WO2013115305A1 - Method for producing sugar and alcohol from cellulosic biomass, and microorganisms used for same - Google Patents

Method for producing sugar and alcohol from cellulosic biomass, and microorganisms used for same Download PDF

Info

Publication number
WO2013115305A1
WO2013115305A1 PCT/JP2013/052170 JP2013052170W WO2013115305A1 WO 2013115305 A1 WO2013115305 A1 WO 2013115305A1 JP 2013052170 W JP2013052170 W JP 2013052170W WO 2013115305 A1 WO2013115305 A1 WO 2013115305A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
saccharification
cellulosic biomass
minutes
biomass
Prior art date
Application number
PCT/JP2013/052170
Other languages
French (fr)
Japanese (ja)
Inventor
渉 小笠原
光 中澤
岡田 宏文
川口 剛司
順一 炭谷
修治 谷
康 森川
良則 小林
Original Assignee
国立大学法人長岡技術科学大学
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長岡技術科学大学, 公立大学法人大阪府立大学 filed Critical 国立大学法人長岡技術科学大学
Priority to JP2013556492A priority Critical patent/JP6114200B2/en
Publication of WO2013115305A1 publication Critical patent/WO2013115305A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing sugar by saccharifying cellulosic biomass, a method for producing ethanol by fermenting sugar produced by the method, and a cellulase-producing bacterium used in these methods.
  • Non-Patent Documents 1 to 3 disclose ethanol and other chemicals from cellulosic biomass such as agricultural waste and wood that do not compete with food and feed.
  • a method has been developed in which wood is saccharified with sulfuric acid to form a monosaccharide such as glucose or xylose, and then this monosaccharide is fermented with yeast or bacteria to obtain ethanol.
  • this method has a problem in that it is difficult to recover and reuse the strong acid used, and in terms of the environmental characteristics when treating waste.
  • cellulase and hemicellulase produced by various microorganisms are generally used.
  • Cellulase is composed of enzyme proteins having various mechanisms of action. Enzymes that act on cellulose in biomass include endoglucanase (EG) that acts on amorphous cellulose and breaks the cellulose chain, and sugars in cellobiose units from the ends of crystalline and amorphous cellulose fibers.
  • EG endoglucanase
  • CBH cellobiohydrolase
  • BGL ⁇ -glucosidase
  • hemicellulases that act on hemicellulose, which is a biomass component, include xylanase and ⁇ -xylosidase.
  • Cellulose biomass saccharifying enzymes include the above-mentioned enzymes, but in reality, each of these enzymes is further composed of a number of components classified by the carbohydrate hydrolase family. Is very complex.
  • the cellulase-producing bacteria strains belonging to the genus Trichoderma, e.g., Trichoderma reesei or Trichoderma viride is famous, have been industrially used (Non-patent document 4).
  • Non-patent document 4 As research on biomass saccharification using cellulase produced by a strain belonging to the genus Trichoderma progresses, the biggest drawback of this cellulase is that ⁇ -glucosidase activity is related to other enzyme activities (endoglucanase activity, cellobiohydrolase activity) Etc.) has been closed up. Accordingly, Cellic CTec, Cellic CTec2 (Novozymes) and Accellerase 1500 (Genencor) have been developed as improved products with enhanced ⁇ -glucosidase activity.
  • biomass saccharification can be completed in a smaller amount than these improved enzymes.
  • the development of a new high-performance saccharifying enzyme that is possible is strongly desired.
  • the present inventors obtained a gene ( bgl1 ) of ⁇ -glucosidase (BGL), which is derived from Aspergillus and exhibits high specific activity on cellobiose, from the gene of xylanase 3 ( xyn3 ) possessed by the microorganism of the genus Trichoderma .
  • BGL ⁇ -glucosidase
  • xyn3 xylanase 3
  • This invention is made
  • the objective developed the microorganisms which produce the enzyme which has high saccharification ability with respect to cellulosic biomass, and uses the enzyme which the said microorganisms produce.
  • An object of the present invention is to provide a method capable of efficiently saccharifying cellulosic biomass. It is a further object of the present invention to provide a method for producing ethanol by fermenting sugar thus obtained from cellulosic biomass.
  • the present inventors further examined a promoter for expressing a ⁇ -glucosidase gene ( bgl1 ) derived from a microorganism belonging to the genus Aspergillus in a microorganism belonging to the genus Trichoderma . .
  • Non-patent Document 5 using the promoter of the enzyme gene such as Trichoderma microorganism of cellobiohydrolase is a major component of the cellulase I (CBHl) or endoglucanase I (EG1), to express foreign genes in Trichoderma microorganism
  • CBHl cellulase I
  • EG1 endoglucanase I
  • this is a ⁇ -glucosidase gene derived from a microorganism belonging to the genus Aspergillus in the promoter of the CBH1 gene ( cbh1 promoter) or the promoter of the EG1 gene ( egl1 promoter) of the Trichoderma reesei PC-3-7 strain.
  • Bgl1 was ligated, a transformant into which this was introduced was prepared, and the characteristics of the saccharifying enzymes produced by the transformant were compared and evaluated.
  • the saccharifying enzyme produced using egl1 promoter is produced not only for biomass pretreated products with high hemicellulose content but also for biomass pretreated products and crystalline cellulose with low hemicellulose content using commercially available enzymes and cbh1 promoter.
  • the saccharification enzyme showed higher saccharification ability.
  • the present invention relates to a transformant expressing a ⁇ -glucosidase gene ( bgl1 ) derived from a microorganism belonging to the genus Aspergillus using the promoter of egl1 of the microorganism belonging to the genus Trichoderma, and a highly functionalized saccharification produced from the transformant
  • the present invention relates to a method for saccharifying cellulosic biomass using an enzyme, and a method for producing ethanol from the sugar thus produced as a raw material, and more specifically, provides the following inventions.
  • the genus Trichoderma in a microorganism belonging to the genus Trichoderma which ⁇ - glucosidase gene derived from microorganisms belonging to the genus Aspergillus that are enabled coupled expressed egl1 promoter was introduced in a microorganism belonging.
  • the microorganism according to (1) or (2), wherein the microorganism belonging to the genus Aspergillus is Aspergillus aculeatus .
  • the method for producing a saccharification enzyme according to (4) comprising a step of culturing the microorganism according to any one of (1) to (3).
  • a method for producing sugar from cellulosic biomass comprising the step of saccharifying cellulosic biomass with the saccharifying enzyme according to (4).
  • a method for producing ethanol comprising a step of fermenting a sugar obtained by carrying out the method according to (6).
  • Microorganism belonging to the genus Trichoderma expressing ⁇ - glucosidase gene derived from a microorganism belonging to the genus Aspergillus under the control of the egl1 promoter of a microorganism belonging to the genus Trichoderma are capable of producing a saccharifying enzyme having excellent saccharification ability.
  • saccharifying enzyme produced by the transformant of the present invention is used, saccharification of cellulosic biomass can be completed in a very small amount as compared with conventional saccharifying enzymes.
  • ethanol can be efficiently produced by fermenting the sugar thus obtained from cellulosic biomass.
  • the present invention provides a microorganism belonging to the genus Trichoderma into which a ⁇ -glucosidase gene derived from a microorganism belonging to the genus Aspergillus that is linked to the egl1 promoter of a microorganism belonging to the genus Trichoderma and capable of expression is introduced.
  • the specific activity of the produced ⁇ -glucosidase with respect to cellobiose is compared with the case of ⁇ -glucosidase produced by the microorganism belonging to the genus Trichoderma.
  • Aspergillus aculeatus is preferable.
  • Aspergillus aculeatus ⁇ -glucosidase 1 has a characteristic of extremely high specific activity against cellobiose compared to ⁇ -glucosidase 1 (BGL1) derived from Trichoderma reesei (results of measurement by the present inventors, as a result of Trichoderma BGL1 derived from reesei had a specific activity of 19 U / mg, whereas BGL1 derived from Aspergillus aculeatus had a specific activity of 186 U / mg).
  • the ⁇ -glucosidase gene used in the present invention may be a gene having a natural sequence as long as it has the desired activity, and one or more mutations (base addition, deletion, substitution, insertion) have been introduced. It may be.
  • the base sequence of cDNA of Aspergillus aculeatus- derived ⁇ -glucosidase 1 (BGL1) is shown in SEQ ID NO: 1
  • the amino acid sequence encoded by the cDNA is shown in SEQ ID NO: 2.
  • the “microorganism belonging to the genus Trichoderma ” used as a host in the present invention is not particularly limited as long as it can increase the saccharification ability of cellulosic biomass by introducing a ⁇ -glucosidase gene derived from a microorganism belonging to the genus Aspergillus.
  • Trichoderma reesei is preferable, and PC-3-7 strain that is a mutant derived from Trichoderma reesei and its derivatives are more preferable.
  • the enzyme activity inherent to the microorganisms belonging to the genus Trichoderma can be reduced so that the enzyme produced by the transformant can exhibit excellent saccharification activity. It is necessary to express an exogenous ⁇ -glucosidase gene.
  • an egl1 promoter of a microorganism belonging to the genus Trichoderma is used in the present invention.
  • Microorganisms belonging to the genus Trichoderma that expressed the ⁇ -glucosidase gene under the control of the egl1 promoter are higher than microorganisms belonging to the genus Trichoderma that expressed the ⁇ -glucosidase gene under the control of the xyn3 promoter or the cbh1 promoter
  • Producing a saccharifying enzyme having saccharifying ability is an unexpected and surprising finding.
  • the microorganism belonging to the genus Trichoderma from which the egl1 promoter is derived is preferably Trichoderma reesei .
  • the nucleotide sequence of Trichoderma reesei egl1 promoter is shown in SEQ ID NO: 7.
  • the egl1 promoter used in the present invention may have a natural sequence as long as it has an activity of expressing a gene linked downstream thereof, and may have one or more mutations (base addition, deletion, substitution, Insertion) may be introduced.
  • the egl1 gene region can be used as the target region.
  • a recombinant vector can be used, and this recombinant vector can include a structure consisting of “ egl1 gene promoter region- ⁇ -glucosidase gene- egl1 gene terminator region”.
  • pPegl1-gus which is a vector containing 3 kb upstream and downstream of the egl1 gene, by replacing the gus region with a ⁇ -glucosidase gene (eg, egl1 cDNA derived from Aspergillus aculeatus )
  • a recombinant vector can be constructed.
  • genetic manipulations such as gene recombination and introduction of a vector into a host, techniques known to those skilled in the art can be used.
  • the transformant thus produced produces an excellent cellulosic biomass saccharifying enzyme.
  • an enzyme that degrades cellulose is referred to as cellulase
  • an enzyme that degrades hemicellulose is referred to as hemicellulase.
  • the “saccharifying enzyme of cellulosic biomass” in the present invention is meant to include both of these enzymes.
  • the saccharifying enzyme produced by the transformant of the present invention is not limited to a biomass pre-treated product having a high hemicellulose content, but also to a biomass pre-treated product or crystalline cellulose having a low hemicellulose content using a commercially available enzyme or cbh1 promoter. It shows higher saccharification performance than the produced saccharifying enzyme. For this reason, the final ethanol production efficiency can be remarkably improved by using the microorganism of the present invention.
  • Cultivation of transformants for producing saccharifying enzymes can be performed by those skilled in the art under commonly used culture conditions.
  • the sugar source used for the culture include various celluloses such as Avicel, filter paper powder, cellulose-containing biomass and lactose, and examples of the nitrogen source include ammonium sulfate, polypeptone, gravy, CSL, and soybean meal.
  • components required for producing the target cellulase can be added to the medium.
  • xylanase can be increased by adding various xylan components to the medium.
  • various culture methods such as shaking culture, stirring culture, stirring and shaking culture, stationary culture, and continuous culture can be adopted, and shaking culture or stirring culture is preferable.
  • the culture temperature is usually 20 ° C. to 35 ° C., preferably 25 ° C. to 31 ° C.
  • the culture time is usually 4 to 10 days, preferably 4 to 9 days.
  • the present invention provides a saccharification enzyme of cellulosic biomass produced from the transformant and a method for producing a saccharification enzyme of cellulosic biomass including a step of culturing the transformant.
  • the present invention also provides a method for producing sugar from cellulosic biomass, including a step of saccharifying cellulosic biomass with a saccharifying enzyme of cellulosic biomass produced by the transformant of the present invention.
  • the “cellulosic biomass” used in the present invention may be a herbaceous plant, a woody plant, or a processed product or waste thereof.
  • herbaceous plants include rice, Elianthus, wheat, sugarcane, reeds, Japanese pampas grass, corn, sorghum, napiergrass, switchgrass, Miscanthus, etc.
  • woody plants include cedars, eucalyptus
  • Examples include, but are not limited to, cypress, pine, rice eel, poplar, birch, willow, squirrel, oak, oak, shii, beech, acacia, bamboo, sasa, oil palm and sago palm.
  • biomass is difficult to undergo saccharification by cellulase as it is. For this reason, before performing saccharification by a cellulase, it is preferable to perform the process for changing a cellulose biomass into the form which is easy to receive the saccharification by an enzyme.
  • the pretreatment method for cellulosic biomass in the present invention is not particularly limited, but is mechanochemical pulverization method, hydrothermal treatment, alkali treatment (for example, caustic soda (NaOH), KOH, Ca (OH) 2 , Na 2 SO 3 , NaHCO 3 , NaHSO 3 , Mg (HSO 3 ) 2 , Ca (HSO 3 ) 2 , ammonia (NH 3 , NH 4 OH), etc.), dilute sulfuric acid treatment, steam explosion treatment, solvolysis treatment, microbial treatment, or these The combined processing is mentioned.
  • alkali treatment for example, caustic soda (NaOH), KOH, Ca (OH) 2 , Na 2 SO 3 , NaHCO 3 , NaHSO 3 , Mg (HSO 3 ) 2 , Ca (HSO 3 ) 2 , ammonia (NH 3 , NH 4 OH), etc.
  • alkali treatment for example, caustic soda (NaOH), KOH,
  • the cellulose and hemicellulose present in the raw biomass remain on the solid residue side or are hydrolyzed and transferred to the solubilized fraction depending on the treatment method and treatment conditions.
  • a method of hydrolyzing cellulose and hemicellulose and collecting it in a solubilized fraction as an oligosaccharide or monosaccharide by setting the pretreatment method and conditions has been studied, but the pretreatment conditions are generally severe.
  • various components in the biomass are subjected to excessive decomposition, and as a result, an inhibitory substance in the alcohol fermentation process such as acetic acid, formic acid, furfural, hydroxymethylfurfural, and lignin decomposition product is generated, which is not preferable.
  • the slurry concentration is 1 to 30 (w / v)%, preferably 3 to 20 (w / v)%.
  • the reaction vessel autoclave
  • the reaction vessel is charged and batchwise processed at a predetermined temperature for a predetermined time.
  • the temperature is usually 150 to 250 ° C., more preferably 200 to 230 ° C.
  • the treatment time is usually 3 to 60 minutes, more preferably 5 to 30 minutes.
  • the caustic soda concentration is usually 0.1 to 3 (w / v)%, more preferably 0.3 to 1 (w / v)%.
  • the treatment temperature is usually 50 to 230 ° C, more preferably 80 to 210 ° C.
  • the treatment time is usually 3 minutes to 1 hour, more preferably 5 to 30 minutes.
  • the sulfuric acid concentration is usually 0.3 to 3 (w / v)%, more preferably 0.5 to 1 (w / v)%.
  • the treatment temperature is usually 100 to 200 ° C, more preferably 150 to 180 ° C.
  • the treatment time is usually 3 to 30 minutes, more preferably 3 to 15 minutes.
  • the ammonia concentration is usually 1 to 10 (w / v)%, more preferably 3 to 5 (w / v)%.
  • the treatment temperature is usually from room temperature to 170 ° C., more preferably from 50 to 170 ° C.
  • the treatment time is usually 5 minutes to 14 days, more preferably 3 to 14 days.
  • the conditions for steam explosion are usually 3 to 30 minutes, preferably 5 to 15 minutes at 1.25 MPa. In the case of 2.33 MPa, it is usually 3 to 20 minutes, more preferably 5 to 10 minutes. In the case of 2.8 MPa, it is usually 1 to 15 minutes, more preferably 3 to 10 minutes. In the case of 3.35 MPa, it is usually 1 to 10 minutes, more preferably 3 to 10 minutes.
  • the obtained glucose is determined to be derived from cellulose, and other components such as xylose, mannose and galactose are derived from hemicellulose, and the respective contents are determined.
  • the conditions for saccharifying the cellulosic biomass thus pretreated with the saccharifying enzyme produced from the transformant of the present invention are as follows.
  • the solid concentration when the residual solid content of the pretreated product is saccharified is usually about 1 to 20 (w / v)%, preferably about 5 to 10 (w / v)%.
  • the pH is usually in the range of 3-9, preferably 4-6.
  • the temperature is 10 to 80 ° C, preferably 40 to 60 ° C.
  • the enzyme concentration is 1 to 20 mg / g-biomass weight, preferably 1 to 10 mg / g-biomass weight, based on the amount of protein per dry matter weight of the biomass pretreatment product. Under these conditions, for example, the saccharification reaction can proceed under shaking or standing.
  • a bactericidal agent such as sodium azide may be added for the purpose of preventing contamination with various bacteria.
  • a compound and a concentration that do not adversely affect the subsequent fermentation process of the saccharified solution can be selected by analyzing the product in the saccharified solution by various reducing sugar quantitative methods or HPLC methods.
  • xylose which is a constituent sugar of hemicellulose in the biomass component, may be obtained as a monosaccharide or oligosaccharide in the soluble fraction.
  • the saccharide in the soluble fraction is a monosaccharide
  • various hemicellulases and the like are allowed to act on it, and after hydrolysis to a monosaccharide, use it as a saccharide for ethanol raw materials. Can do.
  • the present invention also provides a method for producing ethanol, comprising a step of fermenting sugar obtained by carrying out the method for producing sugar from the above-mentioned cellulosic biomass.
  • a general method can be applied to the production of ethanol from the saccharified solution.
  • the microorganism used for producing ethanol include, but are not limited to, microorganisms belonging to the genera Saccharomyces , Zymomonas , Pichia , Zymobacter , Corynebacterium , Kluyveromyces , and Escherichia . It is also possible to use a microorganism incorporating a gene related to a metabolic system for converting sugar to ethanol, or a mutant thereof. By inoculating and culturing these microorganisms in a saccharified solution, ethanol can be produced.
  • the saccharified solution used preferably has a sugar concentration of 3 to 15% and a pH of 3 to 7.
  • the culture temperature is preferably 20 to 40 ° C.
  • Ethanol fermentation can be carried out either batchwise or continuously. Ethanol fermentation can be performed simultaneously with the saccharification reaction of the above-mentioned cellulosic biomass (parallel double fermentation). In this case, the saccharification reaction conditions and the ethanol fermentation conditions may be combined, and conditions such as sugar concentration, temperature, pH, etc. that will give the highest productivity as a whole may be appropriately selected.
  • oligonucleotide primers "e1Saabgl1 + 9: 5'-cttagtccttcttgttgtcccaaaATGAAGCTCAGTTGGCTTGAG-3 '(SEQ ID NO: 3)" and "e1aaabgl1 + 9: 5'-acagaccagaggcaagtcaacgctTCATTGCACCTTCGGGAGCG-3' (SEQ ID NO: 4)" are used.
  • PCR was performed using the plasmid vector “pBxyn3Aabgl1” into which cDNA of BGL1 of Aspergillus aculeatus was inserted as a template.
  • pPegl1-gus and 24 bp are added to both ends of the PCR product.
  • the homologous region was designed to be added (Fig. 1).
  • PCR reaction conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, and 72 ° C for 3 minutes. One cycle was repeated for 30 cycles.
  • PrimeSTAR HS DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
  • Example 2 The obtained PCR amplified fragment ( bgl1 cDNA, 2583 bp) was subjected to oligonucleotide primer “E1AB1inverts: 5′-AGCGTTGACTTGCCTCTGGTCTGTC-3 ′ (SEQ ID NO: 5)” and “E1AB1inverta: 5′-TTTGGGACAACAAGAAGGACTAAGATAGGGG-3 ′ ( SEQ ID NO: 6) ”and pegl1-gus were used as templates and ligated to the amplified vector.
  • Inverse PCR was performed at 98 ° C. for 1 minute, followed by a two-stage reaction of “98 ° C. for 10 seconds and 68 ° C. for 10 minutes” as one cycle, and this was repeated 40 cycles.
  • PrimeSTAR GXL DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
  • An In-fusion kit (TaKaRa) was used for linking the PCR amplified fragment to the vector.
  • In-fusion reaction was performed by mixing 200 ng PCR product, 400 ng amplification vector, 5 ⁇ In-fusion buffer 2 ⁇ L, water 1 ⁇ L, and In-fusion enzyme 2 ⁇ L, incubating at 37 ° C. for 30 minutes, and then at 50 ° C. for 15 minutes. Performed by keeping warm.
  • the base sequence of egl1 upstream sequence (SEQ ID NO: 7), bgl1 cDNA sequence and marker sequence ( amdS : 3089bp / SEQ ID NO: 8) of the obtained T. reesei expression cassette was determined to confirm that there were no PCR errors. .
  • CEQTM2000XL DNA Analysis System (BECKMAN COULTER) was used to determine the base sequence, and the details of the operation were in accordance with the attached instruction manual.
  • Example 3 The vectors constructed in Example 2 were introduced into Trichoderma reesei PC-3-7 strain (WT), respectively. The introduction was performed by the protoplast PEG method. The transformant was selected with a selective medium for acetamide utilization ability. The composition of the medium is as follows.
  • Example 4 Trichoderma reesei PC-3-7 strain (WT) and 10 7 spores of transformant No. 2 prepared in Example 3 were placed in a 300 mL Erlenmeyer flask containing 50 mL of Trichoderma reesei liquid medium (similar to Example 3). Inoculated. After culturing at 220 rpm and 28 ° C. for 7 days, the culture solution was centrifuged at 3000 rpm for 15 minutes, the separated culture supernatant was further filtered with Sartolab RF1000 filtersystem (Sarutorius), and the obtained filtrate was used as an enzyme solution.
  • STT Sartolab RF1000 filtersystem
  • Example 5 10 7 spores of transformant No. 2 prepared in Example 3 were inoculated into a 300 mL Erlenmeyer flask containing 50 mL of a medium in which 0.5% birchwood xylan was added to a liquid medium for Trichoderma reesei (similar to Example 3). did. After culturing at 220 rpm and 28 ° C. for 7 days, the culture solution was centrifuged at 3000 rpm for 15 minutes, the separated culture supernatant was further filtered with Miracloth (Cosmo Bio), and the obtained filtrate was used as an enzyme solution.
  • An In-fusion PCR reaction using to replace the bgl1 gene from Aspergillus aculeatus is cbh1 gene portion and PCR product pcbh1-sv, in the primer, at both ends of the PCR products, pcbh1-sv and 24bp
  • the homologous region was designed to be added (Fig. 3).
  • PCR reaction conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, and 72 ° C for 3 minutes. One cycle was repeated for 30 cycles.
  • PrimeSTAR HS DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
  • Inverse PCR was performed at 98 ° C. for 1 minute, followed by a two-stage reaction of “98 ° C. for 10 seconds and 68 ° C. for 10 minutes” as one cycle, and this was repeated 40 cycles.
  • PrimeSTAR GXL DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
  • An In-fusion kit (TaKaRa) was used for linking the PCR amplified fragment to the vector.
  • In-fusion reaction was performed by mixing 200 ng PCR product, 400 ng amplification vector, 5 ⁇ In-fusion buffer 2 ⁇ L, water 1 ⁇ L, and In-fusion enzyme 2 ⁇ L, incubating at 37 ° C. for 30 minutes, and then at 50 ° C. for 15 minutes. Performed by keeping warm.
  • the nucleotide sequence of the cbh1 upstream sequence, bgl1 cDNA sequence, and marker sequence ( amdS : 3089 bp) of the obtained T. reesei expression cassette was determined, and it was confirmed that there was no PCR error.
  • CEQTM2000XL DNA Analysis System (BECKMAN COULTER) was used to determine the base sequence, and the details of the operation were in accordance with the attached instruction manual.
  • Comparative Example 3 The vectors constructed in Comparative Example 2 were introduced into Trichoderma reesei PC-3-7 strain (WT), respectively. The introduction was performed by the protoplast PEG method. The transformant was selected with a selective medium for acetamide utilization ability. The composition of the medium is as follows.
  • Example 6 For each of the enzyme solutions obtained in Examples 4 and 5 and Comparative Examples 4 and 5, FPU activity, CMC degradation activity, BGL activity using cellobiose as a substrate, xylanase activity, and ⁇ -xylosidase activity were measured. As comparative examples, Accellerase 1500 (Genencor) and Cellic CTec2 (Novozymes) were similarly measured for activity. Here, FPU activity was measured in accordance with NREL (National Renewable Energy Laboratory: USA) Measurment of Cellulase Activities Laboratory Analytical Procedure (LAP).
  • NREL National Renewable Energy Laboratory: USA
  • CMC degradation activity uses 3,5-dinitrosalicylic acid as a reducing sugar produced by reaction with Sigma's carboxymethylcellulose (Low viscosity) at a substrate concentration of 1 (w / v)%, pH 5.0, 50 ° C. for 15 minutes.
  • Quantitative measurement using glucose (DNS method) with glucose as standard.
  • BGL activity was measured by quantifying glucose produced by the reaction of substrate cellobiose concentration 20 mM, pH 5.0, 50 ° C. for 10 minutes by the enzymatic method (Wako Pure Chemical Industries: Glucose CII Test Wako).
  • the xylanase activity was measured using a Sigma Birchwood xylan, and the xylose produced by the reaction at a substrate concentration of 1 (w / v)%, pH 5.0, 37 ° C. for 10 minutes was quantified by the DNS method using xylose as a standard. .
  • ⁇ -xylosidase activity was determined by quantifying 4-Nitrophenyl produced by a reaction at a substrate concentration of 1 mM, pH 5.0, 50 ° C. for 10 minutes using Sigma 4-Nitrophenyl ⁇ -D-xylopyranosaide. The amount of protein was quantified using Biovine Laboratories, Inc.'s Quick Start Bradford Protein Assay Kit with Bovine Gamma Globulin as a standard. Specific activity (U / mg) was determined from these enzyme activity values and protein content. The obtained results are shown in Table 1.
  • Example 7 21g of rice straw (multi-harvest rice K226) pulverized product (100-200 ⁇ m) was suspended in 700ml of 0.5 (w / v)% caustic soda solution to a slurry concentration of 3% (w / v), and batch type pretreatment equipment ( And heat-treated at 100 ° C. for 5 minutes. Thereafter, the treated product was filtered and washed with water.
  • the composition of the processed product thus obtained (Sample No. K209) is as follows: cellulose 50.1 (w / w)%, hemicellulose 24.9 (w / w)%, lignin 7.1 (w / w)%, ash content 5.4 (w / w) %Met.
  • this rice straw pre-treatment product K209 as a substrate, a reaction system with a substrate concentration of 5 (w / v)%, final sodium azide concentration of 0.02 (w / v)%, and final acetate buffer concentration of 100 mM (pH 5) was constructed. did.
  • the enzyme solutions prepared in Examples 4 and 5 and Comparative Examples 4 and 5, and enzymes Accellerase 1500 (DANISCO), Cellic CTec, Cellic CTec2 (Novozymes) were added at various concentrations, While shaking, the saccharification reaction was performed at 50 ° C. for 72 hours. Then, produced
  • the saccharification enzyme produced from the transformant of the present invention is 2.4 to 2.9 times that of the latest commercial enzyme (Cellic CTec2). It was found to be 1.3 to 1.6 times more powerful than
  • the analysis of the pretreated material obtained here was performed by the following method based on the NREL LAP method.
  • the pretreated product was dried with a constant temperature dryer so that the water content was about 10% or less, and pulverized with a mill mixer or the like to pass through a 100 ⁇ m mesh.
  • the pulverized product was subjected to a moisture content meter to measure moisture.
  • About 100 mg of this pulverized product was weighed into a pressure-resistant glass tube, 1 mL of 72% sulfuric acid was added, mixed well with a glass rod for 1 minute, and incubated at 30 ° C. for 60 minutes in a constant temperature water bath. During incubation, occasionally mixed with a glass rod.
  • Example 8 21 g of eucalyptus pulverized product was suspended in 700 ml of water so as to have a slurry concentration of 3% (w / v), and heat-treated at 210 ° C. for 15 minutes with a batch type pretreatment device (manufactured by Toyo Koatsu Co., Ltd.). Thereafter, the treated product was filtered and washed with water.
  • the composition of the pre-treated product thus obtained was cellulose 60.9 (w / w)%, hemicellulose 0.8 (w / w)%, lignin 33.6 (w / w)%, ash content 0.4 (w / w). )%Met.
  • the saccharification enzyme produced from the transformant of the present invention is 1.2 to 1.3 times higher than the latest commercial enzyme (Cellic CTec2), 1.1 to 1.6 times higher than the saccharification enzyme using Cbh1 promoter. It turned out to be a function.
  • Example 9 150g of Elianthus pulverized product (100-200 ⁇ m) is suspended in 5L of 0.5% (w / v) caustic soda solution to a slurry concentration of 3% (w / v). Heat treatment was performed at 120 ° C. for 5 minutes. Thereafter, the treated product was filtered and washed with water.
  • the composition of the pre-treated product thus obtained (sample No. E71) was: cellulose 56.0 (w / w)%, hemicellulose 22.2 (w / w)%, lignin 6.2 (w / w)%, ash content 1.6 (w / w) )%Met.
  • the saccharifying enzyme produced from the transformant of the present invention is 1.3 to 1.4 times that of the latest commercial enzyme (Cellic CTec2), 1.2 to 1.3 times that of the saccharifying enzyme utilizing the Cbh1 promoter, It turned out to be highly functional.
  • Example 10 200 g of a 2 liter steam explosion apparatus (manufactured by Tsukishima Kikai Co., Ltd.) was filled with cedar chips, and then heat-treated with steam at 240 ° C. (3.35 MPa) for 10 minutes. Thereafter, a pretreatment product was prepared by blasting treatment.
  • the composition of this pre-treated product (sample No. EC11) is cellulose 40.1 (w / w)%, hemicellulose 0.4 (w / w)%, lignin 53.4 (w / w)%, ash content 0.1 (w / w)% there were.
  • the saccharification enzyme produced from the transformant of the present invention is 1.9 to 2.1 times that of the latest commercial enzyme (Cellic CTec2), and 1.1 to that of the saccharification enzyme using the Cbh1 promoter. 1.3 times higher performance.
  • Example 11 Using microcrystalline cellulose (Theoras PH-101 (Asahi Kasei)) as a substrate, substrate concentration 5 (w / v)%, final sodium azide concentration 0.02 (w / v)%, final acetate buffer concentration 100 mM (pH 5) The reaction system of was constructed. To this reaction system, the enzyme solutions prepared in Examples 4 and 5 and Comparative Examples 4 and 5, and enzymes of Accellerase 1500 (DANISCO) and Cellic CTec2 (Novozymes) were added at various concentrations, and shaken. The saccharification reaction was performed at 50 ° C. for 72 hours. The saccharification rate was calculated in the same manner as in Example 7, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 6.
  • the saccharifying enzyme produced from the transformant of the present invention is 2.3 to 2.8 times compared to the latest commercial enzyme (Cellic CTec2), 1.4 to 1.6 times compared to the saccharifying enzyme utilizing Cbh1 promoter, It turned out to be highly functional.
  • Example 12 10 g (based on dry weight) of the rice straw caustic soda pretreatment product K209 described in Example 7 was weighed into a 500 ml plastic bottle. In a plastic bottle, 160 ml of 50 mM acetate buffer (pH 5.0), 2 ml of 2 (w / v)% sodium azide solution, T.reesei BGL recombinant strain enzyme prepared in Example 4 with a protein amount of 80 mg A considerable amount was added, and water was further added so that the total amount of water was 200 ml. This reaction solution was reacted at 50 ° C. with 100 stroke reciprocal shaking for 72 hours.
  • This reaction solution was heated in boiling water for 5 minutes and then centrifuged (13000 rpm, 5 minutes) to obtain 180 ml of a supernatant.
  • glucose was 26.8 mg / ml and xylose was 12.2 mg / ml. From this result, 4.82 g of glucose and 2.20 g of xylose could be prepared from 10 g (dry weight basis) of rice straw pre-treated product K209.
  • Example 13 7 g (based on dry weight) of Eucalyptus hydrothermal pretreatment Y134 described in Example 8 was weighed into a 200 ml plastic bottle.
  • This reaction solution was reacted at 50 ° C. with 100 stroke reciprocal shaking for 72 hours.
  • This reaction solution was heated in boiling water for 5 minutes and then centrifuged (13000 rpm, 5 minutes) to obtain 90 ml of a supernatant.
  • glucose became 40.1 mg / ml. From this result, 3.61 g of glucose could be prepared from 7 g of the eucalyptus pretreated product.
  • Example 14 10 g of Erianthus caustic soda E71 described in Example 9 (based on dry weight) was weighed into a 500 ml plastic bottle. In a plastic bottle, 160 ml of 50 mM acetate buffer (pH 5.0), 2 ml of 2 (w / v)% sodium azide solution, T. reesei BGL recombinant strain enzyme prepared in Example 5 with a protein amount of 80 mg A considerable amount was added, and water was further added so that the total amount of water was 200 ml. This reaction solution was reacted at 50 ° C. with 100 stroke reciprocal shaking for 72 hours.
  • This reaction solution was heated in boiling water for 5 minutes and then centrifuged (13000 rpm, 5 minutes) to obtain 185 ml of a supernatant.
  • glucose was 27.5 mg / ml and xylose was 10.5 mg / ml. From these results, 5.09 g of glucose and 1.94 g of xylose could be prepared from 10 g of the Erianthus pretreated product.
  • Example 15 180 ml of enzyme saccharified solution of caustic soda-treated rice straw (K209) prepared in Example 11 was concentrated with a rotary evaporator, and 35 ml of the obtained concentrated solution was sterile filtered with a sterile suction filtration device to obtain 32 ml of sterile filtrate.
  • the sugar composition of this filtrate was 136 mg / ml glucose and 62 mg / ml xylose as determined by HPLC analysis.
  • Example 16 21g of Elianthus pulverized product (100-200 ⁇ m) is suspended in 700ml of 1 (w / v)% dilute sulfuric acid solution so that the slurry concentration becomes 3 (w / v)%. At 180 ° C. for 7 minutes. Thereafter, the treated product was filtered and washed with water.
  • the composition of the pre-treatment product thus obtained (Sample No. E-117) was as follows: cellulose 51.6 (w / w)%, hemicellulose 1.2 (w / w)%, lignin 35.4 (w / w)%, ash content 5.7 (w / w)%.
  • the substrate concentration was 5 (w / v)%
  • the final sodium azide concentration was 0.02 (w / v)%
  • the final acetate buffer concentration was 100 mM (pH 5.
  • the reaction system of 0) was constructed.
  • the enzyme solutions prepared in Examples 4 and 5 and the enzymes Accellerase 1500 (DANISCO) and Cellic® CTec2 (Novozymes) were added to the reaction system at various concentrations and shaken at 50 ° C. for 72 hours. A saccharification reaction was performed.
  • the saccharification rate was calculated in the same manner as in Example 7, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 7.
  • Example 17 400 g of pulverized napier grass (100-200 ⁇ m) was suspended in 4 L of water and treated with a 5 L batch pretreatment device (manufactured by Toyo Koatsu Co., Ltd.) at 220 ° C. for 15 minutes. Thereafter, the treated product was filtered and washed with water.
  • the composition of the pre-treated product thus obtained was as follows: cellulose 48.2 (w / w)%, hemicellulose 1.6 (w / w)%, lignin 35.3 (w / w)%, ash content 6.2 (w / w)%.
  • the substrate concentration was 5 (w / v)%
  • the final sodium azide concentration was 0.02 (w / v)%
  • the final acetate buffer concentration was 100 mM (pH 5.
  • the reaction system of 0) was constructed. While adding each enzyme solution prepared in Examples 4 and 5 to this reaction system, Accellerase 1500 (DANISCO), Cellic CTec2 (Novozymes) to become 3 mg protein / g-biomass substrate, shaking, The saccharification reaction was performed at 50 ° C. At 24, 48 and 72 hours, 100 ⁇ l was sampled, heated in boiling water for 5 minutes, and then centrifuged to obtain a supernatant.
  • the produced reducing sugar in the supernatant was quantified by the 3,5-dinitrosalicylic acid method (DNS method) using glucose as a standard.
  • DNS method 3,5-dinitrosalicylic acid method
  • Cellulose and hemicellulose contained in the pretreated product used as a substrate were converted into monosaccharides, and the saccharification rate was calculated from the ratio of free product sugars to them. The obtained results are shown in FIG.
  • the saccharification enzyme produced from the transformant of the present invention was found to have higher function than the latest commercial enzyme (Cellic CTec2).
  • the saccharifying enzyme produced by the transformant of the present invention is produced using not only a biomass pre-treated product with a high hemicellulose content but also a biomass pre-treated product or crystalline cellulose with a low hemicellulose content using a commercially available enzyme or cbh1 promoter. Since the saccharification enzyme exhibits higher saccharification performance than the saccharification enzyme, saccharification of the cellulosic biomass can be completed with a small amount. Furthermore, ethanol can be produced by fermenting the saccharified cellulosic biomass. According to the present invention, it is possible to produce bioethanol at a low price, which can greatly contribute to the industrialization of bioethanol.

Abstract

Obtained are microorganisms belonging to the genus Trichoderma, which express a β-glucosidase gene (bgl1) derived from microorganisms belonging to the genus Aspergillus under the control of a promoter for egl1 of the microorganisms of the genus Trichoderma. It has been discovered that the use of a diastatic enzyme produced by this transformant enables efficient saccharification of cellulosic biomass. It has also been discovered that fermenting the cellulosic biomass thus saccharified enables efficient production of ethanol.

Description

セルロース系バイオマスからの糖及びアルコールの製造方法、並びに該方法に用いられる微生物Method for producing sugar and alcohol from cellulosic biomass, and microorganism used in the method
 本発明は、セルロース系バイオマスを糖化することによる糖の製造方法、該方法により製造された糖を発酵することによるエタノールの製造方法、及びこれら方法に用いられるセルラーゼ生産菌に関する。 The present invention relates to a method for producing sugar by saccharifying cellulosic biomass, a method for producing ethanol by fermenting sugar produced by the method, and a cellulase-producing bacterium used in these methods.
 食糧や飼料と競合しない、農産廃棄物や木材などのセルロース系バイオマスから、エタノールなどの化学品を開発するための数多くの試みがなされてきた。例えば、木材などを硫酸で糖化し、グルコースやキシロースのような単糖類とした後に、この単糖類を酵母やバクテリアで発酵させ、エタノールを得る方法が開発されてきた(非特許文献1から3)。しかしながら、この方法には、使用した強酸を回収して再利用することが困難である点や、廃棄物処理する場合の環境性の点などにおいて問題があった。 Numerous attempts have been made to develop ethanol and other chemicals from cellulosic biomass such as agricultural waste and wood that do not compete with food and feed. For example, a method has been developed in which wood is saccharified with sulfuric acid to form a monosaccharide such as glucose or xylose, and then this monosaccharide is fermented with yeast or bacteria to obtain ethanol (Non-Patent Documents 1 to 3). . However, this method has a problem in that it is difficult to recover and reuse the strong acid used, and in terms of the environmental characteristics when treating waste.
 そこで、より温和で環境に優しいバイオマスの糖化方法として、酵素を用いる方法も開発されてきた。この方法においては、一般的に、各種微生物が生産するセルラーゼやヘミセルラーゼが使用されている。セルラーゼは、種々の作用機作を有する酵素タンパク質から構成されている。バイオマス中のセルロースに作用する酵素としては、非結晶性セルロースに作用してセルロース鎖に切れ目を入れるエンドグルカナーゼ(EG)、並びに、結晶性及び非結晶性のセルロース繊維の末端から、セロビオース単位で糖を切り出すセロビオヒドロラーゼ(CBH)がある。また、これら酵素の作用により生成したセロビオースを加水分解してグルコースを生成するβ-グルコシダーゼ(BGL)がある。一方、バイオマス構成成分であるヘミセルロースに作用するヘミセルラーゼとして、キシラナーゼやβ-キシロシダーゼなどがある。セルロース系バイオマスの糖化酵素には、以上のような酵素などが含まれるが、実際には、これらの各酵素は、さらに、糖質加水分解酵素ファミリーにより分類される多数の成分から構成されており、非常に複雑である。 Therefore, a method using an enzyme has been developed as a milder and more environmentally friendly saccharification method of biomass. In this method, cellulase and hemicellulase produced by various microorganisms are generally used. Cellulase is composed of enzyme proteins having various mechanisms of action. Enzymes that act on cellulose in biomass include endoglucanase (EG) that acts on amorphous cellulose and breaks the cellulose chain, and sugars in cellobiose units from the ends of crystalline and amorphous cellulose fibers. There is cellobiohydrolase (CBH) to cut out There is also β-glucosidase (BGL) that hydrolyzes cellobiose produced by the action of these enzymes to produce glucose. On the other hand, examples of hemicellulases that act on hemicellulose, which is a biomass component, include xylanase and β-xylosidase. Cellulose biomass saccharifying enzymes include the above-mentioned enzymes, but in reality, each of these enzymes is further composed of a number of components classified by the carbohydrate hydrolase family. Is very complex.
 セルラーゼ生産菌としては、Trichoderma属に属する菌株、例えば、Trichoderma reeseiTrichoderma virideが有名であり、工業的に使用されてきた(非特許文献4)。しかしながら、Trichoderma属に属する菌株により生産されるセルラーゼを用いたバイオマス糖化に関する研究が進む中で、このセルラーゼの最大の欠点として、β-グルコシダーゼ活性が他の酵素活性(エンドグルカナーゼ活性、セロビオヒドロラーゼ活性など)に比べ相対的に低いことがクローズアップされてきた。これに伴い、β-グルコシダーゼ活性を強化した改良品として、例えば、Cellic CTec、Cellic CTec2(Novozymes社)やAccellerase1500(Genencor社)が開発された。 The cellulase-producing bacteria, strains belonging to the genus Trichoderma, e.g., Trichoderma reesei or Trichoderma viride is famous, have been industrially used (Non-patent document 4). However, as research on biomass saccharification using cellulase produced by a strain belonging to the genus Trichoderma progresses, the biggest drawback of this cellulase is that β-glucosidase activity is related to other enzyme activities (endoglucanase activity, cellobiohydrolase activity) Etc.) has been closed up. Accordingly, Cellic CTec, Cellic CTec2 (Novozymes) and Accellerase 1500 (Genencor) have been developed as improved products with enhanced β-glucosidase activity.
 しかしながら、バイオエタノールの実用化のためには、その製造コストをさらに低減させる必要があり、この目的を達成するために、これら改良型酵素と比較して、より少量でバイオマス糖化を完結させることが可能な、新たな高機能糖化酵素の開発が強く望まれている。 However, in order to put bioethanol into practical use, it is necessary to further reduce its production cost. To achieve this purpose, biomass saccharification can be completed in a smaller amount than these improved enzymes. The development of a new high-performance saccharifying enzyme that is possible is strongly desired.
 このような状況の下、本発明者らは、Aspergillus属由来でセロビオースに高い比活性を示すβ-グルコシダーゼ(BGL)の遺伝子(bgl1)をTrichoderma属微生物の保有するキシラナーゼ3の遺伝子(xyn3)のプロモーターの制御下で発現させたTrichoderma属微生物の形質転換体を作製した(特許文献1)。従来、Trichoderma属微生物が生産するセルラーゼは、BGL活性が低いことが最大の欠点と言われてきたが、このTrichoderma属微生物の形質転換体が生産する改良型セルラーゼは、BGL活性が大幅に増強されており、各種セルロース系バイオマスの前処理物の糖化において、各種最新型市販セルラーゼに比較して極めて優れた糖化能を示した。また、この改良型セルラーゼを用いて各種セルロース系バイオマスを糖化することで糖化に必要な酵素コストを低減できることを示した。さらに、本発明者らはこの改良型セルラーゼを用いて各種セルロース系バイオマスを糖化し、得られた糖から各種微生物によりエタノールを生産することが可能であることも示した。 Under such circumstances, the present inventors obtained a gene ( bgl1 ) of β-glucosidase (BGL), which is derived from Aspergillus and exhibits high specific activity on cellobiose, from the gene of xylanase 3 ( xyn3 ) possessed by the microorganism of the genus Trichoderma . A transformant of a microorganism belonging to the genus Trichoderma expressed under the control of a promoter was prepared (Patent Document 1). Traditionally, cellulases produced by Trichoderma microorganisms have been said to have the greatest disadvantage of low BGL activity, but improved cellulases produced by transformants of this Trichoderma microorganism have greatly enhanced BGL activity. In the saccharification of the pretreatment products of various cellulosic biomass, it showed extremely superior saccharification ability compared to various latest commercial cellulases. Moreover, it was shown that the enzyme cost required for saccharification can be reduced by saccharifying various cellulosic biomass using this improved cellulase. Furthermore, the present inventors have also shown that various cellulosic biomasses can be saccharified using the improved cellulase, and ethanol can be produced from the obtained sugars by various microorganisms.
 しかしながら、エタノールの製造コストの低減化の追求という経済原則の上から、さらに高機能のセルラーゼの開発が望まれている。 However, in view of the economic principle of pursuing a reduction in ethanol production costs, it is desired to develop a cellulase with higher functionality.
特開2012-016329号公報JP 2012-016329 A
 本発明は、このような状況に鑑みてなされたものであり、その目的は、セルロース系バイオマスに対して高い糖化能を有する酵素を生産する微生物を開発し、当該微生物の生産する酵素を用いて、効率的にセルロース系バイオマスを糖化しうる方法を提供することにある。さらなる本発明の目的は、こうしてセルロース系バイオマスから得られた糖を発酵することによる、エタノールの製造方法を提供することにある。 This invention is made | formed in view of such a condition, The objective developed the microorganisms which produce the enzyme which has high saccharification ability with respect to cellulosic biomass, and uses the enzyme which the said microorganisms produce. An object of the present invention is to provide a method capable of efficiently saccharifying cellulosic biomass. It is a further object of the present invention to provide a method for producing ethanol by fermenting sugar thus obtained from cellulosic biomass.
 本発明者らは、より高い糖化能を有するセルラーゼの開発を行うべく、Aspergillus属に属する微生物由来のβ-グルコシダーゼ遺伝子(bgl1)をTrichoderma属微生物において発現させるためのプロモーターにつき、さらなる検討を行った。一般的に、Trichoderma属微生物のセルラーゼの主要成分とされるセロビオヒドロラーゼI(CBH1)やエンドグルカナーゼI(EG1)などの酵素の遺伝子のプロモーターを用いて、Trichoderma属微生物において外来酵素遺伝子を発現させた場合、主要成分のバランスが崩れ、セルラーゼとしての性能が低下することが知られている(非特許文献5)。 In order to develop a cellulase having higher saccharification ability, the present inventors further examined a promoter for expressing a β-glucosidase gene ( bgl1 ) derived from a microorganism belonging to the genus Aspergillus in a microorganism belonging to the genus Trichoderma . . Generally, using the promoter of the enzyme gene such as Trichoderma microorganism of cellobiohydrolase is a major component of the cellulase I (CBHl) or endoglucanase I (EG1), to express foreign genes in Trichoderma microorganism In this case, it is known that the balance of main components is lost and the performance as a cellulase is reduced (Non-patent Document 5).
 本発明者らはこの点を確認すべく、Trichoderma reesei PC-3-7株のCBH1遺伝子のプロモーター(cbh1プロモーター)又はEG1遺伝子のプロモーター(egl1プロモーター)にAspergillus属に属する微生物由来のβ-グルコシダーゼ遺伝子(bgl1)を連結し、これを導入した形質転換体を作製し、当該形質転換体が生産する糖化酵素の特性を比較評価した。 In order to confirm this point, the present inventors have confirmed that this is a β-glucosidase gene derived from a microorganism belonging to the genus Aspergillus in the promoter of the CBH1 gene ( cbh1 promoter) or the promoter of the EG1 gene ( egl1 promoter) of the Trichoderma reesei PC-3-7 strain. ( Bgl1 ) was ligated, a transformant into which this was introduced was prepared, and the characteristics of the saccharifying enzymes produced by the transformant were compared and evaluated.
 その結果、セロビオースを基質としたBGL活性で評価した場合、cbh1プロモーターを利用して生産したセルラーゼが、egl1プロモーターを用いて生産したセルラーゼと比較して3倍程度高かったのに対して、FPU活性、CMC分解活性など一般的なセルロース分解活性やβ-キシロシダーゼ活性についてはほとんど同程度であった(表1)。キシラナーゼ活性については逆にegl1プロモーターを用いたものが若干高かった(表1)。 As a result, when evaluated by BGL activity was cellobiose as the substrate, whereas the cellulase which is produced using cbh1 promoter, was about 3 times higher compared to production cellulase with egl1 promoter, FPU activity The general cellulolytic activity such as CMC degradation activity and β-xylosidase activity were almost the same (Table 1). Contrary to xylanase activity, those using the egl1 promoter were slightly higher (Table 1).
 次に、各種のバイオマス前処理物に対する糖化能を各種最新型市販酵素を対照として比較評価した。その結果、BGL活性が非常に高いcbh1プロモーターを用いて生産した糖化酵素は、市販酵素よりも大きな糖化効果が認められた。驚くべきことに、egl1プロモーターを用いて生産した糖化酵素の場合、上記の従来の技術常識(非特許文献5)や種々の酵素活性を測定した結果(表1)からの予測に反して、cbh1プロモーターを用いて生産した糖化酵素よりもさらに高い糖化能を示した(表2~5)。しかも、egl1プロモーターを用いて生産した糖化酵素は、ヘミセルロース含量の多いバイオマス前処理物だけではなく、ヘミセルロース含量の少ないバイオマス前処理物や結晶セルロースに対しても、市販酵素やcbh1プロモーターを用いて生産した糖化酵素よりも高い糖化能を示した。 Next, the saccharification ability for various biomass pretreated products was comparatively evaluated using various latest commercial enzymes as controls. As a result, the saccharification enzyme produced using the cbh1 promoter with very high BGL activity was found to have a greater saccharification effect than the commercially available enzyme. Surprisingly, when saccharification enzyme produced using egl1 promoter, contrary to predictions from the conventional technical common sense (non-patent document 5) and various enzymatic activities were measured results (Table 1), cbh1 It showed higher saccharification ability than saccharification enzymes produced using the promoter (Tables 2 to 5). Moreover, the saccharifying enzyme produced using egl1 promoter is produced not only for biomass pretreated products with high hemicellulose content but also for biomass pretreated products and crystalline cellulose with low hemicellulose content using commercially available enzymes and cbh1 promoter. The saccharification enzyme showed higher saccharification ability.
 すなわち、本発明は、Trichoderma属微生物のegl1のプロモーターを用いてAspergillus属に属する微生物由来のβ-グルコシダーゼ遺伝子(bgl1)を発現させた形質転換体、該形質転換体から産生される高機能化糖化酵素を用いるセルロース系バイオマスの糖化方法、並びにそのようにして製造された糖を原料にしてエタノールを製造する方法に関し、より詳しくは、以下の発明を提供するものである。
(1) Trichoderma属に属する微生物のegl1プロモーターに連結され発現可能になっているAspergillus属に属する微生物に由来するβ-グルコシダーゼ遺伝子が導入されたTrichoderma属に属する微生物。
(2) Trichoderma属に属する微生物がTrichoderma reesei(Hypocrea jecorina)である、(1)に記載の微生物。
(3) Aspergillus属に属する微生物がAspergillus aculeatusである、(1)又は(2)に記載の微生物。
(4) (1)から(3)のいずれかに記載の微生物から生産されたセルロース系バイオマスの糖化酵素。
(5) (1)から(3)のいずれかに記載の微生物を培養する工程を含む、(4)に記載の糖化酵素の生産方法。
(6) (4)に記載の糖化酵素で、セルロース系バイオマスを糖化する工程を含む、セルロース系バイオマスからの糖の製造方法。
(7) (6)に記載の方法を実施することにより得られた糖を発酵する工程を含む、エタノールの製造方法。
That is, the present invention relates to a transformant expressing a β-glucosidase gene ( bgl1 ) derived from a microorganism belonging to the genus Aspergillus using the promoter of egl1 of the microorganism belonging to the genus Trichoderma, and a highly functionalized saccharification produced from the transformant The present invention relates to a method for saccharifying cellulosic biomass using an enzyme, and a method for producing ethanol from the sugar thus produced as a raw material, and more specifically, provides the following inventions.
(1) the genus Trichoderma in a microorganism belonging to the genus Trichoderma which β- glucosidase gene derived from microorganisms belonging to the genus Aspergillus that are enabled coupled expressed egl1 promoter was introduced in a microorganism belonging.
(2) The microorganism according to (1), wherein the microorganism belonging to the genus Trichoderma is Trichoderma reesei (Hypocrea jecorina).
(3) The microorganism according to (1) or (2), wherein the microorganism belonging to the genus Aspergillus is Aspergillus aculeatus .
(4) A saccharifying enzyme of cellulosic biomass produced from the microorganism according to any one of (1) to (3).
(5) The method for producing a saccharification enzyme according to (4), comprising a step of culturing the microorganism according to any one of (1) to (3).
(6) A method for producing sugar from cellulosic biomass, comprising the step of saccharifying cellulosic biomass with the saccharifying enzyme according to (4).
(7) A method for producing ethanol, comprising a step of fermenting a sugar obtained by carrying out the method according to (6).
 Trichoderma属に属する微生物のegl1プロモーターの制御下でAspergillus属に属する微生物由来のβ-グルコシダーゼ遺伝子を発現するTrichoderma属に属する微生物は、極めて優れた糖化能を有する糖化酵素を産生することができる。本発明の形質転換体が産生する糖化酵素を用いれば、従来の糖化酵素と比較して、極めて少量でセルロース系バイオマスの糖化を完結させることができる。さらに、こうしてセルロース系バイオマスから得られた糖を発酵させることにより、効率的にエタノールを製造することができる。 Microorganism belonging to the genus Trichoderma expressing β- glucosidase gene derived from a microorganism belonging to the genus Aspergillus under the control of the egl1 promoter of a microorganism belonging to the genus Trichoderma are capable of producing a saccharifying enzyme having excellent saccharification ability. When the saccharifying enzyme produced by the transformant of the present invention is used, saccharification of cellulosic biomass can be completed in a very small amount as compared with conventional saccharifying enzymes. Furthermore, ethanol can be efficiently produced by fermenting the sugar thus obtained from cellulosic biomass.
Aspergillus aculeatusのβ-グルコシダーゼ遺伝子をegl1プロモーターを用いて発現させた場合の発現カセットの構築を示す図である。It is a figure which shows the structure of an expression cassette at the time of expressing the β-glucosidase gene of Aspergillus aculeatus using egl1 promoter. Aspergillus aculeatusのβ-グルコシダーゼ遺伝子をegl1プロモーターを用いて導入したTrichoderma reeseiの培養上清をSDS-PAGEに供した結果を示す電気泳動写真である。It is an electrophoretic photograph showing the result of subjecting the culture supernatant of Trichoderma reesei introduced with β-glucosidase gene of Aspergillus aculeatus using egl1 promoter to SDS-PAGE. Aspergillus aculeatusのβ-グルコシダーゼ遺伝子をcbh1プロモーターを用いて発現させた場合の発現カセットの構築を示す図である。It is a figure which shows the structure of an expression cassette at the time of expressing the β-glucosidase gene of Aspergillus aculeatus using cbh1 promoter. Aspergillus aculeatusのβ-グルコシダーゼ遺伝子をcbh1プロモーターを用いて導入したTrichoderma reeseiの培養上清をSDS-PAGEに供した結果を示す電気泳動写真である。It is an electrophoresis photograph which shows the result of having used the culture supernatant of Trichoderma reesei which introduce | transduced (beta) -glucosidase gene of Aspergillus aculeatus using cbh1 promoter to SDS-PAGE. 水熱処理ネピアグラス前処理物を各種酵素で処理した際の糖化率を経時的に示したグラフである。It is the graph which showed the saccharification rate at the time of processing hydrothermally-treated Napiergrass pretreatment thing with various enzymes with time.
 本発明は、Trichoderma属に属する微生物のegl1プロモーターに連結され発現可能になっているAspergillus属に属する微生物に由来するβ-グルコシダーゼ遺伝子が導入されたTrichoderma属に属する微生物を提供する。 The present invention provides a microorganism belonging to the genus Trichoderma into which a β-glucosidase gene derived from a microorganism belonging to the genus Aspergillus that is linked to the egl1 promoter of a microorganism belonging to the genus Trichoderma and capable of expression is introduced.
 本発明に用いるβ-グルコシダーゼ遺伝子の由来する「Aspergillus属に属する微生物」としては、その産生するβ-グルコシダーゼのセロビオースに対する比活性が、Trichoderma属に属する微生物が産生するβ-グルコシダーゼの場合と比較して高い微生物であれば特に制限はないが、好ましくは、Aspergillus aculeatusである。Aspergillus aculeatusのβ-グルコシダーゼ1(BGL1)は、Trichoderma reesei由来のβ-グルコシダーゼ1(BGL1)と比較して、セロビオースに対する比活性が極めて高いという特性を有する(本発明者らによる測定の結果、Trichoderma reesei由来のBGL1は、比活性が19U/mgであるのに対し、Aspergillus aculeatus由来のBGL1は、比活性が186U/mgであった)。本発明に用いるβ-グルコシダーゼ遺伝子は、目的の活性を有する限り、天然型の配列を有する遺伝子であってもよく、1若しくは複数の変異(塩基の付加、欠失、置換、挿入)が導入されていてもよい。なお、Aspergillus aculeatus由来のβ-グルコシダーゼ1(BGL1)のcDNAの塩基配列を配列番号:1に、該cDNAがコードするアミノ酸配列を配列番号:2に示した。 As the “microbe belonging to the genus Aspergillus ” derived from the β-glucosidase gene used in the present invention, the specific activity of the produced β-glucosidase with respect to cellobiose is compared with the case of β-glucosidase produced by the microorganism belonging to the genus Trichoderma. As long as it is a high microorganism, there is no particular limitation, but Aspergillus aculeatus is preferable. Aspergillus aculeatus β-glucosidase 1 (BGL1) has a characteristic of extremely high specific activity against cellobiose compared to β-glucosidase 1 (BGL1) derived from Trichoderma reesei (results of measurement by the present inventors, as a result of Trichoderma BGL1 derived from reesei had a specific activity of 19 U / mg, whereas BGL1 derived from Aspergillus aculeatus had a specific activity of 186 U / mg). The β-glucosidase gene used in the present invention may be a gene having a natural sequence as long as it has the desired activity, and one or more mutations (base addition, deletion, substitution, insertion) have been introduced. It may be. The base sequence of cDNA of Aspergillus aculeatus- derived β-glucosidase 1 (BGL1) is shown in SEQ ID NO: 1, and the amino acid sequence encoded by the cDNA is shown in SEQ ID NO: 2.
 本発明において宿主として用いる「Trichoderma属に属する微生物」としては、Aspergillus属に属する微生物に由来するβ-グルコシダーゼ遺伝子の導入により、セルロース系バイオマスの糖化能を高めることが可能なものであれば特に制限はない。好ましくは、Trichoderma reeseiであり、より好ましくはTrichoderma reeseiに由来する変異株であるPC-3-7株及びその派生株である。 The “microorganism belonging to the genus Trichoderma ” used as a host in the present invention is not particularly limited as long as it can increase the saccharification ability of cellulosic biomass by introducing a β-glucosidase gene derived from a microorganism belonging to the genus Aspergillus. There is no. Trichoderma reesei is preferable, and PC-3-7 strain that is a mutant derived from Trichoderma reesei and its derivatives are more preferable.
 β-グルコシダーゼ遺伝子によるTrichoderma属に属する微生物の形質転換においては、形質転換体の産生する酵素が優れた糖化活性を示すことができるよう、Trichoderma属に属する微生物が本来有する酵素活性を減少させることなく、外因性のβ-グルコシダーゼ遺伝子を発現させることが必要である。 In the transformation of microorganisms belonging to the genus Trichoderma with β-glucosidase gene, the enzyme activity inherent to the microorganisms belonging to the genus Trichoderma can be reduced so that the enzyme produced by the transformant can exhibit excellent saccharification activity. It is necessary to express an exogenous β-glucosidase gene.
 この目的のため、本発明においては、Trichoderma属に属する微生物のegl1プロモーターを用いる。egl1プロモーターの制御下でβ-グルコシダーゼ遺伝子を発現させたTrichoderma属に属する微生物が、xyn3プロモーターやcbh1プロモーターの制御下でβ-グルコシダーゼ遺伝子を発現させたTrichoderma属に属する微生物と比較して、より高い糖化能を有する糖化酵素を産生することは、予想外の驚くべき知見である。egl1プロモーターの由来するTrichoderma属に属する微生物は、好ましくは、Trichoderma reeseiである。 For this purpose, an egl1 promoter of a microorganism belonging to the genus Trichoderma is used in the present invention. Microorganisms belonging to the genus Trichoderma that expressed the β-glucosidase gene under the control of the egl1 promoter are higher than microorganisms belonging to the genus Trichoderma that expressed the β-glucosidase gene under the control of the xyn3 promoter or the cbh1 promoter Producing a saccharifying enzyme having saccharifying ability is an unexpected and surprising finding. The microorganism belonging to the genus Trichoderma from which the egl1 promoter is derived is preferably Trichoderma reesei .
 Trichoderma reeseiegl1プロモーターの塩基配列を配列番号:7に示す。本発明に用いるegl1プロモーターは、その下流に連結する遺伝子を発現する活性を有する限り、天然型の配列を有するものであってもよく、1若しくは複数の変異(塩基の付加、欠失、置換、挿入)が導入されていてもよい。 The nucleotide sequence of Trichoderma reesei egl1 promoter is shown in SEQ ID NO: 7. The egl1 promoter used in the present invention may have a natural sequence as long as it has an activity of expressing a gene linked downstream thereof, and may have one or more mutations (base addition, deletion, substitution, Insertion) may be introduced.
 β-グルコシダーゼ遺伝子をTrichoderma reeseiのゲノムDNAに導入する場合においては、egl1遺伝子領域を標的領域とすることができる。egl1遺伝子領域を標的領域とする場合には、組み換えベクターを用いることができ、この組み換えベクターは「egl1遺伝子のプロモーター領域-β-グルコシダーゼ遺伝子-egl1遺伝子のターミネーター領域」からなる構造を含むことができる。本実施例に示した通り、egl1遺伝子の上流下流3kbを含んでいるベクターである「pPegl1-gus」において、そのgus領域をβ-グルコシダーゼ遺伝子(例えば、Aspergillus aculeatus由来egl1 cDNA)と置換することにより、組み換えベクターを構築することができる。遺伝子組み換えや宿主へのベクターの導入などの一般的な遺伝子操作は、当業者に公知の手法を用いることができる。 When the β-glucosidase gene is introduced into the genomic DNA of Trichoderma reesei , the egl1 gene region can be used as the target region. When the egl1 gene region is used as a target region, a recombinant vector can be used, and this recombinant vector can include a structure consisting of “ egl1 gene promoter region-β-glucosidase gene- egl1 gene terminator region”. . As shown in this Example, in “pPegl1-gus”, which is a vector containing 3 kb upstream and downstream of the egl1 gene, by replacing the gus region with a β-glucosidase gene (eg, egl1 cDNA derived from Aspergillus aculeatus ) A recombinant vector can be constructed. For general genetic manipulations such as gene recombination and introduction of a vector into a host, techniques known to those skilled in the art can be used.
 こうして作製された形質転換体は、優れたセルロース系バイオマスの糖化酵素を生産する。一般的に、セルロースを分解する酵素をセルラーゼ、ヘミセルロースを分解する酵素をヘミセルラーゼと称するが、本発明における「セルロース系バイオマスの糖化酵素」は、これら酵素の双方を含む意である。本発明の形質転換体により生産される糖化酵素は、ヘミセルロース含量の多いバイオマス前処理物だけではなく、ヘミセルロース含量の少ないバイオマス前処理物や結晶セルロースに対しても、市販酵素やcbh1プロモーターを用いて生産した糖化酵素よりも高い糖化性能を示す。このため、本発明の微生物を用いることにより、最終的なエタノールの製造効率を顕著に向上させることができる。 The transformant thus produced produces an excellent cellulosic biomass saccharifying enzyme. In general, an enzyme that degrades cellulose is referred to as cellulase, and an enzyme that degrades hemicellulose is referred to as hemicellulase. The “saccharifying enzyme of cellulosic biomass” in the present invention is meant to include both of these enzymes. The saccharifying enzyme produced by the transformant of the present invention is not limited to a biomass pre-treated product having a high hemicellulose content, but also to a biomass pre-treated product or crystalline cellulose having a low hemicellulose content using a commercially available enzyme or cbh1 promoter. It shows higher saccharification performance than the produced saccharifying enzyme. For this reason, the final ethanol production efficiency can be remarkably improved by using the microorganism of the present invention.
 糖化酵素を生産させるための形質転換体の培養は、当業者において、通常用いられる培養条件で実施することができる。培養に用いる糖源としては、各種セルロース、例えば、アビセル、濾紙粉末、セルロースを含むバイオマスや乳糖などが、窒素源としては、例えば、硫安、ポリペプトン、肉汁、CSL、大豆かすなどが用いられる。その他、この培地には目的とするセルラーゼを生産する上で必要とされる成分を添加することができる。さらに、各種キシラン成分を培地に添加することで、キシラナーゼを増産することも可能である。これら菌株の培養には、振とう培養、撹拌培養、撹拌振とう培養、静置培養、連続培養など、様々な培養方式を採用しうるが、好ましくは、振とう培養又は撹拌培養である。培養温度は、通常、20℃~35℃、好ましくは25℃~31℃であり、培養時間は、通常、4~10日、好ましくは4~9日である。 Cultivation of transformants for producing saccharifying enzymes can be performed by those skilled in the art under commonly used culture conditions. Examples of the sugar source used for the culture include various celluloses such as Avicel, filter paper powder, cellulose-containing biomass and lactose, and examples of the nitrogen source include ammonium sulfate, polypeptone, gravy, CSL, and soybean meal. In addition, components required for producing the target cellulase can be added to the medium. Further, xylanase can be increased by adding various xylan components to the medium. For the culture of these strains, various culture methods such as shaking culture, stirring culture, stirring and shaking culture, stationary culture, and continuous culture can be adopted, and shaking culture or stirring culture is preferable. The culture temperature is usually 20 ° C. to 35 ° C., preferably 25 ° C. to 31 ° C., and the culture time is usually 4 to 10 days, preferably 4 to 9 days.
 このように、本発明は、上記形質転換体物から生産されたセルロース系バイオマスの糖化酵素、および上記形質転換体を培養する工程を含むセルロース系バイオマスの糖化酵素の生産方法を提供する。 Thus, the present invention provides a saccharification enzyme of cellulosic biomass produced from the transformant and a method for producing a saccharification enzyme of cellulosic biomass including a step of culturing the transformant.
 本発明は、また、上記本発明の形質転換体が生産するセルロース系バイオマスの糖化酵素で、セルロース系バイオマスを糖化する工程を含む、セルロース系バイオマスからの糖の製造方法を提供する。本発明において使用する「セルロース系バイオマス」としては、草本植物であっても、木本植物であってもよく、また、それらの加工物や廃棄物であってもよい。草本植物としては、イネ、エリアンサス、ムギ、サトウキビ、ヨシ、ススキ、トウモロコシ、ソルガム、ネピアグラス、スイッチグラス、ミスカンサスなどを挙げることができ、一方、木本植物としては、スギ類、ユーカリ、ヒノキ、マツ類、米ツガ、ポプラ、シラカバ、ヤナギ、クヌギ、ナラ類、カシ、シイ、ブナ、アカシア、タケ、ササ、アブラヤシ、サゴヤシなどを挙げることができるが、これらに制限されない。 The present invention also provides a method for producing sugar from cellulosic biomass, including a step of saccharifying cellulosic biomass with a saccharifying enzyme of cellulosic biomass produced by the transformant of the present invention. The “cellulosic biomass” used in the present invention may be a herbaceous plant, a woody plant, or a processed product or waste thereof. Examples of herbaceous plants include rice, Elianthus, wheat, sugarcane, reeds, Japanese pampas grass, corn, sorghum, napiergrass, switchgrass, Miscanthus, etc., while woody plants include cedars, eucalyptus, Examples include, but are not limited to, cypress, pine, rice eel, poplar, birch, willow, squirrel, oak, oak, shii, beech, acacia, bamboo, sasa, oil palm and sago palm.
 一般的に、バイオマスは、そのままの形では、セルラーゼによる糖化を受け難い。このため、セルラーゼによる糖化を行う前に、セルロース系バイオマスを、酵素による糖化を受けやすい形態へと変化させるための処理を行うことが好ましい。本発明における、セルロース系バイオマスの前処理方法としては、特に制限はないが、メカノケミカル粉砕法、水熱処理、アルカリ処理(例えば、苛性ソーダ(NaOH)、KOH、Ca(OH)2、Na2SO3、NaHCO3、NaHSO3、Mg(HSO3)2、Ca(HSO3)2、アンモニア類(NH3、NH4OH)など)、希硫酸処理、水蒸気爆砕処理、ソルボリシス処理、微生物処理、又はこれらの複合処理が挙げられる。 Generally, biomass is difficult to undergo saccharification by cellulase as it is. For this reason, before performing saccharification by a cellulase, it is preferable to perform the process for changing a cellulose biomass into the form which is easy to receive the saccharification by an enzyme. The pretreatment method for cellulosic biomass in the present invention is not particularly limited, but is mechanochemical pulverization method, hydrothermal treatment, alkali treatment (for example, caustic soda (NaOH), KOH, Ca (OH) 2 , Na 2 SO 3 , NaHCO 3 , NaHSO 3 , Mg (HSO 3 ) 2 , Ca (HSO 3 ) 2 , ammonia (NH 3 , NH 4 OH), etc.), dilute sulfuric acid treatment, steam explosion treatment, solvolysis treatment, microbial treatment, or these The combined processing is mentioned.
 このような前処理を行うことにより、原料バイオマス中に存在するセルロース及びヘミセルロースが、処理方法や処理条件に依存して、固形分残渣側に残存したり、加水分解されて可溶化画分に移行したりする。ここで、前処理方法や条件の設定により、セルロースやヘミセルロースを加水分解し、オリゴ糖あるいは単糖として可溶化画分に回収する方法も検討されているが、一般的に前処理条件が過酷になると、バイオマス中の各種成分が過分解を受け、その結果として、酢酸、蟻酸、フルフラール、ヒドロキシメチルフルフラール、リグニン分解物などのアルコール発酵工程における阻害物質を生成し、好ましくない。 By performing such pretreatment, the cellulose and hemicellulose present in the raw biomass remain on the solid residue side or are hydrolyzed and transferred to the solubilized fraction depending on the treatment method and treatment conditions. To do. Here, a method of hydrolyzing cellulose and hemicellulose and collecting it in a solubilized fraction as an oligosaccharide or monosaccharide by setting the pretreatment method and conditions has been studied, but the pretreatment conditions are generally severe. Then, various components in the biomass are subjected to excessive decomposition, and as a result, an inhibitory substance in the alcohol fermentation process such as acetic acid, formic acid, furfural, hydroxymethylfurfural, and lignin decomposition product is generated, which is not preferable.
 このようにバイオマスの前処理方法や条件の選択においては種々のメリット、デメリットが想定されるので、使用するバイオマスや製造方法により最適なものが選ばれる。 Since various advantages and disadvantages are assumed in selecting the biomass pretreatment method and conditions in this way, the optimum one is selected depending on the biomass to be used and the manufacturing method.
 原料バイオマスの粉砕物を水熱処理、苛性ソーダ処理、希硫酸処理、アンモニア処理する際は、例えば、スラリー濃度として1~30(w/v)%、好ましくは3~20(w/v)%で耐圧性の反応容器(オートクレーブ)に仕込み、バッチワイズに所定温度で所定時間処理する。また、流通式装置により、同等な条件の基で連続的に処理することも可能である。 When hydrolyzing raw material biomass, hydrothermal treatment, caustic soda treatment, dilute sulfuric acid treatment, or ammonia treatment, for example, the slurry concentration is 1 to 30 (w / v)%, preferably 3 to 20 (w / v)%. The reaction vessel (autoclave) is charged and batchwise processed at a predetermined temperature for a predetermined time. Moreover, it is also possible to process continuously on the basis of equivalent conditions with a flow-type apparatus.
 ここで水熱処理の場合、温度は、通常、150~250℃、より好ましくは200~230℃である。処理時間は、通常、3~60分、より好ましくは5~30分である。 Here, in the case of hydrothermal treatment, the temperature is usually 150 to 250 ° C., more preferably 200 to 230 ° C. The treatment time is usually 3 to 60 minutes, more preferably 5 to 30 minutes.
 苛性ソーダ処理の場合、苛性ソーダ濃度は、通常、0.1~3(w/v)%、より好ましくは0.3~1(w/v)%である。処理温度は、通常、50~230℃、より好ましくは80~210℃である。処理時間は、通常、3分~1時間、より好ましくは5~30分である。希硫酸処理の場合、硫酸濃度は、通常、0.3~3(w/v)%、より好ましくは0.5~1(w/v)%である。処理温度は、通常、100~200℃、より好ましくは150~180℃である。処理時間は、通常、3~30分、より好ましくは3~15分である。 In the case of caustic soda treatment, the caustic soda concentration is usually 0.1 to 3 (w / v)%, more preferably 0.3 to 1 (w / v)%. The treatment temperature is usually 50 to 230 ° C, more preferably 80 to 210 ° C. The treatment time is usually 3 minutes to 1 hour, more preferably 5 to 30 minutes. In the case of dilute sulfuric acid treatment, the sulfuric acid concentration is usually 0.3 to 3 (w / v)%, more preferably 0.5 to 1 (w / v)%. The treatment temperature is usually 100 to 200 ° C, more preferably 150 to 180 ° C. The treatment time is usually 3 to 30 minutes, more preferably 3 to 15 minutes.
 アンモニア処理の場合、アンモニア濃度は、通常、1~10(w/v)%、より好ましくは3~5(w/v)%である。処理温度は、通常、室温から170℃、より好ましくは50~170℃である。処理時間は、通常、5分~14日、より好ましくは3~14日である。 In the case of ammonia treatment, the ammonia concentration is usually 1 to 10 (w / v)%, more preferably 3 to 5 (w / v)%. The treatment temperature is usually from room temperature to 170 ° C., more preferably from 50 to 170 ° C. The treatment time is usually 5 minutes to 14 days, more preferably 3 to 14 days.
 水蒸気爆砕の条件は、1.25MPaの場合、通常、3~30分、好ましくは5~15分である。2.33MPaの場合、通常、3~20分、より好ましくは5~10分である。2.8MPaの場合、通常、1~15分、より好ましくは3~10分である。3.35MPaの場合、通常、1~10分、より好ましくは3~10分である。 The conditions for steam explosion are usually 3 to 30 minutes, preferably 5 to 15 minutes at 1.25 MPa. In the case of 2.33 MPa, it is usually 3 to 20 minutes, more preferably 5 to 10 minutes. In the case of 2.8 MPa, it is usually 1 to 15 minutes, more preferably 3 to 10 minutes. In the case of 3.35 MPa, it is usually 1 to 10 minutes, more preferably 3 to 10 minutes.
 このようにして原料バイオマスを前処理した後、ろ過、遠心分離などにより固液分離し、前処理固形物とろ液を得る。ここで、原料バイオマス及び前処理固形物中のセルロース及びヘミセルロースを定量分析する方法としては種々の方法を採用できるが、世界的に標準処方として使用される米国NREL(National Renewable Energy Laboratory)のLaboratory Analytical Procedure(LAP) Determination of Structural Carbohydrates and Lignin in Biomassに準拠した方法が好適である。この方法は、原料バイオマス、及び前処理固形物を硫酸で加水分解した後に、これらサンプルに含まれるグルコース、キシロース、マンノース、ガラクトースなどの構成糖の含量をHPLC法で分析定量し含有率を求める方法である。この方法において、求められたグルコースは、セルロースに由来するもの、それ以外のキシロース、マンノース、ガラクトースなどの成分はヘミセルロースに由来のものとみなしてそれぞれの含有率を求める。 After pretreatment of the raw material biomass in this way, solid-liquid separation is performed by filtration, centrifugation, etc. to obtain a pretreated solid and a filtrate. Here, various methods can be adopted for quantitative analysis of cellulose and hemicellulose in raw biomass and pretreated solids, but the Laboratory Analytical of NREL (National Renewable Energy Laboratory) in the United States, which is used as a standard formulation worldwide. Procedure (LAP) Determination of Structural Carbohydrates and Lignin in Biomass is preferred. In this method, raw material biomass and pretreated solids are hydrolyzed with sulfuric acid, and then the content of constituent sugars such as glucose, xylose, mannose, galactose, etc. contained in these samples are analyzed and quantified by the HPLC method to determine the content rate. It is. In this method, the obtained glucose is determined to be derived from cellulose, and other components such as xylose, mannose and galactose are derived from hemicellulose, and the respective contents are determined.
 こうして前処理したセルロース系バイオマスを、本発明の形質転換体から産生された糖化酵素により糖化する場合の条件は、次の通りである。前処理物の残渣固形分を糖化処理する場合の固形分濃度は、通常、1~20(w/v)%、好ましくは、5~10(w/v)%程度である。pHは、通常、3~9、好ましくは、4~6の範囲である。温度は、10~80℃、好ましくは、40~60℃である。酵素濃度は、バイオマス前処理物の乾物重量当りのタンパク質量基準で、1~20mg/g-バイオマス重量、好ましくは1~10mg/g-バイオマス重量である。これら条件下、例えば、振とう、又は静置で、糖化反応を進行させることができる。また、この糖化反応において、雑菌汚染を防止する目的でアジ化ナトリウムなどの殺菌剤を添加することもできる。この際は、後の糖化液の発酵工程に悪影響を及ぼさない化合物と濃度を選択することが好ましい。糖化率は、糖化液中の生成物を各種還元糖定量法やHPLC法で分析することにより求めることができる。 The conditions for saccharifying the cellulosic biomass thus pretreated with the saccharifying enzyme produced from the transformant of the present invention are as follows. The solid concentration when the residual solid content of the pretreated product is saccharified is usually about 1 to 20 (w / v)%, preferably about 5 to 10 (w / v)%. The pH is usually in the range of 3-9, preferably 4-6. The temperature is 10 to 80 ° C, preferably 40 to 60 ° C. The enzyme concentration is 1 to 20 mg / g-biomass weight, preferably 1 to 10 mg / g-biomass weight, based on the amount of protein per dry matter weight of the biomass pretreatment product. Under these conditions, for example, the saccharification reaction can proceed under shaking or standing. In this saccharification reaction, a bactericidal agent such as sodium azide may be added for the purpose of preventing contamination with various bacteria. In this case, it is preferable to select a compound and a concentration that do not adversely affect the subsequent fermentation process of the saccharified solution. The saccharification rate can be determined by analyzing the product in the saccharified solution by various reducing sugar quantitative methods or HPLC methods.
 前処理方法、条件によってはバイオマス成分中のヘミセルロースの構成糖であるキシロースなどは可溶画分に単糖あるいはオリゴ糖として得られる場合もある。この場合は、可溶画分中の糖類を単糖であればそのまま、オリゴ糖であれば更に各種ヘミセルラーゼ等を作用させ、単糖に加水分解した後に、エタノール原料用の糖として利用することができる。 Depending on the pretreatment method and conditions, xylose, which is a constituent sugar of hemicellulose in the biomass component, may be obtained as a monosaccharide or oligosaccharide in the soluble fraction. In this case, if the saccharide in the soluble fraction is a monosaccharide, if it is an oligosaccharide, various hemicellulases and the like are allowed to act on it, and after hydrolysis to a monosaccharide, use it as a saccharide for ethanol raw materials. Can do.
 また、本発明は、上記のセルロース系バイオマスからの糖の製造方法を実施することにより得られた糖を発酵する工程を含む、エタノールの製造方法を提供する。 The present invention also provides a method for producing ethanol, comprising a step of fermenting sugar obtained by carrying out the method for producing sugar from the above-mentioned cellulosic biomass.
 糖化液からのエタノールの製造は、一般的な方法を適用することができる。エタノールの製造に用いる微生物としては、例えば、Saccharomyces属、Zymomonas属、Pichia属、Zymobacter属、Corynebacterium属、Kluyveromyces属、及びEscherichia属に属する微生物が挙げられるが、これらに制限されない。糖をエタノールに変換するための代謝系に関連する遺伝子を組み込んだ微生物あるいはこれらの変異株を利用することも可能である。糖化液に、これら微生物を植菌して培養することにより、エタノールを製造することが可能である。用いる糖化液は、糖濃度が3~15%で、pHは3~7が好ましい。培養温度は、20~40℃が好ましい。エタノール発酵は、回分法でも連続法でも行うことが可能である。エタノール発酵は、上記のセルロース系バイオマスの糖化反応と同時に行うことができる(並行複発酵)。この場合は、糖化反応の条件とエタノール発酵の条件を組みあわせ、全体として生産性が最も高くなる糖濃度、温度、pHなどの条件が適宜選択すればよい。 A general method can be applied to the production of ethanol from the saccharified solution. Examples of the microorganism used for producing ethanol include, but are not limited to, microorganisms belonging to the genera Saccharomyces , Zymomonas , Pichia , Zymobacter , Corynebacterium , Kluyveromyces , and Escherichia . It is also possible to use a microorganism incorporating a gene related to a metabolic system for converting sugar to ethanol, or a mutant thereof. By inoculating and culturing these microorganisms in a saccharified solution, ethanol can be produced. The saccharified solution used preferably has a sugar concentration of 3 to 15% and a pH of 3 to 7. The culture temperature is preferably 20 to 40 ° C. Ethanol fermentation can be carried out either batchwise or continuously. Ethanol fermentation can be performed simultaneously with the saccharification reaction of the above-mentioned cellulosic biomass (parallel double fermentation). In this case, the saccharification reaction conditions and the ethanol fermentation conditions may be combined, and conditions such as sugar concentration, temperature, pH, etc. that will give the highest productivity as a whole may be appropriately selected.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 [実施例1]
 下記に記載するオリゴヌクレオチドプライマー「e1Saabgl1+9:5’-cttagtccttcttgttgtcccaaaATGAAGCTCAGTTGGCTTGAG-3’(配列番号:3)」及び「e1aaabgl1+9:5’-acagaccagaggcaagtcaacgctTCATTGCACCTTCGGGAGCG-3’(配列番号:4)」を用いて、Aspergillus aculeatusのBGL1のcDNAの挿入されたプラスミドベクター「pBxyn3Aabgl1」を鋳型に、PCRを行った。
[Example 1]
The oligonucleotide primers "e1Saabgl1 + 9: 5'-cttagtccttcttgttgtcccaaaATGAAGCTCAGTTGGCTTGAG-3 '(SEQ ID NO: 3)" and "e1aaabgl1 + 9: 5'-acagaccagaggcaagtcaacgctTCATTGCACCTTCGGGAGCG-3' (SEQ ID NO: 4)" are used. PCR was performed using the plasmid vector “pBxyn3Aabgl1” into which cDNA of BGL1 of Aspergillus aculeatus was inserted as a template.
 In-fusion PCR反応を使用してpPegl1-gusのgus遺伝子部分とPCR産物であるAspergillus aculeatus由来のbgl1遺伝子とを置換えるために、プライマーにおいては、PCR産物の両末端に、pPegl1-gusと24bpの相同領域が付加するように設計した(図1)。 In order to replace the gus gene part of pPegl1-gus and the PCR product bgl1 gene from Aspergillus aculeatus using In-fusion PCR reaction, in the primer, pPegl1-gus and 24 bp are added to both ends of the PCR product. The homologous region was designed to be added (Fig. 1).
 PCRの反応条件は、98℃10秒、55℃5秒、72℃3分の3段階の反応を1サイクルとし、これを30サイクル繰返した。また、PCR反応には、PrimeSTAR HS DNA polymerase(タカラバイオ社)を使用した。 PCR reaction conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, and 72 ° C for 3 minutes. One cycle was repeated for 30 cycles. In addition, PrimeSTAR HS DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
 [実施例2]
 得られたPCR増幅断片(bgl1cDNA, 2583bp)を、Inverse PCRによって、オリゴヌクレオチドプライマー「E1AB1inverts:5’-AGCGTTGACTTGCCTCTGGTCTGTC-3’(配列番号:5)」及び「E1AB1inverta:5’-TTTGGGACAACAAGAAGGACTAAGATAGGGG-3’(配列番号:6)」とpegl1-gusを鋳型として増幅したべクターに連結した。
[Example 2]
The obtained PCR amplified fragment ( bgl1 cDNA, 2583 bp) was subjected to oligonucleotide primer “E1AB1inverts: 5′-AGCGTTGACTTGCCTCTGGTCTGTC-3 ′ (SEQ ID NO: 5)” and “E1AB1inverta: 5′-TTTGGGACAACAAGAAGGACTAAGATAGGGG-3 ′ ( SEQ ID NO: 6) ”and pegl1-gus were used as templates and ligated to the amplified vector.
 Inverse PCRの条件は、98℃で1分の後、「98℃で10秒、68℃で10分」の2段階の反応を1サイクルとし、これを40サイクル繰返した。PCR反応には、PrimeSTAR GXL DNA polymerase(タカラバイオ社)を使用した。 Inverse PCR was performed at 98 ° C. for 1 minute, followed by a two-stage reaction of “98 ° C. for 10 seconds and 68 ° C. for 10 minutes” as one cycle, and this was repeated 40 cycles. PrimeSTAR GXL DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
 PCR増幅断片のべクターへの連結には、In-fusion kit(TaKaRa社)を使用した。In-fusion反応は、200ngのPCR産物、400ngの増幅ベクター、5×In-fusion buffer 2μL、水1μL、In-fusion enzyme 2μLを混和し、37℃で30分保温した後、50℃で15分保温することにより行った。得られたT.reesei発現カセットのegl1上流配列(配列番号:7)、bgl1cDNA配列、マーカー配列(amdS:3089bp/配列番号:8)の塩基配列決定を行い、PCRエラーがないことを確認した。塩基配列の決定には、CEQTM2000XL DNA Analysis System(BECKMAN COULTER社)を使用し、操作の詳細は、付属の取扱説明書に従った。 An In-fusion kit (TaKaRa) was used for linking the PCR amplified fragment to the vector. In-fusion reaction was performed by mixing 200 ng PCR product, 400 ng amplification vector, 5 × In-fusion buffer 2 μL, water 1 μL, and In-fusion enzyme 2 μL, incubating at 37 ° C. for 30 minutes, and then at 50 ° C. for 15 minutes. Performed by keeping warm. The base sequence of egl1 upstream sequence (SEQ ID NO: 7), bgl1 cDNA sequence and marker sequence ( amdS : 3089bp / SEQ ID NO: 8) of the obtained T. reesei expression cassette was determined to confirm that there were no PCR errors. . CEQTM2000XL DNA Analysis System (BECKMAN COULTER) was used to determine the base sequence, and the details of the operation were in accordance with the attached instruction manual.
 [実施例3]
 実施例2で構築したベクターを、それぞれTrichoderma reesei PC-3-7株(WT)に導入した。導入は、プロトプラストPEG法で行った。形質転換体をアセトアミド資化能用選択培地で選抜した。培地の組成は次の通りである。
[Example 3]
The vectors constructed in Example 2 were introduced into Trichoderma reesei PC-3-7 strain (WT), respectively. The introduction was performed by the protoplast PEG method. The transformant was selected with a selective medium for acetamide utilization ability. The composition of the medium is as follows.
 2% グルコース、1.1M ソルビトール、2% agar、0.2% KH2PO4(pH5.5)、0.06% CaCl2・2H2O、0.06% CsCl2、0.06% MgSO4・7H2O、0.06% Acetamide solution、0.1% Trace element 得られた3株の形質転換体のBGL1の発現を確認するために、胞子106個を、Trichoderma reesei用液体培地5mLを含むφ20試験管に植菌した。培地の組成は次の通りである。 2% glucose, 1.1M sorbitol, 2% agar, 0.2% KH 2 PO 4 (pH 5.5), 0.06% CaCl 2 · 2H 2 O, 0.06% CsCl 2 , 0.06% MgSO 4 · 7H 2 O, 0.06% Acetamide solution, in order to confirm the expression of BGL1 transformants three strains obtained 0.1% Trace element, 10 6 spores were inoculated into φ20 tubes containing liquid medium 5mL for Trichoderma reesei. The composition of the medium is as follows.
 1% Avicel、0.14% (NH4)2SO4、0.2% KH2PO4、0.03% CaCl2・2H2O、0.03% MgSO4・7H2O、0.1% Bacto Polypepton、0.05% Bacto Yeast extract、0.1% Tween 80、0.1% Trace element、pH4.0 終濃度で50mM Tartrate buffer
 なお、Trace elementの組成は次の通りである。
1% Avicel, 0.14% (NH 4 ) 2 SO 4 , 0.2% KH 2 PO 4 , 0.03% CaCl 2 · 2H 2 O, 0.03% MgSO 4 · 7H 2 O, 0.1% Bacto Polypepton, 0.05% Bacto Yeast extract, 0.1% Tween 80, 0.1% Trace element, 50mM Tartrate buffer at pH4.0 final concentration
The composition of the trace element is as follows.
 6mg H3BO3、26mg (NH4)6MO7O24・4H2O、100mg FeCl3・6H2O、40mg、CuSO4・5H2O、8mg MnCl2・4H2O、200mg ZnCl2を蒸留水で100ml
 120spm、28℃で3日間培養した培養液を、10000rpm、5分、4℃で遠心分離し、培養上清10μLを採取し、SDS-PAGEに供した。その結果を図2に示す。形質転換体No.1とNo.3について野生株と顕著な違いは観察されなかったが、形質転換体No.2では、PC-3-7株に見られない130kDa程度の分子量のややスメアなタンパク質バンドが認められたことから、A.aculeatus由来BGL1が発現していることが判明した。
6 mg H 3 BO 3 , 26 mg (NH 4 ) 6 MO 7 O 24・ 4H 2 O, 100 mg FeCl 3・ 6H 2 O, 40 mg, CuSO 4・ 5H 2 O, 8 mg MnCl 2・ 4H 2 O, 200 mg ZnCl 2 100ml with distilled water
The culture solution cultured at 120 spm for 3 days at 28 ° C. was centrifuged at 10,000 rpm for 5 minutes at 4 ° C., and 10 μL of the culture supernatant was collected and subjected to SDS-PAGE. The result is shown in FIG. No significant difference was observed between transformants No. 1 and No. 3 from the wild type, but transformant No. 2 had a slightly smear with a molecular weight of about 130 kDa that was not found in PC-3-7. From the fact that a protein band was observed, it was found that BGL1 derived from A. aculeatus was expressed.
 [実施例4]
 Trichoderma reesei PC-3-7株(WT)と実施例3で作製された形質転換体No.2の胞子107個をTrichoderma reesei用液体培地(実施例3と同様)50mLを含む300mL三角フラスコに植菌した。220rpm、28℃で7日間培養後、培養液を3000rpm、15分遠心し、分離した培養上清をさらにSartolab RF1000 filtersystem(Sarutorius社)にて濾過し、得られた濾液を酵素液として使用した。
[Example 4]
Trichoderma reesei PC-3-7 strain (WT) and 10 7 spores of transformant No. 2 prepared in Example 3 were placed in a 300 mL Erlenmeyer flask containing 50 mL of Trichoderma reesei liquid medium (similar to Example 3). Inoculated. After culturing at 220 rpm and 28 ° C. for 7 days, the culture solution was centrifuged at 3000 rpm for 15 minutes, the separated culture supernatant was further filtered with Sartolab RF1000 filtersystem (Sarutorius), and the obtained filtrate was used as an enzyme solution.
 [実施例5]
 実施例3で作製した形質転換体No.2の胞子107個を、Trichoderma reesei用液体培地(実施例3と同様)に0.5%バーチウッドキシランを添加した培地を50mL含む300mL三角フラスコに植菌した。220rpm、28℃で7日間培養後、培養液を3000rpm、15分遠心し、分離した培養上清をさらに、Miracloth(コスモバイオ社)にて濾過し、得られた濾液を酵素液として使用した。
[Example 5]
10 7 spores of transformant No. 2 prepared in Example 3 were inoculated into a 300 mL Erlenmeyer flask containing 50 mL of a medium in which 0.5% birchwood xylan was added to a liquid medium for Trichoderma reesei (similar to Example 3). did. After culturing at 220 rpm and 28 ° C. for 7 days, the culture solution was centrifuged at 3000 rpm for 15 minutes, the separated culture supernatant was further filtered with Miracloth (Cosmo Bio), and the obtained filtrate was used as an enzyme solution.
 [比較例1]
 下記に記載するオリゴヌクレオチドプライマー「Saabgl1-cbh+9:5’-atagtcaaccgcggactgcgcatcATGAAGCTCAGTTGGCTTGAG-3’(配列番号:9)」及び「Aaabgl1-cbh+9:5’-aggctttcgccacggagcactagtTCATTGCACCTTCGGGAGCG-3’(配列番号:10)」を用いて、Aspergillus aculeatusのBGLIcDNAが挿入されたプラスミドベクター「pABG7」を鋳型に、PCRを行った。
[Comparative Example 1]
The oligonucleotide primers “Saabgl1-cbh + 9: 5′-atagtcaaccgcggactgcgcatcATGAAGCTCAGTTGGCTTGAG-3 ′” (SEQ ID NO: 9) and “Aaabgl1-cbh + 9: 5′-aggctttcgccacggagcactagtTCATTGCACCTTCGGGAGCG-3 ′” (sequence number: PCR was performed using the plasmid vector “pABG7” into which BGLI cDNA of Aspergillus aculeatus was inserted as a template.
 In-fusion PCR反応を使用してpcbh1-svのcbh1遺伝子部分とPCR産物であるAspergillus aculeatus由来のbgl1遺伝子とを置換えるために、プライマーにおいては、PCR産物の両末端に、pcbh1-svと24bpの相同領域が付加するように設計した(図3)。 An In-fusion PCR reaction using to replace the bgl1 gene from Aspergillus aculeatus is cbh1 gene portion and PCR product pcbh1-sv, in the primer, at both ends of the PCR products, pcbh1-sv and 24bp The homologous region was designed to be added (Fig. 3).
 PCRの反応条件は、98℃10秒、55℃5秒、72℃3分の3段階の反応を1サイクルとし、これを30サイクル繰返した。また、PCR反応には、PrimeSTAR HS DNA polymerase(タカラバイオ社)を使用した。 PCR reaction conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, and 72 ° C for 3 minutes. One cycle was repeated for 30 cycles. In addition, PrimeSTAR HS DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
 [比較例2]
 得られたPCR増幅断片(bgl1cDNA, 2583bp)を、オリゴヌクレオチドプライマーとしての「cbh1vector prom:5’-GATGCGCAGTCCGCGGTTGACTATTG-3’(配列番号:11)」及び「cbh1vector term:5’-ACTAGTGCTCCGTGGCGAAAGCCT-3’(配列番号:12)」と鋳型としてのpcbh1-svとを用いたInverse PCRによって増幅したべクターに連結した。
[Comparative Example 2]
The obtained PCR amplified fragment ( bgl1 cDNA, 2583bp) was used as oligonucleotide primers "cbh1vector prom: 5'-GATGCGCAGTCCGCGGTTGACTATTG-3 '(SEQ ID NO: 11)" and "cbh1vector term: 5'-ACTAGTGCTCCGTGGCGAAAGCCT-3' ( SEQ ID NO: 12) "and pcbh1-sv as a template were linked to a vector amplified by Inverse PCR.
 Inverse PCRの条件は、98℃で1分の後、「98℃で10秒、68℃で10分」の2段階の反応を1サイクルとし、これを40サイクル繰返した。PCR反応には、PrimeSTAR GXL DNA polymerase(タカラバイオ社)を使用した。 Inverse PCR was performed at 98 ° C. for 1 minute, followed by a two-stage reaction of “98 ° C. for 10 seconds and 68 ° C. for 10 minutes” as one cycle, and this was repeated 40 cycles. PrimeSTAR GXL DNA polymerase (Takara Bio Inc.) was used for the PCR reaction.
 PCR増幅断片のべクターへの連結には、In-fusion kit(TaKaRa社)を使用した。In-fusion反応は、200ngのPCR産物、400ngの増幅ベクター、5×In-fusion buffer 2μL、水1μL、In-fusion enzyme 2μLを混和し、37℃で30分保温した後、50℃で15分保温することにより行った。得られたT.reesei発現カセットのcbh1上流配列、bgl1cDNA配列、マーカー配列(amdS:3089bp)の塩基配列決定を行い、PCRエラーがないことを確認した。塩基配列の決定には、CEQTM2000XL DNA Analysis System(BECKMAN COULTER社)を使用し、操作の詳細は、付属の取扱説明書に従った。 An In-fusion kit (TaKaRa) was used for linking the PCR amplified fragment to the vector. In-fusion reaction was performed by mixing 200 ng PCR product, 400 ng amplification vector, 5 × In-fusion buffer 2 μL, water 1 μL, and In-fusion enzyme 2 μL, incubating at 37 ° C. for 30 minutes, and then at 50 ° C. for 15 minutes. Performed by keeping warm. The nucleotide sequence of the cbh1 upstream sequence, bgl1 cDNA sequence, and marker sequence ( amdS : 3089 bp) of the obtained T. reesei expression cassette was determined, and it was confirmed that there was no PCR error. CEQTM2000XL DNA Analysis System (BECKMAN COULTER) was used to determine the base sequence, and the details of the operation were in accordance with the attached instruction manual.
 [比較例3]
 比較例2で構築したベクターを、それぞれTrichoderma reesei PC-3-7株(WT)に導入した。導入は、プロトプラストPEG法で行った。形質転換体をアセトアミド資化能用選択培地で選抜した。培地の組成は次の通りである。
[Comparative Example 3]
The vectors constructed in Comparative Example 2 were introduced into Trichoderma reesei PC-3-7 strain (WT), respectively. The introduction was performed by the protoplast PEG method. The transformant was selected with a selective medium for acetamide utilization ability. The composition of the medium is as follows.
 2% グルコース、1.1M ソルビトール、2% agar、0.2% KH2PO4(pH5.5)、0.06% CaCl2・2H2O、0.06% CsCl2、0.06% MgSO4・7H2O、0.06% Acetamide solution、0.1% Trace element
 得られた5株の形質転換体のBGL1の発現を確認するために、胞子106個を、Trichoderma reesei用液体培地5mLを含むφ20試験管に植菌した。培地の組成は次の通りである。
2% glucose, 1.1M sorbitol, 2% agar, 0.2% KH 2 PO 4 (pH 5.5), 0.06% CaCl 2 · 2H 2 O, 0.06% CsCl 2 , 0.06% MgSO 4 · 7H 2 O, 0.06% Acetamide solution, 0.1% Trace element
To confirm the expression of BGL1 transformants 5 strains obtained, 10 6 spores were inoculated into φ20 tubes containing liquid medium 5mL for Trichoderma reesei. The composition of the medium is as follows.
 1% Avicel、0.14% (NH4)2SO4、0.2% KH2PO4、0.03% CaCl2・2H2O、0.03% MgSO4・7H2O、0.1% Bacto Polypepton、0.05% Bacto Yeast extract、0.1% Tween 80、0.1% Trace element、pH4.0 終濃度で50mM Tartrate buffer
 なお、Trace elementの組成は次の通りである。
1% Avicel, 0.14% (NH 4 ) 2 SO 4 , 0.2% KH 2 PO 4 , 0.03% CaCl 2 · 2H 2 O, 0.03% MgSO 4 · 7H 2 O, 0.1% Bacto Polypepton, 0.05% Bacto Yeast extract, 0.1% Tween 80, 0.1% Trace element, 50mM Tartrate buffer at pH4.0 final concentration
The composition of the trace element is as follows.
 6mg H3BO3、26mg (NH4)6MO7O24・4H2O、100mg FeCl3・6H2O、40mg、CuSO4・5H2O、8mg MnCl2・4H2O、200mg ZnCl2を蒸留水で100ml
 120spm、28℃で3日間培養した培養液を、10000rpm、5分、4℃で遠心分離し、培養上清10μLを採取し、SDS-PAGEに供した。その結果を図4に示す。形質転換体には、PC-3-7株に見られない130kDa程度の分子量のややスメアなタンパク質バンドが認められたことから、A.aculeatus由来BGL1が発現していることが判明した。
6 mg H 3 BO 3 , 26 mg (NH 4 ) 6 MO 7 O 24・ 4H 2 O, 100 mg FeCl 3・ 6H 2 O, 40 mg, CuSO 4・ 5H 2 O, 8 mg MnCl 2・ 4H 2 O, 200 mg ZnCl 2 100ml with distilled water
The culture solution cultured at 120 spm for 3 days at 28 ° C. was centrifuged at 10,000 rpm for 5 minutes at 4 ° C., and 10 μL of the culture supernatant was collected and subjected to SDS-PAGE. The results are shown in FIG. In the transformant, a slightly smeared protein band with a molecular weight of about 130 kDa that was not found in the PC-3-7 strain was observed, indicating that BGL1 derived from A. aculeatus was expressed.
 [比較例4]
 比較例3で作製された形質転換体No.3の胞子107個をTrichoderma reesei用液体培地(実施例3と同様)50mLを含む300mL三角フラスコに植菌した。220rpm、28℃で7日間培養後、培養液を3000rpm、15分遠心し、分離した培養上清をさらに、Sartolab RF1000 filtersystem(Sarutorius社)にて濾過し、得られた濾液を酵素液として使用した。
[Comparative Example 4]
10 7 spores of transformant No. 3 prepared in Comparative Example 3 were inoculated into a 300 mL Erlenmeyer flask containing 50 mL of a liquid medium for Trichoderma reesei (as in Example 3). After culturing at 220 rpm and 28 ° C. for 7 days, the culture solution was centrifuged at 3000 rpm for 15 minutes, and the separated culture supernatant was further filtered through Sartolab RF1000 filtersystem (Sarutorius), and the obtained filtrate was used as an enzyme solution. .
 [比較例5]
 比較例3で作製された形質転換体No.3の胞子107個を、Trichoderma reesei用液体培地(実施例3と同様)に0.5%バーチウッドキシランを添加した培地を50mL含む300mL三角フラスコに植菌した。220rpm、28℃で7日間培養後、培養液を3000rpm、15分遠心し、分離した培養上清をさらに、Miracloth(コスモバイオ社)にて濾過し、得られた濾液を酵素液として使用した。
[Comparative Example 5]
Inoculate 107 spores of transformant No. 3 prepared in Comparative Example 3 into a 300 mL Erlenmeyer flask containing 50 mL of a medium containing 0.5% birchwood xylan in a liquid medium for Trichoderma reesei (same as Example 3). did. After culturing at 220 rpm and 28 ° C. for 7 days, the culture solution was centrifuged at 3000 rpm for 15 minutes, the separated culture supernatant was further filtered with Miracloth (Cosmo Bio), and the obtained filtrate was used as an enzyme solution.
 [実施例6]
 実施例4,5及び比較例4、5で得られたそれぞれの酵素液について、FPU活性、CMC分解活性、セロビオースを基質としたBGL活性、キシラナーゼ活性、及びβ-キシロシダーゼ活性を測定した。比較例として、Accellerase1500(Genencor社)とCellic CTec2(Novozymes社)について同様に活性測定した。ここで、FPU活性は、NREL(National Renewable Energy Laboratory:USA)のMeasurment of Cellulase Activities Laboratory Analytical Procedure(LAP)に準拠して測定した。CMC分解活性は、Sigma社のカルボキシメチルセルロース(Low viscosity)を用い、基質濃度1(w/v)%、pH5.0、50℃、15分間の反応により生成した還元糖を3,5-ジニトロサリチル酸を用いる定量法(DNS法)でグルコースを標準にして定量し測定した。BGL活性は、基質セロビオース濃度20mM、pH5.0、50℃、10分間の反応により生成したグルコースを酵素法(和光純薬:グルコースCIIテストワコー)で定量し測定した。キシラナーゼ活性は、Sigma社のBirchwood xylanを用い、基質濃度1(w/v)%、pH5.0、37℃、10分間の反応により生成したキシロースをDNS法によりキシロースを標準にして定量し測定した。β-キシロシダーゼ活性は、Sigma社の4-Nitrophenyl β-D-xylopyranosaideを用い、基質濃度1mM、pH5.0、50℃、10分間の反応により生成した4-Nitrophenylを定量し測定した。また、タンパク質量は、Bio-rad Laboratories, Inc.のQuick Start Bradford Protein Assay キットによりBovine Gamma Globulinを標準として定量した。これらの酵素活性の値とタンパク質量から比活性(U/mg)を求めた。得られた結果を表1に示した。
[Example 6]
For each of the enzyme solutions obtained in Examples 4 and 5 and Comparative Examples 4 and 5, FPU activity, CMC degradation activity, BGL activity using cellobiose as a substrate, xylanase activity, and β-xylosidase activity were measured. As comparative examples, Accellerase 1500 (Genencor) and Cellic CTec2 (Novozymes) were similarly measured for activity. Here, FPU activity was measured in accordance with NREL (National Renewable Energy Laboratory: USA) Measurment of Cellulase Activities Laboratory Analytical Procedure (LAP). CMC degradation activity uses 3,5-dinitrosalicylic acid as a reducing sugar produced by reaction with Sigma's carboxymethylcellulose (Low viscosity) at a substrate concentration of 1 (w / v)%, pH 5.0, 50 ° C. for 15 minutes. Quantitative measurement using glucose (DNS method) with glucose as standard. BGL activity was measured by quantifying glucose produced by the reaction of substrate cellobiose concentration 20 mM, pH 5.0, 50 ° C. for 10 minutes by the enzymatic method (Wako Pure Chemical Industries: Glucose CII Test Wako). The xylanase activity was measured using a Sigma Birchwood xylan, and the xylose produced by the reaction at a substrate concentration of 1 (w / v)%, pH 5.0, 37 ° C. for 10 minutes was quantified by the DNS method using xylose as a standard. . β-xylosidase activity was determined by quantifying 4-Nitrophenyl produced by a reaction at a substrate concentration of 1 mM, pH 5.0, 50 ° C. for 10 minutes using Sigma 4-Nitrophenyl β-D-xylopyranosaide. The amount of protein was quantified using Biovine Laboratories, Inc.'s Quick Start Bradford Protein Assay Kit with Bovine Gamma Globulin as a standard. Specific activity (U / mg) was determined from these enzyme activity values and protein content. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例7]
 稲わら(多収穫米K226)粉砕物(100~200μm)21gを0.5(w/v)%苛性ソーダ溶液700mlにスラリー濃度3%(w/v)になるように懸濁し、バッチ式前処理装置(東洋高圧社製)で100℃で5分間加熱処理した。その後、この処理物を濾過し、水で洗浄した。こうして得られた処理物(サンプルNo.K209)の組成は、セルロース50.1(w/w)%、ヘミセルロース24.9(w/w)%、リグニン7.1(w/w)%、灰分5.4(w/w)%であった。
[Example 7]
21g of rice straw (multi-harvest rice K226) pulverized product (100-200μm) was suspended in 700ml of 0.5 (w / v)% caustic soda solution to a slurry concentration of 3% (w / v), and batch type pretreatment equipment ( And heat-treated at 100 ° C. for 5 minutes. Thereafter, the treated product was filtered and washed with water. The composition of the processed product thus obtained (Sample No. K209) is as follows: cellulose 50.1 (w / w)%, hemicellulose 24.9 (w / w)%, lignin 7.1 (w / w)%, ash content 5.4 (w / w) %Met.
 この稲わらの前処理物K209を基質として用い、基質濃度5(w/v)%、最終アジ化ナトリウム濃度0.02(w/v)%、最終酢酸緩衝液濃度100mM(pH5)の反応系を構築した。この反応系に、実施例4、5及び比較例4、5で調製したそれぞれの酵素液、並びにAccellerase1500(DANISCO社)、Cellic CTec、Cellic CTec2(Novozymes社)の酵素を種々の濃度で添加し、振とうしながら、50℃で72時間、糖化反応を行った。その後、HPLC法によって、生成したグルコース及びキシロースを定量し、糖化率を求めた。基質としたバイオマス前処理物に含まれるセルロース及びヘミセルロースを単糖に換算し、それらに対する遊離生成糖の割合として糖化率を算出した。次に、このようにして求めた糖化率を、反応に用いた前処理バイオマスg重量あたりの酵素タンパク質量に対してプロットし、80%糖化率を示す酵素タンパク質量を算出した。その結果を表2に示した。 Using this rice straw pre-treatment product K209 as a substrate, a reaction system with a substrate concentration of 5 (w / v)%, final sodium azide concentration of 0.02 (w / v)%, and final acetate buffer concentration of 100 mM (pH 5) was constructed. did. To this reaction system, the enzyme solutions prepared in Examples 4 and 5 and Comparative Examples 4 and 5, and enzymes Accellerase 1500 (DANISCO), Cellic CTec, Cellic CTec2 (Novozymes) were added at various concentrations, While shaking, the saccharification reaction was performed at 50 ° C. for 72 hours. Then, produced | generated glucose and xylose were quantified by HPLC method and the saccharification rate was calculated | required. Cellulose and hemicellulose contained in the biomass pre-treatment product as a substrate were converted to monosaccharides, and the saccharification rate was calculated as the ratio of free product sugar to them. Next, the saccharification rate determined in this way was plotted against the amount of enzyme protein per g of pretreated biomass used in the reaction, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ヘミセルラーゼが大部分残存しているアルカリ処理稲わらでは本発明の形質転換体から生産される糖化酵素は、最新型市販酵素(Cellic CTec2)と比較して2.4~2.9倍、Cbh1プロモーター利用糖化酵素と比較して1.3~1.6倍、高機能であることが判明した。 In alkali-treated rice straw where most hemicellulase remains, the saccharification enzyme produced from the transformant of the present invention is 2.4 to 2.9 times that of the latest commercial enzyme (Cellic CTec2). It was found to be 1.3 to 1.6 times more powerful than
 なお、ここで得られた前処理物の分析は、NRELのLAP法に準拠して以下の方法で行った。前処理物を恒温乾燥機にて水分含量がおよそ10%以下になるように乾燥し、100μmのメッシュを通る程度にミルミキサーなどで粉砕した。この粉砕物を水分含量計にかけて水分を測定した。この粉砕物約100mgを耐圧ガラス管に秤り取り、72%硫酸を1mL加え、ガラス棒で1分間よく混合し、恒温水槽で30℃にて60分間インキュベートした。インキュベート中に、時々、ガラス棒で混合した。60分後、28mLの純水を加えてよく混合し、オートクレーブで121℃にて1時間処理した。よく冷めた後、絶乾したガラスフィルター(Whatman、ポアサイズ1.0mm)でろ過し、残渣をガラスフィルターごと絶乾した秤量ビンに移した。残渣は、一旦、70~80℃で乾燥させて水分を蒸発させた後、105℃にて3時間以上乾燥し、乾燥重量を測定した。ろ液に、炭酸カルシウムを少しずつ加え、pH試験紙で確認しながら、pHを5-6に調整した。これを遠心分離(2000rpm、5分間)し、その上清を0.2μmのシリンジフィルターに通し、ポストカラム法による蛍光検出器を用い、HPLC法(カラム:Asahipak NH2P-50 4E、4mmx250mm、Lot:080806、Shodex)にて、サンプル中の糖類を定量分析した。得られた定量値から、グルコースについてはセルロース由来と、キシロース、マンノース、及びガラクトースなどはヘミセルラーゼ由来とみなし、含有率(w/w)を求めた。以下の実施例におけるセルロース及びヘミセルロースの定量もこの方法で行った。 The analysis of the pretreated material obtained here was performed by the following method based on the NREL LAP method. The pretreated product was dried with a constant temperature dryer so that the water content was about 10% or less, and pulverized with a mill mixer or the like to pass through a 100 μm mesh. The pulverized product was subjected to a moisture content meter to measure moisture. About 100 mg of this pulverized product was weighed into a pressure-resistant glass tube, 1 mL of 72% sulfuric acid was added, mixed well with a glass rod for 1 minute, and incubated at 30 ° C. for 60 minutes in a constant temperature water bath. During incubation, occasionally mixed with a glass rod. After 60 minutes, 28 mL of pure water was added and mixed well, and the mixture was treated in an autoclave at 121 ° C. for 1 hour. After cooling well, the mixture was filtered through an absolutely dry glass filter (Whatman, pore size: 1.0 mm), and the residue was transferred to an absolutely dry weighing bottle together with the glass filter. The residue was once dried at 70 to 80 ° C. to evaporate water, then dried at 105 ° C. for 3 hours or more, and the dry weight was measured. Calcium carbonate was added little by little to the filtrate, and the pH was adjusted to 5-6 while checking with pH test paper. This was centrifuged (2000 rpm, 5 minutes), the supernatant was passed through a 0.2 μm syringe filter, and a HPLC method (column: Asahipak NH2P-50 4E, 4 mm x 250 mm, Lot: 080806) using a post-column fluorescence detector. The saccharides in the sample were quantitatively analyzed by Shodex). From the obtained quantitative value, glucose was derived from cellulose and xylose, mannose, galactose, and the like were regarded as derived from hemicellulase, and the content (w / w) was determined. Quantification of cellulose and hemicellulose in the following examples was also performed by this method.
 [実施例8]
 ユーカリ粉砕物21gを水700mlにスラリー濃度3%(w/v)になるように懸濁し、バッチ式前処理装置(東洋高圧社製)で210℃、15分間加熱処理した。その後、この処理物を濾過し、水で洗浄した。こうして得られた前処理物(サンプルNo.Y134)の組成は、セルロース60.9(w/w)%、ヘミセルロース0.8(w/w)%、リグニン33.6(w/w)%、灰分0.4(w/w)%であった。
[Example 8]
21 g of eucalyptus pulverized product was suspended in 700 ml of water so as to have a slurry concentration of 3% (w / v), and heat-treated at 210 ° C. for 15 minutes with a batch type pretreatment device (manufactured by Toyo Koatsu Co., Ltd.). Thereafter, the treated product was filtered and washed with water. The composition of the pre-treated product thus obtained (sample No. Y134) was cellulose 60.9 (w / w)%, hemicellulose 0.8 (w / w)%, lignin 33.6 (w / w)%, ash content 0.4 (w / w). )%Met.
 このようにして調製したユーカリ前処理物Y134を用いて、基質濃度5(w/v)%、最終アジ化ナトリウム濃度0.02(w/v)%、最終酢酸緩衝液濃度100mM(pH5)の反応系を構築した。この反応系に、実施例4、5及び比較例4、5で調製したそれぞれの酵素液、並びにAccellerase1500(DANISCO社)、Cellic CTec、Cellic CTec2(Novozymes社)の酵素を種々の濃度で添加し、振とうしながら、50℃で72時間、糖化反応を行った。実施例7と同様に糖化率を算出し80%糖化率を示す酵素タンパク質量を算出した。その結果を表3に示した。 Using the eucalyptus pre-treated product Y134 prepared in this way, a reaction system with a substrate concentration of 5 (w / v)%, a final sodium azide concentration of 0.02 (w / v)%, and a final acetate buffer concentration of 100 mM (pH 5) Built. To this reaction system, the enzyme solutions prepared in Examples 4 and 5 and Comparative Examples 4 and 5, and enzymes Accellerase 1500 (DANISCO), Cellic CTec, Cellic CTec2 (Novozymes) were added at various concentrations, While shaking, the saccharification reaction was performed at 50 ° C. for 72 hours. The saccharification rate was calculated in the same manner as in Example 7, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 水熱処理ユーカリでは本発明の形質転換体から生産される糖化酵素は、最新型市販酵素(Cellic CTec2)と比較して1.2~1.3倍、Cbh1プロモーター利用糖化酵素と比較して1.1~1.6倍、高機能であることが判明した。 In hydrothermal treatment eucalyptus, the saccharification enzyme produced from the transformant of the present invention is 1.2 to 1.3 times higher than the latest commercial enzyme (Cellic CTec2), 1.1 to 1.6 times higher than the saccharification enzyme using Cbh1 promoter. It turned out to be a function.
 [実施例9]
 エリアンサス粉砕物(100-200μm)150gを0.5%(w/v)苛性ソーダ溶液5Lにスラリー濃度3%(w/v)になるように懸濁し、バッチ式前処理装置(東洋高圧社製)で120℃で5分間加熱処理した。その後、この処理物を濾過し、水で洗浄した。こうして得られた前処理物(サンプルNo.E71)の組成は、セルロース56.0(w/w)%、ヘミセルロース22.2(w/w)%、リグニン6.2(w/w)%、灰分1.6(w/w)%であった。
[Example 9]
150g of Elianthus pulverized product (100-200μm) is suspended in 5L of 0.5% (w / v) caustic soda solution to a slurry concentration of 3% (w / v). Heat treatment was performed at 120 ° C. for 5 minutes. Thereafter, the treated product was filtered and washed with water. The composition of the pre-treated product thus obtained (sample No. E71) was: cellulose 56.0 (w / w)%, hemicellulose 22.2 (w / w)%, lignin 6.2 (w / w)%, ash content 1.6 (w / w) )%Met.
 このようにして調製したエリアンサス前処理物E71を用いて、基質濃度5(w/v)%、最終アジ化ナトリウム濃度0.02(w/v)%、最終酢酸緩衝液濃度100mM(pH5)の反応系を構築した。この反応系に、実施例4、5及び比較例4、5で調製したそれぞれの酵素液、並びにAccellerase1500(DANISCO社)、Cellic CTec、Cellic CTec2(Novozymes社)の酵素を種々の濃度で添加し、振とうしながら、50℃で72時間、糖化反応を行った。実施例7と同様に糖化率を算出し80%糖化率を示す酵素タンパク質量を算出した。その結果を表4に示した。 Using the Erianthus pretreated E71 prepared in this way, a reaction with a substrate concentration of 5 (w / v)%, a final sodium azide concentration of 0.02 (w / v)%, and a final acetate buffer concentration of 100 mM (pH 5). A system was constructed. To this reaction system, the enzyme solutions prepared in Examples 4 and 5 and Comparative Examples 4 and 5, and enzymes Accellerase 1500 (DANISCO), Cellic CTec, Cellic CTec2 (Novozymes) were added at various concentrations, While shaking, the saccharification reaction was performed at 50 ° C. for 72 hours. The saccharification rate was calculated in the same manner as in Example 7, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 苛性ソーダ処理エリアンサスでは本発明の形質転換体から生産される糖化酵素は、最新型市販酵素(Cellic CTec2)と比較して1.3~1.4倍、Cbh1プロモーター利用糖化酵素と比較して1.2~1.3倍、高機能であることが判明した。 In the caustic soda-treated Elianthus, the saccharifying enzyme produced from the transformant of the present invention is 1.3 to 1.4 times that of the latest commercial enzyme (Cellic CTec2), 1.2 to 1.3 times that of the saccharifying enzyme utilizing the Cbh1 promoter, It turned out to be highly functional.
 [実施例10]
 スギチップを2L容の水蒸気爆砕装置(月島機械製)に200g充填し、240℃(3.35MPa)にて10分間水蒸気にて過熱処理した。その後、爆砕処理して前処理物を調製した。この前処理物(サンプルNo.EC11)の組成は、セルロース40.1(w/w)%、ヘミセルロース0.4(w/w)%、リグニン53.4(w/w)%、灰分0.1(w/w)%であった。
[Example 10]
200 g of a 2 liter steam explosion apparatus (manufactured by Tsukishima Kikai Co., Ltd.) was filled with cedar chips, and then heat-treated with steam at 240 ° C. (3.35 MPa) for 10 minutes. Thereafter, a pretreatment product was prepared by blasting treatment. The composition of this pre-treated product (sample No. EC11) is cellulose 40.1 (w / w)%, hemicellulose 0.4 (w / w)%, lignin 53.4 (w / w)%, ash content 0.1 (w / w)% there were.
 このようにして調製したスギ前処理物EC11を用いて、基質濃度5(w/v)%、最終アジ化ナトリウム濃度0.02(w/v)%、最終酢酸緩衝液濃度100mM(pH5)の反応系を構築した。この反応系に、実施例4、5及び比較例4、5で調製したそれぞれの酵素液、並びにAccellerase1500(DANISCO社)、Cellic CTec2(Novozymes社)の酵素を種々の濃度で添加し、振とうしながら、50℃で72時間、糖化反応を行った。実施例7と同様に糖化率を算出し80%糖化率を示す酵素タンパク質量を算出した。その結果を表5に示した。 Using the cedar pretreatment EC11 prepared in this way, a reaction system having a substrate concentration of 5 (w / v)%, a final sodium azide concentration of 0.02 (w / v)%, and a final acetate buffer concentration of 100 mM (pH 5). Built. To this reaction system, the enzyme solutions prepared in Examples 4 and 5 and Comparative Examples 4 and 5, and the enzymes Accellerase 1500 (DANISCO) and Cellic CTec2 (Novozymes) were added at various concentrations, and shaken. The saccharification reaction was performed at 50 ° C. for 72 hours. The saccharification rate was calculated in the same manner as in Example 7, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 爆砕処理スギ前処理物では、本発明の形質転換体から生産される糖化酵素は、最新型市販酵素(Cellic CTec2)と比較して1.9~2.1倍、Cbh1プロモーター利用糖化酵素と比較して1.1~1.3倍、高機能であることが判明した。 In the blast-treated cedar pretreated product, the saccharification enzyme produced from the transformant of the present invention is 1.9 to 2.1 times that of the latest commercial enzyme (Cellic CTec2), and 1.1 to that of the saccharification enzyme using the Cbh1 promoter. 1.3 times higher performance.
 [実施例11]
 基質として微結晶性セルロース(セオラスPH-101(旭化成))を用い、基質濃度5(w/v)%、最終アジ化ナトリウム濃度0.02(w/v)%、最終酢酸緩衝液濃度100mM(pH5)の反応系を構築した。この反応系に、実施例4、5及び比較例4、5で調製したそれぞれの酵素液、並びにAccellerase1500(DANISCO社)、Cellic CTec2(Novozymes社)の酵素を種々の濃度で添加し、振とうしながら、50℃で72時間、糖化反応を行った。実施例7と同様に糖化率を算出し80%糖化率を示す酵素タンパク質量を算出した。その結果を表6に示した。
[Example 11]
Using microcrystalline cellulose (Theoras PH-101 (Asahi Kasei)) as a substrate, substrate concentration 5 (w / v)%, final sodium azide concentration 0.02 (w / v)%, final acetate buffer concentration 100 mM (pH 5) The reaction system of was constructed. To this reaction system, the enzyme solutions prepared in Examples 4 and 5 and Comparative Examples 4 and 5, and enzymes of Accellerase 1500 (DANISCO) and Cellic CTec2 (Novozymes) were added at various concentrations, and shaken. The saccharification reaction was performed at 50 ° C. for 72 hours. The saccharification rate was calculated in the same manner as in Example 7, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 微結晶セルロースでは、本発明の形質転換体から生産される糖化酵素は、最新型市販酵素(Cellic CTec2)と比較して2.3~2.8倍、Cbh1プロモーター利用糖化酵素と比較して1.4~1.6倍、高機能であることが判明した。 In microcrystalline cellulose, the saccharifying enzyme produced from the transformant of the present invention is 2.3 to 2.8 times compared to the latest commercial enzyme (Cellic CTec2), 1.4 to 1.6 times compared to the saccharifying enzyme utilizing Cbh1 promoter, It turned out to be highly functional.
 [実施例12]
 実施例7記載の稲わらの苛性ソーダ前処理物K209の10g(乾燥重量基準)を、500ml容ポリ瓶に秤採った。ポリ瓶に、50mM酢酸緩衝液(pH5.0)を160ml、2(w/v)%アジ化ナトリウム溶液を2ml、実施例4で調製したT.reeseiのBGL組換え株の酵素をタンパク質量80mg相当分、を加え、さらに水分が合計で200mlになるように水を添加した。この反応液を50℃、100ストローク往復振とうで72時間反応させた。この反応液を沸騰水中で5分加熱処理した後、遠心分離(13000rpm、5分)し、上清液180mlを得た。このサンプルについて、HPLC法で生成物を定量したところ、グルコースが26.8mg/ml、キシロースが12.2mg/mlであった。この結果から稲わら前処理物K209、10g(乾燥重量基準)からグルコースが4.82g、キシロースが2.20g調製できた。
[Example 12]
10 g (based on dry weight) of the rice straw caustic soda pretreatment product K209 described in Example 7 was weighed into a 500 ml plastic bottle. In a plastic bottle, 160 ml of 50 mM acetate buffer (pH 5.0), 2 ml of 2 (w / v)% sodium azide solution, T.reesei BGL recombinant strain enzyme prepared in Example 4 with a protein amount of 80 mg A considerable amount was added, and water was further added so that the total amount of water was 200 ml. This reaction solution was reacted at 50 ° C. with 100 stroke reciprocal shaking for 72 hours. This reaction solution was heated in boiling water for 5 minutes and then centrifuged (13000 rpm, 5 minutes) to obtain 180 ml of a supernatant. About this sample, when the product was quantified by HPLC method, glucose was 26.8 mg / ml and xylose was 12.2 mg / ml. From this result, 4.82 g of glucose and 2.20 g of xylose could be prepared from 10 g (dry weight basis) of rice straw pre-treated product K209.
 [実施例13]
 実施例8記載のユーカリの水熱前処理物Y134、7g(乾燥重量基準)を200ml容ポリ瓶に秤り採った。ポリ瓶に、50mM酢酸緩衝液(pH5.0)を80ml、2(w/v)%アジ化ナトリウム溶液を1ml、実施例4で調製したT.reeseiのBGL組換え株の酵素をタンパク質量50mg相当分、を加え、さらに水分が合計で100mlになるように水を添加した。この反応液を50℃、100ストローク往復振とうで72時間反応させた。この反応液を沸騰水中で5分加熱処理した後、遠心分離(13000rpm、5分)し、上清液90mlを得た。このサンプルについて、HPLC法で生成物を定量したところ、グルコースが40.1mg/mlとなった。この結果から、ユーカリ前処理物7gからグルコースが3.61g調製できた。
[Example 13]
7 g (based on dry weight) of Eucalyptus hydrothermal pretreatment Y134 described in Example 8 was weighed into a 200 ml plastic bottle. In a plastic bottle, 80 ml of 50 mM acetate buffer (pH 5.0), 1 ml of 2 (w / v)% sodium azide solution, 50 mg of T. reesei BGL recombinant strain enzyme prepared in Example 4 A considerable amount was added, and water was further added so that the total amount of water was 100 ml. This reaction solution was reacted at 50 ° C. with 100 stroke reciprocal shaking for 72 hours. This reaction solution was heated in boiling water for 5 minutes and then centrifuged (13000 rpm, 5 minutes) to obtain 90 ml of a supernatant. About this sample, when the product was quantified by HPLC method, glucose became 40.1 mg / ml. From this result, 3.61 g of glucose could be prepared from 7 g of the eucalyptus pretreated product.
 [実施例14]
 実施例9記載のエリアンサス苛性ソーダ前処理物E71 10g(乾燥重量基準)を500ml容ポリ瓶に秤り採った。ポリ瓶に、50mM酢酸緩衝液(pH5.0)を160ml、2(w/v)%アジ化ナトリウム溶液を2ml、実施例5で調製したT.reeseiのBGL組換え株の酵素をタンパク質量80mg相当分、を加え、さらに水分が合計で200mlになるように水を添加した。この反応液を50℃、100ストローク往復振とうで72時間反応させた。この反応液を沸騰水中で5分加熱処理した後、遠心分離(13000rpm、5分)し、上清液185mlを得た。このサンプルについて、HPLC法で生成物を定量したところ、グルコースが27.5mg/ml,キシロースが10.5mg/mlとなった。この結果から、エリアンサス前処理物10gからグルコースが5.09g、キシロースが1.94g調製できた。
[Example 14]
10 g of Erianthus caustic soda E71 described in Example 9 (based on dry weight) was weighed into a 500 ml plastic bottle. In a plastic bottle, 160 ml of 50 mM acetate buffer (pH 5.0), 2 ml of 2 (w / v)% sodium azide solution, T. reesei BGL recombinant strain enzyme prepared in Example 5 with a protein amount of 80 mg A considerable amount was added, and water was further added so that the total amount of water was 200 ml. This reaction solution was reacted at 50 ° C. with 100 stroke reciprocal shaking for 72 hours. This reaction solution was heated in boiling water for 5 minutes and then centrifuged (13000 rpm, 5 minutes) to obtain 185 ml of a supernatant. About this sample, when the product was quantified by HPLC method, glucose was 27.5 mg / ml and xylose was 10.5 mg / ml. From these results, 5.09 g of glucose and 1.94 g of xylose could be prepared from 10 g of the Erianthus pretreated product.
 [実施例15]
 実施例11で調製した苛性ソーダ処理稲わら(K209)の酵素糖化液180mlをロータリーエバポレーターにて濃縮し、得られた濃縮液35mlを滅菌吸引濾過装置により無菌濾過し32mlの無菌濾液を得た。この濾液の糖組成はHPLC法による分析からグルコース136mg/ml、キシロース62mg/mlであった。
[Example 15]
180 ml of enzyme saccharified solution of caustic soda-treated rice straw (K209) prepared in Example 11 was concentrated with a rotary evaporator, and 35 ml of the obtained concentrated solution was sterile filtered with a sterile suction filtration device to obtain 32 ml of sterile filtrate. The sugar composition of this filtrate was 136 mg / ml glucose and 62 mg / ml xylose as determined by HPLC analysis.
 300mlの三角フラスコに25mlの培地溶液を入れ滅菌し、ここに30mlの無菌濾液を無菌的に添加した。糖以外の培地成分(終濃度)は、酵母エキス(0.45%)とペプトン(0.75%)であり、培地溶液のpHは5.0に調整した。ここに、5mlの別途種培養(2%グルコース、0.45%酵母エキス及び0.75%ペプトン、pH5.0、48時間)した酵母Kluyveromyces cellobiovorus(ATCC60381)の培養液を5ml添加し、アルコール発酵(フラスコを100rpmで振とうさせ、28℃で72時間)を行わせた。培養後、上清液を分析したところ、グルコースとキシロースはすべて消失しており、エタノール濃度は4.2%(w/v)であった。このアルコール収率は理論量の84%であった。 A 300 ml Erlenmeyer flask was sterilized with 25 ml of the medium solution, and 30 ml of sterile filtrate was aseptically added thereto. Medium components (final concentration) other than sugar were yeast extract (0.45%) and peptone (0.75%), and the pH of the medium solution was adjusted to 5.0. To this, 5 ml of a 5 ml culture solution of yeast Kluyveromyces cellobiovorus (ATCC60381) separately seeded (2% glucose, 0.45% yeast extract and 0.75% peptone, pH 5.0, 48 hours) was added, and alcohol fermentation (flask 100 rpm) And allowed to shake at 28 ° C. for 72 hours. When the supernatant was analyzed after the culture, glucose and xylose were all disappeared and the ethanol concentration was 4.2% (w / v). The alcohol yield was 84% of theory.
 [実施例16]
 エリアンサス粉砕物(100-200μm)21gを1(w/v)%希硫酸溶液700mlにスラリー濃度3(w/v)%になるように懸濁し、バッチ式前処理装置(東洋高圧社製)で180℃、7分間処理した。その後、この処理物を濾過し、水で洗浄した。こうして得られた前処理物(サンプルNo.E-117)の組成は、セルロース51.6(w/w)%、ヘミセルロース1.2(w/w)%、リグニン35.4(w/w)%、灰分5.7(w/w)%であった。
[Example 16]
21g of Elianthus pulverized product (100-200μm) is suspended in 700ml of 1 (w / v)% dilute sulfuric acid solution so that the slurry concentration becomes 3 (w / v)%. At 180 ° C. for 7 minutes. Thereafter, the treated product was filtered and washed with water. The composition of the pre-treatment product thus obtained (Sample No. E-117) was as follows: cellulose 51.6 (w / w)%, hemicellulose 1.2 (w / w)%, lignin 35.4 (w / w)%, ash content 5.7 (w / w)%.
 このようにして調製したエリアンサス前処理物E-117を用いて、基質濃度5(w/v)%、最終アジ化ナトリウム濃度0.02(w/v)%、最終酢酸緩衝液濃度100mM(pH5.0)の反応系を構築した。この反応系に実施例4、5で調製したそれぞれの酵素液、並びにAccellerase1500(DANISCO社)、Cellic CTec2(Novozymes社)の酵素を種々の濃度で添加し、振とうしながら、50℃で72時間、糖化反応を行った。実施例7と同様に糖化率を算出し、80%糖化率を示す酵素タンパク質量を算出した。その結果を表7に示した。 Using the Elianthus pretreatment E-117 prepared in this way, the substrate concentration was 5 (w / v)%, the final sodium azide concentration was 0.02 (w / v)%, and the final acetate buffer concentration was 100 mM (pH 5. The reaction system of 0) was constructed. The enzyme solutions prepared in Examples 4 and 5 and the enzymes Accellerase 1500 (DANISCO) and Cellic® CTec2 (Novozymes) were added to the reaction system at various concentrations and shaken at 50 ° C. for 72 hours. A saccharification reaction was performed. The saccharification rate was calculated in the same manner as in Example 7, and the amount of enzyme protein showing an 80% saccharification rate was calculated. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 希硫酸処理エリアンサス前処理物では本発明の形質転換体から生産される糖化酵素は、最新型市販酵素Cellic CTec2と比較して1.7倍高機能であることが判明した。 It was found that the saccharification enzyme produced from the transformant of the present invention was 1.7 times more functional than the latest commercial enzyme Cellic CTec2 in the dilute sulfuric acid-treated Elinanthus pretreatment product.
 [実施例17]
 ネピアグラス粉砕物(100-200μm)400gを水4Lに懸濁し、5L容バッチ式前処理装置(東洋高圧社製)で220℃、15分間処理した。その後、この処理物を濾過し、水で洗浄した。こうして得られた前処理物(サンプルNo.N-9)の組成は、セルロース48.2(w/w)%、ヘミセルロース1.6(w/w)%、リグニン35.3(w/w)%、灰分6.2(w/w)%であった。
[Example 17]
400 g of pulverized napier grass (100-200 μm) was suspended in 4 L of water and treated with a 5 L batch pretreatment device (manufactured by Toyo Koatsu Co., Ltd.) at 220 ° C. for 15 minutes. Thereafter, the treated product was filtered and washed with water. The composition of the pre-treated product thus obtained (sample No. N-9) was as follows: cellulose 48.2 (w / w)%, hemicellulose 1.6 (w / w)%, lignin 35.3 (w / w)%, ash content 6.2 (w / w)%.
 このようにして調製したネピアグラス前処理物N-9を用いて、基質濃度5(w/v)%、最終アジ化ナトリウム濃度0.02(w/v)%、最終酢酸緩衝液濃度100mM(pH5.0)の反応系を構築した。この反応系に実施例4、5で調製したそれぞれの酵素液、並びにAccellerase1500(DANISCO社)、Cellic CTec2(Novozymes社)を3mgタンパク質/g-バイオマス基質になるように添加し、振とうしながら、50℃で糖化反応を行った。24、48、72時間目に100μlづづサンプリングし、沸騰水中で5分加熱処理後、遠心分離により上清を得た。この上清中の生成還元糖を3,5-ジニトロサリチル酸法(DNS法)でグルコースを標準として定量した。基質として用いた前処理物に含まれるセルロース及びヘミセルロースを単糖に換算し、それらに対する遊離生成糖の割合から糖化率を算出した。得られた結果を図5に示した。 Using the thus prepared Napiergrass pretreatment product N-9, the substrate concentration was 5 (w / v)%, the final sodium azide concentration was 0.02 (w / v)%, and the final acetate buffer concentration was 100 mM (pH 5. The reaction system of 0) was constructed. While adding each enzyme solution prepared in Examples 4 and 5 to this reaction system, Accellerase 1500 (DANISCO), Cellic CTec2 (Novozymes) to become 3 mg protein / g-biomass substrate, shaking, The saccharification reaction was performed at 50 ° C. At 24, 48 and 72 hours, 100 μl was sampled, heated in boiling water for 5 minutes, and then centrifuged to obtain a supernatant. The produced reducing sugar in the supernatant was quantified by the 3,5-dinitrosalicylic acid method (DNS method) using glucose as a standard. Cellulose and hemicellulose contained in the pretreated product used as a substrate were converted into monosaccharides, and the saccharification rate was calculated from the ratio of free product sugars to them. The obtained results are shown in FIG.
 水熱処理ネピアグラス前処理物では、本発明の形質転換体から生産される糖化酵素は最新型市販酵素(Cellic CTec2)と比較して高機能であることが判明した。 In the hydrothermally treated Napiergrass pre-treated product, the saccharification enzyme produced from the transformant of the present invention was found to have higher function than the latest commercial enzyme (Cellic CTec2).
 本発明の形質転換体が産生する糖化酵素は、ヘミセルロース含量の多いバイオマス前処理物だけではなく、ヘミセルロース含量の少ないバイオマス前処理物や結晶セルロースに対しても、市販酵素やcbh1プロモーターを用いて生産した糖化酵素よりも高い糖化性能を示すため、これを用いることにより、少量でセルロース系バイオマスの糖化を完結させることができる。さらに、こうして糖化したセルロース系バイオマスを発酵させることにより、エタノールを製造することができる。本発明によれば、低価格でバイオエタノールを製造することが可能となるため、バイオエタノールの産業化に大きく貢献しうるものである。 The saccharifying enzyme produced by the transformant of the present invention is produced using not only a biomass pre-treated product with a high hemicellulose content but also a biomass pre-treated product or crystalline cellulose with a low hemicellulose content using a commercially available enzyme or cbh1 promoter. Since the saccharification enzyme exhibits higher saccharification performance than the saccharification enzyme, saccharification of the cellulosic biomass can be completed with a small amount. Furthermore, ethanol can be produced by fermenting the saccharified cellulosic biomass. According to the present invention, it is possible to produce bioethanol at a low price, which can greatly contribute to the industrialization of bioethanol.
配列番号3~6、9~12
<223> 人工的に合成されたプライマーの配列
SEQ ID NOs: 3-6, 9-12
<223> Artificially synthesized primer sequences

Claims (7)

  1.  Trichoderma属に属する微生物のegl1プロモーターに連結され発現可能になっているAspergillus属に属する微生物に由来するβ-グルコシダーゼ遺伝子が導入されたTrichoderma属に属する微生物。 Microorganism belonging to the genus Trichoderma which β- glucosidase gene derived from microorganisms belonging to the genus Aspergillus that are enabled coupled expressed egl1 promoter microorganisms was introduced belonging to the genus Trichoderma.
  2.  Trichoderma属に属する微生物がTrichoderma reesei(Hypocrea jecorina)である、請求項1に記載の微生物。 The microorganism according to claim 1, wherein the microorganism belonging to the genus Trichoderma is Trichoderma reesei (Hypocrea jecorina).
  3.  Aspergillus属に属する微生物がAspergillus aculeatusである、請求項1又は2に記載の微生物。 The microorganism according to claim 1 or 2, wherein the microorganism belonging to the genus Aspergillus is Aspergillus aculeatus .
  4.  請求項1から3のいずれかに記載の微生物から生産されたセルロース系バイオマスの糖化酵素。 A saccharification enzyme of cellulosic biomass produced from the microorganism according to any one of claims 1 to 3.
  5.  請求項1から3のいずれかに記載の微生物を培養する工程を含む、請求項4に記載の糖化酵素の生産方法。 The method for producing a saccharifying enzyme according to claim 4, comprising a step of culturing the microorganism according to any one of claims 1 to 3.
  6.  請求項4に記載の糖化酵素で、セルロース系バイオマスを糖化する工程を含む、セルロース系バイオマスからの糖の製造方法。 A method for producing sugar from cellulosic biomass, comprising the step of saccharifying cellulosic biomass with the saccharifying enzyme according to claim 4.
  7.  請求項6に記載の方法を実施することにより得られた糖を発酵する工程を含む、エタノールの製造方法。 A method for producing ethanol, comprising a step of fermenting sugar obtained by carrying out the method according to claim 6.
PCT/JP2013/052170 2012-01-31 2013-01-31 Method for producing sugar and alcohol from cellulosic biomass, and microorganisms used for same WO2013115305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556492A JP6114200B2 (en) 2012-01-31 2013-01-31 Method for producing sugar and alcohol from cellulosic biomass, and microorganism used in the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-019197 2012-01-31
JP2012019197 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013115305A1 true WO2013115305A1 (en) 2013-08-08

Family

ID=48905337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052170 WO2013115305A1 (en) 2012-01-31 2013-01-31 Method for producing sugar and alcohol from cellulosic biomass, and microorganisms used for same

Country Status (2)

Country Link
JP (1) JP6114200B2 (en)
WO (1) WO2013115305A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510500A (en) * 2016-04-08 2019-04-18 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Method for producing cellulase by pretreated lignocellulosic juice residues
US11225679B2 (en) 2018-02-27 2022-01-18 Kao Corporation Mutant β-glucosidase
US11261436B2 (en) 2018-02-26 2022-03-01 Kao Corporation Mutant β-glucosidase
WO2022215618A1 (en) 2021-04-09 2022-10-13 花王株式会社 Modified filamentous fungus, and method for producing protein using same
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506616A (en) * 1998-03-10 2002-03-05 アイオゲン・コーポレイション Gene constructs for enhanced production of β-glucosidase and genetically modified microorganisms
JP2012016329A (en) * 2010-07-09 2012-01-26 Nagaoka Univ Of Technology Method of producing sugar and alcohol from cellulosic biomass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506616A (en) * 1998-03-10 2002-03-05 アイオゲン・コーポレイション Gene constructs for enhanced production of β-glucosidase and genetically modified microorganisms
JP2012016329A (en) * 2010-07-09 2012-01-26 Nagaoka Univ Of Technology Method of producing sugar and alcohol from cellulosic biomass

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKAZAWA H. ET AL.: "Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus p-glucosidase 1 for efficient biomass conversion", BIOTECHNOL. BIOENG., vol. 9, no. 1, 10 January 2012 (2012-01-10), pages 92 - 9 *
RAHMAN Z. ET AL.: "Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters", APPL. MICROBIOL.BIOTECHNOL., vol. 82, no. 5, 2009, pages 899 - 908 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510500A (en) * 2016-04-08 2019-04-18 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Method for producing cellulase by pretreated lignocellulosic juice residues
US11261436B2 (en) 2018-02-26 2022-03-01 Kao Corporation Mutant β-glucosidase
US11225679B2 (en) 2018-02-27 2022-01-18 Kao Corporation Mutant β-glucosidase
WO2022215618A1 (en) 2021-04-09 2022-10-13 花王株式会社 Modified filamentous fungus, and method for producing protein using same
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Also Published As

Publication number Publication date
JP6114200B2 (en) 2017-04-12
JPWO2013115305A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
Abedinifar et al. Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation
Ramachandriya et al. Effect of high dry solids loading on enzymatic hydrolysis of acid bisulfite pretreated Eastern redcedar
EP2625279B1 (en) Enzymatic hydrolysis of lignocellulosic material in the presence of sulfur oxyanions and/or sulfhydryl compounds
WO2010034055A1 (en) Fractionation of lignocellulosic matter
Boonsawang et al. Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF)
Montipó et al. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass
WO2011125056A1 (en) Rapid and low cost enzymatic full conversion of lignocellulosic biomass
CN103014099A (en) Method for promoting hydrolysis of lignocellulose
JP6114200B2 (en) Method for producing sugar and alcohol from cellulosic biomass, and microorganism used in the method
Ahmed et al. Saccharification of sugarcane bagasse by enzymatic treatment for bioethanol production
Das et al. Lignocellulosic fermentation of wild grass employing recombinant hydrolytic enzymes and fermentative microbes with effective bioethanol recovery
Cunha et al. Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: Effects of operational variables and cultivation method
JP2014150745A (en) Mutant microorganism of genus trichoderma and use of the same
JP5745237B2 (en) Method for producing sugar and alcohol from cellulosic biomass
JP6562735B2 (en) New xylanase
JP6581904B2 (en) Method for producing enzyme cocktail using liquid residue from biochemical conversion process of lignocellulosic material
US20160355858A1 (en) Methods of processing sugar cane and sweet sorghum with integrated conversion of primary and lignocellulosic sugars
JP6890134B2 (en) A method for producing cellulase from pretreated lignocellulosic juice residue
JP6255119B1 (en) Method and apparatus for producing a saccharifying enzyme for saccharifying lignocellulosic biomass, and use thereof
EP2373787A1 (en) Process for production of an enzymatic preparation for hydrolysis of cellulose from lignocellulosic residues and application thereof in the production of ethanol
US20150037856A1 (en) Rapid and low cost enzymatic full conversion of lignocellulosic biomass
JP6167758B2 (en) Ethanol production method
KR101217669B1 (en) A novel xylanase from Chaetomium globosum and a method thereof
JP2019193669A (en) Novel xylanase
Khaire et al. Optimization of Saccharification and Fermentation of Alkali Pretreated Sugarcane Tops for Higher Scale Bioethanol Production Using Microbial Consortium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743706

Country of ref document: EP

Kind code of ref document: A1