JP7061809B2 - A solar heat collecting device provided with a fluidized bed and a solar heat collecting method using the same. - Google Patents

A solar heat collecting device provided with a fluidized bed and a solar heat collecting method using the same. Download PDF

Info

Publication number
JP7061809B2
JP7061809B2 JP2019519197A JP2019519197A JP7061809B2 JP 7061809 B2 JP7061809 B2 JP 7061809B2 JP 2019519197 A JP2019519197 A JP 2019519197A JP 2019519197 A JP2019519197 A JP 2019519197A JP 7061809 B2 JP7061809 B2 JP 7061809B2
Authority
JP
Japan
Prior art keywords
particles
flow
gas
heat collecting
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019519197A
Other languages
Japanese (ja)
Other versions
JPWO2018212046A1 (en
Inventor
幸治 松原
篤 櫻井
竜也 兒玉
展之 郷右近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Publication of JPWO2018212046A1 publication Critical patent/JPWO2018212046A1/en
Application granted granted Critical
Publication of JP7061809B2 publication Critical patent/JP7061809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、二つのループシールで挟まれた二塔式流動層に関し、より具体的には、太陽蓄熱、太陽熱燃料化、バイオマスガス化などの各種化学反応に利用可能な流動層を備えた太陽光集熱装置及びこれを用いた太陽光集熱方法に関する。 The present invention relates to a two-tower fluidized bed sandwiched between two loop seals, and more specifically, a sun provided with a fluidized bed that can be used for various chemical reactions such as solar heat storage, solar thermal fuel conversion, and biomass gasification. The present invention relates to a light collecting device and a solar heat collecting method using the same.

近年、集光型太陽集熱を利用したエネルギー貯蔵技術に関する研究が活発化している。この手法は、熱機関が不要でカルノー効率の制約を受けないため、安価でしかも高効率な自然エネルギー貯蔵に応用可能な新技術として注目を集めている。 In recent years, research on energy storage technology using concentrating solar heat collection has become active. This method is attracting attention as a new technology that can be applied to inexpensive and highly efficient renewable energy storage because it does not require a heat engine and is not restricted by Carnot efficiency.

本発明者らは、これまでに、内部で内循環を発生可能な流動層を備えた水熱分解装置や太陽蓄熱装置を提案している(特許文献1,2を参照)。 The present inventors have so far proposed a hydrothermal decomposition device and a solar heat storage device provided with a fluidized bed capable of generating internal circulation (see Patent Documents 1 and 2).

特許文献1では、図7に示すように、水熱分解装置100内に二塔式流動層103を設け、各塔101,102間で金属酸化物粒子Pを内循環させることで、一方の塔101を熱還元反応器として、他方の塔102を水熱分解(酸化)反応器として使用するものである。 In Patent Document 1, as shown in FIG. 7, a two-tower fluidized bed 103 is provided in the hydrothermal decomposition apparatus 100, and the metal oxide particles P are internally circulated between the towers 101 and 102, so that one of the towers is used. 101 is used as a thermal reduction reactor, and the other column 102 is used as a pyrolysis (oxidation) reactor.

しかしながら、特許文献1の技術は、上記2つの反応(還元と酸化)の全てを一つの二塔式流動層103内で発生させるシステムであり、2つの反応を完全に分離できないため、各反応における更なる高効率化を目指すことが困難であった。 However, the technique of Patent Document 1 is a system in which all of the above two reactions (reduction and oxidation) are generated in one two-tower fluidized bed 103, and the two reactions cannot be completely separated. It was difficult to aim for even higher efficiency.

また、特許文献1に開示の流動層103を太陽蓄熱装置の集熱容器として使用する場合、集光された太陽光Sを装置100上部の窓104から照射することで、流動層103内の粒子Pを直接加熱し、顕熱を層状となった粒子Pに行き渡らせることができるが、加熱された粒子Pを取り出して図示しない別の容器に蓄えるため、太陽蓄熱プロセスがバッチ式となり、蓄熱の効率が下がる原因となっていた。 Further, when the fluidized layer 103 disclosed in Patent Document 1 is used as a heat collecting container of a solar heat storage device, the particles in the fluidized layer 103 are formed by irradiating the condensed sunlight S from the window 104 on the upper part of the apparatus 100. P can be directly heated to distribute the sensible heat to the layered particles P, but since the heated particles P are taken out and stored in another container (not shown), the solar heat storage process becomes a batch type, and the heat storage It was the cause of the decrease in efficiency.

また、本発明者らは、特許文献2において、特許文献1とは異なる構造の流動層を備えた太陽蓄熱装置を開示しており、特に、大規模な集熱・蓄熱を行うために特許文献2の実施例3(及びこれに対応する図面4も参照)では、集熱容器と蓄熱容器とを分離し、これらの容器間で蓄熱粒子を循環させる技術を開示している。 Further, the present inventors disclose in Patent Document 2 a solar heat storage device provided with a flow layer having a structure different from that of Patent Document 1, in particular, in order to perform large-scale heat collection / heat storage. In Example 3 of 2 (and the corresponding drawing 4 as well), a technique of separating a heat collecting container and a heat storage container and circulating heat storage particles between these containers is disclosed.

しかしながら、特許文献2の実施例3に係る装置では、集熱容器内において、流動層による粒子の内循環流動を起こして粒子の集熱効果を確認することができるが、蓄熱粒子をこの集熱容器から蓄熱容器へと接続する搬送路内に粒子を逐次供給することは、実際上困難であった。すなわち、集熱容器にて内循環を行う粒子の一部を分離して、蓄熱容器へと接続する搬送路内に実際に供給されるよう粒子の流れを作り出す方法(集熱容器-蓄熱容器-集熱容器の間で蓄熱粒子を適切に外循環させること)は、未だ良く解明されていなかった。 However, in the apparatus according to the third embodiment of Patent Document 2, it is possible to confirm the heat collecting effect of the particles by causing the internal circulation flow of the particles by the flow layer in the heat collecting container, but the heat storage particles are collected. It has been practically difficult to sequentially supply particles into the transport path connecting the container to the heat storage container. That is, a method of separating a part of the particles that circulate internally in the heat collection container and creating a flow of the particles so that the particles are actually supplied into the transport path connected to the heat storage container (heat collection container-heat storage container-). Proper circulation of heat storage particles between heat collection vessels) has not yet been well elucidated.

特許第5986589号公報Japanese Patent No. 5986589 国際公開第WO2014/038553号パンフレットInternational Publication No. WO2014 / 038553 Pamphlet

本発明は、このような事情に鑑みてなされたものであり、粒子の内循環流動及び外循環流動を効率よく実現可能な太陽集熱式流動層を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a solar heat-collecting fluidized bed capable of efficiently realizing the inner circulation flow and the outer circulation flow of particles.

本発明者らは、鋭意検討の末、二塔式流動層にループシール構造を上手く組み合わせることにより、上述の課題を効果的に解決できることを見出し、本発明を完成するに至った。 After diligent studies, the present inventors have found that the above-mentioned problems can be effectively solved by successfully combining a two-tower fluidized bed with a loop seal structure, and have completed the present invention.

すなわち、本発明は、例えば、以下の構成・特徴を備えるものである。 That is, the present invention has, for example, the following configurations and features.

(態様1)
流動層と照射部と気体導入部とが設けられた集熱容器を備えた太陽光集熱装置であって、
前記流動層は、前記集熱容器内に設けられた第1・第2開口部と、第1・第2開口部との間に設けられた第1仕切板と、第1仕切板によって仕切られつつ第1・第2開口部に接続された第1・第2流動空間と、第1・第2流動空間内の粒子と、を備え、
前記照射部は、前記集熱容器に設けられた窓を備え、かつ、該窓を通して、集光された太陽光を案内して前記粒子へ照射し、
前記気体導入部は、前記流動層に設けられた第1分散板と、第1分散板を通して気体を第1・第2流動空間に向け導入する第1・第2導入口とを備え、かつ、第1導入口から第1流動空間に導入する気体の線速度を、第2導入口から第2流動空間に導入する気体の線速度より異ならせることで、第1流動空間と第2流動空間との間で前記粒子の内循環流動を発生させ、
前記集熱容器は、前記粒子を導入・排出する粒子導入口及び粒子排出口と、前記流動層に接続された第1・第2ループシール部の少なくとも一方を更に備え、
第1ループシール部は、前記粒子導入口と第1流動空間とを接続して、第1流動空間へ前記粒子を供給し、
第2ループシール部は、第2流動空間と前記粒子排出口とを接続して、第2流動空間内の前記粒子を前記粒子排出口へ供給することを特徴とする太陽光集熱装置。
(態様2)
前記集熱容器には、第1・第2ループシール部の双方が設けられ、
第1ループシール部は前記流動層の一方の側に設けられ、かつ、
第2ループシール部は前記流動層の他方の側に設けられていることを特徴とする態様1に記載の太陽光集熱装置。
(態様3)
前記照射部の前記窓は前記集熱容器の上部に設けられ、かつ、前記気体導入部の第1分散板は前記流動層の下部に設けられることを特徴とする態様2に記載の太陽光集熱装置。
(態様4)
第1ループシール部は、下部開口部と、該下部開口部より上方に延びた第2仕切板と、第2仕切板によって仕切られつつ前記下部開口部で互いに接続された第3・第4流動空間と、第4流動空間と前記流動層の第1流動空間とを区分する第1壁と、第4流動空間の上部に設けられ、第1流動空間に接続するシール出口と、を更に備え、
前記粒子導入口が第3流動空間の上部に接続されることで、新たな粒子が前記集熱容器の外部から第1ループシール部へ導入され、第3・第4流動空間及び前記シール出口を通して、前記流動層の第1流動空間へ案内されることを特徴とする態様3に記載の太陽光集熱装置。
(態様5)
第2ループシール部は、上部開口部と、該上部開口部より下方に延びた第3仕切板と、第3仕切板によって仕切られつつ前記上部開口部で互いに接続された第5・第6流動空間と、第5流動空間と前記流動層の第2流動空間とを区分する第2壁と、を更に備え、第5流動空間の下部に設けられ、第2流動空間に接続するシール入口と、を更に備え、
前記粒子排出口が第6流動空間の下部に接続されることで、前記流動層において内循環された前記粒子が前記シール入口から第2ループシール部内へ導入され、第5・第6流動空間を介して前記粒子排出口から前記集熱容器外部へ排出されることを特徴とする態様3又は4に記載の太陽光集熱装置。
(態様6)
前記気体導入部は、
第1ループシール部の下部に設けられた第2分散板と、
第2分散板を通して気体を第3・第4流動空間に向け導入する第3・第4導入口と、
を更に備えることを特徴とする態様4又は5に記載の太陽光集熱装置。
(態様7)
前記気体導入部は、
第2ループシール部の下部に設けられた第3分散板と、
第3分散板を通して気体を第5流動空間に向け導入する第5導入口と、
を更に備えることを特徴とする態様5又は6に記載の太陽光集熱装置。
(態様8)
前記太陽光集熱装置には、第1・第2搬送路と、蓄熱容器と、が更に設けられ、かつ、
第1搬送路は、前記粒子排出口と前記蓄熱容器とを連通して前記粒子を前記集熱容器から前記蓄熱容器へ搬送可能であり、
第2搬送路は、前記蓄熱容器と前記粒子導入口とを連通して前記粒子を前記蓄熱容器から前記集熱容器へ搬送可能であることを特徴とする態様2~7のいずれかに記載の太陽光集熱装置。
(態様9)
前記粒子として、石英砂、鉄酸化物、及び、炭化珪素の群のうち少なくとも1種類が選択されることを特徴とする態様2~8のいずれかに記載の太陽光集熱装置。
(態様10)
前記粒子として、金属酸化物粒子が選択され、かつ、
前記気体導入部から供給される前記気体として前記粒子を還元可能なガスが選択され、
前記集熱容器を水熱分解法の熱還元反応器として利用することを特徴とする態様2~8のいずれかに記載の太陽光集熱装置。
(態様11)
前記粒子として、石炭コークス粒子及び流動媒体粒子が選択され、かつ、
前記気体導入部から供給される前記気体として水蒸気が選択され
前記集熱容器を、石炭コークス粒子をガス化させるための反応器として利用することを特徴とする態様2~8のいずれかに記載の太陽光集熱装置。
(態様12)
態様2~11のいずれかに記載の太陽光集熱装置を用いた太陽光集熱方法であって、
前記流動層及び第1・第2ループシール部に前記粒子を予め充填し、
前記気体導入部から第1分散板を介して、第1・第2流動空間に気体を導入し、
第1グループシール部に接続された前記粒子導入口から前記粒子を新たに導入し、
第2グループシール部に接続された前記粒子排出口から前記粒子を排出し、
第1・第2流動空間へ導入される気体の線速度を異なるように設定して、第1流動空間と第2流動空間との間で前記粒子の内循環流動を発生させることを特徴とする太陽光集熱方法。
(Aspect 1)
It is a solar heat collector equipped with a heat collecting container provided with a fluidized bed, an irradiation part, and a gas introduction part.
The fluidized bed is partitioned by a first partition plate provided between the first and second openings provided in the heat collecting container and the first and second openings, and a first partition plate. It is provided with the first and second flow spaces connected to the first and second openings and the particles in the first and second flow spaces.
The irradiation unit includes a window provided in the heat collecting container, and guides the condensed sunlight through the window to irradiate the particles.
The gas introduction unit includes a first dispersion plate provided in the flow layer and first and second introduction ports for introducing gas toward the first and second flow spaces through the first dispersion plate, and By making the linear velocity of the gas introduced from the first introduction port into the first flow space different from the linear velocity of the gas introduced into the second flow space from the second introduction port, the first flow space and the second flow space can be obtained. An internal circulation flow of the particles is generated between the particles.
The heat collecting container further includes at least one of a particle introduction port and a particle discharge port for introducing and discharging the particles, and at least one of the first and second loop seal portions connected to the fluidized bed.
The first loop seal portion connects the particle introduction port and the first flow space to supply the particles to the first flow space.
The second loop seal portion is a solar heat collecting device characterized in that the second flow space and the particle discharge port are connected to supply the particles in the second flow space to the particle discharge port.
(Aspect 2)
Both the first and second loop seal portions are provided in the heat collecting container, and the heat collecting container is provided with both first and second loop seal portions.
The first loop seal portion is provided on one side of the fluidized bed, and
The solar heat collector according to aspect 1, wherein the second loop seal portion is provided on the other side of the fluidized bed.
(Aspect 3)
The sunlight collection according to aspect 2, wherein the window of the irradiation unit is provided in the upper part of the heat collecting container, and the first dispersion plate of the gas introduction part is provided in the lower part of the fluidized bed. Thermal device.
(Aspect 4)
The first loop seal portion includes a lower opening, a second partition plate extending upward from the lower opening, and third and fourth fluidized beds separated by the second partition plate and connected to each other by the lower opening. Further provided with a first wall that separates the space, the fourth fluidized space and the first fluidized space of the fluidized bed, and a seal outlet provided above the fourth fluidized space and connected to the first fluidized space.
By connecting the particle introduction port to the upper part of the third flow space, new particles are introduced from the outside of the heat collecting container into the first loop seal portion, and pass through the third and fourth flow spaces and the seal outlet. The solar heat collector according to aspect 3, wherein the fluidized bed is guided to the first fluidized space.
(Aspect 5)
The second loop seal portion includes an upper opening, a third partition plate extending downward from the upper opening, and fifth and sixth fluidized beds connected to each other by the upper opening while being partitioned by the third partition plate. A space and a second wall that separates the fifth flow space from the second flow space of the fluidized bed are further provided, and a seal entrance provided at the lower part of the fifth flow space and connected to the second flow space. Further prepared,
By connecting the particle discharge port to the lower part of the sixth fluidized space, the particles internally circulated in the fluidized bed are introduced from the seal inlet into the second loop seal portion, and the fifth and sixth fluidized spaces are introduced. The solar heat collecting device according to aspect 3 or 4, wherein the particles are discharged from the particle discharge port to the outside of the heat collecting container.
(Aspect 6)
The gas introduction section is
The second dispersion plate provided at the bottom of the first loop seal portion and
The 3rd and 4th introduction ports that introduce gas into the 3rd and 4th flow spaces through the 2nd dispersion plate,
The solar heat collector according to aspect 4 or 5, further comprising.
(Aspect 7)
The gas introduction section is
The third dispersion plate provided at the bottom of the second loop seal portion and
A fifth inlet that introduces gas toward the fifth flow space through the third dispersion plate,
The solar heat collector according to aspect 5 or 6, further comprising.
(Aspect 8)
The solar heat collector is further provided with first and second transport paths and a heat storage container, and
The first transport path communicates the particle discharge port with the heat storage container so that the particles can be transported from the heat collecting container to the heat storage container.
2. Solar heat collector.
(Aspect 9)
The solar heat collector according to any one of aspects 2 to 8, wherein at least one of the group of quartz sand, iron oxide, and silicon carbide is selected as the particles.
(Aspect 10)
Metal oxide particles are selected as the particles, and
A gas capable of reducing the particles is selected as the gas supplied from the gas introduction unit, and a gas capable of reducing the particles is selected.
The solar heat collector according to any one of aspects 2 to 8, wherein the heat collecting container is used as a heat reduction reactor of a hydrothermal decomposition method.
(Aspect 11)
Coal coke particles and flow medium particles are selected as the particles, and
The embodiment according to any one of aspects 2 to 8, wherein steam is selected as the gas supplied from the gas introduction unit, and the heat collecting container is used as a reactor for gasifying coal coke particles. Solar heat collector.
(Aspect 12)
A method for collecting solar heat using the solar heat collecting device according to any one of aspects 2 to 11.
The fluidized bed and the first and second loop seal portions are prefilled with the particles.
A gas is introduced into the first and second flow spaces from the gas introduction portion via the first dispersion plate, and the gas is introduced.
The particles are newly introduced from the particle introduction port connected to the first group seal portion, and the particles are newly introduced.
The particles are discharged from the particle discharge port connected to the second group seal portion, and the particles are discharged.
It is characterized in that the linear velocity of the gas introduced into the first and second flow spaces is set to be different, and the internal circulation flow of the particles is generated between the first flow space and the second flow space. Solar heat collection method.

本発明の太陽光集熱装置及び太陽光集熱方法は、上述したように、その集熱容器内において、流動層に第1・第2ループシール部の少なくとも一方を接続した構成(好ましくは、流動層を両側から第1・第2ループシール部によって挟持した構成)を採用する。これにより、照射部直下の流動層において蓄熱用粒子の組織的な内循環流動を確実に発生させながら、集熱容器の外部から集熱容器への粒子の導入やその後の排出(粒子の外循環流動)も同時に発生させることが可能となる。 As described above, the solar heat collecting device and the solar heat collecting method of the present invention have a configuration in which at least one of the first and second loop seal portions is connected to the fluidized bed in the heat collecting container (preferably). (Structure in which the fluidized bed is sandwiched by the first and second loop seal portions from both sides) is adopted. As a result, the particles are introduced from the outside of the heat collecting container into the heat collecting container and then discharged (outer circulation of the particles) while surely generating the systematic internal circulation flow of the heat storage particles in the fluidized bed directly under the irradiation unit. Flow) can also be generated at the same time.

しかも、本発明の好適な態様の第1・第2ループシール部を採用すれば、各シール部にて逆流防止や所望方向への流動促進が図られるために、粒子導入口~第1ループシール部~流動層~第2ループシール部~粒子排出口へと蓄熱用粒子を確実に流動させることが可能となる。 Moreover, if the first and second loop seal portions of the preferred embodiment of the present invention are adopted, the particle introduction port to the first loop seal can be prevented in order to prevent backflow and promote flow in a desired direction at each seal portion. It is possible to reliably flow the heat storage particles from the portion to the fluidized layer to the second loop seal portion to the particle discharge port.

本発明の太陽光集熱装置は、太陽蓄熱、太陽熱燃料化、石炭コークスガス化、バイオマスガス化、水熱分解法の熱還元反応等の様々な用途に利用できる。これだけでなく、本発明の装置は、装置内外でそれぞれ、粒子の内循環と外循環とを上手に発生させて、粒子に所望の流れを作り出せるため、従来のバッチ式とは異なり、連続的な蓄熱等の反応(高効率な連続稼働)を起こすことができる。 The solar heat collector of the present invention can be used for various purposes such as solar heat storage, solar thermal fuel conversion, coal coke gasification, biomass gasification, and thermal reduction reaction of a hydrothermal decomposition method. Not only this, the apparatus of the present invention can generate the inner circulation and the outer circulation of the particles well inside and outside the apparatus to create a desired flow in the particles, so that it is continuous unlike the conventional batch type. Reactions such as heat storage (highly efficient continuous operation) can occur.

言い換えれば、本発明は、装置の大型化に対応し、かつ、高効率な太陽光集熱を可能とするものとなる。 In other words, the present invention can cope with an increase in the size of an apparatus and enable highly efficient solar heat collection.

実施例1の太陽光集熱装置の概略を説明した図である。It is a figure explaining the outline of the solar heat collector of Example 1. FIG. 実施例1の集熱容器の斜視図(a)及び実施例2の分離型反応システム(b)を示した図である。It is a figure which showed the perspective view (a) of the heat collecting container of Example 1 and the separation type reaction system (b) of Example 2. 実施例4の可視化流路及び該流路を用いた可視化実験装置を示した図である。It is a figure which showed the visualization flow path of Example 4 and the visualization experiment apparatus using the flow path. 様々な試験条件での可視化結果を纏めたフローマップを示した図である。It is a figure which showed the flow map which summarized the visualization result under various test conditions. 実施例4のある条件での粒子Pの内循環(反時計回り)を示すスケッチ(a)と、別の条件にて粒子Pの内循環(時計回り)を示す可視化画像である。It is the sketch (a) which shows the internal circulation (counterclockwise) of the particle P under a certain condition of Example 4, and the visualization image which shows the internal circulation (clockwise) of a particle P under another condition. 実施例4において、測定開始直後(t=0[s])からt=5[s]までの間の一定時間毎の粒子Pの流動状況を示す可視化画像である。In Example 4, it is a visualization image which shows the flow state of the particle P at a certain time interval from immediately after the start of measurement (t = 0 [s]) to t = 5 [s]. 従来の太陽光集熱装置の概略を説明した図である。It is a figure explaining the outline of the conventional solar heat collector.

以下、本発明を図面に示す実施の形態に基づき説明するが、本発明は、下記の具体的な実施態様に何等限定されるものではない。なお、各図において同一又は対応する部材には同一符号を用いる。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings, but the present invention is not limited to the following specific embodiments. The same reference numerals are used for the same or corresponding members in each figure.

(太陽光集熱装置の概略)
図1は、実施例1に係る太陽光集熱装置1の概略を説明した図である。本実施例の太陽光集熱装置1は、流動層3と照射部4と気体導入部5と(さらに好ましくは、気体排出部10と)が設けられた集熱容器2を備える。なお、図面に示した装置構成は一例であり、各構成要素の構成や配置は図示の例に限定されない。例えば、照射部4や気体導入部5は図示のように流動層3の真上や真下に配置させた構成に限らず、例えば、流動層3の斜め上方や斜め下方に配置させる等、種々の変形例が想定できる。すなわち、これらの変形例によっても本発明の目的を達成し、その作用効果を得ることができる。
(Outline of solar heat collector)
FIG. 1 is a diagram illustrating an outline of the solar heat collecting device 1 according to the first embodiment. The solar heat collecting device 1 of this embodiment includes a heat collecting container 2 provided with a fluidized bed 3, an irradiation unit 4, a gas introduction unit 5, and (more preferably, a gas discharge unit 10). The device configuration shown in the drawings is an example, and the configuration and arrangement of each component are not limited to the illustrated example. For example, the irradiation unit 4 and the gas introduction unit 5 are not limited to the configuration in which they are arranged directly above or below the fluidized bed 3 as shown in the drawing, and for example, they are arranged diagonally above or diagonally below the fluidized bed 3. A modified example can be assumed. That is, the object of the present invention can be achieved and the action and effect thereof can be obtained by these modifications.

図2(a)は、集熱容器2の斜視図を示した図である。集熱容器2は、後述の窓41が中央に設けられた天板21と、前後方向の側板22,22と、左右方向の側板23,23と、土台となる伸長部24とを備え、これらによって集熱容器2の外形が構成される。なお、集熱容器2の下側は、上述の気体導入部5が接続されることで、集熱容器2の内部空間(つまり、後述する流動層3や第1・第2ループシール部8,9)が区画される。なお、側板23,23は、集光された太陽光Sを効率的に照射する照射部4を形成するよう徐々に下方に向かって幅狭になる照射部用側板23aが設けられてもよい。 FIG. 2A is a diagram showing a perspective view of the heat collecting container 2. The heat collecting container 2 includes a top plate 21 having a window 41 described later in the center, side plates 22 and 22 in the front-rear direction, side plates 23 and 23 in the left-right direction, and an extension portion 24 as a base. The outer shape of the heat collecting container 2 is configured by the above. The lower side of the heat collecting container 2 is connected to the gas introduction unit 5 described above, so that the internal space of the heat collecting container 2 (that is, the fluidized bed 3 and the first and second loop seal portions 8, which will be described later, 9) is partitioned. The side plates 23 and 23 may be provided with an irradiation unit side plate 23a that gradually narrows downward so as to form an irradiation unit 4 that efficiently irradiates the condensed sunlight S.

(流動層の構造)
ここで、流動層3は、二塔式流動層と呼ばれるもので、以下の構造を有する。すなわち、流動層3は、集熱容器2内の上下に設けられた第1・第2開口部31,32と、第1・第2開口部31,32との間に設けられた第1仕切板33と、第1仕切板33によって左右に仕切られつつ第1・第2開口部31,32によって互いに接続された第1・第2流動空間34,35と、第1・第2流動空間34,35内に充填された蓄熱用粒子Pと、を備える。蓄熱用粒子P(以下、単に「粒子」とも呼ぶ。)としては、SiOを主成分としかつ融点が1750℃と高い石英砂、マグネタイト(Fe)などの鉄酸化物、輻射吸収率が高い炭化珪素(SiC)などからなる粒子が好適に用いられる。
(Structure of fluidized bed)
Here, the fluidized bed 3 is called a two-tower fluidized bed and has the following structure. That is, the fluidized bed 3 has a first partition provided between the first and second openings 31 and 32 provided above and below the heat collecting container 2 and the first and second openings 31 and 32. The plate 33, the first and second fluidized spaces 34 and 35 connected to each other by the first and second openings 31, 32 while being partitioned to the left and right by the first partition plate 33, and the first and second fluidized spaces 34. , 35 is provided with heat storage particles P filled therein. The heat storage particles P (hereinafter, also simply referred to as “particles”) include quartz sand containing SiO 2 as a main component and having a high melting point of 1750 ° C., iron oxides such as magnetite (Fe 3 O 4 ), and radiation absorption rate. Particles made of silicon carbide (SiC) or the like having a high iron content are preferably used.

(照射部の構造)
照射部4は、集熱容器2の上部に設けられた窓41を備え、かつ、該窓41を通して、集光された太陽光Sを案内して粒子Pへ照射する。窓41は、太陽光Sの透過に適した石英製の窓が好ましい。なお、太陽光Sを窓41に至るまで集光させる方法及び手段は、従来技術を採用することができる。例えば、図示しない地上反射鏡(ヘリオスタッド)及びタワー反射鏡で構成されたビームダウン型集光システム(図示せず)により、太陽光Sの集光を実現できる。
(Structure of irradiation part)
The irradiation unit 4 includes a window 41 provided in the upper part of the heat collecting container 2, and guides the condensed sunlight S through the window 41 to irradiate the particles P. The window 41 is preferably a quartz window suitable for transmitting sunlight S. As a method and means for condensing the sunlight S up to the window 41, the prior art can be adopted. For example, a beam-down type condensing system (not shown) composed of a ground reflector (heliostud) and a tower reflector (not shown) can condense sunlight S.

(窓の冷却)
また、照射部4の窓41や窓41の周囲部分は、集光された太陽光Sにより極めて高温に加熱されるため、図1及び図2(a)に示すように、窓41付近に冷却流路42を敷設し、この冷却流路42に冷媒を流して窓41や窓41の周囲部分を冷却することが望ましい。例えば、入口管42aと出口管42bとを備えた冷却流路42を窓41の外縁を取り囲むように敷設するようにしてもよい。
(Window cooling)
Further, since the window 41 of the irradiation unit 4 and the peripheral portion of the window 41 are heated to an extremely high temperature by the condensed sunlight S, they are cooled in the vicinity of the window 41 as shown in FIGS. 1 and 2 (a). It is desirable to lay a flow path 42 and allow a refrigerant to flow through the cooling flow path 42 to cool the window 41 and the peripheral portion of the window 41. For example, the cooling flow path 42 provided with the inlet pipe 42a and the outlet pipe 42b may be laid so as to surround the outer edge of the window 41.

(気体導入部の構造)
気体導入部5は、流動層3の下部に設けられた第1分散板51aと、第1分散板51aを通して気体G(Ga,Gb)を第1・第2流動空間34,35に向け導入する第1・第2導入口52a,52bとを備える。第1分散板51aは多孔質(例えば、孔径10~100μm)の物体で構成されており、これを第1・第2導入口52a,52bと流動層3との間に組み込むことにより、粒子Pが気体導入部5に入り込むことを防ぎつつ、整流化された気体Gを流動層3に供給することが可能となる。後述の第2・第3分散板51b,51cも、第1分散板51aの上記構成と同様の構成を有し、同様の効果を発揮する。
(Structure of gas introduction part)
The gas introduction unit 5 introduces the gas G (Ga, Gb) toward the first and second fluidized spaces 34 and 35 through the first dispersion plate 51a provided at the lower part of the fluidized bed 3 and the first dispersion plate 51a. It is provided with first and second introduction ports 52a and 52b. The first dispersion plate 51a is composed of a porous object (for example, a pore diameter of 10 to 100 μm), and by incorporating this between the first and second introduction ports 52a and 52b and the fluidized bed 3, the particles P The rectified gas G can be supplied to the fluidized bed 3 while preventing the gas from entering the gas introduction unit 5. The second and third dispersion plates 51b and 51c, which will be described later, also have the same configuration as the above configuration of the first dispersion plate 51a, and exhibit the same effect.

(供給気体間での速度差の付与)
ここで、第1導入口52aから第1流動空間34に導入する気体Gaの線速度LVaは、第2導入口52bから第2流動空間35に導入する気体Gbの線速度LVbと異なるように設定されている。
(Giving a speed difference between the supplied gases)
Here, the linear velocity LVa of the gas Ga introduced from the first introduction port 52a into the first flow space 34 is set to be different from the linear velocity LVb of the gas Gb introduced from the second introduction port 52b into the second flow space 35. Has been done.

(気体の線速度)
なお、線速度LVa,LVbは、気体Ga,Gbの流量を、各流量に対応する第1・第2導入口52a,52bの断面積で除した値であり、単位時間あたりに第1分散板51a(の単位断面積)を通過する各気体Ga,Gbの速度を意味する。後述する気体Gc,Gd,Geの線速度LVc,LVd,LVeについても、同様の方法で定義・導出される。
(Linear velocity of gas)
The linear velocities LVa and LVb are values obtained by dividing the flow rates of the gases Ga and Gb by the cross-sectional areas of the first and second introduction ports 52a and 52b corresponding to the respective flow rates, and the first dispersion plate per unit time. It means the velocity of each gas Ga, Gb passing through 51a (unit cross-sectional area). The linear velocities LVc, LVd, LVe of the gases Gc, Gd, and Ge, which will be described later, are also defined and derived by the same method.

このように供給気体Ga,Gbの間で速度差を付与することにより、第1・第2開口部31,32で接続された第1流動空間34と第2流動空間35との間で粒子Pの組織的な内循環流動を発生させることができる。 By imparting a velocity difference between the supply gases Ga and Gb in this way, the particles P are connected between the first flow space 34 and the second flow space 35 connected by the first and second openings 31, 32. It is possible to generate a systematic internal circulation flow.

また、気体Ga,Gbの線速度LVa,LVbを適宜調整することで、所望の回転方向(時計回り又は反時計回り)の内循環流動を起こすことができる。例えば、気体Gaの線速度LVa(図4ではV)が気体Gbの線速度LVb(図4ではV)より大きく設定した場合(つまり、LVa-Lvb>0)には、時計回りに内循環を起こすことができる。一方、気体Gaの線速度LVa(図4ではV)が気体Gbの線速度LVb(図4ではV)より小さく設定した場合(つまり、LVa-Lvb<0)には、反時計回りに内循環を起こすことができる。なお、所望の内循環を発生させる各線速度の条件については、図4に示すフローマップも参照されたい。Further, by appropriately adjusting the linear velocities LVa and LVb of the gases Ga and Gb, it is possible to cause an internal circulation flow in a desired rotation direction (clockwise or counterclockwise). For example, when the linear velocity LVa of the gas Ga ( VL in FIG. 4) is set to be larger than the linear velocity LVb of the gas Gb (VR in FIG. 4) (that is, LVa -Lvb> 0), the inside is clockwise. Can create a cycle. On the other hand, when the linear velocity LVa of the gas Ga ( VL in FIG. 4) is set smaller than the linear velocity LVb of the gas Gb (VR in FIG. 4) (that is, LVa -Lvb <0), it is counterclockwise. Can cause internal circulation. Please also refer to the flow map shown in FIG. 4 for the conditions of each linear velocity that generates the desired internal circulation.

なお、上述の線速度LVa,LVbの調整は、例えば、第1・第2導入口52a,52bに夫々、接続された図示しない空気圧縮機、バルブや流量計等の機器によって、各気体Ga,Gbの流量を調整することによって実行可能である。 The above-mentioned linear velocities LVa and LVb can be adjusted by, for example, an air compressor, a valve, a flow meter, or the like (not shown) connected to the first and second introduction ports 52a and 52b, respectively. This can be done by adjusting the flow rate of Gb.

(気体排出部の構造)
なお、気体導入部5から流動層3へ送り込まれた気体Gは、気体排出部10より集熱容器2の外部へ排出される。なお、実施例2を説明する図2(b)に示すように、気体導入部5から流動層3へ導入された気体G(図示では、窒素N)が、流動層3内で化学反応を起こし、気体排出部10から排出される際には質・組成の異なる気体(図示では、酸素0)となる場合があることを留意されたい。
(Structure of gas discharge part)
The gas G sent from the gas introduction unit 5 to the fluidized bed 3 is discharged to the outside of the heat collecting container 2 from the gas discharge unit 10. As shown in FIG. 2B for explaining Example 2, the gas G (nitrogen N 2 in the figure) introduced into the fluidized bed 3 from the gas introduction unit 5 causes a chemical reaction in the fluidized bed 3. It should be noted that when the gas is raised and discharged from the gas discharge unit 10, the gas may have a different quality and composition (oxygen 02 in the figure).

(粒子導入口及び粒子排出口並びにループシール部の配設)
また、集熱容器2は、粒子Pを導入・排出する粒子導入口6及び粒子排出口7と、流動層3に接続された第1・第2ループシール部8,9の少なくとも一方を更に備えることに留意されたい。ここで、後述する粒子Pの内循環及び外循環の促進の観点からは、図示の例のように、第1・第2ループシール部8,9の双方が流動層3の左右(両側)に設置されていることが好ましい。
(Arrangement of particle inlet, particle outlet and loop seal)
Further, the heat collecting container 2 further includes at least one of a particle introduction port 6 and a particle discharge port 7 for introducing and discharging particles P, and first and second loop seal portions 8 and 9 connected to the fluidized bed 3. Please note that. Here, from the viewpoint of promoting the internal circulation and the external circulation of the particles P, which will be described later, both the first and second loop seal portions 8 and 9 are on the left and right (both sides) of the fluidized bed 3 as shown in the illustrated example. It is preferable that it is installed.

ここで、第1ループシール部8は、粒子導入口6と流動層3(の第1流動空間34)とを接続して、第1流動空間34へ逐次、粒子Pを供給する。一方、第2ループシール部9は、流動層3(の第2流動空間35)と粒子排出口7とを接続して、流動層3から粒子排出口7へと粒子Pを供給する。なお、図示の例のように、逐次(連続的に)粒子Pを供給してもよいし、断続的(例えば、周期的又は不定期)に粒子Pを供給してもよい。 Here, the first loop seal portion 8 connects the particle introduction port 6 and the fluidized bed 3 (the first fluidized space 34), and sequentially supplies the particles P to the first fluidized space 34. On the other hand, the second loop seal portion 9 connects the fluidized bed 3 (the second fluidized space 35) and the particle discharge port 7, and supplies the particles P from the fluidized bed 3 to the particle discharge port 7. As shown in the illustrated example, the particles P may be supplied sequentially (continuously) or intermittently (for example, periodically or irregularly).

(内循環及び外循環が同時に発生する多重循環)
以上のように構成された第1・第2ループシール部8,9を採用した太陽光集熱装置1は、照射部4直下の流動層3において粒子Pの組織的な内循環流動を確実に発生させつつ、集熱容器2の外部から内部への粒子Pの導入及び集熱容器2の内部から外部への粒子Pの排出(粒子の外循環流動)も同時に発生させること(多重循環)が可能となる。なお、第1・第2ループシール部8,9の好適な形態を以下に例示する。
(Multiple circulation in which internal circulation and external circulation occur at the same time)
The solar heat collector 1 adopting the first and second loop seal portions 8 and 9 configured as described above ensures the systematic internal circulation flow of the particles P in the fluidized bed 3 immediately below the irradiation portion 4. While generating the heat, the introduction of the particles P from the outside to the inside of the heat collecting container 2 and the discharge of the particles P from the inside to the outside of the heat collecting container 2 (external circulation flow of the particles) are also generated at the same time (multiple circulation). It will be possible. In addition, suitable forms of the 1st and 2nd loop seal portions 8 and 9 are illustrated below.

(第1ループシール部の好適な形態)
第1ループシール部8は、下部開口部81と、下部開口部81より上方に延びた第2仕切板82と、第2仕切板82によって左右に仕切られつつ下部開口部81で互いに接続された第3・第4流動空間83,84と、第4流動空間84と流動層3の第1流動空間34とを区分する第1壁85と、第4流動空間84の上部に設けられ、第1流動空間34と接続するシール出口86と、を更に備えることが好ましい。
(Preferable form of the first loop seal portion)
The first loop seal portion 8 is connected to each other by the lower opening 81, the second partition plate 82 extending upward from the lower opening 81, and the lower opening 81 while being partitioned left and right by the second partition plate 82. The first wall 85 that separates the third and fourth flow spaces 83 and 84, the fourth flow space 84 and the first flow space 34 of the fluidized bed 3, and the first one provided above the fourth flow space 84. It is preferable to further provide a seal outlet 86 connected to the flow space 34.

(第1ループシール部での粒子Pの流動)
そして、粒子導入口6が第3流動空間83の上部に接続されることで、新たな粒子Pが逐次、集熱容器2の外部から第1ループシール部8へ導入され、第3・第4流動空間83,84及びシール出口86を通して、流動層3の第1流動空間34へ順次、案内されるようになる。
(Flow of particles P in the first loop seal portion)
Then, by connecting the particle introduction port 6 to the upper part of the third fluidized space 83, new particles P are sequentially introduced from the outside of the heat collecting container 2 to the first loop seal portion 8, and the third and fourth particles P are sequentially introduced. Through the fluidized spaces 83 and 84 and the seal outlet 86, the fluidized bed 3 is sequentially guided to the first fluidized space 34.

(第2ループシール部の好適な形態)
第2ループシール部9は、上部開口部91と、上部開口部91より下方に延びた第3仕切板92と、第3仕切板92によって左右に仕切られつつ上部開口部91によって互いに接続された第5・第6流動空間93,94と、第5流動空間93と流動層3の第2流動空間35とを区分する第2壁95と、第5流動空間93の下部に設けられ、流動層3の第2流動空間35に接続するシール入口96と、を更に備えることが好ましい。
(Preferable form of the second loop seal portion)
The second loop seal portion 9 is connected to each other by the upper opening 91, the third partition plate 92 extending downward from the upper opening 91, and the upper opening 91 while being partitioned left and right by the third partition plate 92. A second wall 95 that separates the fifth and sixth fluidized spaces 93 and 94, the fifth fluidized space 93, and the second fluidized space 35 of the fluidized bed 3, and a fluidized bed provided below the fifth fluidized space 93. It is preferable to further provide a seal inlet 96 connected to the second fluidized space 35 of 3.

(第2ループシール部での粒子Pの流動)
そして、粒子排出口7が第6流動空間94の下部に接続されることで、流動層3において内循環された粒子Pが逐次、シール入口96から第2ループシール部9内へ導入され、第5・第6流動空間93,94を介して粒子排出口7から集熱容器2外部へ排出されるようになる。
(Flow of particles P in the second loop seal portion)
Then, by connecting the particle discharge port 7 to the lower part of the sixth fluidized space 94, the particles P internally circulated in the fluidized bed 3 are sequentially introduced from the seal inlet 96 into the second loop seal portion 9, and the second loop seal portion 9 is introduced. 5. The particles are discharged from the particle discharge port 7 to the outside of the heat collecting container 2 through the sixth fluidized space 93 and 94.

以上のように好適な形態の第1・第2ループシール部8,9を採用すれば、夫々の部分8,9にて粒子Pの逆流防止や所望方向への流動促進が図られるために、粒子導入口6~第1ループシール部8~流動層3~第2ループシール部9~粒子排出口7への望ましい方向で粒子Pを確実に流動させることが可能となる。 If the first and second loop seal portions 8 and 9 having a suitable form as described above are adopted, the backflow of the particles P can be prevented and the flow of the particles P can be promoted in the desired direction in the respective portions 8 and 9. The particles P can be reliably flowed in the desired direction from the particle introduction port 6 to the first loop seal portion 8 to the fluidized bed 3 to the second loop seal portion 9 to the particle discharge port 7.

(気体導入部の好適な形態)
次に、気体導入部5の好適な形態についても例示する。好適な気体導入部5は、第1ループシール部8の下部に設けられた第2分散板51bと、第2分散板51bを通して気体G(Gc,Gd)を第3・第4流動空間83,84に向け導入する第3・第4導入口52c,52dと、を更に備える。
(Preferable form of gas introduction part)
Next, a suitable form of the gas introduction unit 5 will also be illustrated. A suitable gas introduction unit 5 passes the gas G (Gc, Gd) through the second dispersion plate 51b provided at the lower part of the first loop seal portion 8 and the second dispersion plate 51b in the third and fourth flow spaces 83, The third and fourth introduction ports 52c and 52d to be introduced toward 84 are further provided.

そして、第3・第4導入口52c,52dから第3・第4流動空間83,84に導入する気体Gc,Gdの線速度LVc,LVdが、流動層3内に供給される気体Ga,Gbの線速度Lva,LVbのいずれかと異なるように設定されることが好ましい。さらに好ましくは、線速度LVc,LVdが、線速度Lva,LVbのうち比較的大きい線速度より小さく設定される。これにより、第1ループシール部8から流動層3へ向かう粒子Pの流動を促進させつつ、流動層3から第1ループシール部8への粒子Pの逆流を確実に防止することができる。 Then, the linear velocities LVc and LVd of the gases Gc and Gd introduced from the third and fourth introduction ports 52c and 52d into the third and fourth fluidized spaces 83 and 84 are supplied to the fluidized bed 3 by the gases Ga and Gb. It is preferable that the linear velocity is set to be different from either Lva or LVb. More preferably, the linear velocities LVc and LVd are set to be smaller than the relatively large linear velocities of the linear velocities LVa and LVb. This makes it possible to reliably prevent the backflow of the particles P from the fluidized bed 3 to the first loop seal portion 8 while promoting the flow of the particles P from the first loop seal portion 8 to the fluidized bed 3.

第2ループシール部9においても、第1ループシール部8と同様の好適な構造を採用することができる。具体的には、気体導入部5は、第2ループシール部9の下部に設けられた第3分散板51cと、第3分散板51cを通して気体Geを第5流動空間93に向け導入する第5導入口52eと、を更に備えることが好ましい。 The second loop seal portion 9 can also adopt the same suitable structure as the first loop seal portion 8. Specifically, the gas introduction unit 5 introduces the gas Ge toward the fifth flow space 93 through the third dispersion plate 51c provided at the lower part of the second loop seal portion 9 and the third dispersion plate 51c. It is preferable to further provide an introduction port 52e.

そして、第5導入口52eから第5流動空間93に導入する気体Geの線速度Lveが、流動層3内に供給される気体Ga,Gbの線速度Lva,LVbのいずれかと異なるように設定されることが好ましい。さらに好ましくは、線速度LVeが、線速度Lva,LVbのうち比較的大きい線速度より小さく設定される。これにより、流動層3から第2ループシール部9へ向かう粒子Pの流動を促進させつつ、第2ループシール部9から流動層3への粒子Pの逆流を確実に防止することができる。 Then, the linear velocity Lve of the gas Ge introduced into the fifth flow space 93 from the fifth introduction port 52e is set to be different from any of the linear velocity Lva and LVb of the gases Ga and Gb supplied into the fluidized bed 3. Is preferable. More preferably, the linear velocity LV is set to be smaller than the relatively large linear velocity of the linear velocity Lva and LVb. This makes it possible to reliably prevent the backflow of the particles P from the second loop seal portion 9 to the fluidized bed 3 while promoting the flow of the particles P from the fluidized bed 3 to the second loop seal portion 9.

(集熱容器外側の好適な構成)
また、太陽光集熱装置1には、第1・第2搬送路11,12と、蓄熱容器13と、が更に設けられることが好ましい。ここで、第1搬送路11は、粒子排出口7と蓄熱容器13とを連通して粒子Pを集熱容器2から蓄熱容器13へ搬送可能である。一方、第2搬送路12は、蓄熱容器13と粒子導入口6とを連通して粒子Pを蓄熱容器13から集熱容器2へ搬送可能であることを特徴とする。なお、蓄熱容器13には、粒子Pから熱の授受を行う熱交換器14が設けられてもよい。熱交換器14には、気体を導入する入口管15と、熱交換器14から熱を受け取った気体が排出される出口管16とが設けられてもよい。
(Preferable configuration on the outside of the heat collecting container)
Further, it is preferable that the solar heat collecting device 1 is further provided with the first and second transport paths 11 and 12 and the heat storage container 13. Here, the first transport path 11 communicates the particle discharge port 7 and the heat storage container 13 so that the particles P can be transported from the heat collection container 2 to the heat storage container 13. On the other hand, the second transport path 12 is characterized in that the particles P can be transported from the heat storage container 13 to the heat collection container 2 by communicating the heat storage container 13 and the particle introduction port 6. The heat storage container 13 may be provided with a heat exchanger 14 that transfers heat from the particles P. The heat exchanger 14 may be provided with an inlet pipe 15 for introducing gas and an outlet pipe 16 for discharging gas that has received heat from the heat exchanger 14.

上記のような好適な構成部材を集熱容器2の外側に付加することにより、本発明の太陽光集熱装置1は大型化及び連続運転化に対応し、かつ、高効率な太陽光集熱が可能となる。 By adding the above-mentioned suitable components to the outside of the heat collecting container 2, the solar heat collecting device 1 of the present invention can be increased in size and continuously operated, and has high efficiency in solar heat collecting. Is possible.

(水熱分解装置の熱還元反応器への応用)
なお、本発明の集熱容器2を、以下のように水熱分解装置2ds用の熱還元反応器2a(図2(b)を参照)として利用してもよい。この実施例の場合、粒子Pとして、酸化セリウム又は酸化セリウムを担持したジルコニア、或いは、フェライト又はフェライトを担持したジルコニアなどの金属酸化物粒子が選択されることが好ましい。なお、金属酸化物の粒径は、100~750μmの程度が好ましい。また、気体導入部5から供給される気体Gとして、粒子Pを還元可能なガス(例えば、窒素又はアルゴンなどの低酸素分圧ガス)が選択されることが好ましい。
(Application of hydrothermal decomposition equipment to heat reduction reactor)
The heat collecting container 2 of the present invention may be used as a heat reduction reactor 2a (see FIG. 2B) for the hydrothermal decomposition apparatus 2ds as follows. In the case of this embodiment, it is preferable that the particles P are selected from cerium oxide or zirconia carrying cerium oxide, or metal oxide particles such as ferrite or zirconia carrying ferrite. The particle size of the metal oxide is preferably about 100 to 750 μm. Further, as the gas G supplied from the gas introduction unit 5, it is preferable to select a gas capable of reducing the particles P (for example, a low oxygen partial pressure gas such as nitrogen or argon).

なお、特許文献1に示すような従来技術では二塔式流動層の一方の塔を熱還元反応器として、他方の塔を水熱分解(酸化)反応器として使用するものであった。これに対して、実施例2では、二塔式の流動層3を含んだ集熱容器2全体を熱還元反応器2aとして利用することができ、酸化反応器2b(図2(b)を参照)を集熱容器2から分離して、その外側に設ければよい。これにより、実施例2の装置1は分離型反応システム2dsとなり、連続的で高効率な反応を発生・継続させることができるようになる。In the prior art as shown in Patent Document 1, one column of the two-column fluidized bed is used as a thermal reduction reactor and the other column is used as a pyrolysis (oxidation) reactor. On the other hand, in the second embodiment, the entire heat collecting container 2 including the two-tower fluidized bed 3 can be used as the heat reduction reactor 2a, and the oxidation reactor 2b (see FIG. 2B) can be used. ) May be separated from the heat collecting container 2 and provided on the outside thereof. As a result, the apparatus 1 of the second embodiment becomes a separate reaction system 2 ds , and can generate and continue a continuous and highly efficient reaction.

(石炭コークス粒子をガス化させるための反応器への応用)
また、本発明の集熱容器2を、以下のように、石炭コークス粒子をガス化させるための反応器(図示せず)として利用してもよい。この実施例3の場合、粒子Pとして、石炭コークス粒子と流動媒体粒子(例えば、石英砂)とが選択されることが好ましい。流動媒体粒子の粒径は、300μm以下がさらに好ましい。、流動層3内では、石炭コークス粒子と流動媒体粒子(例えば、石英砂)との体積比を、2:8~8:2程度に設定することが好ましい。また、気体導入部5から供給される気体Gとして、水蒸気が選択される。
(Application to reactors for gasifying coal coke particles)
Further, the heat collecting container 2 of the present invention may be used as a reactor (not shown) for gasifying coal coke particles as follows. In the case of the third embodiment, it is preferable that coal coke particles and fluid medium particles (for example, quartz sand) are selected as the particles P. The particle size of the flow medium particles is more preferably 300 μm or less. In the fluidized bed 3, the volume ratio of coal coke particles to fluidized medium particles (for example, quartz sand) is preferably set to about 2: 8 to 8: 2. Further, water vapor is selected as the gas G supplied from the gas introduction unit 5.

(様々な用途への応用可能性)
以上の実施例2,3に示すように、本発明の太陽光集熱装置1は、太陽蓄熱、太陽熱燃料化、石炭コークスガス化、バイオマスガス化、水熱分解法の熱還元反応等の様々な用途に利用できることが理解できよう。さらに、本発明の装置1は、上述したように、粒子Pの内循環と外循環とを上手に組み合わせて発生できる(粒子Pの多重循環が可能である)ため、従来のバッチ式とは異なり、連続的な蓄熱等の反応(高効率な連続稼働)を起こすことができる。
(Applicability to various applications)
As shown in Examples 2 and 3 above, the solar heat collector 1 of the present invention has various aspects such as solar heat storage, solar thermal fuel conversion, coal coke gasification, biomass gasification, and thermal reduction reaction of the hydrothermal decomposition method. You can understand that it can be used for various purposes. Further, as described above, the apparatus 1 of the present invention can be generated by combining the internal circulation and the external circulation of the particles P well (multiple circulations of the particles P are possible), so that the apparatus 1 is different from the conventional batch type. , Continuous heat storage and other reactions (highly efficient continuous operation) can occur.

(粒子の可視化実験装置)
本発明者らは、粒子Pの流動挙動を明らかにすべく、可視化実験装置を製作した。なお、可視化実験装置では、太陽光Sの集熱や照射を考慮に入れないモデル(cold model、図3(a)及び(b)参照)とした。集熱容器2を模擬した可視化流路はアクリル樹脂製の透明素材で作成され、この流路内に粒子Pを供給した。粒子Pとして、流路内の粒子Pの流動状況を可視化し易くするため、青と白の2色の発泡性ポリスチレン製ビーズ(粒子Pの直径は約0.7mm~1.4mm、比重は1.04)を使用した。
(Particle visualization experimental device)
The present inventors have manufactured a visualization experimental device in order to clarify the flow behavior of the particles P. In the visualization experimental device, a model (cold model, see FIGS. 3A and 3B) that does not take into consideration the heat collection and irradiation of sunlight S was used. The visualization flow path simulating the heat collecting container 2 was made of a transparent material made of acrylic resin, and the particles P were supplied into this flow path. As the particles P, in order to make it easier to visualize the flow state of the particles P in the flow path, beads made of foamable polystyrene in two colors of blue and white (diameter of the particles P is about 0.7 mm to 1.4 mm, specific density is 1). .04) was used.

(可視化流路の寸法)
また、可視化流路(集熱容器2)の全幅は約300mm(第1~第5流動空間34,35,83,84,93の各幅50mm)であり、奥行きは30mmである(図3(a)を参照)。すなわち、このコールドモデルでは、夫々の流動空間の断面積は同一となるため、各流動空間を通過する流量の比率と、線速度の比率とは比例するようになる。
(Dimensions of visualization flow path)
Further, the total width of the visualization flow path (heat collecting container 2) is about 300 mm (each width of the first to fifth flow spaces 34, 35, 83, 84, 93 is 50 mm), and the depth is 30 mm (FIG. 3 (FIG. 3). See a)). That is, in this cold model, since the cross-sectional areas of the respective flow spaces are the same, the ratio of the flow rate passing through each flow space is proportional to the ratio of the linear velocity.

(気体Gの流量(線速度)の調節)
粒子Pは、フィーダーによって、17g/minの流量で第1ループシール部8の上方から供給した。気体導入部5における第1~第5流動空間34,35,83,84,93への気体G(Ga~Ge)として空気を使用し、各気体Ga~Geの流量を、Gc=Gd=Ge=20 NL/min(一定量)とし、GaとGbについては、0~80 NL/minの間で夫々の流量を変化させた。
(Adjustment of gas G flow rate (linear velocity))
The particles P were supplied by a feeder from above the first loop seal portion 8 at a flow rate of 17 g / min. Air is used as the gas G (Ga to Ge) to the first to fifth flow spaces 34, 35, 83, 84, 93 in the gas introduction unit 5, and the flow rate of each gas Ga to Ge is set to Gc = Gd = Ge. = 20 NL / min (constant amount), and the flow rates of Ga and Gb were changed between 0 and 80 NL / min.

(気体Gの流量(線速度)の検討結果)
以上の条件で実験した可視化結果を、図4のようにフローマップとして纏めた。図4中の縦軸のVと横軸のVは、左塔(第1流動空間34)と右塔(第2流動空間35)の各線速度(すなわち、上述のLVa,Lvb)を示す。図4中の符号「●」は、粒子Pの動きが観察されなかった状態を示す。なお、「△」は流動層3の左側(第1流動空間34)のみに気泡の発生が観察された状態を示し、「□」は流動層3の右側(第2流動空間35)のみに気泡の発生が観察された状態を示し、「○」は両側(第1・第2流動空間34,35)にて気泡の発生が観察された状態を示す。また、「▲」は、流動層3内で時計回り方向の粒子Pの循環(及び気泡の発生)が観察された状態を示し、一方、「■」は、流動層3内で反時計回り方向の粒子Pの循環(及び気泡の発生)が観察された状態を示す。
(Results of examination of the flow rate (linear velocity) of gas G)
The visualization results of the experiments under the above conditions are summarized as a flow map as shown in FIG. VL on the vertical axis and VR on the horizontal axis in FIG. 4 indicate the linear velocities (that is, the above-mentioned LVa and Lvb) of the left tower (first flow space 34) and the right tower (second flow space 35). .. The symbol “●” in FIG. 4 indicates a state in which the movement of the particle P is not observed. Note that "Δ" indicates a state in which bubbles are observed only on the left side of the fluidized bed 3 (first fluidized space 34), and "□" indicates bubbles only on the right side of the fluidized bed 3 (second fluidized space 35). Indicates a state in which the generation of bubbles is observed, and “◯” indicates a state in which the generation of bubbles is observed on both sides (first and second flow spaces 34 and 35). Further, "▲" indicates a state in which circulation of particles P in the clockwise direction (and generation of bubbles) is observed in the fluidized bed 3, while "■" indicates a counterclockwise direction in the fluidized bed 3. The state in which the circulation (and the generation of bubbles) of the particles P of the particles P is observed is shown.

なお、図5(a)は、反時計回り方向の循環が観察された粒子Pの流動状況の一例を示す。以上のように、供給空気G(Ga、Gb)の線速度を適宜、変更することで二塔式流動層3での粒子Pの循環方向を変更できることも確認できた。 Note that FIG. 5A shows an example of the flow state of the particles P in which circulation in the counterclockwise direction was observed. As described above, it was also confirmed that the circulation direction of the particles P in the two-column fluidized bed 3 can be changed by appropriately changing the linear velocity of the supply air G (Ga, Gb).

(色分け実験)
次に、第1~第5流動空間34,35,83,84,93を順番に青色の粒子Pと白色粒子Pとに分けて充填し、フィーダーから供給される粒子Pも白色の粒子Pを選択して、粒子Pの可視化を行った。なお、各気体Ga~Geの流量として、Gb=Gc=Gd=Ge=20 NL/minとし、Ga=55 NL/min(Ga>Gb)に設定した。
(Color-coded experiment)
Next, the first to fifth flow spaces 34, 35, 83, 84, 93 are sequentially filled with the blue particles P and the white particles P, and the particles P supplied from the feeder are also filled with the white particles P. A selection was made to visualize the particles P. The flow rate of each gas Ga to Ge was set to Gb = Gc = Gd = Ge = 20 NL / min and Ga = 55 NL / min (Ga> Gb).

(色分け実験の結果)
図6に測定開始直後(t=0[s])からt=5[s]までの間の一定時間毎の粒子Pの可視化画像を示す。なお、図5(b)はt=4[s]時の粒子Pの可視化画像に粒子Pの流れ方向を示す矢印を追加した図である。この試験条件では、中央部の二塔式流動層3において「時計回り」の粒子Pの内循環を起こしながら、第2ループシール部9へ粒子Pを安定に供給して粒子排出口7から粒子Pを排出することを確認できた。
(Results of color-coding experiment)
FIG. 6 shows a visualization image of the particle P at regular time intervals from immediately after the start of measurement (t = 0 [s]) to t = 5 [s]. Note that FIG. 5B is a diagram in which an arrow indicating the flow direction of the particle P is added to the visualization image of the particle P at t = 4 [s]. Under this test condition, the particles P are stably supplied to the second loop seal portion 9 while causing the internal circulation of the particles P in the “clockwise” in the two-tower fluidized bed 3 in the central portion, and the particles are discharged from the particle discharge port 7. It was confirmed that P was discharged.

本発明の太陽光集熱装置及び太陽光集熱方法は、上述したように、その集熱容器内において、流動層に第1・第2ループシール部の少なくとも一方を接続した構成(好ましくは、流動層を両側から第1・第2ループシール部によって挟持した構成)を採用する。これにより、照射部直下の流動層において粒子の内循環流動を確実に発生させながら、集熱容器の外部からの粒子の導入及び/又は外部への排出(粒子の外循環流動)も同時に発生させることが可能となった。 As described above, the solar heat collecting device and the solar heat collecting method of the present invention have a configuration in which at least one of the first and second loop seal portions is connected to the fluidized bed in the heat collecting container (preferably). (Structure in which the fluidized bed is sandwiched by the first and second loop seal portions from both sides) is adopted. As a result, while ensuring the internal circulation flow of the particles in the fluidized bed directly under the irradiation unit, the introduction and / or the discharge of the particles from the outside of the heat collecting container (outside circulation flow of the particles) is also generated at the same time. It became possible.

しかも、本発明の好適な態様の第1・第2ループシール部を採用すれば、各シール部にて逆流防止や所望方向への流動促進が図られるために、粒子導入口~流動層~粒子排出口へと粒子を確実に流動させることが可能となる。 Moreover, if the first and second loop seal portions of the preferred embodiment of the present invention are adopted, backflow can be prevented and flow can be promoted in a desired direction at each seal portion. It is possible to reliably flow the particles to the discharge port.

本発明の太陽光集熱装置は、太陽蓄熱、太陽熱燃料化、石炭コークスガス化、バイオマスガス化、水熱分解法の熱還元反応等の様々な用途に利用できる。これだけでなく、本発明の装置は、粒子の内循環と外循環とを上手に組み合わせた構成であるため、従来のバッチ式とは異なり、連続的な蓄熱等の反応(高効率な連続稼働)を起こすことができる。 The solar heat collector of the present invention can be used for various purposes such as solar heat storage, solar thermal fuel conversion, coal coke gasification, biomass gasification, and thermal reduction reaction of a hydrothermal decomposition method. Not only this, the apparatus of the present invention has a configuration in which the internal circulation and the external circulation of particles are well combined, so that unlike the conventional batch type, the reaction such as continuous heat storage (highly efficient continuous operation). Can be caused.

言い換えれば、本発明は、装置の大型化に対応し、かつ、高効率な太陽光集熱を可能とするものとなる。 In other words, the present invention can cope with an increase in the size of an apparatus and enable highly efficient solar heat collection.

このように、本発明は、産業上の利用価値及び産業上の利用可能性が非常に高い。 As described above, the present invention has very high industrial applicability and industrial applicability.

1 太陽光集熱装置
2 集熱容器
2a 熱還元反応器
2b 酸化反応器
ds 水熱分解装置(分離型反応システム)
3 流動層
4 照射部
5 気体導入部
6 粒子導入口
7 粒子排出口
8 第1ループシール部
9 第2ループシール部
10 気体排出部
11,12 第1・第2搬送路
13 蓄熱容器
14 熱交換器
15,16 熱交換器の入口管,出口管
21 集熱容器の天板
22 集熱容器の前後方向の側板
23 集熱容器の左右方向の側板
23a 照射部用側板
24 伸長部
31,32 流動層の第1・第2開口部
33 第1仕切板
34,35 流動層の第1・第2流動空間
41 照射部の窓
42 冷却流路
42a,42b 冷却流路の入口管,出口管
51a,51b,51c 気体導入部の第1・第2・第3分散板
52a,52b,52c,52d,52e 第1・第2・第3・第4・第5導入口
81 第1ループシール部の下部開口部
82 第2仕切板
83,84 第1ループシール部の第3・第4流動空間
85 第1壁
86 シール出口
91 第2ループシール部の上部開口部
92 第3仕切板
93,94 第1ループシール部の第5・第6流動空間
95 第2壁
96 シール入口
G(Ga,Gb,Gc,Gd,Ge) 気体導入部より供給する気体
LVa,LVb,LVc,LVd,LVe 気体導入部より供給する気体の線速度
P 蓄熱用粒子
S 集光された太陽光
1 Solar heat collector 2 Heat collector 2a Heat reduction reactor 2b Oxidation reactor 2 ds Hydrothermal decomposition device (separate type reaction system)
3 Flow layer 4 Irradiation part 5 Gas introduction part 6 Particle introduction port 7 Particle discharge port 8 1st loop seal part 9 2nd loop seal part 10 Gas discharge part 11, 12 1st and 2nd transport paths 13 Heat storage container 14 Heat exchange Heat exchanger inlet and outlet pipes 21 Heat exchanger top plate 22 Front-rear side plate of heat collector container 23 Left-right side plate of heat collector container 23a Irradiation part side plate 24 Extension part 31, 32 Flow 1st and 2nd openings of the layer 33 1st partition plate 34, 35 1st and 2nd flow space of the flow layer 41 Window of the irradiation part 42 Cooling flow path 42a, 42b Cooling flow path inlet pipe, outlet pipe 51a, 51b, 51c 1st, 2nd, 3rd dispersion plate of gas introduction part 52a, 52b, 52c, 52d, 52e 1st, 2nd, 3rd, 4th, 5th introduction port 81 Lower part of 1st loop seal part Opening 82 2nd partition plate 83,84 3rd and 4th flow space of 1st loop seal part 85 1st wall 86 Seal outlet 91 Upper opening of 2nd loop seal part 92 3rd partition plate 93,94 1st 5th and 6th flow space of loop seal part 95 2nd wall 96 Seal inlet G (Ga, Gb, Gc, Gd, Ge) Gas supplied from gas introduction part LVa, LVb, LVc, LVd, LVe From gas introduction part Linear velocity of gas to be supplied P Heat storage particles S Condensed sunlight

Claims (12)

流動層と照射部と気体導入部とが設けられた集熱容器を備えた太陽光集熱装置であって、
前記流動層は、前記集熱容器内に設けられた第1・第2開口部と、第1・第2開口部との間に設けられた第1仕切板と、第1仕切板によって仕切られつつ第1・第2開口部に接続された第1・第2流動空間と、第1・第2流動空間内の粒子と、を備え、
前記照射部は、前記集熱容器に設けられた窓を備え、かつ、該窓を通して、集光された太陽光を案内して前記粒子へ照射し、
前記気体導入部は、前記流動層に設けられた第1分散板と、第1分散板を通して気体を第1・第2流動空間に向け導入する第1・第2導入口とを備え、かつ、第1導入口から第1流動空間に導入する気体の線速度を、第2導入口から第2流動空間に導入する気体の線速度より異ならせることで、第1流動空間と第2流動空間との間で前記粒子の内循環流動を発生させ、
前記集熱容器は、前記粒子を導入・排出する粒子導入口及び粒子排出口と、前記流動層に接続された第1・第2ループシール部の少なくとも一方を更に備え、
第1ループシール部は、前記粒子導入口と第1流動空間とを接続して、第1流動空間へ前記粒子を供給し、
第2ループシール部は、第2流動空間と前記粒子排出口とを接続して、第2流動空間内の前記粒子を前記粒子排出口へ供給することを特徴とする太陽光集熱装置。
It is a solar heat collector equipped with a heat collecting container provided with a fluidized bed, an irradiation part, and a gas introduction part.
The fluidized bed is partitioned by a first partition plate provided between the first and second openings provided in the heat collecting container and the first and second openings, and a first partition plate. It is provided with the first and second flow spaces connected to the first and second openings and the particles in the first and second flow spaces.
The irradiation unit includes a window provided in the heat collecting container, and guides the condensed sunlight through the window to irradiate the particles.
The gas introduction unit includes a first dispersion plate provided in the flow layer and first and second introduction ports for introducing gas toward the first and second flow spaces through the first dispersion plate, and By making the linear velocity of the gas introduced from the first introduction port into the first flow space different from the linear velocity of the gas introduced into the second flow space from the second introduction port, the first flow space and the second flow space can be obtained. An internal circulation flow of the particles is generated between the particles.
The heat collecting container further includes at least one of a particle introduction port and a particle discharge port for introducing and discharging the particles, and at least one of the first and second loop seal portions connected to the fluidized bed.
The first loop seal portion connects the particle introduction port and the first flow space to supply the particles to the first flow space.
The second loop seal portion is a solar heat collecting device characterized in that the second flow space and the particle discharge port are connected to supply the particles in the second flow space to the particle discharge port.
前記集熱容器には、第1・第2ループシール部の双方が設けられ、
第1ループシール部は前記流動層の一方の側に設けられ、かつ、
第2ループシール部は前記流動層の他方の側に設けられていることを特徴とする請求項1に記載の太陽光集熱装置。
Both the first and second loop seal portions are provided in the heat collecting container, and the heat collecting container is provided with both first and second loop seal portions.
The first loop seal portion is provided on one side of the fluidized bed, and
The solar heat collecting device according to claim 1, wherein the second loop seal portion is provided on the other side of the fluidized bed.
前記照射部の前記窓は前記集熱容器の上部に設けられ、かつ、前記気体導入部の第1分散板は前記流動層の下部に設けられることを特徴とする請求項2に記載の太陽光集熱装置。 The sunlight according to claim 2, wherein the window of the irradiation unit is provided in the upper part of the heat collecting container, and the first dispersion plate of the gas introduction part is provided in the lower part of the fluidized bed. Heat collector. 第1ループシール部は、下部開口部と、該下部開口部より上方に延びた第2仕切板と、第2仕切板によって仕切られつつ前記下部開口部で互いに接続された第3・第4流動空間と、第4流動空間と前記流動層の第1流動空間とを区分する第1壁と、第4流動空間の上部に設けられ、第1流動空間に接続するシール出口と、を更に備え、
前記粒子導入口が第3流動空間の上部に接続されることで、新たな粒子が前記集熱容器の外部から第1ループシール部へ導入され、第3・第4流動空間及び前記シール出口を通して、前記流動層の第1流動空間へ案内されることを特徴とする請求項3に記載の太陽光集熱装置。
The first loop seal portion includes a lower opening, a second partition plate extending upward from the lower opening, and third and fourth fluidized beds separated by the second partition plate and connected to each other by the lower opening. Further provided with a first wall that separates the space, the fourth fluidized space and the first fluidized space of the fluidized bed, and a seal outlet provided above the fourth fluidized space and connected to the first fluidized space.
By connecting the particle introduction port to the upper part of the third flow space, new particles are introduced from the outside of the heat collecting container into the first loop seal portion, and pass through the third and fourth flow spaces and the seal outlet. The solar heat collector according to claim 3, wherein the solar heat collector is guided to the first fluidized space of the fluidized bed.
第2ループシール部は、上部開口部と、該上部開口部より下方に延びた第3仕切板と、第3仕切板によって仕切られつつ前記上部開口部で互いに接続された第5・第6流動空間と、第5流動空間と前記流動層の第2流動空間とを区分する第2壁と、を更に備え、第5流動空間の下部に設けられ、第2流動空間に接続するシール入口と、を更に備え、
前記粒子排出口が第6流動空間の下部に接続されることで、前記流動層において内循環された前記粒子が前記シール入口から第2ループシール部内へ導入され、第5・第6流動空間を介して前記粒子排出口から前記集熱容器外部へ排出されることを特徴とする請求項3又は4に記載の太陽光集熱装置。
The second loop seal portion includes an upper opening, a third partition plate extending downward from the upper opening, and fifth and sixth fluidized beds connected to each other by the upper opening while being partitioned by the third partition plate. A space and a second wall that separates the fifth flow space from the second flow space of the fluidized bed are further provided, and a seal entrance provided at the lower part of the fifth flow space and connected to the second flow space. Further prepared,
By connecting the particle discharge port to the lower part of the sixth fluidized space, the particles internally circulated in the fluidized bed are introduced from the seal inlet into the second loop seal portion, and the fifth and sixth fluidized spaces are introduced. The solar heat collecting device according to claim 3 or 4, wherein the particles are discharged from the particle discharge port to the outside of the heat collecting container.
前記気体導入部は、
第1ループシール部の下部に設けられた第2分散板と、
第2分散板を通して気体を第3・第4流動空間に向け導入する第3・第4導入口と、
を更に備えることを特徴とする請求項4又は5に記載の太陽光集熱装置。
The gas introduction section is
The second dispersion plate provided at the bottom of the first loop seal portion and
The 3rd and 4th introduction ports that introduce gas into the 3rd and 4th flow spaces through the 2nd dispersion plate,
The solar heat collector according to claim 4 or 5, further comprising.
前記気体導入部は、
第2ループシール部の下部に設けられた第3分散板と、
第3分散板を通して気体を第5流動空間に向け導入する第5導入口と、
を更に備えることを特徴とする請求項5又は6に記載の太陽光集熱装置。
The gas introduction section is
The third dispersion plate provided at the bottom of the second loop seal portion and
A fifth inlet that introduces gas toward the fifth flow space through the third dispersion plate,
The solar heat collector according to claim 5 or 6, further comprising.
前記太陽光集熱装置には、第1・第2搬送路と、蓄熱容器と、が更に設けられ、かつ、
第1搬送路は、前記粒子排出口と前記蓄熱容器とを連通して前記粒子を前記集熱容器から前記蓄熱容器へ搬送可能であり、
第2搬送路は、前記蓄熱容器と前記粒子導入口とを連通して前記粒子を前記蓄熱容器から前記集熱容器へ搬送可能であることを特徴とする請求項2~7のいずれかに記載の太陽光集熱装置。
The solar heat collector is further provided with first and second transport paths and a heat storage container, and
The first transport path communicates the particle discharge port with the heat storage container so that the particles can be transported from the heat collecting container to the heat storage container.
The second transport path according to any one of claims 2 to 7, wherein the particles can be transported from the heat storage container to the heat collecting container by communicating the heat storage container and the particle introduction port. Solar heat collector.
前記粒子として、石英砂、鉄酸化物、及び、炭化珪素の群のうち少なくとも1種類が選択されることを特徴とする請求項2~8のいずれかに記載の太陽光集熱装置。 The solar heat collector according to any one of claims 2 to 8, wherein at least one of the group of quartz sand, iron oxide, and silicon carbide is selected as the particles. 前記粒子として、金属酸化物粒子が選択され、かつ、
前記気体導入部から供給される前記気体として前記粒子を還元可能なガスが選択され、
前記集熱容器を水熱分解法の熱還元反応器として利用することを特徴とする請求項2~8のいずれかに記載の太陽光集熱装置。
Metal oxide particles are selected as the particles, and
A gas capable of reducing the particles is selected as the gas supplied from the gas introduction unit, and a gas capable of reducing the particles is selected.
The solar heat collector according to any one of claims 2 to 8, wherein the heat collecting container is used as a heat reduction reactor of a hydrothermal decomposition method.
前記粒子として、石炭コークス粒子及び流動媒体粒子が選択され、かつ、
前記気体導入部から供給される前記気体として水蒸気が選択され
前記集熱容器を、石炭コークス粒子をガス化させるための反応器として利用することを特徴とする請求項2~8のいずれかに記載の太陽光集熱装置。
Coal coke particles and flow medium particles are selected as the particles, and
The invention according to any one of claims 2 to 8, wherein steam is selected as the gas supplied from the gas introduction unit, and the heat collecting container is used as a reactor for gasifying coal coke particles. Solar heat collector.
請求項2~11のいずれかに記載の太陽光集熱装置を用いた太陽光集熱方法であって、
前記流動層及び第1・第2ループシール部に前記粒子を予め充填し、
前記気体導入部から第1分散板を介して、第1・第2流動空間に気体を導入し、
第1グループシール部に接続された前記粒子導入口から前記粒子を新たに導入し、
第2グループシール部に接続された前記粒子排出口から前記粒子を排出し、
第1・第2流動空間へ導入される気体の線速度を異なるように設定して、第1流動空間と第2流動空間との間で前記粒子の内循環流動を発生させることを特徴とする太陽光集熱方法。
A method for collecting solar heat using the solar heat collecting device according to any one of claims 2 to 11.
The fluidized bed and the first and second loop seal portions are prefilled with the particles.
A gas is introduced into the first and second flow spaces from the gas introduction portion via the first dispersion plate, and the gas is introduced.
The particles are newly introduced from the particle introduction port connected to the first group seal portion, and the particles are newly introduced.
The particles are discharged from the particle discharge port connected to the second group seal portion, and the particles are discharged.
It is characterized in that the linear velocity of the gas introduced into the first and second flow spaces is set to be different, and the internal circulation flow of the particles is generated between the first flow space and the second flow space. Solar heat collection method.
JP2019519197A 2017-05-16 2018-05-09 A solar heat collecting device provided with a fluidized bed and a solar heat collecting method using the same. Active JP7061809B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017097466 2017-05-16
JP2017097466 2017-05-16
PCT/JP2018/018005 WO2018212046A1 (en) 2017-05-16 2018-05-09 Solar heat collection device provided with fluidized bed, and method for collecting solar heat using same

Publications (2)

Publication Number Publication Date
JPWO2018212046A1 JPWO2018212046A1 (en) 2020-03-19
JP7061809B2 true JP7061809B2 (en) 2022-05-02

Family

ID=64273855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519197A Active JP7061809B2 (en) 2017-05-16 2018-05-09 A solar heat collecting device provided with a fluidized bed and a solar heat collecting method using the same.

Country Status (2)

Country Link
JP (1) JP7061809B2 (en)
WO (1) WO2018212046A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105479A1 (en) * 2021-06-15 2022-12-21 John Cockerill Renewables S.A. Particle heat exchanger for a solar tower power plant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038553A1 (en) 2012-09-05 2014-03-13 国立大学法人新潟大学 Heat collection/heat storage device using sunlight
JP2014181306A (en) 2013-03-21 2014-09-29 Ihi Corp Gasified gas production system
CN104482663A (en) 2014-12-12 2015-04-01 浙江大学 Heat collection and energy storage method of solar dual-cavity type metallic oxide particles and device thereof
WO2015048845A1 (en) 2013-10-02 2015-04-09 Adelaide Research & Innovation Pty Ltd A hybrid solar and chemical looping combustion system
JP2015086232A (en) 2013-10-28 2015-05-07 国立大学法人 新潟大学 Coal-coke gasification apparatus and method by using internally circulating fluidized layer
JP2016044829A (en) 2014-08-20 2016-04-04 株式会社Ihi Dryer and method for drying watery substance
JP5986589B2 (en) 2012-01-31 2016-09-06 国立大学法人 新潟大学 Hydrothermal decomposition apparatus and hydrothermal decomposition method using internal circulating fluidized bed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5986589B2 (en) 2012-01-31 2016-09-06 国立大学法人 新潟大学 Hydrothermal decomposition apparatus and hydrothermal decomposition method using internal circulating fluidized bed
WO2014038553A1 (en) 2012-09-05 2014-03-13 国立大学法人新潟大学 Heat collection/heat storage device using sunlight
JP2014181306A (en) 2013-03-21 2014-09-29 Ihi Corp Gasified gas production system
WO2015048845A1 (en) 2013-10-02 2015-04-09 Adelaide Research & Innovation Pty Ltd A hybrid solar and chemical looping combustion system
JP2015086232A (en) 2013-10-28 2015-05-07 国立大学法人 新潟大学 Coal-coke gasification apparatus and method by using internally circulating fluidized layer
JP2016044829A (en) 2014-08-20 2016-04-04 株式会社Ihi Dryer and method for drying watery substance
CN104482663A (en) 2014-12-12 2015-04-01 浙江大学 Heat collection and energy storage method of solar dual-cavity type metallic oxide particles and device thereof

Also Published As

Publication number Publication date
JPWO2018212046A1 (en) 2020-03-19
WO2018212046A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6972086B2 (en) Structures and technologies for the capture and regeneration of carbon dioxide
ES2414079T3 (en) Fluidized bed reactor system
CN102631905B (en) Desulfurized activated carbon regenerating column and method
US5505907A (en) Apparatus for treating or utilizing a hot gas flow
US20160030904A1 (en) Distributing secondary solids in packed moving bed reactors
WO2004076031A1 (en) Method and apparatus for separating and recovering carbon dioxide
CN106247323A (en) A kind of chemical chain combustion apparatus based on tower bubbling fluidized bed fuel reactor and method thereof
Kongkitisupchai et al. Carbon dioxide capture using solid sorbents in a fluidized bed with reduced pressure regeneration in a downer
Meyer et al. Sustainable hydrogen production from biogas using sorption-enhanced reforming
RU2015140976A (en) DIRECT RECOVERY METHOD WITH IMPROVED PRODUCT QUALITY AND TECHNOLOGICAL GAS EFFICIENCY
Khongprom et al. Compact fluidized bed sorber for CO2 capture
CN111712314A (en) Mass transfer system
May et al. Reactive two–fluid model for chemical–looping combustion–Simulation of fuel and air reactors
JP7061809B2 (en) A solar heat collecting device provided with a fluidized bed and a solar heat collecting method using the same.
CN110770525A (en) Reaction device with heat exchanger and use thereof
US20140374053A1 (en) Method of air preheating for combustion power plant and systems comprising the same
KR101509389B1 (en) Stack of plate type reactor for capturing of carbon dioxide
CN109831927A (en) For generating electricity and producing H2The method and power generator including solid oxide fuel cell (SOFC) of gas
CN102371136A (en) Production of enriched CH4Reactor system for gases with coaxial closed sandwich structure and method for using the same
CN102124084B (en) Fluidized-bed gasification method and facility therefor
JP5986589B2 (en) Hydrothermal decomposition apparatus and hydrothermal decomposition method using internal circulating fluidized bed
CN105859502A (en) Reaction system and method for preparing ethylene
US20090123346A1 (en) Modular Fluidised Bed Reactor
US4149586A (en) Heat transfer process and apparatus
JPS59217605A (en) Apparatus for generating hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220412

R150 Certificate of patent or registration of utility model

Ref document number: 7061809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150