WO2013115316A1 - Hydrothermal decomposition apparatus using internally-circulating fluidized bed, and hydrothermal decomposition method - Google Patents

Hydrothermal decomposition apparatus using internally-circulating fluidized bed, and hydrothermal decomposition method Download PDF

Info

Publication number
WO2013115316A1
WO2013115316A1 PCT/JP2013/052211 JP2013052211W WO2013115316A1 WO 2013115316 A1 WO2013115316 A1 WO 2013115316A1 JP 2013052211 W JP2013052211 W JP 2013052211W WO 2013115316 A1 WO2013115316 A1 WO 2013115316A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
hydrothermal decomposition
fluidized bed
thermal reduction
communication port
Prior art date
Application number
PCT/JP2013/052211
Other languages
French (fr)
Japanese (ja)
Inventor
児玉 竜也
展之 郷右近
篤 櫻井
幸治 松原
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to JP2013556494A priority Critical patent/JP5986589B2/en
Publication of WO2013115316A1 publication Critical patent/WO2013115316A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • C01B3/045Decomposition of water in gaseous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • B01J8/1854Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement inside the reactor to form a loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • B01J8/1863Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement outside the reactor and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/36Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed through which there is an essentially horizontal flow of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/382Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it with a rotatable device only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/42Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations this sub-group includes the fluidised bed subjected to electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/00451Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00929Provided with baffles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a hydrothermal decomposition apparatus and a hydrothermal decomposition method using an internal circulating fluidized bed.
  • a two-stage hydrothermal decomposition cycle with metal oxides such as iron oxide and cerium oxide is promising as a method for producing hydrogen by hydrothermal decomposition using heat of 1000 ° C or higher obtained by concentrating sunlight.
  • the development of reactors for this purpose is being conducted by research institutions in each country.
  • the present inventors have developed a fluidized bed solar reactor in which metal oxide particles are circulated internally, and using this fluidized bed solar reactor, hydrogen that is two reactions of a two-stage hydrothermal decomposition cycle is developed.
  • a method of simultaneously producing hydrogen and oxygen by developing a production reaction and an oxygen production reaction simultaneously in a reactor in which metal oxide particles flow in an internal circulation was developed (Patent Document 1).
  • this fluidized bed type solar reactor includes a reactor 101 made of a stainless alloy and an inconel alloy, and this reactor 101 contains a fluidized bed 102 made of metal oxide particles. Yes. Inside the reactor 101, a cylindrical draft tube 103 opened in the vertical direction is provided. The draft tube 103 is buried in the fluidized bed 102 and disposed at the center of the fluidized bed 102. Further, at the bottom of the reactor 101, dispersion plates 104 and 105 are provided at the center and the periphery, respectively. Dispersion plates 104 and 105 are formed of a porous material so that particles of metal oxide constituting fluidized bed 102 can be held in reactor 101 and gas can be introduced from the bottom of reactor 101. ing.
  • a quartz window 106 is provided on the ceiling of the reactor 101 so that sunlight can pass therethrough.
  • a gas separator having a truncated cone shape is provided above the draft pipe 103 in order to divert the gas released upward from the inside of the draft pipe 103 and the gas released upward from the outside of the draft pipe 103.
  • 107 is provided.
  • take-out ports 108 and 109 for taking out the gas diverted by the gas separator 107 are provided.
  • 201 is a ground reflector called a heliostat
  • 202 is a tower reflector.
  • the ground reflector 201 and the tower reflector 202 constitute a beam-down type condensing system.
  • the beam-down type condensing system collects the sunlight S and irradiates the central portion of the upper surface of the fluidized bed 102 accommodated in the reactor 101.
  • the fluidized bed 102 is circulated inside and outside the draft tube 103 by making the flow rate of nitrogen inside the draft tube 103 larger than the flow rate of water vapor outside the draft tube 103. That is, the fluidized bed 103 rises in a region inside the draft pipe 103, and an internal circulation flow is generated in which the fluidized bed 103 descends in a region between the outside of the draft pipe 103 and the reactor 101.
  • the sunlight S collected by the ground reflecting mirror 201 and the tower reflecting mirror 202 is irradiated to the center of the upper surface of the fluidized bed 102 through the window 106 to heat the fluidized bed 102.
  • a high temperature portion H of 1400 ° C. or higher is formed, and a thermal reduction reaction proceeds at this high temperature portion H, and oxygen is released from the metal oxide particles.
  • the released oxygen passes through above the gas separator 107 and is collected from the outlet 108.
  • the reduced metal oxide particles are sent to the lower part of the reactor 101 through the region between the outside of the draft tube 103 and the reactor 101 by the internal circulation flow.
  • the temperature of the metal oxide particles decreases while being sent to the lower part of the reactor 101, and as a result, a low temperature part L of 1400 ° C. or lower is formed in the lower part of the fluidized bed 102.
  • the hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time.
  • the generated hydrogen passes through the lower side of the gas separator 107 and is collected from the take-out port 109.
  • the above-described conventional method is characterized by focusing on the temperature distribution of the fluidized bed 103 formed by the irradiation of sunlight S, and causing the oxygen generation reaction and the hydrogen generation reaction to proceed simultaneously in the upper part and the lower part of the fluidized bed 103, respectively.
  • this method has the following problems. 1 Due to the structure of the reactor, oxygen and hydrogen are mixed through the gap between the surface of the fluidized bed 102 and the gas separator 107 and a part of oxygen and hydrogen are recombined, so that the amount of hydrogen recovered decreases.
  • the hydrogen generation reaction that proceeds in the lower part of the fluidized bed 102 is an exothermic reaction
  • the oxygen generation reaction that proceeds in the upper part of the fluidized bed 102 is an endothermic reaction, but the reaction time and reaction rate of each reaction are arbitrarily controlled. Therefore, it is difficult to sufficiently utilize the reaction heat (heat radiation amount) generated in the hydrogen generation reaction for the endothermic reaction in the oxygen generation, and it is difficult to improve the solar heat ⁇ hydrogen conversion efficiency.
  • a high-temperature portion H of 1400 ° C. or higher is formed in the vicinity of the center of the upper surface of the fluidized bed 102 irradiated with the sunlight S. However, due to the reactor structure, a part of the condensed sunlight S is a gas separator.
  • the region between the outside of the draft tube 103 and the reactor 101 cannot be heated, and the utilization efficiency of solar energy is lowered. 6 Because of the structure of the reactor, a part of the vicinity of the center of the upper surface of the fluidized bed 102 is blocked by the gas separator 107, so it is difficult to widen the region of the high temperature portion H of 1400 ° C. or higher and increase the amount of oxygen produced. is there. 7 Due to the structure of the reactor, the region of the low temperature part L of 1400 ° C. or lower is limited to the lower part of the fluidized bed 102, and it is difficult to widen the region of the low temperature part L and increase the amount of hydrogen generation.
  • the metal oxide particles in the high temperature portion H formed in the vicinity of the center of the upper surface of the fluidized bed 102 quickly move to the region between the outside of the draft tube 103 and the reactor 101. It is difficult to recover and reuse the high-temperature sensible heat of 1400 ° C. or higher possessed by the metal oxide particles in the high-temperature portion H as exhaust heat.
  • the present invention can reliably separate and recover the generated oxygen and hydrogen, and can arbitrarily set the reaction temperature, reaction rate, reaction time, and reaction region of the reaction that proceeds simultaneously in the fluidized bed. It is also possible to provide a hydrothermal decomposition apparatus and hydrothermal decomposition method using an internal circulating fluidized bed that can be controlled to high temperature, and can recover and reuse high-temperature heat as exhaust heat with high efficiency. And
  • the hydrothermal decomposition apparatus using the internal circulation fluidized bed according to the present invention condenses sunlight into a reactor containing a fluidized bed made of metal oxide particles and the fluidized bed contained in the reactor.
  • the solar light collecting means for irradiating, the reactor comprising: a thermal reduction reactor for performing a thermal reduction reaction; a hydrothermal decomposition reactor for performing a hydrothermal decomposition reaction; and a low oxygen content from below to the thermal reduction reactor.
  • Low oxygen partial pressure gas introducing means for introducing pressurized gas, steam introducing means for introducing water vapor into the hydrothermal decomposition reactor from below, and oxygen recovery for recovering gas containing oxygen generated from the thermal reduction reactor
  • a hydrogen recovery means for recovering a gas containing hydrogen generated from the hydrothermal decomposition reactor, wherein the interior of the thermal reduction reactor and the interior of the hydrothermal decomposition reactor are in communication with the upper communication port and the lower communication port.
  • the upper communication port and the lower communication port The fluidized bed is buried in the fluidized bed so that the fluidized bed can flow between the thermal reduction reactor and the hydrothermal decomposition reactor through the upper communication port and the lower communication port, Sunlight is irradiated to the upper surface of the fluidized bed accommodated in the thermal reduction reactor by a light collecting means.
  • the thermal reduction reactor and the hydrothermal decomposition reactor are partitioned by a partition plate, and the interior of the thermal reduction reactor and the interior of the hydrothermal decomposition reactor are upper communication ports formed in the partition plate. And the lower communication port, the upper communication port and the lower communication port are buried in the fluidized bed, and through the upper communication port and the lower communication port, the thermal reduction reactor The fluidized bed is configured to flow directly between the hydrothermal decomposition reactors.
  • the upper communication port and the lower communication port are provided with screw conveyors for conveying the fluidized bed between the thermal reduction reactor and the hydrothermal decomposition reactor.
  • an enlarged portion that expands the horizontal cross-sectional area of the thermal reduction reactor upward is formed in the upper portion of the thermal reduction reactor, and a quartz window through which sunlight passes is formed in the upper portion of the enlarged portion. It is characterized by having.
  • thermal reduction reactor and the hydrothermal decomposition reactor are configured separately from each other.
  • a moving means for moving the fluidized bed in the thermal reduction reactor is provided inside the thermal reduction reactor.
  • the hydrothermal decomposition method using the inner circulating fluidized bed according to the present invention uses the hydrothermal decomposition apparatus using the inner circulating fluidized bed according to the present invention, and converts the fluidized bed into the thermal reduction reactor and the hydrothermal decomposition reactor.
  • the oxygen generation reaction in which a part of the fluidized bed is heated by sunlight in a low oxygen partial pressure gas atmosphere while releasing the oxygen from the metal oxide, and the metal after releasing the oxygen. It is characterized in that two reactions of a hydrogen generation reaction in which water vapor is brought into contact with the oxide to generate hydrogen simultaneously proceed.
  • the oxygen generation reaction proceeds at 1400 ° C. or higher, and the hydrogen generation reaction proceeds at 1400 ° C. or lower.
  • the metal oxide is characterized by being ferrite or zirconia supporting ferrite.
  • the zirconia is any of monoclinic zirconia, cubic zirconia, and tetragonal zirconia, and the cubic zirconia contains any of yttria, calcia, and magnesia as a stabilizer.
  • the metal oxide is characterized by nickel ferrite or monoclinic zirconia supporting nickel ferrite.
  • the metal oxide is cerium oxide or zirconia supporting cerium oxide.
  • the particle size of the metal oxide particles is 100 to 750 ⁇ m.
  • the low oxygen partial pressure gas is nitrogen or argon.
  • the thermal reduction reactor and the hydrothermal decomposition reactor are partitioned by the partition plate, and the interior of the thermal reduction reactor and the water are separated.
  • the interior of the pyrolysis reactor communicates directly with the upper communication port and the lower communication port formed in the partition plate, and the upper communication port and the lower communication port are buried in the fluidized bed, Since the fluidized bed can flow directly between the thermal reduction reactor and hydrothermal decomposition reactor through the lower communication port, oxygen generated in the thermal reduction reactor and generated in the hydrothermal decomposition reactor.
  • the reaction temperature, reaction rate, reaction time and reaction region of the two reactions that proceed simultaneously in the fluidized bed of the thermal reduction reactor and the fluidized bed of the hydrothermal decomposition reactor Each can be controlled easily Can, furthermore, it is possible to recover the heat of reaction at a high efficiency occurring in the hydrothermal decomposition reactor for reuse in the heat reduction reactor. Furthermore, the high-temperature heat generated in the thermal reduction reactor and the hydrothermal decomposition reactor can be recovered and reused as waste heat with high efficiency.
  • the present invention can solve the problems of the conventional methods as follows. 1 Since oxygen and hydrogen are generated separately in the thermal reduction reactor and hydrothermal decomposition reactor, respectively, there is no need for gas separation of oxygen and hydrogen by a gas separator or the like, and the purity of recovered oxygen and hydrogen is reduced. Will improve. 2 Since the thermal reduction reaction and hydrothermal decomposition reaction proceed in the thermal reduction reactor and hydrothermal decomposition reactor, respectively, it becomes easy to arbitrarily control the reaction temperatures of the two reactions having different reaction temperatures. Oxygen generation and hydrogen generation from the reactor are improved.
  • Concentrated sunlight is widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor without being blocked by the gas separator, and can contribute to the formation of a high-temperature part of 1400 ° C or higher. In addition, it can be used for heating metal oxide particles, and the utilization efficiency of solar energy is increased. 6 Since the collected sunlight can be widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor without being blocked by the gas separator, it can contribute to the formation of a high temperature portion of 1400 ° C. or higher. The region of the high temperature part can be expanded, and the amount of oxygen produced can be increased.
  • the size of the hydrothermal cracking reactor can be changed arbitrarily, so that the region of the low temperature part below 1400 ° C formed in the hydrothermal cracking reactor can be expanded, and the amount of hydrogen produced Can be increased.
  • the metal oxide particles in the high temperature part formed in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor have an upper communication port located below the upper surface of the fluidized bed. Since some of them stay around the high temperature part H and are heated to a higher temperature, the thermal reduction reaction is more likely to proceed, and the amount of oxygen generated is improved.
  • the metal oxide particles in the high temperature part formed in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor have an upper communication port located below the upper surface of the fluidized bed. A part of the stagnation stays around the high-temperature part H, and the high-temperature sensible heat of 1400 ° C. or higher possessed by the metal oxide particles of the high-temperature part H can be recovered and reused as exhaust heat with high efficiency.
  • FIG. 6 is a graph showing a change over time in the hydrogen production rate produced from the hydrothermal decomposition reactor 4 in Example 3.
  • FIG. 6 is a graph obtained by measuring changes with time in oxygen generation rate generated from the thermal reduction reactor 3 in Example 3 and hydrogen flowing in from the hydrothermal decomposition reactor 4.
  • FIG. 6 is a graph obtained by measuring changes over time in the hydrogen production rate produced from the hydrothermal decomposition reactor 4 in Example 4 and oxygen flowing in from the thermal reduction reactor 3.
  • FIG. 6 is a graph obtained by measuring changes with time in the oxygen generation rate generated from the thermal reduction reactor 3 in Example 4 and hydrogen flowing in from the hydrothermal decomposition reactor 4.
  • FIG. 6 is a graph showing a change over time in a hydrogen / oxygen generation rate ratio, which is a value obtained by dividing the hydrogen generation rate generated from the hydrothermal decomposition reactor 4 in Example 4 by the oxygen generation rate generated from the thermal reduction reactor 3.
  • It is a schematic diagram which shows another Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention.
  • hydrothermal decomposition apparatus and hydrothermal decomposition method using the inner circulating fluidized bed of the present invention will be described with reference to the accompanying drawings.
  • the hydrothermal decomposition apparatus and hydrothermal decomposition method using the internal circulation fluidized bed of this invention are suitably implemented in the sun belt area whose solar radiation is 1800 kWh / m ⁇ 2 > or more per year.
  • FIG. 1 showing an embodiment of a hydrothermal decomposition apparatus using an internal circulating fluidized bed of the present invention
  • 1 is a reactor made of a stainless alloy and an Inconel alloy, and this reactor 1 contains metal oxide particles.
  • a fluidized bed 2 as an inner circulating fluidized bed is housed.
  • the metal oxide examples include iron oxides such as Fe 3 O 4 , NiFe 2 O 4 , and CoFe 2 O 4 , iron oxides containing multiple metals, and these iron oxides supported on a carrier such as zirconia.
  • Cerium oxide (CeO 2 ) cerium oxide supported on a carrier such as zirconia, or iron ions or cerium ions dissolved in zirconia can be used.
  • zirconia any of monoclinic zirconia, cubic zirconia, and tetragonal zirconia can be used.
  • cubic zirconia is stabilized zirconia or partially stabilized zirconia containing a stabilizer such as yttria, calcia, and magnesia, and includes zirconia containing at least cubic crystals as a crystal layer.
  • the fine powder of yttria-stabilized cubic zirconia carrying the ferrite represented by More preferably, fine powders of NiFe 2 O 4 and NiFe 2 O 4 / m-ZrO 2 are used.
  • a fine powder of cerium oxide and a fine powder of zirconia supporting cerium oxide are also preferably used.
  • the size of the metal oxide particles is preferably 30 to 1000 ⁇ m, more preferably 100 to 750 ⁇ m, in order to maintain the fluidity of the fluidized bed 2.
  • zirconia supporting ferrite for example, disperses zirconia fine powder in an aqueous solution of Fe (II) salt and adds an alkaline aqueous solution such as an aqueous solution of sodium hydroxide to form a colloid of Fe (II) hydroxide.
  • an alkaline aqueous solution such as an aqueous solution of sodium hydroxide
  • This is oxidized by bubbling air, and after the colloid of Fe (II) hydroxide is dissolved in the aqueous solution, the dissolution precipitation reaction that precipitates as Fe 3 O 4 proceeds to disperse fine zirconia powder It can be obtained by growing Fe 3 O 4 on the body.
  • a fine powder of zirconia is dispersed in an aqueous solution of Fe (II) salt, this is evaporated to dryness, and then fired to convert the Fe (II) salt on zirconia into a metal oxide. It can also be obtained by baking at a temperature of 0 ° C. or higher.
  • the reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction and a hydrothermal decomposition reactor 4 that performs a hydrothermal decomposition reaction.
  • the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are partitioned by a single partition plate 5, and the interior of the thermal reduction reactor 3 and the interior of the hydrothermal decomposition reactor 4 are located above the partition plate 5.
  • An upper communication port 6 that directly communicates with each other is formed, and a lower communication port 7 that directly communicates the interior of the thermal reduction reactor 3 and the interior of the hydrothermal decomposition reactor 4 is formed at the lower portion of the partition plate 5.
  • the upper communication port 6 and the lower communication port 7 are buried in the fluidized bed 2.
  • the fluidized bed 2 can flow directly between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication port 6 and the lower communication port 7.
  • a dispersion plate 9 for introducing water vapor into 4 is provided.
  • the dispersion plates 8 and 9 are connected to the lowermost part 7 ′ of the lower communication port 7 so as not to hinder the flow of the fluidized bed 2 at the lower communication port 7.
  • the surface of the dispersion plate 8 substantially coincides with the height of the lowermost part 7 ′ of the lower communication port 7, and the dispersion plate 9 is provided inclined with the lowermost part 7 ′ of the lower communication port 7 as the lowest part. .
  • the dispersion plates 8 and 9 are made of a porous material so that the metal oxide particles constituting the fluidized bed 2 can be held in the reactor 1 and gas can be introduced from the bottom of the reactor 1. Is formed.
  • An introduction pipe 10 for introducing a low oxygen partial pressure gas is provided at the bottom of the thermal reduction reactor 3, and an introduction pipe 11 for introducing water vapor is provided at the bottom of the hydrothermal decomposition reactor 4.
  • the upper part of the thermal reduction reactor 3 is connected to the side wall of the thermal reduction reactor 3 and the partition plate 5 above the uppermost part 6 ′ of the upper communication port 6, and the horizontal side of the thermal reduction reactor 3 upwards.
  • An enlarged portion 12 that enlarges the cross-sectional area is formed.
  • the enlarged portion 12 allows sunlight S to be irradiated to the fluidized bed 2 without being blocked by the wall of the thermal reduction reactor 3.
  • a quartz window 13 is provided on the ceiling above the enlarged portion 12 of the thermal reduction reactor 3 so that sunlight can pass therethrough.
  • a gas outlet 14 for containing oxygen generated by the thermal reduction reaction.
  • An outlet 15 for extracting gas containing hydrogen generated by the decomposition reaction is provided on the side of the upper part of the enlarged portion 12 of the thermal reduction reactor 3.
  • 201 is a ground reflector called a heliostat
  • 202 is a tower reflector installed in a tower (not shown)
  • the ground reflector 201 and the tower reflector 202 constitute a beam-down type condensing system.
  • the beam-down type condensing system collects sunlight S and irradiates the upper surface of the fluidized bed 2 accommodated in the thermal reduction reactor 3.
  • a low oxygen partial pressure gas is introduced from the dispersion plate 8 into the thermal reduction reactor 3, and at the same time, water vapor is introduced from the dispersion plate 9 into the hydrothermal decomposition reactor 4.
  • the low oxygen partial pressure gas for example, nitrogen having a purity of 99.999% is used.
  • the low oxygen partial pressure gas introduced into the thermal reduction reactor 3 may be a gas having a low oxygen partial pressure, and is not limited to nitrogen, and may be, for example, argon.
  • transduced into the hydrothermal decomposition reactor 4 should just contain water vapor
  • the fluidized bed 2 is circulated between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 by making the flow rate of nitrogen larger than the flow rate of water vapor. That is, the fluidized bed 2 rises in the thermal reduction reactor 3, and an internal circulation flow in which the fluidized bed 2 descends in the hydrothermal decomposition reactor 4 is generated.
  • the fluidized bed 2 is heated by irradiating the fluidized bed 2 with the sunlight S collected by the ground reflector 201 and the tower reflector 202 through the window 13.
  • a high-temperature portion H of 1400 ° C. or higher is formed, and the thermal reduction reaction proceeds at the high-temperature portion H to form metal oxide particles. Releases oxygen. The released oxygen is collected from the outlet 14.
  • the reaction formula of the thermal reduction reaction is as follows. NiFe 2 O 4 ⁇ 3Ni 1/3 Fe 2/3 O + (1/2) O 2
  • the reaction formula of the thermal reduction reaction is as follows. CeO 2 ⁇ CeO 2 ⁇ x + (x / 2) O 2 (0 ⁇ x ⁇ 0.5)
  • the reduced metal oxide particles are sent to the hydrothermal decomposition reactor 4 through the upper communication port 6 by internal circulation flow.
  • the temperature of the metal oxide particles decreases while flowing in the hydrothermal decomposition reactor 4, and as a result, the fluidized bed 2 in the hydrothermal decomposition reactor 4 has a temperature of 1400 ° C or less, preferably 1200 ° C or less. More preferably, a low temperature portion L of 1000 ° C. or lower is formed.
  • the hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time. The generated hydrogen is recovered from the extraction port 15.
  • the reaction formula of the hydrothermal decomposition reaction is as follows. 3Ni 1/3 Fe 2/3 O + H 2 O ⁇ NiFe 2 O 4 + H 2
  • the reaction formula of the hydrothermal decomposition reaction is as follows. CeO 2-x + xH 2 O ⁇ CeO 2 + xH 2 (0 ⁇ x ⁇ 0.5)
  • the temperature of the fluidized bed 2 at the lower part of the thermal reduction reactor 3 is lower than the temperature of the fluidized bed 2 of the hydrothermal decomposition reactor 4, and a sufficient temperature difference is required.
  • nitrogen is introduced into the thermal reduction reactor 3 and water vapor is simultaneously introduced into the hydrothermal decomposition reactor 4, and the flow rate of nitrogen is made larger than the flow rate of water vapor to make the fluidized bed 2 into the reactor.
  • the hydrothermal decomposition apparatus using the inner circulation fluidized bed of the present embodiment includes the reactor 1 that contains the fluidized bed 2 made of metal oxide particles, and the fluid that is contained in the reactor 1.
  • the ground reflecting mirror 201 and the tower reflecting mirror 202 as sunlight collecting means for collecting and irradiating the sunlight S on the layer 2 are provided, and the reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction,
  • Dispersion plate 9 and introduction pipe 11 as water vapor introduction means for introducing water vapor into hydrothermal decomposition reactor 4 from below, and oxygen recovery means for recovering the gas containing oxygen generated from thermal reduction reactor 3 Collects hydrogen-containing gas generated from the outlet 14 and the hydrothermal decomposition reactor 4
  • the inside of the decomposition reactor 4 is directly communicated with an upper communication port 6 and a lower communication port 7 formed in the partition plate 5, and the upper communication port 6 and the lower communication port 7 are connected to the fluidized bed 2.
  • the fluidized bed 2 can be directly flowed between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication port 6 and the lower communication port 7.
  • the solar reflecting light is applied to the upper surface of the fluidized bed 2 accommodated in the thermal reduction reactor 3 by the ground reflecting mirror 201 and the tower reflecting mirror 202 as the sunlight collecting means. is there.
  • an enlarged portion 12 that expands the horizontal cross-sectional area of the thermal reduction reactor 3 upward is formed in the upper portion of the thermal reduction reactor 3, and sunlight S is transmitted through the upper portion of the enlarged portion 12.
  • a quartz window 13 is provided.
  • the hydrothermal decomposition method using the inner circulation fluidized bed of this embodiment uses the hydrothermal decomposition apparatus using the inner circulation fluidized bed of this embodiment, and the dispersion plate 8 as the low oxygen partial pressure gas introduction means and By making the flow rate of the low oxygen partial pressure gas introduced from the introduction pipe 10 larger than the flow rate of the water vapor introduced from the dispersion plate 9 and the introduction pipe 11 as the steam introduction means, the fluidized bed 2 is subjected to the thermal reduction reaction. While partly circulating between the vessel 3 and the hydrothermal decomposition reactor 4, a part of the fluidized bed 2 is heated by sunlight S in a low oxygen partial pressure gas atmosphere to release oxygen from the metal oxide. Two reactions of an oxygen generation reaction and a hydrogen generation reaction in which water vapor is brought into contact with the metal oxide after releasing oxygen to generate hydrogen are simultaneously advanced.
  • the oxygen generation reaction in the thermal reduction reactor 3 and the hydrogen generation reaction in the hydrothermal decomposition reactor 4 proceed simultaneously. Therefore, the recovery of oxygen and hydrogen can be performed continuously. Further, the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are clearly partitioned by a partition plate 5 and are generated because oxygen is generated in the thermal reduction reactor 3 and hydrogen is generated in the hydrothermal decomposition reactor 4. There is no mixing of oxygen and hydrogen. Therefore, the generated oxygen and hydrogen can be reliably separated and recovered. As a result, the purity of the recovered hydrogen can be improved and the production cost of hydrogen can be reduced.
  • Example 1 For the hydrothermal decomposition apparatus using the inner circulating fluidized bed of Example 1, under the calculation conditions shown in FIG. FLUENT ver.13) was used to conduct a fluidization simulation on the behavior of fluidized particles and circulating gas in the reactor 1. In this simulation, the compressible Navier-Stokes equation was adopted as a physical model for solid-gas multiphase flow, and the Euler-granular model was applied to the interaction between particles and gas. Furthermore, in the heat transfer analysis of the fluidized bed 2, the energy equation and the radiation transport equation were combined, and the amount of radiant heat transfer was analyzed by the spherical harmonic function method. The fluidized bed 2 was filled with CeO 2 particles having a diameter of 450 ⁇ m in the reactor 1.
  • FIGS. FIG. 3 shows the volume fraction of the solid phase, which progresses in time from the upper left to the lower right. From this result, it was found that bubbles were generated from the lower inlet. From the particle flow velocity distribution (left side of FIG. 4), it was found that the flowing particles flow in an internal circulation between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4. Further, from the gas flow velocity distribution (right in FIG. 4), the oxygen produced in the thermal reduction reactor 3 and the hydrogen produced in the hydrothermal decomposition reactor 4 are not mixed with each other, and the reactor is separated from oxygen and hydrogen. It was found that it could be taken out of 1.
  • nitrogen having a purity of 99.999% is flowed to the thermal reduction reactor 3 at a flow rate of 8 L / min and a linear flow velocity of 2.22 m / min, and the hydrothermal decomposition reactor 4 is a mixed gas of water vapor and nitrogen. At a flow rate of 4 L / min and a linear flow rate of 1.77 m / min.
  • the types of gas produced from the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 and their production rates were quantitatively analyzed with a mass spectrometer and a gas chromatograph.
  • FIG. 5 shows the change over time in the amount of hydrogen generated from the hydrothermal decomposition reactor 4 at this time.
  • the total amount of hydrogen generated from the hydrothermal decomposition reactor 4 was 554 ml (1 atm, 25 ° C.).
  • generation of oxygen was not seen from the gas exhaust port connected to the hydrothermal decomposition reactor 4.
  • FIG. 6 shows the change over time in the amount of oxygen generated from the thermal reduction reactor 3.
  • the total amount of oxygen generated from the thermal reduction reactor 3 was 318 ml (1 atm, 25 ° C.). No hydrogen was produced from the gas outlet connected to the thermal reduction reactor 3. From this result, it can be seen that the hydrogen generated in the hydrothermal decomposition reactor 4 does not enter the thermal reduction reactor 3.
  • the fluidized bed 2 after the reaction did not sinter and agglomerate and had a powder form. Therefore, when CeO 2 fine powder was used for the fluidized bed 2, it was confirmed that the oxygen generation amount and the hydrogen generation amount can be increased by further extending the reaction time.
  • FIG. 7 shows the change over time in the amount of hydrogen generated from the hydrothermal decomposition reactor 4 at this time.
  • the total amount of hydrogen generated from the hydrothermal decomposition reactor 4 was 847 ml (1 atm, 25 ° C.). Also, almost no oxygen was generated from the gas outlet connected to the hydrothermal decomposition reactor 4. From this result, it can be seen that oxygen generated from the thermal reduction reactor 3 is not mixed into the hydrothermal decomposition reactor 4.
  • FIG. 8 shows the change over time in the amount of oxygen generated from the thermal reduction reactor 3.
  • the total amount of oxygen generated from the thermal reduction reactor 3 was 1319 ml (1 atm, 25 ° C.). Almost no hydrogen was generated from the gas outlet connected to the thermal reduction reactor 3. From this result, it can be seen that hydrogen produced in the hydrothermal decomposition reactor 4 does not enter the thermal reduction reactor 3.
  • the fluidized bed 2 after the reaction did not sinter and agglomerate and had a powder form. Therefore, when CeO 2 fine powder was used for the fluidized bed 2, it was confirmed that the oxygen generation amount and the hydrogen generation amount can be increased by further extending the reaction time.
  • FIG. 9 shows the change over time in the hydrogen / oxygen generation rate ratio, which is a value obtained by dividing the hydrogen generation rate generated from the hydrothermal decomposition reactor 4 by the oxygen generation rate generated from the thermal reduction reactor 3. It can be seen that the hydrogen / oxygen ratio produced over time approaches 2 which is the stoichiometric ratio of water molecules (H 2 O). Therefore, it can be seen that the two-stage hydrothermal decomposition reaction in the reactor proceeds according to the stoichiometric ratio.
  • the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are configured separately from each other.
  • Upper communication ports 6a and 6b communicating the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4 are formed at the upper parts of the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, respectively.
  • Lower communication ports 7 a and 7 b that communicate the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4 are formed in the lower part of the vessel 3 and the hydrothermal decomposition reactor 4, respectively.
  • the upper communication ports 6 a and 6 b and the lower communication ports 7 a and 7 b are buried in the fluidized bed 2.
  • a screw conveyor 21 is provided between the upper communication ports 6a and 6b, and the fluidized bed 2 is transported from the thermal reduction reactor 3 to the hydrothermal decomposition reactor 4.
  • a screw conveyor 22 is provided between the lower communication ports 7 a and 7 b so that the fluidized bed 2 is transported from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3.
  • the screw conveyors 21 and 22 are driven by motors 23 and 24, respectively, and the rotational speeds of the screw conveyors 21 and 22 are configured to be controllable.
  • the fluidized bed 2 can flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
  • a dispersion plate 9 for introducing water vapor into 4 is provided.
  • the dispersion plates 8 and 9 are provided so as to be connected to the lowermost portions 7a 'and 7b' of the lower communication ports 7a and 7b so as not to disturb the flow of the fluidized bed 2 at the lower communication port 7.
  • the surface of the dispersion plate 8 substantially coincides with the height of the lowermost portion 7a ′ of the lower communication port 7a, and the distribution plate 9 is provided inclined with the lowermost portion 7b ′ of the lower communication port 7b as the lowest portion. .
  • the two screw conveyors 21 and 22 may be located on the line which connects the center of the thermal reduction reactor 3, and the center of the hydrothermal decomposition reactor 4, FIG.
  • the two screw conveyors 21 and 22 may be located on the same line connecting a portion away from the center of the thermal reduction reactor 3 and a portion away from the center of the hydrothermal decomposition reactor 4.
  • the two screw conveyors 21 and 22 are located on separate lines connecting a portion away from the center of the thermal reduction reactor 3 and a portion away from the center of the hydrothermal decomposition reactor 4.
  • a plurality of upper and lower screw conveyors may be arranged or may be inclined.
  • the screws constituting the screw conveyors 21 and 22 may be uniaxial or biaxial, and one of the screw conveyors 21 and 22 may be omitted.
  • a low oxygen partial pressure gas is introduced from the dispersion plate 8 to the thermal reduction reactor 3, and at the same time, water vapor is introduced from the dispersion plate 9 to the hydrothermal decomposition reactor 4.
  • the screw conveyors 21 and 22 are driven by the motors 23 and 24, and the fluidized bed 2 is transported from the thermal reduction reactor 3 to the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b.
  • the fluidized bed 2 is circulated between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 by transporting the fluidized bed 2 from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3 through 7b. That is, the fluidized bed 2 rises in the thermal reduction reactor 3 and the fluidized bed 2 descends in the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
  • the fluidized bed 2 is irradiated with sunlight S through the window 13 to heat the fluidized bed 2.
  • a high-temperature portion H of 1400 ° C. or higher is formed, and the thermal reduction reaction proceeds at the high-temperature portion H to form metal oxide particles. Releases oxygen.
  • the reduced metal oxide particles are sent to the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b by the internal circulation flow.
  • the temperature of the metal oxide particles decreases while flowing in the hydrothermal decomposition reactor 4, and as a result, the fluidized bed 2 in the hydrothermal decomposition reactor 4 has a temperature of 1400 ° C or less, preferably 1200 ° C or less. More preferably, a low temperature portion L of 1000 ° C. or lower is formed.
  • the hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time.
  • the hydrothermal decomposition apparatus using the inner circulation fluidized bed of the present embodiment includes the reactor 1 that contains the fluidized bed 2 made of metal oxide particles, and the fluid that is contained in the reactor 1.
  • the solar light collecting means for condensing and irradiating sunlight S to the layer 2 is provided, and the reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction, and a hydrothermal decomposition reactor that performs a hydrothermal decomposition reaction.
  • a dispersion plate 8 as low oxygen partial pressure gas introduction means for introducing a low oxygen partial pressure gas into the thermal reduction reactor 3 from below, and steam introduction for introducing water vapor into the hydrothermal decomposition reactor 4 from below Dispersion plate 9 as means, oxygen recovery means for recovering gas containing oxygen generated from thermal reduction reactor 3, and hydrogen recovery for recovering gas containing hydrogen generated from hydrothermal decomposition reactor 4 Means, and the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4
  • the upper communication ports 6a and 6b and the lower communication ports 7a and 7b communicate with each other, and the upper communication ports 6a and 6b and the lower communication ports 7a and 7b are buried in the fluidized bed 2 and the upper communication ports
  • the fluidized bed 2 is configured to flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the ports 6a and 6b and the lower communication ports 7a and 7b.
  • the solar light S is irradiated to the upper surface of the fluidized bed 2 accommodated in the
  • a screw conveyor 21 as a conveying means for conveying the fluidized bed 2 between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 to the upper communication ports 6a and 6b and the lower communication ports 7a and 7b. , 22 is provided.
  • thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are configured separately from each other.
  • the fluidized bed 2 is formed as in the configuration of the first embodiment by installing the screw conveyors 21 and 22. Therefore, it is not necessary to adjust the gas flow rate, and the metal oxide particles forming the fluidized bed 2 can be forcibly moved between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4. Further, the generated oxygen and hydrogen can be reliably separated and recovered by the gas sealing action by the metal oxide particles in the screw conveyors 21 and 22.
  • Oxygen and hydrogen are generated separately in the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, respectively. Therefore, there is no need for gas separation of oxygen and hydrogen by a gas separator or the like as in the prior art. Improves purity.
  • 2 In the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, in order to advance the thermal reduction reaction and hydrothermal decomposition reaction, respectively, it becomes easy to arbitrarily control the reaction temperatures of two reactions having different reaction temperatures, Oxygen generation amount and hydrogen generation amount from each reactor are improved.
  • the generation amount and the hydrogen generation amount are improved, and the generation concentrations of recovered oxygen and hydrogen are improved.
  • the reaction heat (heat release amount) generated in the generation reaction can be fully utilized for the endothermic reaction in oxygen generation, and the solar heat ⁇ hydrogen conversion efficiency is improved.
  • the collected sunlight can be widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor 3 without being blocked by the gas separator, it can contribute to the formation of a high temperature portion of 1400 ° C. or higher.
  • Condensed sunlight is widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor 3 without being blocked by the gas separator, and can contribute to the formation of the high temperature portion H of 1400 ° C. or higher.
  • the region of the high temperature part H can be expanded, and the amount of oxygen generated can be increased.
  • the size of the hydrothermal decomposition reactor 4 can be arbitrarily changed due to the structure of the reactor, the region of the low temperature portion L of 1400 ° C. or less formed in the hydrothermal decomposition reactor 4 can be expanded, Hydrogen production can be increased.
  • the metal oxide particles of the high temperature portion H formed near the upper surface of the fluidized bed in the thermal reduction reactor 3 have the upper communication port 6a positioned below the upper surface of the fluidized bed 2. Therefore, a part of the stagnation stays in the vicinity of the high temperature portion H and is heated to a higher temperature, so that the thermal reduction reaction is more likely to proceed and the amount of oxygen generated is improved.
  • the metal oxide particles in the high temperature part H formed in the vicinity of the upper surface of the fluidized bed 2 in the thermal reduction reactor 3 have the upper communication port 6a positioned below the upper surface of the fluidized bed 2 Therefore, a part of the stagnation stays around the high temperature part H, and the high-temperature sensible heat of 1400 ° C. or higher possessed by the metal oxide particles in the high temperature part H can be efficiently recovered and reused as exhaust heat.
  • This embodiment is a modification of the fifth embodiment.
  • the same parts as those in the fifth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the outlets of the screw conveyors 21 and 22 are reduced. That is, the opening amount of the upper communication port 6 b in the hydrothermal decomposition reactor 4 is smaller than the opening amount of the upper communication port 6 a in the thermal reduction reactor 3. Further, the opening amount of the lower communication port 7 a in the thermal reduction reactor 3 is smaller than the opening amount of the lower communication port 7 b in the hydrothermal decomposition reactor 4.
  • the gas in the thermal reduction reactor 3 and the gas in the hydrothermal decomposition reactor 4 are mixed.
  • the packing density of the metal oxide particles at the upper communication port 6b and the lower communication port 7a is increased by reducing the outlets of the screw conveyors 21 and 22 as described above. Therefore, mixing of the gas in the thermal reduction reactor 3 and the gas in the hydrothermal decomposition reactor 4 can be drastically reduced. As a result, the hydrogen generation efficiency can be improved.
  • This embodiment is another modification of the fifth embodiment.
  • the same parts as those in the fifth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a screw conveyor 27 for promoting the rise of metal oxide particles is arranged in the thermal reduction reactor 3.
  • the vertical movement of the screw conveyor 27 can promote the upward movement of the metal oxide particles.
  • the screw conveyor 27 may be one axis, two axes, or multiple axes. According to the present embodiment, the supply amount of the low oxygen partial pressure gas supplied for increasing the metal oxide particles can be greatly reduced. For this reason, the apparatus which manufactures low oxygen partial pressure gas, such as nitrogen, can be reduced in size, and the operating cost of the apparatus which manufactures low oxygen partial pressure gas can be reduced. As a result, the cost of hydrogen production can be reduced.
  • FIG. 14 which shows the hydrothermal decomposition apparatus using the internal circulation fluidized bed of a present Example
  • the inside of the thermal reduction reactor 3 and hydrothermal decomposition reaction are carried out.
  • Upper communication ports 6 a and 6 b communicating with the interior of the reactor 4 are formed, respectively, and the interior of the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are provided below the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4.
  • Lower communication ports 7a and 7b communicating with each other are formed. Further, the lower communication ports 7 a and 7 b are buried in the fluidized bed 2.
  • a belt conveyor 25 is provided between the upper communication port 6a and the lower communication port 7b, and the fluidized bed 2 is transported from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3.
  • a screw conveyor 26 is provided inside the thermal reduction reactor 3, and the fluidized bed 2 in the thermal reduction reactor 3 is connected to the other end side where the lower communication port 7a is provided from one end side where the upper communication port 6a is provided. It is comprised so that it may be conveyed toward.
  • the lower communication port 7 a of the thermal reduction reactor 3 communicates directly with the upper communication port 6 b of the water splitting reactor 4.
  • the fluidized bed 2 can flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
  • a dispersion plate 9 for introducing water vapor into 4 is provided.
  • the dispersion plates 8 and 9 are provided so as to be connected to the lowermost portions 7a 'and 7b' of the lower communication ports 7a and 7b so as not to disturb the flow of the fluidized bed 2 at the lower communication port 7.
  • the surface of the dispersion plate 8 is inclined with the lowest part 7a 'of the lower communication port 7a as the lowest part, and the dispersion plate 9 substantially coincides with the height of the lowermost part 7b' of the lower communication port 7b.
  • a low oxygen partial pressure gas is introduced from the dispersion plate 8 to the thermal reduction reactor 3, and at the same time, water vapor is introduced from the dispersion plate 9 to the hydrothermal decomposition reactor 4.
  • the belt conveyor 25 and the screw conveyor 26 are driven to transport the fluidized bed 2 from the thermal reduction reactor 3 to the hydrothermal decomposition reactor 4 through the lower communication port 7a and the upper communication port 6b, and the lower communication port 7b
  • the fluidized bed 2 is circulated between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 by transporting the fluidized bed 2 from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3 through the upper communication port 6a. That is, an internal circulation flow is generated through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
  • the fluidized bed 2 is irradiated with sunlight S through the window 13 to heat the fluidized bed 2.
  • a high-temperature portion H of 1400 ° C. or higher is formed, and the thermal reduction reaction proceeds at the high-temperature portion H to form metal oxide particles. Releases oxygen.
  • the reduced metal oxide particles are sent to the hydrothermal decomposition reactor 4 through the lower communication port 7a and the upper communication port 6b.
  • the temperature of the metal oxide particles decreases while flowing in the hydrothermal decomposition reactor 4, and as a result, the fluidized bed 2 in the hydrothermal decomposition reactor 4 has a temperature of 1400 ° C or less, preferably 1200 ° C or less. More preferably, a low temperature portion L of 1000 ° C. or lower is formed.
  • the hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time.
  • the fluidized bed 2 can be moved in the thermal reduction reactor 3 by introducing a low oxygen partial pressure gas from the inclined dispersion plate 8, and the screw conveyor 26 can be omitted. Further, the fluidized bed 2 may be moved by applying vibration to the thermal reduction reactor 3, and introduction of the low oxygen partial pressure gas from the inclined dispersion plate 8 may be omitted.
  • the hydrothermal decomposition apparatus using the inner circulation fluidized bed of the present embodiment includes the reactor 1 that contains the fluidized bed 2 made of metal oxide particles, and the fluid that is contained in the reactor 1.
  • the solar light collecting means for condensing and irradiating sunlight S to the layer 2 is provided, and the reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction, and a hydrothermal decomposition reactor that performs a hydrothermal decomposition reaction.
  • a dispersion plate 8 as low oxygen partial pressure gas introduction means for introducing a low oxygen partial pressure gas into the thermal reduction reactor 3 from below, and steam introduction for introducing water vapor into the hydrothermal decomposition reactor 4 from below Dispersion plate 9 as means, oxygen recovery means for recovering gas containing oxygen generated from thermal reduction reactor 3, and hydrogen recovery for recovering gas containing hydrogen generated from hydrothermal decomposition reactor 4 Means, and the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4 Is communicated with the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
  • the lower communication ports 7a and 7b are buried in the fluidized bed 2 so as to communicate with the upper communication ports 6a and 6b and the lower communication ports.
  • the fluidized bed 2 is configured to flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the ports 7a and 7b, and is accommodated in the thermal reduction reactor 3 by the sunlight collecting means. It is comprised so that sunlight S may be irradiated to the upper surface of the said fluidized bed 2. As shown in FIG.
  • a belt conveyor 25 as a conveying means for conveying the fluidized bed 2 between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 is provided at the upper communication port 6a and the lower communication port 7b. Is.
  • the fluidized bed is formed between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 between the upper communication port 6 a of the thermal reduction reactor 3 and the lower communication port 7 b of the hydrothermal decomposition reactor 4.
  • a belt conveyor 25 is provided as a transport means for transporting 2, and the lower communication port 7 a of the thermal reduction reactor 3 and the upper communication port 6 b of the hydrothermal decomposition reactor 4 are in direct communication. .
  • a screw conveyor 26 is provided as a moving means for moving the fluidized bed 2 in the thermal reduction reactor 3 inside the thermal reduction reactor 3.
  • the hydrothermal decomposition apparatus and hydrothermal decomposition method using the inner circulating fluidized bed of the present embodiment as described above by installing the belt conveyor 25 or the screw conveyor 26 in addition to this, the configuration of the first embodiment is obtained. Therefore, it is not necessary to adjust the gas flow rate to form the fluidized bed 2, and the metal oxide particles forming the fluidized bed 2 are forcibly moved between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4. It becomes possible.
  • This embodiment is a modification of the eighth embodiment.
  • the same portions as those in the eighth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 15 which shows the hydrothermal decomposition apparatus using the internal circulation fluidized bed of the present embodiment
  • the metal oxide particles are held in a storage tank 28 connected to the thermal reduction reactor 3 and are contained in the thermal reduction reactor 3. It is transported and moved by the screw conveyor 29. Further, a screw conveyor 26 is disposed in order to cause the metal oxide particles to flow in the thermal reduction reactor 3.
  • the screw conveyor 26 may be arranged in the vertical direction and the tanning direction in addition to the horizontal direction. In this embodiment, three screw conveyors 26 are arranged in the horizontal direction, the vertical direction, and the tanning direction.
  • a screw conveyor 30 is arranged to flow the metal oxide particles in the hydrothermal decomposition reactor 4.
  • the screw conveyor 30 is not limited to the configuration arranged in the vertical direction as in the present embodiment, but may be arranged in the horizontal direction and the licking direction.
  • a storage tank 31 for storing the metal oxide particles after the hydrothermal decomposition reaction is provided at the lower part of the hydrothermal decomposition reactor 4.
  • a screw conveyor 32 for moving and transporting the metal oxide particles from the hydrothermal decomposition reactor 4 to the storage tank 31 is disposed.
  • a belt conveyor 25 is provided between the storage tank 31 and the storage tank 28 for moving and transporting the metal oxide particles after the hydrothermal decomposition reaction.
  • the storage tanks 28 and 31 are provided, whereby the metal oxide particles after the hydrothermal decomposition reaction can be temporarily stored. For this reason, the metal oxide particles can be moved by the belt conveyor 25 at night.
  • the shape of the thermal reduction reactor or hydrothermal decomposition reactor is not limited to a vertically long rectangular parallelepiped, but also a horizontally long rectangular parallelepiped, a cube, a vertically long cylindrical shape, a horizontally long cylindrical shape, a vertically long elliptical cylinder, or a horizontally long elliptical cylindrical shape.
  • the bottom shape of the thermal reduction reactor or hydrothermal decomposition reactor may be horizontal or inclined.
  • a container such as a bucket, or vibration generated by applying an external force may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Provided are: a hydrothermal decomposition apparatus that uses an internally-circulating fluidized bed that can be reused by reliably separating and recovering oxygen and hydrogen that have been generated, arbitrarily controlling each of the reaction temperature, reaction speed, reaction time and reaction zone of reactions that simultaneously proceed in the fluidized bed, and recovering reaction heat with high efficiency; and a hydrothermal decomposition method. The hydrothermal decomposition apparatus is provided with: a thermal reduction reactor (3) for carrying out thermal reduction reactions; a hydrothermal decomposition reactor (4) for carrying out hydrothermal decomposition reactions; a dispersion plate (8) for introducing a low oxygen partial pressure gas to the thermal reduction reactor (3), and a dispersion plate (9) for introducing water vapor to the hydrothermal decomposition reactor (4); an outlet (14) for recovering gas containing oxygen generated by the thermal reduction reactor (3); and an outlet (15) for recovering gas containing hydrogen generated by the hydrothermal decomposition reactor (4). The hydrothermal decomposition apparatus is configured in such a manner that a top communication port (6) and a bottom communication port (7), which are formed on a partition plate (5) that partitions the thermal reduction reactor (3) and the hydrothermal decomposition reactor (4), are buried inside the fluidized bed (2), and the fluidized bed (2) is able to directly flow between the thermal reduction reactor (3) and the hydrothermal decomposition reactor (4) through the top communication port (6) and the bottom communication port (7).

Description

内循環流動層を用いた水熱分解装置及び水熱分解法Hydrothermal decomposition apparatus and hydrothermal decomposition method using internal circulating fluidized bed
 本発明は、内循環流動層を用いた水熱分解装置及び水熱分解法に関する。 The present invention relates to a hydrothermal decomposition apparatus and a hydrothermal decomposition method using an internal circulating fluidized bed.
 太陽光を集光して得られる1000℃以上の熱を利用して水熱分解により水素を製造する方法として、鉄酸化物、酸化セリウム等の金属酸化物による二段階水熱分解サイクルが有望視されており、そのための反応器の開発が各国の研究機関で行われている。 A two-stage hydrothermal decomposition cycle with metal oxides such as iron oxide and cerium oxide is promising as a method for producing hydrogen by hydrothermal decomposition using heat of 1000 ° C or higher obtained by concentrating sunlight. The development of reactors for this purpose is being conducted by research institutions in each country.
 本発明者らは、金属酸化物粒子が内循環流動する流動層式ソーラー反応器を開発するとともに、この流動層式ソーラー反応器を用いて、二段階水熱分解サイクルの2つの反応である水素製造反応と酸素製造反応を、金属酸化物粒子が内循環流動する反応器内で同時に進行させ、水素と酸素を同時に製造する方法を開発した(特許文献1)。 The present inventors have developed a fluidized bed solar reactor in which metal oxide particles are circulated internally, and using this fluidized bed solar reactor, hydrogen that is two reactions of a two-stage hydrothermal decomposition cycle is developed. A method of simultaneously producing hydrogen and oxygen by developing a production reaction and an oxygen production reaction simultaneously in a reactor in which metal oxide particles flow in an internal circulation was developed (Patent Document 1).
 この流動層式ソーラー反応器は、図16に示すように、ステンレス合金とインコネル合金からなる反応器101を備え、この反応器101には、金属酸化物の粒子からなる流動層102が収容されている。反応器101の内部には、上下方向に開口した筒状のドラフト管103が備えられ、ドラフト管103は、流動層102に埋没して流動層102の中央部に配置されている。また、反応器101の底部には、中央部と周辺部にそれぞれ分散板104,105が設けられている。分散板104,105は、流動層102を構成する金属酸化物の粒子を反応器101内に保持するともに、反応器101の底部から気体を導入することができるように、多孔質材料から形成されている。反応器101の天井には、太陽光が透過できるように石英製の窓106が設けられている。また、ドラフト管103の上方には、ドラフト管103の内側から上方に放出されるガスと、ドラフト管103の外側から上方に放出されるガスを分流するために、逆裁頭円錐形状のガスセパレータ107が設けられている。そして、反応器101の上部の側方には、ガスセパレータ107により分流されたガスを取り出すための取り出し口108,109が設けられている。201はヘリオスタットと呼ばれる地上反射鏡、202はタワー反射鏡であり、これら地上反射鏡201とタワー反射鏡202によりビームダウン型の集光システムが構成される。そして、このビームダウン型の集光システムにより、太陽光Sが集光されて反応器101に収容された流動層102の上面中央部へ照射されるようになっている。 As shown in FIG. 16, this fluidized bed type solar reactor includes a reactor 101 made of a stainless alloy and an inconel alloy, and this reactor 101 contains a fluidized bed 102 made of metal oxide particles. Yes. Inside the reactor 101, a cylindrical draft tube 103 opened in the vertical direction is provided. The draft tube 103 is buried in the fluidized bed 102 and disposed at the center of the fluidized bed 102. Further, at the bottom of the reactor 101, dispersion plates 104 and 105 are provided at the center and the periphery, respectively. Dispersion plates 104 and 105 are formed of a porous material so that particles of metal oxide constituting fluidized bed 102 can be held in reactor 101 and gas can be introduced from the bottom of reactor 101. ing. A quartz window 106 is provided on the ceiling of the reactor 101 so that sunlight can pass therethrough. In addition, a gas separator having a truncated cone shape is provided above the draft pipe 103 in order to divert the gas released upward from the inside of the draft pipe 103 and the gas released upward from the outside of the draft pipe 103. 107 is provided. Further, on the side of the upper part of the reactor 101, take- out ports 108 and 109 for taking out the gas diverted by the gas separator 107 are provided. 201 is a ground reflector called a heliostat, and 202 is a tower reflector. The ground reflector 201 and the tower reflector 202 constitute a beam-down type condensing system. The beam-down type condensing system collects the sunlight S and irradiates the central portion of the upper surface of the fluidized bed 102 accommodated in the reactor 101.
 そして、分散板104からドラフト管103の内側に窒素を導入し、同時に、分散板105からドラフト管103の外側に水蒸気を導入する。ドラフト管103の内側における窒素の流量を、ドラフト管103の外側における水蒸気の流量よりも大きくすることにより、流動層102をドラフト管103の内外で循環させる。すなわち、ドラフト管103の内側の領域において流動層103が上昇し、ドラフト管103の外側と反応器101の間の領域において流動層103が下降する内循環流動を生じさせる。続いて、地上反射鏡201,タワー反射鏡202により集光された太陽光Sを、窓106を通して流動層102の上面中央部へ照射し、流動層102を加熱する。太陽光Sが照射された流動層102の上面中央部の近傍では1400℃以上の高温部Hが形成され、この高温部Hで熱還元反応が進行し、金属酸化物の粒子から酸素が放出される。放出された酸素は、ガスセパレータ107の上方を通って取り出し口108から回収される。還元された金属酸化物の粒子は、内循環流動によりドラフト管103の外側と反応器101の間の領域を通って反応器101の下部に送られる。金属酸化物の粒子は反応器101の下部に送られる間に温度が低下し、その結果、流動層102の下部に1400℃以下の低温部Lが形成される。この低温部Lで水熱分解反応が進行し、熱還元反応により還元された金属酸化物の粒子は酸化されてもとの金属酸化物となり、同時に水素が発生する。発生した水素は、ガスセパレータ107の下方を通って取り出し口109から回収される。 Then, nitrogen is introduced from the dispersion plate 104 to the inside of the draft tube 103, and simultaneously, water vapor is introduced from the dispersion plate 105 to the outside of the draft tube 103. The fluidized bed 102 is circulated inside and outside the draft tube 103 by making the flow rate of nitrogen inside the draft tube 103 larger than the flow rate of water vapor outside the draft tube 103. That is, the fluidized bed 103 rises in a region inside the draft pipe 103, and an internal circulation flow is generated in which the fluidized bed 103 descends in a region between the outside of the draft pipe 103 and the reactor 101. Subsequently, the sunlight S collected by the ground reflecting mirror 201 and the tower reflecting mirror 202 is irradiated to the center of the upper surface of the fluidized bed 102 through the window 106 to heat the fluidized bed 102. In the vicinity of the center of the upper surface of the fluidized bed 102 irradiated with sunlight S, a high temperature portion H of 1400 ° C. or higher is formed, and a thermal reduction reaction proceeds at this high temperature portion H, and oxygen is released from the metal oxide particles. The The released oxygen passes through above the gas separator 107 and is collected from the outlet 108. The reduced metal oxide particles are sent to the lower part of the reactor 101 through the region between the outside of the draft tube 103 and the reactor 101 by the internal circulation flow. The temperature of the metal oxide particles decreases while being sent to the lower part of the reactor 101, and as a result, a low temperature part L of 1400 ° C. or lower is formed in the lower part of the fluidized bed 102. The hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time. The generated hydrogen passes through the lower side of the gas separator 107 and is collected from the take-out port 109.
 上記の従来の方法は、太陽光Sの照射によって形成される流動層103の温度分布に着目し、酸素発生反応と水素発生反応をそれぞれ流動層103の上部と下部で同時に進行させることを特徴とするものである。しかし、この方法には、以下のような問題点があることが判明した。
1 反応器の構造上、流動層102の表面とガスセパレータ107の隙間を通じて酸素と水素が混合して酸素と水素の一部が再結合してしまうため、水素の回収量が低下する。なお、隙間と通じたガス混合を防止するためにガスセパレータ107を流動層102の表面に密着させた場合は、金属酸化物粒子の内循環流動が阻害され、2つの反応を円滑に進行させることが困難となる。
2 流動層102の上部と下部で反応温度の異なる2つの反応が同時に進行するが、2つの反応温度をそれぞれ任意に制御することが困難である。
3 流動層102の上部と下部で反応速度の異なる2つの反応が同時に進行するとともに、金属酸化物粒子がドラフト管103の内側を上昇して外側を下降するが、2つの反応時間をそれぞれ任意に制御することが困難であり、酸素と水素の発生濃度の増加に限界がある。
4 流動層102の下部で進行する水素発生反応は発熱反応であり、流動層102の上部で進行する酸素発生反応は吸熱反応であるが、それぞれの反応の反応時間および反応速度を任意に制御することが困難であるため、水素発生反応で発生した反応熱(放熱量)を酸素発生における吸熱反応に十分活用できず、太陽熱→水素転換効率の向上が困難である。
5 太陽光Sが照射された流動層102の上面中央部の近傍では1400℃以上の高温部Hが形成されるが、反応器の構造上、集光された太陽光Sの一部がガスセパレータ107により遮られ、ドラフト管103の外側と反応器101の間の領域を加熱できず太陽エネルギーの利用効率が低くなる。
6 反応器の構造上、流動層102の上面中央部の近傍の一部がガスセパレータ107により遮られるため、1400℃以上の高温部Hの領域を広げ、酸素生成量を増加させることが困難である。
7 反応器の構造上、1400℃以下の低温部Lの領域が流動層102の下部に限られ、低温部Lの領域を広げ、水素生成量を増加させることが困難である。
8 反応器の構造上、流動層102の上面中央部の近傍に形成される高温部Hの金属酸化物粒子は、速やかにドラフト管103の外側と反応器101の間の領域に移動するため、高温部Hの金属酸化物粒子の持つ1400℃以上の高温の顕熱を排熱として熱回収して再利用することが困難である。
The above-described conventional method is characterized by focusing on the temperature distribution of the fluidized bed 103 formed by the irradiation of sunlight S, and causing the oxygen generation reaction and the hydrogen generation reaction to proceed simultaneously in the upper part and the lower part of the fluidized bed 103, respectively. To do. However, it has been found that this method has the following problems.
1 Due to the structure of the reactor, oxygen and hydrogen are mixed through the gap between the surface of the fluidized bed 102 and the gas separator 107 and a part of oxygen and hydrogen are recombined, so that the amount of hydrogen recovered decreases. When the gas separator 107 is brought into close contact with the surface of the fluidized bed 102 in order to prevent gas mixing through the gap, the internal circulation flow of the metal oxide particles is hindered and the two reactions proceed smoothly. It becomes difficult.
2 Although two reactions with different reaction temperatures proceed simultaneously at the upper and lower parts of the fluidized bed 102, it is difficult to arbitrarily control the two reaction temperatures.
3 While two reactions with different reaction rates proceed simultaneously in the upper and lower parts of the fluidized bed 102, the metal oxide particles rise inside the draft tube 103 and descend outside, but the two reaction times can be set arbitrarily. It is difficult to control and there is a limit to the increase in oxygen and hydrogen generation concentrations.
4 The hydrogen generation reaction that proceeds in the lower part of the fluidized bed 102 is an exothermic reaction, and the oxygen generation reaction that proceeds in the upper part of the fluidized bed 102 is an endothermic reaction, but the reaction time and reaction rate of each reaction are arbitrarily controlled. Therefore, it is difficult to sufficiently utilize the reaction heat (heat radiation amount) generated in the hydrogen generation reaction for the endothermic reaction in the oxygen generation, and it is difficult to improve the solar heat → hydrogen conversion efficiency.
5 A high-temperature portion H of 1400 ° C. or higher is formed in the vicinity of the center of the upper surface of the fluidized bed 102 irradiated with the sunlight S. However, due to the reactor structure, a part of the condensed sunlight S is a gas separator. The region between the outside of the draft tube 103 and the reactor 101 cannot be heated, and the utilization efficiency of solar energy is lowered.
6 Because of the structure of the reactor, a part of the vicinity of the center of the upper surface of the fluidized bed 102 is blocked by the gas separator 107, so it is difficult to widen the region of the high temperature portion H of 1400 ° C. or higher and increase the amount of oxygen produced. is there.
7 Due to the structure of the reactor, the region of the low temperature part L of 1400 ° C. or lower is limited to the lower part of the fluidized bed 102, and it is difficult to widen the region of the low temperature part L and increase the amount of hydrogen generation.
8 Because of the structure of the reactor, the metal oxide particles in the high temperature portion H formed in the vicinity of the center of the upper surface of the fluidized bed 102 quickly move to the region between the outside of the draft tube 103 and the reactor 101. It is difficult to recover and reuse the high-temperature sensible heat of 1400 ° C. or higher possessed by the metal oxide particles in the high-temperature portion H as exhaust heat.
WO2011/068122国際公開パンフレットWO2011 / 068122 International pamphlet
 そこで、本発明は上記問題点に鑑み、発生した酸素と水素を確実に分離して回収することができ、流動層で同時に進行する反応の反応温度、反応速度、反応時間、反応領域をそれぞれ任意に制御することができ、さらに、高効率で高温熱を排熱として回収して再利用することができる、内循環流動層を用いた水熱分解装置及び水熱分解法を提供することを目的とする。 Therefore, in view of the above problems, the present invention can reliably separate and recover the generated oxygen and hydrogen, and can arbitrarily set the reaction temperature, reaction rate, reaction time, and reaction region of the reaction that proceeds simultaneously in the fluidized bed. It is also possible to provide a hydrothermal decomposition apparatus and hydrothermal decomposition method using an internal circulating fluidized bed that can be controlled to high temperature, and can recover and reuse high-temperature heat as exhaust heat with high efficiency. And
 本発明の内循環流動層を用いた水熱分解装置は、金属酸化物の粒子からなる流動層を収容した反応器と、この反応器に収容された前記流動層へ太陽光を集光して照射する太陽光集光手段を備え、前記反応器は、熱還元反応を行う熱還元反応器と、水熱分解反応を行う水熱分解反応器と、下方から前記熱還元反応器に低酸素分圧ガスを導入する低酸素分圧ガス導入手段と、下方から前記水熱分解反応器に水蒸気を導入する水蒸気導入手段と、前記熱還元反応器から発生した酸素を含んだガスを回収する酸素回収手段と、前記水熱分解反応器から発生した水素を含んだガスを回収する水素回収手段とを備え、前記熱還元反応器の内部と前記水熱分解反応器の内部は上部連通口と下部連通口により連通しており、前記上部連通口と前記下部連通口は、前記流動層内に埋没して、前記上部連通口と前記下部連通口を通じて、前記熱還元反応器と前記水熱分解反応器の間で前記流動層が流動できるように構成され、前記太陽光集光手段により前記熱還元反応器に収容された前記流動層の上面へ太陽光が照射されるように構成されたことを特徴とする。 The hydrothermal decomposition apparatus using the internal circulation fluidized bed according to the present invention condenses sunlight into a reactor containing a fluidized bed made of metal oxide particles and the fluidized bed contained in the reactor. The solar light collecting means for irradiating, the reactor comprising: a thermal reduction reactor for performing a thermal reduction reaction; a hydrothermal decomposition reactor for performing a hydrothermal decomposition reaction; and a low oxygen content from below to the thermal reduction reactor. Low oxygen partial pressure gas introducing means for introducing pressurized gas, steam introducing means for introducing water vapor into the hydrothermal decomposition reactor from below, and oxygen recovery for recovering gas containing oxygen generated from the thermal reduction reactor And a hydrogen recovery means for recovering a gas containing hydrogen generated from the hydrothermal decomposition reactor, wherein the interior of the thermal reduction reactor and the interior of the hydrothermal decomposition reactor are in communication with the upper communication port and the lower communication port. The upper communication port and the lower communication port The fluidized bed is buried in the fluidized bed so that the fluidized bed can flow between the thermal reduction reactor and the hydrothermal decomposition reactor through the upper communication port and the lower communication port, Sunlight is irradiated to the upper surface of the fluidized bed accommodated in the thermal reduction reactor by a light collecting means.
 また、前記熱還元反応器と前記水熱分解反応器は、仕切り板により仕切られるとともに、前記熱還元反応器の内部と前記水熱分解反応器の内部は前記仕切り板に形成された上部連通口と下部連通口により直接的に連通しており、前記上部連通口と前記下部連通口は、前記流動層内に埋没して、前記上部連通口と前記下部連通口を通じて、前記熱還元反応器と前記水熱分解反応器の間で直接的に前記流動層が流動できるように構成されたことを特徴とする。 The thermal reduction reactor and the hydrothermal decomposition reactor are partitioned by a partition plate, and the interior of the thermal reduction reactor and the interior of the hydrothermal decomposition reactor are upper communication ports formed in the partition plate. And the lower communication port, the upper communication port and the lower communication port are buried in the fluidized bed, and through the upper communication port and the lower communication port, the thermal reduction reactor The fluidized bed is configured to flow directly between the hydrothermal decomposition reactors.
 また、前記上部連通口及び下部連通口に、前記熱還元反応器と前記水熱分解反応器との間で前記流動層を運搬するスクリューコンベアが設けられたことを特徴とする。 Further, the upper communication port and the lower communication port are provided with screw conveyors for conveying the fluidized bed between the thermal reduction reactor and the hydrothermal decomposition reactor.
 また、前記熱還元反応器の上部に、上方に向かって前記熱還元反応器の水平断面積を拡大する拡大部が形成され、前記拡大部の上部に、太陽光が透過する石英製の窓を備えたことを特徴とする。 In addition, an enlarged portion that expands the horizontal cross-sectional area of the thermal reduction reactor upward is formed in the upper portion of the thermal reduction reactor, and a quartz window through which sunlight passes is formed in the upper portion of the enlarged portion. It is characterized by having.
 また、前記熱還元反応器と前記水熱分解反応器とは、別々に相互に離間して構成されていることを特徴とする。 Also, the thermal reduction reactor and the hydrothermal decomposition reactor are configured separately from each other.
 また、前記熱還元反応器の上部連通口と前記水熱分解反応器の下部連通口の間に前記熱還元反応器と前記水熱分解反応器との間で前記流動層を運搬する運搬手段が設けられ、前記熱還元反応器の下部連通口と前記水熱分解反応器の上部連通口は直接的に連通していることを特徴とする。 A conveying means for conveying the fluidized bed between the thermal reduction reactor and the hydrothermal decomposition reactor between an upper communication port of the thermal reduction reactor and a lower communication port of the hydrothermal decomposition reactor; Provided, the lower communication port of the thermal reduction reactor and the upper communication port of the hydrothermal decomposition reactor are in direct communication with each other.
 また、前記熱還元反応器の内部において前記熱還元反応器内の流動層を移動させる移動手段が設けられたことを特徴とする。 Further, a moving means for moving the fluidized bed in the thermal reduction reactor is provided inside the thermal reduction reactor.
 本発明の内循環流動層を用いた水熱分解法は、本発明の内循環流動層を用いた水熱分解装置を用いて、前記流動層を前記熱還元反応器と前記水熱分解反応器の間で内循環流動させながら、低酸素分圧ガス雰囲気下で前記流動層の一部を太陽光により加熱して金属酸化物から酸素を放出させる酸素発生反応と、酸素を放出した後の金属酸化物に水蒸気を接触させ水素を発生させる水素発生反応の2つの反応を同時に進行させることを特徴とする。 The hydrothermal decomposition method using the inner circulating fluidized bed according to the present invention uses the hydrothermal decomposition apparatus using the inner circulating fluidized bed according to the present invention, and converts the fluidized bed into the thermal reduction reactor and the hydrothermal decomposition reactor. The oxygen generation reaction in which a part of the fluidized bed is heated by sunlight in a low oxygen partial pressure gas atmosphere while releasing the oxygen from the metal oxide, and the metal after releasing the oxygen. It is characterized in that two reactions of a hydrogen generation reaction in which water vapor is brought into contact with the oxide to generate hydrogen simultaneously proceed.
 また、前記酸素発生反応を1400℃以上で進行させ、前記水素発生反応を1400℃以下で進行させることを特徴とする。 Further, the oxygen generation reaction proceeds at 1400 ° C. or higher, and the hydrogen generation reaction proceeds at 1400 ° C. or lower.
 また、前記金属酸化物は、フェライト又はフェライトを担持したジルコニアであることを特徴とする。 Further, the metal oxide is characterized by being ferrite or zirconia supporting ferrite.
 また、前記ジルコニアは、単斜晶ジルコニア、立方晶ジルコニア、正方晶ジルコニアのいずれかであり、前記立方晶ジルコニアは安定化剤としてイットリア、カルシア、マグネシアのいずれかを含有することを特徴とする。 Further, the zirconia is any of monoclinic zirconia, cubic zirconia, and tetragonal zirconia, and the cubic zirconia contains any of yttria, calcia, and magnesia as a stabilizer.
 また、前記金属酸化物は、ニッケルフェライト又はニッケルフェライトを担持した単斜晶ジルコニアであることを特徴とする。 Further, the metal oxide is characterized by nickel ferrite or monoclinic zirconia supporting nickel ferrite.
 また、前記金属酸化物は、酸化セリウム又は酸化セリウムを担持したジルコニアであることを特徴とする。 The metal oxide is cerium oxide or zirconia supporting cerium oxide.
 また、前記金属酸化物の粒子の粒径は、100~750μmであることを特徴とする。 The particle size of the metal oxide particles is 100 to 750 μm.
 さらに、前記低酸素分圧ガスは、窒素又はアルゴンであることを特徴とする。 Further, the low oxygen partial pressure gas is nitrogen or argon.
 本発明の内循環流動層を用いた水熱分解装置及び水熱分解法によれば、熱還元反応器と水熱分解反応器は、仕切り板により仕切られるとともに、熱還元反応器の内部と水熱分解反応器の内部は仕切り板に形成された上部連通口と下部連通口により直接的に連通しており、上部連通口と下部連通口は、流動層内に埋没して、上部連通口と下部連通口を通じて、熱還元反応器と水熱分解反応器の間で直接的に流動層が流動できるように構成されているため、熱還元反応器において発生した酸素と水熱分解反応器において発生した水素を確実に分離して回収することができるとともに、熱還元反応器の流動層と水熱分解反応器の流動層で同時に進行する2つの反応の反応温度、反応速度、反応時間と反応領域を容易にそれぞれ任意に制御することができ、さらに、高効率で水熱分解反応器において発生する反応熱を回収して熱還元反応器において再利用することができる。さらに、熱還元反応器および水熱分解反応器において発生する高温熱を排熱として、それぞれ高効率で回収して再利用することができる。 According to the hydrothermal decomposition apparatus and hydrothermal decomposition method using the inner circulation fluidized bed of the present invention, the thermal reduction reactor and the hydrothermal decomposition reactor are partitioned by the partition plate, and the interior of the thermal reduction reactor and the water are separated. The interior of the pyrolysis reactor communicates directly with the upper communication port and the lower communication port formed in the partition plate, and the upper communication port and the lower communication port are buried in the fluidized bed, Since the fluidized bed can flow directly between the thermal reduction reactor and hydrothermal decomposition reactor through the lower communication port, oxygen generated in the thermal reduction reactor and generated in the hydrothermal decomposition reactor The reaction temperature, reaction rate, reaction time and reaction region of the two reactions that proceed simultaneously in the fluidized bed of the thermal reduction reactor and the fluidized bed of the hydrothermal decomposition reactor Each can be controlled easily Can, furthermore, it is possible to recover the heat of reaction at a high efficiency occurring in the hydrothermal decomposition reactor for reuse in the heat reduction reactor. Furthermore, the high-temperature heat generated in the thermal reduction reactor and the hydrothermal decomposition reactor can be recovered and reused as waste heat with high efficiency.
 すなわち、本発明により従来の方法の問題点を以下のように解決できる。
1 熱還元反応器と水熱分解反応器において、それぞれ酸素と水素が別々に発生するため、従来のようにガスセパレータ等による酸素と水素のガス分離が不要となり、回収される酸素と水素の純度が向上する。
2 熱還元反応器と水熱分解反応器において、それぞれ熱還元反応と水熱分解反応を進行させるため、反応温度の異なる2つの反応の反応温度をそれぞれ任意に制御することが容易となり、それぞれの反応器からの酸素発生および水素発生量が向上する。
3 熱還元反応器と水熱分解反応器において、それぞれ熱還元反応と水熱分解反応を進行させるため、2つの反応時間をそれぞれ任意に制御することが容易となり、それぞれの反応器の酸素発生量および水素発生量が向上し、回収される酸素と水素の発生濃度が向上する。
4 熱還元反応器と水熱分解反応器において、それぞれ熱還元反応と水熱分解反応を進行させるため、それぞれの反応の反応時間および反応速度を任意に制御することが容易であり、水素発生反応で発生した反応熱(放熱量)を酸素発生における吸熱反応に十分活用でき、太陽熱→水素転換効率が向上する。
5 集光された太陽光が、ガスセパレータに遮られることなく、熱還元反応器内の流動層の上面の近傍に広く照射され1400℃以上の高温部の形成に寄与できるため、太陽エネルギーを有効に金属酸化物粒子の加熱に利用でき、太陽エネルギーの利用効率が高くなる。
6 集光された太陽光が、ガスセパレータに遮られることなく、熱還元反応器内の流動層の上面の近傍に広く照射され1400℃以上の高温部の形成に寄与できるため、1400℃以上の高温部の領域を拡張することができ、酸素生成量を増加させることができる。
7 反応器の構造上、水熱分解反応器の大きさを任意に変えられるため、水熱分解反応器内に形成される1400℃以下の低温部の領域を拡張することができ、水素生成量を増加させることができる。
8 反応器の構造上、熱還元反応器内の流動層の上面の近傍に形成される高温部の金属酸化物粒子は、流動層の上面よりも上部連通口が下部に位置しているため、その一部が高温部H周辺で滞留することでより高温に加熱されるため、熱還元反応がより進行しやすくなり、酸素発生量が向上する。
9 反応器の構造上、熱還元反応器内の流動層の上面の近傍に形成される高温部の金属酸化物粒子は、流動層の上面よりも上部連通口が下部に位置しているため、その一部が高温部H周辺で滞留し、高温部Hの金属酸化物粒子の持つ1400℃以上の高温の顕熱を高効率で排熱として熱回収して再利用できる。
That is, the present invention can solve the problems of the conventional methods as follows.
1 Since oxygen and hydrogen are generated separately in the thermal reduction reactor and hydrothermal decomposition reactor, respectively, there is no need for gas separation of oxygen and hydrogen by a gas separator or the like, and the purity of recovered oxygen and hydrogen is reduced. Will improve.
2 Since the thermal reduction reaction and hydrothermal decomposition reaction proceed in the thermal reduction reactor and hydrothermal decomposition reactor, respectively, it becomes easy to arbitrarily control the reaction temperatures of the two reactions having different reaction temperatures. Oxygen generation and hydrogen generation from the reactor are improved.
3 Since the thermal reduction reaction and hydrothermal decomposition reaction proceed in the thermal reduction reactor and hydrothermal decomposition reactor, respectively, it becomes easy to arbitrarily control the two reaction times, and the amount of oxygen generated in each reactor In addition, the hydrogen generation amount is improved, and the generation concentration of recovered oxygen and hydrogen is improved.
4 Since the thermal reduction reaction and hydrothermal decomposition reaction proceed in the thermal reduction reactor and hydrothermal decomposition reactor, respectively, it is easy to arbitrarily control the reaction time and reaction rate of each reaction, and the hydrogen generation reaction The reaction heat (amount of heat released) generated in the process can be fully utilized for the endothermic reaction in the generation of oxygen, improving the efficiency of solar heat → hydrogen conversion.
5 Concentrated sunlight is widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor without being blocked by the gas separator, and can contribute to the formation of a high-temperature part of 1400 ° C or higher. In addition, it can be used for heating metal oxide particles, and the utilization efficiency of solar energy is increased.
6 Since the collected sunlight can be widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor without being blocked by the gas separator, it can contribute to the formation of a high temperature portion of 1400 ° C. or higher. The region of the high temperature part can be expanded, and the amount of oxygen produced can be increased.
7 Because of the structure of the reactor, the size of the hydrothermal cracking reactor can be changed arbitrarily, so that the region of the low temperature part below 1400 ° C formed in the hydrothermal cracking reactor can be expanded, and the amount of hydrogen produced Can be increased.
8 Because of the structure of the reactor, the metal oxide particles in the high temperature part formed in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor have an upper communication port located below the upper surface of the fluidized bed. Since some of them stay around the high temperature part H and are heated to a higher temperature, the thermal reduction reaction is more likely to proceed, and the amount of oxygen generated is improved.
9 Because of the structure of the reactor, the metal oxide particles in the high temperature part formed in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor have an upper communication port located below the upper surface of the fluidized bed. A part of the stagnation stays around the high-temperature part H, and the high-temperature sensible heat of 1400 ° C. or higher possessed by the metal oxide particles of the high-temperature part H can be recovered and reused as exhaust heat with high efficiency.
本発明の内循環流動層を用いた水熱分解装置の一実施例を示す模式図である。It is a schematic diagram which shows one Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention. 実施例2におけるシミュレーションモデルを示す。The simulation model in Example 2 is shown. 実施例2における粒子体積分率の時間変化を示す計算結果図を示す。The calculation result figure which shows the time change of the particle | grain volume fraction in Example 2 is shown. 実施例2における粒子とガスの時間平均流速ベクトルを示す計算結果図である。It is a calculation result figure which shows the time average flow velocity vector of the particle | grains and gas in Example 2. FIG. 実施例3における水熱分解反応器4から生成した水素生成速度の経時変化を示すグラフである。6 is a graph showing a change over time in the hydrogen production rate produced from the hydrothermal decomposition reactor 4 in Example 3. FIG. 実施例3における熱還元反応器3から生成した酸素生成速度の経時変化と水熱分解反応器4から流入した水素を計測したグラフである。6 is a graph obtained by measuring changes with time in oxygen generation rate generated from the thermal reduction reactor 3 in Example 3 and hydrogen flowing in from the hydrothermal decomposition reactor 4. FIG. 実施例4における水熱分解反応器4から生成した水素生成速度の経時変化と熱還元反応器3から流入した酸素を計測したグラフである。6 is a graph obtained by measuring changes over time in the hydrogen production rate produced from the hydrothermal decomposition reactor 4 in Example 4 and oxygen flowing in from the thermal reduction reactor 3. FIG. 実施例4における熱還元反応器3から生成した酸素生成速度の経時変化と水熱分解反応器4から流入した水素を計測したグラフである。6 is a graph obtained by measuring changes with time in the oxygen generation rate generated from the thermal reduction reactor 3 in Example 4 and hydrogen flowing in from the hydrothermal decomposition reactor 4. FIG. 実施例4における水熱分解反応器4から生成した水素発生速度を、熱還元反応器3から生成した酸素発生速度で割った値である水素/酸素生成速度比の経時変化を示すグラフである。6 is a graph showing a change over time in a hydrogen / oxygen generation rate ratio, which is a value obtained by dividing the hydrogen generation rate generated from the hydrothermal decomposition reactor 4 in Example 4 by the oxygen generation rate generated from the thermal reduction reactor 3. 本発明の内循環流動層を用いた水熱分解装置の別の実施例を示す模式図である。It is a schematic diagram which shows another Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention. 本発明の内循環流動層を用いた水熱分解装置の別の実施例を示す上面からの模式図である。It is a schematic diagram from the upper surface which shows another Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention. 本発明の内循環流動層を用いた水熱分解装置の別の実施例を示す模式図である。It is a schematic diagram which shows another Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention. 本発明の内循環流動層を用いた水熱分解装置の別の実施例を示す模式図である。It is a schematic diagram which shows another Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention. 本発明の内循環流動層を用いた水熱分解装置の別の実施例を示す模式図である。It is a schematic diagram which shows another Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention. 本発明の内循環流動層を用いた水熱分解装置のさらに別の実施例を示す模式図である。It is a schematic diagram which shows another Example of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of this invention. 従来の内循環流動層を用いた水熱分解装置の一例を示す模式図である。It is a schematic diagram which shows an example of the hydrothermal decomposition apparatus using the conventional internal circulation fluidized bed.
 以下、本発明の内循環流動層を用いた水熱分解装置及び水熱分解法の実施例について、添付した図面を参照しながら説明する。なお、本発明の内循環流動層を用いた水熱分解装置及び水熱分解法は、太陽日射が年間1800kWh/m以上のサンベルト地域で好適に実施されるものである。 Hereinafter, embodiments of the hydrothermal decomposition apparatus and hydrothermal decomposition method using the inner circulating fluidized bed of the present invention will be described with reference to the accompanying drawings. In addition, the hydrothermal decomposition apparatus and hydrothermal decomposition method using the internal circulation fluidized bed of this invention are suitably implemented in the sun belt area whose solar radiation is 1800 kWh / m < 2 > or more per year.
 はじめに、本実施例の内循環流動層を用いた水熱分解装置の構成について説明する。
 本発明の内循環流動層を用いた水熱分解装置の一実施例を示す図1において、1はステンレス合金とインコネル合金からなる反応器であり、この反応器1には、金属酸化物の粒子からなる内循環流動層としての流動層2が収容されている。
First, the structure of the hydrothermal decomposition apparatus using the internal circulation fluidized bed of a present Example is demonstrated.
In FIG. 1 showing an embodiment of a hydrothermal decomposition apparatus using an internal circulating fluidized bed of the present invention, 1 is a reactor made of a stainless alloy and an Inconel alloy, and this reactor 1 contains metal oxide particles. A fluidized bed 2 as an inner circulating fluidized bed is housed.
 この金属酸化物としては、例えば、Fe,NiFe,CoFeなどの鉄酸化物又は多金属を含有した鉄酸化物、これらの鉄酸化物をジルコニア等の担体に担持したもの、酸化セリウム(CeO)、酸化セリウムをジルコニア等の担体に担持したもの、或いは、鉄イオン又はセリウムイオンをジルコニアに固溶させたものなどを使用することができる。上記のジルコニアとしては、単斜晶ジルコニア、立方晶ジルコニア、正方晶ジルコニアのいずれも用いることができる。なお、立方晶ジルコニアとは、イットリア、カルシア、マグネシア等の安定化剤を含有した安定化ジルコニア又は部分安定化ジルコニアであって、結晶層として少なくとも立方晶を含むジルコニアである。好ましくは、金属酸化物の粒子としては、MFe(M=Fe,Zn,Mn,Ni,Co,Mg)で表されるフェライトの微粉体、MFe/m-ZrO(M=Fe,Zn,Mn,Ni,Co,Mg)で表されるフェライトを担持した単斜晶ジルコニアの微粉体、又はMFe/YSZ(M=Fe,Zn,Mn,Ni,Co,Mg)で表されるフェライトを担持したイットリア安定化立方晶ジルコニアの微粉体が用いられる。より好ましくは、NiFe,NiFe/m-ZrOの微粉体が用いられる。また、酸化セリウムの微粉体、酸化セリウムを担持したジルコニアの微粉体も好適に用いられる。金属酸化物の粒子の大きさは、流動層2の流動性を保つために30~1000μmが好ましく、より好ましくは100~750μmである。 Examples of the metal oxide include iron oxides such as Fe 3 O 4 , NiFe 2 O 4 , and CoFe 2 O 4 , iron oxides containing multiple metals, and these iron oxides supported on a carrier such as zirconia. Cerium oxide (CeO 2 ), cerium oxide supported on a carrier such as zirconia, or iron ions or cerium ions dissolved in zirconia can be used. As the zirconia, any of monoclinic zirconia, cubic zirconia, and tetragonal zirconia can be used. Note that cubic zirconia is stabilized zirconia or partially stabilized zirconia containing a stabilizer such as yttria, calcia, and magnesia, and includes zirconia containing at least cubic crystals as a crystal layer. Preferably, the metal oxide particles include ferrite fine powder represented by MFe 2 O 4 (M = Fe, Zn, Mn, Ni, Co, Mg), MFe 2 O 4 / m-ZrO 2 (M = Fe, Zn, Mn, Ni, Co, Mg) Monoclinic zirconia fine powder supporting ferrite represented by MFE 2 O 4 / YSZ (M = Fe, Zn, Mn, Ni, Co, Mg) The fine powder of yttria-stabilized cubic zirconia carrying the ferrite represented by More preferably, fine powders of NiFe 2 O 4 and NiFe 2 O 4 / m-ZrO 2 are used. Further, a fine powder of cerium oxide and a fine powder of zirconia supporting cerium oxide are also preferably used. The size of the metal oxide particles is preferably 30 to 1000 μm, more preferably 100 to 750 μm, in order to maintain the fluidity of the fluidized bed 2.
 なお、フェライトを担持したジルコニアは、例えば、Fe(II)塩の水溶液にジルコニアの微粉体を分散させ、水酸化ナトリウム水溶液などのアルカリ水溶液を添加してFe(II)水酸化物のコロイドを生成させ、これに空気をバブリングして酸化させ、Fe(II)水酸化物のコロイドが水溶液に溶解した後、Feとなって析出する溶解析出反応を進行させ、分散させたジルコニアの微粉体上にFeを成長させることにより得ることができる。或いは、Fe(II)塩の水溶液にジルコニアの微粉体を分散させ、これを蒸発乾固させた後、焼成してジルコニア上のFe(II)塩を金属酸化物とし、この金属酸化物を300℃以上で焼成することによっても得ることができる。 In addition, zirconia supporting ferrite, for example, disperses zirconia fine powder in an aqueous solution of Fe (II) salt and adds an alkaline aqueous solution such as an aqueous solution of sodium hydroxide to form a colloid of Fe (II) hydroxide. This is oxidized by bubbling air, and after the colloid of Fe (II) hydroxide is dissolved in the aqueous solution, the dissolution precipitation reaction that precipitates as Fe 3 O 4 proceeds to disperse fine zirconia powder It can be obtained by growing Fe 3 O 4 on the body. Alternatively, a fine powder of zirconia is dispersed in an aqueous solution of Fe (II) salt, this is evaporated to dryness, and then fired to convert the Fe (II) salt on zirconia into a metal oxide. It can also be obtained by baking at a temperature of 0 ° C. or higher.
 反応器1は、熱還元反応を行う熱還元反応器3と、水熱分解反応を行う水熱分解反応器4からなる。熱還元反応器3と水熱分解反応器4は、1枚の仕切り板5により仕切られており、仕切り板5の上部には、熱還元反応器3の内部と水熱分解反応器4の内部を直接的に連通する上部連通口6が形成され、仕切り板5の下部には、熱還元反応器3の内部と水熱分解反応器4の内部を直接的に連通する下部連通口7が形成されている。また、上部連通口6と下部連通口7は、流動層2内に埋没している。そして、上部連通口6と下部連通口7を通じて、熱還元反応器3と水熱分解反応器4の間で直接的に流動層2が流動できるように構成されている。 The reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction and a hydrothermal decomposition reactor 4 that performs a hydrothermal decomposition reaction. The thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are partitioned by a single partition plate 5, and the interior of the thermal reduction reactor 3 and the interior of the hydrothermal decomposition reactor 4 are located above the partition plate 5. An upper communication port 6 that directly communicates with each other is formed, and a lower communication port 7 that directly communicates the interior of the thermal reduction reactor 3 and the interior of the hydrothermal decomposition reactor 4 is formed at the lower portion of the partition plate 5. Has been. Further, the upper communication port 6 and the lower communication port 7 are buried in the fluidized bed 2. The fluidized bed 2 can flow directly between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication port 6 and the lower communication port 7.
 熱還元反応器3の下部には、熱還元反応器3内へ窒素などの低酸素分圧ガスを導入するための分散板8、水熱分解反応器4の下部には、水熱分解反応器4内へ水蒸気を導入するための分散板9が設けられている。分散板8,9は、下部連通口7における流動層2の流動を妨げないように、下部連通口7の最下部7’に連結して設けられている。分散板8の面は、下部連通口7の最下部7’の高さと略一致しており、分散板9は、下部連通口7の最下部7’を最低部として傾斜して設けられている。また、分散板8,9は、流動層2を構成する金属酸化物の粒子を反応器1内に保持するともに、反応器1の底部から気体を導入することができるように、多孔質材料から形成されている。熱還元反応器3の底部には、低酸素分圧ガスを導入するための導入管10、水熱分解反応器4の底部には、水蒸気を導入するための導入管11が設けられている。 In the lower part of the thermal reduction reactor 3, a dispersion plate 8 for introducing a low oxygen partial pressure gas such as nitrogen into the thermal reduction reactor 3, and in the lower part of the hydrothermal decomposition reactor 4, there is a hydrothermal decomposition reactor. A dispersion plate 9 for introducing water vapor into 4 is provided. The dispersion plates 8 and 9 are connected to the lowermost part 7 ′ of the lower communication port 7 so as not to hinder the flow of the fluidized bed 2 at the lower communication port 7. The surface of the dispersion plate 8 substantially coincides with the height of the lowermost part 7 ′ of the lower communication port 7, and the dispersion plate 9 is provided inclined with the lowermost part 7 ′ of the lower communication port 7 as the lowest part. . Further, the dispersion plates 8 and 9 are made of a porous material so that the metal oxide particles constituting the fluidized bed 2 can be held in the reactor 1 and gas can be introduced from the bottom of the reactor 1. Is formed. An introduction pipe 10 for introducing a low oxygen partial pressure gas is provided at the bottom of the thermal reduction reactor 3, and an introduction pipe 11 for introducing water vapor is provided at the bottom of the hydrothermal decomposition reactor 4.
 熱還元反応器3の上部には、上部連通口6の最上部6’の上方で熱還元反応器3の側壁と仕切り板5に連結されるとともに、上方に向かって熱還元反応器3の水平断面積を拡大する拡大部12が形成されている。この拡大部12により、太陽光Sが熱還元反応器3の壁に遮られることなく流動層2に照射されるようになっている。熱還元反応器3の拡大部12の上部の天井には、太陽光が透過できるように、石英製の窓13が設けられている。熱還元反応器3の拡大部12の上部の側方には、熱還元反応により発生した酸素を含んだガスの取り出し口14が設けられ、水熱分解反応器4の天井面には、水熱分解反応により発生した水素を含んだガスの取り出し口15が設けられている。 The upper part of the thermal reduction reactor 3 is connected to the side wall of the thermal reduction reactor 3 and the partition plate 5 above the uppermost part 6 ′ of the upper communication port 6, and the horizontal side of the thermal reduction reactor 3 upwards. An enlarged portion 12 that enlarges the cross-sectional area is formed. The enlarged portion 12 allows sunlight S to be irradiated to the fluidized bed 2 without being blocked by the wall of the thermal reduction reactor 3. A quartz window 13 is provided on the ceiling above the enlarged portion 12 of the thermal reduction reactor 3 so that sunlight can pass therethrough. On the side of the upper part of the enlarged portion 12 of the thermal reduction reactor 3, there is provided a gas outlet 14 for containing oxygen generated by the thermal reduction reaction. An outlet 15 for extracting gas containing hydrogen generated by the decomposition reaction is provided.
 201はヘリオスタットと呼ばれる地上反射鏡、202は図示しないタワーに設置されたタワー反射鏡であり、これら地上反射鏡201とタワー反射鏡202によりビームダウン型の集光システムが構成される。そして、このビームダウン型の集光システムにより、太陽光Sが集光されて熱還元反応器3に収容された流動層2の上面へ照射されるようになっている。 201 is a ground reflector called a heliostat, 202 is a tower reflector installed in a tower (not shown), and the ground reflector 201 and the tower reflector 202 constitute a beam-down type condensing system. The beam-down type condensing system collects sunlight S and irradiates the upper surface of the fluidized bed 2 accommodated in the thermal reduction reactor 3.
 つぎに、本実施例の内循環流動層を用いた水熱分解装置による水熱分解法について説明する。 Next, a hydrothermal decomposition method using a hydrothermal decomposition apparatus using the inner circulating fluidized bed of this embodiment will be described.
 分散板8から熱還元反応器3に低酸素分圧ガスを導入し、同時に、分散板9から水熱分解反応器4に水蒸気を導入する。低酸素分圧ガスとしては、例えば純度99.999%の窒素が用いられる。ここで、熱還元反応器3に導入する低酸素分圧ガスは、酸素分圧の低いガスであればよく、窒素に限定されず、例えば、アルゴンであってもよい。また、水熱分解反応器4に導入するガスは、水蒸気を含んでいればよく、例えば、水蒸気と窒素の混合ガスであってもよい。そして、窒素の流量を水蒸気の流量よりも大きくすることにより、流動層2を熱還元反応器3と水熱分解反応器4の間で循環させる。すなわち、熱還元反応器3において流動層2が上昇し、水熱分解反応器4において流動層2が下降する内循環流動を生じさせる。 A low oxygen partial pressure gas is introduced from the dispersion plate 8 into the thermal reduction reactor 3, and at the same time, water vapor is introduced from the dispersion plate 9 into the hydrothermal decomposition reactor 4. As the low oxygen partial pressure gas, for example, nitrogen having a purity of 99.999% is used. Here, the low oxygen partial pressure gas introduced into the thermal reduction reactor 3 may be a gas having a low oxygen partial pressure, and is not limited to nitrogen, and may be, for example, argon. Moreover, the gas introduce | transduced into the hydrothermal decomposition reactor 4 should just contain water vapor | steam, for example, the mixed gas of water vapor | steam and nitrogen may be sufficient as it. Then, the fluidized bed 2 is circulated between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 by making the flow rate of nitrogen larger than the flow rate of water vapor. That is, the fluidized bed 2 rises in the thermal reduction reactor 3, and an internal circulation flow in which the fluidized bed 2 descends in the hydrothermal decomposition reactor 4 is generated.
 続いて、地上反射鏡201,タワー反射鏡202により集光された太陽光Sを、窓13を通して流動層2へ照射し、流動層2を加熱する。太陽光Sが照射された熱還元反応器3中の流動層2の上面の近傍では1400℃以上の高温部Hが形成され、この高温部Hで熱還元反応が進行し、金属酸化物の粒子から酸素が放出される。放出された酸素は、取り出し口14から回収される。 Subsequently, the fluidized bed 2 is heated by irradiating the fluidized bed 2 with the sunlight S collected by the ground reflector 201 and the tower reflector 202 through the window 13. In the vicinity of the upper surface of the fluidized bed 2 in the thermal reduction reactor 3 irradiated with the sunlight S, a high-temperature portion H of 1400 ° C. or higher is formed, and the thermal reduction reaction proceeds at the high-temperature portion H to form metal oxide particles. Releases oxygen. The released oxygen is collected from the outlet 14.
 例えば、金属酸化物にNiFeを用いた場合、熱還元反応の反応式は下記のようになる。
   NiFe → 3Ni1/3Fe2/3O + (1/2)O
For example, when NiFe 2 O 4 is used as the metal oxide, the reaction formula of the thermal reduction reaction is as follows.
NiFe 2 O 4 → 3Ni 1/3 Fe 2/3 O + (1/2) O 2
 また、例えば、金属酸化物にCeOを用いた場合、熱還元反応の反応式は下記のようになる。
   CeO → CeO2-x + (x/2)O (0<x≦0.5)
For example, when CeO 2 is used as the metal oxide, the reaction formula of the thermal reduction reaction is as follows.
CeO 2 → CeO 2−x + (x / 2) O 2 (0 <x ≦ 0.5)
 還元された金属酸化物の粒子は、内循環流動により上部連通口6を通って水熱分解反応器4に送られる。金属酸化物の粒子は水熱分解反応器4内で流動している間に温度が低下し、その結果、水熱分解反応器4中の流動層2に1400℃以下、好ましくは1200℃以下、より好ましくは1000℃以下の低温部Lが形成される。この低温部Lで水熱分解反応が進行し、熱還元反応により還元された金属酸化物の粒子は酸化されてもとの金属酸化物となり、同時に水素が発生する。発生した水素は、取り出し口15から回収される。 The reduced metal oxide particles are sent to the hydrothermal decomposition reactor 4 through the upper communication port 6 by internal circulation flow. The temperature of the metal oxide particles decreases while flowing in the hydrothermal decomposition reactor 4, and as a result, the fluidized bed 2 in the hydrothermal decomposition reactor 4 has a temperature of 1400 ° C or less, preferably 1200 ° C or less. More preferably, a low temperature portion L of 1000 ° C. or lower is formed. The hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time. The generated hydrogen is recovered from the extraction port 15.
 例えば、金属酸化物にNiFeを用いた場合、水熱分解反応の反応式は下記のようになる。
   3Ni1/3Fe2/3O + HO → NiFe + H
For example, when NiFe 2 O 4 is used as the metal oxide, the reaction formula of the hydrothermal decomposition reaction is as follows.
3Ni 1/3 Fe 2/3 O + H 2 O → NiFe 2 O 4 + H 2
 また、例えば、金属酸化物にCeOを用いた場合、水熱分解反応の反応式は下記のようになる。
   CeO2-x + xHO → CeO + xH (0<x≦0.5)
For example, when CeO 2 is used as the metal oxide, the reaction formula of the hydrothermal decomposition reaction is as follows.
CeO 2-x + xH 2 O → CeO 2 + xH 2 (0 <x ≦ 0.5)
 また、水熱分解反応器4の流動層2から、仕切り板5を介して、熱還元反応器3の下部の流動層2へ向けて熱が移動する。熱移動が円滑に進行するためには、熱還元反応器3の下部の流動層2の温度が、水熱分解反応器4の流動層2の温度よりも低くなり十分な温度差が必要となる。本実施例の流動層2では、熱還元反応器3に窒素を、水熱分解反応器4には水蒸気を同時に導入し、窒素の流量を水蒸気の流量よりも大きくして流動層2を反応器1内で流動させることから、熱還元反応器3の下部の流動層2と水熱分解反応器4の流動層2に大きな温度差が形成され、水熱分解反応器4の流動層2から熱還元反応器3の流動層2に向けて熱移動が行える。すなわち、低温部Lの流動層2の反応粒子の顕熱が、低温部Lから高温部Hへ移動する途中の流動層2の反応粒子により熱回収される。また、低温部Lの流動層2の反応粒子は、水素発生反応により発熱することから、その反応熱が低温部Lから高温部Hへ移動する途中の流動層2の反応粒子に熱移動し、吸熱反応である酸素発生反応の熱源として利用できる。さらに、低温部Lにおける反応粒子の移動にはある程度時間を要するため、低温部Lから高温部Hへ移動する反応粒子に大きな熱量が移動できる。したがって、エネルギー効率が向上する。 Also, heat moves from the fluidized bed 2 of the hydrothermal decomposition reactor 4 to the fluidized bed 2 below the thermal reduction reactor 3 through the partition plate 5. In order for the heat transfer to proceed smoothly, the temperature of the fluidized bed 2 at the lower part of the thermal reduction reactor 3 is lower than the temperature of the fluidized bed 2 of the hydrothermal decomposition reactor 4, and a sufficient temperature difference is required. . In the fluidized bed 2 of the present embodiment, nitrogen is introduced into the thermal reduction reactor 3 and water vapor is simultaneously introduced into the hydrothermal decomposition reactor 4, and the flow rate of nitrogen is made larger than the flow rate of water vapor to make the fluidized bed 2 into the reactor. 1, a large temperature difference is formed between the fluidized bed 2 at the lower part of the thermal reduction reactor 3 and the fluidized bed 2 of the hydrothermal decomposition reactor 4, and heat is generated from the fluidized bed 2 of the hydrothermal decomposition reactor 4. Heat transfer can be performed toward the fluidized bed 2 of the reduction reactor 3. That is, the sensible heat of the reaction particles in the fluidized bed 2 in the low temperature part L is recovered by the reaction particles in the fluidized bed 2 that are moving from the low temperature part L to the high temperature part H. In addition, since the reaction particles of the fluidized bed 2 in the low temperature part L generate heat due to the hydrogen generation reaction, the reaction heat is transferred to the reaction particles of the fluidized bed 2 in the middle of moving from the low temperature part L to the high temperature part H. It can be used as a heat source for an oxygen generation reaction that is an endothermic reaction. Furthermore, since it takes some time for the reaction particles to move in the low temperature portion L, a large amount of heat can be transferred to the reaction particles moving from the low temperature portion L to the high temperature portion H. Therefore, energy efficiency is improved.
 以上のように、本実施例の内循環流動層を用いた水熱分解装置は、金属酸化物の粒子からなる流動層2を収容した反応器1と、この反応器1に収容された前記流動層2へ太陽光Sを集光して照射する太陽光集光手段としての地上反射鏡201とタワー反射鏡202とを備え、前記反応器1は、熱還元反応を行う熱還元反応器3と、水熱分解反応を行う水熱分解反応器4と、下方から前記熱還元反応器3に低酸素分圧ガスを導入する低酸素分圧ガス導入手段としての分散板8と導入管10と、下方から前記水熱分解反応器4に水蒸気を導入する水蒸気導入手段としての分散板9と導入管11と、前記熱還元反応器3から発生した酸素を含んだガスを回収する酸素回収手段としての取り出し口14と、前記水熱分解反応器4から発生した水素を含んだガスを回収する水素回収手段しての取り出し口15とを備え、前記熱還元反応器3と前記水熱分解反応器4は、仕切り板5により仕切られるとともに、前記熱還元反応器3の内部と前記水熱分解反応器4の内部は前記仕切り板5に形成された上部連通口6と下部連通口7により直接的に連通しており、前記上部連通口6と前記下部連通口7は、前記流動層2内に埋没して、前記上部連通口6と前記下部連通口7を通じて、前記熱還元反応器3と前記水熱分解反応器4の間で直接的に前記流動層2が流動できるように構成され、前記太陽光集光手段としての地上反射鏡201とタワー反射鏡202により前記熱還元反応器3に収容された前記流動層2の上面へ太陽光Sが照射されるように構成されたものである。 As described above, the hydrothermal decomposition apparatus using the inner circulation fluidized bed of the present embodiment includes the reactor 1 that contains the fluidized bed 2 made of metal oxide particles, and the fluid that is contained in the reactor 1. The ground reflecting mirror 201 and the tower reflecting mirror 202 as sunlight collecting means for collecting and irradiating the sunlight S on the layer 2 are provided, and the reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction, A hydrothermal decomposition reactor 4 for performing a hydrothermal decomposition reaction, a dispersion plate 8 and an introduction pipe 10 as low oxygen partial pressure gas introduction means for introducing a low oxygen partial pressure gas into the thermal reduction reactor 3 from below; Dispersion plate 9 and introduction pipe 11 as water vapor introduction means for introducing water vapor into hydrothermal decomposition reactor 4 from below, and oxygen recovery means for recovering the gas containing oxygen generated from thermal reduction reactor 3 Collects hydrogen-containing gas generated from the outlet 14 and the hydrothermal decomposition reactor 4 The thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are partitioned by a partition plate 5 and the interior of the thermal reduction reactor 3 and the hydrothermal heat. The inside of the decomposition reactor 4 is directly communicated with an upper communication port 6 and a lower communication port 7 formed in the partition plate 5, and the upper communication port 6 and the lower communication port 7 are connected to the fluidized bed 2. The fluidized bed 2 can be directly flowed between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication port 6 and the lower communication port 7. The solar reflecting light is applied to the upper surface of the fluidized bed 2 accommodated in the thermal reduction reactor 3 by the ground reflecting mirror 201 and the tower reflecting mirror 202 as the sunlight collecting means. is there.
 また、前記熱還元反応器3の上部に、上方に向かって前記熱還元反応器3の水平断面積を拡大する拡大部12が形成され、前記拡大部12の上部に、太陽光Sが透過する石英製の窓13を備えたものである。 In addition, an enlarged portion 12 that expands the horizontal cross-sectional area of the thermal reduction reactor 3 upward is formed in the upper portion of the thermal reduction reactor 3, and sunlight S is transmitted through the upper portion of the enlarged portion 12. A quartz window 13 is provided.
 本実施例の内循環流動層を用いた水熱分解法は、本実施例の内循環流動層を用いた水熱分解装置を用いて、前記低酸素分圧ガス導入手段としての分散板8と導入管10から導入される低酸素分圧ガスの流量を前記水蒸気導入手段としての分散板9と導入管11から導入される水蒸気の流量よりも大きくすることにより前記流動層2を前記熱還元反応器3と前記水熱分解反応器4の間で内循環流動させながら、低酸素分圧ガス雰囲気下で前記流動層2の一部を太陽光Sにより加熱して金属酸化物から酸素を放出させる酸素発生反応と、酸素を放出した後の金属酸化物に水蒸気を接触させ水素を発生させる水素発生反応の2つの反応を同時に進行させるものである。 The hydrothermal decomposition method using the inner circulation fluidized bed of this embodiment uses the hydrothermal decomposition apparatus using the inner circulation fluidized bed of this embodiment, and the dispersion plate 8 as the low oxygen partial pressure gas introduction means and By making the flow rate of the low oxygen partial pressure gas introduced from the introduction pipe 10 larger than the flow rate of the water vapor introduced from the dispersion plate 9 and the introduction pipe 11 as the steam introduction means, the fluidized bed 2 is subjected to the thermal reduction reaction. While partly circulating between the vessel 3 and the hydrothermal decomposition reactor 4, a part of the fluidized bed 2 is heated by sunlight S in a low oxygen partial pressure gas atmosphere to release oxygen from the metal oxide. Two reactions of an oxygen generation reaction and a hydrogen generation reaction in which water vapor is brought into contact with the metal oxide after releasing oxygen to generate hydrogen are simultaneously advanced.
 以上の本実施例の内循環流動層を用いた水熱分解装置及び水熱分解法によれば、熱還元反応器3における酸素発生反応と、水熱分解反応器4における水素発生反応が同時に進行するため、酸素と水素の回収を連続的に行うことができる。また、熱還元反応器3と水熱分解反応器4は、仕切り板5により明確に仕切られており、酸素が熱還元反応器3、水素が水熱分解反応器4で発生するため、発生した酸素と水素が混合することがない。したがって、発生した酸素と水素を確実に分離して回収することができ、その結果、回収される水素の純度が向上し、水素の製造コストを削減することができる。また、反応温度の異なる2つの反応が熱還元反応器3と水熱分解反応器4で別々に進行するため、同時に進行する反応の反応温度と反応時間を制御することが容易となり、それぞれの反応効率が向上し、酸素と水素の発生濃度が向上する。また、発熱反応における放熱量と吸熱反応における吸熱量を制御することが容易になることから、高効率で反応熱を回収して再利用することができ、エネルギー損失が減少し、太陽エネルギーの利用効率が向上する。また、熱還元反応器3と水熱分解反応器4からそれぞれ発生する一定温度のガスからの廃熱利用が容易となることから、一層、エネルギー損失が減少し、太陽エネルギーの利用効率が向上する。 According to the hydrothermal decomposition apparatus and hydrothermal decomposition method using the inner circulating fluidized bed of this embodiment, the oxygen generation reaction in the thermal reduction reactor 3 and the hydrogen generation reaction in the hydrothermal decomposition reactor 4 proceed simultaneously. Therefore, the recovery of oxygen and hydrogen can be performed continuously. Further, the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are clearly partitioned by a partition plate 5 and are generated because oxygen is generated in the thermal reduction reactor 3 and hydrogen is generated in the hydrothermal decomposition reactor 4. There is no mixing of oxygen and hydrogen. Therefore, the generated oxygen and hydrogen can be reliably separated and recovered. As a result, the purity of the recovered hydrogen can be improved and the production cost of hydrogen can be reduced. In addition, since two reactions with different reaction temperatures proceed separately in the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, it is easy to control the reaction temperature and reaction time of the reactions that proceed simultaneously. Efficiency is improved, and oxygen and hydrogen generation concentrations are improved. In addition, since it becomes easy to control the amount of heat released in an exothermic reaction and the amount of heat absorbed in an endothermic reaction, the reaction heat can be recovered and reused with high efficiency, energy loss is reduced, and solar energy is used. Efficiency is improved. In addition, the use of waste heat from the gas at a constant temperature generated from each of the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 is facilitated, so that the energy loss is further reduced and the utilization efficiency of solar energy is improved. .
 実施例1の内循環流動層を用いた水熱分解装置について、図2に示す計算条件の下、熱流体解析ソフトウエア(ANSYS
FLUENT ver.13)を用いて反応器1内の流動粒子と流通ガスの挙動について流動化シミュレーションを行った。本シミュレーションは固気混相流に対して圧縮性ナビエ・ストークス方程式を物理モデルとして採用し、粒子とガスの相互作用についてはオイラー・グラニュラーモデルを適用した。さらに流動層2の伝熱解析にはエネルギー方程式と輻射輸送方程式を結合させ、輻射伝熱量は球面調和関数法により解析した。流動層2は直径450μmのCeO粒子が反応器1内に充填されているものとした。
For the hydrothermal decomposition apparatus using the inner circulating fluidized bed of Example 1, under the calculation conditions shown in FIG.
FLUENT ver.13) was used to conduct a fluidization simulation on the behavior of fluidized particles and circulating gas in the reactor 1. In this simulation, the compressible Navier-Stokes equation was adopted as a physical model for solid-gas multiphase flow, and the Euler-granular model was applied to the interaction between particles and gas. Furthermore, in the heat transfer analysis of the fluidized bed 2, the energy equation and the radiation transport equation were combined, and the amount of radiant heat transfer was analyzed by the spherical harmonic function method. The fluidized bed 2 was filled with CeO 2 particles having a diameter of 450 μm in the reactor 1.
 その結果を図3、図4に示す。図3は固相の体積分率を示し、左上から右下の順で時間進行している。この結果から下部流入口より気泡が発生していることがわかった。粒子流速分布(図4左)から、流動粒子は熱還元反応器3と水熱分解反応器4の間を内循環流動することがわかった。また、ガス流速分布(図4右)から、熱還元反応器3で生成する酸素と水熱分解反応器4で生成する水素は、相互に混じり合うことなく、酸素と水素を分離したまま反応器1外に取り出せることがわかった。 The results are shown in FIGS. FIG. 3 shows the volume fraction of the solid phase, which progresses in time from the upper left to the lower right. From this result, it was found that bubbles were generated from the lower inlet. From the particle flow velocity distribution (left side of FIG. 4), it was found that the flowing particles flow in an internal circulation between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4. Further, from the gas flow velocity distribution (right in FIG. 4), the oxygen produced in the thermal reduction reactor 3 and the hydrogen produced in the hydrothermal decomposition reactor 4 are not mixed with each other, and the reactor is separated from oxygen and hydrogen. It was found that it could be taken out of 1.
 流動層2を構成する金属酸化物として粒径106~710μmのCeOの微粉体1429gを用いて、熱還元反応と水熱分解反応を同時に行った。使用した反応器1の熱還元反応器3の幅および奥行きはともに60mm、水熱分解反応器4の幅および奥行きはともに40mmであった。また、太陽光Sの代わりに7kWのキセノンランプ3台を用いて、5.1kWの光を照射した。そして、熱還元反応器3には、純度99.999%の窒素を8L/分の流量、2.22m/分の線流速で流し、水熱分解反応器4には、水蒸気と窒素の混合ガスを4L/分の流量、1.77m/分の線流速で流した。熱還元反応器3および水熱分解反応器4から生成したガスの種類とその生成速度を質量分析器およびガスクロマトグラフで定量分析した。 Using 1429 g of fine powder of CeO 2 having a particle size of 106 to 710 μm as the metal oxide constituting the fluidized bed 2, a thermal reduction reaction and a hydrothermal decomposition reaction were simultaneously performed. The width and depth of the thermal reduction reactor 3 of the reactor 1 used were both 60 mm, and the width and depth of the hydrothermal decomposition reactor 4 were both 40 mm. Moreover, 5.1 kW light was irradiated using three 7 kW xenon lamps instead of sunlight S. Then, nitrogen having a purity of 99.999% is flowed to the thermal reduction reactor 3 at a flow rate of 8 L / min and a linear flow velocity of 2.22 m / min, and the hydrothermal decomposition reactor 4 is a mixed gas of water vapor and nitrogen. At a flow rate of 4 L / min and a linear flow rate of 1.77 m / min. The types of gas produced from the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 and their production rates were quantitatively analyzed with a mass spectrometer and a gas chromatograph.
 このときの水熱分解反応器4から生成した水素発生量の経時変化を図5に示す。水熱分解反応器4から生成した総水素発生量は554ml(1気圧、25℃)であった。また水熱分解反応器4に連結したガス排出口から酸素の生成は見られなかった。この結果から、熱還元反応器3から生成した酸素が水熱分解反応器4に混入しないことがわかる。 FIG. 5 shows the change over time in the amount of hydrogen generated from the hydrothermal decomposition reactor 4 at this time. The total amount of hydrogen generated from the hydrothermal decomposition reactor 4 was 554 ml (1 atm, 25 ° C.). Moreover, the production | generation of oxygen was not seen from the gas exhaust port connected to the hydrothermal decomposition reactor 4. FIG. From this result, it can be seen that oxygen generated from the thermal reduction reactor 3 is not mixed into the hydrothermal decomposition reactor 4.
 熱還元反応器3から生成した酸素発生量の経時変化を図6に示す。熱還元反応器3から生成した総酸素発生量は318ml(1気圧、25℃)であった。熱還元反応器3に連結したガス排出口から水素の生成は見られなかった。この結果から、水熱分解反応器4生成した水素が熱還元反応器3に混入しないことがわかる。 FIG. 6 shows the change over time in the amount of oxygen generated from the thermal reduction reactor 3. The total amount of oxygen generated from the thermal reduction reactor 3 was 318 ml (1 atm, 25 ° C.). No hydrogen was produced from the gas outlet connected to the thermal reduction reactor 3. From this result, it can be seen that the hydrogen generated in the hydrothermal decomposition reactor 4 does not enter the thermal reduction reactor 3.
 これの結果から、生成した酸素と水素が反応器内を再結合せず、反応器の分離が機能することが実証された。 From these results, it was proved that the generated oxygen and hydrogen did not recombine in the reactor, and the separation of the reactor worked.
 また、反応後の流動層2は焼結、凝集せず、粉末状の形態を有していた。したがって、流動層2にCeOの微粉体を使用した場合において、反応時間をさらに延ばすことで酸素発生量及び水素発生量を増加させることができることが確認された。 Moreover, the fluidized bed 2 after the reaction did not sinter and agglomerate and had a powder form. Therefore, when CeO 2 fine powder was used for the fluidized bed 2, it was confirmed that the oxygen generation amount and the hydrogen generation amount can be increased by further extending the reaction time.
 流動層2を構成する金属酸化物として粒径106~710μmのCeOの微粉体1391gを用いて、熱還元反応と水熱分解反応を同時に行った。使用した反応器1の熱還元反応器3の幅および奥行きはともに60mm、水熱分解反応器4の幅および奥行きはともに40mmであった。また、太陽光Sの代わりに7kWのキセノンランプ3台を用いて、5.1kWの光を照射した。そして、熱還元反応器3には、純度99.999%の窒素を13L/分の流量速度で流し、水熱分解反応器4には、水蒸気と窒素の混合ガスを4.5L/分の流量速度で流した。熱還元反応器3および水熱分解反応器4から生成したガスの種類とその生成速度をそれぞれ質量分析器で定量分析した。 Using 1391 g of CeO 2 fine powder having a particle size of 106 to 710 μm as the metal oxide constituting the fluidized bed 2, a thermal reduction reaction and a hydrothermal decomposition reaction were simultaneously performed. The width and depth of the thermal reduction reactor 3 of the reactor 1 used were both 60 mm, and the width and depth of the hydrothermal decomposition reactor 4 were both 40 mm. Moreover, 5.1 kW light was irradiated using three 7 kW xenon lamps instead of sunlight S. Then, nitrogen having a purity of 99.999% is flowed through the thermal reduction reactor 3 at a flow rate of 13 L / min, and a mixed gas of water vapor and nitrogen is flowed through the hydrothermal decomposition reactor 4 at a flow rate of 4.5 L / min. Shed at speed. The kind of gas produced from the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 and the production rate thereof were quantitatively analyzed by a mass spectrometer.
 このときの水熱分解反応器4から生成した水素発生量の経時変化を図7に示す。水熱分解反応器4から生成した総水素発生量は847ml(1気圧、25℃)であった。また水熱分解反応器4に連結したガス排出口から酸素の生成はほとんど見られなかった。この結果から、熱還元反応器3から生成した酸素が水熱分解反応器4に混入しないことがわかる。 FIG. 7 shows the change over time in the amount of hydrogen generated from the hydrothermal decomposition reactor 4 at this time. The total amount of hydrogen generated from the hydrothermal decomposition reactor 4 was 847 ml (1 atm, 25 ° C.). Also, almost no oxygen was generated from the gas outlet connected to the hydrothermal decomposition reactor 4. From this result, it can be seen that oxygen generated from the thermal reduction reactor 3 is not mixed into the hydrothermal decomposition reactor 4.
 熱還元反応器3から生成した酸素発生量の経時変化を図8に示す。熱還元反応器3から生成した総酸素発生量は1319ml(1気圧、25℃)であった。熱還元反応器3に連結したガス排出口から水素の生成はほとんど見られなかった。この結果から、水熱分解反応器4生成した水素が熱還元反応器3に混入しないことがわかる。 FIG. 8 shows the change over time in the amount of oxygen generated from the thermal reduction reactor 3. The total amount of oxygen generated from the thermal reduction reactor 3 was 1319 ml (1 atm, 25 ° C.). Almost no hydrogen was generated from the gas outlet connected to the thermal reduction reactor 3. From this result, it can be seen that hydrogen produced in the hydrothermal decomposition reactor 4 does not enter the thermal reduction reactor 3.
 これの結果から、生成した酸素と水素が反応器内を再結合せず、反応器の分離が機能することが実証された。 From these results, it was proved that the generated oxygen and hydrogen did not recombine in the reactor, and the separation of the reactor worked.
 また、反応後の流動層2は焼結、凝集せず、粉末状の形態を有していた。したがって、流動層2にCeOの微粉体を使用した場合において、反応時間をさらに延ばすことで酸素発生量及び水素発生量を増加させることができることが確認された。 Moreover, the fluidized bed 2 after the reaction did not sinter and agglomerate and had a powder form. Therefore, when CeO 2 fine powder was used for the fluidized bed 2, it was confirmed that the oxygen generation amount and the hydrogen generation amount can be increased by further extending the reaction time.
 また、水熱分解反応器4から生成した水素発生速度を、熱還元反応器3から生成した酸素発生速度で割った値である水素/酸素生成速度比の経時変化を図9に示す。時間の経過とともに生成する水素/酸素比が水分子(H2O)の化学量論比である2に近づくことが分かる。したがって、反応器内での二段階水熱分解反応は化学量論比に従って進行することが分かる。 FIG. 9 shows the change over time in the hydrogen / oxygen generation rate ratio, which is a value obtained by dividing the hydrogen generation rate generated from the hydrothermal decomposition reactor 4 by the oxygen generation rate generated from the thermal reduction reactor 3. It can be seen that the hydrogen / oxygen ratio produced over time approaches 2 which is the stoichiometric ratio of water molecules (H 2 O). Therefore, it can be seen that the two-stage hydrothermal decomposition reaction in the reactor proceeds according to the stoichiometric ratio.
 つぎに、熱還元反応器と水熱分解反応器との間の金属酸化物の粒子の移動に、スクリューコンベヤを用いた例について説明する。なお、上記実施例1と同じ部分には同じ符号を付し、その部分の説明は省略する。 Next, an example in which a screw conveyor is used to move metal oxide particles between the thermal reduction reactor and the hydrothermal decomposition reactor will be described. In addition, the same code | symbol is attached | subjected to the same part as the said Example 1, and description of the part is abbreviate | omitted.
 本実施例の内循環流動層を用いた水熱分解装置を示す図10において、熱還元反応器3と水熱分解反応器4とは、別々に相互に離間して構成されている。熱還元反応器3と水熱分解反応器4の上部には、熱還元反応器3の内部と水熱分解反応器4の内部を連通する上部連通口6a,6bがそれぞれ形成され、熱還元反応器3と水熱分解反応器4の下部には、熱還元反応器3の内部と水熱分解反応器4の内部を連通する下部連通口7a,7bがそれぞれ形成されている。また、上部連通口6a,6bと下部連通口7a,7bは、流動層2内に埋没している。 In FIG. 10 showing the hydrothermal decomposition apparatus using the inner circulating fluidized bed of the present embodiment, the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are configured separately from each other. Upper communication ports 6a and 6b communicating the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4 are formed at the upper parts of the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, respectively. Lower communication ports 7 a and 7 b that communicate the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4 are formed in the lower part of the vessel 3 and the hydrothermal decomposition reactor 4, respectively. The upper communication ports 6 a and 6 b and the lower communication ports 7 a and 7 b are buried in the fluidized bed 2.
 上部連通口6a,6b間には、スクリューコンベア21が設けられ、熱還元反応器3から水熱分解反応器4へ流動層2が運搬されるように構成されている。また、下部連通口7a,7b間には、スクリューコンベア22が設けられ、水熱分解反応器4から熱還元反応器3へ流動層2が運搬されるように構成されている。なお、スクリューコンベア21,22は、それぞれモータ23,24により駆動されるようになっており、スクリューコンベア21,22の回転数は制御可能に構成されている。そして、上部連通口6a,6bと下部連通口7a,7bを通じて、熱還元反応器3と水熱分解反応器4の間で流動層2が流動できるように構成されている。 A screw conveyor 21 is provided between the upper communication ports 6a and 6b, and the fluidized bed 2 is transported from the thermal reduction reactor 3 to the hydrothermal decomposition reactor 4. A screw conveyor 22 is provided between the lower communication ports 7 a and 7 b so that the fluidized bed 2 is transported from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3. The screw conveyors 21 and 22 are driven by motors 23 and 24, respectively, and the rotational speeds of the screw conveyors 21 and 22 are configured to be controllable. The fluidized bed 2 can flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
 熱還元反応器3の下部には、熱還元反応器3内へ窒素などの低酸素分圧ガスを導入するための分散板8、水熱分解反応器4の下部には、水熱分解反応器4内へ水蒸気を導入するための分散板9が設けられている。分散板8,9は、下部連通口7における流動層2の流動を妨げないように、下部連通口7a,7bの最下部7a’,7b’に連結して設けられている。分散板8の面は、下部連通口7aの最下部7a’の高さと略一致しており、分散板9は、下部連通口7bの最下部7b’を最低部として傾斜して設けられている。 In the lower part of the thermal reduction reactor 3, a dispersion plate 8 for introducing a low oxygen partial pressure gas such as nitrogen into the thermal reduction reactor 3, and in the lower part of the hydrothermal decomposition reactor 4, there is a hydrothermal decomposition reactor. A dispersion plate 9 for introducing water vapor into 4 is provided. The dispersion plates 8 and 9 are provided so as to be connected to the lowermost portions 7a 'and 7b' of the lower communication ports 7a and 7b so as not to disturb the flow of the fluidized bed 2 at the lower communication port 7. The surface of the dispersion plate 8 substantially coincides with the height of the lowermost portion 7a ′ of the lower communication port 7a, and the distribution plate 9 is provided inclined with the lowermost portion 7b ′ of the lower communication port 7b as the lowest portion. .
 なお、図11(a)に示すように、2つのスクリューコンベア21,22が熱還元反応器3の中心と水熱分解反応器4の中心を結ぶ線上に位置していてもよく、図11(b)に示すように、2つのスクリューコンベア21,22が熱還元反応器3の中心から離れた部分と水熱分解反応器4の中心を離れた部分を結ぶ同じ線上に位置していてもよく、図11(c)に示すように、2つのスクリューコンベア21,22が熱還元反応器3の中心から離れた部分と水熱分解反応器4の中心を離れた部分を結ぶ別々の線上に位置していてもよく、上部、及び下部のスクリューコンベアを複数配置してもよいし、傾斜させてもよい。 In addition, as shown to Fig.11 (a), the two screw conveyors 21 and 22 may be located on the line which connects the center of the thermal reduction reactor 3, and the center of the hydrothermal decomposition reactor 4, FIG. As shown in b), the two screw conveyors 21 and 22 may be located on the same line connecting a portion away from the center of the thermal reduction reactor 3 and a portion away from the center of the hydrothermal decomposition reactor 4. As shown in FIG. 11 (c), the two screw conveyors 21 and 22 are located on separate lines connecting a portion away from the center of the thermal reduction reactor 3 and a portion away from the center of the hydrothermal decomposition reactor 4. A plurality of upper and lower screw conveyors may be arranged or may be inclined.
 また、スクリューコンベア21,22を構成するスクリューは、1軸であっても2軸であってもよく、スクリューコンベア21,22のいずれか一方を省略して構成してもよい。 Further, the screws constituting the screw conveyors 21 and 22 may be uniaxial or biaxial, and one of the screw conveyors 21 and 22 may be omitted.
 上記の構成において、分散板8から熱還元反応器3に低酸素分圧ガスを導入し、同時に、分散板9から水熱分解反応器4に水蒸気を導入する。そして、モータ23,24によりスクリューコンベア21,22を駆動させて、上部連通口6a,6bを通じて、熱還元反応器3から水熱分解反応器4へ流動層2を運搬させ、下部連通口7a,7bを通じて、水熱分解反応器4から熱還元反応器3へ流動層2を運搬させることにより、熱還元反応器3と水熱分解反応器4の間で流動層2を循環させる。すなわち、上部連通口6a,6bと下部連通口7a,7bを通じて、熱還元反応器3において流動層2が上昇し、水熱分解反応器4において流動層2が下降する内循環流動を生じさせる。 In the above configuration, a low oxygen partial pressure gas is introduced from the dispersion plate 8 to the thermal reduction reactor 3, and at the same time, water vapor is introduced from the dispersion plate 9 to the hydrothermal decomposition reactor 4. Then, the screw conveyors 21 and 22 are driven by the motors 23 and 24, and the fluidized bed 2 is transported from the thermal reduction reactor 3 to the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b. The fluidized bed 2 is circulated between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 by transporting the fluidized bed 2 from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3 through 7b. That is, the fluidized bed 2 rises in the thermal reduction reactor 3 and the fluidized bed 2 descends in the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
 続いて、太陽光Sを、窓13を通して流動層2へ照射し、流動層2を加熱する。太陽光Sが照射された熱還元反応器3中の流動層2の上面の近傍では1400℃以上の高温部Hが形成され、この高温部Hで熱還元反応が進行し、金属酸化物の粒子から酸素が放出される。 Subsequently, the fluidized bed 2 is irradiated with sunlight S through the window 13 to heat the fluidized bed 2. In the vicinity of the upper surface of the fluidized bed 2 in the thermal reduction reactor 3 irradiated with the sunlight S, a high-temperature portion H of 1400 ° C. or higher is formed, and the thermal reduction reaction proceeds at the high-temperature portion H to form metal oxide particles. Releases oxygen.
 還元された金属酸化物の粒子は、内循環流動により上部連通口6a,6bを通って水熱分解反応器4に送られる。金属酸化物の粒子は水熱分解反応器4内で流動している間に温度が低下し、その結果、水熱分解反応器4中の流動層2に1400℃以下、好ましくは1200℃以下、より好ましくは1000℃以下の低温部Lが形成される。この低温部Lで水熱分解反応が進行し、熱還元反応により還元された金属酸化物の粒子は酸化されてもとの金属酸化物となり、同時に水素が発生する。 The reduced metal oxide particles are sent to the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b by the internal circulation flow. The temperature of the metal oxide particles decreases while flowing in the hydrothermal decomposition reactor 4, and as a result, the fluidized bed 2 in the hydrothermal decomposition reactor 4 has a temperature of 1400 ° C or less, preferably 1200 ° C or less. More preferably, a low temperature portion L of 1000 ° C. or lower is formed. The hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time.
 以上のように、本実施例の内循環流動層を用いた水熱分解装置は、金属酸化物の粒子からなる流動層2を収容した反応器1と、この反応器1に収容された前記流動層2へ太陽光Sを集光して照射する太陽光集光手段を備え、前記反応器1は、熱還元反応を行う熱還元反応器3と、水熱分解反応を行う水熱分解反応器4と、下方から前記熱還元反応器3に低酸素分圧ガスを導入する低酸素分圧ガス導入手段としての分散板8と、下方から前記水熱分解反応器4に水蒸気を導入する水蒸気導入手段としての分散板9と、前記熱還元反応器3から発生した酸素を含んだガスを回収する酸素回収手段と、前記水熱分解反応器4から発生した水素を含んだガスを回収する水素回収手段とを備え、前記熱還元反応器3の内部と前記水熱分解反応器4の内部は上部連通口6a,6bと下部連通口7a,7bにより連通しており、前記上部連通口6a,6bと前記下部連通口7a,7bは、前記流動層2内に埋没して、前記上部連通口6a,6bと前記下部連通口7a,7bを通じて、前記熱還元反応器3と前記水熱分解反応器4の間で前記流動層2が流動できるように構成され、前記太陽光集光手段により前記熱還元反応器3に収容された前記流動層2の上面へ太陽光Sが照射されるように構成されたものである。 As described above, the hydrothermal decomposition apparatus using the inner circulation fluidized bed of the present embodiment includes the reactor 1 that contains the fluidized bed 2 made of metal oxide particles, and the fluid that is contained in the reactor 1. The solar light collecting means for condensing and irradiating sunlight S to the layer 2 is provided, and the reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction, and a hydrothermal decomposition reactor that performs a hydrothermal decomposition reaction. 4, a dispersion plate 8 as low oxygen partial pressure gas introduction means for introducing a low oxygen partial pressure gas into the thermal reduction reactor 3 from below, and steam introduction for introducing water vapor into the hydrothermal decomposition reactor 4 from below Dispersion plate 9 as means, oxygen recovery means for recovering gas containing oxygen generated from thermal reduction reactor 3, and hydrogen recovery for recovering gas containing hydrogen generated from hydrothermal decomposition reactor 4 Means, and the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4 The upper communication ports 6a and 6b and the lower communication ports 7a and 7b communicate with each other, and the upper communication ports 6a and 6b and the lower communication ports 7a and 7b are buried in the fluidized bed 2 and the upper communication ports The fluidized bed 2 is configured to flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the ports 6a and 6b and the lower communication ports 7a and 7b. The solar light S is irradiated to the upper surface of the fluidized bed 2 accommodated in the thermal reduction reactor 3.
 また、前記上部連通口6a,6b及び下部連通口7a,7bに、前記熱還元反応器3と前記水熱分解反応器4との間で前記流動層2を運搬する運搬手段としてのスクリューコンベア21,22が設けられたものである。 Further, a screw conveyor 21 as a conveying means for conveying the fluidized bed 2 between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 to the upper communication ports 6a and 6b and the lower communication ports 7a and 7b. , 22 is provided.
 また、前記熱還元反応器3と前記水熱分解反応器4とは、別々に相互に離間して構成されているものである。 Further, the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are configured separately from each other.
 以上の本実施例の内循環流動層を用いた水熱分解装置及び水熱分解法によれば、スクリューコンベア21,22を設置することにより、実施例1の構成のように流動層2を形成するためにガス流量を調整することが不要となり、流動層2を形成する金属酸化物粒子を熱還元反応器3と水熱分解反応器4の間で強制的に移動させることが可能となる。さらに、スクリューコンベア21,22内の金属酸化物粒子群によるガスシール作用により、発生した酸素と水素を確実に分離して回収することができる。 According to the hydrothermal decomposition apparatus and hydrothermal decomposition method using the inner circulating fluidized bed of the present embodiment described above, the fluidized bed 2 is formed as in the configuration of the first embodiment by installing the screw conveyors 21 and 22. Therefore, it is not necessary to adjust the gas flow rate, and the metal oxide particles forming the fluidized bed 2 can be forcibly moved between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4. Further, the generated oxygen and hydrogen can be reliably separated and recovered by the gas sealing action by the metal oxide particles in the screw conveyors 21 and 22.
 したがって、下記のことが有利に実施できる。
1 熱還元反応器3と水熱分解反応器4において、それぞれ酸素と水素が別々に発生するため、従来のようにガスセパレータ等による酸素と水素のガス分離が不要となり、回収される酸素と水素の純度が向上する。
2 熱還元反応器3と水熱分解反応器4において、それぞれ熱還元反応と水熱分解反応を進行させるため、反応温度の異なる2つの反応の反応温度をそれぞれ任意に制御することが容易となり、それぞれの反応器からの酸素発生量および水素発生量が向上する。
3 熱還元反応器3と水熱分解反応器4において、それぞれ熱還元反応と水熱分解反応を進行させるため、2つの反応時間をそれぞれ任意に制御することが容易となり、それぞれの反応器の酸素発生量および水素発生量が向上し、回収される酸素と水素の発生濃度が向上する。
4 熱還元反応器3と水熱分解反応器4において、それぞれ熱還元反応と水熱分解反応を進行させるため、それぞれの反応の反応時間および反応速度を任意に制御することが容易であり、水素発生反応で発生した反応熱(放熱量)を酸素発生における吸熱反応に十分活用でき、太陽熱→水素転換効率が向上する。
5 集光された太陽光が、ガスセパレータに遮られることなく、熱還元反応器3内の流動層の上面の近傍に広く照射され1400℃以上の高温部の形成に寄与できるため、太陽エネルギーを有効に金属酸化物粒子の加熱に利用でき、太陽エネルギーの利用効率が高くなる。
6 集光された太陽光が、ガスセパレータに遮られることなく、熱還元反応器3内の流動層の上面の近傍に広く照射され1400℃以上の高温部Hの形成に寄与できるため、1400℃以上の高温部Hの領域を拡張することができ、酸素生成量を増加させることができる。
7 反応器の構造上、水熱分解反応器4の大きさを任意に変えられるため、水熱分解反応器4内に形成される1400℃以下の低温部Lの領域を拡張することができ、水素生成量を増加させることができる。
8 反応器の構造上、熱還元反応器3内の流動層の上面の近傍に形成される高温部Hの金属酸化物粒子は、流動層2の上面よりも上部連通口6aが下部に位置しているため、その一部が高温部H周辺で滞留し、より高温に加熱されるため、熱還元反応がより進行しやすく、酸素発生量が向上する。
9 反応器の構造上、熱還元反応器3内の流動層2の上面の近傍に形成される高温部Hの金属酸化物粒子は、流動層2の上面よりも上部連通口6aが下部に位置しているため、その一部が高温部H周辺で滞留し、高温部Hの金属酸化物粒子の持つ1400℃以上の高温の顕熱を高効率で排熱として熱回収して再利用できる。
Therefore, the following can be advantageously performed.
1 Oxygen and hydrogen are generated separately in the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, respectively. Therefore, there is no need for gas separation of oxygen and hydrogen by a gas separator or the like as in the prior art. Improves purity.
2 In the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, in order to advance the thermal reduction reaction and hydrothermal decomposition reaction, respectively, it becomes easy to arbitrarily control the reaction temperatures of two reactions having different reaction temperatures, Oxygen generation amount and hydrogen generation amount from each reactor are improved.
3 In the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, the thermal reduction reaction and the hydrothermal decomposition reaction respectively proceed, so that it becomes easy to arbitrarily control the two reaction times. The generation amount and the hydrogen generation amount are improved, and the generation concentrations of recovered oxygen and hydrogen are improved.
4 In the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, since the thermal reduction reaction and the hydrothermal decomposition reaction proceed, respectively, it is easy to arbitrarily control the reaction time and reaction rate of each reaction. The reaction heat (heat release amount) generated in the generation reaction can be fully utilized for the endothermic reaction in oxygen generation, and the solar heat → hydrogen conversion efficiency is improved.
5 Since the collected sunlight can be widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor 3 without being blocked by the gas separator, it can contribute to the formation of a high temperature portion of 1400 ° C. or higher. It can be effectively used for heating metal oxide particles, and the utilization efficiency of solar energy is increased.
6 Condensed sunlight is widely irradiated in the vicinity of the upper surface of the fluidized bed in the thermal reduction reactor 3 without being blocked by the gas separator, and can contribute to the formation of the high temperature portion H of 1400 ° C. or higher. The region of the high temperature part H can be expanded, and the amount of oxygen generated can be increased.
7 Since the size of the hydrothermal decomposition reactor 4 can be arbitrarily changed due to the structure of the reactor, the region of the low temperature portion L of 1400 ° C. or less formed in the hydrothermal decomposition reactor 4 can be expanded, Hydrogen production can be increased.
8 Due to the structure of the reactor, the metal oxide particles of the high temperature portion H formed near the upper surface of the fluidized bed in the thermal reduction reactor 3 have the upper communication port 6a positioned below the upper surface of the fluidized bed 2. Therefore, a part of the stagnation stays in the vicinity of the high temperature portion H and is heated to a higher temperature, so that the thermal reduction reaction is more likely to proceed and the amount of oxygen generated is improved.
9 Due to the structure of the reactor, the metal oxide particles in the high temperature part H formed in the vicinity of the upper surface of the fluidized bed 2 in the thermal reduction reactor 3 have the upper communication port 6a positioned below the upper surface of the fluidized bed 2 Therefore, a part of the stagnation stays around the high temperature part H, and the high-temperature sensible heat of 1400 ° C. or higher possessed by the metal oxide particles in the high temperature part H can be efficiently recovered and reused as exhaust heat.
 本実施例は実施例5の変形例である。実施例5と同じ部分には同じ符号を付し、その部分の説明は省略する。 This embodiment is a modification of the fifth embodiment. The same parts as those in the fifth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施例では、図12に示すように、スクリューコンベア21,22の出口が縮小されている。すなわち、熱還元反応器3における上部連通口6aの開口量よりも、水熱分解反応器4における上部連通口6bの開口量が小さくなっている。また、水熱分解反応器4における下部連通口7bの開口量よりも、熱還元反応器3における下部連通口7aの開口量が小さくなっている。 In this embodiment, as shown in FIG. 12, the outlets of the screw conveyors 21 and 22 are reduced. That is, the opening amount of the upper communication port 6 b in the hydrothermal decomposition reactor 4 is smaller than the opening amount of the upper communication port 6 a in the thermal reduction reactor 3. Further, the opening amount of the lower communication port 7 a in the thermal reduction reactor 3 is smaller than the opening amount of the lower communication port 7 b in the hydrothermal decomposition reactor 4.
 熱還元反応器3の内部と水熱分解反応器4の内部の流動層2の流動状態が変化したときに、熱還元反応器3内のガスと水熱分解反応器4内のガスが混合する場合がある。特に、太陽が雲に隠れたためガスの流量を変化させたとき、スタートアップ時、シャットダウン時、瞬間的な停電時に、熱還元反応器3内のガスと水熱分解反応器4内のガスが混合する虞がある。これに対して、本実施例では、上記のようにスクリューコンベア21,22の出口を縮小することにより、上部連通口6bと下部連通口7aにおける金属酸化物粒子の充填密度が大きくなる。したがって、熱還元反応器3内のガスと水熱分解反応器4内のガスが混合することを激減させることができる。そして、その結果、水素生成効率を向上させることができる。 When the flow state of the fluidized bed 2 inside the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 changes, the gas in the thermal reduction reactor 3 and the gas in the hydrothermal decomposition reactor 4 are mixed. There is a case. In particular, when the flow rate of the gas is changed because the sun is hidden behind the clouds, the gas in the thermal reduction reactor 3 and the gas in the hydrothermal decomposition reactor 4 are mixed at startup, shutdown, and instantaneous power failure. There is a fear. In contrast, in this embodiment, the packing density of the metal oxide particles at the upper communication port 6b and the lower communication port 7a is increased by reducing the outlets of the screw conveyors 21 and 22 as described above. Therefore, mixing of the gas in the thermal reduction reactor 3 and the gas in the hydrothermal decomposition reactor 4 can be drastically reduced. As a result, the hydrogen generation efficiency can be improved.
 本実施例は実施例5の別の変形例である。実施例5と同じ部分には同じ符号を付し、その部分の説明は省略する。 This embodiment is another modification of the fifth embodiment. The same parts as those in the fifth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施例では、図13に示すように、熱還元反応器3に金属酸化物粒子の上昇を助長するためのスクリューコンベア27が配置されている。 In this embodiment, as shown in FIG. 13, a screw conveyor 27 for promoting the rise of metal oxide particles is arranged in the thermal reduction reactor 3.
 熱還元反応器3内の金属酸化物粒子を流動、上昇させるためには、多くの窒素などの低酸素分圧ガスを供給する必要がある。本実施例では、縦置きのスクリューコンベア27により、金属酸化物粒子の上昇運動を促進させることができる。なお、スクリューコンベア27は1軸でもよく、2軸、又は多数軸にしてもよい。本実施例によれば、金属酸化物粒子の上昇のために供給される低酸素分圧ガスの供給量を大きく削減できる。このため、窒素などの低酸素分圧ガスを製造する装置を小型化でき、また、低酸素分圧ガスを製造する装置の運転費を削減することができる。そして、その結果、水素製造のコストを削減させることができる。 In order to flow and raise the metal oxide particles in the thermal reduction reactor 3, it is necessary to supply a lot of low oxygen partial pressure gas such as nitrogen. In the present embodiment, the vertical movement of the screw conveyor 27 can promote the upward movement of the metal oxide particles. The screw conveyor 27 may be one axis, two axes, or multiple axes. According to the present embodiment, the supply amount of the low oxygen partial pressure gas supplied for increasing the metal oxide particles can be greatly reduced. For this reason, the apparatus which manufactures low oxygen partial pressure gas, such as nitrogen, can be reduced in size, and the operating cost of the apparatus which manufactures low oxygen partial pressure gas can be reduced. As a result, the cost of hydrogen production can be reduced.
 なお、本実施例に、実施例6のようにスクリューコンベア21,22の出口を縮小する構成を組み合わせてもよい。 In addition, you may combine the structure which reduces the exit of the screw conveyors 21 and 22 like Example 6 in a present Example.
 さらに別の実施例について説明する。なお、上記実施例1、5と同じ部分には同じ符号を付し、その部分の説明は省略する。 Still another embodiment will be described. In addition, the same code | symbol is attached | subjected to the same part as the said Examples 1 and 5, and description of the part is abbreviate | omitted.
 本実施例の内循環流動層を用いた水熱分解装置を示す図14において、熱還元反応器3と水熱分解反応器4の上部には、熱還元反応器3の内部と水熱分解反応器4の内部を連通する上部連通口6a,6bがそれぞれ形成され、熱還元反応器3と水熱分解反応器4の下部には、熱還元反応器3の内部と水熱分解反応器4の内部を連通する下部連通口7a,7bがそれぞれ形成されている。また、下部連通口7a,7bは、流動層2内に埋没している。 In FIG. 14 which shows the hydrothermal decomposition apparatus using the internal circulation fluidized bed of a present Example, inside the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4, the inside of the thermal reduction reactor 3 and hydrothermal decomposition reaction are carried out. Upper communication ports 6 a and 6 b communicating with the interior of the reactor 4 are formed, respectively, and the interior of the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 are provided below the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4. Lower communication ports 7a and 7b communicating with each other are formed. Further, the lower communication ports 7 a and 7 b are buried in the fluidized bed 2.
 上部連通口6aと下部連通口7bの間には、ベルトコンベア25が設けられ、水熱分解反応器4から熱還元反応器3へ流動層2が運搬されるように構成されている。また、熱還元反応器3の内部にスクリューコンベア26が設けられ、熱還元反応器3内の流動層2が上部連通口6aが設けられた一端側から下部連通口7aが設けられた他端側に向けて運搬されるように構成されている。また、熱還元反応器3の下部連通口7aは、水分解反応器4の上部連通口6bに直接的に連通している。そして、上部連通口6a,6bと下部連通口7a,7bを通じて、熱還元反応器3と水熱分解反応器4の間で流動層2が流動できるように構成されている。 Between the upper communication port 6a and the lower communication port 7b, a belt conveyor 25 is provided, and the fluidized bed 2 is transported from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3. Further, a screw conveyor 26 is provided inside the thermal reduction reactor 3, and the fluidized bed 2 in the thermal reduction reactor 3 is connected to the other end side where the lower communication port 7a is provided from one end side where the upper communication port 6a is provided. It is comprised so that it may be conveyed toward. Further, the lower communication port 7 a of the thermal reduction reactor 3 communicates directly with the upper communication port 6 b of the water splitting reactor 4. The fluidized bed 2 can flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
 熱還元反応器3の下部には、熱還元反応器3内へ窒素などの低酸素分圧ガスを導入するための分散板8、水熱分解反応器4の下部には、水熱分解反応器4内へ水蒸気を導入するための分散板9が設けられている。分散板8,9は、下部連通口7における流動層2の流動を妨げないように、下部連通口7a,7bの最下部7a’,7b’に連結して設けられている。分散板8の面は、下部連通口7aの最下部7a’を最低部として傾斜して設けられており、分散板9は、下部連通口7bの最下部7b’の高さと略一致している。 In the lower part of the thermal reduction reactor 3, a dispersion plate 8 for introducing a low oxygen partial pressure gas such as nitrogen into the thermal reduction reactor 3, and in the lower part of the hydrothermal decomposition reactor 4, there is a hydrothermal decomposition reactor. A dispersion plate 9 for introducing water vapor into 4 is provided. The dispersion plates 8 and 9 are provided so as to be connected to the lowermost portions 7a 'and 7b' of the lower communication ports 7a and 7b so as not to disturb the flow of the fluidized bed 2 at the lower communication port 7. The surface of the dispersion plate 8 is inclined with the lowest part 7a 'of the lower communication port 7a as the lowest part, and the dispersion plate 9 substantially coincides with the height of the lowermost part 7b' of the lower communication port 7b. .
 上記の構成において、分散板8から熱還元反応器3に低酸素分圧ガスを導入し、同時に、分散板9から水熱分解反応器4に水蒸気を導入する。そして、ベルトコンベア25、スクリューコンベア26を駆動させて、下部連通口7aと上部連通口6bを通じて、熱還元反応器3から水熱分解反応器4へ流動層2を運搬させ、下部連通口7bと上部連通口6aを通じて、水熱分解反応器4から熱還元反応器3へ流動層2を運搬させることにより、熱還元反応器3と水熱分解反応器4の間で流動層2を循環させる。すなわち、上部連通口6a,6bと下部連通口7a,7bを通じて、内循環流動を生じさせる。 In the above configuration, a low oxygen partial pressure gas is introduced from the dispersion plate 8 to the thermal reduction reactor 3, and at the same time, water vapor is introduced from the dispersion plate 9 to the hydrothermal decomposition reactor 4. Then, the belt conveyor 25 and the screw conveyor 26 are driven to transport the fluidized bed 2 from the thermal reduction reactor 3 to the hydrothermal decomposition reactor 4 through the lower communication port 7a and the upper communication port 6b, and the lower communication port 7b The fluidized bed 2 is circulated between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 by transporting the fluidized bed 2 from the hydrothermal decomposition reactor 4 to the thermal reduction reactor 3 through the upper communication port 6a. That is, an internal circulation flow is generated through the upper communication ports 6a and 6b and the lower communication ports 7a and 7b.
 続いて、太陽光Sを、窓13を通して流動層2へ照射し、流動層2を加熱する。太陽光Sが照射された熱還元反応器3中の流動層2の上面の近傍では1400℃以上の高温部Hが形成され、この高温部Hで熱還元反応が進行し、金属酸化物の粒子から酸素が放出される。 Subsequently, the fluidized bed 2 is irradiated with sunlight S through the window 13 to heat the fluidized bed 2. In the vicinity of the upper surface of the fluidized bed 2 in the thermal reduction reactor 3 irradiated with the sunlight S, a high-temperature portion H of 1400 ° C. or higher is formed, and the thermal reduction reaction proceeds at the high-temperature portion H to form metal oxide particles. Releases oxygen.
 還元された金属酸化物の粒子は、下部連通口7aと上部連通口6bを通って水熱分解反応器4に送られる。金属酸化物の粒子は水熱分解反応器4内で流動している間に温度が低下し、その結果、水熱分解反応器4中の流動層2に1400℃以下、好ましくは1200℃以下、より好ましくは1000℃以下の低温部Lが形成される。この低温部Lで水熱分解反応が進行し、熱還元反応により還元された金属酸化物の粒子は酸化されてもとの金属酸化物となり、同時に水素が発生する。 The reduced metal oxide particles are sent to the hydrothermal decomposition reactor 4 through the lower communication port 7a and the upper communication port 6b. The temperature of the metal oxide particles decreases while flowing in the hydrothermal decomposition reactor 4, and as a result, the fluidized bed 2 in the hydrothermal decomposition reactor 4 has a temperature of 1400 ° C or less, preferably 1200 ° C or less. More preferably, a low temperature portion L of 1000 ° C. or lower is formed. The hydrothermal decomposition reaction proceeds in the low temperature portion L, and the metal oxide particles reduced by the thermal reduction reaction become the original metal oxide even when oxidized, and hydrogen is generated at the same time.
 なお、上記の構成において、熱還元反応器3における流動層2の移動は、傾斜した分散板8から低酸素分圧ガスを導入することでも可能であり、スクリューコンベア26を省略することもできる。また、熱還元反応器3に振動を与えることで、流動層2を移動させ、傾斜した分散板8から低酸素分圧ガスの導入を省略してもよい。 In the above configuration, the fluidized bed 2 can be moved in the thermal reduction reactor 3 by introducing a low oxygen partial pressure gas from the inclined dispersion plate 8, and the screw conveyor 26 can be omitted. Further, the fluidized bed 2 may be moved by applying vibration to the thermal reduction reactor 3, and introduction of the low oxygen partial pressure gas from the inclined dispersion plate 8 may be omitted.
 以上のように、本実施例の内循環流動層を用いた水熱分解装置は、金属酸化物の粒子からなる流動層2を収容した反応器1と、この反応器1に収容された前記流動層2へ太陽光Sを集光して照射する太陽光集光手段を備え、前記反応器1は、熱還元反応を行う熱還元反応器3と、水熱分解反応を行う水熱分解反応器4と、下方から前記熱還元反応器3に低酸素分圧ガスを導入する低酸素分圧ガス導入手段としての分散板8と、下方から前記水熱分解反応器4に水蒸気を導入する水蒸気導入手段としての分散板9と、前記熱還元反応器3から発生した酸素を含んだガスを回収する酸素回収手段と、前記水熱分解反応器4から発生した水素を含んだガスを回収する水素回収手段とを備え、前記熱還元反応器3の内部と前記水熱分解反応器4の内部は上部連通口6a,6bと下部連通口7a,7bにより連通しており、前記下部連通口7a,7bは、前記流動層2内に埋没して、前記上部連通口6a,6bと前記下部連通口7a,7bを通じて、前記熱還元反応器3と前記水熱分解反応器4の間で前記流動層2が流動できるように構成され、前記太陽光集光手段により前記熱還元反応器3に収容された前記流動層2の上面へ太陽光Sが照射されるように構成されたものである。 As described above, the hydrothermal decomposition apparatus using the inner circulation fluidized bed of the present embodiment includes the reactor 1 that contains the fluidized bed 2 made of metal oxide particles, and the fluid that is contained in the reactor 1. The solar light collecting means for condensing and irradiating sunlight S to the layer 2 is provided, and the reactor 1 includes a thermal reduction reactor 3 that performs a thermal reduction reaction, and a hydrothermal decomposition reactor that performs a hydrothermal decomposition reaction. 4, a dispersion plate 8 as low oxygen partial pressure gas introduction means for introducing a low oxygen partial pressure gas into the thermal reduction reactor 3 from below, and steam introduction for introducing water vapor into the hydrothermal decomposition reactor 4 from below Dispersion plate 9 as means, oxygen recovery means for recovering gas containing oxygen generated from thermal reduction reactor 3, and hydrogen recovery for recovering gas containing hydrogen generated from hydrothermal decomposition reactor 4 Means, and the inside of the thermal reduction reactor 3 and the inside of the hydrothermal decomposition reactor 4 Is communicated with the upper communication ports 6a and 6b and the lower communication ports 7a and 7b. The lower communication ports 7a and 7b are buried in the fluidized bed 2 so as to communicate with the upper communication ports 6a and 6b and the lower communication ports. The fluidized bed 2 is configured to flow between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 through the ports 7a and 7b, and is accommodated in the thermal reduction reactor 3 by the sunlight collecting means. It is comprised so that sunlight S may be irradiated to the upper surface of the said fluidized bed 2. As shown in FIG.
 また、前記上部連通口6a及び下部連通口7bに、前記熱還元反応器3と前記水熱分解反応器4との間で前記流動層2を運搬する運搬手段としてのベルトコンベア25が設けられたものである。 Further, a belt conveyor 25 as a conveying means for conveying the fluidized bed 2 between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 is provided at the upper communication port 6a and the lower communication port 7b. Is.
 また、前記熱還元反応器3の上部連通口6aと前記水熱分解反応器4の下部連通口7bの間に前記熱還元反応器3と前記水熱分解反応器4との間で前記流動層2を運搬する運搬手段としてのベルトコンベア25が設けられ、前記熱還元反応器3の下部連通口7aと前記水熱分解反応器4の上部連通口6bは直接的に連通しているものである。 Further, the fluidized bed is formed between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4 between the upper communication port 6 a of the thermal reduction reactor 3 and the lower communication port 7 b of the hydrothermal decomposition reactor 4. A belt conveyor 25 is provided as a transport means for transporting 2, and the lower communication port 7 a of the thermal reduction reactor 3 and the upper communication port 6 b of the hydrothermal decomposition reactor 4 are in direct communication. .
 また、前記熱還元反応器3の内部において前記熱還元反応器3内の流動層2を移動させる移動手段としてのスクリューコンベア26が設けられたものである。 Also, a screw conveyor 26 is provided as a moving means for moving the fluidized bed 2 in the thermal reduction reactor 3 inside the thermal reduction reactor 3.
 以上の本実施例の内循環流動層を用いた水熱分解装置及び水熱分解法によれば、ベルトコンベア25又はこれに加えてスクリューコンベア26を設置することにより、実施例1の構成のように流動層2を形成するためにガス流量を調整することが不要となり、流動層2を形成する金属酸化物粒子を熱還元反応器3と水熱分解反応器4の間で強制的に移動させることが可能となる。 According to the hydrothermal decomposition apparatus and hydrothermal decomposition method using the inner circulating fluidized bed of the present embodiment as described above, by installing the belt conveyor 25 or the screw conveyor 26 in addition to this, the configuration of the first embodiment is obtained. Therefore, it is not necessary to adjust the gas flow rate to form the fluidized bed 2, and the metal oxide particles forming the fluidized bed 2 are forcibly moved between the thermal reduction reactor 3 and the hydrothermal decomposition reactor 4. It becomes possible.
 本実施例は実施例8の変形例である。実施例8と同じ部分には同じ符号を付し、その部分の説明は省略する。 This embodiment is a modification of the eighth embodiment. The same portions as those in the eighth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施例の内循環流動層を用いた水熱分解装置を示す図15において、金属酸化物粒子は、熱還元反応器3と連結された貯蔵タンク28に保持され、熱還元反応器3内にスクリューコンベア29により運搬移動されるようになっている。また、熱還元反応器3内において金属酸化物粒子を流動させるために、スクリューコンベア26が配置されている。このスクリューコンベア26は横方向のほか、縦方向、ななめ方向に配置してもよく、本実施例では、横方向、縦方向、ななめ方向に3つのスクリューコンベア26が配置されている。 In FIG. 15 which shows the hydrothermal decomposition apparatus using the internal circulation fluidized bed of the present embodiment, the metal oxide particles are held in a storage tank 28 connected to the thermal reduction reactor 3 and are contained in the thermal reduction reactor 3. It is transported and moved by the screw conveyor 29. Further, a screw conveyor 26 is disposed in order to cause the metal oxide particles to flow in the thermal reduction reactor 3. The screw conveyor 26 may be arranged in the vertical direction and the tanning direction in addition to the horizontal direction. In this embodiment, three screw conveyors 26 are arranged in the horizontal direction, the vertical direction, and the tanning direction.
 また、水熱分解反応器4内において金属酸化物粒子を流動させるために、スクリューコンベア30が配置されている。このスクリューコンベア30は本実施例のように縦方向に配置する構成に限らず、横方向、ななめ方向に配置してもよい。また、水熱分解反応器4の下部には、水熱分解反応後の金属酸化物粒子を貯蔵する貯蔵タンク31が設けられている。そして、水熱分解反応器4から貯蔵タンク31へ金属酸化物粒子を移動、運搬するためのスクリューコンベア32が配置されている。 In addition, a screw conveyor 30 is arranged to flow the metal oxide particles in the hydrothermal decomposition reactor 4. The screw conveyor 30 is not limited to the configuration arranged in the vertical direction as in the present embodiment, but may be arranged in the horizontal direction and the licking direction. A storage tank 31 for storing the metal oxide particles after the hydrothermal decomposition reaction is provided at the lower part of the hydrothermal decomposition reactor 4. A screw conveyor 32 for moving and transporting the metal oxide particles from the hydrothermal decomposition reactor 4 to the storage tank 31 is disposed.
 また、貯蔵タンク31と貯蔵タンク28の間には、水熱分解反応後の金属酸化物粒子の移動、運搬を行うためのベルトコンベア25が設けられている。 Also, a belt conveyor 25 is provided between the storage tank 31 and the storage tank 28 for moving and transporting the metal oxide particles after the hydrothermal decomposition reaction.
 本実施例によれば、貯蔵タンク28,31を備えたことにより、水熱分解反応後の金属酸化物粒子を一時的に貯蔵することができる。このため、ベルトコンベア25による金属酸化物粒子の移動を夜間に行うことが可能となる。 According to the present embodiment, the storage tanks 28 and 31 are provided, whereby the metal oxide particles after the hydrothermal decomposition reaction can be temporarily stored. For this reason, the metal oxide particles can be moved by the belt conveyor 25 at night.
 なお、本発明は、上記各実施例に限定されず、種々の変形実施が可能である。 It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made.
 例えば、熱還元反応器や水熱分解反応器の形状は縦長の直方体に限らず、横長の直方体、立方体、縦長の円柱状、横長の円柱状、縦長のだ円柱状、横長のだ円柱状でもよい。また、熱還元反応器や水熱分解反応器の底面形状は水平、傾斜していてもよい。また、金属酸化物粒子の移動には、スクリューコンベアやベルトコンベアのほか、バケツ等の容器や、外力を加えることで生ずる振動を利用してもよい。 For example, the shape of the thermal reduction reactor or hydrothermal decomposition reactor is not limited to a vertically long rectangular parallelepiped, but also a horizontally long rectangular parallelepiped, a cube, a vertically long cylindrical shape, a horizontally long cylindrical shape, a vertically long elliptical cylinder, or a horizontally long elliptical cylindrical shape. Good. Further, the bottom shape of the thermal reduction reactor or hydrothermal decomposition reactor may be horizontal or inclined. In addition to moving the metal oxide particles, a screw conveyor or a belt conveyor, a container such as a bucket, or vibration generated by applying an external force may be used.
1 反応器
2 流動層
3 熱還元反応器
4 水熱分解反応器
5 仕切り板
6,6a,6b 上部連通口
7,7a,7b 下部連通口
8 分散板(低酸素分圧ガス導入手段)
9 分散板(水蒸気導入手段)
10 導入管(低酸素分圧ガス導入手段)
11 導入管(水蒸気導入手段)
12 拡大部
13 窓
14 取り出し口(酸素回収手段)
15 取り出し口(水素回収手段)
21,22 スクリューコンベア(運搬手段)
25 ベルトコンベア(運搬手段)
26 スクリューコンベア(移動手段)
201 地上反射鏡
202 タワー反射鏡(太陽光集光手段)
S 太陽光
DESCRIPTION OF SYMBOLS 1 Reactor 2 Fluidized bed 3 Thermal reduction reactor 4 Hydrothermal decomposition reactor 5 Partition plates 6, 6a, 6b Upper communication port 7, 7a, 7b Lower communication port 8 Dispersion plate (low oxygen partial pressure gas introduction means)
9 Dispersion plate (water vapor introduction means)
10 Introduction pipe (low oxygen partial pressure gas introduction means)
11 Introduction pipe (water vapor introduction means)
12 Enlarged part
13 windows
14 Outlet (oxygen recovery means)
15 Outlet (hydrogen recovery means)
21, 22 Screw conveyor (transportation means)
25 Belt conveyor (transportation means)
26 Screw conveyor (moving means)
201 Ground reflector
202 Tower reflector (sunlight collecting means)
S sunlight

Claims (15)

  1. 金属酸化物の粒子からなる流動層を収容した反応器と、この反応器に収容された前記流動層へ太陽光を集光して照射する太陽光集光手段を備え、
    前記反応器は、熱還元反応を行う熱還元反応器と、水熱分解反応を行う水熱分解反応器と、下方から前記熱還元反応器に低酸素分圧ガスを導入する低酸素分圧ガス導入手段と、下方から前記水熱分解反応器に水蒸気を導入する水蒸気導入手段と、前記熱還元反応器から発生した酸素を含んだガスを回収する酸素回収手段と、前記水熱分解反応器から発生した水素を含んだガスを回収する水素回収手段とを備え、
    前記熱還元反応器の内部と前記水熱分解反応器の内部は上部連通口と下部連通口により連通しており、
    前記下部連通口は、前記流動層内に埋没して、前記上部連通口と前記下部連通口を通じて、前記熱還元反応器と前記水熱分解反応器の間で前記流動層が流動できるように構成され、
    前記太陽光集光手段により前記熱還元反応器に収容された前記流動層の上面へ太陽光が照射されるように構成されたことを特徴とする内循環流動層を用いた水熱分解装置。
    A reactor containing a fluidized bed made of metal oxide particles, and a sunlight collecting means for collecting and irradiating sunlight onto the fluidized bed contained in the reactor,
    The reactor includes a thermal reduction reactor that performs a thermal reduction reaction, a hydrothermal decomposition reactor that performs a hydrothermal decomposition reaction, and a low oxygen partial pressure gas that introduces a low oxygen partial pressure gas into the thermal reduction reactor from below. From the introduction means, the steam introduction means for introducing the steam into the hydrothermal decomposition reactor from below, the oxygen recovery means for recovering the gas containing oxygen generated from the thermal reduction reactor, and the hydrothermal decomposition reactor A hydrogen recovery means for recovering the gas containing the generated hydrogen,
    The inside of the thermal reduction reactor and the inside of the hydrothermal decomposition reactor communicate with each other through an upper communication port and a lower communication port,
    The lower communication port is buried in the fluidized bed so that the fluidized bed can flow between the thermal reduction reactor and the hydrothermal decomposition reactor through the upper communication port and the lower communication port. And
    A hydrothermal decomposition apparatus using an internal circulation fluidized bed, wherein sunlight is applied to the upper surface of the fluidized bed accommodated in the thermal reduction reactor by the sunlight condensing means.
  2. 前記熱還元反応器と前記水熱分解反応器は、仕切り板により仕切られるとともに、前記熱還元反応器の内部と前記水熱分解反応器の内部は前記仕切り板に形成された上部連通口と下部連通口により直接的に連通しており、
    前記上部連通口と前記下部連通口は、前記流動層内に埋没して、前記上部連通口と前記下部連通口を通じて、前記熱還元反応器と前記水熱分解反応器の間で直接的に前記流動層が流動できるように構成されたことを特徴とする請求項1記載の内循環流動層を用いた水熱分解装置。
    The thermal reduction reactor and the hydrothermal decomposition reactor are partitioned by a partition plate, and the interior of the thermal reduction reactor and the interior of the hydrothermal decomposition reactor are formed in an upper communication port and a lower portion formed in the partition plate. It communicates directly through the communication port,
    The upper communication port and the lower communication port are buried in the fluidized bed, and directly between the thermal reduction reactor and the hydrothermal decomposition reactor through the upper communication port and the lower communication port. 2. The hydrothermal decomposition apparatus using an internal circulation fluidized bed according to claim 1, wherein the fluidized bed is configured to flow.
  3. 前記上部連通口及び下部連通口に、前記熱還元反応器と前記水熱分解反応器との間で前記流動層を運搬する運搬手段が設けられたことを特徴とする請求項1記載の内循環流動層を用いた水熱分解装置。 The internal circulation according to claim 1, wherein a transport means for transporting the fluidized bed is provided between the thermal reduction reactor and the hydrothermal decomposition reactor at the upper communication port and the lower communication port. Hydrothermal decomposition equipment using fluidized bed.
  4. 前記熱還元反応器の上部に、上方に向かって前記熱還元反応器の水平断面積を拡大する拡大部が形成され、前記拡大部の上部に、太陽光が透過する石英製の窓を備えたことを特徴とする請求項1~3のいずれか1項記載の内循環流動層を用いた水熱分解装置。 An enlarged portion that expands the horizontal cross-sectional area of the thermal reduction reactor upward is formed in the upper portion of the thermal reduction reactor, and a quartz window through which sunlight passes is provided in the upper portion of the enlarged portion. The hydrothermal decomposition apparatus using the inner circulating fluidized bed according to any one of claims 1 to 3, wherein
  5. 前記熱還元反応器と前記水熱分解反応器とは、別々に相互に離間して構成されていることを特徴とする請求項3記載の内循環流動層を用いた水熱分解装置。 4. The hydrothermal decomposition apparatus using an inner circulation fluidized bed according to claim 3, wherein the thermal reduction reactor and the hydrothermal decomposition reactor are configured separately from each other.
  6. 前記熱還元反応器の上部連通口と前記水熱分解反応器の下部連通口の間に前記熱還元反応器と前記水熱分解反応器との間で前記流動層を運搬する運搬手段が設けられ、前記熱還元反応器の下部連通口と前記水熱分解反応器の上部連通口は直接的に連通していることを特徴とする請求項1記載の内循環流動層を用いた水熱分解装置。 A transport means for transporting the fluidized bed between the thermal reduction reactor and the hydrothermal decomposition reactor is provided between the upper communication port of the thermal reduction reactor and the lower communication port of the hydrothermal decomposition reactor. The hydrothermal decomposition apparatus using an inner circulating fluidized bed according to claim 1, wherein the lower communication port of the thermal reduction reactor and the upper communication port of the hydrothermal decomposition reactor are in direct communication with each other. .
  7. 前記熱還元反応器の内部において前記熱還元反応器内の流動層を移動させる移動手段が設けられたことを特徴とする請求項6記載の内循環流動層を用いた水熱分解装置。 The hydrothermal decomposition apparatus using an inner circulating fluidized bed according to claim 6, wherein a moving means for moving the fluidized bed in the thermal reduction reactor is provided inside the thermal reduction reactor.
  8. 請求項1~7のいずれか1項記載の内循環流動層を用いた水熱分解装置を用いて、前記流動層を前記熱還元反応器と前記水熱分解反応器の間で内循環流動させながら、低酸素分圧ガス雰囲気下で前記流動層の一部を太陽光により加熱して金属酸化物から酸素を放出させる酸素発生反応と、酸素を放出した後の金属酸化物に水蒸気を接触させ水素を発生させる水素発生反応の2つの反応を同時に進行させることを特徴とする内循環流動層を用いた水熱分解法。 A hydrothermal decomposition apparatus using the internal circulation fluidized bed according to any one of claims 1 to 7, wherein the fluidized bed is caused to flow in an internal circulation between the thermal reduction reactor and the hydrothermal decomposition reactor. However, an oxygen generation reaction in which a part of the fluidized bed is heated by sunlight in a low oxygen partial pressure gas atmosphere to release oxygen from the metal oxide, and water vapor is brought into contact with the metal oxide after the oxygen is released. A hydrothermal decomposition method using an internal circulating fluidized bed characterized in that two reactions of a hydrogen generation reaction for generating hydrogen proceed simultaneously.
  9. 前記酸素発生反応を1400℃以上で進行させ、前記水素発生反応を1400℃以下で進行させることを特徴とする請求項8記載の内循環流動層を用いた水熱分解法。 The hydrothermal decomposition method using an internal circulation fluidized bed according to claim 8, wherein the oxygen generation reaction is allowed to proceed at 1400 ° C or higher and the hydrogen generation reaction is allowed to proceed at 1400 ° C or lower.
  10. 前記金属酸化物は、フェライト又はフェライトを担持したジルコニアであることを特徴とする請求項9記載の内循環流動層を用いた水熱分解法。 The hydrothermal decomposition method using an internal circulation fluidized bed according to claim 9, wherein the metal oxide is ferrite or zirconia supporting ferrite.
  11. 前記ジルコニアは、単斜晶ジルコニア、立方晶ジルコニア、正方晶ジルコニアのいずれかであり、前記立方晶ジルコニアは安定化剤としてイットリア、カルシア、マグネシアのいずれかを含有することを特徴とする請求項10記載の内循環流動層を用いた水熱分解法。 The zirconia is any of monoclinic zirconia, cubic zirconia, and tetragonal zirconia, and the cubic zirconia contains any one of yttria, calcia, and magnesia as a stabilizer. Hydrothermal decomposition method using the described internal circulation fluidized bed.
  12. 前記金属酸化物は、ニッケルフェライト又はニッケルフェライトを担持した単斜晶ジルコニアであることを特徴とする請求項9記載の内循環流動層を用いた水熱分解法。 The hydrothermal decomposition method using an internal circulation fluidized bed according to claim 9, wherein the metal oxide is nickel ferrite or monoclinic zirconia supporting nickel ferrite.
  13. 前記金属酸化物は、酸化セリウム又は酸化セリウムを担持したジルコニアであることを特徴とする請求項9記載の内循環流動層を用いた水熱分解法。 The hydrothermal decomposition method using an internal circulation fluidized bed according to claim 9, wherein the metal oxide is cerium oxide or zirconia supporting cerium oxide.
  14. 前記金属酸化物の粒子の粒径は、100~750μmであることを特徴とする請求項12又は13記載の内循環流動層を用いた水熱分解法。 The hydrothermal decomposition method using an internal circulation fluidized bed according to claim 12 or 13, wherein the metal oxide particles have a particle size of 100 to 750 µm.
  15. 前記低酸素分圧ガスは、窒素又はアルゴンであることを特徴とする請求項7~14のいずれか1項記載の内循環流動層を用いた水熱分解法。

     
    The hydrothermal decomposition method using an internal circulation fluidized bed according to any one of claims 7 to 14, wherein the low oxygen partial pressure gas is nitrogen or argon.

PCT/JP2013/052211 2012-01-31 2013-01-31 Hydrothermal decomposition apparatus using internally-circulating fluidized bed, and hydrothermal decomposition method WO2013115316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556494A JP5986589B2 (en) 2012-01-31 2013-01-31 Hydrothermal decomposition apparatus and hydrothermal decomposition method using internal circulating fluidized bed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012018199 2012-01-31
JP2012-018199 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013115316A1 true WO2013115316A1 (en) 2013-08-08

Family

ID=48905347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052211 WO2013115316A1 (en) 2012-01-31 2013-01-31 Hydrothermal decomposition apparatus using internally-circulating fluidized bed, and hydrothermal decomposition method

Country Status (2)

Country Link
JP (1) JP5986589B2 (en)
WO (1) WO2013115316A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104668A (en) * 2017-12-13 2019-06-27 敏秀 淺川 Solar furnace
CN112320755A (en) * 2020-11-05 2021-02-05 东北大学 Device and method for hydrogen production amplification research of supercritical water fluidized bed
CN114577839A (en) * 2020-12-01 2022-06-03 宁夏大学 Fixed bed reactor beneficial to thermal conversion analysis of coal and biomass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212046A1 (en) * 2017-05-16 2018-11-22 国立大学法人 新潟大学 Solar heat collection device provided with fluidized bed, and method for collecting solar heat using same
CN108940138B (en) * 2018-07-23 2020-12-29 新奥科技发展有限公司 Fluidized bed catalytic reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117844A (en) * 1960-01-04 1964-01-14 United Steel Companies Ltd Apparatus for contacting fluidized solid particles with gas
JPS5524515A (en) * 1978-08-10 1980-02-21 Babcock Hitachi Kk Method and apparatus for regenerating fluidized medium
US4828486A (en) * 1980-04-04 1989-05-09 Babcock Hitachi Kabushiki Kaisha Fluidized bed combustor and a method of operating same
JPH08504739A (en) * 1992-02-26 1996-05-21 ニロ・ホールディング・アー/エス Process and equipment for drying and calcining sodium hydrogen carbonate
WO2011068122A1 (en) * 2009-12-03 2011-06-09 国立大学法人新潟大学 Method for producing hydrogen by means of hydrothermal decomposition, and device for producing hydrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117844A (en) * 1960-01-04 1964-01-14 United Steel Companies Ltd Apparatus for contacting fluidized solid particles with gas
JPS5524515A (en) * 1978-08-10 1980-02-21 Babcock Hitachi Kk Method and apparatus for regenerating fluidized medium
US4828486A (en) * 1980-04-04 1989-05-09 Babcock Hitachi Kabushiki Kaisha Fluidized bed combustor and a method of operating same
JPH08504739A (en) * 1992-02-26 1996-05-21 ニロ・ホールディング・アー/エス Process and equipment for drying and calcining sodium hydrogen carbonate
WO2011068122A1 (en) * 2009-12-03 2011-06-09 国立大学法人新潟大学 Method for producing hydrogen by means of hydrothermal decomposition, and device for producing hydrogen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GOKON, N. ET AL.: "Thermochemical two-step water-splitting reactor with internally circulating fluidized bed for thermal reduction of ferrite particles", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 33, 7 April 2008 (2008-04-07), pages 2189 - 2199 *
KENJI HASHIMOTO, KOGYO HANNO SOCHI -SENTEI SEKKEI JITSUREI, 25 February 1984 (1984-02-25), pages 147 - 153, 167, 168 *
PERRY, R. H., PERRY'S CHEMICAL ENGINEERS' HANDBOOK, 2007, pages 17 - 4,5, 11-13,16-19 *
TATSUYA KODAMA: "Development of Thermochemical Water-Splitting Hydrogen Production System utilizing Concentrated Solar High-Temperature Heat", CHEMICAL ENGINEERING OF JAPAN, vol. 76, no. 4, 5 April 2012 (2012-04-05), pages 197 - 200 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104668A (en) * 2017-12-13 2019-06-27 敏秀 淺川 Solar furnace
JP6997618B2 (en) 2017-12-13 2022-02-04 敏秀 淺川 Solar furnace
CN112320755A (en) * 2020-11-05 2021-02-05 东北大学 Device and method for hydrogen production amplification research of supercritical water fluidized bed
CN112320755B (en) * 2020-11-05 2022-07-19 东北大学 Device and method for hydrogen production amplification research of supercritical water fluidized bed
CN114577839A (en) * 2020-12-01 2022-06-03 宁夏大学 Fixed bed reactor beneficial to thermal conversion analysis of coal and biomass
CN114577839B (en) * 2020-12-01 2024-09-03 宁夏大学 Fixed bed reactor beneficial to thermal conversion analysis of coal and biomass

Also Published As

Publication number Publication date
JP5986589B2 (en) 2016-09-06
JPWO2013115316A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5739818B2 (en) Hydrogen production method by hydrothermal decomposition and hydrogen production equipment
Hoskins et al. Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle
Mao et al. Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide–A review
JP5986589B2 (en) Hydrothermal decomposition apparatus and hydrothermal decomposition method using internal circulating fluidized bed
Muhich et al. A review and perspective of efficient hydrogen generation via solar thermal water splitting
Haeussler et al. Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor
EP2969953B1 (en) Recovering a caustic solution via calcium carbonate crystal aggregates
US20060188433A1 (en) Metal-oxide based process for the generation of hydrogen from water splitting utilizing a high temperature solar aerosol flow reactor
ES2912120T3 (en) An instant calciner
Gao et al. Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material
US10578341B2 (en) Dual-cavity method and device for collecting and storing solar energy with metal oxide particles
JP2021054706A (en) Gas production apparatus, gas production system and gas production method
CN105110299A (en) System and method for preparing oxygen from medium/low-temperature waste heat
JP6232923B2 (en) Coal coke gasifier using internal circulating fluidized bed and gasification method
WO2022029881A1 (en) Gas production device, gas production system and gas production method
EP2520361A1 (en) Method for thermochemically reacting a particulate material and apparatus for conducting said method
JP2023532606A (en) Solid thermochemical fuel device
JP7061809B2 (en) A solar heat collecting device provided with a fluidized bed and a solar heat collecting method using the same.
CN102180756B (en) Device and method for complete methanation of synthesis gas
WO2023026767A1 (en) Hydrogen production system
WO2022029880A1 (en) Gas manufacturing device, gas manufacturing system, and gas manufacturing method
JP5682364B2 (en) Reactor
KR102485207B1 (en) Fluidized Bed System for Simultaneous Regeneration of CO2 absorbent and Methanation of CO2 to CH4
WO2022029888A1 (en) Gas production device, gas production system, and gas production method
Vlaskin et al. Hydrothermal oxidation of aluminum for hydrogen and aluminum oxide/hydroxide production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742864

Country of ref document: EP

Kind code of ref document: A1