional bisphenol A type epoxy resins such as p-glycidoxyphenyldimethyltolylbisphenol A diglycidyl ether; bisphenol F type Epoxy resin; phenol novolac type epoxy resin having an average molecular weight of about 570 or less; 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,9-nonanediol diglycidyl ether, 1, 10-decanediol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether Aliphatic polyglycidyl ethers such as vinyl (3,4-cyclohexene) dioxide, 3,4-epoxycyclohexylcarboxylic acid (3,4-epoxycyclohexyl) methyl, bis (3,4-epoxy-6-methylcyclohexyl) adipate Examples thereof include alicyclic epoxy resins comprising at least one of methyl), 2- (3,4-epoxycyclohexyl) 5,1-spiro (3,4-epoxycyclohexyl) -m-dioxane as a constituent component.
 また、液状エポキシ樹脂に、混合系が流動性を示す範囲内で、かつエポキシ樹脂全量に対する全塩素濃度及び全臭素濃度の合計が300質量ppm以下となる範囲内で、相溶性であって、常温で固体ないし超高粘性を呈する樹脂を混合して用いてもよい。そのような樹脂として、高分子量のビスフェノールA型エポキシ樹脂、ジグリシジルビフェニル、ノボラックエポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂のようなエポキシ樹脂;ノボラックフェノール樹脂などが例示される。 In addition, the liquid epoxy resin is compatible within the range in which the mixed system exhibits fluidity, and within a range in which the total chlorine concentration and total bromine concentration with respect to the total amount of the epoxy resin is 300 ppm by mass or less. A resin having a solid or ultra-high viscosity may be mixed and used. Examples of such resins include high molecular weight bisphenol A type epoxy resins, diglycidyl biphenyl, novolac epoxy resins, and epoxy resins such as tetrabromobisphenol A type epoxy resins; novolak phenol resins and the like.
 エポキシ樹脂の硬化機構としては、自己硬化型樹脂を用いても、硬化剤や硬化促進剤を用いてもよい。 As a curing mechanism of the epoxy resin, a self-curing resin may be used, or a curing agent or a curing accelerator may be used.
 上記エポキシ樹脂に対して通常使用される硬化剤としては、酸無水物、ポリアミン、ポリフェノール化合物等がある。 Examples of curing agents usually used for the epoxy resin include acid anhydrides, polyamines, polyphenol compounds, and the like.
 このような硬化剤としては、具体的に酸無水物の場合には、ヘキサヒドロ無水フタル酸、1,2,3,6-テトラヒドロ無水フタル酸、3,4,5,6-テトラヒドロ無水フタル酸、3-メチル-1,2,3,6-テトラヒドロ無水フタル酸、4-メチル-1,2,3,6-テトラヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、5-ノルボルネン-2,3-ジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸、メチル-3,6-エンドメチレンヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸のほか、α-テルピネンやアロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物やこれらの水素添加物等の脂環式カルボン酸無水物系硬化剤や、芳香族酸無水物としては無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物等であり、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物等がある。 As such a curing agent, specifically in the case of an acid anhydride, hexahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride Acid, 5-norbornene-2,3-dicarboxylic acid anhydride, norbornane-2,3-dicarboxylic acid anhydride, methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, methyl- In addition to 3,6-endomethylenehexahydrophthalic anhydride, dodecenyl succinic anhydride and alicyclic compounds having conjugated double bonds such as α-terpinene and alloocimene Alicyclic carboxylic anhydride-based curing agents such as Diels-Alder reaction products with maleic acid and hydrogenated products thereof, and aromatic anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride Benzophenone tetracarboxylic acid anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, and the like.
 ポリアミンとしては、脂肪族アミンとしてジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロプレンジアミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、イソホロンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、水添ジアミノジフェニルメタンなどがあり、芳香族アミンとしてはm-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォンなどがある。 Polyamines include aliphatic amines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, m-xylylenediamine, p-xylylenediamine, hydrogenated Examples of the aromatic amine include m-phenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
 ポリフェノール化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂のようないわゆるフェノール樹脂やポリビニルフェノール等が用いられる。 As the polyphenol compound, a so-called phenol resin such as a phenol novolak resin or a cresol novolak resin, polyvinyl phenol, or the like is used.
 また、エポキシ樹脂と硬化剤の反応を促進するために、イミダゾールやジシアンジアミドのような硬化促進剤を併用することもできる。なお、これらの硬化剤、硬化促進剤にも塩素、臭素の含有量は低いほうが好ましいことはいうまでもない。 Also, in order to accelerate the reaction between the epoxy resin and the curing agent, a curing accelerator such as imidazole or dicyandiamide can be used in combination. Needless to say, it is preferable that the content of chlorine and bromine is low in these curing agents and curing accelerators.
 また、本実施形態の導電性接着剤に使用される導電フィラーは、金、銀、銅、ニッケル、アルミニウム、パラジウムからなる群から選択される少なくとも一種の金属、または前記複数の金属の合金よりなる粒子または繊維、上記金属表面に金、パラジウム、銀のいずれかがめっきされた金属粒子または繊維、樹脂ボールにニッケル、金、パラジウム、銀のいずれかがめっきされた樹脂コアボール、カーボンまたはグラファイトの粒子または繊維であることが好適であるが、これらに限定されるものではなく、導電性を発現でき、かつ接着性を大きく(接着剤として使用できない程度に)損なうものでなければ使用することができる。導電フィラーの形状は特に限定されず、粒子の場合は球状、平板(扁平)状、棒状等種々の形状のものを使用できる。好ましい粒子径としては5nm~20μmの範囲のものを使用できる。ここでいう粒子径とは500nm以上の粒子径の場合には、レーザー回折・散乱法で、500nm未満の場合には動的光散乱法で各々測定した、個数基準のD50(メジアン径)の粒子径を意味する。また繊維の場合は径0.1~3μm、長さ1~10μm、アスペクト比5~100のものが好ましい。 In addition, the conductive filler used in the conductive adhesive of this embodiment is made of at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum, and palladium, or an alloy of the plurality of metals. Particles or fibers, metal particles or fibers plated with gold, palladium or silver on the metal surface, resin core balls plated with nickel, gold, palladium or silver on resin balls, carbon or graphite It is preferably a particle or fiber, but is not limited thereto, and may be used as long as it can exhibit electrical conductivity and does not significantly deteriorate the adhesiveness (to the extent that it cannot be used as an adhesive). it can. The shape of the conductive filler is not particularly limited, and in the case of particles, various shapes such as a spherical shape, a flat plate shape (flat shape), and a rod shape can be used. A preferable particle diameter is 5 nm to 20 μm. The particle diameter here is a number-based D50 (median diameter) particle measured by a laser diffraction / scattering method when the particle diameter is 500 nm or more, and by a dynamic light scattering method when it is less than 500 nm. Means diameter. In the case of fibers, those having a diameter of 0.1 to 3 μm, a length of 1 to 10 μm, and an aspect ratio of 5 to 100 are preferable.
 導電性接着剤中の樹脂の配合量は、印刷適性と、硬化して得られる導電層の導電性から、該樹脂と導電フィラーの合計に対して、5~99体積%であることが好ましい。金属粒子をバインダー樹脂中に均一に分散させる場合は40~85体積%がより好ましく、60~75体積%がさらに好ましい。また、異方性導電接続を可能にする異方導電性接着剤を構成するには、バインダー樹脂の含有量を95~99体積%とするのが好適である。ここで、異方性導電接続とは、相対する電極間(縦方向)では導電性で、隣接する電極間(横方向)には絶縁性が保たれる接続をいう。異方導電性接着剤は、異方性導電接続により電気的に接続される電極間に挟んで使用される。 The compounding amount of the resin in the conductive adhesive is preferably 5 to 99% by volume with respect to the total of the resin and the conductive filler, from the printability and the conductivity of the conductive layer obtained by curing. When the metal particles are uniformly dispersed in the binder resin, the content is more preferably 40 to 85% by volume, and still more preferably 60 to 75% by volume. In order to construct an anisotropic conductive adhesive that enables anisotropic conductive connection, the binder resin content is preferably 95 to 99% by volume. Here, the anisotropic conductive connection refers to a connection that is conductive between opposing electrodes (vertical direction) and insulative between adjacent electrodes (horizontal direction). An anisotropic conductive adhesive is used by being sandwiched between electrodes electrically connected by anisotropic conductive connection.
 本実施形態の導電性接着剤は、導電フィラーおよび上記エポキシ樹脂を含むバインダー樹脂の種類と量を選択し、また必要に応じて希釈剤を用いることにより、素子、基板などへの印刷方法または塗布方法に応じて、適切な粘度に調製することができる。たとえば、スクリーン印刷の場合には、沸点が200℃以上の有機溶媒を希釈剤として用いることが好ましく、このような有機溶媒としては、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノブチルエーテル等が挙げられる。印刷方法または塗布方法にもよるが、好ましい導電性接着剤の粘度はレオメーターで25℃で測定した粘度が20Pa・s~500Pa・sの範囲である。 The conductive adhesive of the present embodiment is selected from the type and amount of the binder resin including the conductive filler and the epoxy resin, and if necessary, by using a diluent, a printing method or application to an element, a substrate, etc. Depending on the method, it can be adjusted to an appropriate viscosity. For example, in the case of screen printing, an organic solvent having a boiling point of 200 ° C. or higher is preferably used as a diluent. Examples of such an organic solvent include diethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, and diethylene glycol monobutyl ether. Can be mentioned. Although it depends on the printing method or the coating method, the preferred viscosity of the conductive adhesive is 20 Pa · s to 500 Pa · s as measured at 25 ° C. with a rheometer.
 本実施形態の導電性接着剤には、上記のほか、必要に応じて、分散助剤として、ジイソプロポキシ(エチルアセトアセタート)アルミニウムのようなアルミニウムキレート化合物;イソプロピルトリイソステアロイルチタナートのようなチタン酸エステル;脂肪族多価カルボン酸エステル;不飽和脂肪酸アミン塩;ソルビタンモノオレエートのような界面活性剤;またはポリエステルアミン塩、ポリアミドのような高分子化合物などを用いてもよい。また、無機および有機顔料、シランカップリング剤、レベリング剤、チキソトロピック剤、消泡剤などを配合してもよい。 In addition to the above, the conductive adhesive of the present embodiment includes an aluminum chelate compound such as diisopropoxy (ethylacetoacetate) aluminum as a dispersion aid, if necessary, such as isopropyltriisostearoyl titanate. An aliphatic polycarboxylic acid ester; an unsaturated fatty acid amine salt; a surfactant such as sorbitan monooleate; or a polymer compound such as a polyesteramine salt or polyamide may be used. Moreover, you may mix | blend an inorganic and organic pigment, a silane coupling agent, a leveling agent, a thixotropic agent, an antifoamer, etc.
 本実施形態の導電性接着剤は、配合成分を、ライカイ機、プロペラ撹拌機、ニーダー、ロール、ポットミルなどのような混合手段により、均一に混合して調製することができる。調製温度は、特に限定されず、たとえば常温で調製することができる。 The conductive adhesive of the present embodiment can be prepared by uniformly mixing the blended components by a mixing means such as a reika machine, a propeller stirrer, a kneader, a roll, and a pot mill. Preparation temperature is not specifically limited, For example, it can prepare at normal temperature.
 本実施形態の導電性接着剤は、スクリーン印刷、グラビア印刷、ディスペンスなど、任意の方法で基板に印刷または塗布することができる。有機溶媒を希釈剤として用いる場合は、印刷または塗布の後、常温で、または加熱によって、該有機溶媒を揮散させる。ついで、樹脂を、樹脂および硬化剤や硬化促進剤の種類に応じて、通常70~250℃、たとえばフェノール樹脂を硬化剤として用いるエポキシ樹脂の場合、150~200℃で2~30分加熱して硬化させて、基板表面の必要な部分に、導電パターンを形成させることができる。 The conductive adhesive of the present embodiment can be printed or applied to the substrate by any method such as screen printing, gravure printing, dispensing, or the like. When an organic solvent is used as a diluent, the organic solvent is volatilized after printing or coating at room temperature or by heating. Next, the resin is usually heated at 70 to 250 ° C., for example, in the case of an epoxy resin using a phenol resin as a curing agent, for 2 to 30 minutes depending on the type of the resin and the curing agent or curing accelerator. By curing, a conductive pattern can be formed on a necessary portion of the substrate surface.
 このようにして、本実施形態の導電性接着剤を使用して、半導体素子、ソーラーパネル、熱電素子、チップ部品、ディスクリート部品またはこれらの組合せを基板に実装した電子機器を形成させることができる。また、本実施形態の導電性接着剤を使用して、フィルムアンテナ、キーボードメンブレン、タッチパネル、RFIDアンテナの配線形成及び基板への接続を行った電子機器を形成させることもできる。 Thus, using the conductive adhesive of this embodiment, an electronic device in which a semiconductor element, a solar panel, a thermoelectric element, a chip part, a discrete part, or a combination thereof is mounted on a substrate can be formed. In addition, by using the conductive adhesive of the present embodiment, it is also possible to form an electronic device in which a film antenna, a keyboard membrane, a touch panel, and an RFID antenna are formed and connected to a substrate.
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。
 実施例で使用した導電フィラーは以下の2種類の銀粒子である。
 N300:トクセン工業株式会社製銀粒子(平板状) D50=470nm
 EHD :三井金属鉱業株式会社製銀粒子(球状)  D50=620nm
 ここで、上記D50は、N300が動的光散乱法、EHDがレーザー回折・散乱法で各々測定した個数基準のメジアン径である。なお、N300は3万倍の倍率で観察箇所を変えて10点SEM観察して求めた厚さの数平均値が30nmであった。
Examples of the present invention will be specifically described below. In addition, the following examples are for facilitating understanding of the present invention, and the present invention is not limited to these examples.
The conductive filler used in the examples is the following two types of silver particles.
N300: Toxen Industries Co., Ltd. silver particle (flat plate) D50 = 470 nm
EHD: Silver particles (spherical) manufactured by Mitsui Mining & Smelting Co., Ltd. D50 = 620 nm
Here, D50 is a number-based median diameter measured by N300 using a dynamic light scattering method and EHD using a laser diffraction / scattering method. In addition, N300 had a number average value of 30 nm obtained by observing 10 points by SEM while changing the observation location at a magnification of 30,000 times.
合成例1
・3,4-エポキシシクロヘキサン-1-カルボン酸アリルエステルの合成とその重合体の作製
 NaWO・2HO(500mg,1.5mmol)、40質量%過酸化水素水溶液(7.65g,90mmol)、硫酸水素メチルトリオクチルアンモニウム(260mg,0.56mmol)及び3-シクロヘキセン-1-カルボン酸アリル(12.5g,75mmol)を混合し、25℃にて15分間反応させた後、70℃まで昇温し、3.5時間撹拌した。反応終了後、室温まで冷却させた。チオ硫酸ナトリウム飽和水溶液にて後処理を行った後、有機層を取り出した。得られた溶液をガスクロマトグラフィーにて測定したところ、原料である3-シクロヘキセン-1-カルボン酸アリルの転化率は79%であり、2官能性エポキシモノマーである3,4-エポキシシクロヘキサン-1-カルボン酸アリルエステルが69%の収率で生成していることを確認した。ジエポキシドは全く生成しておらず、モノエポキシドの選択率が87.3%であるという結果が得られた。
Synthesis example 1
- 3,4 Preparation of epoxy-cyclohexane-1-carboxylic acid allyl ester and its polymer Na 2 WO 4 · 2H 2 O (500mg, 1.5mmol), 40 wt% aqueous hydrogen peroxide (7.65 g, 90 mmol), methyl trioctylammonium hydrogen sulfate (260 mg, 0.56 mmol) and allyl 3-cyclohexene-1-carboxylate (12.5 g, 75 mmol) were mixed and reacted at 25 ° C. for 15 minutes, and then 70 ° C. The mixture was heated up to 3.5 hours and stirred for 3.5 hours. After completion of the reaction, it was cooled to room temperature. After post-treatment with a saturated aqueous solution of sodium thiosulfate, the organic layer was taken out. When the obtained solution was measured by gas chromatography, the conversion of allyl 3-cyclohexene-1-carboxylate as a raw material was 79% and 3,4-epoxycyclohexane-1 as a bifunctional epoxy monomer was obtained. -It was confirmed that allyl carboxylic acid ester was produced in a yield of 69%. The result was that no diepoxide was produced and the selectivity of monoepoxide was 87.3%.
 なお、転化率及び選択率は、ガスクロマトグラフィーにより分析した結果を元に、以下の計算式により計算した。 In addition, the conversion rate and the selectivity were calculated by the following calculation formula based on the result analyzed by gas chromatography.
   転化率(%)=(1-残存した原料のモル数/使用した原料のモル数)×100
   選択率(%)={(収率(%)/転化率(%)}×100
Conversion rate (%) = (1−number of moles of raw material remaining / number of moles of raw material used) × 100
Selectivity (%) = {(yield (%) / conversion (%)} × 100
 これとほぼ同様の方法でスケールアップを行って得られた3,4-エポキシシクロヘキサン-1-カルボン酸アリルエステル100gを、ジエチレングリコールモノメチルエーテルアセテート80g、安息香酸アリルエステル89g、t-ブチルイソプロピルパーオキシカーボネート(日本油脂株式会社製パーブチルI(主成分75%含有))4.7gとともに攪拌機、温度計、還流冷却管、滴下ロート及び窒素導入管を備えた500mlセパラブルフラスコに仕込み、110℃に昇温後、1時間撹拌した。t-ブチルイソプロピルパーオキシカーボネートを、1時間毎、3回に分けて4.7gずつ添加し、添加終了後さらに110℃、窒素雰囲気下で2時間熟成することによって、エポキシ基含有重合体溶液を得た。反応は窒素気流下で行った。 100 g of 3,4-epoxycyclohexane-1-carboxylic acid allyl ester obtained by scaling up in substantially the same manner as above, 80 g of diethylene glycol monomethyl ether acetate, 89 g of benzoic acid allyl ester, t-butylisopropyl peroxycarbonate (Nippon Yushi Co., Ltd., Perbutyl I (containing 75% of the main component)) was charged into a 500 ml separable flask equipped with 4.7 g and a stirrer, thermometer, reflux condenser, dropping funnel, and nitrogen inlet tube, and heated to 110 ° C. Thereafter, the mixture was stirred for 1 hour. t-Butyl isopropyl peroxycarbonate was added in 4.7 g portions every 3 hours, and after completion of addition, the mixture was further aged in a nitrogen atmosphere at 110 ° C. for 2 hours to obtain an epoxy group-containing polymer solution. Obtained. The reaction was carried out under a nitrogen stream.
 反応中、ガスクロマトグラフィーで、3,4-エポキシシクロヘキサン-1-カルボン酸アリルエステルと安息香酸アリルエステルの残量を測定し、転化率を算出することによって反応を追跡し、両エステルが1%以下になった点を反応終点とした。この時点でのゲルパーミエーションクロマトグラフ(以下GPCと省略する)の結果と合わせて、重合反応が進行したことを確認した。得られた樹脂の固形分のエポキシ当量は381g/eq.(理論エポキシ当量344g/eq.)、数平均分子量Mnは1,315であった。また、全塩素濃度は6質量ppm、全臭素濃度は1質量ppm未満であった。 During the reaction, the remaining amount of 3,4-epoxycyclohexane-1-carboxylic acid allyl ester and benzoic acid allyl ester was measured by gas chromatography, and the reaction was followed by calculating the conversion rate. The following points were defined as reaction end points. Together with the results of gel permeation chromatograph (hereinafter abbreviated as GPC) at this point, it was confirmed that the polymerization reaction had progressed. The epoxy equivalent of the solid content of the obtained resin was 381 g / eq. (Theoretical epoxy equivalent 344 g / eq.) And the number average molecular weight Mn was 1,315. Moreover, the total chlorine concentration was 6 mass ppm, and the total bromine concentration was less than 1 mass ppm.
 なお、エポキシ当量、数平均分子量、全塩素濃度および全臭素濃度は各々以下の方法により求めた。 The epoxy equivalent, number average molecular weight, total chlorine concentration and total bromine concentration were determined by the following methods, respectively.
<エポキシ当量>
 エポキシ当量はJIS-K7236に準拠して求めた。試料を0.1~0.2g秤量し、三角フラスコに入れた後、クロロホルム10mLを加えて溶解させる。次に、酢酸20mLを加え、続いて臭化テトラエチルアンモニウム酢酸溶液(臭化テトラエチルアンモニウム100gを酢酸400mLに溶解させたもの)10mLを加える。この溶液にクリスタルバイオレット指示薬を4~6滴加え、0.1mol/L過塩素酸酢酸溶液で滴定し、滴定結果に基づいて、下記式に従いエポキシ当量を求めた。
  エポキシ当量(g/eq)=(1000×m)/{(V1-V0)×c}
  m :試料の重量(g)
  V0:空試験における終点までの滴定に消費した過塩素酸酢酸溶液の量(mL)
  V1:終点までの滴定に消費した過塩素酸酢酸溶液の量(mL)
  c :過塩素酸酢酸溶液の濃度(0.1mol/L)
<Epoxy equivalent>
The epoxy equivalent was determined according to JIS-K7236. Weigh 0.1 to 0.2 g of the sample, put it in an Erlenmeyer flask, and add 10 mL of chloroform to dissolve. Next, 20 mL of acetic acid is added, followed by 10 mL of tetraethylammonium bromide solution (100 g of tetraethylammonium bromide dissolved in 400 mL of acetic acid). 4 to 6 drops of crystal violet indicator was added to this solution, and titrated with a 0.1 mol / L perchloric acid acetic acid solution. Based on the titration result, the epoxy equivalent was determined according to the following formula.
Epoxy equivalent (g / eq) = (1000 × m) / {(V1−V0) × c}
m: weight of the sample (g)
V0: Amount of perchloric acid acetic acid solution consumed for titration to the end point in the blank test (mL)
V1: Amount of perchloric acid acetic acid solution consumed for titration to the end point (mL)
c: Concentration of perchloric acid acetic acid solution (0.1 mol / L)
<数平均分子量>
 ゲルパーミエーションクロマトグラフィー(以下GPCと省略する。)を用い、ポリスチレン(標準試料 昭和電工(株)製STANDARD SM-105使用)に換算した値で求めた。なお、GPCの測定条件は以下のとおりである。
   装置名:日本分光(株)製HPLCユニット HSS-2000
   カラム:ShodexカラムLF-804
   移動相:テトラヒドロフラン
   流速 :1.0mL/分
   検出器:日本分光(株)製 RI-2031Plus
   温度 :40.0℃
   試料量:サンプルループ 100μリットル
   試料濃度:0.1質量%前後に調製。
<Number average molecular weight>
Using gel permeation chromatography (hereinafter abbreviated as GPC), the value was calculated as a value converted to polystyrene (using standard sample STANDARD SM-105 manufactured by Showa Denko KK). The measurement conditions for GPC are as follows.
Device name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804
Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL / min Detector: manufactured by JASCO Corporation RI-2031Plus
Temperature: 40.0 ° C
Sample amount: 100 μl of sample loop Sample concentration: prepared at around 0.1% by mass.
<全塩素濃度および全臭素濃度>
 塩素濃度および臭素濃度の測定は、エポキシ化合物を800℃以上の高温で燃焼・分解させ、その分解ガスを超純水等に吸収させ、イオンクロマトグラフィーで定量することにより測定した(前処理燃焼装置 AGF-100(株式会社三菱化学アナリティック製)、ガス吸着装置 GA-100(株式会社三菱化学アナリティック製)、イオンクロマト ICS-100(ダイオネクス・コーポレーション製))。
<Total chlorine concentration and total bromine concentration>
The chlorine concentration and bromine concentration were measured by burning and decomposing the epoxy compound at a high temperature of 800 ° C. or higher, absorbing the decomposed gas in ultrapure water, etc., and quantifying it by ion chromatography (pretreatment combustion apparatus) AGF-100 (manufactured by Mitsubishi Chemical Analytic Co., Ltd.), gas adsorption device GA-100 (manufactured by Mitsubishi Chemical Analytic Co., Ltd.), ion chromatograph ICS-100 (manufactured by Dionex Corporation)).
合成例2
・3,3’,5,5’-テトラメチルビフェニル-4,4’-グリシジルエーテルの合成
 2000mlのナス型フラスコに、3,3’,5,5’-テトラメチル-4,4’-ビフェニルジオール(中国:甘粛省化工研究院製)150g(0.619mol)、50%含水5%-Pd/C(PdとCの合計質量に対するPdの質量が5質量%のPd/Cに水を含浸させ、Pd/Cと水の合計質量に対する水の質量が50質量%としたもの)-STDタイプ(エヌ・イーケムキャット株式会社製)1.32g(0.310mol)、トリフェニルホスフィン(北興化学株式会社製)1.624g(6.19mmol)、炭酸カリウム(日本曹達株式会社製)171g(1.24mol)、酢酸アリル(昭和電工株式会社製)136g(1.36mol)、及びイソプロパノール68.1gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、ガスクロマトグラフィーによる分析で、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジアリルエーテル対モノアリルエーテルの比率が97:3までになっていることを確認した。
Synthesis example 2
Synthesis of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-glycidyl ether 3,3 ′, 5,5′-tetramethyl-4,4′-biphenyl was added to a 2000 ml eggplant type flask. Diol (China: Gansu Chemical Research Institute) 150g (0.619mol), 50% water content 5% -Pd / C (Pd / C with 5% by mass of Pd with respect to the total mass of Pd and C was impregnated with water. The mass of water is 50% by mass with respect to the total mass of Pd / C and water) -STD type (manufactured by N.E. Chemcat Co., Ltd.) 1.32 g (0.310 mol), triphenylphosphine (Hokuko Chemical Co., Ltd.) 1.624 g (6.19 mmol) manufactured by company), 171 g (1.24 mol) potassium carbonate (manufactured by Nippon Soda Co., Ltd.), 136 g (1.36 mol) allyl acetate (manufactured by Showa Denko KK), And 68.1 g of isopropanol were added and reacted at 85 ° C. for 8 hours in a nitrogen atmosphere. After the reaction, a part was sampled, diluted with ethyl acetate, and analyzed by gas chromatography. The ratio of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diallyl ether to monoallyl ether was 97 : Confirmed to be up to 3.
 この後、反応液にトルエン200gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去した。この反応、後処理操作を4回繰り返した後、分子蒸留装置(大科工業株式会社製)により、留出物510g(単離収率66%、ジアリルエーテル97.9%、残りはモノアリルエーテル)、非留出物231.7g(ジアリルエーテル97.5%)を得た。留出物は融点が51.7℃の固体であり、レオメーター(Anton Paar社製 Phisica MCR301 使用治具:CP25-2 25mm径、angle 2°)で測定した60℃における粘度は、29mPa・sであった。 Thereafter, 200 g of toluene was added to the reaction solution, Pd / C and the precipitated solid were removed by filtration, and isopropanol and toluene were distilled off by an evaporator. After repeating this reaction and the post-treatment operation four times, a distillate 510 g (isolation yield 66%, diallyl ether 97.9%, the rest is monoallyl ether) by molecular distillation apparatus (manufactured by Otsuka Kogyo Co., Ltd.). ), 231.7 g of non-distilled product (97.5% diallyl ether) was obtained. The distillate is a solid having a melting point of 51.7 ° C., and the viscosity at 60 ° C. measured by a rheometer (Phisica MCR301 manufactured by Anton Paar Co., Ltd .: CP25-2, 25 mm diameter, angle 2 °) is 29 mPa · s. Met.
 上記操作により得られた3,3’,5,5’-テトラメチルビフェニル-4,4’-ジアリルエーテル185g(0.576mol)とタングステン酸ナトリウム(日本無機化学工業株式会社製)3.785g(0.0115mol)、硫酸水素メチルトリオクチルアンモニウム4.389g(0.0115mol)、燐酸1.278g(0.0115mol)、トルエン92.5gを滴下ロート、ジムロート冷却管を備えた300mlの三ツ口フラスコに入れ、マグネチックスターラーで撹拌しながら、オイルバスで70℃に加温した後、35%過酸化水素水溶液168g(1.728mol)を、反応温度が75℃を超えないように滴下した。滴下終了後、2時間攪拌を継続し、反応液を室温まで冷却した。この後、トルエンを40g追加し、上層に有機層、下層に水層が来るようにして、有機層を分離した。 185 g (0.576 mol) of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diallyl ether obtained by the above operation and 3.785 g of sodium tungstate (manufactured by Nippon Inorganic Chemical Co., Ltd.) 0.0115 mol), 4.389 g (0.0115 mol) of methyltrioctylammonium hydrogen sulfate, 1.278 g (0.0115 mol) of phosphoric acid, and 92.5 g of toluene were placed in a 300 ml three-necked flask equipped with a dropping funnel and a Dimroth condenser. The mixture was heated to 70 ° C. with an oil bath while stirring with a magnetic stirrer, and 168 g (1.728 mol) of 35% aqueous hydrogen peroxide solution was added dropwise so that the reaction temperature did not exceed 75 ° C. After completion of dropping, stirring was continued for 2 hours, and the reaction solution was cooled to room temperature. Thereafter, 40 g of toluene was added, and the organic layer was separated so that the upper layer was an organic layer and the lower layer was an aqueous layer.
 この有機層を分析した結果、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジアリルエーテルの転化率は94.2%であり、モノエポキシへの選択率は34.9%、ジエポキシへの選択率は62.5%であった。得られた生成物をトルエンで2回再結晶し、エポキシ化物71.2gを得た{純度は93.4%}。また、合成例1同様に測定したこのエポキシ化物の全塩素濃度は5質量ppm、全臭素濃度は1質量ppm未満で、エポキシ当量は189g/eq.であった。 As a result of analyzing this organic layer, the conversion of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diallyl ether was 94.2%, and the selectivity to monoepoxy was 34.9. %, Selectivity to diepoxy was 62.5%. The obtained product was recrystallized twice with toluene to obtain 71.2 g of an epoxidized product (purity is 93.4%). Further, the total chlorine concentration of this epoxidized product measured in the same manner as in Synthesis Example 1 was 5 ppm by mass, the total bromine concentration was less than 1 ppm by mass, and the epoxy equivalent was 189 g / eq. Met.
合成例3
・ビスフェノール-A-グリシジルエーテルの合成
 2000mlのナス型フラスコに、ビスフェノール-A(三井化学株式会社製)148.4g(0.650mol)、50%含水5%-Pd/C-STDタイプ(エヌ・イーケムキャット株式会社製)1.38g(0.650mmol)、トリフェニルホスフィン(北興化学株式会社製)1.639g(6.50mmol)、炭酸カリウム(日本曹達株式会社製)189g(1.37mol)、酢酸アリル(昭和電工株式会社製)143g(1.43mol)、及びイソプロパノール64.1gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、ガスクロマトグラフィーによる分析で、ビスフェノール-A-ジアリルエーテル対モノアリルエーテルの比率が98:2までになっていることを確認した。
Synthesis example 3
Synthesis of bisphenol-A-glycidyl ether In a 2000 ml eggplant-shaped flask, 148.4 g (0.650 mol) of bisphenol-A (manufactured by Mitsui Chemicals), 50% water content 5% -Pd / C-STD type (N. 1.38 g (0.650 mmol) manufactured by Echemcat Co., Ltd., 1.639 g (6.50 mmol) triphenylphosphine (produced by Hokuko Chemical Co., Ltd.), 189 g (1.37 mol) potassium carbonate (produced by Nippon Soda Co., Ltd.), 143 g (1.43 mol) of allyl acetate (manufactured by Showa Denko KK) and 64.1 g of isopropanol were added and reacted at 85 ° C. for 8 hours in a nitrogen atmosphere. After the reaction, a part was sampled, diluted with ethyl acetate, and analyzed by gas chromatography, and it was confirmed that the ratio of bisphenol-A-diallyl ether to monoallyl ether was up to 98: 2.
 この後、反応液にトルエン200gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去した。この反応、後処理操作を4回繰り返した後、分子蒸留装置(大科工業株式会社製)により、留出物493g(単離収率61.7%、ジアリルエーテル98.1%、残りはモノアリルエーテル)、非留出物245g(ジアリルエーテル96.5%)を得た。 Thereafter, 200 g of toluene was added to the reaction solution, Pd / C and the precipitated solid were removed by filtration, and isopropanol and toluene were distilled off by an evaporator. This reaction and post-treatment operation were repeated four times, and then 493 g of a distillate (isolation yield 61.7%, diallyl ether 98.1%, the rest was mono) by using a molecular distillation apparatus (manufactured by Otsuka Industry Co., Ltd.) Allyl ether), 245 g of non-distilled product (96.5% diallyl ether).
 1L4径ナス型フラスコに上記操作により得られたビスフェノール-A-ジアリルエーテル(50.05g、162.3mmol)、アセトニトリル(26.63g、648.7mmol)、エタノール(265.1g、5754.2mmol)を量りとった(アセトニトリル濃度9.9mol%、pH=8.2)。pH=9を下回らないように飽和水酸化カリウム水溶液(KOH/HO=110mg/100mL)を加えながら45%過酸化水素水(53.92g、713.5mmol)を100mL滴下漏斗により2時間かけて滴下した(アセトニトリル濃度8.1mol%、pH=9.2)。反応温度が30℃を超えないよう飽和水酸化カリウム水溶液を滴下しpHを2時間かけて(過酸化水素水滴下終了時点から2時間)10.5に到達させ、pHを10.5に制御しながらさらに2時間攪拌した(アセトニトリル濃度6.3mol%に低下)。50mL滴下漏斗にアセトニトリル(13.31g、324.2mmol)を量りとり、2時間かけて滴下した(追添後アセトニトリル濃度6.1mol%)。これと同時に、45%過酸化水素水(53.92g、713.5 mmol)を100mL滴下漏斗により4時間かけて滴下(この間の4時間は反応温度が30℃を超えないようにpHを10~10.5に保持してする。)し、さらにpHを10.5に制御しながら4時間攪拌した(反応終了時のアセトニトリル濃度3.5mol%)。反応液に、純水(100g)を加え希釈し、減圧下、溶媒留去した。残渣を酢酸エチル(100g)により抽出後、再び純水(100g)を加え、分液操作を行った。得られた溶液をガスクロマトグラフィーにて測定したところ、原料であるビスフェノールA型ジアリルエーテルの転化率は100%であり、ジエポキシモノマーであるビスフェノールA型ジグリシジルエーテルが87.7%、モノグリシジルエーテルが5.1%であることを確認した。 Bisphenol-A-diallyl ether (50.05 g, 162.3 mmol), acetonitrile (26.63 g, 648.7 mmol), ethanol (265.1 g, 5754.2 mmol) obtained by the above operation were placed in a 1 L 4-diameter eggplant type flask. Weighed (acetonitrile concentration 9.9 mol%, pH = 8.2). Saturated aqueous potassium hydroxide solution (KOH / H 2 O = 110 mg / 100 mL) was added so that the pH was not lower than 9. 45% hydrogen peroxide (53.92 g, 713.5 mmol) was added to the 100 mL dropping funnel over 2 hours. (Acetonitrile concentration 8.1 mol%, pH = 9.2). Saturated aqueous potassium hydroxide solution was added dropwise so that the reaction temperature did not exceed 30 ° C., and the pH was allowed to reach 10.5 over 2 hours (2 hours after the end of the hydrogen peroxide solution addition), and the pH was controlled to 10.5. The mixture was further stirred for 2 hours (reducing the acetonitrile concentration to 6.3 mol%). Acetonitrile (13.31 g, 324.2 mmol) was weighed into a 50 mL dropping funnel and dropped over 2 hours (after addition, acetonitrile concentration was 6.1 mol%). At the same time, 45% aqueous hydrogen peroxide (53.92 g, 713.5 mmol) was added dropwise over 4 hours using a 100 mL dropping funnel (the pH was adjusted to 10 to 10 hours so that the reaction temperature did not exceed 30 ° C. for 4 hours during this period). Then, the mixture was stirred for 4 hours while controlling the pH to 10.5 (acetonitrile concentration at the end of the reaction was 3.5 mol%). The reaction solution was diluted with pure water (100 g), and the solvent was distilled off under reduced pressure. The residue was extracted with ethyl acetate (100 g), pure water (100 g) was added again, and a liquid separation operation was performed. When the obtained solution was measured by gas chromatography, the conversion of the raw material bisphenol A type diallyl ether was 100%, the diepoxy monomer bisphenol A type diglycidyl ether was 87.7%, and monoglycidyl. It was confirmed that the ether was 5.1%.
 エバポレーターにより酢酸エチルを留去し、目的とするエポキシ化生成物を得た。合成例1同様に測定したこのものの塩素濃度は6質量ppm、全臭素濃度は1質量ppm未満で、エポキシ当量は178g/eq.あった。 Ethyl acetate was distilled off with an evaporator to obtain the desired epoxidation product. The chlorine concentration measured in the same manner as in Synthesis Example 1 was 6 ppm by mass, the total bromine concentration was less than 1 ppm by mass, and the epoxy equivalent was 178 g / eq. there were.
実施例1~5、比較例1
 三本ロールを用いて、表1に示した割合で導電フィラー、合成例で作製したエポキシ樹脂(実施例1~5)またはjER828(三菱化学株式会社製)(比較例1)にレゾール型アルキルフェノール樹脂(昭和電工株式会社製:平均分子量3400)を配合し、均一になるまで混合した後、2-エチル-4-メチルイミダゾール(四国化成株式会社製)を加えて混合した。混合物を取り出し、攪拌しながらジエチレングリコールモノブチルエーテルを、レオメーター(Anton Paar社製 Phisica MCR301 使用治具:CP25-2 25mm径、angle 2°)で測定した25℃における系の見掛粘度が150Pa・sになるように加え、最終的に自転・公転ミキサー あわとり練太郎 ARE-310(株式会社シンキー製)で混合脱泡を行い、導電性接着剤を調製した。いずれも、導電フィラーの合計配合量が85質量部、樹脂の配合量が15質量部である。樹脂の体積含有率は導電フィラーおよび樹脂硬化物の比重をもとに算出した。
Examples 1 to 5, Comparative Example 1
Using the three rolls, the conductive filler and the epoxy resin (Examples 1 to 5) prepared in the synthesis example or jER828 (manufactured by Mitsubishi Chemical Co., Ltd.) (Comparative Example 1) in the proportions shown in Table 1 were added to the resol type alkylphenol resin. (Made by Showa Denko KK: average molecular weight 3400) was mixed and mixed until uniform, then 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.) was added and mixed. The mixture was taken out and diethylene glycol monobutyl ether was stirred and the apparent viscosity of the system at 25 ° C. measured with a rheometer (Phisica MCR301 jig manufactured by Anton Paar: CP25-2 25 mm diameter, angle 2 °) was 150 Pa · s. Finally, mixing and defoaming were carried out using a rotating / revolving mixer Awatori Nertaro ARE-310 (manufactured by Sinky Co., Ltd.) to prepare a conductive adhesive. In any case, the total amount of the conductive filler is 85 parts by mass, and the amount of the resin is 15 parts by mass. The volume content of the resin was calculated based on the specific gravity of the conductive filler and the cured resin.
(1)回路試料の作製
 上記のようにして得られた導電性接着剤を、厚さ75μmのメタルマスクを用いて、抵抗器の電極に接続する配線パターンが加工された銅張ガラスエポキシ基板の銅面上の抵抗器の両端の電極に対応する位置に孔版印刷した(パターン形状は、抵抗器の両端の電極と銅配線を接続できるような形状)。これに錫メッキ(厚み2μm)された2012サイズ(具体的な形状は、L,W,d,t(単位:mm)=5.0±0.2,2.5±0.2,0.5±0.2,0.5±0.2)のチップ抵抗器を手で圧着し、150℃で30分加熱して、該接着剤を硬化させることにより、回路基板にチップ抵抗器を接続させて、回路試料を作製した。
(1) Production of circuit sample A copper-clad glass epoxy substrate on which a wiring pattern for connecting the conductive adhesive obtained as described above to a resistor electrode was processed using a metal mask having a thickness of 75 μm. Stencil printing was performed at positions corresponding to the electrodes at both ends of the resistor on the copper surface (the pattern shape was such that the electrodes at both ends of the resistor and the copper wiring could be connected). This is tin-plated (thickness: 2 μm) to 2012 size (specific shapes are L, W, d, t (unit: mm) = 5.0 ± 0.2, 2.5 ± 0.2, 0. 5 ± 0.2, 0.5 ± 0.2) chip resistor is crimped by hand and heated at 150 ° C. for 30 minutes to cure the adhesive to connect the chip resistor to the circuit board Thus, a circuit sample was produced.
(2)接続抵抗の測定
 回路試料の接続抵抗(mΩ)をテスター(SANWA製 形式:PC500a
RS-232C)にて測定した。
(2) Measurement of connection resistance The connection resistance (mΩ) of the circuit sample is measured by a tester (manufactured by SANWA, model: PC500a
RS-232C).
(3)接着強度の測定
 回路試料の接着部を横からプッシュプルゲージ(丸菱科学機械製作所製、PGD II型)で室温雰囲気下でチップ抵抗器のL辺に対して剥離するまで突いて、数値を読みとることにより剥離に要する力(N)を測定して、接着強度(初期値)とした。
(3) Measurement of adhesive strength From the side, push the adhesive part of the circuit sample with a push-pull gauge (manufactured by Maruhishi Kagaku Kikai Seisakusho Co., Ltd., PGD II type) until it peels off the L side of the chip resistor at room temperature By reading the numerical value, the force (N) required for peeling was measured and used as the adhesive strength (initial value).
(4)マイグレーション試験
 上記のようにして調製した導電性接着剤を、セラミックス基板上にスクリーン印刷し、150℃で30分加熱して硬化させて、電極間距離2mmで幅2mm、長さ2cm、厚み20μmの対向電極を作製した。電極間に電圧10Vを印加して、イオン交換水を1滴、電極間に滴下し、電流が100mA流れた時間(min)をマイグレーション時間とした。
(4) Migration test The conductive adhesive prepared as described above was screen-printed on a ceramic substrate, cured by heating at 150 ° C. for 30 minutes, a distance of 2 mm between electrodes, a width of 2 mm, a length of 2 cm, A counter electrode having a thickness of 20 μm was produced. A voltage of 10 V was applied between the electrodes, one drop of ion-exchanged water and one electrode were dropped between the electrodes, and a time (min) in which a current flowed 100 mA was defined as a migration time.
 以上の結果を、まとめて表1に示した。
Figure JPOXMLDOC01-appb-T000002
The above results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、接続抵抗は、実施例と比較例でほぼ同じ値であり、接続強度は、実施例1がやや低いが、他の実施例は比較例とほぼ同じ値であった。
 一方、マイグレーション時間は、比較例が0.1分であったのに対し、全ての実施例で10分を超えていた。この結果、本実施形態の導電性接着剤は、耐マイグレーション特性(マイグレーションを抑制する特性)が大きく向上し、ハロゲンに由来する接着部分の劣化が抑制されていることがわかる。
As shown in Table 1, the connection resistance was almost the same value in the example and the comparative example, and the connection strength was a little lower in the example 1, but the other examples were almost the same value as the comparative example. .
On the other hand, the migration time was more than 10 minutes in all the examples, compared with 0.1 minutes in the comparative example. As a result, it can be seen that the conductive adhesive of the present embodiment has greatly improved migration resistance (characteristic for suppressing migration), and the deterioration of the bonded portion derived from halogen is suppressed.

Claims (8)

  1.  導電フィラーおよびバインダー樹脂を含む導電性接着剤において、前記バインダー樹脂がエポキシ樹脂を含み、当該エポキシ樹脂全量に対する全塩素濃度及び全臭素濃度の合計が300質量ppm以下であることを特徴とする導電性接着剤。 A conductive adhesive comprising a conductive filler and a binder resin, wherein the binder resin contains an epoxy resin, and the total chlorine concentration and total bromine concentration with respect to the total amount of the epoxy resin is 300 ppm by mass or less. adhesive.
  2.  前記エポキシ樹脂全量に対する全塩素濃度及び全臭素濃度の合計が50質量ppm以下であることを特徴とする請求項1に記載の導電性接着剤。 The conductive adhesive according to claim 1, wherein the total chlorine concentration and total bromine concentration with respect to the total amount of the epoxy resin is 50 ppm by mass or less.
  3.  前記エポキシ樹脂が、過酸化物を酸化剤として炭素-炭素二重結合を有する原料化合物(基質)の炭素-炭素二重結合をエポキシ化して得られたものであることを特徴とする請求項1または請求項2に記載の導電性接着剤。 2. The epoxy resin obtained by epoxidizing a carbon-carbon double bond of a raw material compound (substrate) having a carbon-carbon double bond with a peroxide as an oxidizing agent. Or the conductive adhesive of Claim 2.
  4.  前記原料化合物(基質)がアリルエーテル基を二個以上有する化合物であることを特徴とする請求項1から請求項3のいずれか一項に記載の導電性接着剤。 The conductive adhesive according to any one of claims 1 to 3, wherein the raw material compound (substrate) is a compound having two or more allyl ether groups.
  5.  前記導電性接着剤におけるバインダー樹脂の含有量が5~99体積%であることを特徴とする請求項1から請求項4のいずれか一項に記載の導電性接着剤。 The conductive adhesive according to any one of claims 1 to 4, wherein the content of the binder resin in the conductive adhesive is 5 to 99% by volume.
  6.  前記導電フィラーが、金、銀、銅、ニッケル、アルミニウム、パラジウムからなる群から選択される少なくとも一種の金属、または前記複数の金属の合金よりなる粒子または繊維、前記金属表面に金、パラジウム、銀のいずれかがめっきされた金属粒子または繊維、樹脂ボールにニッケル、金、パラジウム、銀のいずれかがめっきされた樹脂コアボール、カーボンまたはグラファイトの粒子または繊維であることを特徴とする請求項1から請求項5のいずれか一項に記載の導電性接着剤。 The conductive filler is at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum and palladium, or particles or fibers made of an alloy of the plurality of metals, gold, palladium, silver on the metal surface 2. A metal particle or fiber plated with any of the above, a resin core ball plated with any of nickel, gold, palladium, and silver on a resin ball, or particles or fibers of carbon or graphite. The conductive adhesive according to any one of claims 5 to 6.
  7.  請求項1から請求項6のいずれか一項に記載の導電性接着剤により、半導体素子、ソーラーパネル、熱電素子、チップ部品、ディスクリート部品またはこれらの組合せが基板に実装されていることを特徴とする電子機器。 The conductive adhesive according to any one of claims 1 to 6, wherein a semiconductor element, a solar panel, a thermoelectric element, a chip part, a discrete part, or a combination thereof is mounted on a substrate. Electronic equipment.
  8.  請求項1から請求項6のいずれか一項に記載の導電性接着剤により、フィルムアンテナ、キーボードメンブレン、タッチパネル、RFIDアンテナの配線形成及び基板への接続を行ったことを特徴とする電子機器。 An electronic apparatus comprising: a film antenna, a keyboard membrane, a touch panel, an RFID antenna formed with wiring, and connected to a substrate using the conductive adhesive according to any one of claims 1 to 6.
PCT/JP2013/052348 2012-02-03 2013-02-01 Conductive adhesive and electronic device using same WO2013115360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556513A JP6080776B2 (en) 2012-02-03 2013-02-01 Conductive adhesive and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021897 2012-02-03
JP2012-021897 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115360A1 true WO2013115360A1 (en) 2013-08-08

Family

ID=48905388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052348 WO2013115360A1 (en) 2012-02-03 2013-02-01 Conductive adhesive and electronic device using same

Country Status (3)

Country Link
JP (1) JP6080776B2 (en)
TW (1) TWI582210B (en)
WO (1) WO2013115360A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160932A (en) * 2014-02-28 2015-09-07 昭和電工株式会社 Conductive adhesive and electronic device using the same
KR101593088B1 (en) * 2015-05-14 2016-02-11 한화케미칼 주식회사 Carbon-based adhesive composition and method for preparing polysilicon using the same
WO2016063957A1 (en) * 2014-10-22 2016-04-28 スガイ化学工業株式会社 Decalin derivative and method for producing same
KR20190065186A (en) * 2016-10-06 2019-06-11 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure, and manufacturing method of connection structure
WO2023199925A1 (en) * 2022-04-15 2023-10-19 株式会社スリーボンド Electrically conductive resin composition and cured product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169821A (en) * 1998-09-30 2000-06-20 Three Bond Co Ltd Ultraviolet light-curable anisotropic conductive adhesive
JP2000281914A (en) * 1999-03-31 2000-10-10 Hitachi Chem Co Ltd Resin composition
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2010235649A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Method for producing purified epoxy resin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112576A (en) * 1996-10-04 1998-04-28 Nitsukan Kogyo Kk Flexible printed wiring board
JPH10265748A (en) * 1997-03-26 1998-10-06 Asahi Chem Ind Co Ltd Electroconductive adhesives
JP4221810B2 (en) * 1999-03-31 2009-02-12 日立化成工業株式会社 Resin composition
US9136195B2 (en) * 2009-07-17 2015-09-15 Tyco Electronics Corporation Oxygen barrier compositions and related methods
JP2011184528A (en) * 2010-03-05 2011-09-22 Hitachi Chem Co Ltd Circuit connecting material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169821A (en) * 1998-09-30 2000-06-20 Three Bond Co Ltd Ultraviolet light-curable anisotropic conductive adhesive
JP2000281914A (en) * 1999-03-31 2000-10-10 Hitachi Chem Co Ltd Resin composition
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2010235649A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Method for producing purified epoxy resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160932A (en) * 2014-02-28 2015-09-07 昭和電工株式会社 Conductive adhesive and electronic device using the same
WO2016063957A1 (en) * 2014-10-22 2016-04-28 スガイ化学工業株式会社 Decalin derivative and method for producing same
JPWO2016063957A1 (en) * 2014-10-22 2017-08-03 スガイ化学工業株式会社 Decalin derivative and method for producing the same
KR101593088B1 (en) * 2015-05-14 2016-02-11 한화케미칼 주식회사 Carbon-based adhesive composition and method for preparing polysilicon using the same
KR20190065186A (en) * 2016-10-06 2019-06-11 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure, and manufacturing method of connection structure
JPWO2018066368A1 (en) * 2016-10-06 2019-07-18 積水化学工業株式会社 Conductive material, connection structure and method of manufacturing connection structure
US11101052B2 (en) 2016-10-06 2021-08-24 Sekisui Chemical Co., Ltd. Conductive material, connection structure and method for producing connection structure
JP7046605B2 (en) 2016-10-06 2022-04-04 積水化学工業株式会社 Conductive material, connection structure and method for manufacturing the connection structure
KR102428039B1 (en) * 2016-10-06 2022-08-03 세키스이가가쿠 고교가부시키가이샤 Conductive material, bonded structure, and manufacturing method of bonded structure
WO2023199925A1 (en) * 2022-04-15 2023-10-19 株式会社スリーボンド Electrically conductive resin composition and cured product thereof

Also Published As

Publication number Publication date
TW201346006A (en) 2013-11-16
TWI582210B (en) 2017-05-11
JPWO2013115360A1 (en) 2015-05-11
JP6080776B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6322190B2 (en) Conductive adhesive, anisotropic conductive film, and electronic device using them
JPWO2014162990A6 (en) Conductive adhesive, anisotropic conductive film, and electronic device using them
JP6080776B2 (en) Conductive adhesive and electronic device using the same
WO2014050155A1 (en) Conductive composition and conductive molded body
JP6478465B2 (en) Conductive adhesive and electronic device using them
WO2016158828A1 (en) Resin composition, electroconductive resin composition, adhesive, electroconductive adhesive, paste for forming electrodes, and semiconductor device
JP2008214449A (en) Heat or active energy ray-curable adhesive
JP2012092247A (en) Liquid-form curable composition
JP2004063445A (en) Conductive paste
JP6429793B2 (en) Liquid epoxy resin composition
US20160329122A1 (en) Conductive paste and conductive film
JP6536882B2 (en) Resin composition, cured product and thermally conductive material
KR102318602B1 (en) Conductive adhesive, and electronic component using the same
JP2013110084A (en) Conductive paste composition and conductive adhesive agent
JP6303627B2 (en) Epoxy resin composition and cured product
JP6664147B2 (en) Anisotropic conductive film and anisotropic conductive connector
JP2000192000A (en) Electrically conductive adhesive
JP2004047418A (en) Conductive paste
JP4235885B2 (en) Conductive paste
JP4432481B2 (en) Resin paste for semiconductor and semiconductor device using the same
WO2023044701A1 (en) Thermally conductive adhesive composition, preparation method and use thereof
JP2012028136A (en) Conductive particle dispersed body for conductive film formation, method of manufacturing printed wiring board, and conductive film formation method
JP2010050017A (en) Light-resistant conductive paste and element connecting method
JP2012119549A (en) Conductive resin composition for bump formation
JP2004047419A (en) Conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743102

Country of ref document: EP

Kind code of ref document: A1