WO2013115058A1 - Kneading rotor and kneader - Google Patents

Kneading rotor and kneader Download PDF

Info

Publication number
WO2013115058A1
WO2013115058A1 PCT/JP2013/051457 JP2013051457W WO2013115058A1 WO 2013115058 A1 WO2013115058 A1 WO 2013115058A1 JP 2013051457 W JP2013051457 W JP 2013051457W WO 2013115058 A1 WO2013115058 A1 WO 2013115058A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
rotor
pipe
helical pipe
rotor shaft
Prior art date
Application number
PCT/JP2013/051457
Other languages
French (fr)
Japanese (ja)
Inventor
田中 一成
森 龍太郎
高司 森部
Original Assignee
三菱重工マシナリーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マシナリーテクノロジー株式会社 filed Critical 三菱重工マシナリーテクノロジー株式会社
Publication of WO2013115058A1 publication Critical patent/WO2013115058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/24Component parts, details or accessories; Auxiliary operations for feeding
    • B29B7/246Component parts, details or accessories; Auxiliary operations for feeding in mixers having more than one rotor and a casing closely surrounding the rotors, e.g. with feeding plungers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor

Definitions

  • the present invention relates to a kneading rotor for kneading a rubber material or the like and a kneading machine including a kneading rotor, and particularly relates to a cooling structure thereof.
  • a material such as rubber is kneaded by applying a strong shearing force, so that heat is generated with the kneading.
  • a strong shearing force so that heat is generated with the kneading.
  • the temperature of the rubber becomes excessive due to such heat generation, the quality of the rubber is deteriorated, so that a sufficient cooling capacity is required. If the cooling capacity is insufficient, it is necessary to discharge the rubber to the outside during the kneading, cool it, and knead again after the temperature drops, which greatly affects the productivity.
  • Patent Document 1 describes an example of a kneading machine including a so-called one-piece kneading rotor that integrally forms a rotor shaft and blades.
  • the kneading machine of Patent Document 1 houses a kneading rotor having a rotor shaft having a rotor body having a cooling passage and a blade portion formed in a helical shape in the axial direction of the outer periphery of the rotor body in a mixing chamber. .
  • a branch pipe is provided to an inner pipe accommodated in a cooling passage formed in the rotor body so that the cooling passage and a cavity (jacket) inside the wing portion communicate with each other.
  • the cooling medium fed to the passage is surely introduced into the cavity inside the wing to improve the cooling effect of the wing.
  • the cooling medium fed to the cooling passage is reliably introduced into the cavity inside the wing to improve the cooling effect of the wing.
  • the cross-sectional area of the cooling medium flow passage becomes large. For this reason, it is inevitable that the flow rate becomes slow, and there is a possibility that a sufficient cooling effect cannot be obtained due to a decrease in heat transfer coefficient.
  • the rotor main body and the wing part are manufactured as separate parts, and a flow path for a cooling medium is formed on the inner surface of the wing part in contact with the rotor main body, and then the rotor main body and the wing part are fitted and coupled.
  • a kneading rotor having a piece structure is also generally known. And, by adopting such a kneading rotor, it is possible to improve the cooling capacity, but in this case, since a large work time is required for the fitting process, a kneading machine equipped with such a kneading rotor is used. Is also disadvantageous in terms of cost.
  • the present invention has been made in consideration of such circumstances, and an object thereof is to provide a kneading rotor and a kneading machine capable of improving cooling efficiency while suppressing cost.
  • the kneading rotor is a tubular member having an outer peripheral surface provided with kneading blades, and inserted into the rotor shaft, and cooled inside.
  • a helical pipe formed by spirally arranging a flow pipe for circulating the medium and cooling the rotor shaft.
  • a helical pipe flow pipe is inserted as a flow path for the cooling medium. For this reason, the process at the time of installation becomes unnecessary and it can suppress cost.
  • the cross-sectional area of the flow path can be reduced by flowing the cooling medium through the helical pipe, and the flow rate of the cooling medium. By increasing the heat transfer rate, the heat transfer rate can be improved.
  • the helical pipe may be arranged in contact with the inner peripheral surface of the rotor shaft.
  • heat from the wing portion and the rotor shaft can be efficiently recovered because the helical pipe reliably contacts the inner peripheral surface of the rotor shaft.
  • a gap between the helical pipe and the inner peripheral surface of the rotor shaft is filled.
  • the material may be filled.
  • the gap between the helical pipe and the inner peripheral surface of the rotor shaft can be filled with the filler, and the contact thermal resistance can be reduced to further improve the cooling capacity.
  • the helical pipe is attached to the inner peripheral surface of the rotor shaft.
  • An urging member for urging may be provided.
  • the biasing member biases the helical pipe toward the inner peripheral surface of the rotor shaft, whereby the gap between the helical pipe and the inner peripheral surface of the rotor shaft can be reduced. It is possible to improve the cooling capacity by reducing the contact thermal resistance.
  • the biasing member may be an elastic member that accumulates an elastic repulsion force toward the outer periphery.
  • the elastic member biases the helical pipe toward the inner peripheral surface of the rotor shaft, thereby reducing the gap between the flow pipe of the helical pipe and the inner peripheral surface of the rotor shaft. It is possible to reduce the contact thermal resistance and improve the cooling capacity.
  • the urging member may be a foamed member having a repulsive force toward the outer periphery.
  • the foam member biases the helical pipe toward the inner peripheral surface of the rotor shaft, thereby reducing the gap between the flow pipe of the helical pipe and the inner peripheral surface of the rotor shaft. It is possible to reduce the contact thermal resistance and improve the cooling capacity.
  • the flow pipe of the helical pipe has a rectangular cross section. There may be.
  • the helical pipe flow pipe can be brought into surface contact with the inner peripheral surface of the rotor shaft, and the contact thermal resistance between the helical pipe flow pipe and the inner peripheral surface of the rotor shaft is reduced. Cooling capacity can be improved.
  • the kneader may include the kneading rotor according to any one of the first aspect to the seventh aspect of the present invention.
  • the flow rate of the cooling medium can be increased by reducing the flow path cross-sectional area of the cooling medium while suppressing the cost by the helical pipe. Therefore, the heat transfer rate can be improved, and the cooling efficiency can be improved.
  • the kneading rotor and the kneading machine according to the above aspect, by using a helical pipe as the cooling medium flow pipe, it is possible to improve the cooling efficiency while suppressing the cost.
  • a kneading machine 10 including kneading rotors 20 and 21 according to the first embodiment of the present invention has a kneading chamber 12 formed inside a casing 11.
  • the kneading machine 10 of the present embodiment is a so-called hermetic kneading machine in which a pair of kneading rotors 20 and 21 are arranged in parallel inside the kneading chamber 12.
  • the pair of kneading rotors 20 and 21 are rotated in opposite directions by a drive source such as a motor (not shown), and wing portions 22 and 23 projecting outward are formed on the outer surfaces of the rotors. .
  • the wing portions 22 and 23 are formed by, for example, spirally twisting the axes 24 and 25 of the kneading rotors 20 and 21.
  • the blade portions 22 and 23 are arranged so as to mesh with each other by the rotation of the kneading rotors 20 and 21.
  • the kneading machine 10 has a hopper 13 into which a kneading material such as a rubber raw material is introduced in communication with the kneading chamber 12 and a floating weight 14 that press-fits the kneading material charged into the hopper 13 into the kneading chamber 12. Is provided.
  • a drop door 15 for taking out the kneaded material to the outside is attached to the bottom of the kneader 10 so as to be opened and closed.
  • the kneading machine 10 press-fits the kneaded material charged through the hopper 13 into the kneading chamber 12 by the floating weight 14. Next, the kneaded material is kneaded by the meshing action of the kneading rotors 20, 21 rotating in opposite directions and the shearing action generated between the kneading rotors 20, 21 and the inner surface of the kneading chamber 12.
  • the kneading machine 10 takes out the kneaded material from the kneading chamber 12 to the outside by opening a drop door 15 provided at the bottom of the kneading chamber 12, and conveys the material to another process.
  • the kneading rotor 20 includes a rotor shaft 27 provided with kneading blades 22 on the outer peripheral surface of a rotor body 26 that is a tubular member.
  • the kneading rotor 20 includes a helical pipe 29 that is inserted into the rotor shaft 27 and has a circulation pipe 28 that spirally arranges the cooling medium C to cool the rotor shaft 27. ing.
  • One and the other of the radial pipes 28 are formed in a circular cross-sectional shape.
  • the kneading rotor 20 has a so-called metal one-piece structure in which the blade portion 22 and the rotor shaft 27 are integrally formed by casting or the like.
  • the wing part 22 has a solid structure having no space inside.
  • the kneading rotor 20 includes a helical pipe housing portion 32 having a closing portion 30 on one end side in the direction of the axis 24 of the rotor body 26 and an opening 31 on the other end portion. Further, the kneading rotor 20 accommodates the helical pipe 29 in the helical pipe accommodating portion 32 of the rotor body 26.
  • the helical pipe 29 has a plurality of coil spring-shaped flow pipes 28, a central introduction pipe 33 that is connected to the flow pipe 28 on the closed portion 30 side at the radial center of the axis 24, and the axis 24 On the radially outer side, there is a lead-out pipe 34 connected in communication with the flow pipe 28 on the opening 31 side.
  • the helical pipe 29 circulates the cooling medium C introduced from the central introduction pipe 33 into the flow pipe 28 on the closed portion 30 side through the plurality of flow pipes 28 and then is led out from the flow pipe 28 on the opening 31 side. It leads to the outside through the pipe 34.
  • the outer diameter of the plurality of flow pipes 28 is substantially the same as the inner diameter of the helical pipe housing portion 32, so that the plurality of flow pipes 28 are formed on the inner peripheral surface of the helical pipe housing portion 32. Inserted in contact.
  • the kneaded material is kneaded by the meshing action of the kneading rotor 20 (21) rotating in opposite directions and the shearing action generated between the kneading rotor 20 (21) and the inner surface of the kneading chamber 12.
  • the helical pipe 29 rotates together with the kneading rotor 20, and the cooling medium C introduced from the central introduction pipe 33 to the flow pipe 28 on the closing part 30 side is led out from the flow pipe 28 on the opening part 31 side. 34.
  • the blade 22 and the rotor shaft 27 are cooled by recovering heat generated in the blade portion 22 and the rotor shaft 27 by the cooling medium C flowing through the flow pipe 28 in contact with the helical pipe housing portion 32. Is possible.
  • the flow passage cross-sectional area can be reduced by flowing the cooling medium C through the helical pipe 29 as compared with the case where the cooling medium C is simply flowed in the direction of the axis 24 of the rotor shaft 27. And the flow rate of the cooling medium can be increased. Therefore, the heat transfer coefficient can be improved.
  • Cooling efficiency can be improved by improving the heat transfer rate while suppressing costs.
  • the kneading rotor 50 in the kneading machine 40 includes a circulation pipe 28 of a helical pipe 29 and an inner periphery of a helical pipe housing portion 32 formed in the rotor body 26.
  • a filler 51 is filled between the surfaces.
  • the filler 51 is a functional material containing, for example, a heat radiating gel sheet made of silicon or the like, carbon fiber, carbon nanotube, or the like, and is preferably a flexible high thermal conductivity material.
  • the filler 51 has a pipe contact surface 52 formed in a spiral groove shape having a dimension equivalent to the outer diameter dimension of the flow pipe 28 in the helical pipe 29 on the inner periphery, and the inner diameter dimension of the helical pipe accommodating portion 32.
  • the filler 51 has a rotor shaft contact surface 53 in contact with the inner peripheral surface of the helical pipe housing portion 32, and a pipe contact surface 52 in contact with the flow pipe 28 of the helical pipe 29.
  • the filler 51 rotates integrally with the helical pipe 29 in the helical pipe housing portion 32.
  • the filler 51 is filled between the flow pipe 28 of the helical pipe 29 and the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27. Therefore, by filling the gap between the inner peripheral surface of the helical pipe housing portion 32 and the flow pipe 28 of the helical pipe 29, the contact thermal resistance can be reduced and the cooling capacity can be improved.
  • the kneading rotor 70 provided in the kneading machine 60 according to the third embodiment of the present invention biases the helical pipe 29 to the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27.
  • the elastic member 71 which is a urging member is provided.
  • the elastic member 71 is a spring member in which a leaf spring that is elastically deformed so as to reduce its inner diameter is formed in a circular shape, and the distribution pipe 28 is accommodated inside the distribution pipe 28 of the helical pipe 29, whereby the distribution pipe 28 is accommodated in the helical pipe accommodating portion.
  • a biasing force is applied to the inner peripheral surface of 32 toward the outer peripheral side.
  • the elastic member 71 rotates integrally with the helical pipe 29 in the helical pipe housing portion 32 in a state where the flow pipe 28 of the helical pipe 29 is pressed against the inner peripheral surface of the helical pipe housing portion 32.
  • the elastic member 71 that is an urging member urges the flow pipe 28 of the helical pipe 29 to the inner peripheral surface of the helical pipe accommodating portion 32 of the rotor shaft 27. Therefore, according to the kneading rotor 70, by reducing the gap between the flow pipe 28 of the helical pipe 29 and the inner peripheral surface of the helical pipe accommodating portion 32, the contact thermal resistance is reduced and the cooling capacity is improved. it can.
  • the elastic member 71 as the biasing member is a spring member, it is easy to obtain and process the material, which is advantageous in terms of cost and man-hours.
  • the kneading rotor 90 equipped in the kneading machine 80 of the fourth embodiment according to the present invention has the flow pipe 28 of the helical pipe 29 on the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27.
  • a foaming member 91 which is an urging member for urging is provided.
  • the foaming member 91 is a foaming agent that expands in volume by being foamed after being filled in the helical pipe housing portion 32 of the rotor shaft 27 and hardens in this state.
  • the flow pipe 28 is helically expanded. Biasing is applied to the inner peripheral surface of the pipe housing portion 32.
  • the foamed member 91 may be press-fitted into the helical pipe housing portion 32 in a state of being deformed so as to reduce the volume after curing.
  • the foaming member 91 rotates integrally with the helical pipe 29 in the helical pipe housing portion 32 while pressing the flow pipe 28 of the helical pipe 29 against the inner peripheral surface of the helical pipe housing portion 32.
  • the foaming member 91 biases the flow pipe 28 of the helical pipe 29 to the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27. Therefore, according to the kneading rotor 90, the contact heat resistance is reduced and the cooling capacity is improved by reducing the gap between the flow pipe 28 of the helical pipe 29 and the inner peripheral surface of the helical pipe housing portion 32. it can.
  • the kneading rotor 110 provided in the kneading machine 100 of the fifth embodiment according to the present invention has a helical pipe having a flow pipe 112 in which one and the other in the radial direction are formed in a rectangular cross-sectional shape.
  • a pipe 111 is provided.
  • the helical pipe 111 has a central introduction pipe 113 that is connected in communication with the flow pipe 112 on the closed portion 30 side at the radial center of the axis 24.
  • the helical pipe 111 is inserted in a state of being in surface contact with the inner peripheral surface of the helical pipe housing portion 32 because the outer diameter dimensions of the plurality of flow pipes 112 are substantially the same as the inner diameter of the helical pipe housing portion 32. Has been.
  • the flow pipe 112 of the helical pipe 111 is brought into surface contact with the inner peripheral surface of the helical pipe housing portion 32, so that the heat transfer area can be increased. Therefore, the contact heat resistance between the flow pipe 112 of the helical pipe 111 and the inner peripheral surface of the helical pipe housing portion 32 can be reduced, and the cooling capacity can be improved.
  • the kneading rotor and kneading machine of the present invention are not limited to the above-described embodiments, and appropriate modifications and improvements can be made.
  • a plurality of the above-described embodiments may be combined.
  • the elastic member 71 of the third embodiment and the foaming member 91 of the fourth embodiment are used in combination with the filler 51 of the second embodiment. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

A kneading rotor and a kneader comprise: a rotor shaft which is a pipe-shaped member and which has a kneading blade section provided on the outer peripheral surface of the rotor shaft, the blade section having a solid structure having no space therein; and a helical pipe which is inserted within the rotor shaft and which is formed by helically disposing a flow pipe, through the inside of which a cooling medium flows to cool the rotor shaft. The helical pipe is disposed so as to be in contact with the inner peripheral surface of the rotor shaft.

Description

混練用ロータ及び混練機Kneading rotor and kneading machine
 本発明は、ゴム材料等を混練する混練用ロータ及び混練用ロータを備える混錬機に関し、特に、その冷却構造に係る。
 本願は、2012年1月31日に、日本に出願された特願2012-018484号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a kneading rotor for kneading a rubber material or the like and a kneading machine including a kneading rotor, and particularly relates to a cooling structure thereof.
This application claims priority based on Japanese Patent Application No. 2012-018484 filed in Japan on January 31, 2012, the contents of which are incorporated herein by reference.
 従来、いわゆるインターナルミキサー等のゴム製造用の混練機においては、ゴム等の材料に強力なせん断力を与えて混練することから、混練に伴って発熱する。このような発熱によってゴムの温度が過大となると、ゴムの品質劣化が生じるため十分な冷却能力が必要となる。そして冷却能力が不足する場合には、混練の途中でゴムを外部に排出して冷却し、温度が低下した後に再度混練する必要が生じてしまうため、生産性に大きな影響を与えてしまう。 Conventionally, in a kneader for rubber production such as a so-called internal mixer, a material such as rubber is kneaded by applying a strong shearing force, so that heat is generated with the kneading. When the temperature of the rubber becomes excessive due to such heat generation, the quality of the rubber is deteriorated, so that a sufficient cooling capacity is required. If the cooling capacity is insufficient, it is necessary to discharge the rubber to the outside during the kneading, cool it, and knead again after the temperature drops, which greatly affects the productivity.
 ここで、ロータ軸と翼部とを一体的に形成する、いわゆる1ピース構造の混練用ロータを備えた混練機の一例が特許文献1に記載されている。
 特許文献1の混練機は、冷却通路を形成したロータ本体と、ロータ本体の外周の軸方向にヘリカル状に形成した翼部とを有するロータ軸を備える混練用ロータを混合室内に収容している。
 また、この混練機においては、ロータ本体に形成した冷却通路に収容したインナーパイプに、冷却通路と翼部の内側の空洞部(ジャケット)とが連通するように枝管が設けられており、冷却通路に送給した冷却媒体が、翼部の内側の空洞部に確実に導入されるようにして翼部の冷却効果の向上を図っている。
Here, Patent Document 1 describes an example of a kneading machine including a so-called one-piece kneading rotor that integrally forms a rotor shaft and blades.
The kneading machine of Patent Document 1 houses a kneading rotor having a rotor shaft having a rotor body having a cooling passage and a blade portion formed in a helical shape in the axial direction of the outer periphery of the rotor body in a mixing chamber. .
Further, in this kneader, a branch pipe is provided to an inner pipe accommodated in a cooling passage formed in the rotor body so that the cooling passage and a cavity (jacket) inside the wing portion communicate with each other. The cooling medium fed to the passage is surely introduced into the cavity inside the wing to improve the cooling effect of the wing.
特公昭52-5395号公報Japanese Patent Publication No.52-5395
 しかしながら、特許文献1の混練機における混練用ロータは、冷却通路に送給した冷却媒体が、翼部の内側の空洞部に確実に導入されるようにして翼部の冷却効果の向上を図っているものの、翼部の空洞部においては、冷却媒体の流通路の断面積が大きくなってしまう。このため、流速が遅くなることを避けられず、熱伝達率が低下して十分な冷却効果が得られない可能性がある。
 ここで、ロータ本体と翼部とを別個の部品として製造し、ロータ本体に接する翼部の内面に冷却媒体用の流路を形成した後にロータ本体と翼部とを嵌合して結合する2ピース構造の混練用ロータも一般に知られている。そしてこのような混練用ロータを採用することで、冷却能力の向上を図ることができるものの、この場合、嵌合工程に多大な作業時間を要すため、このような混練用ロータを備える混練機についても、やはりコスト面で不利となる。
However, in the kneading rotor in the kneading machine of Patent Document 1, the cooling medium fed to the cooling passage is reliably introduced into the cavity inside the wing to improve the cooling effect of the wing. However, in the cavity of the wing, the cross-sectional area of the cooling medium flow passage becomes large. For this reason, it is inevitable that the flow rate becomes slow, and there is a possibility that a sufficient cooling effect cannot be obtained due to a decrease in heat transfer coefficient.
Here, the rotor main body and the wing part are manufactured as separate parts, and a flow path for a cooling medium is formed on the inner surface of the wing part in contact with the rotor main body, and then the rotor main body and the wing part are fitted and coupled. A kneading rotor having a piece structure is also generally known. And, by adopting such a kneading rotor, it is possible to improve the cooling capacity, but in this case, since a large work time is required for the fitting process, a kneading machine equipped with such a kneading rotor is used. Is also disadvantageous in terms of cost.
 本発明は、このような事情を考慮してなされたものであり、コストを抑制しながら、冷却効率向上を図ることのできる混練用ロータ及び混練機を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object thereof is to provide a kneading rotor and a kneading machine capable of improving cooling efficiency while suppressing cost.
 本発明の第一の態様によれば、混練用ロータは、管状の部材であって外周面に混練用の翼部が設けられたロータ軸と、前記ロータ軸の内部に挿入され、内部に冷却媒体が流通して前記ロータ軸を冷却する流通管を螺旋状に配設して形成されたヘリカルパイプとを備える。 According to the first aspect of the present invention, the kneading rotor is a tubular member having an outer peripheral surface provided with kneading blades, and inserted into the rotor shaft, and cooled inside. A helical pipe formed by spirally arranging a flow pipe for circulating the medium and cooling the rotor shaft.
 上記態様に係る構成によれば、冷却媒体の流路として、ロータ軸の内部に複雑なインナーパイプを設置する代わりに、ヘリカルパイプの流通管を挿入する。このため設置の際の加工が不要となり、コストを抑えることができる。また、ロータ軸の軸方向に向けて冷却媒体を単純に流通させる場合と比較して、ヘリカルパイプへ冷却媒体を流通させることによって、流路断面積を小さくすることが可能となり、冷却媒体の流速を増大させることによって熱伝達率の向上が可能となる。 According to the configuration according to the above aspect, instead of installing a complicated inner pipe inside the rotor shaft, a helical pipe flow pipe is inserted as a flow path for the cooling medium. For this reason, the process at the time of installation becomes unnecessary and it can suppress cost. In addition, compared with the case where the cooling medium is simply circulated in the axial direction of the rotor shaft, the cross-sectional area of the flow path can be reduced by flowing the cooling medium through the helical pipe, and the flow rate of the cooling medium. By increasing the heat transfer rate, the heat transfer rate can be improved.
 また、本発明の第二の態様によれば、本発明の第一の態様に係る混練用ロータにおいて、前記ヘリカルパイプは、前記ロータ軸の内周面に接触して配されていてもよい。 Also, according to the second aspect of the present invention, in the kneading rotor according to the first aspect of the present invention, the helical pipe may be arranged in contact with the inner peripheral surface of the rotor shaft.
 上記態様に係る構成によれば、ヘリカルパイプが確実にロータ軸の内周面に接触することで、翼部およびロータ軸のからの熱を効率よく回収できる。 According to the configuration according to the above aspect, heat from the wing portion and the rotor shaft can be efficiently recovered because the helical pipe reliably contacts the inner peripheral surface of the rotor shaft.
 さらに、本発明の第三の態様によれば、本発明の第一の態様又は第二の態様に係る混練用ロータにおいて、前記ヘリカルパイプと前記ロータ軸の内周面との間には、充填材が充填されていてもよい。 Furthermore, according to the third aspect of the present invention, in the kneading rotor according to the first aspect or the second aspect of the present invention, a gap between the helical pipe and the inner peripheral surface of the rotor shaft is filled. The material may be filled.
 上記態様に係る構成によれば、ヘリカルパイプとロータ軸の内周面との間の間隙を充填材で埋めることが可能となり、接触熱抵抗を低減して冷却能力をさらに向上できる。 According to the configuration according to the above aspect, the gap between the helical pipe and the inner peripheral surface of the rotor shaft can be filled with the filler, and the contact thermal resistance can be reduced to further improve the cooling capacity.
 また、本発明の第四の態様によれば、本発明の第一の態様から第三の態様のいずれかの態様に係る混練用ロータにおいて、前記ヘリカルパイプを前記ロータ軸の内周面に付勢する付勢部材を備えていてもよい。 According to the fourth aspect of the present invention, in the kneading rotor according to any one of the first to third aspects of the present invention, the helical pipe is attached to the inner peripheral surface of the rotor shaft. An urging member for urging may be provided.
 上記態様に係る構成によれば、付勢部材がヘリカルパイプをロータ軸の内周面に付勢することによって、ヘリカルパイプとロータ軸の内周面との間の間隙を小さくすることができ、接触熱抵抗を低減して冷却能力の向上が可能となる。 According to the configuration according to the above aspect, the biasing member biases the helical pipe toward the inner peripheral surface of the rotor shaft, whereby the gap between the helical pipe and the inner peripheral surface of the rotor shaft can be reduced. It is possible to improve the cooling capacity by reducing the contact thermal resistance.
 さらに、本発明の第五の態様によれば、本発明の第四の態様に係る混練用ロータにおいて、前記付勢部材は、外周に向けて弾性反発力を蓄積した弾性部材であってもよい。 Furthermore, according to the fifth aspect of the present invention, in the kneading rotor according to the fourth aspect of the present invention, the biasing member may be an elastic member that accumulates an elastic repulsion force toward the outer periphery. .
 上記態様に係る構成によれば、弾性部材がヘリカルパイプをロータ軸の内周面に付勢することによって、ヘリカルパイプの流通管とロータ軸の内周面との間の隙間を小さくすることができ、接触熱抵抗を低減して冷却能力を向上できる。 According to the configuration according to the above aspect, the elastic member biases the helical pipe toward the inner peripheral surface of the rotor shaft, thereby reducing the gap between the flow pipe of the helical pipe and the inner peripheral surface of the rotor shaft. It is possible to reduce the contact thermal resistance and improve the cooling capacity.
 また、本発明の第六の態様によれば、本発明の第四の態様に係る混練用ロータにおいて、前記付勢部材は、外周に向けて反発力を有する発泡部材であってもよい。 Also, according to the sixth aspect of the present invention, in the kneading rotor according to the fourth aspect of the present invention, the urging member may be a foamed member having a repulsive force toward the outer periphery.
 上記態様に係る構成によれば、発泡部材がヘリカルパイプをロータ軸の内周面に付勢することによって、ヘリカルパイプの流通管とロータ軸の内周面との間の隙間を小さくすることができ、接触熱抵抗を低減して冷却能力を向上できる。 According to the configuration according to the above aspect, the foam member biases the helical pipe toward the inner peripheral surface of the rotor shaft, thereby reducing the gap between the flow pipe of the helical pipe and the inner peripheral surface of the rotor shaft. It is possible to reduce the contact thermal resistance and improve the cooling capacity.
 さらに、本発明の第七の態様によれば、本発明の第一の態様から第六の態様のいずれかの態様に係る混練用ロータにおいて、前記ヘリカルパイプの前記流通管は、断面矩形状であってもよい。 Furthermore, according to the seventh aspect of the present invention, in the kneading rotor according to any one of the first to sixth aspects of the present invention, the flow pipe of the helical pipe has a rectangular cross section. There may be.
 上記態様に係る構成によれば、ヘリカルパイプの流通管がロータ軸の内周面への面接触が可能となり、ヘリカルパイプの流通管とロータ軸の内周面との間の接触熱抵抗を低減して冷却能力を向上できる。 According to the configuration according to the above aspect, the helical pipe flow pipe can be brought into surface contact with the inner peripheral surface of the rotor shaft, and the contact thermal resistance between the helical pipe flow pipe and the inner peripheral surface of the rotor shaft is reduced. Cooling capacity can be improved.
 本発明の第八の態様によれば、混練機は、本発明の第一の態様から第七の態様のいずれかの態様に係る混練用ロータを備えていてもよい。 According to the eighth aspect of the present invention, the kneader may include the kneading rotor according to any one of the first aspect to the seventh aspect of the present invention.
 上記態様に係る構成によれば、ヘリカルパイプによってコストを抑えながら、冷却媒体の流路断面積を小さくして冷却媒体の流速を増大させることが可能となる。従って、熱伝達率を向上でき、冷却効率向上を図ることが可能となる。 According to the configuration according to the above aspect, the flow rate of the cooling medium can be increased by reducing the flow path cross-sectional area of the cooling medium while suppressing the cost by the helical pipe. Therefore, the heat transfer rate can be improved, and the cooling efficiency can be improved.
 上記態様に係る混練用ロータ及び混練機によれば、冷却媒体の流通管をヘリカルパイプとすることによって、コストを抑制しながら、冷却効率向上を図ることが可能となる。 According to the kneading rotor and the kneading machine according to the above aspect, by using a helical pipe as the cooling medium flow pipe, it is possible to improve the cooling efficiency while suppressing the cost.
本発明に係る第1実施形態の混練用ロータを備える混練機の縦断面図である。It is a longitudinal section of a kneading machine provided with a rotor for kneading of a 1st embodiment concerning the present invention. 本発明に係る第1実施形態の混練用ロータの縦断面図である。It is a longitudinal cross-sectional view of the rotor for kneading | mixing of 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態の混練用ロータの要部縦断面図である。It is a principal part longitudinal cross-sectional view of the rotor for kneading | mixing of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施形態の混練用ロータの要部横断面図である。It is a principal part cross-sectional view of the rotor for kneading | mixing of 3rd Embodiment which concerns on this invention. 本発明に係る第4実施形態の混練用ロータの要部横断面図である。It is a principal part cross-sectional view of the rotor for kneading | mixing of 4th Embodiment which concerns on this invention. 本発明に係る第5実施形態の混練用ロータの要部縦断面図である。It is a principal part longitudinal cross-sectional view of the rotor for kneading | mixing of 5th Embodiment which concerns on this invention.
 以下、本発明に係る複数の実施形態の混練用ロータ及び混練機について図面を参照して説明する。
(第1実施形態)
 図1に示すように、本発明に係る第1実施形態の混練用ロータ20,21を備える混練機10は、ケーシング11の内部に混練室12を形成している。
 本実施形態の混練機10は、混練室12の内部に、一対の混練用ロータ20,21が平行に配置された、いわゆる密閉式の混練機である。
 一対の混練用ロータ20,21は、不図示のモータ等の駆動源により互いに逆方向に回転し、それぞれの外表面には、それぞれ外側に向かって張り出した翼部22,23が形成されている。
 翼部22,23は、例えば、混練用ロータ20,21の軸線24,25に対して螺旋状にねじれて形成されている。これら翼部22,23は、混練用ロータ20,21の回転により互いに噛み合うように配置されている。
Hereinafter, a rotor for kneading and a kneading machine according to a plurality of embodiments according to the present invention will be described with reference to the drawings.
(First embodiment)
As shown in FIG. 1, a kneading machine 10 including kneading rotors 20 and 21 according to the first embodiment of the present invention has a kneading chamber 12 formed inside a casing 11.
The kneading machine 10 of the present embodiment is a so-called hermetic kneading machine in which a pair of kneading rotors 20 and 21 are arranged in parallel inside the kneading chamber 12.
The pair of kneading rotors 20 and 21 are rotated in opposite directions by a drive source such as a motor (not shown), and wing portions 22 and 23 projecting outward are formed on the outer surfaces of the rotors. .
The wing portions 22 and 23 are formed by, for example, spirally twisting the axes 24 and 25 of the kneading rotors 20 and 21. The blade portions 22 and 23 are arranged so as to mesh with each other by the rotation of the kneading rotors 20 and 21.
 混練機10は、その上部に、混練室12に連通してゴム原料などの混練材料が投入されるホッパ13と、このホッパ13に投入された混練材料を混練室12へ圧入するフローティングウェイト14とが設けられている。
 また、混練機10の底部には、混練された材料を外部に取り出すためのドロップドア15が開閉可能に取り付けられている。
The kneading machine 10 has a hopper 13 into which a kneading material such as a rubber raw material is introduced in communication with the kneading chamber 12 and a floating weight 14 that press-fits the kneading material charged into the hopper 13 into the kneading chamber 12. Is provided.
A drop door 15 for taking out the kneaded material to the outside is attached to the bottom of the kneader 10 so as to be opened and closed.
 混練機10は、ホッパ13を介して投入された混練材料を、フローティングウェイト14によって混練室12内に圧入する。
 次に、互いに逆方向に回転する混練用ロータ20,21の噛み合い作用および混練用ロータ20,21と混練室12の内表面との間に発生するせん断作用によって混練材料を混練する。
 そして、混練機10は、混練した材料を、混練室12の底部に設けられたドロップドア15を開放することにより混練室12から外部へ取り出して他の工程に搬送する。
The kneading machine 10 press-fits the kneaded material charged through the hopper 13 into the kneading chamber 12 by the floating weight 14.
Next, the kneaded material is kneaded by the meshing action of the kneading rotors 20, 21 rotating in opposite directions and the shearing action generated between the kneading rotors 20, 21 and the inner surface of the kneading chamber 12.
The kneading machine 10 takes out the kneaded material from the kneading chamber 12 to the outside by opening a drop door 15 provided at the bottom of the kneading chamber 12, and conveys the material to another process.
 次に、混練用ロータ20,21の詳細構造について説明する。
 なお、一対の混練用ロータ20,21は、いずれも同一構造であるために、ここでは、一方の混練用ロータ20についてのみ説明を行い、他方の混練用ロータ21の説明は省略する。
Next, the detailed structure of the kneading rotors 20 and 21 will be described.
Since the pair of kneading rotors 20 and 21 have the same structure, only one kneading rotor 20 will be described here, and the description of the other kneading rotor 21 will be omitted.
 図2に示すように、混練用ロータ20は、管状の部材であるロータ本体26の外周面に混練用の翼部22を設けたロータ軸27を備えている。
 また、混練用ロータ20は、ロータ軸27の内部に挿入し、内部に冷却媒体Cを流通してロータ軸27を冷却する流通管28を螺旋状に配設して形成したヘリカルパイプ29を備えている。
 流通管28は、径方向の一方および他方が円形の断面形状に形成されている。
 ここで、混練用ロータ20は、鋳造等により、翼部22とロータ軸27とを一体的に形成した、いわゆる金属製の1ピース構造で形成されている。翼部22は、内部に空間を有しない中実構造である。
As shown in FIG. 2, the kneading rotor 20 includes a rotor shaft 27 provided with kneading blades 22 on the outer peripheral surface of a rotor body 26 that is a tubular member.
The kneading rotor 20 includes a helical pipe 29 that is inserted into the rotor shaft 27 and has a circulation pipe 28 that spirally arranges the cooling medium C to cool the rotor shaft 27. ing.
One and the other of the radial pipes 28 are formed in a circular cross-sectional shape.
Here, the kneading rotor 20 has a so-called metal one-piece structure in which the blade portion 22 and the rotor shaft 27 are integrally formed by casting or the like. The wing part 22 has a solid structure having no space inside.
 また、混練用ロータ20は、ロータ本体26の軸線24の方向の一端部側に閉塞部30を有するとともに、他端部に開口部31を有するヘリカルパイプ収容部32を備えている。
 さらに、混練用ロータ20は、ロータ本体26のヘリカルパイプ収容部32にヘリカルパイプ29を収容している。
The kneading rotor 20 includes a helical pipe housing portion 32 having a closing portion 30 on one end side in the direction of the axis 24 of the rotor body 26 and an opening 31 on the other end portion.
Further, the kneading rotor 20 accommodates the helical pipe 29 in the helical pipe accommodating portion 32 of the rotor body 26.
 ヘリカルパイプ29は、コイルばね形状の複数の流通管28を有し、軸線24の径方向中央部に、閉塞部30側の流通管28に連通接続した中央導入管33を有するとともに、軸線24の径方向外側に開口部31側の流通管28に連通接続した導出管34を有している。
 そして、ヘリカルパイプ29は、中央導入管33から閉塞部30側の流通管28に導入した冷却媒体Cを、複数の流通管28内を流通させた後に、開口部31側の流通管28から導出管34を通じて外部に導出する。
 また、ヘリカルパイプ29では、複数の流通管28の外径寸法が、ヘリカルパイプ収容部32の内径と略同一寸法であるために、複数の流通管28がヘリカルパイプ収容部32の内周面に接触した状態で挿入されている。
The helical pipe 29 has a plurality of coil spring-shaped flow pipes 28, a central introduction pipe 33 that is connected to the flow pipe 28 on the closed portion 30 side at the radial center of the axis 24, and the axis 24 On the radially outer side, there is a lead-out pipe 34 connected in communication with the flow pipe 28 on the opening 31 side.
The helical pipe 29 circulates the cooling medium C introduced from the central introduction pipe 33 into the flow pipe 28 on the closed portion 30 side through the plurality of flow pipes 28 and then is led out from the flow pipe 28 on the opening 31 side. It leads to the outside through the pipe 34.
Further, in the helical pipe 29, the outer diameter of the plurality of flow pipes 28 is substantially the same as the inner diameter of the helical pipe housing portion 32, so that the plurality of flow pipes 28 are formed on the inner peripheral surface of the helical pipe housing portion 32. Inserted in contact.
 次に、混練用ロータ20の作用について説明する。
 互いに逆方向に回転する混練用ロータ20(21)の噛み合い作用および混練用ロータ20(21)と混練室12の内表面との間に発生するせん断作用によって混練材料を混練する。
 このとき、ヘリカルパイプ29は、混練用ロータ20とともに回転しており、中央導入管33から閉塞部30側の流通管28に導入した冷却媒体Cを、開口部31側の流通管28から導出管34を通じて流通させている。
 そのため、ヘリカルパイプ収容部32に接触している流通管28内を流通する冷却媒体Cにより、翼部22およびロータ軸27に生じた熱を回収して翼部22およびロータ軸27を冷却することが可能である。
Next, the operation of the kneading rotor 20 will be described.
The kneaded material is kneaded by the meshing action of the kneading rotor 20 (21) rotating in opposite directions and the shearing action generated between the kneading rotor 20 (21) and the inner surface of the kneading chamber 12.
At this time, the helical pipe 29 rotates together with the kneading rotor 20, and the cooling medium C introduced from the central introduction pipe 33 to the flow pipe 28 on the closing part 30 side is led out from the flow pipe 28 on the opening part 31 side. 34.
For this reason, the blade 22 and the rotor shaft 27 are cooled by recovering heat generated in the blade portion 22 and the rotor shaft 27 by the cooling medium C flowing through the flow pipe 28 in contact with the helical pipe housing portion 32. Is possible.
 このようにして、冷却媒体Cの流路として、ロータ軸27の内部に複雑な流路形状を有するインナーパイプを設置する代わりに、ヘリカルパイプ29を挿入することで、設置の際の加工が不要となり、コストを抑えることができる。 In this way, instead of installing the inner pipe having a complicated flow path shape inside the rotor shaft 27 as the flow path of the cooling medium C, the helical pipe 29 is inserted, so that processing during installation is unnecessary. Thus, the cost can be suppressed.
 また、ロータ軸27の軸線24の方向に向けて、冷却媒体Cを単純に流通させる場合と比較して、ヘリカルパイプ29へ冷却媒体Cを流通させることによって、流路断面積を小さくすることが可能となり、冷却媒体の流速を増大させることができる。従って、熱伝達率の向上が可能となる。 Further, the flow passage cross-sectional area can be reduced by flowing the cooling medium C through the helical pipe 29 as compared with the case where the cooling medium C is simply flowed in the direction of the axis 24 of the rotor shaft 27. And the flow rate of the cooling medium can be increased. Therefore, the heat transfer coefficient can be improved.
 以上、説明したように、第1実施形態の混練用ロータ20によれば、ロータ軸27のヘリカルパイプ収容部32の内周面に接触する流通管28を有するヘリカルパイプ29を挿入することによって、コストを抑制しながら、熱伝達率を向上させることによって冷却効率を向上できる。 As described above, according to the kneading rotor 20 of the first embodiment, by inserting the helical pipe 29 having the flow pipe 28 in contact with the inner peripheral surface of the helical pipe accommodating portion 32 of the rotor shaft 27, Cooling efficiency can be improved by improving the heat transfer rate while suppressing costs.
(第2実施形態)
 次に、本発明に係る第2実施形態の混練用ロータ及び混練機について説明する。
 なお、以下の各実施形態において、前述した第1実施形態と重複する構成要素や機能的に同様な構成要素については、図中に同一符号あるいは相当符号を付することによって説明を簡略化あるいは省略する。
(Second Embodiment)
Next, a kneading rotor and a kneading machine according to a second embodiment of the present invention will be described.
In the following embodiments, components that are the same as those in the first embodiment described above or components that are functionally similar are denoted by the same or corresponding reference numerals in the drawings, and the description thereof is simplified or omitted. To do.
 図3に示すように、本発明に係る第2実施形態の混練機40における混練用ロータ50は、ヘリカルパイプ29の流通管28と、ロータ本体26に形成されたヘリカルパイプ収容部32の内周面との間に充填材51が充填されている。この充填材51は、例えばシリコン等を原料とする放熱ゲルシートや、炭素繊維やカーボンナノチューブ等を含有する機能材であって、柔軟性を有する高熱伝導率材であることが好ましい。 As shown in FIG. 3, the kneading rotor 50 in the kneading machine 40 according to the second embodiment of the present invention includes a circulation pipe 28 of a helical pipe 29 and an inner periphery of a helical pipe housing portion 32 formed in the rotor body 26. A filler 51 is filled between the surfaces. The filler 51 is a functional material containing, for example, a heat radiating gel sheet made of silicon or the like, carbon fiber, carbon nanotube, or the like, and is preferably a flexible high thermal conductivity material.
 また、充填材51は、ヘリカルパイプ29における流通管28の外径寸法と同等寸法の螺旋の凹溝形状に形成されたパイプ接触面52を内周に有し、ヘリカルパイプ収容部32の内径寸法と同等寸法のロータ軸接触面53を外周に有する。
 このため、充填材51は、そのロータ軸接触面53がヘリカルパイプ収容部32の内周面に接触し、そのパイプ接触面52がヘリカルパイプ29の流通管28に接触する。
 そして、充填材51は、ヘリカルパイプ29と一体的にヘリカルパイプ収容部32内で回転する。
Further, the filler 51 has a pipe contact surface 52 formed in a spiral groove shape having a dimension equivalent to the outer diameter dimension of the flow pipe 28 in the helical pipe 29 on the inner periphery, and the inner diameter dimension of the helical pipe accommodating portion 32. Has a rotor shaft contact surface 53 of the same size as the outer periphery.
For this reason, the filler 51 has a rotor shaft contact surface 53 in contact with the inner peripheral surface of the helical pipe housing portion 32, and a pipe contact surface 52 in contact with the flow pipe 28 of the helical pipe 29.
The filler 51 rotates integrally with the helical pipe 29 in the helical pipe housing portion 32.
 第2実施形態の混練用ロータ50によれば、ヘリカルパイプ29の流通管28と、ロータ軸27のヘリカルパイプ収容部32の内周面との間に充填材51が充填されている。従って、ヘリカルパイプ収容部32の内周面とヘリカルパイプ29の流通管28との間の間隙を埋めることで、接触熱抵抗を低減して冷却能力を向上できる。 According to the kneading rotor 50 of the second embodiment, the filler 51 is filled between the flow pipe 28 of the helical pipe 29 and the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27. Therefore, by filling the gap between the inner peripheral surface of the helical pipe housing portion 32 and the flow pipe 28 of the helical pipe 29, the contact thermal resistance can be reduced and the cooling capacity can be improved.
(第3実施形態)
 次に、本発明に係る第3実施形態の混練用ロータ及び混練機について説明する。
 図4に示すように、本発明に係る第3実施形態の混練機60に装備する混練用ロータ70は、ヘリカルパイプ29をロータ軸27のヘリカルパイプ収容部32の内周面に付勢する付勢部材である弾性部材71を備えている。
 弾性部材71は、内径を小さくするように弾性変形させた板ばねを円形に形成したばね部材であり、ヘリカルパイプ29の流通管28の内側に収容することにより、流通管28をヘリカルパイプ収容部32の内周面に外周側に向かって付勢力を付与する。
 また、弾性部材71は、ヘリカルパイプ29の流通管28をヘリカルパイプ収容部32の内周面を押し付けた状態で、ヘリカルパイプ29に一体的にヘリカルパイプ収容部32内で回転する。
(Third embodiment)
Next, a kneading rotor and a kneading machine according to a third embodiment of the present invention will be described.
As shown in FIG. 4, the kneading rotor 70 provided in the kneading machine 60 according to the third embodiment of the present invention biases the helical pipe 29 to the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27. The elastic member 71 which is a urging member is provided.
The elastic member 71 is a spring member in which a leaf spring that is elastically deformed so as to reduce its inner diameter is formed in a circular shape, and the distribution pipe 28 is accommodated inside the distribution pipe 28 of the helical pipe 29, whereby the distribution pipe 28 is accommodated in the helical pipe accommodating portion. A biasing force is applied to the inner peripheral surface of 32 toward the outer peripheral side.
Further, the elastic member 71 rotates integrally with the helical pipe 29 in the helical pipe housing portion 32 in a state where the flow pipe 28 of the helical pipe 29 is pressed against the inner peripheral surface of the helical pipe housing portion 32.
 第3実施形態の混練用ロータ70によれば、付勢部材である弾性部材71がヘリカルパイプ29の流通管28をロータ軸27のヘリカルパイプ収容部32の内周面に付勢する。
 従って、混練用ロータ70によれば、ヘリカルパイプ29の流通管28と、ヘリカルパイプ収容部32の内周面との間の間隙を小さくすることにより、接触熱抵抗を低減して冷却能力を向上できる。
According to the kneading rotor 70 of the third embodiment, the elastic member 71 that is an urging member urges the flow pipe 28 of the helical pipe 29 to the inner peripheral surface of the helical pipe accommodating portion 32 of the rotor shaft 27.
Therefore, according to the kneading rotor 70, by reducing the gap between the flow pipe 28 of the helical pipe 29 and the inner peripheral surface of the helical pipe accommodating portion 32, the contact thermal resistance is reduced and the cooling capacity is improved. it can.
 また、混練用ロータ70によれば、付勢部材である弾性部材71は、ばね部材であるため、材料の入手および加工が容易であり、コスト面及び工数面で有利である。 Further, according to the kneading rotor 70, since the elastic member 71 as the biasing member is a spring member, it is easy to obtain and process the material, which is advantageous in terms of cost and man-hours.
(第4実施形態)
 次に、本発明に係る第4実施形態の混練用ロータ及び混練機について説明する。
 図5に示すように、本発明に係る第4実施形態の混練機80に装備する混練用ロータ90は、ヘリカルパイプ29の流通管28をロータ軸27のヘリカルパイプ収容部32の内周面に付勢する付勢部材である発泡部材91を備えている。
 発泡部材91は、ロータ軸27のヘリカルパイプ収容部32内に充填された後に発泡することにより体積膨張し、この状態で硬化する発泡剤であり、このように膨張することで流通管28をヘリカルパイプ収容部32の内周面に付勢する。
 なお、発泡部材91は、硬化後に、体積を小さくするように変形させた状態でヘリカルパイプ収容部32内に圧入してもよい。
 発泡部材91は、ヘリカルパイプ29の流通管28をヘリカルパイプ収容部32の内周面に押し付けながら、ヘリカルパイプ29に一体的にヘリカルパイプ収容部32内で回転する。
(Fourth embodiment)
Next, a kneading rotor and a kneading machine according to a fourth embodiment of the present invention will be described.
As shown in FIG. 5, the kneading rotor 90 equipped in the kneading machine 80 of the fourth embodiment according to the present invention has the flow pipe 28 of the helical pipe 29 on the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27. A foaming member 91 which is an urging member for urging is provided.
The foaming member 91 is a foaming agent that expands in volume by being foamed after being filled in the helical pipe housing portion 32 of the rotor shaft 27 and hardens in this state. By expanding in this way, the flow pipe 28 is helically expanded. Biasing is applied to the inner peripheral surface of the pipe housing portion 32.
The foamed member 91 may be press-fitted into the helical pipe housing portion 32 in a state of being deformed so as to reduce the volume after curing.
The foaming member 91 rotates integrally with the helical pipe 29 in the helical pipe housing portion 32 while pressing the flow pipe 28 of the helical pipe 29 against the inner peripheral surface of the helical pipe housing portion 32.
 第4実施形態の混練用ロータ90によれば、発泡部材91がヘリカルパイプ29の流通管28をロータ軸27のヘリカルパイプ収容部32の内周面に付勢する。
 従って、混練用ロータ90によれば、ヘリカルパイプ29の流通管28と、ヘリカルパイプ収容部32の内周面との間の間隙を小さくすることにより、接触熱抵抗を低減して冷却能力を向上できる。
According to the kneading rotor 90 of the fourth embodiment, the foaming member 91 biases the flow pipe 28 of the helical pipe 29 to the inner peripheral surface of the helical pipe housing portion 32 of the rotor shaft 27.
Therefore, according to the kneading rotor 90, the contact heat resistance is reduced and the cooling capacity is improved by reducing the gap between the flow pipe 28 of the helical pipe 29 and the inner peripheral surface of the helical pipe housing portion 32. it can.
(第5実施形態)
 次に、本発明に係る第5実施形態の混練用ロータ及び混練機について説明する。
 図6に示すように、本発明に係る第5実施形態の混練機100に装備される混練用ロータ110は、径方向の一方および他方が矩形の断面形状に形成された流通管112を有するヘリカルパイプ111を備える。
 ヘリカルパイプ111は、軸線24の径方向中央部において、閉塞部30側の流通管112に連通接続した中央導入管113を有する。
 また、ヘリカルパイプ111は、複数の流通管112の外径寸法が、ヘリカルパイプ収容部32の内径と略同一寸法であるために、ヘリカルパイプ収容部32の内周面に面接触した状態で挿入されている。
(Fifth embodiment)
Next, a kneading rotor and a kneading machine according to a fifth embodiment of the present invention will be described.
As shown in FIG. 6, the kneading rotor 110 provided in the kneading machine 100 of the fifth embodiment according to the present invention has a helical pipe having a flow pipe 112 in which one and the other in the radial direction are formed in a rectangular cross-sectional shape. A pipe 111 is provided.
The helical pipe 111 has a central introduction pipe 113 that is connected in communication with the flow pipe 112 on the closed portion 30 side at the radial center of the axis 24.
Further, the helical pipe 111 is inserted in a state of being in surface contact with the inner peripheral surface of the helical pipe housing portion 32 because the outer diameter dimensions of the plurality of flow pipes 112 are substantially the same as the inner diameter of the helical pipe housing portion 32. Has been.
 第5実施形態の混練用ロータ110によれば、ヘリカルパイプ111の流通管112がヘリカルパイプ収容部32の内周面に面接触して、伝熱面積を増大できる。従って、ヘリカルパイプ111の流通管112と、ヘリカルパイプ収容部32の内周面との間の接触熱抵抗を低減して冷却能力を向上できる。 According to the kneading rotor 110 of the fifth embodiment, the flow pipe 112 of the helical pipe 111 is brought into surface contact with the inner peripheral surface of the helical pipe housing portion 32, so that the heat transfer area can be increased. Therefore, the contact heat resistance between the flow pipe 112 of the helical pipe 111 and the inner peripheral surface of the helical pipe housing portion 32 can be reduced, and the cooling capacity can be improved.
 なお、本発明の混練用ロータ及び混練機は、前述した各実施形態に限定するものでなく、適宜な変形や改良等が可能である。
 例えば、複数の上述の実施形態同士を組み合わせてもよく、具体的には、第2実施形態の充填材51に、第3実施形態の弾性部材71や第4実施形態の発泡部材91を併用することが可能である。
The kneading rotor and kneading machine of the present invention are not limited to the above-described embodiments, and appropriate modifications and improvements can be made.
For example, a plurality of the above-described embodiments may be combined. Specifically, the elastic member 71 of the third embodiment and the foaming member 91 of the fourth embodiment are used in combination with the filler 51 of the second embodiment. It is possible.
 上記の混練用ロータ及び混練機によれば、冷却媒体の流通管をヘリカルパイプとすることによって、コストを抑制しながら、冷却効率向上を図ることが可能となる。 According to the above kneading rotor and kneading machine, it is possible to improve the cooling efficiency while suppressing costs by using a helical pipe as the cooling medium flow pipe.
 10,40,60,80,100 混練機
 20,21,50,70,90,110 混練用ロータ
 22,23 翼部
 27 ロータ軸
 28,112 流通管
 29,111 ヘリカルパイプ
 51 充填材
 71 弾性部材(付勢部材)
 91 発泡部材(付勢部材)
10, 40, 60, 80, 100 Kneading machine 20, 21, 50, 70, 90, 110 Kneading rotor 22, 23 Wing part 27 Rotor shaft 28, 112 Flow pipe 29, 111 Helical pipe 51 Filler 71 Elastic member ( (Biasing member)
91 Foam member (biasing member)

Claims (8)

  1.  管状の部材であって外周面に混練用の翼部が設けられたロータ軸と、
     前記ロータ軸の内部に挿入され、内部に冷却媒体が流通して前記ロータ軸を冷却する流通管を螺旋状に配設して形成されたヘリカルパイプとを備える混練用ロータ。
    A rotor shaft which is a tubular member and provided with wings for kneading on the outer peripheral surface;
    A kneading rotor provided with a helical pipe that is inserted into the rotor shaft, and is formed by spirally arranging a flow pipe for cooling the rotor shaft through which a cooling medium flows.
  2.  前記ヘリカルパイプは、前記ロータ軸の内周面に接触して配されている請求項1に記載の混練用ロータ。 The kneading rotor according to claim 1, wherein the helical pipe is arranged in contact with an inner peripheral surface of the rotor shaft.
  3.  前記ヘリカルパイプと前記ロータ軸の内周面との間には、充填材が充填されている請求項1または請求項2に記載の混練用ロータ。 The kneading rotor according to claim 1 or 2, wherein a filler is filled between the helical pipe and the inner peripheral surface of the rotor shaft.
  4.  前記ヘリカルパイプを前記ロータ軸の内周面に付勢する付勢部材を備える請求項1から3のいずれか一項に記載の混練用ロータ。 The kneading rotor according to any one of claims 1 to 3, further comprising a biasing member that biases the helical pipe toward an inner peripheral surface of the rotor shaft.
  5.  前記付勢部材は、外周に向けて弾性反発力を蓄積した弾性部材である請求項4に記載の混練用ロータ。 The kneading rotor according to claim 4, wherein the biasing member is an elastic member that accumulates an elastic repulsion force toward an outer periphery.
  6.  前記付勢部材は、外周に向けて反発力を有する発泡部材である請求項4に記載の混練用ロータ。 The rotor for kneading according to claim 4, wherein the urging member is a foam member having a repulsive force toward the outer periphery.
  7.  前記ヘリカルパイプの前記流通管は、断面矩形状である請求項1から6のいずれか一項に記載の混練用ロータ。 The kneading rotor according to any one of claims 1 to 6, wherein the flow pipe of the helical pipe has a rectangular cross section.
  8.  請求項1から7のいずれか一項に記載の混練用ロータを備える混練機。 A kneading machine comprising the kneading rotor according to any one of claims 1 to 7.
PCT/JP2013/051457 2012-01-31 2013-01-24 Kneading rotor and kneader WO2013115058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-018484 2012-01-31
JP2012018484A JP2013154598A (en) 2012-01-31 2012-01-31 Kneading rotor and kneader

Publications (1)

Publication Number Publication Date
WO2013115058A1 true WO2013115058A1 (en) 2013-08-08

Family

ID=48905100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051457 WO2013115058A1 (en) 2012-01-31 2013-01-24 Kneading rotor and kneader

Country Status (3)

Country Link
JP (1) JP2013154598A (en)
TW (1) TW201343247A (en)
WO (1) WO2013115058A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797121B2 (en) 2012-01-25 2015-10-21 三菱重工マシナリーテクノロジー株式会社 Kneading rotor, kneading machine, and manufacturing method of kneading rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765817U (en) * 1980-10-03 1982-04-20
JPS6186591A (en) * 1984-10-04 1986-05-02 Akutoronikusu Kk Temperature control effected by heat pipe and extruding screw operated by heat pipe
JPH01207121A (en) * 1988-02-12 1989-08-21 Kanegafuchi Chem Ind Co Ltd Agitating mixer
JPH0752230A (en) * 1993-08-18 1995-02-28 Furukawa Electric Co Ltd:The Two-stage extruding method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765817U (en) * 1980-10-03 1982-04-20
JPS6186591A (en) * 1984-10-04 1986-05-02 Akutoronikusu Kk Temperature control effected by heat pipe and extruding screw operated by heat pipe
JPH01207121A (en) * 1988-02-12 1989-08-21 Kanegafuchi Chem Ind Co Ltd Agitating mixer
JPH0752230A (en) * 1993-08-18 1995-02-28 Furukawa Electric Co Ltd:The Two-stage extruding method and device

Also Published As

Publication number Publication date
TW201343247A (en) 2013-11-01
JP2013154598A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
US7489057B2 (en) Liquid cooled rotor assembly
JP4917450B2 (en) Kneading equipment
US8497608B2 (en) Electric machine cooling system and method
CN1503433A (en) All closed external fan cooling type motor
KR20130141511A (en) Coolant channels for electric machine stator
CN102341998A (en) Electric motor comprising cooling channels
WO2013009811A2 (en) Cooling system and method for electric machines
WO2013115058A1 (en) Kneading rotor and kneader
JP5705715B2 (en) Kneading rotor and kneading machine
US10211696B2 (en) Motor
JP2009195082A (en) Cooling structure of stator
WO2013111724A1 (en) Rotor for kneading, kneading machine, and method for manufacturing rotor for kneading
WO2013115371A1 (en) Kneading rotor and kneader
JP6764823B2 (en) Rotating electric machine
EP2538117A1 (en) Electric gear motor particularly for power window actuators and other applications
CN107667227A (en) Pump case with fixed structure
CN201868993U (en) Motor shell provided with cooling water jacket
JP5227814B2 (en) Electric motor
JP2016019393A (en) Rotary electric machine
CN206139051U (en) Prevent medium and reveal agitator
US11515748B2 (en) Cooled housing
JP2015204738A (en) Electric motor including fan motor
CN104421152B (en) Gas compressor
CN108980063A (en) A kind of electronic water pump
KR20080112641A (en) Motor having damper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742874

Country of ref document: EP

Kind code of ref document: A1