WO2013115106A1 - Method of reducing nicotine in tobacco raw material, and tobacco product - Google Patents

Method of reducing nicotine in tobacco raw material, and tobacco product Download PDF

Info

Publication number
WO2013115106A1
WO2013115106A1 PCT/JP2013/051635 JP2013051635W WO2013115106A1 WO 2013115106 A1 WO2013115106 A1 WO 2013115106A1 JP 2013051635 W JP2013051635 W JP 2013051635W WO 2013115106 A1 WO2013115106 A1 WO 2013115106A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
tobacco
tobacco raw
nicotine
temperature
Prior art date
Application number
PCT/JP2013/051635
Other languages
French (fr)
Japanese (ja)
Inventor
貴久 勝岡
幸司 坂本
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2013115106A1 publication Critical patent/WO2013115106A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/12Steaming, curing, or flavouring tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
    • A24B15/241Extraction of specific substances
    • A24B15/243Nicotine

Definitions

  • the present invention relates to a method for reducing nicotine contained in a tobacco raw material and a tobacco product using the tobacco raw material obtained by the method.
  • nicotine contained in a tobacco raw material is dissolved in the supercritical fluid by bringing an inert extractant (for example, carbon dioxide) in a supercritical state into contact with the tobacco raw material. Thereafter, the inert extractant containing nicotine is depressurized below the critical point, and the nicotine in the fluid is removed using an adsorbent such as activated carbon.
  • an inert extractant for example, carbon dioxide
  • the method for reducing nicotine disclosed in Patent Document 1 requires the addition of salt. Especially in oral tobacco products, the presence of the additive salt adversely affects the flavor. In addition, the addition of salt removes some of the flavor-related components along with nicotine. At the same time, chemical changes occur in the flavor-related components, and the original flavor of the tobacco material changes. In addition, a long period of 10 weeks or more is required to reduce the nicotine concentration to about 60% by weight.
  • An object of the present invention is a method in which extraction of a flavor-related component other than nicotine and chemical change are suppressed as much as possible by simply heating a tobacco raw material, and only nicotine can be selectively reduced in a short time. Is to provide.
  • Another object of the present invention is to provide a tobacco product having a low nicotine while containing the tobacco raw material obtained by the above-mentioned method and having the original flavor of tobacco.
  • the method according to the first aspect of the present invention is configured to ventilate a wet gas adjusted to a temperature of 40 ° C. or higher and 90 ° C. or lower under atmospheric pressure through the tobacco raw material, and to reduce the moisture content of the tobacco raw material.
  • the tobacco raw material is heated while being maintained at 10% by weight or more and less than 30% by weight.
  • the tobacco product according to the second embodiment of the present invention is characterized by including the tobacco raw material obtained by the above method.
  • the extraction and chemical change of flavor-related components other than nicotine can be suppressed as much as possible, and nicotine contained in the tobacco raw material can be reduced in a short time with no addition.
  • FIG. 1 is a block diagram schematically showing a tobacco raw material processing apparatus used in a method for reducing nicotine in tobacco raw materials according to an embodiment.
  • FIG. 2 is a perspective view schematically showing a cigarette with a filter according to the embodiment.
  • FIG. 3 is a graph showing the relationship between the processing time of the tobacco raw material and the nicotine concentration in the tobacco raw material in Examples 1 to 3 and Comparative Example 1.
  • FIG. 4 is a diagram showing the relationship between the processing time of the tobacco raw material and the concentration of nicotine in the tobacco raw material in Comparative Example 2 and Comparative Example 3.
  • FIG. 5 is a diagram showing the relationship between the processing time of the tobacco raw material and the glucose concentration in the tobacco raw material in Example 3.
  • FIG. 6 is a diagram showing the relationship between the processing time of the tobacco raw material and the glucose concentration in the tobacco raw material in Comparative Example 2 and Comparative Example 3.
  • a wet gas adjusted to a temperature of 40 ° C. or higher and 90 ° C. or lower is passed through the tobacco raw material under atmospheric pressure, and the moisture content of the tobacco raw material is 10% by weight or higher, 30 It is characterized by heating the tobacco material while maintaining it at less than% by weight.
  • the inventor involved in the method for reducing nicotine has found that the concentration of nicotine contained in the tobacco material decreases when the tobacco material is heated by passing a gas such as heated air through the tobacco material. Furthermore, it was found that the rate at which the nicotine concentration decreases depends not only on the temperature but also on the moisture content in the tobacco raw material.
  • the reason for this is considered to be that (a) the stable nicotine salt in the tobacco raw material is dissociated due to the presence of water, and (b) the vapor pressure of nicotine increases due to the temperature rise of the tobacco raw material.
  • the nicotine salt does not volatilize as it is, but the dissociated nicotine volatilizes slightly even at room temperature.
  • the vapor pressure of nicotine is 4 Pa at 20 ° C. and 80 Pa at 60 ° C.
  • the inventor has determined that the temperature of the tobacco raw material is 40 ° C. or higher and 90 ° C. or lower, and that the moisture content of the tobacco raw material is maintained at a moisture content of 10% by weight or more and less than 30% by weight.
  • vent Invented to vent.
  • the tobacco raw material can be converted into a tobacco raw material without causing alteration of the tobacco raw material or excessive volatilization and elution of flavor-related components other than nicotine.
  • the humid gas can be ventilated to the tobacco raw material under atmospheric pressure. Therefore, complicated and expensive equipment is not required, and processing for reducing nicotine in the tobacco raw material can be executed with inexpensive equipment.
  • examples of the tobacco material include cigarette chopping.
  • air, nitrogen, carbon dioxide, argon, or the like can be used as the gas that flows through the tobacco material, and particularly inexpensive air is preferable.
  • the temperature of the wet gas when the temperature of the wet gas is lower than 40 ° C., it is difficult to sufficiently volatilize nicotine.
  • the temperature of the wet gas exceeds 90 ° C., it is accompanied by alteration of the tobacco raw material such as scorching the tobacco raw material, and there is a possibility that flavor-related components other than nicotine volatilize.
  • the temperature of the wet gas is more preferably set to 60 ° C. or higher and 90 ° C. or lower.
  • the moisture content in the tobacco raw material when the moisture content in the tobacco raw material is less than 10% by weight while the wet gas is passed through the tobacco raw material, the amount of free water present in the tobacco raw material decreases. As a result, dissociation of the nicotine salt is lowered, and it is difficult to sufficiently reduce nicotine.
  • the moisture content in the tobacco raw material is set to 30% by weight or more while the wet gas is passed through the tobacco raw material, flavor-related components other than nicotine may be eluted.
  • the moisture content in the tobacco raw material it is more preferable to set the moisture content in the tobacco raw material to 20% by weight or more and less than 30% by weight while the wet gas is passed through the tobacco raw material.
  • the ventilation rate of the wet gas with respect to the tobacco raw material is, for example, 1 to 10 m / sec.
  • FIG. 1 is a block diagram schematically showing a tobacco raw material processing apparatus 10 according to an embodiment.
  • the tobacco raw material processing apparatus 10 includes a flow path L1 that is continuous in a loop shape.
  • Wet air which is an example of wet gas, circulates in the flow path L1 along the direction of the arrow.
  • a humidity control chamber 14 having a blower 11, an electric heater 12, and an injection nozzle 13 and a processing chamber 15 are disposed in the flow path L1.
  • the first branch channel L2 is branched from the channel L1.
  • the first branch flow path L2 is an element for introducing dry air into the flow path L1, and is connected to the flow path L1 upstream of the blower 11.
  • a first valve V1 and a first flow rate controller FC1 are provided in the first branch flow path L2.
  • the first valve V1 is positioned at the upstream end of the first branch flow path L2 for introducing dry air.
  • the first flow rate controller FC1 is interposed between the first valve V1 and the flow path L1.
  • the second branch flow path L3 is branched from the flow path L1.
  • the second branch flow path L3 is an element for discharging humidified air to the outside of the flow path L1, and is connected to the flow path L1 between the blower 11 and the electric heater 12.
  • a second valve V2 and a second flow rate controller FC2 are provided in the second branch flow path L3.
  • the second flow rate controller FC2 is disposed at the downstream end of the second branch flow path L3 that discharges the humidified air.
  • the second valve V2 is interposed between the flow path L1 and the second flow rate controller FC2.
  • a water tank 16 is disposed adjacent to the humidity control chamber 14.
  • the water tank 16 is connected to the spray nozzle 13 in the humidity control chamber 14 via the water supply flow path L4.
  • a pump 17 and a control valve CV are provided in the water supply flow path L4.
  • the pump 17 is disposed in the vicinity of the water tank 16.
  • the control valve CV is disposed between the pump 17 and the injection nozzle 13. Excess water droplets generated in the humidity control chamber 14 are discharged from the drain D to the outside of the humidity control chamber 14.
  • the processing chamber 15 has a cylindrical shape, for example.
  • the processing chamber 15 includes a processing container 15a loaded with a tobacco material and an air circulation chamber 15b.
  • the processing container 15a is cylindrical with a bottom.
  • a porous partition wall 18 is disposed at the bottom of the processing vessel 15a.
  • the porous partition wall 18 is made of, for example, a metal mesh.
  • the detection terminal of the humidity sensor 19 is inserted into the processing container 15a.
  • the humidity sensor 19 is a hygrometer, for example, and detects the humidity in the processing container 15a.
  • the humidity sensor 19 is connected to the controller 20. Furthermore, the controller 20 is connected to the operation part of the control valve CV.
  • a signal indicating the humidity in the processing container 15 a detected by the humidity sensor 19 is sequentially input from the humidity sensor 19 to the controller 20.
  • the controller 20 outputs a control signal to the operation unit of the control valve CV based on the signal from the humidity sensor 19.
  • the control valve CV controls the amount of water supplied from the water tank 16 to the spray nozzle 13 of the humidity control chamber 14 through the water supply flow path L4.
  • the humidity in the processing container 15a and the moisture content in the tobacco raw material loaded in the processing container 15a have a certain correlation. Therefore, the moisture content in the tobacco material can be estimated based on the humidity in the processing container 15a.
  • the detection terminal of the temperature sensor 21 is inserted into the processing container 15a.
  • the temperature sensor 21 is, for example, a thermoelectric body, and detects the temperature in the processing container 15a.
  • the temperature sensor 21 is connected to the controller 20. Further, the controller 21 is connected to the electric heater 12.
  • the signal indicating the temperature in the processing container 15 a detected by the temperature sensor 21 is sequentially input from the temperature sensor 21 to the controller 20.
  • the controller 20 outputs a control signal to the electric heater 12 based on the signal from the temperature sensor 21 to adjust the amount of heat generated by the electric heater 12. As a result, the heating amount of the air flowing through the flow path L1 toward the humidity control chamber 14 is controlled.
  • a flow rectifying plate (not shown) for rectifying the air entering the processing chamber 15 is provided in the flow path L1. Furthermore, a heat retaining heater (not shown) for compensating for a decrease in the amount of heat accompanying water evaporation is provided between the humidity control chamber 14 and the processing container 15 in the flow path L1.
  • the blower 11 is operated to take in air, which is an example of gas, from the first branch passage L2 into the flow passage L1.
  • the air taken into the flow path L ⁇ b> 1 flows toward the humidity control chamber 14 through the electric heater 12.
  • the electric heater 12 is energized to heat the air flowing through the flow path L1 to a desired temperature.
  • the heated air circulates through the flow path L ⁇ b> 1 by the operation of the blower 11.
  • the pump 17 After the air circulating through the flow path L1 reaches a predetermined temperature, the pump 17 is driven to supply water in the water tank 16 to the injection nozzle 13 from the water supply flow path L4. Thereby, water is sprayed in a mist form from the spray nozzle 13 into the humidity control chamber 14, and the humidity control chamber 14 shifts to a wet state.
  • the processing container 15 a loaded with the tobacco material is inserted into the processing chamber 15.
  • the heated moist air vents the tobacco raw material loaded in the processing container 15a, passes through the porous partition wall 18, and is discharged to the air circulation chamber 15b.
  • the wet air discharged to the air circulation chamber 15b circulates through the flow path L1 so as to return to the blower 11.
  • the blower 11 may be damaged.
  • external air dried upstream of the blower 11 is introduced into the flow path L1 through the first branch path L2.
  • the amount of air introduced into the flow path L1 is controlled using the first valve V1 and the first flow rate controller FC1 provided in the first branch passage L2.
  • the humid air circulating in the flow path L1 between the blower 11 and the electric heater 12 is discharged out of the flow path L1 through the second branch path L3.
  • the amount of air discharged out of the flow path L1 is controlled using the second valve V2 and the second flow rate controller FC2 provided in the second branch passage L3.
  • the temperature sensor 21 and the controller 20 adjust the amount of heat generated by the electric heater 12. Thereby, the temperature of the humid air is controlled to 40 ° C. or higher and 90 ° C. or lower, which is the target temperature.
  • the temperature sensor 21 detects the actual temperature in the processing container 15a, and a signal indicating the temperature in the processing container 15a is sequentially output to the controller 20.
  • the controller 20 determines that the temperature in the processing container 15a is lower than the target temperature (40 ° C. or higher and 90 ° C. or lower)
  • the controller 20 outputs a control signal for increasing the energization amount to the electric heater 12.
  • the amount of heat generated by the electric heater 12 increases, and the temperature of the air passing through the electric heater 12 rises.
  • the controller 20 determines that the temperature in the processing container 15a is higher than the target temperature (40 ° C. or higher and 90 ° C. or lower), the controller 20 outputs a control signal for reducing the energization amount to the electric heater 12. .
  • the controller 20 outputs a control signal for reducing the energization amount to the electric heater 12. .
  • the amount of heat generated by the electric heater 12 decreases, and the temperature of the air passing through the electric heater 12 decreases.
  • the temperature of the air guided to the humidity control chamber 14 is maintained at 40 ° C. or higher and 90 ° C. or lower.
  • the humidity of the humid air supplied from the humidity control chamber 14 to the processing container 15 a is finely adjusted by feedback control by the humidity sensor 19 and the controller 20. Specifically, while the humid air passes through the tobacco raw material in the processing container 15a, the humidity of the humid air supplied into the processing container 15a is the target value of the moisture content of the tobacco raw material in the processing container 15a. It is controlled by adjusting the amount of water supplied from the water tank 16 to the spray nozzle 13 by the controller 20 so as to maintain the weight% or more and less than 30% by weight.
  • the humidity sensor 19 detects the actual humidity in the processing container 15a, and a signal indicating the humidity in the processing container 15a is sequentially output to the controller 20.
  • the controller 20 determines that the humidity in the processing container 15a is lower than the target value (10 wt% or more and less than 30 wt%), the moisture content in the tobacco raw material correlated with the humidity is controlled by the control valve CV.
  • a control signal for increasing the amount of water supplied to the injection nozzle 13 is output.
  • the amount of water sprayed from the spray nozzle 13 to the humidity control chamber 14 increases, and the humidity of the humid air flowing through the humidity control chamber 14 increases.
  • the controller 20 determines that the humidity in the processing container 15a is higher than the target value (10% by weight or more and less than 30% by weight) of the moisture content in the tobacco raw material correlated with the humidity
  • a control signal for reducing the amount of water supplied to the injection nozzle 13 is output to the control valve CV.
  • the amount of water sprayed from the spray nozzle 13 to the humidity control chamber 14 decreases, and the humidity of the humid air flowing through the humidity control chamber 14 decreases.
  • the humidity of the humid air passing through the humidity control chamber 14 is controlled such that the moisture content in the tobacco raw material is 10% by weight or more and less than 30% by weight, which is the target value. .
  • the moisture content of the tobacco raw material is 10 wt% or more and 30 wt% by ventilating the tobacco raw material with humid air adjusted to a temperature of 40 ° C. or higher and 90 ° C. or lower under atmospheric pressure.
  • the tobacco raw material is heated while maintaining it at less than%.
  • nicotine in tobacco materials can be reduced to a maximum of, for example, nearly 0% by weight in a short time without causing alteration of tobacco materials or excessive evaporation and elution of flavor-related components other than nicotine. it can.
  • the first branch flow path L2 is connected to the flow path L1 upstream of the blower 11, and the second branch flow path L3 is formed between the blower 11 and the electric heater 12.
  • the temperature of the wet air by the electric heater 12 feedback-controlled by the temperature sensor 21 and the controller 20 varies depending on the introduction of the dry air into the flow path L1 and the discharge of the wet air to the outside of the flow path L1. There is nothing. Therefore, the feedback control of the electric heater 12 is ensured, and the humid air that ventilates the tobacco material can be maintained at an appropriate temperature.
  • the tobacco product according to the embodiment is a smokeless tobacco product of an oral type such as cigarette or SNUS containing a tobacco raw material in which nicotine is reduced by the above method.
  • a cigarette 30 with a filter, which is an example of a tobacco product, will be described with reference to FIG.
  • the cigarette 30 with a filter includes a tobacco rod 31 and a filter 32.
  • the filter 32 has a diameter equivalent to or smaller than that of the tobacco rod 31.
  • the end of the tobacco rod 31 and the end of the filter 32 are abutted coaxially with each other.
  • the outer peripheral surface of the filter 32 and the outer peripheral surface of the end portion of the tobacco rod 31 are continuously covered with the chip paper 33. For this reason, the tobacco rod 31 and the filter 32 are integrally coupled via the chip paper 33.
  • the tobacco rod 31 is formed by covering a tobacco cut 34 with a wrapping paper 35 in a cylindrical shape.
  • the filter 32 is composed of, for example, a filter material (not shown) formed by bundling or folding acetate fiber or pulp nonwoven fabric, and plug paper (molded paper) 36 in which the filter material is rolled in a columnar shape. .
  • a tobacco raw material in which nicotine is reduced by the above-described method is used as the tobacco notch 34 of the tobacco rod 31.
  • the cigarette 30 with a filter according to the embodiment includes the tobacco raw material obtained by the above method. For this reason, it has the original flavor of tobacco and can be provided as a tobacco product with low nicotine.
  • nicotine is an important factor in determining the flavor of tobacco products, it is also a substance that irritate the oral cavity. For this reason, oral type smokeless tobacco products such as SNUS containing tobacco raw materials with reduced nicotine as in the embodiment are extremely useful as luxury items.
  • Example 1 to Example 3 yellow tobacco tobacco with a moisture content adjusted to 20% by weight was prepared as a tobacco raw material.
  • Example 2 wet air at 60 ° C. was supplied into the processing container 15a and the wet air was vented to the tobacco raw material, and then discharged from the air circulation chamber 15b to the flow path L1.
  • Example 2 after supplying 70 degreeC humid air in the processing container 15a and ventilating the said humid air to a tobacco raw material, it discharged
  • Example 3 after supplying 80 degreeC humid air in the processing container 15a and ventilating the said humid air to a tobacco raw material, it discharged
  • the aeration rate of wet air was 3 m / second in any of the examples, and the tobacco raw material was heat-treated by continuing the supply of wet air for 120 minutes.
  • the humidity of the wet air was controlled so that the moisture content of the tobacco raw material was maintained at 20% by weight.
  • the moisture content of the tobacco raw material in the processing container 15a was monitored at intervals of 5 minutes while the humid air was passed through the tobacco raw material in the processing container 15a. Based on the results obtained from the monitoring, the humidity of the humid air was adjusted, and the moisture content of the tobacco raw material was controlled to 20% by weight.
  • Comparative Examples 1 to 3 dry air having a humidity of 0.01 kg-H 2 0 / kg was used as the air to be passed through the tobacco material. Further, in Comparative Example 1, the temperature of the dry air was set to 100 ° C., and the processing time of the tobacco raw material with the dry air was set to 120 minutes. In Comparative Example 2, the temperature of the dry air was 150 ° C., and the processing time of the tobacco raw material with the dry air was 3 minutes. In Comparative Example 3, the temperature of the dry air was 200 ° C., and the processing time of the tobacco raw material with the dry air was 3 minutes. Except for this, the tobacco material was heat-treated in the same procedure as in Examples 1 to 3.
  • FIG. 3 shows changes in the nicotine concentration of the tobacco raw material with respect to the treatment time in Examples 1 to 3 and Comparative Example 1 in which the treatment time was 120 minutes.
  • FIG. 4 shows a change in the nicotine concentration of the tobacco raw material with respect to the treatment time in Comparative Example 2 and Comparative Example 3 in which the treatment time is 3 minutes.
  • FIG. 5 shows the change in the glucose concentration of the tobacco raw material with respect to the treatment time in Example 3.
  • FIG. 6 shows the change in the glucose concentration of the tobacco raw material with respect to the treatment time in Comparative Example 2 and Comparative Example 3.
  • Example 3 in which the temperature of the humid air was set to 80 ° C., it was confirmed that nicotine could be reduced by 55% by weight after treatment for 1 hour.
  • Comparative Examples 1 to 3 in which the tobacco raw material was heat-treated with dry air heated to a high temperature of 100 ° C. or higher, 100 ° C. dry air was used.
  • Comparative Example 1 there is no decrease in nicotine concentration.
  • Comparative Example 2 using dry air at 150 ° C. the nicotine concentration is only slightly reduced.
  • Comparative Example 3 using 200 ° C. dry air although a decrease in nicotine concentration was observed, it was clear that the cigarette raw material was burnt after only 20 seconds from the start of treatment and could not be applied to tobacco products. It became.
  • Example 3 in which the tobacco raw material was heat-treated with 80 ° C. humid air, the glucose concentration, which is a flavor-related component other than nicotine, hardly decreased.
  • Comparative Example 2 and Comparative Example 3 in which the tobacco raw material was heat-treated with high-temperature dry air heated to 150 ° C. and 200 ° C. the glucose concentration decreased as the temperature of the dry air increased as shown in FIG. It can be seen that the degree increases. The reason for this is considered that glucose is thermally decomposed at temperatures of 150 ° C. and 200 ° C.
  • the inventor conducted an experiment in which a tobacco raw material was heated using superheated steam heated to 100 ° C. or higher. According to this experiment, the moisture content of the tobacco raw material rapidly decreased under atmospheric pressure, so that the tobacco raw material was burnt in the same manner as when the tobacco raw material was heat-treated with high-temperature dry air.
  • the present invention by controlling the temperature and moisture content of the tobacco raw material and heat-treating the tobacco raw material, the sugar-related flavor-related components such as glucose are reduced and the tobacco raw material is prevented from deteriorating. However, it is possible to efficiently reduce nicotine contained in the tobacco raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Tobacco Products (AREA)

Abstract

Provided is a method which, by treatment only involving simply heating the tobacco raw material, is capable of suppressing as much as possible chemical changes and extraction of flavor-related components other than nicotine, and of easily, quickly and selectively reducing only nicotine. This nicotine reduction method involves aerating the tobacco raw material with a wet gas adjusted to a temperature of 40-90°C under atmospheric pressure, and heating the tobacco raw material while maintaining the moisture content of the tobacco raw material at greater than or equal to 10 wt% and less than 30 wt%.

Description

たばこ原料中のニコチン低減方法およびたばこ製品Method for reducing nicotine in tobacco raw materials and tobacco products
 本発明は、たばこ原料中に含まれるニコチンを低減する方法および当該方法で得られたたばこ原料を用いたたばこ製品に関する。 The present invention relates to a method for reducing nicotine contained in a tobacco raw material and a tobacco product using the tobacco raw material obtained by the method.
 近年、低タールおよび低ニコチンのたばこ製品への需要が高まっている。たばこ原料に含まれるニコチンを低減させる方法として、従来、塩添加、溶媒抽出および超臨界抽出による方法が知られている。 In recent years, there has been an increasing demand for low tar and nicotine tobacco products. As a method for reducing nicotine contained in a tobacco raw material, conventionally, methods using salt addition, solvent extraction and supercritical extraction are known.
 特許文献1に開示されたニコチン低減方法では、たばこ原料に塩の一例である炭酸ナトリウムを添加した後、当該たばこ原料を15℃~32℃で4週間から14週間に亘って静置している。これにより、たばこ原料中に含有されるニコチン濃度を60重量%程度まで低減させることができる。 In the method for reducing nicotine disclosed in Patent Document 1, after adding sodium carbonate as an example of a salt to a tobacco raw material, the tobacco raw material is allowed to stand at 15 ° C. to 32 ° C. for 4 to 14 weeks. . Thereby, the nicotine density | concentration contained in a tobacco raw material can be reduced to about 60 weight%.
 特許文献2に開示された溶媒抽出法では、まず、たばこ原料に含まれるニコチンを例えば水のような第1溶媒により抽出する。得られた抽出液に塩基性物質とニコチン溶解性を有する第2溶媒とを加えて、第1溶媒から第2溶媒にニコチンを移す。この後、第2溶媒を分離する。一連の操作で塩基性物質が除去された第2溶媒をたばこ抽出残渣に再度添加した後、乾燥させる。これにより、喫煙材としてのたばこ原料が得られる。 In the solvent extraction method disclosed in Patent Document 2, first, nicotine contained in a tobacco raw material is extracted with a first solvent such as water. A basic substance and a second solvent having nicotine solubility are added to the obtained extract, and nicotine is transferred from the first solvent to the second solvent. Thereafter, the second solvent is separated. The second solvent from which the basic substance has been removed by a series of operations is added again to the tobacco extraction residue and then dried. Thereby, the tobacco raw material as a smoking material is obtained.
 特許文献3に開示されたニコチン抽出法では、超臨界状態にある不活性抽出剤(例えば二酸化炭素)をたばこ原料に接触させることで、たばこ原料に含まれるニコチンを超臨界流体に溶解させる。この後、ニコチンを含有した不活性抽出剤を臨界点以下へ減圧し、活性炭のような吸着剤を用いて流体中のニコチンを除去している。 In the nicotine extraction method disclosed in Patent Document 3, nicotine contained in a tobacco raw material is dissolved in the supercritical fluid by bringing an inert extractant (for example, carbon dioxide) in a supercritical state into contact with the tobacco raw material. Thereafter, the inert extractant containing nicotine is depressurized below the critical point, and the nicotine in the fluid is removed using an adsorbent such as activated carbon.
米国特許第4848378号明細書U.S. Pat. No. 4,848,378 米国特許第5065775号明細書US Pat. No. 5,065,775 特開平6-98746号公報JP-A-6-98746
 特許文献1に開示されたニコチン低減方法は、塩の添加を必要とする。特に経口たばこ製品においては、添加物である塩の存在が香味に悪影響を与える。さらに、塩の添加によって、香味関連成分の一部がニコチンと共に除去されてしまう。それとともに、香味関連成分に化学的な変化が起こり、たばこ原料が有する本来の香味が変化する。加えて、ニコチン濃度を60重量%程度まで低減するためには、10週間以上という長い期間を必要とする。 The method for reducing nicotine disclosed in Patent Document 1 requires the addition of salt. Especially in oral tobacco products, the presence of the additive salt adversely affects the flavor. In addition, the addition of salt removes some of the flavor-related components along with nicotine. At the same time, chemical changes occur in the flavor-related components, and the original flavor of the tobacco material changes. In addition, a long period of 10 weeks or more is required to reduce the nicotine concentration to about 60% by weight.
 特許文献2に開示された溶媒抽出法によると、第1溶媒および塩基性物質の添加によってニコチン以外にも多くの香味関連成分が抽出される。加えて、塩基性物質の添加により、香味関連成分に化学的な変化が起こり、たばこ原料が有する本来の香味が変化する。さらに、たばこ原料の製造工程が多段階に亘り、作業が煩雑となる。 According to the solvent extraction method disclosed in Patent Document 2, many flavor-related components other than nicotine are extracted by the addition of the first solvent and the basic substance. In addition, the addition of a basic substance causes a chemical change in the flavor-related components, thereby changing the original flavor of the tobacco raw material. Furthermore, the manufacturing process of the tobacco raw material is multistage, and the work becomes complicated.
 特許文献3に開示されたニコチン抽出法では、ニコチンを抽出するための装置の構成および工程が複雑となる。この結果、ニコチンが抽出されたたばこ原料の製造コストが増大する。 In the nicotine extraction method disclosed in Patent Document 3, the configuration and process of an apparatus for extracting nicotine are complicated. As a result, the manufacturing cost of the tobacco raw material from which nicotine is extracted increases.
 本発明の目的は、たばこ原料を単に加熱するだけの処理で、ニコチン以外の香味関連成分の抽出および化学的変化を極力抑え、ニコチンのみを選択的に短時間で簡便に低減することができる方法を提供することにある。 An object of the present invention is a method in which extraction of a flavor-related component other than nicotine and chemical change are suppressed as much as possible by simply heating a tobacco raw material, and only nicotine can be selectively reduced in a short time. Is to provide.
 本発明の他の目的は、前記方法で得られたたばこ原料を含み、たばこ本来の香味を有するとともに、低ニコチンのたばこ製品を提供することにある。 Another object of the present invention is to provide a tobacco product having a low nicotine while containing the tobacco raw material obtained by the above-mentioned method and having the original flavor of tobacco.
 上記課題を解決するため、本発明の第1の形態に係る方法は、大気圧下において温度を40℃以上、90℃以下に調整した湿潤気体をたばこ原料に通気し、たばこ原料の含水率を10重量%以上、30重量%未満に維持しながらたばこ原料を加熱するようにしたことを特徴としている。 In order to solve the above-described problem, the method according to the first aspect of the present invention is configured to ventilate a wet gas adjusted to a temperature of 40 ° C. or higher and 90 ° C. or lower under atmospheric pressure through the tobacco raw material, and to reduce the moisture content of the tobacco raw material. The tobacco raw material is heated while being maintained at 10% by weight or more and less than 30% by weight.
 本発明の第2の形態に係るたばこ製品は、上記方法で得られたたばこ原料を含むことを特徴としている。 The tobacco product according to the second embodiment of the present invention is characterized by including the tobacco raw material obtained by the above method.
 本発明によれば、ニコチン以外の香味関連成分の抽出および化学的変化を極力抑え、たばこ原料中に含まれるニコチンを短時間のうちに簡便かつ無添加で低減することができる。 According to the present invention, the extraction and chemical change of flavor-related components other than nicotine can be suppressed as much as possible, and nicotine contained in the tobacco raw material can be reduced in a short time with no addition.
 さらに、本発明によれば、たばこ本来の香味を有するとともに、低ニコチンのたばこ製品を提供することができる。 Furthermore, according to the present invention, it is possible to provide a tobacco product having the original flavor of tobacco and having low nicotine.
図1は、実施形態に係るたばこ原料中のニコチン低減方法に用いるたばこ原料処理装置を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing a tobacco raw material processing apparatus used in a method for reducing nicotine in tobacco raw materials according to an embodiment. 図2は、実施形態に係るフィルタ付きシガレットを概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing a cigarette with a filter according to the embodiment. 図3は、実施例1~実施例3および比較例1において、たばこ原料の処理時間とたばこ原料中のニコチン濃度との関係を示す図である。FIG. 3 is a graph showing the relationship between the processing time of the tobacco raw material and the nicotine concentration in the tobacco raw material in Examples 1 to 3 and Comparative Example 1. 図4は、比較例2および比較例3において、たばこ原料の処理時間とたばこ原料中のニコチン濃度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the processing time of the tobacco raw material and the concentration of nicotine in the tobacco raw material in Comparative Example 2 and Comparative Example 3. 図5は、実施例3において、たばこ原料の処理時間とたばこ原料中のグルコース濃度との関係を示す図である。FIG. 5 is a diagram showing the relationship between the processing time of the tobacco raw material and the glucose concentration in the tobacco raw material in Example 3. 図6は、比較例2および比較例3において、たばこ原料の処理時間とたばこ原料中のグルコース濃度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the processing time of the tobacco raw material and the glucose concentration in the tobacco raw material in Comparative Example 2 and Comparative Example 3.
 以下、本発明の実施形態に係るたばこ原料中のニコチン低減方法およびたばこ製品について詳細に説明する。 Hereinafter, a method for reducing nicotine in tobacco raw materials and tobacco products according to an embodiment of the present invention will be described in detail.
 実施形態に係るたばこ原料中のニコチン低減方法は、大気圧下において温度を40℃以上、90℃以下に調整した湿潤気体をたばこ原料に通気し、たばこ原料の含水率を10重量%以上、30重量%未満に維持しながらたばこ原料を加熱することを特徴としている。 In the method for reducing nicotine in a tobacco raw material according to the embodiment, a wet gas adjusted to a temperature of 40 ° C. or higher and 90 ° C. or lower is passed through the tobacco raw material under atmospheric pressure, and the moisture content of the tobacco raw material is 10% by weight or higher, 30 It is characterized by heating the tobacco material while maintaining it at less than% by weight.
 ニコチン低減方法に携わる発明者は、たばこ原料に加熱した空気のような気体を通気してたばこ原料を加熱すると、たばこ原料中に含まれるニコチン濃度が減少することを見出した。さらに、ニコチン濃度が減少する速度は、温度ばかりでなく、たばこ原料中の含水率に依存することを究明した。 The inventor involved in the method for reducing nicotine has found that the concentration of nicotine contained in the tobacco material decreases when the tobacco material is heated by passing a gas such as heated air through the tobacco material. Furthermore, it was found that the rate at which the nicotine concentration decreases depends not only on the temperature but also on the moisture content in the tobacco raw material.
 たばこ原料中の含水率が高いほど、又はたばこ原料の温度が高いほど、たばこ原料に含まれるニコチン濃度の減少速度が増大する。この理由は、(a)たばこ原料中の安定したニコチン塩が水の存在により解離すること、(b)たばこ原料の温度上昇によりニコチンの蒸気圧が増大すること、に起因すると考えられる。なお、ニコチン塩は、そのままの状態では揮発しないが、解離ニコチンは室温でも僅かながら揮発する。因みにニコチンの蒸気圧は、20℃の場合で4Pa、60℃の場合で80Paである。 The higher the moisture content in the tobacco material or the higher the temperature of the tobacco material, the higher the rate of decrease in the concentration of nicotine contained in the tobacco material. The reason for this is considered to be that (a) the stable nicotine salt in the tobacco raw material is dissociated due to the presence of water, and (b) the vapor pressure of nicotine increases due to the temperature rise of the tobacco raw material. The nicotine salt does not volatilize as it is, but the dissociated nicotine volatilizes slightly even at room temperature. Incidentally, the vapor pressure of nicotine is 4 Pa at 20 ° C. and 80 Pa at 60 ° C.
 一方、たばこ原料中の含水率を高くし過ぎると、ニコチン以外の香味関連成分が溶出するといった問題が生じる。さらに、たばこ原料の温度を高くし過ぎると、たばこ原料が焦げて変質するとともに、ニコチン以外の香味関連成分が揮発するといった問題が生じる。 On the other hand, if the moisture content in the tobacco raw material is too high, there arises a problem that flavor-related components other than nicotine are eluted. Furthermore, if the temperature of the tobacco raw material is too high, the tobacco raw material burns and changes its quality, and the flavor-related components other than nicotine volatilize.
 このようなことから、発明者は、たばこ原料の温度が40℃以上、90℃以下となり、たばこ原料の含水率が10重量%以上、30重量%未満に維持できる湿度を有する湿潤気体をたばこ原料に通気することを発案した。言い換えると、温度および含水率の双方を制御し得る湿潤気体をたばこ原料に通気することで、たばこ原料の変質又はニコチン以外の香味関連成分の過剰な揮発、溶出を生じさせることなく、たばこ原料に含まれるニコチンを例えば0重量%近くまで十分に低減できる方法を見出した。 For this reason, the inventor has determined that the temperature of the tobacco raw material is 40 ° C. or higher and 90 ° C. or lower, and that the moisture content of the tobacco raw material is maintained at a moisture content of 10% by weight or more and less than 30% by weight. Invented to vent. In other words, by passing a moist gas that can control both temperature and moisture content through the tobacco raw material, the tobacco raw material can be converted into a tobacco raw material without causing alteration of the tobacco raw material or excessive volatilization and elution of flavor-related components other than nicotine. We have found a method that can sufficiently reduce the nicotine contained, for example, to near 0% by weight.
 実施形態によれば、湿潤気体を用いてたばこ原料中の含水率を維持しながらたばこ原料を加熱処理するだけであるため、従来のような添加物を使用する必要がなく、ランニングコストを低減できる。加えて、たばこ原料に対する湿潤気体の通気は、大気圧下で行うことができる。したがって、煩雑で高価な設備が不要となり、たばこ原料中のニコチンを低減させる処理を安価な設備で実行できる。 According to the embodiment, it is only necessary to heat the tobacco raw material while maintaining the moisture content in the tobacco raw material using a wet gas, so there is no need to use an additive as in the past, and the running cost can be reduced. . In addition, the humid gas can be ventilated to the tobacco raw material under atmospheric pressure. Therefore, complicated and expensive equipment is not required, and processing for reducing nicotine in the tobacco raw material can be executed with inexpensive equipment.
 実施形態において、たばこ原料としては例えばたばこ刻みを挙げることができる。 In the embodiment, examples of the tobacco material include cigarette chopping.
 実施形態において、たばこ原料に通気する気体としては、空気、窒素、二酸化炭素、アルゴン等を用いることができ、特に安価な空気が好ましい。 In the embodiment, air, nitrogen, carbon dioxide, argon, or the like can be used as the gas that flows through the tobacco material, and particularly inexpensive air is preferable.
 実施形態において、湿潤気体の温度を40℃未満にすると、ニコチンを十分に揮発させることが困難となる。一方、湿潤気体の温度が90℃を超えると、たばこ原料を焦がす等のたばこ原料の変質を伴うとともに、ニコチン以外の香味関連成分が揮発する虞がある。そのため、湿潤気体の温度は、60℃以上、90℃以下に設定することがより好ましい。 In the embodiment, when the temperature of the wet gas is lower than 40 ° C., it is difficult to sufficiently volatilize nicotine. On the other hand, when the temperature of the wet gas exceeds 90 ° C., it is accompanied by alteration of the tobacco raw material such as scorching the tobacco raw material, and there is a possibility that flavor-related components other than nicotine volatilize. For this reason, the temperature of the wet gas is more preferably set to 60 ° C. or higher and 90 ° C. or lower.
 実施形態において、たばこ原料に湿潤気体を通気する間のたばこ原料中の含水率を10重量%未満にすると、たばこ原料に存在する自由水の量が減少する。この結果、ニコチン塩の解離が低下し、ニコチンを十分に低減させることが困難となる。一方、たばこ原料に湿潤気体を通気する間のたばこ原料中の含水率を30重量%以上にすると、ニコチン以外の香味関連成分が溶出する虞がある。 In the embodiment, when the moisture content in the tobacco raw material is less than 10% by weight while the wet gas is passed through the tobacco raw material, the amount of free water present in the tobacco raw material decreases. As a result, dissociation of the nicotine salt is lowered, and it is difficult to sufficiently reduce nicotine. On the other hand, when the moisture content in the tobacco raw material is set to 30% by weight or more while the wet gas is passed through the tobacco raw material, flavor-related components other than nicotine may be eluted.
 よって、たばこ原料に湿潤気体を通気する間のたばこ原料中の含水率は、20重量%以上、30重量%未満に設定することがより好ましい。このようにたばこ原料中の含水率を規定することで、たばこ原料中に充分な量の自由水を存在させることができ、ニコチンの低減を促進することができる。 Therefore, it is more preferable to set the moisture content in the tobacco raw material to 20% by weight or more and less than 30% by weight while the wet gas is passed through the tobacco raw material. By defining the moisture content in the tobacco raw material in this manner, a sufficient amount of free water can be present in the tobacco raw material, and the reduction of nicotine can be promoted.
 実施形態において、たばこ原料に対する湿潤気体の通気速度は、例えば1~10m/秒とすることが好ましい。 In the embodiment, it is preferable that the ventilation rate of the wet gas with respect to the tobacco raw material is, for example, 1 to 10 m / sec.
 次に、実施形態に係るたばこ原料中のニコチン低減方法を図1に基づいて説明する。図1は、実施形態に係るたばこ原料処理装置10を概略的に示すブロック図である。 Next, a method for reducing nicotine in tobacco raw materials according to the embodiment will be described with reference to FIG. FIG. 1 is a block diagram schematically showing a tobacco raw material processing apparatus 10 according to an embodiment.
 図1に示すように、たばこ原料処理装置10は、ループ状に連続した流路L1を備えている。湿潤気体の一例である湿潤空気が矢印の方向に沿って流路L1を循環する。流路L1には、送風機11、電気ヒータ12、噴射ノズル13を有する調湿室14および処理室15が配置されている。 As shown in FIG. 1, the tobacco raw material processing apparatus 10 includes a flow path L1 that is continuous in a loop shape. Wet air, which is an example of wet gas, circulates in the flow path L1 along the direction of the arrow. A humidity control chamber 14 having a blower 11, an electric heater 12, and an injection nozzle 13 and a processing chamber 15 are disposed in the flow path L1.
 第1の分岐流路L2が流路L1から分岐されている。第1の分岐流路L2は、乾いた空気を流路L1に導入するための要素であって、送風機11の上流で流路L1に接続されている。第1のバルブV1および第1の流量制御器FC1が第1の分岐流路L2に設けられている。第1のバルブV1は、乾いた空気を導入する第1の分岐流路L2の上流端に位置されている。第1の流量制御器FC1は、第1のバルブV1と流路L1との間に介在されている。 The first branch channel L2 is branched from the channel L1. The first branch flow path L2 is an element for introducing dry air into the flow path L1, and is connected to the flow path L1 upstream of the blower 11. A first valve V1 and a first flow rate controller FC1 are provided in the first branch flow path L2. The first valve V1 is positioned at the upstream end of the first branch flow path L2 for introducing dry air. The first flow rate controller FC1 is interposed between the first valve V1 and the flow path L1.
 第2の分岐流路L3が流路L1から分岐されている。第2の分岐流路L3は、加湿された空気を流路L1の外に排出するための要素であって、送風機11と電気ヒータ12との間で流路L1に接続されている。第2のバルブV2および第2の流量制御器FC2が第2の分岐流路L3に設けられている。第2の流量制御器FC2は、加湿された空気を排出する第2の分岐流路L3の下流端に配置されている。第2のバルブV2は、流路L1と第2の流量制御器FC2との間に介在されている。 The second branch flow path L3 is branched from the flow path L1. The second branch flow path L3 is an element for discharging humidified air to the outside of the flow path L1, and is connected to the flow path L1 between the blower 11 and the electric heater 12. A second valve V2 and a second flow rate controller FC2 are provided in the second branch flow path L3. The second flow rate controller FC2 is disposed at the downstream end of the second branch flow path L3 that discharges the humidified air. The second valve V2 is interposed between the flow path L1 and the second flow rate controller FC2.
 水タンク16が調湿室14に隣接して配置されている。水タンク16は、水供給流路L4を介して調湿室14内の噴射ノズル13に接続されている。ポンプ17および制御バルブCVが水供給流路L4に設けられている。ポンプ17は、水タンク16の近傍に配置されている。制御バルブCVは、ポンプ17と噴射ノズル13との間に配置されている。調湿室14で生じた過剰な水滴は、ドレンDから調湿室14の外に排出される。 A water tank 16 is disposed adjacent to the humidity control chamber 14. The water tank 16 is connected to the spray nozzle 13 in the humidity control chamber 14 via the water supply flow path L4. A pump 17 and a control valve CV are provided in the water supply flow path L4. The pump 17 is disposed in the vicinity of the water tank 16. The control valve CV is disposed between the pump 17 and the injection nozzle 13. Excess water droplets generated in the humidity control chamber 14 are discharged from the drain D to the outside of the humidity control chamber 14.
 処理室15は、例えば円筒形である。処理室15は、たばこ原料が装填された処理容器15aと空気流通室15bとを備えている。処理容器15aは、底を有する円筒状である。処理容器15aの底に多孔性隔壁18が配置されている。多孔性隔壁18は、例えば金属メッシュで構成されている。 The processing chamber 15 has a cylindrical shape, for example. The processing chamber 15 includes a processing container 15a loaded with a tobacco material and an air circulation chamber 15b. The processing container 15a is cylindrical with a bottom. A porous partition wall 18 is disposed at the bottom of the processing vessel 15a. The porous partition wall 18 is made of, for example, a metal mesh.
 湿度センサ19の検出端子が処理容器15aの内部に挿入されている。湿度センサ19は、例えば湿度計であって、処理容器15a内の湿度を検出する。湿度センサ19は、コントローラ20に接続されている。さらに、コントローラ20は、制御バルブCVの操作部に接続されている。 The detection terminal of the humidity sensor 19 is inserted into the processing container 15a. The humidity sensor 19 is a hygrometer, for example, and detects the humidity in the processing container 15a. The humidity sensor 19 is connected to the controller 20. Furthermore, the controller 20 is connected to the operation part of the control valve CV.
 湿度センサ19によって検出された処理容器15a内の湿度を示す信号は、湿度センサ19からコントローラ20に逐次入力される。コントローラ20は、湿度センサ19からの信号に基づいて制御バルブCVの操作部に制御信号を出力する。制御バルブCVは、水タンク16から水供給流路L4を通じて調湿室14の噴射ノズル13に供給される水量を制御する。処理容器15a内の湿度と処理容器15aに装填されたたばこ原料中の含水率とは一定の相関性を有している。そのため、処理容器15a内の湿度に基づいてたばこ原料中の含水率を推定できる。 A signal indicating the humidity in the processing container 15 a detected by the humidity sensor 19 is sequentially input from the humidity sensor 19 to the controller 20. The controller 20 outputs a control signal to the operation unit of the control valve CV based on the signal from the humidity sensor 19. The control valve CV controls the amount of water supplied from the water tank 16 to the spray nozzle 13 of the humidity control chamber 14 through the water supply flow path L4. The humidity in the processing container 15a and the moisture content in the tobacco raw material loaded in the processing container 15a have a certain correlation. Therefore, the moisture content in the tobacco material can be estimated based on the humidity in the processing container 15a.
 温度センサ21の検出端子が処理容器15aの内部に挿入されている。温度センサ21は、例えば熱電体であって、処理容器15a内の温度を検出する。温度センサ21は、コントローラ20に接続されている。さらに、コントローラ21は、電気ヒータ12に接続されている。 The detection terminal of the temperature sensor 21 is inserted into the processing container 15a. The temperature sensor 21 is, for example, a thermoelectric body, and detects the temperature in the processing container 15a. The temperature sensor 21 is connected to the controller 20. Further, the controller 21 is connected to the electric heater 12.
 温度センサ21によって検出された処理容器15a内の温度を示す信号は、温度センサ21からコントローラ20に逐次入力される。コントローラ20は、温度センサ21からの信号に基づいて電気ヒータ12に制御信号を出力し、電気ヒータ12の発熱量を調節する。この結果、調湿室14に向けて流路L1を流れる空気の加熱量が制御される。 The signal indicating the temperature in the processing container 15 a detected by the temperature sensor 21 is sequentially input from the temperature sensor 21 to the controller 20. The controller 20 outputs a control signal to the electric heater 12 based on the signal from the temperature sensor 21 to adjust the amount of heat generated by the electric heater 12. As a result, the heating amount of the air flowing through the flow path L1 toward the humidity control chamber 14 is controlled.
 本実施形態では、処理室15に入る空気を整流するための整流板(図示せず)が流路L1に設けられている。さらに、水の蒸発に伴う熱量の減少を補うための保温ヒータ(図示せず)が流路L1のうち調湿室14と処理容器15との間に設けられている。 In the present embodiment, a flow rectifying plate (not shown) for rectifying the air entering the processing chamber 15 is provided in the flow path L1. Furthermore, a heat retaining heater (not shown) for compensating for a decrease in the amount of heat accompanying water evaporation is provided between the humidity control chamber 14 and the processing container 15 in the flow path L1.
 次に、たばこ原料処理装置10を用いてたばこ原料に含まれるニコチンを低減する方法について説明する。 Next, a method for reducing nicotine contained in the tobacco raw material using the tobacco raw material processing apparatus 10 will be described.
 まず、送風機11を作動させて、気体の一例である空気を第1の分岐通路L2から流路L1に取り込む。流路L1に取り込まれた空気は、電気ヒータ12を通過して調湿室14に向けて流れる。この後、電気ヒータ12に通電して流路L1を流れる空気を所望の温度に加熱する。加熱された空気は、送風機11の作動により流路L1を循環する。 First, the blower 11 is operated to take in air, which is an example of gas, from the first branch passage L2 into the flow passage L1. The air taken into the flow path L <b> 1 flows toward the humidity control chamber 14 through the electric heater 12. Thereafter, the electric heater 12 is energized to heat the air flowing through the flow path L1 to a desired temperature. The heated air circulates through the flow path L <b> 1 by the operation of the blower 11.
 流路L1を循環する空気が所定の温度に達した後、ポンプ17を駆動して水タンク16内の水を水供給流路L4から噴射ノズル13に供給する。これにより、水が噴射ノズル13から調湿室14内に霧状に噴射されて、調湿室14が湿潤状態に移行する。 After the air circulating through the flow path L1 reaches a predetermined temperature, the pump 17 is driven to supply water in the water tank 16 to the injection nozzle 13 from the water supply flow path L4. Thereby, water is sprayed in a mist form from the spray nozzle 13 into the humidity control chamber 14, and the humidity control chamber 14 shifts to a wet state.
 調湿室14の温度および湿度が所望の値に達した後、たばこ原料が装填された処理容器15aを処理室15に挿入する。加熱された湿潤空気は、処理容器15aに装填されたたばこ原料を通気するとともに、多孔性隔壁18を通過して空気流通室15bに排出される。空気流通室15bに排出された湿潤空気は、送風機11に戻るように流路L1を循環する。 After the temperature and humidity of the humidity control chamber 14 reach desired values, the processing container 15 a loaded with the tobacco material is inserted into the processing chamber 15. The heated moist air vents the tobacco raw material loaded in the processing container 15a, passes through the porous partition wall 18, and is discharged to the air circulation chamber 15b. The wet air discharged to the air circulation chamber 15b circulates through the flow path L1 so as to return to the blower 11.
 送風機11が稼働している間、特に送風機11が起動した時点では、送風機11の上流側と下流側との間に大きな圧力差が生じる。そのため、送風機11が破損する虞があり得る。この対策として、本実施形態では、送風機11よりも上流で乾燥した外部の空気を第1の分岐通路L2を通して流路L1に導入するようにしている。この時、第1の分岐通路L2に設けた第1のバルブV1および第1の流量制御器FC1を用いて流路L1に導入する空気量を制御する。 During the operation of the blower 11, particularly when the blower 11 is activated, a large pressure difference is generated between the upstream side and the downstream side of the blower 11. Therefore, the blower 11 may be damaged. As a countermeasure, in this embodiment, external air dried upstream of the blower 11 is introduced into the flow path L1 through the first branch path L2. At this time, the amount of air introduced into the flow path L1 is controlled using the first valve V1 and the first flow rate controller FC1 provided in the first branch passage L2.
 さらに、送風機11と電気ヒータ12との間で流路L1を循環する湿潤空気を第2の分岐通路L3を通して流路L1の外に排出するようにしている。この時、第2の分岐通路L3に設けた第2のバルブV2および第2の流量制御器FC2を用いて流路L1の外に排出する空気量を制御する。このような制御により、送風機11の上流側と下流側との間の圧力差を解消することができ、送風機11の破損を防止できる。 Furthermore, the humid air circulating in the flow path L1 between the blower 11 and the electric heater 12 is discharged out of the flow path L1 through the second branch path L3. At this time, the amount of air discharged out of the flow path L1 is controlled using the second valve V2 and the second flow rate controller FC2 provided in the second branch passage L3. By such control, the pressure difference between the upstream side and the downstream side of the blower 11 can be eliminated, and damage to the blower 11 can be prevented.
 加熱された湿潤空気が処理容器15a内のたばこ原料を通気する間、温度センサ21およびコントローラ20で電気ヒータ12の発熱量を調節する。これにより、湿潤空気の温度が目的とする温度である40℃以上、90℃以下に制御される。 While the heated humid air passes through the tobacco material in the processing container 15a, the temperature sensor 21 and the controller 20 adjust the amount of heat generated by the electric heater 12. Thereby, the temperature of the humid air is controlled to 40 ° C. or higher and 90 ° C. or lower, which is the target temperature.
 すなわち、温度センサ21が処理容器15a内の実際の温度を検出するとともに、処理容器15a内の温度を示す信号がコントローラ20に逐次出力される。コントローラ20は、処理容器15a内の温度が目的とする温度(40℃以上、90℃以下)を下回っていると判断した時に、電気ヒータ12に対し通電量を多くする制御信号を出力する。この結果、電気ヒータ12の発熱量が増大し、電気ヒータ12を通過する空気の温度が上昇する。 That is, the temperature sensor 21 detects the actual temperature in the processing container 15a, and a signal indicating the temperature in the processing container 15a is sequentially output to the controller 20. When the controller 20 determines that the temperature in the processing container 15a is lower than the target temperature (40 ° C. or higher and 90 ° C. or lower), the controller 20 outputs a control signal for increasing the energization amount to the electric heater 12. As a result, the amount of heat generated by the electric heater 12 increases, and the temperature of the air passing through the electric heater 12 rises.
 一方、コントローラ20は、処理容器15a内の温度が目的とする温度(40℃以上、90℃以下)を上回っていると判断した時に、電気ヒータ12に対し通電量を少なくする制御信号を出力する。この結果、電気ヒータ12の発熱量が低下し、電気ヒータ12を通過する空気の温度が下がる。 On the other hand, when the controller 20 determines that the temperature in the processing container 15a is higher than the target temperature (40 ° C. or higher and 90 ° C. or lower), the controller 20 outputs a control signal for reducing the energization amount to the electric heater 12. . As a result, the amount of heat generated by the electric heater 12 decreases, and the temperature of the air passing through the electric heater 12 decreases.
 このような制御を継続することで、調湿室14に導かれる空気の温度が40℃以上、90℃以下に維持される。 By continuing such control, the temperature of the air guided to the humidity control chamber 14 is maintained at 40 ° C. or higher and 90 ° C. or lower.
 調湿室14から処理容器15aに供給される湿潤空気の湿度は、湿度センサ19およびコントローラ20によるフィードバック制御で微調整される。具体的には、湿潤空気が処理容器15a内のたばこ原料を通気する間、処理容器15a内に供給される湿潤空気の湿度は、処理容器15a内のたばこ原料の含水率が目的値である10重量%以上、30重量%未満を維持するように、水タンク16から噴射ノズル13に供給される水量をコントローラ20で調節することにより制御される。 The humidity of the humid air supplied from the humidity control chamber 14 to the processing container 15 a is finely adjusted by feedback control by the humidity sensor 19 and the controller 20. Specifically, while the humid air passes through the tobacco raw material in the processing container 15a, the humidity of the humid air supplied into the processing container 15a is the target value of the moisture content of the tobacco raw material in the processing container 15a. It is controlled by adjusting the amount of water supplied from the water tank 16 to the spray nozzle 13 by the controller 20 so as to maintain the weight% or more and less than 30% by weight.
 すなわち、湿度センサ19が処理容器15a内の実際の湿度を検出するとともに、処理容器15a内の湿度を示す信号がコントローラ20に逐次出力される。コントローラ20は、処理容器15a内の湿度が、当該湿度に相関するたばこ原料中の含水率が目的とする値(10重量%以上、30重量%未満)を下回ると判断した時に、制御バルブCVに対し噴射ノズル13への水の供給量を増やす制御信号を出力する。この結果、噴射ノズル13から調湿室14に噴射される水量が増大し、調湿室14を流通する湿潤空気の湿度が上昇する。 That is, the humidity sensor 19 detects the actual humidity in the processing container 15a, and a signal indicating the humidity in the processing container 15a is sequentially output to the controller 20. When the controller 20 determines that the humidity in the processing container 15a is lower than the target value (10 wt% or more and less than 30 wt%), the moisture content in the tobacco raw material correlated with the humidity is controlled by the control valve CV. In contrast, a control signal for increasing the amount of water supplied to the injection nozzle 13 is output. As a result, the amount of water sprayed from the spray nozzle 13 to the humidity control chamber 14 increases, and the humidity of the humid air flowing through the humidity control chamber 14 increases.
 一方、コントローラ20は、処理容器15a内の湿度が、当該湿度に相関するたばこ原料中の含水率が目的とする値(10重量%以上、30重量%未満)を上回っていると判断した時に、制御バルブCVに対し噴射ノズル13への水の供給量を減らす制御信号を出力する。この結果、噴射ノズル13から調湿室14に噴射される水量が減少し、調湿室14を流通する湿潤空気の湿度が下がる。 On the other hand, when the controller 20 determines that the humidity in the processing container 15a is higher than the target value (10% by weight or more and less than 30% by weight) of the moisture content in the tobacco raw material correlated with the humidity, A control signal for reducing the amount of water supplied to the injection nozzle 13 is output to the control valve CV. As a result, the amount of water sprayed from the spray nozzle 13 to the humidity control chamber 14 decreases, and the humidity of the humid air flowing through the humidity control chamber 14 decreases.
 このような制御を継続することで、調湿室14を通過する湿潤空気の湿度は、たばこ原料中の含水率が目的値である10重量%以上、30重量%未満となるように制御される。 By continuing such control, the humidity of the humid air passing through the humidity control chamber 14 is controlled such that the moisture content in the tobacco raw material is 10% by weight or more and less than 30% by weight, which is the target value. .
 以上のように、実施形態では、大気圧下において温度が40℃以上、90℃以下に調整された湿潤空気をたばこ原料に通気することで、たばこ原料の含水率を10重量%以上、30重量%未満に維持しつつ、たばこ原料を加熱するようにしている。 As described above, in the embodiment, the moisture content of the tobacco raw material is 10 wt% or more and 30 wt% by ventilating the tobacco raw material with humid air adjusted to a temperature of 40 ° C. or higher and 90 ° C. or lower under atmospheric pressure. The tobacco raw material is heated while maintaining it at less than%.
 これにより、たばこ原料の変質又はニコチン以外の香味関連成分の過剰な蒸発、溶出を生じさせることなく、たばこ原料中のニコチンを簡便かつ短時間のうちに例えば最大で限りなく0重量%近くまで低減できる。 As a result, nicotine in tobacco materials can be reduced to a maximum of, for example, nearly 0% by weight in a short time without causing alteration of tobacco materials or excessive evaporation and elution of flavor-related components other than nicotine. it can.
 実施形態では、第1の分岐流路L2が送風機11の上流で流路L1に接続され、第2の分岐流路L3が送風機11と電気ヒータ12との間で流路L1されている。このため、温度センサ21およびコントローラ20でフィードバック制御された電気ヒータ12による湿潤空気の温度が、流路L1内への乾燥した空気の導入および流路L1の外部への湿潤空気の排出で変動することはない。よって、電気ヒータ12のフィードバック制御が確実となり、たばこ原料を通気する湿潤空気を適正の温度に維持できる。 In the embodiment, the first branch flow path L2 is connected to the flow path L1 upstream of the blower 11, and the second branch flow path L3 is formed between the blower 11 and the electric heater 12. For this reason, the temperature of the wet air by the electric heater 12 feedback-controlled by the temperature sensor 21 and the controller 20 varies depending on the introduction of the dry air into the flow path L1 and the discharge of the wet air to the outside of the flow path L1. There is nothing. Therefore, the feedback control of the electric heater 12 is ensured, and the humid air that ventilates the tobacco material can be maintained at an appropriate temperature.
 次に、実施形態に係るたばこ製品について説明する。 Next, the tobacco product according to the embodiment will be described.
 実施形態に係るたばこ製品は、前記方法でニコチンを低減したたばこ原料を含むシガレット、SNUSなどの経口タイプの無煙たばこ製品である。たばこ製品の一例であるフィルタ付きシガレット30について図2を参照して説明する。 The tobacco product according to the embodiment is a smokeless tobacco product of an oral type such as cigarette or SNUS containing a tobacco raw material in which nicotine is reduced by the above method. A cigarette 30 with a filter, which is an example of a tobacco product, will be described with reference to FIG.
 図2に示すように、フィルタ付きシガレット30は、たばこロッド31およびフィルタ32を備えている。フィルタ32は、たばこロッド31と同等又はたばこロッド31よりも細い直径を有している。たばこロッド31の端部およびフィルタ32の端部は、互いに同軸状に突き合わされている。フィルタ32の外周面およびたばこロッド31の端部の外周面は、チップペーパー33で連続して被覆されている。このため、たばこロッド31およびフィルタ32は、チップペーパー33を介して一体的に結合されている。 2, the cigarette 30 with a filter includes a tobacco rod 31 and a filter 32. The filter 32 has a diameter equivalent to or smaller than that of the tobacco rod 31. The end of the tobacco rod 31 and the end of the filter 32 are abutted coaxially with each other. The outer peripheral surface of the filter 32 and the outer peripheral surface of the end portion of the tobacco rod 31 are continuously covered with the chip paper 33. For this reason, the tobacco rod 31 and the filter 32 are integrally coupled via the chip paper 33.
 たばこロッド31は、たばこ刻み34を巻紙35で円柱状に被覆することにより形成されている。フィルタ32は、例えばアセテート繊維又はパルプの不織布を束ねたり、折り畳むことにより成形したフィルタ材(図示せず)と、フィルタ材を円柱状に捲くプラグーペーパー(成形紙)36とで構成されている。 The tobacco rod 31 is formed by covering a tobacco cut 34 with a wrapping paper 35 in a cylindrical shape. The filter 32 is composed of, for example, a filter material (not shown) formed by bundling or folding acetate fiber or pulp nonwoven fabric, and plug paper (molded paper) 36 in which the filter material is rolled in a columnar shape. .
 このようなフィルタ付きシガレット30では、たばこロッド31のたばこ刻み34として、前記方法でニコチンを低減したたばこ原料が用いられている。 In such a cigarette 30 with a filter, a tobacco raw material in which nicotine is reduced by the above-described method is used as the tobacco notch 34 of the tobacco rod 31.
 実施形態に係るフィルタ付きシガレット30は、前記方法で得られたたばこ原料を含んでいる。このため、たばこ本来の香味を有するとともに、低ニコチンのたばこ製品として提供できる。 The cigarette 30 with a filter according to the embodiment includes the tobacco raw material obtained by the above method. For this reason, it has the original flavor of tobacco and can be provided as a tobacco product with low nicotine.
 さらに、ニコチンは、たばこ製品の香味を決定づける上で重要な要素であるものの、口腔に刺激を与える物質でもある。このため、実施形態のようにニコチンを低減したたばこ原料を含むSNUSなどの経口タイプの無煙たばこ製品は、嗜好品として極めて有用である。 Furthermore, although nicotine is an important factor in determining the flavor of tobacco products, it is also a substance that irritate the oral cavity. For this reason, oral type smokeless tobacco products such as SNUS containing tobacco raw materials with reduced nicotine as in the embodiment are extremely useful as luxury items.
 以下、本発明の実施例について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 (実施例1~実施例3)
 最初に、たばこ原料として含水率を20重量%に調整した黄色種たばこ刻みを用意した。
(Example 1 to Example 3)
First, yellow tobacco tobacco with a moisture content adjusted to 20% by weight was prepared as a tobacco raw material.
 次に、処理室15の処理容器15aに11gの前記たばこ原料を装填した。引き続いて、実施例1では、処理容器15a内に60℃の湿潤空気を供給して当該湿潤空気をたばこ原料に通気した後、空気流通室15bから流路L1に排出した。実施例2では、処理容器15a内に70℃の湿潤空気を供給して当該湿潤空気をたばこ原料に通気した後、空気流通室15bから流路L1に排出した。実施例3では、処理容器15a内に80℃の湿潤空気を供給して当該湿潤空気をたばこ原料に通気した後、空気流通室15bから流路L1に排出した。 Next, 11 g of the tobacco raw material was loaded into the processing container 15 a of the processing chamber 15. Subsequently, in Example 1, wet air at 60 ° C. was supplied into the processing container 15a and the wet air was vented to the tobacco raw material, and then discharged from the air circulation chamber 15b to the flow path L1. In Example 2, after supplying 70 degreeC humid air in the processing container 15a and ventilating the said humid air to a tobacco raw material, it discharged | emitted from the air circulation chamber 15b to the flow path L1. In Example 3, after supplying 80 degreeC humid air in the processing container 15a and ventilating the said humid air to a tobacco raw material, it discharged | emitted from the air circulation chamber 15b to the flow path L1.
 湿潤空気の通気速度は、いずれの実施例の場合も3m/秒とするとともに、湿潤空気の供給を120分間続行してたばこ原料を加熱処理した。 The aeration rate of wet air was 3 m / second in any of the examples, and the tobacco raw material was heat-treated by continuing the supply of wet air for 120 minutes.
 さらに、たばこ原料に湿潤空気を供給する処理工程においては、たばこ原料の含水率が20重量%に維持されるように湿潤空気の湿度を制御した。具体的には、湿潤空気を処理容器15a内のたばこ原料に通気する間、5分間隔で処理容器15a内のたばこ原料の含水率をモニタリングした。モニタリングにより得られた結果に基づいて湿潤空気の湿度を調節し、たばこ原料の含水率を20重量%に制御した。 Furthermore, in the process of supplying wet air to the tobacco raw material, the humidity of the wet air was controlled so that the moisture content of the tobacco raw material was maintained at 20% by weight. Specifically, the moisture content of the tobacco raw material in the processing container 15a was monitored at intervals of 5 minutes while the humid air was passed through the tobacco raw material in the processing container 15a. Based on the results obtained from the monitoring, the humidity of the humid air was adjusted, and the moisture content of the tobacco raw material was controlled to 20% by weight.
 (比較例1~比較例3)
 比較例1~比較例3では、たばこ原料に通気する空気として、湿度が0.01kg-H0/kgの乾き空気を用いた。さらに、比較例1では、乾き空気の温度を100℃とするとともに、乾き空気によるたばこ原料の処理時間を120分とした。比較例2では、乾き空気の温度を150℃とするとともに、乾き空気によるたばこ原料の処理時間を3分間とした。比較例3では、乾き空気の温度を200℃とするとともに、乾き空気によるたばこ原料の処理時間を3分間とした。これ以外は、実施例1~実施例3と同様の手順でたばこ原料を加熱処理した。
(Comparative Examples 1 to 3)
In Comparative Examples 1 to 3, dry air having a humidity of 0.01 kg-H 2 0 / kg was used as the air to be passed through the tobacco material. Further, in Comparative Example 1, the temperature of the dry air was set to 100 ° C., and the processing time of the tobacco raw material with the dry air was set to 120 minutes. In Comparative Example 2, the temperature of the dry air was 150 ° C., and the processing time of the tobacco raw material with the dry air was 3 minutes. In Comparative Example 3, the temperature of the dry air was 200 ° C., and the processing time of the tobacco raw material with the dry air was 3 minutes. Except for this, the tobacco material was heat-treated in the same procedure as in Examples 1 to 3.
 実施例1~実施例3および比較例1~比較例3で加熱処理したたばこ原料を個々に粉砕した後、粉砕したたばこ原料をヘキサン、酢酸エチル、エタノールおよびメタノールを用いた画分抽出法により分取した。実施例1~実施例3および比較例1~比較例3に対応する個々の抽出液に含まれるニコチンおよびグルコースの濃度をガスクロマトグラフィーおよび液体クロマトグラフィーにより測定した。 After individually pulverizing the tobacco materials heat-treated in Examples 1 to 3 and Comparative Examples 1 to 3, the pulverized tobacco materials were separated by fraction extraction using hexane, ethyl acetate, ethanol and methanol. I took it. The concentrations of nicotine and glucose contained in individual extracts corresponding to Examples 1 to 3 and Comparative Examples 1 to 3 were measured by gas chromatography and liquid chromatography.
 図3は、処理時間を120分間とした実施例1~実施例3および比較例1において、処理時間に対するたばこ原料のニコチン濃度の移り変わりを示している。 FIG. 3 shows changes in the nicotine concentration of the tobacco raw material with respect to the treatment time in Examples 1 to 3 and Comparative Example 1 in which the treatment time was 120 minutes.
 図4は、処理時間を3分間とした比較例2および比較例3において、処理時間に対するたばこ原料のニコチン濃度の移り変わりを示している。 FIG. 4 shows a change in the nicotine concentration of the tobacco raw material with respect to the treatment time in Comparative Example 2 and Comparative Example 3 in which the treatment time is 3 minutes.
 図5は、実施例3において、処理時間に対するたばこ原料のグルコース濃度の移り変わりを示している。 FIG. 5 shows the change in the glucose concentration of the tobacco raw material with respect to the treatment time in Example 3.
 さらに、図6は、比較例2および比較例3において、処理時間に対するたばこ原料のグルコース濃度の移り変わりを示している。 Further, FIG. 6 shows the change in the glucose concentration of the tobacco raw material with respect to the treatment time in Comparative Example 2 and Comparative Example 3.
 図3に示すように、所定の温度に保たれた湿潤空気でたばこ原料を加熱処理する実施例1~実施例3では、いずれの場合も処理時間の経過とともにニコチン濃度が減少する傾向にあることが分かる。特に、湿潤空気の温度を80℃に設定した実施例3では、1時間の処理でニコチンを55重量%減少できることが確かめられた。 As shown in FIG. 3, in Examples 1 to 3, where the tobacco raw material is heat-treated with moist air kept at a predetermined temperature, the nicotine concentration tends to decrease with the passage of the treatment time in any case. I understand. In particular, in Example 3 in which the temperature of the humid air was set to 80 ° C., it was confirmed that nicotine could be reduced by 55% by weight after treatment for 1 hour.
 これに対し、図3および図4から明らかなように、100℃以上の高温に加熱した乾き空気でたばこ原料を加熱処理した比較例1~比較例3のうち、100℃の乾き空気を用いた比較例1では、ニコチン濃度の減少が皆無に等しい。150℃の乾き空気を用いた比較例2では、ニコチン濃度が僅かに減少されるに止まっている。さらに、200℃の乾き空気を用いた比較例3では、ニコチン濃度の減少が認められるものの、処理開始から僅か20秒を経過した時点でたばこ原料に焦げが生じ、たばこ製品に適用できないことが明らかとなった。 On the other hand, as is clear from FIGS. 3 and 4, of Comparative Examples 1 to 3 in which the tobacco raw material was heat-treated with dry air heated to a high temperature of 100 ° C. or higher, 100 ° C. dry air was used. In Comparative Example 1, there is no decrease in nicotine concentration. In Comparative Example 2 using dry air at 150 ° C., the nicotine concentration is only slightly reduced. Furthermore, in Comparative Example 3 using 200 ° C. dry air, although a decrease in nicotine concentration was observed, it was clear that the cigarette raw material was burnt after only 20 seconds from the start of treatment and could not be applied to tobacco products. It became.
 加えて、図5から明らかなように、80℃の湿潤空気でたばこ原料を加熱処理する実施例3では、ニコチン以外の香味関連成分であるグルコース濃度は殆ど減少しない。これに対し、150℃および200℃に加熱した高温の乾き空気でたばこ原料を加熱処理した比較例2および比較例3では、図6に示すように乾き空気の温度が高い程、グルコース濃度の減少度合が大きくなることが分かる。この理由は、グルコースが150℃および200℃の温度で熱分解するためであると考えられる。 In addition, as is apparent from FIG. 5, in Example 3 in which the tobacco raw material was heat-treated with 80 ° C. humid air, the glucose concentration, which is a flavor-related component other than nicotine, hardly decreased. In contrast, in Comparative Example 2 and Comparative Example 3 in which the tobacco raw material was heat-treated with high-temperature dry air heated to 150 ° C. and 200 ° C., the glucose concentration decreased as the temperature of the dry air increased as shown in FIG. It can be seen that the degree increases. The reason for this is considered that glucose is thermally decomposed at temperatures of 150 ° C. and 200 ° C.
 発明者は、100℃以上に加熱した過熱水蒸気を用いてたばこ原料を加熱処理する実験を行った。この実験によれば、大気圧下においてたばこ原料の含水率が急激に低下するため、高温度の乾き空気でたばこ原料を加熱処理する場合と同様に、たばこ原料に焦げが生じた。 The inventor conducted an experiment in which a tobacco raw material was heated using superheated steam heated to 100 ° C. or higher. According to this experiment, the moisture content of the tobacco raw material rapidly decreased under atmospheric pressure, so that the tobacco raw material was burnt in the same manner as when the tobacco raw material was heat-treated with high-temperature dry air.
 さらに、100℃~150℃の飽和蒸気圧の下で水蒸気をたばこ原料に接触させる方法は公知である。しかしながら、この方法では、たばこ原料の濡れおよび熱によるたばこ原料の劣化が想定される。それとともに、専用の耐圧容器を必要とし、処理装置のコストが上昇するのを否めない。したがって、過熱水蒸気は、ニコチン濃度を低下させる気体としては不適切である。 Furthermore, a method of bringing water vapor into contact with a tobacco raw material under a saturated vapor pressure of 100 ° C. to 150 ° C. is known. However, in this method, it is assumed that the tobacco material is wet and the tobacco material is deteriorated due to heat. At the same time, a dedicated pressure vessel is required, and the cost of the processing apparatus cannot be denied. Therefore, superheated steam is unsuitable as a gas that lowers the nicotine concentration.
 以上のように、本発明によれば、たばこ原料の温度および含水率を制御してタバコ原料を加熱処理することにより、グルコースのような糖の香味関連成分の低減およびたばこ原料の劣化を抑制しつつ、たばこ原料に含まれるニコチンを効率よく低減することが可能となる。 As described above, according to the present invention, by controlling the temperature and moisture content of the tobacco raw material and heat-treating the tobacco raw material, the sugar-related flavor-related components such as glucose are reduced and the tobacco raw material is prevented from deteriorating. However, it is possible to efficiently reduce nicotine contained in the tobacco raw material.
 たばこ本来の香味を有しつつ、ニコチンを低減した経口たばこ製品を得る上で極めて有用となる。 It is extremely useful in obtaining an oral tobacco product with the original flavor of tobacco and reduced nicotine.
 11…送風機、12…電気ヒータ、14…調湿室、15…処理室、16…水タンク、19…湿度センサ、20…コントローラ、21…温度センサ、31…たばこロッド、32…フィルタ、34…たばこ刻み、L1…流路、L2…第1の分岐流路、L3…第2の分岐流路、CV…制御バルブ。 DESCRIPTION OF SYMBOLS 11 ... Blower, 12 ... Electric heater, 14 ... Humidity control chamber, 15 ... Processing chamber, 16 ... Water tank, 19 ... Humidity sensor, 20 ... Controller, 21 ... Temperature sensor, 31 ... Cigarette rod, 32 ... Filter, 34 ... Cigarette cuts, L1... Channel, L2... First branch channel, L3... Second branch channel, CV.

Claims (8)

  1.  大気圧下において温度を40℃以上、90℃以下に調整した湿潤気体をたばこ原料に通気し、前記たばこ原料の含水率を10重量%以上、30重量%未満に維持しながら前記たばこ原料を加熱するようにしたたばこ原料中のニコチン低減方法。 Wet gas adjusted to a temperature of 40 ° C. or higher and 90 ° C. or lower under atmospheric pressure is passed through the tobacco raw material, and the tobacco raw material is heated while maintaining the moisture content of the tobacco raw material at 10% by weight or more and less than 30% by weight. A method for reducing nicotine in tobacco raw materials.
  2.  前記湿潤気体として湿潤空気を用いた請求項1に記載のたばこ原料中のニコチン低減方法。 The method for reducing nicotine in tobacco raw materials according to claim 1, wherein wet air is used as the wet gas.
  3.  前記たばこ原料に通気する前記湿潤気体の流速が1~10m/秒である請求項1又は請求項2に記載のたばこ原料中のニコチン低減方法。 The method for reducing nicotine in a tobacco raw material according to claim 1 or 2, wherein the flow rate of the wet gas flowing through the tobacco raw material is 1 to 10 m / sec.
  4.  前記湿潤気体の温度が60℃以上、90℃以下である請求項1ないし請求項3のいずれか1項に記載のたばこ原料中のニコチン低減方法。 The method for reducing nicotine in tobacco raw materials according to any one of claims 1 to 3, wherein the temperature of the wet gas is 60 ° C or higher and 90 ° C or lower.
  5.  前記たばこ原料中の含水率が20重量%以上、30重量%未満である請求項1ないし請求項4のいずれか1項に記載のたばこ原料中のニコチン低減方法。 The method for reducing nicotine in a tobacco raw material according to any one of claims 1 to 4, wherein the moisture content in the tobacco raw material is 20 wt% or more and less than 30 wt%.
  6.  前記湿潤気体の湿度を制御することで前記たばこ原料の含水率を維持するようにした請求項1ないし請求項5のいずれか1項に記載のたばこ原料中のニコチン低減方法。 The method for reducing nicotine in a tobacco raw material according to any one of claims 1 to 5, wherein the moisture content of the tobacco raw material is maintained by controlling a humidity of the wet gas.
  7.  請求項1ないし請求項6のいずれか1項に記載の方法で得られたたばこ原料を含んだたばこ製品。 Tobacco products containing the tobacco raw material obtained by the method according to any one of claims 1 to 6.
  8.  前記たばこ製品が経口用たばこ製品である請求項7に記載のたばこ製品。 The tobacco product according to claim 7, wherein the tobacco product is an oral tobacco product.
PCT/JP2013/051635 2012-01-31 2013-01-25 Method of reducing nicotine in tobacco raw material, and tobacco product WO2013115106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012018042A JP2015077071A (en) 2012-01-31 2012-01-31 Method of reducing nicotine in tobacco raw material and tobacco product
JP2012-018042 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013115106A1 true WO2013115106A1 (en) 2013-08-08

Family

ID=48905146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051635 WO2013115106A1 (en) 2012-01-31 2013-01-25 Method of reducing nicotine in tobacco raw material, and tobacco product

Country Status (2)

Country Link
JP (1) JP2015077071A (en)
WO (1) WO2013115106A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848502A (en) * 2013-10-31 2016-08-10 英美烟草(投资)有限公司 Tobacco treatment
US10080383B2 (en) 2013-10-31 2018-09-25 British American Tobacco (Investments) Limited Tobacco material and treatment thereof
US10111457B2 (en) 2013-10-31 2018-10-30 British American Tobacco (Investments) Limited Tobacco material and treatment thereof
CN115135174A (en) * 2020-02-27 2022-09-30 英美烟草(投资)有限公司 Method for treating tobacco and treated tobacco

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3313173A1 (en) 2015-06-26 2018-05-02 Altria Client Services LLC Compositions and methods for producing tobacco plants and products having altered alkaloid levels
GB201522277D0 (en) 2015-12-17 2016-02-03 British American Tobacco Co Apparatus and method for conditioning tobacco
CN107589038A (en) * 2017-10-25 2018-01-16 江苏中烟工业有限责任公司 A kind of method of the two-way humid keeping performance of Fast Evaluation humectant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264496A (en) * 1975-09-05 1977-05-27 American Brands Method of increasing bulk of cut tobacoo and apparatus therefor
JPH057485A (en) * 1990-02-23 1993-01-19 R J Reynolds Tobacco Co Tobacco processing method
JPH0698746A (en) * 1992-09-17 1994-04-12 Japan Tobacco Inc Device for extracting nicotine in cigarette raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264496A (en) * 1975-09-05 1977-05-27 American Brands Method of increasing bulk of cut tobacoo and apparatus therefor
JPH057485A (en) * 1990-02-23 1993-01-19 R J Reynolds Tobacco Co Tobacco processing method
JPH0698746A (en) * 1992-09-17 1994-04-12 Japan Tobacco Inc Device for extracting nicotine in cigarette raw material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848502A (en) * 2013-10-31 2016-08-10 英美烟草(投资)有限公司 Tobacco treatment
JP2016534716A (en) * 2013-10-31 2016-11-10 ブリティッシュ・アメリカン・タバコ・(インベストメンツ)・リミテッド Tobacco processing
US10080383B2 (en) 2013-10-31 2018-09-25 British American Tobacco (Investments) Limited Tobacco material and treatment thereof
US10111457B2 (en) 2013-10-31 2018-10-30 British American Tobacco (Investments) Limited Tobacco material and treatment thereof
US10264813B2 (en) 2013-10-31 2019-04-23 British American Tobacco (Investments) Limited Tobacco treatment
US10966451B2 (en) 2013-10-31 2021-04-06 British American Tobacco (Investments) Limited Tobacco treatment
CN115135174A (en) * 2020-02-27 2022-09-30 英美烟草(投资)有限公司 Method for treating tobacco and treated tobacco

Also Published As

Publication number Publication date
JP2015077071A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2013115106A1 (en) Method of reducing nicotine in tobacco raw material, and tobacco product
US10390555B2 (en) Manufacturing method of composition element of item including flavor component, and composition element of item, including flavor component
RU2639111C1 (en) Method for extracting flavour-imparting component and method for obtaining composition element of product preferred
KR102336465B1 (en) Tobacco Blend
KR20180069849A (en) Tobacco blend
US20130284193A1 (en) Non-combustion suction type tobacco product
CN109068718B (en) Method for producing flavor source
GB2460499A (en) Method for processing burley tobacco in blended type cigarette
RU2721632C1 (en) Tobacco extract production method
EP3062642B1 (en) Tobacco material and treatment thereof
US11039639B2 (en) Producing method of tobacco raw material
US20160360779A1 (en) Extraction method of flavor constituent and manufacturing method of composition element of favorite item
WO2017103560A1 (en) Apparatus and method for conditioning tobacco
CN113784635A (en) Concentration of wet tobacco extract
KR20220016455A (en) Improved method for manufacturing liquid tobacco extract
US20230354880A1 (en) Tobacco compositions and preparation thereof
JP2003289842A (en) Tobacco leaf-processing method for reducing harmful component
JP5805923B2 (en) Powder manufacturing method, powder manufacturing equipment
KR20230118138A (en) An Improved Method for Making Liquid Tobacco Extract
KR20230118139A (en) An Improved Method for Making Liquid Tobacco Extract
CN113576017A (en) Cut tobacco drying water control method
JPH09275895A (en) Method for removing astringency of astringent persimmon and processor therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP