WO2013115033A1 - Adsorption sheet and adsorption element used for same - Google Patents

Adsorption sheet and adsorption element used for same Download PDF

Info

Publication number
WO2013115033A1
WO2013115033A1 PCT/JP2013/051308 JP2013051308W WO2013115033A1 WO 2013115033 A1 WO2013115033 A1 WO 2013115033A1 JP 2013051308 W JP2013051308 W JP 2013051308W WO 2013115033 A1 WO2013115033 A1 WO 2013115033A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
adsorption
metal complex
porous metal
Prior art date
Application number
PCT/JP2013/051308
Other languages
French (fr)
Japanese (ja)
Inventor
増森 忠雄
靖子 西口
祐介 西谷
小林 真申
賢広 渡邉
圭輔 岸田
Original Assignee
東洋紡株式会社
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012017192A external-priority patent/JP5935354B2/en
Priority claimed from JP2012017193A external-priority patent/JP2013154302A/en
Application filed by 東洋紡株式会社, 昭和電工株式会社 filed Critical 東洋紡株式会社
Publication of WO2013115033A1 publication Critical patent/WO2013115033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an adsorbent sheet that can be used as an adsorbent, an occlusion material, and a separation material. It is related with the form provision at the time of using.
  • the present invention also relates to an adsorption sheet for efficiently separating / collecting or adsorbing / removing moisture, organic solvents, and malodorous components in the air, and an adsorption element using the same.
  • Porous materials such as activated carbon, silica gel, and zeolite are used for deodorization, air and water purification, and gas separation and purification.
  • a porous material obtained by self-assembly by combining a metal ion capable of various coordination forms and a bridging ligand having two or more coordination sites that is, a porous metal complex (MOF)
  • a porous coordination polymer (PCP) a new porous material called a porous coordination polymer (PCP)
  • these porous metal complexes have characteristics not found in conventional porous materials such as activated carbon, silica gel, zeolite, That is, it has features such as a high specific surface area, a sharp pore distribution, and a high structural design, and has attracted attention.
  • Patent Document 1 discloses a gate-type polymer complex that exhibits gas adsorption as a gate and a gas that is I-type. Porous metal complexes have been reported in which the properties of both type I complexes vary with the switching material. Patent Documents 2 and 3 report a porous metal complex that selectively adsorbs only a specific gas with a change in pore structure and size. Furthermore, in Patent Document 3 and Non-Patent Document 1, a flexible porous metal complex whose structure is changed depending on the type of gas in contact with it and a gas separation method using the same are also reported.
  • Patent Document 4 discloses a specific dicarboxylic acid metal complex as a porous metal complex, and discloses that this is suitable as a gas storage material, particularly a gas storage material mainly composed of methane.
  • Patent Document 5 discloses a porous complex synthesized from copper ions and trimesic acids, and an adsorbent is disclosed as an example of its use.
  • Patent Document 6 discloses that a porous coordination polymer obtained from metal chromium or a chromium salt and trimesic acid is particularly excellent as a water vapor adsorbent, and has a high porous coordination polymer. It is disclosed that in order to use molecules as adsorbents for various substances, it is preferable to remove the solvent by heating under reduced pressure.
  • Patent Documents 4 to 6 do not specifically describe an adsorbing sheet composed of these porous metal complexes and a manufacturing method for an adsorbing element using the adsorbing sheet.
  • Patent Document 7 discloses a corrugated sheet containing powdered activated carbon and a self-consolidating fibrous clay mineral and heat-resistant artificial fibers as main components as a sheet made by mixing powdered activated carbon.
  • a processable adsorbent sheet is disclosed.
  • powdered activated carbon is used as an adsorbent, there is a problem that the adsorption performance is not sufficient.
  • Patent Document 8 discloses an adsorption sheet containing zeolite and moisture minerals, clay mineral fibers having self-consolidating properties, glass fibers, and an organic binder. Yes. Since this adsorbing sheet contains clay mineral fibers and glass fibers, it has excellent heat resistance, and since it contains an organic binder, it exhibits excellent adsorbent supportability and sheet flexibility. .
  • a porous material when using zeolite or molecular sieve charcoal as an adsorbent for pressure swing adsorption, the adsorbent is compressed into a pellet using a tablet molding machine or the like. Is common. However, when a porous metal complex having a flexible structure that changes its structure with gas adsorption like the porous metal complex described above is pelletized by general tableting molding, If it is molded to have sufficient strength, there is a problem that the adsorption performance decreases.
  • adsorbents such as zeolite and organic binders are mixed to form an adsorbent sheet
  • the side chains of the organic binder are adsorbed in the pores of the adsorbent zeolite, resulting in sufficient adsorption performance.
  • the same problem is expected when a porous metal complex is used as an adsorbent.
  • the organic binder adsorbed in the pores of the adsorbent (zeolite) can be removed by calcination at a temperature of 400 ° C. to 800 ° C. for 30 minutes or more.
  • the adsorbent is zeolite. Therefore, the adsorption performance is not sufficient.
  • firing under the above conditions destroys the pore structure of the porous metal complex, resulting in insufficient adtitled performance. It was.
  • heat resistance means that the strength is not significantly reduced in the adsorption sheet and the adsorption element using the same under a temperature condition of 80 ° C. or higher.
  • the present invention has been made by paying attention to such circumstances, and its purpose is to absorb absorption derived from the porous metal complex even when the structure of the porous metal complex changes due to gas adsorption / desorption. It is an object of the present invention to provide an adsorption sheet that can sufficiently exhibit the desorption performance.
  • Another object of the present invention is an adsorbent sheet that is excellent in heat resistance, porous metal complex support, and sheet flexibility and has sufficient adsorbing performance, and adsorbing using the same To provide an element.
  • the adsorbing sheet of the present invention includes a porous metal complex (A) and an organic fiber (B) that form a porous structure with metal ions and organic ligands that can bind to the metal ions. Has characteristics.
  • the inventors of the present invention have made a porous metal by gas adsorption / desorption by forming a sheet-like molded body in which a porous metal complex (A) is supported on an organic fiber (B).
  • a molded article containing a porous metal complex (A) capable of following the structural change of the complex and sufficiently exhibiting the excellent adsorption / desorption performance possessed by the porous metal complex (A) can be obtained, and the present invention has been completed. did.
  • the adsorbing sheet of the present invention preferably contains 50% to 90% by mass of the porous metal complex (A).
  • the porous metal complex (A) has hysteresis in the adsorption / desorption isotherm for at least one gas selected from the group consisting of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide and hydrocarbons having 1 to 4 carbon atoms. It preferably represents a loop.
  • the organic ligand is preferably at least one organic compound selected from the group consisting of the following (1) to (3).
  • Organic compound having two or more carboxyl groups and / or hydroxyl groups in the molecule, having no heterocyclic ring, and capable of bidentate coordination with metal ions (2) In the molecule, N, O or S A monocyclic or polycyclic saturated or unsaturated heterocyclic ring having one heteroatom selected from the following: an organic compound having a carboxyl group or a hydroxyl group and capable of bidentate coordination to a metal ion (3) Intramolecular And a bidentate organic compound having a monocyclic or polycyclic saturated or unsaturated heterocycle having 2 or more heteroatoms selected from the group consisting of N, O and S
  • the organic ligand includes an alkylene dicarboxylic acid compound having 4 to 20 carbon atoms, an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, and a dicarboxylic acid represented by the following general formulas (I) to (III). Acid compounds;
  • R 1 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a formyl group, carbon
  • an acylamino group having 1 to 4 carbon atoms, and two or more R 1 groups may be cyclic, or two or more R 1 groups may be condensed cyclically.
  • R 2 s are the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent
  • X represents a hydrogen atom or a substituent.
  • R 3 are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms) Or an alkoxy group having 1 to 4 carbon atoms
  • R 3 are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms) Or an alkoxy group having 1 to 4 carbon atoms), and organic compounds represented by the following general formulas (IX) to (XII);
  • Y is the same or different and represents an oxygen atom, a sulfur atom, —CH 2 —, —CH (OH) —, —CO—, —NH—, —C 2 N 4 —, —C ⁇ C—, —C 2 H 2 — or —C 6 H 4 —, wherein R 4 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, carbon An alkoxy group having 1 to 4 carbon atoms, a formyl group, an acyloxy group having 1 to 4 carbon atoms, an alkoxycarbonyl group having an alkoxy group having 1 to 4 carbon atoms, a nitro group, a cyano group, a carboxyl group, an amino group, 1 to carbon atoms 4 monoalkylamino groups, dialkylamino groups having 1 to 4 carbon atoms or acylamino groups having 1 to 4 carbon atom
  • the organic fiber (B) is preferably cellulose.
  • the adsorbing sheet of the present invention is preferably produced by a wet papermaking method.
  • the present invention also includes an adsorption sheet characterized by containing a porous metal complex (A) and a heat-resistant fiber (D).
  • the adsorbing sheet preferably contains clay mineral fibers having self-consolidating properties.
  • the said adsorption sheet contains an organic binder.
  • the adsorption element using the adsorption sheet of the present invention is a preferred embodiment of the present invention.
  • the adsorption sheet of the present invention it can be reproduced without impairing the adsorption performance of the porous metal complex (A). Moreover, the adsorption
  • the organic solvent as used in this specification refers to the organic compound which has the property to melt
  • aldehydes such as formaldehyde and acetaldehyde
  • carboxylic acids such as acetic acid and isovaleric acid
  • nitrogen-containing compounds such as ammonia
  • hydrogen sulfide, methyl disulfide, methyl And sulfur-containing compounds such as mercaptans.
  • FIG. 3 is a graph showing an adsorption / desorption isotherm of carbon dioxide at 298 K of the blue powder obtained in Experimental Example 1-1.
  • FIG. 4 is a graph showing an adsorption and desorption isotherm of carbon dioxide at 298 K of the adsorption sheet obtained in Experimental Example 1-1.
  • FIG. 3 is a graph showing ethylene adsorption / desorption isotherms at 273 K of the blue powder obtained in Experimental Example 1-1.
  • FIG. 3 is a graph showing an adsorption / desorption isotherm of ethylene at 273 K of the adsorption sheet obtained in Experimental Example 1-1.
  • FIG. 3 is a graph showing an adsorption / desorption isotherm of carbon dioxide at 298 K of the white powder obtained in Experimental Example 1-2. It is a figure which shows the adsorption-and-desorption isotherm of a carbon dioxide in 298K of the adsorption sheet obtained in Experimental example 1-2.
  • FIG. 3 is a graph showing the adsorption and desorption isotherm of carbon dioxide at 298 K of the blue powder obtained in Experimental Example 1-3. It is a figure which shows the adsorption-desorption isotherm of a carbon dioxide in 298K of the adsorption sheet obtained in Experimental example 1-3.
  • FIG. 3 is a graph showing an adsorption / desorption isotherm of carbon dioxide at 298 K of the white powder obtained in Experimental Example 1-2. It is a figure which shows the adsorption-and-desorption isotherm of a carbon dioxide in 298K of the adsorption sheet obtained in Experimental example 1-2.
  • FIG. 3 is a graph showing
  • FIG. 3 is a graph showing adsorption / desorption isotherms of carbon dioxide at 298 K of the pellets obtained in Experimental Example 1-4.
  • FIG. 4 is a graph showing ethylene adsorption / desorption isotherms at 273 K of the pellets obtained in Experimental Example 1-4.
  • FIG. 7 is a graph showing adsorption / desorption isotherms of carbon dioxide at 298 K of the pellets obtained in Experimental Example 1-5. It is a model figure in case the adsorption-desorption isotherm of a porous metal complex shows a hysteresis loop. It is a figure which shows the X-ray-diffraction pattern of a porous metal complex (A1-1). It is a figure which shows the X-ray-diffraction pattern of a porous metal complex (A1-2).
  • Adsorption sheet The adsorption sheet of the present invention comprises (i) a porous metal complex (A) having a porous structure composed of a metal ion and an organic ligand capable of binding to the metal ion, and an organic fiber (B). (Hereinafter sometimes referred to as “first adsorbing sheet”) or (ii) a porous metal complex (A) and a heat-resistant fiber (D) (hereinafter referred to as “second”). However, the first and second suction sheets may be collectively referred to as “the suction sheet of the present invention”). First, the first suction sheet will be described.
  • the 1st adsorption sheet of this invention is a porous metal complex (A) which comprises a porous structure by the metal ligand and the organic ligand which can be couple
  • the thickness of the first adsorption sheet of the present invention is preferably 0.01 mm to 2 mm. More preferably, it is 0.1 mm to 0.5 mm, and further preferably 0.1 mm to 0.3 mm. If the thickness of the adsorbing sheet is too thin, it is difficult to increase the amount of the porous metal complex (A) supported. On the other hand, if the adsorbing sheet is too thick, the workability of the adsorbing element such as a gas separation device may be reduced.
  • the basis weight of the first adsorbing sheet of the present invention is preferably 50 g / m 2 to 200 g / m 2 .
  • the basis weight is 130 g / m 2 to 170 g / m 2 . If the basis weight is too small, the structure of the adsorption sheet becomes sparse, and the amount of the porous metal complex (A) supported becomes small, so that sufficient adsorption performance may not be exhibited, while the basis weight is large. If it is too large, the adsorbing sheet becomes thick, and there is a possibility that problems such as cracking are likely to occur when the adsorbing element is processed.
  • Porous metal complex (A) The porous metal complex (A) contained in the first adsorbing sheet of the present invention has a porous structure formed by metal ions and organic ligands that can bind to the metal ions. Therefore, the porous metal complex (A) has pores, and gas molecules can be accommodated in the pores.
  • the pores have a flexible structure capable of selectively adsorbing only a specific kind of gas with a change in structure or size by an external stimulus (pressure or the like). With such pores, a specific type of gas can be selectively adsorbed in the pores. Therefore, the porous metal complex (A) according to the present invention can be used as an adsorbent that adsorbs a specific gas in accordance with the purpose of adsorption, occlusion, and separation. Therefore, the size of the pores of the porous metal complex (A) according to the present invention is not particularly limited, but is preferably 2 to 50 mm, more preferably 2 to 30 mm, and still more preferably 2 to 20 mm. It is.
  • the specific gas include at least one gas selected from the group consisting of hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide, and hydrocarbons having 1 to 4 carbon atoms.
  • the hydrocarbon having 1 to 4 carbon atoms include methane, ethane, propane and butane.
  • the adsorption / desorption isotherm with respect to the above-mentioned specific gas preferably exhibits a hysteresis loop.
  • “the adsorption / desorption isotherm shows a hysteresis loop” means that when the adsorption / desorption isotherm for a specific gas is created for the porous metal complex (A), as shown in FIG. It means that the adsorption / desorption isotherm at the time and the desorption isotherm at the time of gas desorption take different trajectories.
  • FIG. 12 is a model example when the adsorption / desorption isotherm of the porous metal complex (A) shows a hysteresis loop.
  • the locus of the adsorption / desorption isotherm during adsorption coincides with the locus of the desorption isotherm during desorption.
  • the adsorption amount A1 at the pressure P1 at which the adsorption amount at the time of gas adsorption starts to increase greatly the adsorption amount A2 at the pressure P1 at the time of desorption, and at the time of gas desorption. Since the adsorption amount A3 at the pressure P2 at which the adsorption amount starts to decrease greatly and the adsorption amount A4 at the pressure P2 at the time of adsorption are different from each other, the adsorption and desorption isotherms at the time of adsorption and desorption become different trajectories.
  • the porous metal complex (A) in which the adsorption / desorption isotherm shows a hysteresis loop as shown in FIG. 12 can arbitrarily perform gas adsorption / desorption by controlling the pressure. It is useful because it can also be used in a gas separator utilizing this characteristic.
  • the metal ion constituting the porous metal complex (A) of the present invention is not particularly limited as long as it can form pores capable of accommodating a specific molecule by organization with an organic ligand.
  • Elements and transition metal elements can be used, but preferably at least one metal selected from the group consisting of magnesium, calcium, aluminum, vanadium, manganese, iron, cobalt, nickel, copper, zinc, cadmium, lead and palladium. Cations. More preferably, it is at least one metal ion selected from magnesium, aluminum, copper and zinc.
  • the organic ligand constituting the porous metal complex (A) according to the present invention has two or more sites capable of coordinate bonding with a metal ion in the molecule, and a specific molecule is formed by organization with the metal ion.
  • the organic compound is not particularly limited as long as it can form a porous structure having a plurality of pores that can be accommodated, but at least one of the organic compounds is selected from the following groups (1) to (3): preferable.
  • Organic compound having two or more carboxyl groups and / or hydroxyl groups in the molecule, having no heterocyclic ring, and capable of bidentate coordination with metal ions (2) N, O or S in the molecule
  • organic compound (1) As an organic compound having two or more carboxyl groups and / or hydroxyl groups in the molecule, having no heterocyclic ring and capable of bidentate coordination with a metal ion (hereinafter referred to as organic compound (1)) Is an alkylene dicarboxylic acid compound having 4 to 20 carbon atoms (the carbon number includes carbon constituting a carboxy group), an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms (the carbon number is a carboxy group). And carbon atoms constituting), dicarboxylic acid compounds represented by the following general formulas (I) to (III), dicarboxylic acid compounds represented by the following general formula (IV), and the following general formula (V) An organic compound is mentioned.
  • each R 1 is the same or different and is a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or an alkoxy having 1 to 4 carbon atoms.
  • the dialkylamino group the two alkyl groups may be the same or different (the same applies hereinafter).
  • the alkyl group may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • the alkoxy group includes a methoxy group. , An ethoxy group, a propoxy group, and a butoxy group.
  • Examples of the acyloxy group include those substituted with a linear or branched alkyl group having 1 to 4 carbon atoms (for example, an acetoxy group, a propionyloxy group).
  • Group, isopropionyloxy group, etc.) and alkoxycarbonyl group include those substituted with a linear or branched alkyl group having 1 to 4 carbon atoms (eg, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group).
  • Group, isopropoxycarbonyl group, butoxycarbonyl group, etc.) and monoalkylamino group include straight-chain Examples include those substituted with a branched alkyl group (for example, methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, etc.).
  • Examples thereof include those having 1 to 4 linear or branched alkyl groups substituted (for example, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, s-butylamino group, etc.), and acylamino group Includes those substituted with a linear or branched alkyl group having 1 to 4 carbon atoms (for example, acetylamino group, propionylamino group, etc.).
  • R 1 is preferably a hydrogen atom.
  • R 2 s are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms which may have a substituent
  • X represents a hydrogen atom or a substituent.
  • R 2 is preferably a hydrogen atom.
  • each R 3 is the same or different and is a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkyl group having 2 to 4 carbon atoms.
  • R 3 is preferably a hydrogen atom.
  • organic compound (2) Two or more metal ions having a monocyclic or polycyclic saturated or unsaturated heterocycle having one heteroatom selected from N, O or S and a carboxyl group or a hydroxyl group in the molecule.
  • organic compound (2) examples include organic compounds represented by the following general formulas (VI) to (VIII)).
  • R 3 s are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, carbon An alkynyl group having 2 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • R 3 is preferably a hydrogen atom.
  • organic compounds (3) bidentate coordination to a metal ion having a monocyclic or polycyclic saturated or unsaturated heterocycle having two or more heteroatoms selected from the group consisting of N, O and S in the molecule
  • organic compounds (3) include organic compounds represented by the following general formulas (IX) to (XII).
  • Y is the same or different and represents an oxygen atom, a sulfur atom, —CH 2 —, —CH (OH) —, —CO—, —NH—, —C 2 N 4 — ( 1,2,4,5-tetrazine-3,6-diyl group), —C ⁇ C—, —C 2 H 2 — or —C 6 H 4 —, preferably —C 2 H 2 — or — C 6 H 4 —.
  • R 4 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a formyl group, or 1 to 4 carbon atoms.
  • a dialkylamino group having 1 to 4 carbon atoms is the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a formyl group, or 1 to 4 carbon atoms.
  • acyloxy group alkoxycarbonyl group, mono- or di-alkylamino group, and acylamino group are the same as those for R 1 of the organic compound (1).
  • R 4 is preferably a hydrogen atom.
  • n is an integer of 0 to 3, preferably 0 or 1.
  • organic ligands may be used alone or in combination of two or more, and may be appropriately selected according to the type of gas to be adsorbed.
  • organic compounds alkylene dicarboxylic acid compounds having 4 to 20 carbon atoms, organic compound (I), organic compound (IV), organic compound (IX), and organic compound (X) are preferable, and fumaric acid, Terephthalic acid and its derivatives, isophthalic acid and its derivatives, pyrazine and its derivatives, 4,4′-bipyridine, 1,2-bis (4-pyridyl) ethane, 1,2-bis (4-pyridyl) ethylene, 1, 2-bis (4-pyridyl) acetylene, more preferably 1,3,5-benzenetricarboxylic acid, 5-nitroisophthalic acid, pyrazine, 2,3-pyrazinecarboxylic acid, 1,2-bis (4- Pyridyl) ethylene.
  • a combination of organic ligands selected from each of the organic compound groups; a combination of two or more organic ligands selected from the organic compound group specified in (3) above is preferred, more preferably an organic compound ( I) and a combination of organic compound (IX), a combination of organic compound (IV) and organic compound (IX), a combination of organic compound (X) and organic compound (IX), represented by organic compound (X)
  • the porous metal complex (A) is a salt of the above metal (for example, nitrate, sulfate, formate, acetate, carbonate, hydrochloride, hydrobromide, tetrafluoroborate, phosphorus hexafluoride).
  • Acid salt and the above-mentioned organic ligand are dissolved in water or an organic solvent and reacted for several hours to several days. The organic solvent only needs to dissolve the metal salt and the organic ligand.
  • reaction conditions are not particularly limited, and may be appropriately adjusted according to the progress of the reaction.
  • the reaction temperature is preferably room temperature (25 ° C.) to 150 ° C.
  • Examples of the form of the porous metal complex (A) according to the present invention include various forms such as granular, powdery, fibrous, film-like, and plate-like, preferably powdery or granular, preferably powdery. Is more preferable.
  • the average particle size of the porous metal complex (A) is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 5 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less. More preferably, those having a thickness of 100 ⁇ m or less can be preferably used.
  • the “average particle diameter” is a 50% diameter (median diameter), and can be measured by, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
  • the BET specific surface area of the porous metal complex by the 77K nitrogen adsorption method is not particularly limited, but is preferably 500 m 2 / g or more, for example. If the BET specific surface area is smaller than 500 m 2 / g, it may be difficult to obtain sufficient adsorption performance.
  • the BET specific surface area is more preferably 1000 m 2 / g or more.
  • the upper limit of the BET specific surface area is not particularly limited, but is preferably 6000 m 2 / g or less. If this range is exceeded, the production of the porous metal complex becomes very difficult.
  • an average particle diameter and a BET specific surface area can be measured by the method as described in an Example.
  • the amount of the porous metal complex (A) contained in the first adsorption sheet of the present invention is preferably 50% by mass to 90% by mass.
  • the content of the porous metal complex (A) is more preferably 60% by mass to 80% by mass.
  • the productivity of the adsorption sheet is lowered or the porous metal complex ( There is a tendency for dropout of A) to increase.
  • Organic fiber (B) The organic fiber (B) in the 1st adsorption sheet of this invention is a component which functions as a support
  • the pulp form means a state separated and processed for use in papermaking.
  • Examples of the organic fiber (B) include cellulose fiber, polyester, vinylon, polypropylene, polyamide, rayon, acrylic fiber, polylactic acid fiber, polybenzimidazole, polybenzoxazole, polyimide, polyamideimide, and polyether ketone.
  • fibers made from wholly aromatic polyamides such as aramid and meta-aramid, polybenzimidazole, polybenzoxazole, polyimide, polyamideimide or polyether ketone are used. It is done.
  • the said organic fiber (B) may be used independently, and 2 or more types may be mixed and used for it.
  • the amount of the organic fiber (B) contained in the first adsorption sheet of the present invention is preferably 5% by mass to 20% by mass.
  • the content of the organic fiber (B) is less than 5% by mass, the supporting ability of the porous metal complex tends to be insufficient.
  • the content exceeds 20% by mass the porous metal complex (A) contained in the adsorption sheet Since the amount is relatively small, it may be difficult to obtain a sufficient adsorption effect. More preferably, it is 10% by mass to 20% by mass, and further preferably 15% by mass to 20% by mass.
  • organic binder (C) As a binder for carrying
  • the organic binder (C) is not particularly limited as long as the porous metal complex (A) can be supported on the adsorption sheet at a high ratio during the production of the adsorption sheet.
  • a polyvinyl alcohol polymer, a polyacrylonitrile polymer, a polyethylene polymer, a polyester polymer, a starch binder, a cellulose polymer, or the like can be used as the organic binder (C).
  • PVA polyvinyl alcohol
  • starch polyacrylonitrile, methyl cellulose, carboxymethyl cellulose, and the like.
  • the amount of the organic binder (C) is preferably 5% by mass to 30% by mass with respect to a total of 100% by mass of the constituent components of the adsorption sheet (more preferably 5% by mass to 10% by mass, and even more preferably 5% by mass). Mass% to 7 mass%).
  • the amount of the organic binder (C) is less than 5% by mass, the fixability of the porous metal complex (A) to the fiber component such as the organic fiber (B) and the bonding property between the fiber components tend to be poor. If it exceeds 30% by mass, the amount of the porous metal complex (A) in the adsorbing sheet is relatively small, so that it may be difficult to obtain a sufficient adsorbing effect.
  • the first adsorption sheet of the present invention may contain additives other than the porous metal complex (A), the organic fiber (B), and the organic binder (C) as necessary.
  • the additive include glass fiber, polymer flocculant, and pigment for the purpose of improving the mechanical strength of the adsorption sheet.
  • the amount of these components to be used is preferably 0% by mass to 10% by mass (more preferably 3% by mass to 7% by mass) with respect to a total of 100% by mass of the constituent components of the adsorption sheet.
  • the first adsorbing sheet of the present invention can selectively adsorb only a specific kind of gas while the porous metal complex (A) changes its structure and size, and adsorbs and desorbs the specific gas by changing the pressure. Since it has a porous metal complex (A) that can be used, it has excellent separation performance for separating a specific gas from a mixed gas. Moreover, since the component which comprises a 1st adsorption sheet is comparatively flexible and can follow the structural change of a porous metal complex (A), a porous metal complex (A) has also in an adsorption sheet. Excellent performance can be demonstrated. Therefore, the 1st adsorption sheet of this invention is preferably used as an adsorption sheet which comprises the adsorption element in a pressure swing adsorption method gas separation apparatus, for example.
  • the 2nd adsorption sheet of the present invention contains a porous metal complex (A) and a heat resistant fiber (D).
  • A porous metal complex
  • D heat resistant fiber
  • the thickness of the second suction sheet of the present invention is preferably 0.1 mm to 0.6 mm, more preferably 0.1 mm to 0.5 mm. If the thickness is less than 0.1 mm, the sheet strength is remarkably reduced, and it may be difficult to process the honeycomb-shaped adsorption element in post-processing. Further, if the thickness is larger than 0.6 mm, the pressure loss of the adsorbing element tends to increase when the adsorbing sheet is processed into a honeycomb shape or the like.
  • the basis weight of the second adsorbing sheet of the present invention is preferably 25 g / m 2 to 200 g / m 2 . More preferably, it is 40 g / m 2 to 150 g / m 2 . If the basis weight is less than 25 g / m 2 , the thickness of the sheet may be reduced, and the sheet strength may be significantly reduced, which may make it difficult to process the honeycomb-shaped adsorption element in post-processing. On the other hand, if the basis weight exceeds 200 g / m 2 , the thickness of the sheet becomes too large, and the pressure loss of the adsorption element when processed into a honeycomb or the like may increase.
  • Porous metal complex (A) The porous metal complex (A) according to the present invention is a porous material composed of a metal ion and a compound having a ligand. As a porous metal complex (A), the same thing as the thing used with a 1st adsorption sheet can be used.
  • transition metal such as typical metal elements, such as aluminum ion, iron ion, copper ion, and zinc ion Elements.
  • preferred compounds having a ligand include, for example, 2-methylimidazole, terephthalic acid and trimesic acid.
  • porous metal complex (A) constituting the second adsorbing sheet for example, a porous metal complex composed of zinc ions and 2-methylimidazole (manufactured by BASF, Basolite (registered trademark, the same applies hereinafter) Z1200), porous metal complex composed of aluminum ion and terephthalic acid (BASF, Basolite A100), porous metal complex composed of copper ion and trimesic acid (BASF, Basolite C300), iron ion And a porous metal complex composed of trimesic acid (BASF Corp., Basolite F300) is preferred.
  • a highly hydrophobic porous metal complex is a porous metal complex that has been subjected to a vacuum heat treatment at a temperature of 200 ° C. for 48 hours or more under vacuum conditions in a nitrogen atmosphere at 30 ° C. and a relative humidity of 60% RH. It refers to a porous metal complex having a mass increase rate of less than 10% by mass obtained by dividing the mass increase when left standing for 3 days or more by the mass of the porous metal complex immediately after the vacuum heat treatment.
  • Specific examples of the highly hydrophobic porous metal complex (A) include a porous metal complex composed of zinc ions and 2-methylimidazole (Basolite Z1200, manufactured by BASF).
  • the content of the porous metal complex (A) is preferably 50% by mass to 85% by mass, more preferably 60% by mass to 80% by mass. If the content is less than 50% by mass, it may be difficult to obtain sufficient adsorption performance. On the other hand, when the content exceeds 85% by mass, it becomes difficult to sufficiently support the porous metal complex on the adsorption sheet, and the amount of dropping off increases. In addition, the sheet strength may be significantly reduced.
  • the heat resistant fiber (D) contained in the second adsorbing sheet of the present invention is a component that ensures the heat resistance of the adsorbing sheet.
  • the heat-resistant fiber (D) is a calorimeter measuring device (Q50, manufactured by TA Instruments Japan Co., Ltd.) using 30 mg of a sample dried in advance at 150 ° C. under vacuum for 12 hours. It means a fiber having a weight loss rate of 5% or less when the temperature is raised from room temperature to 300 ° C. at an air flow rate of 60 mL / min and a temperature increase rate of 20 ° C./min.
  • Such a heat-resistant fiber (D) is less likely to cause a significant decrease in strength under a temperature condition of 80 ° C. or higher, and is preferable as a component that imparts heat resistance to the adsorption sheet.
  • the significant decrease in strength means that when the second adsorbing sheet of the present invention is bent at 90 degrees in a heated atmosphere of 80 ° C. or higher, the adsorbing sheet is not easily cracked or cracked.
  • the heat resistant fiber (D) include inorganic fibers such as glass fiber, ceramic fiber, rock wool fiber, etc .; among the organic fibers (B) exemplified in the first adsorption sheet, those having heat resistance, specifically Include organic fibers such as aramid fiber, meta-aramid fiber, polybenzimidazole fiber, polybenzoxazole fiber, polyimide fiber, polyamide fiber, polyamideimide fiber, polyetherketone fiber; and fibers obtained by fibrillating them; Of these, it is preferable to use one or more of them.
  • the fiber diameter of the heat resistant fiber (D) is preferably 1 ⁇ m to 15 ⁇ m, and more preferably 1 ⁇ m to 10 ⁇ m.
  • the fiber length is preferably 1 mm to 10 mm, more preferably 2 mm to 5 mm.
  • the heat resistant fiber (D) contains glass fibers having a fiber diameter of 1 ⁇ m to 10 ⁇ m and a fiber length of 2 mm to 5 mm. Is preferred.
  • the content of the heat resistant fiber (D) in the second adsorption sheet is preferably 5% by mass to 30% by mass, more preferably 10% by mass to 25% by mass, and further preferably 10% by mass to 20% by mass. It is. If the amount of the heat-resistant fiber (D) is too large, the amount of the porous metal complex (A) contained in the adsorption sheet is relatively small, so that it may be difficult to obtain a sufficient adsorption effect. If the amount of the conductive fiber (D) is too small, it may be difficult to obtain sufficient heat resistance.
  • the 2nd adsorption sheet in this invention contains the clay mineral fiber (E) which has self-consolidating property.
  • the self-consolidating property represents a property of consolidating only by itself. Therefore, by using the clay mineral fiber (E) having self-consolidating properties, the heat resistance of the adsorption sheet and the supportability of the porous metal complex (A) can be improved.
  • the adsorption sheet strength can be further improved by the self-consolidating property of (E).
  • a magnesium silicate fiber or a calcium silicate fiber is preferable.
  • the fiber diameter and fiber length of the clay mineral fiber (E) are not particularly limited, but the fiber diameter is preferably 0.1 ⁇ m to 0.5 ⁇ m, more preferably 0.1 ⁇ m to 0.2 ⁇ m.
  • the length is preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m.
  • the fiber diameter is less than 0.1 ⁇ m and the fiber length is less than 1 ⁇ m, the fiber is too fine, so that not only the support property of the porous metal complex (A) tends to be lowered, but also the strength of the adsorption sheet is lowered. Furthermore, it may be difficult to handle the clay mineral fiber (E) during sheet production.
  • the fiber diameter is larger than 0.5 ⁇ m and the fiber length is longer than 50 ⁇ m, heating at a high temperature for a long time is required to develop sufficient self-consolidation properties, and the porous metal complex (A) The pore structure may be broken.
  • the content of the clay mineral fiber (E) in the second adsorption sheet is preferably 5% by mass to 35% by mass, more preferably 5% by mass to 25% by mass.
  • the content of the clay mineral fiber (E) is less than 5% by mass, the supportability of the porous metal complex (A) is insufficient.
  • the content exceeds 35% by mass the porous metal complex (A) becomes the clay mineral fiber. It may be covered with (E) and it may be difficult to obtain sufficient adsorption performance.
  • Organic binder (C) It is preferable that the 2nd adsorption sheet in this invention contains an organic binder (C). This is because the flexibility and strength of the adsorption sheet can be improved.
  • the organic binder (C) is not particularly limited as long as it can join the porous metal complex (A) (adsorbent) and the heat-resistant fiber (D).
  • the same organic binder as that of the first adsorption sheet such as a polyvinyl alcohol polymer, a polyacrylonitrile polymer, a polyethylene polymer, and a polyester polymer, can be used. From the viewpoint of handleability, polyvinyl alcohol polymers are preferred.
  • an organic binder (C) is not specifically limited, Since a fibrous thing is used, since an adsorption sheet can be produced simply, it is preferable.
  • the content (C) of the organic binder in the second adsorption sheet is preferably 5% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass. If it is less than 5% by mass, the supportability of the porous metal complex (A) is insufficient, and if it exceeds 15% by mass, the porous metal complex (A) is coated with the organic binder (C), and sufficient adsorption performance is obtained. There is a tendency to become difficult to get.
  • the second adsorbing sheet of the present invention may contain a porous material other than the porous metal complex (A), and the porous material contained in the adsorbing sheet of the present invention is not particularly limited.
  • organic polymer porous materials such as activated carbon, zeolite, silica gel, activated alumina, clay mineral (excluding the clay mineral fiber (E) described above), aluminophosphate, silicoaluminophosphoric acid, styrene-divinylbenzene copolymer, etc. Examples include masses.
  • Preferred are activated carbon, zeolite, silica gel and activated alumina, which can be obtained at low cost.
  • the content of other components in the second adsorption sheet is preferably 20% by mass or less.
  • the second adsorbing sheet of the present invention is an indoor, vehicle, wallpaper, furniture, interior material, resin molded body, electrical device, etc., for the purpose of reducing malodorous components, etc., or in the air discharged from factories, etc. It can be widely used for the purpose of solvent separation / recovery or adsorption / removal.
  • Manufacturing method of adsorption sheet The method in particular of manufacturing the adsorption sheet of this invention is not restrict
  • sheet constituent materials such as porous metal complex (A), organic fiber (B) and / or heat resistant fiber (D), and organic binder (C) and clay mineral fiber (E) used as necessary.
  • wet sheeting method There is a wet sheeting method in which a sheet-like material is obtained by dispersing in water, an organic solvent or a mixture thereof, molding, dehydrating and drying.
  • Other components such as mineral fiber (E) are dispersed in water at a predetermined blending ratio (preparation of dispersion slurry).
  • concentration of each component in the dispersed slurry may be appropriately adjusted so that the content in the adsorption sheet is within the above-described range.
  • the obtained dispersion slurry is paper-made with a paper machine to obtain a sheet-like material, which is then dehydrated and dried to obtain an adsorption sheet.
  • the method of dehydration and drying is not particularly limited, for example, a dehydration method such as a method of dehydrating under pressure by passing a sheet-like material between a pair of rolls; hot air is blown on the sheet-like material after sun-drying and dehydration Any conventionally known method such as a method; etc. can be used.
  • the porous metal complex (A) is mixed with the sheet constituent material in a state having solvent molecules in the pores and subjected to a sheet forming step.
  • the organic binder (C) constituting the adsorption sheet may be adsorbed in the pores. In this case, it is difficult to remove the organic binder (C) trapped in the pores of the porous metal complex (A) even if the solvent removal treatment described later is performed after forming the sheet, and the adsorption performance of the adsorption sheet is The result is inferior.
  • the adsorption performance of the adsorption sheet can be secured.
  • solvent molecules are adsorbed in the pores of the porous metal complex (A), but the porous metal complex (A) is solvent molecules in the pores.
  • the organic solvent can be adsorbed in the pores by the method described in the examples described later.
  • numerator here refers to water and a general organic solvent molecule.
  • the porous metal complex (A) is formed into a sheet with solvent molecules in the pores, the porous metal complex (A) is solvent molecules in the pores. In this state, it is difficult to obtain sufficient adsorption performance. Therefore, in order to develop the adsorption performance, it is preferable to perform a solvent removal treatment after the sheet forming step. In addition, if the implementation time of a solvent removal process is after the sheet forming process, it will not be specifically limited.
  • the conditions for the solvent removal treatment are not particularly limited, but the temperature is preferably 80 ° C. to 300 ° C. If it is less than 80 degreeC, there exists a possibility that the removal of a solvent may become incomplete and sufficient adsorption
  • the degree of reduced pressure is not particularly limited, and may be appropriately adjusted according to the physical properties and blending amount of the porous metal complex (A).
  • 10 3 Pa to 10 ⁇ 5 Pa is preferable, and 10 ⁇ 1 Pa. More preferably, it is ⁇ 10 ⁇ 5 Pa.
  • the solvent removal treatment time is not particularly limited, it is preferably, for example, 1 hour to 100 hours, more preferably 3 hours to 48 hours, and further preferably 3 hours to 24 hours.
  • the most preferable solvent removal treatment conditions are 100 to 200 ° C. and 3 to 24 hours under vacuum.
  • the adsorption sheet of the present invention may be used in a planar shape, or may be used in a desired shape by appropriately performing pleating processing, honeycomb processing, corrugating processing, or the like.
  • Adsorption element The adsorption element of the present invention is characterized by being provided with the adsorption sheet of the present invention.
  • the type of the adsorbing element according to the present invention is not particularly limited, and any conventionally known type can be adopted and may be appropriately selected according to the application and purpose.
  • the shape of the suction sheet provided in the suction element of the present invention is not particularly limited, but for example, a suction sheet processed into a flat shape, a pleat shape, a honeycomb shape, or the like can be used.
  • the adsorption sheet processed into a pleat is used as a cross-flow type adsorption element
  • the adsorption sheet processed into a honeycomb is used as a parallel flow type adsorption element
  • contact with the gas to be treated respectively By increasing the area, it is possible to improve the removal efficiency and reduce the pressure loss of the adsorption element at the same time.
  • the parallel flow type adsorption element is superior to the cross flow type adsorption element in terms of prevention of clogging due to mist and dust, low pressure loss, and weight reduction. Therefore, the adsorption sheet provided in the adsorption element is a honeycomb. It is preferable that it is a shape.
  • the adsorbing element using the adsorbing sheet of the present invention is used in indoors, in vehicles, for wallpaper, furniture, interior materials, resin moldings, electrical equipment, etc., for reducing malodorous components, etc. It can be widely used for the purpose of separation / recovery or adsorption / removal of organic solvents.
  • Porous metal complex (A1-1) Synthesis of [Cu 2 (pzdc) 2 (prz)] Copper nitrate trihydrate (1.23 g, 5.0 mmol, 1.0 eq.) was added to an eggplant flask (500 ml), Pyrazine (4.05 g, 50.0 mmol, 10.0 eq.) And pure water (100 ml) were added and mixed. To the obtained blue transparent solution, a mixed solution of an aqueous solution (80 ml) of 2,3-pyrazinedicarboxylic acid (0.84 g, 5.0 mmol, 1.0 eq.) And an aqueous 1N NaOH solution (20 ml) was added dropwise. .
  • the powder X-ray diffraction pattern of the obtained porous metal complex (A1-1) was measured.
  • the measurement results are shown in FIG.
  • the composition of the adsorbent sheet is 70% by mass of the porous metal complex (A1-1), 20% by mass of pulp-like cellulose as the organic fiber (B), 5% by mass of PVA as the organic binder (C), inorganic fiber
  • the adsorbent sheet (1) which is a sheet-like molded body having a thickness of about 0.26 mm and a basis weight of about 150 g / m 2 , was manufactured using a wet papermaking apparatus so that the glass fiber was 5% by mass.
  • Experimental Example 1 the reduced-pressure drying process at the time of creating the adsorption / desorption isotherm corresponds to the desolvation step.
  • the gate-type adsorption behavior was also reproduced. From this result, it is clear that the adsorption sheet of the present invention is excellent as an adsorbent without impairing the adsorption performance of the porous metal complex powder.
  • the composition of the adsorbent sheet is 70% by mass of the porous metal complex (A1-2), 20% by mass of the pulp-like cellulose as the organic fiber (B), 5% by mass of PVA as the organic binder (C), and glass as the inorganic fiber.
  • An adsorption sheet (2) having a thickness of about 0.25 mm and a basis weight of about 150 g / m 2 was produced using a wet papermaking machine so that the fiber content was 5% by mass.
  • the unit mass of the porous metal complex (A1-2) in the case of the porous metal complex (A1-2) (FIG. 5) and the case of the adsorption sheet (2) (FIG. 6) is shown.
  • almost no difference in the CO 2 adsorption amount per adsorption sheet (2) is found to have a CO 2 adsorption amount corresponding to the mass of the porous metal complex (A1-2) carrying. From this result, it is clear that the adsorbing sheet of the present invention is excellent as an adsorbing material without impairing the adsorption performance of the porous metal complex.
  • Example 1-3 Production of Adsorption Sheet Using blue powder of “Basolite (registered trademark) C300” (obtained from Sigma Aldrich Japan Co., Ltd., average particle size 35 ⁇ m) as the porous metal complex (A1-3), the composition in the adsorption sheet is 60% by mass of the porous metal complex (A1-3), 20% by mass of the pulp-like cellulose as the organic fiber (B), 5% by mass of PVA as the organic binder (C), and 5% by mass of glass fiber as the inorganic fiber. Then, using a wet papermaking apparatus, an adsorption sheet (3) having a thickness of about 0.28 mm and a basis weight of about 156 g / m 2 was produced.
  • Example 1-4 The porous metal complex (A1-1) obtained in Experimental Example 1-1 was used as the porous metal complex, and the composition in the pellet was 94% by mass of the porous metal complex (A1-1), the organic binder (C) Pellets (1) having a thickness of about 4 mm and a diameter of 3 mm were molded by a tablet molding apparatus so that 3% by mass of PVA and 3% by mass of graphite as a lubricant were obtained.
  • the porous metal complex (A1-1) and other components are firmly solidified, and the porous metal complex (A1-1) has its structure. It is considered that the original adsorption performance could not be exhibited because it was difficult to change, and the rise of the adsorption amount became unclear. From this result, it is clear that the adsorption performance of the porous metal complex (A1-1) is impaired by molding into pellets.
  • Example 1-5 The porous metal complex (A1-3) used in Experimental Example 1-3 was used as the porous metal complex, the composition in the pellet was 94% by mass of the porous metal complex (A1-3), and 3% of PVA was used as the organic binder component. %, Pellets (2) having a thickness of about 4 mm and a diameter of 3 mm were molded by a tablet molding apparatus so that the lubricant was 3% by mass of graphite.
  • An inorganic adhesive (water glass) is used as a binder, the adsorbing sheet is corrugated by a regular method, and the obtained corrugated board is laminated by using an inorganic adhesive (water glass) to form a honeycomb, 300 A cell / inch 2 honeycomb sample was prepared.
  • a honeycomb sample (60 mm ⁇ , thickness 20 mm) was set in a 60 mm ⁇ glass column, and dry air containing 5 ppm of toluene at a temperature of 25 ° C. was passed through the column at a speed of 2 m / s.
  • the toluene concentration before and after passing through the honeycomb sample was measured every minute, and the toluene removal rate was calculated from the change in concentration before and after the passage. The measurement is continued until the removal rate reaches 20%, and the total removal mass [g] of toluene is calculated from the elapsed time and the removal rate, and the toluene removal amount [g / L] is calculated by dividing it by the volume of the honeycomb sample. Calculated.
  • Example 2-1 As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-1) in which solvent molecules were adsorbed in the pores.
  • Basolite Z1200 manufactured by BASF
  • Example 2-2 As the porous metal complex (A), Basolite A100 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-2) in which solvent molecules were adsorbed in the pores.
  • Basolite A100 manufactured by BASF
  • the adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
  • the adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
  • Example 2-5 As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-5) in which solvent molecules were adsorbed in the pores.
  • the porous metal complex sample (A2-5) is 60% by mass, heat-resistant fiber (D), glass fiber (fiber diameter 6 ⁇ m, fiber length 3 mm) is 15% by mass, and clay mineral fiber (E) is magnesium silicate.
  • Fiber fiber diameter 0.2 ⁇ m, fiber length 30 ⁇ m 15 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 ⁇ m, fiber length 3 mm) 10 mass%
  • the adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Further, the solvent removal treatment was performed at 150 ° C. and 1 atm for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
  • Example 2-6 As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-6) in which solvent molecules were adsorbed in the pores.
  • Basolite Z1200 manufactured by BASF
  • Example 2--7 As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was sieved to prepare an average particle size of 10 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-7) in which solvent molecules were adsorbed in the pores.
  • Basolite Z1200 manufactured by BASF
  • the adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 150 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
  • Example 2-8 As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was lightly pressed and hardened at a pressure of 10 kgf / cm 2 and sieved to prepare an average particle size of 150 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-8) in which solvent molecules were adsorbed in the pores.
  • the porous metal complex sample (A2-8) is 60% by mass, heat-resistant fiber (D), glass fiber (fiber diameter 6 ⁇ m, fiber length 3 mm) is 15% by mass, and clay mineral fiber (E) is magnesium silicate.
  • Fiber fiber diameter 0.1 ⁇ m, fiber length 1 ⁇ m 15 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 ⁇ m, fiber length 3 mm) 10 mass%
  • the adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 150 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
  • Example 2-9 As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-9) in which solvent molecules were adsorbed in the pores.
  • Basolite Z1200 manufactured by BASF
  • porous metal complex sample A2-9), heat-resistant fiber (D), 10% by mass of glass fiber (fiber diameter 6 ⁇ m, fiber length 3 mm), and clay mineral fiber (E), magnesium silicate 5% by mass of fibers (fiber diameter 0.1 ⁇ m, fiber length 1 ⁇ m) and 5% by mass of polyvinyl alcohol (PVA) fibers (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 ⁇ m, fiber length 3 mm) as organic binder (C)
  • PVA polyvinyl alcohol
  • the adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample, and the obtained sample was measured for heat resistance, supportability, flexibility, and adsorption performance.
  • Example 2-11 As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-11) in which solvent molecules were adsorbed in the pores.
  • Basolite Z1200 manufactured by BASF
  • HSZ-390HUA (Y-type zeolite manufactured by Tosoh Corporation) was pulverized in a mortar and sieved to prepare an average particle size of 1 ⁇ m.
  • the obtained zeolite sample was 70% by mass, heat-resistant fiber (D), glass fiber (fiber diameter 6 ⁇ m, fiber length 3 mm) 15% by mass, clay mineral fiber (E), magnesium silicate fiber (fiber diameter 0.
  • adsorption sheet was prepared using a wet papermaking machine at a mass of basis weight 70 g / m 2 . Furthermore, it processed in 200 degreeC and vacuum conditions for 24 hours, and the adsorption sheet sample was obtained. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
  • Basolite Z1200 manufactured by BASF was pulverized in a mortar and sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-12) in which solvent molecules were adsorbed in the pores.
  • Example 2-14 Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was subjected to solvent removal treatment at 200 ° C. under vacuum for 24 hours to obtain a porous metal complex sample (A2-13).
  • the porous metal complex sample (A2-13) was 70% by mass
  • the polybutylene terephthalate fiber (fiber diameter 6 ⁇ m, fiber length 3 mm) was 15% by mass
  • the clay mineral fiber (E) was magnesium silicate fiber (fiber diameter 0.
  • Basolite Z1200 manufactured by BASF was pulverized in a mortar and sieved to prepare an average particle size of 1 ⁇ m. Further, the sample was subjected to solvent removal treatment at 200 ° C. under vacuum for 24 hours to obtain a porous metal complex sample (A2-14).
  • Table 1 or 2 shows the results of measuring the heat resistance, supportability, flexibility, and adsorption performance of the samples of Experimental Examples 2-1 to 2-15.
  • the adsorbent is not the porous metal complex (A) (Experimental Example 2-12)
  • the heat resistant fiber It can be seen that heat resistance, supportability, flexibility, and adsorption performance are superior to those in the case where (D) is not included (Experimental Examples 2-13, 2-14, and 2-15).
  • the clay mineral fiber (E) is not included (Experimental Example 2-10)
  • the organic binder (C) is not included (Experimental Example 2-11)
  • the heat resistance A tendency to be slightly inferior in supportability or flexibility was observed.
  • the first adsorption sheet of the present invention can be reproduced without impairing the adsorption behavior of the porous metal complex (A) in which a hysteresis loop is seen in the adsorption / desorption isotherm depending on the type of gas. Moreover, since the content ratio of a porous metal complex (A) can also be raised by setting it as the shape of an adsorption sheet, the 1st adsorption sheet of this invention has the outstanding adsorption / desorption characteristic.
  • the first adsorbing sheet of the present invention can be used in applications such as adsorbents, occlusion materials, and separating materials, and the adsorbent can be desorbed by placing the first adsorbing sheet of the present invention under reduced pressure. Since the regeneration of the adsorption performance is easy, it is extremely meaningful in the industry.
  • the second adsorbing sheet or adsorbing element of the present invention it becomes possible to efficiently separate / recover or adsorb / remove moisture, organic solvents, and malodorous components in the air. It can be expected to greatly contribute to the world.

Abstract

The purpose of the present invention is to provide an adsorption sheet, and an adsorption element using the same, that can provide sufficient adsorption and desorption performance originating in a porous metal complex even in a case where the structure of the porous metal complex changes as a result of adsorption and desorption of gases, and that is heat resistant, has excellent porous metal complex supporting properties and sheet flexibility in addition to sufficient adsorption performance. This adsorption sheet includes a porous metal complex (A) that comprises a porous structure resulting from the bonding of metal ions and organic ligands that can bond with the metal ions, and organic fibers (B), or includes the porous metal complex (A) and heat resistant fibers (D).

Description

吸着シート及びそれを用いた吸着エレメントAdsorption sheet and adsorption element using the same
 本発明は吸着材、吸蔵材及び分離材として使用可能な吸着シートに関し、より詳しくは、吸着作用を有する多孔性金属錯体を含有する場合において、多孔性金属錯体を吸着材、吸蔵材、分離材に用いる際の形態付与に関する。また、本発明は、空気中の水分、有機溶剤、および、悪臭成分を効率的に分離・回収、もしくは、吸着・除去する吸着シート、および、それを用いた吸着エレメントに関する。 The present invention relates to an adsorbent sheet that can be used as an adsorbent, an occlusion material, and a separation material. It is related with the form provision at the time of using. The present invention also relates to an adsorption sheet for efficiently separating / collecting or adsorbing / removing moisture, organic solvents, and malodorous components in the air, and an adsorption element using the same.
 脱臭、空気や水の浄化、ガスの分離・精製には、活性炭やシリカゲル、ゼオライト等といった多孔質材料が使用されている。また、近年では、種々の配位形態を取り得る金属イオンと、2座以上の配位座を有する架橋配位子とを組み合わせて自己集合させた多孔質材料、すなわち、多孔性金属錯体(MOF)、もしくは、多孔性配位高分子(PCP)と呼ばれる新しい多孔質材料が見出されており、これら多孔性金属錯体は、活性炭やシリカゲル、ゼオライト等の従来の多孔質材料にはない特徴、すなわち、高比表面積、シャープな細孔分布、および、高い構造設計性という特徴を有しており、注目されている。 Porous materials such as activated carbon, silica gel, and zeolite are used for deodorization, air and water purification, and gas separation and purification. In recent years, a porous material obtained by self-assembly by combining a metal ion capable of various coordination forms and a bridging ligand having two or more coordination sites, that is, a porous metal complex (MOF) ) Or a new porous material called a porous coordination polymer (PCP) has been found, and these porous metal complexes have characteristics not found in conventional porous materials such as activated carbon, silica gel, zeolite, That is, it has features such as a high specific surface area, a sharp pore distribution, and a high structural design, and has attracted attention.
 例えば、混合ガスから特定のガスを分離するのに有用と思われる多孔性金属錯体として、特許文献1には、ゲート的にガス吸着を示すゲート型高分子錯体と、I型的にガスを吸着するI型錯体の両方の特性がスイッチング材によって変化する多孔性金属錯体が報告されている。また、特許文献2、特許文献3では、細孔の構造やサイズの変化を伴いながら特定のガスのみ選択的に吸着する多孔性金属錯体が報告されている。さらに、特許文献3及び非特許文献1では、接触するガスの種類により構造を変化させるフレキシブルな多孔性金属錯体ならびにそれを用いたガス分離方法も報告されている。 For example, as a porous metal complex that seems to be useful for separating a specific gas from a mixed gas, Patent Document 1 discloses a gate-type polymer complex that exhibits gas adsorption as a gate and a gas that is I-type. Porous metal complexes have been reported in which the properties of both type I complexes vary with the switching material. Patent Documents 2 and 3 report a porous metal complex that selectively adsorbs only a specific gas with a change in pore structure and size. Furthermore, in Patent Document 3 and Non-Patent Document 1, a flexible porous metal complex whose structure is changed depending on the type of gas in contact with it and a gas separation method using the same are also reported.
 しかしながら、これらの文献には、実際の分離プロセスに用いる場合の多孔性金属錯体の形態に関する具体的な記述はされていない。 However, these documents do not specifically describe the form of the porous metal complex when used in an actual separation process.
 また、特許文献4には、多孔性金属錯体として特定のジカルボン酸金属錯体が開示されており、これがガス吸蔵材、特にメタンを主成分とするガスの吸蔵材として好適であることが開示されている。特許文献5には、銅イオンとトリメシン酸類から合成された多孔質錯体が開示されており、吸着材がその用途の一例として開示されている。さらに、特許文献6には、金属クロムまたはクロム塩と、トリメシン酸類から得られる多孔性配位高分子が、特に水蒸気吸着材として優れていることが開示されており、また、多孔性配位高分子を種々の物質の吸着材として使用するためには、減圧下で加熱することによって脱溶媒することが好ましいことが開示されている。
 しかしながら、特許文献4~6には、これら多孔性金属錯体からなる吸着シート、および、それを用いた吸着エレメントについての製造方法等の具体的な記載はない。
Further, Patent Document 4 discloses a specific dicarboxylic acid metal complex as a porous metal complex, and discloses that this is suitable as a gas storage material, particularly a gas storage material mainly composed of methane. Yes. Patent Document 5 discloses a porous complex synthesized from copper ions and trimesic acids, and an adsorbent is disclosed as an example of its use. Furthermore, Patent Document 6 discloses that a porous coordination polymer obtained from metal chromium or a chromium salt and trimesic acid is particularly excellent as a water vapor adsorbent, and has a high porous coordination polymer. It is disclosed that in order to use molecules as adsorbents for various substances, it is preferable to remove the solvent by heating under reduced pressure.
However, Patent Documents 4 to 6 do not specifically describe an adsorbing sheet composed of these porous metal complexes and a manufacturing method for an adsorbing element using the adsorbing sheet.
 一方、空気中の有機溶媒の分離・回収を目的とするフィルターに用いられる吸着シートとして、粉末活性炭やゼオライトなどの多孔質材料と繊維成分を混合抄造してなるシートが従来知られている。例えば、特許文献7には、粉末活性炭を混合抄造したシートとして、粉末活性炭と自己固結性を有する繊維状の粘土鉱物、および、耐熱性人造繊維を主成分として含有することを特徴とするコルゲート加工可能な吸着性シートが開示されている。しかしながら、粉末活性炭を吸着材として用いるものであるため、吸着性能が十分でないという問題があった。 On the other hand, as an adsorbing sheet used for a filter for the purpose of separation and recovery of an organic solvent in the air, a sheet made by mixing and making a porous material such as powdered activated carbon or zeolite and a fiber component is conventionally known. For example, Patent Document 7 discloses a corrugated sheet containing powdered activated carbon and a self-consolidating fibrous clay mineral and heat-resistant artificial fibers as main components as a sheet made by mixing powdered activated carbon. A processable adsorbent sheet is disclosed. However, since powdered activated carbon is used as an adsorbent, there is a problem that the adsorption performance is not sufficient.
 また、ゼオライトを混合抄造したシートとして、例えば、特許文献8には、ゼオライトと水分吸着性、自己固結性を有する粘土鉱物繊維、及びガラス繊維、並びに有機バインダーを含有する吸着シートが開示されている。この吸着シートは、粘土鉱物繊維、及び、ガラス繊維を含有するため、耐熱性に優れており、また、有機バインダーを含有するため、優れた吸着材の担持性、および、シートの柔軟性を示す。 Further, as a sheet made by mixing and making zeolite, for example, Patent Document 8 discloses an adsorption sheet containing zeolite and moisture minerals, clay mineral fibers having self-consolidating properties, glass fibers, and an organic binder. Yes. Since this adsorbing sheet contains clay mineral fibers and glass fibers, it has excellent heat resistance, and since it contains an organic binder, it exhibits excellent adsorbent supportability and sheet flexibility. .
特開2010-58034号公報JP 2010-58034 A 特開2009-208028号公報JP 2009-208028 A 特開2010-158617号公報JP 2010-158617 A 特開2001-348361号公報JP 2001-348361 A 特開2000-327628号公報JP 2000-327628 A 特開2007-51112号公報JP 2007-51112 A 特開平2-191547号公報Japanese Patent Laid-Open No. 2-191547 特開2007-14880号公報Japanese Patent Laid-Open No. 2007-14880
 多孔質材料を実際のプロセスに用いる際、例えば、ゼオライトや分子篩炭等を圧力スイング吸着用の吸着材として用いる場合には、錠剤成型機等を使用して吸着材をペレット状に圧縮成型するのが一般的である。しかしながら、前述の多孔性金属錯体のようにガスの吸着に伴ってその構造が変化するような柔軟な構造を有する多孔性金属錯体を、一般的な打錠成型によってペレット化した場合、成型体が十分な強度を持つように成型すると吸着性能が低下するという問題がある。一方で、吸着性能を低下させない程度に打錠条件を加減して成型すると圧壊強度が不足したり、吸脱着に伴う構造の変化に成型体が追随できず成型体が崩壊して粉化したりしてしまうという問題がある。 When using a porous material in an actual process, for example, when using zeolite or molecular sieve charcoal as an adsorbent for pressure swing adsorption, the adsorbent is compressed into a pellet using a tablet molding machine or the like. Is common. However, when a porous metal complex having a flexible structure that changes its structure with gas adsorption like the porous metal complex described above is pelletized by general tableting molding, If it is molded to have sufficient strength, there is a problem that the adsorption performance decreases. On the other hand, if the molding conditions are adjusted to such an extent that the adsorption performance is not lowered, the crushing strength will be insufficient, or the molded body will not follow the structural changes accompanying adsorption and desorption, and the molded body will collapse and become powdered. There is a problem that it ends up.
 また、ゼオライト等の吸着材と有機バインダーとを混合して吸着シートを形成する場合、吸着材であるゼオライトの細孔内に有機バインダーの側鎖等が吸着してしまい、十分な吸着性能が得られないという問題があり、多孔性金属錯体を吸着材とする場合も同様の問題の発生が想定される。
 なお、吸着材(ゼオライト)の細孔内に吸着した有機バインダーは、温度400℃~800℃で30分以上の焼成による除去が可能ではあるが、有機バインダーを除去したとしても、吸着材がゼオライトであるため、吸着性能は十分とはいえない。また、ゼオライトに代えて多孔性金属錯体を吸着材として用いた場合、前記条件で焼成すると、多孔性金属錯体の細孔構造が破壊されてしまい、十分な吸着性能が得られないという問題があった。
In addition, when adsorbents such as zeolite and organic binders are mixed to form an adsorbent sheet, the side chains of the organic binder are adsorbed in the pores of the adsorbent zeolite, resulting in sufficient adsorption performance. The same problem is expected when a porous metal complex is used as an adsorbent.
The organic binder adsorbed in the pores of the adsorbent (zeolite) can be removed by calcination at a temperature of 400 ° C. to 800 ° C. for 30 minutes or more. However, even if the organic binder is removed, the adsorbent is zeolite. Therefore, the adsorption performance is not sufficient. In addition, when a porous metal complex is used as an adsorbent instead of zeolite, firing under the above conditions destroys the pore structure of the porous metal complex, resulting in insufficient adsorption performance. It was.
 したがって、耐熱性、吸着材(多孔性金属錯体)の担持性、および、シートの柔軟性に優れており、十分な吸着性能を有する吸着シート、および、それを用いた吸着エレメントは見当たらないというのが現状である。ここでいう耐熱性とは、80℃以上の温度条件下で、吸着シート、および、それを用いた吸着エレメントにおいて、その強度が著しく低下しないことを指す。 Therefore, it is excellent in heat resistance, adsorbent (porous metal complex) supportability, and sheet flexibility, and there is no adsorbing sheet with sufficient adsorbing performance, and no adsorbing element using it. Is the current situation. The term “heat resistance” as used herein means that the strength is not significantly reduced in the adsorption sheet and the adsorption element using the same under a temperature condition of 80 ° C. or higher.
 本発明は、こうした事情に着目してなされたものであって、その目的は、多孔性金属錯体がガスの吸脱着により構造が変化する場合であっても、当該多孔性金属錯体に由来する吸脱着性能を充分に発揮することのできる吸着シートを提供することである。 The present invention has been made by paying attention to such circumstances, and its purpose is to absorb absorption derived from the porous metal complex even when the structure of the porous metal complex changes due to gas adsorption / desorption. It is an object of the present invention to provide an adsorption sheet that can sufficiently exhibit the desorption performance.
 また、本発明の別の目的は、耐熱性、多孔性金属錯体の担持性、および、シートの柔軟性に優れており、且つ、十分な吸着性能を有する吸着シート、および、それを用いた吸着エレメントを提供することである。 Another object of the present invention is an adsorbent sheet that is excellent in heat resistance, porous metal complex support, and sheet flexibility and has sufficient adsorbing performance, and adsorbing using the same To provide an element.
 本発明の吸着シートは、金属イオンと、前記金属イオンと結合可能な有機配位子によって多孔質構造を構成している多孔性金属錯体(A)、及び、有機繊維(B)を含むところに特徴を有する。 The adsorbing sheet of the present invention includes a porous metal complex (A) and an organic fiber (B) that form a porous structure with metal ions and organic ligands that can bind to the metal ions. Has characteristics.
 本発明者らは鋭意検討を重ねた結果、有機繊維(B)に多孔性金属錯体(A)を担持させたシート状の成形体とすることで、成形体がガスの吸脱着による多孔性金属錯体の構造変化に追従でき、多孔性金属錯体(A)の有する優れた吸脱着性能を充分に発揮できる多孔性金属錯体(A)を含有する成形体が得られることを見出し、本発明を完成した。 As a result of intensive studies, the inventors of the present invention have made a porous metal by gas adsorption / desorption by forming a sheet-like molded body in which a porous metal complex (A) is supported on an organic fiber (B). Discovered that a molded article containing a porous metal complex (A) capable of following the structural change of the complex and sufficiently exhibiting the excellent adsorption / desorption performance possessed by the porous metal complex (A) can be obtained, and the present invention has been completed. did.
 本発明の吸着シートは、上記多孔性金属錯体(A)を50質量%~90質量%含有するものであるのが好ましい。 The adsorbing sheet of the present invention preferably contains 50% to 90% by mass of the porous metal complex (A).
 上記多孔性金属錯体(A)は、水素、酸素、窒素、一酸化炭素、二酸化炭素及び炭素数1~4の炭化水素よりなる群から選択される少なくとも1種のガスに対する吸脱着等温線がヒステリシスループを示すものであるのが好ましい。 The porous metal complex (A) has hysteresis in the adsorption / desorption isotherm for at least one gas selected from the group consisting of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide and hydrocarbons having 1 to 4 carbon atoms. It preferably represents a loop.
 上記有機配位子は、下記(1)~(3)よりなる群から選ばれる少なくとも1種の有機化合物であるのが好ましい。
(1)分子内に、カルボキシル基及び/又は水酸基を2つ以上有し、複素環を有さず、金属イオンに二座配位可能な有機化合物
(2)分子内に、N、O又はSから選択される1のヘテロ原子を有する単環式又は多環式の飽和又は不飽和の複素環と、カルボキシル基又は水酸基を有する、金属イオンに二座配位可能な有機化合物
(3)分子内に、N、O及びSよりなる群から選択されるヘテロ原子を2以上有する単環式又は多環式の飽和又は不飽和の複素環を有する、金属イオンに二座配位可能な有機化合物
The organic ligand is preferably at least one organic compound selected from the group consisting of the following (1) to (3).
(1) Organic compound having two or more carboxyl groups and / or hydroxyl groups in the molecule, having no heterocyclic ring, and capable of bidentate coordination with metal ions (2) In the molecule, N, O or S A monocyclic or polycyclic saturated or unsaturated heterocyclic ring having one heteroatom selected from the following: an organic compound having a carboxyl group or a hydroxyl group and capable of bidentate coordination to a metal ion (3) Intramolecular And a bidentate organic compound having a monocyclic or polycyclic saturated or unsaturated heterocycle having 2 or more heteroatoms selected from the group consisting of N, O and S
 より具体的には、上記有機配位子は、炭素数4~20のアルキレンジカルボン酸化合物、炭素数4~20のアルケニレンジカルボン酸化合物、下記一般式(I)~(III)で表されるジカルボン酸化合物; More specifically, the organic ligand includes an alkylene dicarboxylic acid compound having 4 to 20 carbon atoms, an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, and a dicarboxylic acid represented by the following general formulas (I) to (III). Acid compounds;
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R1はそれぞれ同一又は異なって、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ホルミル基、炭素数1~4のアシロキシ基、炭素数1~4のアルコキシカルボニル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、炭素数1~4のモノアルキルアミノ基、炭素数1~4のジアルキルアミノ基又は炭素数1~4のアシルアミノ基であり、2つ以上のR1が環状であってもよく、2つ以上のR1が環状に縮合してもよい。)、下記一般式(IV)で表されるジカルボン酸化合物; (Wherein R 1 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a formyl group, carbon An acyloxy group having 1 to 4 carbon atoms, an alkoxycarbonyl group having 1 to 4 carbon atoms, a nitro group, a cyano group, a carboxyl group, an amino group, a monoalkylamino group having 1 to 4 carbon atoms, and a dialkylamino group having 1 to 4 carbon atoms Or an acylamino group having 1 to 4 carbon atoms, and two or more R 1 groups may be cyclic, or two or more R 1 groups may be condensed cyclically.) In the following general formula (IV) Dicarboxylic acid compounds represented;
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R2はそれぞれ同一又は異なって、水素原子、ハロゲン原子又は置換基を有していてもよい炭素数1~4のアルキル基であり、Xは水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、炭素数1~4のアルコキシ基、ニトロ基、カルボキシル基、水酸基又はアミノ基である。)、下記一般式(V)で表される有機化合物; (Wherein R 2 s are the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent, and X represents a hydrogen atom or a substituent. Or an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a nitro group, a carboxyl group, a hydroxyl group, or an amino group. An organic compound represented by the following general formula (V);
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R3はそれぞれ同一又は異なって、水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基又は炭素数1~4のアルコキシ基である。)、下記一般式(VI)~(VIII)で表される有機化合物; (Wherein R 3 are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms) Or an alkoxy group having 1 to 4 carbon atoms), organic compounds represented by the following general formulas (VI) to (VIII);
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R3はそれぞれ同一又は異なって、水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基又は炭素数1~4のアルコキシ基である。)、及び、下記一般式(IX)~(XII)で表される有機化合物; (Wherein R 3 are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms) Or an alkoxy group having 1 to 4 carbon atoms), and organic compounds represented by the following general formulas (IX) to (XII);
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Yは同一又は異なって、酸素原子、硫黄原子、-CH2-、-CH(OH)-、-CO-、-NH-、-C24-、-C≡C-、-C22-又は-C64-であり、R4はそれぞれ同一又は異なって、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ホルミル基、炭素数1~4のアシロキシ基、炭素数1~4のアルコキシ基を有するアルコキシカルボニル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、炭素数1~4のモノアルキルアミノ基、炭素数1~4のアルキル基を有するジアルキルアミノ基又は炭素数1~4のアシルアミノ基であり、nは0~3の整数である。)よりなる群から選択される1以上の有機化合物であるのが望ましい。 Wherein Y is the same or different and represents an oxygen atom, a sulfur atom, —CH 2 —, —CH (OH) —, —CO—, —NH—, —C 2 N 4 —, —C≡C—, —C 2 H 2 — or —C 6 H 4 —, wherein R 4 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, carbon An alkoxy group having 1 to 4 carbon atoms, a formyl group, an acyloxy group having 1 to 4 carbon atoms, an alkoxycarbonyl group having an alkoxy group having 1 to 4 carbon atoms, a nitro group, a cyano group, a carboxyl group, an amino group, 1 to carbon atoms 4 monoalkylamino groups, dialkylamino groups having 1 to 4 carbon atoms or acylamino groups having 1 to 4 carbon atoms, and n is an integer of 0 to 3). Desirably one or more organic compounds.
 前記有機繊維(B)はセルロースであるのが好ましい。また、本発明の吸着シートは、湿式抄紙法により製造されたものであるのが望ましい。 The organic fiber (B) is preferably cellulose. The adsorbing sheet of the present invention is preferably produced by a wet papermaking method.
 また、本発明には、多孔性金属錯体(A)、および、耐熱性繊維(D)を含有することを特徴とする吸着シートも含まれる。
 前記吸着シートは、自己固結性を有する粘土鉱物繊維を含有することが好ましい。また、前記吸着シートは有機バインダーを含有することも好ましい。上記本発明の吸着シートを用いた吸着エレメントは、本発明の好ましい実施態様である。
The present invention also includes an adsorption sheet characterized by containing a porous metal complex (A) and a heat-resistant fiber (D).
The adsorbing sheet preferably contains clay mineral fibers having self-consolidating properties. Moreover, it is preferable that the said adsorption sheet contains an organic binder. The adsorption element using the adsorption sheet of the present invention is a preferred embodiment of the present invention.
 本発明の吸着シートによれば、多孔性金属錯体(A)の吸着性能を損なうことなく再現できる。また、本発明の吸着シートは、減圧環境下におくことで容易に吸着性能の再生が可能である。
 さらに、本発明の吸着シート、および、それを用いた吸着エレメントが、多孔性金属錯体(A)、および、耐熱性繊維(A)を含有する場合、また、必要に応じて、自己固結性を有する粘土鉱物繊維、および、有機バインダーを含有する場合には、耐熱性、多孔性金属錯体の担持性、シートの柔軟性、および、吸着性能に優れるという利点を有する。
 したがって、本発明の吸着シートは、目的に応じて吸着材、吸蔵材、分離材の用途に使用することができる。
According to the adsorption sheet of the present invention, it can be reproduced without impairing the adsorption performance of the porous metal complex (A). Moreover, the adsorption | suction sheet | seat of this invention can reproduce | regenerate adsorption | suction performance easily by putting it in a pressure-reduced environment.
Furthermore, when the adsorbing sheet of the present invention and the adsorbing element using the same contain the porous metal complex (A) and the heat-resistant fiber (A), and if necessary, self-consolidating In the case of containing a clay mineral fiber having an organic binder and an organic binder, it has the advantages of excellent heat resistance, porous metal complex support, sheet flexibility, and adsorption performance.
Therefore, the adsorbing sheet of the present invention can be used for applications of adsorbents, occlusion materials, and separating materials depending on the purpose.
 なお、本明細書でいう有機溶剤とは、物質を溶解する性質をもつ有機化合物のことを指し、具体的には、トルエン、キシレン、スチレン等の芳香族炭化水素類;クロロベンゼン等の塩化芳香族炭化水素類;ジクロロメタン、クロロエチレン等の塩化脂肪族炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;酢酸エチル等のエステル類、1,4-ジオキサン等のエーテル類;メチルエチルケトン等のケトン類;メチルセロソルブ等のグリコールエーテル類;シクロヘキサノン等の脂環式炭化水素類;ノルマルヘキサン等の脂肪族炭化水素類;トリメチルシラノール、ヘキサメチルジシラザン、環状シロキサン(オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等)等の含ケイ素化合物;その他、クレゾール、二硫化炭素、N,N-ジメチルホルムアミド、N-メチルピロリドン等;が挙げられる。 In addition, the organic solvent as used in this specification refers to the organic compound which has the property to melt | dissolve a substance, specifically, aromatic hydrocarbons, such as toluene, xylene, and styrene; Chlorinated aromatics, such as chlorobenzene Hydrocarbons; chlorinated aliphatic hydrocarbons such as dichloromethane and chloroethylene; alcohols such as methanol, ethanol and isopropanol; esters such as ethyl acetate; ethers such as 1,4-dioxane; ketones such as methyl ethyl ketone; Glycol ethers such as methyl cellosolve; alicyclic hydrocarbons such as cyclohexanone; aliphatic hydrocarbons such as normal hexane; trimethylsilanol, hexamethyldisilazane, cyclic siloxane (octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane Silicon-containing compounds such as Other, cresol, carbon disulfide, N, N- dimethylformamide, N- methylpyrrolidone and the like; and the like.
 また、本明細書でいう悪臭成分としては、具体的には、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類;酢酸、イソ吉草酸などのカルボン酸類;アンモニア等の含窒素化合物;硫化水素、二硫化メチル、メチルメルカプタン等の含硫黄化合物;等が挙げられる。 Further, as the malodorous component referred to in the present specification, specifically, aldehydes such as formaldehyde and acetaldehyde; carboxylic acids such as acetic acid and isovaleric acid; nitrogen-containing compounds such as ammonia; hydrogen sulfide, methyl disulfide, methyl And sulfur-containing compounds such as mercaptans.
実験例1-1で得られた青色粉体の298Kにおける二酸化炭素の吸脱着等温線を示す図である。FIG. 3 is a graph showing an adsorption / desorption isotherm of carbon dioxide at 298 K of the blue powder obtained in Experimental Example 1-1. 実験例1-1で得られた吸着シートの298Kにおける二酸化炭素の吸脱着等温線を示す図である。FIG. 4 is a graph showing an adsorption and desorption isotherm of carbon dioxide at 298 K of the adsorption sheet obtained in Experimental Example 1-1. 実験例1-1で得られた青色粉体の273Kにおけるエチレンの吸脱着等温線を示す図である。FIG. 3 is a graph showing ethylene adsorption / desorption isotherms at 273 K of the blue powder obtained in Experimental Example 1-1. 実験例1-1で得られた吸着シートの273Kにおけるエチレンの吸脱着等温線を示す図である。FIG. 3 is a graph showing an adsorption / desorption isotherm of ethylene at 273 K of the adsorption sheet obtained in Experimental Example 1-1. 実験例1-2で得られた白色粉体の298Kにおける二酸化炭素の吸脱着等温線を示す図である。FIG. 3 is a graph showing an adsorption / desorption isotherm of carbon dioxide at 298 K of the white powder obtained in Experimental Example 1-2. 実験例1-2で得られた吸着シートの298Kにおける二酸化炭素の吸脱着等温線を示す図である。It is a figure which shows the adsorption-and-desorption isotherm of a carbon dioxide in 298K of the adsorption sheet obtained in Experimental example 1-2. 実験例1-3で得られた青色粉体の298Kにおける二酸化炭素の吸脱着等温線を示す図である。FIG. 3 is a graph showing the adsorption and desorption isotherm of carbon dioxide at 298 K of the blue powder obtained in Experimental Example 1-3. 実験例1-3で得られた吸着シートの298Kにおける二酸化炭素の吸脱着等温線を示す図である。It is a figure which shows the adsorption-desorption isotherm of a carbon dioxide in 298K of the adsorption sheet obtained in Experimental example 1-3. 実験例1-4で得られたペレットの298Kにおける二酸化炭素の吸脱着等温線を示す図である。FIG. 3 is a graph showing adsorption / desorption isotherms of carbon dioxide at 298 K of the pellets obtained in Experimental Example 1-4. 実験例1-4で得られたペレットの273Kにおけるエチレンの吸脱着等温線を示す図である。FIG. 4 is a graph showing ethylene adsorption / desorption isotherms at 273 K of the pellets obtained in Experimental Example 1-4. 実験例1-5で得られたペレットの298Kにおける二酸化炭素の吸脱着等温線を示す図である。FIG. 7 is a graph showing adsorption / desorption isotherms of carbon dioxide at 298 K of the pellets obtained in Experimental Example 1-5. 多孔性金属錯体の吸脱着等温線がヒステリシスループを示す場合のモデル図である。It is a model figure in case the adsorption-desorption isotherm of a porous metal complex shows a hysteresis loop. 多孔性金属錯体(A1-1)のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of a porous metal complex (A1-1). 多孔性金属錯体(A1-2)のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of a porous metal complex (A1-2).
1.吸着シート
 本発明の吸着シートは、(i)金属イオンと、前記金属イオンと結合可能な有機配位子によって多孔質構造を構成している多孔性金属錯体(A)、及び、有機繊維(B)を含むか(以下、「第1の吸着シート」と称する場合がある)、又は、(ii)多孔性金属錯体(A)、および、耐熱性繊維(D)を含む(以下、「第2の吸着シート」と称する場合がある)、ところに特徴を有する(以下、第1、第2の吸着シートをまとめて「本発明の吸着シート」と称する場合がある)。まず、第1の吸着シートについて説明する。
1. Adsorption sheet The adsorption sheet of the present invention comprises (i) a porous metal complex (A) having a porous structure composed of a metal ion and an organic ligand capable of binding to the metal ion, and an organic fiber (B). (Hereinafter sometimes referred to as “first adsorbing sheet”) or (ii) a porous metal complex (A) and a heat-resistant fiber (D) (hereinafter referred to as “second”). However, the first and second suction sheets may be collectively referred to as “the suction sheet of the present invention”). First, the first suction sheet will be described.
1-1.第1の吸着シート
 本発明の第1の吸着シートは、金属イオンと、前記金属イオンと結合可能な有機配位子によって多孔質構造を構成している多孔性金属錯体(A)、及び、有機繊維(B)を含むところに特徴を有する。
1-1. 1st adsorption sheet The 1st adsorption sheet of this invention is a porous metal complex (A) which comprises a porous structure by the metal ligand and the organic ligand which can be couple | bonded with the said metal ion, and organic It is characterized by including the fiber (B).
 本発明の第1の吸着シートの厚みは0.01mm~2mmであるのが好ましい。より好ましくは0.1mm~0.5mmであり、さらに好ましくは0.1mm~0.3mmである。吸着シートの厚みが薄すぎると多孔性金属錯体(A)の担持量を増加させ難く、一方、厚すぎると、ガス分離装置等の吸着エレメントへの加工性が低下する虞がある。
 また、本発明の第1の吸着シートの坪量は50g/m2~200g/m2であるのが好ましい。より好ましくは130g/m2~170g/m2である。坪量が小さすぎる場合は、吸着シートの組織が疎になり、多孔性金属錯体(A)の担持量が少なくなるため、充分な吸着性能を発揮し難い場合があり、一方、坪量が大きすぎると吸着シートが厚くなり、吸着エレメントへと加工する際に割れなどの問題が生じ易くなる虞がある。
The thickness of the first adsorption sheet of the present invention is preferably 0.01 mm to 2 mm. More preferably, it is 0.1 mm to 0.5 mm, and further preferably 0.1 mm to 0.3 mm. If the thickness of the adsorbing sheet is too thin, it is difficult to increase the amount of the porous metal complex (A) supported. On the other hand, if the adsorbing sheet is too thick, the workability of the adsorbing element such as a gas separation device may be reduced.
The basis weight of the first adsorbing sheet of the present invention is preferably 50 g / m 2 to 200 g / m 2 . More preferably, it is 130 g / m 2 to 170 g / m 2 . If the basis weight is too small, the structure of the adsorption sheet becomes sparse, and the amount of the porous metal complex (A) supported becomes small, so that sufficient adsorption performance may not be exhibited, while the basis weight is large. If it is too large, the adsorbing sheet becomes thick, and there is a possibility that problems such as cracking are likely to occur when the adsorbing element is processed.
1-1-1.多孔性金属錯体(A)
 本発明の第1の吸着シートに含まれる多孔性金属錯体(A)は、金属イオンと該金属イオンと結合可能な有機配位子によって形成される多孔質構造を有している。したがって、多孔性金属錯体(A)は細孔を有しており、当該細孔内には気体分子を収容することができる。
1-1-1. Porous metal complex (A)
The porous metal complex (A) contained in the first adsorbing sheet of the present invention has a porous structure formed by metal ions and organic ligands that can bind to the metal ions. Therefore, the porous metal complex (A) has pores, and gas molecules can be accommodated in the pores.
 上記細孔は、外部からの刺激(圧力など)によってその構造やサイズの変化を伴いながら特定種類のガスのみを選択的に吸着できるような柔軟な構造であるのが好ましい。斯かる細孔であれば、細孔内に特定種類のガスを選択的に吸着することができる。したがって本発明に係る多孔性金属錯体(A)は、吸着、吸蔵、分離の目的に合わせて特定のガスを吸着する吸着材として使用することができる。よって、本発明に係る多孔質金属錯体(A)が有する細孔のサイズは特に限定されないが、例えば2Å~50Åであるのが好ましく、より好ましくは2Å~30Åであり、さらに好ましくは2Å~20Åである。 It is preferable that the pores have a flexible structure capable of selectively adsorbing only a specific kind of gas with a change in structure or size by an external stimulus (pressure or the like). With such pores, a specific type of gas can be selectively adsorbed in the pores. Therefore, the porous metal complex (A) according to the present invention can be used as an adsorbent that adsorbs a specific gas in accordance with the purpose of adsorption, occlusion, and separation. Therefore, the size of the pores of the porous metal complex (A) according to the present invention is not particularly limited, but is preferably 2 to 50 mm, more preferably 2 to 30 mm, and still more preferably 2 to 20 mm. It is.
 特定のガスとしては、具体的には、水素、窒素、酸素、一酸化炭素、二酸化炭素、炭素数1~4の炭化水素よりなる群から選択される少なくとも1種のガスが挙げられる。上記炭素数1~4の炭化水素としては、メタン、エタン、プロパン及びブタンが挙げられる。 Specific examples of the specific gas include at least one gas selected from the group consisting of hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide, and hydrocarbons having 1 to 4 carbon atoms. Examples of the hydrocarbon having 1 to 4 carbon atoms include methane, ethane, propane and butane.
 本発明に係る多孔性金属錯体(A)は、上述の特定ガスに対する吸脱着等温線がヒステリシスループを示すものであるのが好ましい。ここで、「吸脱着等温線がヒステリシスループを示す」とは、多孔性金属錯体(A)について、特定のガスに対する吸脱着等温線を作成した場合に、図12に示されるように、ガス吸着時の吸脱着等温線とガス脱着時の脱着等温線とが異なる軌跡をとるものであることを意味する。 In the porous metal complex (A) according to the present invention, the adsorption / desorption isotherm with respect to the above-mentioned specific gas preferably exhibits a hysteresis loop. Here, “the adsorption / desorption isotherm shows a hysteresis loop” means that when the adsorption / desorption isotherm for a specific gas is created for the porous metal complex (A), as shown in FIG. It means that the adsorption / desorption isotherm at the time and the desorption isotherm at the time of gas desorption take different trajectories.
 図12は、多孔性金属錯体(A)の吸脱着等温線がヒステリシスループを示す場合のモデル例である。通常、吸脱着等温線がヒステリシスループを示さない場合は、吸着時の吸脱着等温線の軌跡と、脱着時の脱着等温線の軌跡とが一致する。これに対して、吸着等温線がヒステリシスループを示す場合には、ガス吸着時の吸着量が大きく増加し始める圧力P1における吸着量A1と、脱着時の圧力P1における吸着量A2、ガス脱着時の吸着量が大きく減少し始める圧力P2における吸着量A3と吸着時の圧力P2における吸着量A4が、それぞれ異なるため、吸着時と脱着時の吸脱着等温線が異なる軌跡となる。したがって、吸脱着等温線が図12のようなヒステリシスループを示す多孔性金属錯体(A)は、圧力のコントロールによりガスの吸脱着を任意に行うことができるため、圧力スイング吸着(PSA)装置や、この特性を利用したガス分離装置等にも使用することができ有用である。 FIG. 12 is a model example when the adsorption / desorption isotherm of the porous metal complex (A) shows a hysteresis loop. Usually, when the adsorption / desorption isotherm does not show a hysteresis loop, the locus of the adsorption / desorption isotherm during adsorption coincides with the locus of the desorption isotherm during desorption. On the other hand, when the adsorption isotherm shows a hysteresis loop, the adsorption amount A1 at the pressure P1 at which the adsorption amount at the time of gas adsorption starts to increase greatly, the adsorption amount A2 at the pressure P1 at the time of desorption, and at the time of gas desorption. Since the adsorption amount A3 at the pressure P2 at which the adsorption amount starts to decrease greatly and the adsorption amount A4 at the pressure P2 at the time of adsorption are different from each other, the adsorption and desorption isotherms at the time of adsorption and desorption become different trajectories. Therefore, the porous metal complex (A) in which the adsorption / desorption isotherm shows a hysteresis loop as shown in FIG. 12 can arbitrarily perform gas adsorption / desorption by controlling the pressure. It is useful because it can also be used in a gas separator utilizing this characteristic.
 本発明の多孔性金属錯体(A)を構成する金属イオンとしては、有機配位子との組織化により特定の分子を収容可能な細孔を形成できるものであれば特に限定されず、典型金属元素や遷移金属元素が使用できるが、好ましくはマグネシウム、カルシウム、アルミニウム、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、鉛及びパラジウムよりなる群から選択される少なくとも1種類の金属の陽イオンが挙げられる。より好ましくは、マグネシウム、アルミニウム、銅及び亜鉛から選択される少なくとも1種の金属イオンである。 The metal ion constituting the porous metal complex (A) of the present invention is not particularly limited as long as it can form pores capable of accommodating a specific molecule by organization with an organic ligand. Elements and transition metal elements can be used, but preferably at least one metal selected from the group consisting of magnesium, calcium, aluminum, vanadium, manganese, iron, cobalt, nickel, copper, zinc, cadmium, lead and palladium. Cations. More preferably, it is at least one metal ion selected from magnesium, aluminum, copper and zinc.
 本発明に係る多孔性金属錯体(A)を構成する有機配位子は、分子内に金属イオンと配位結合可能な部位を2つ以上有し、金属イオンとの組織化により特定の分子を収容し得る細孔を複数有する多孔質構造を構成できる有機化合物であれば特に限定されないが、少なくとも1種以上が下記(1)~(3)のグループの中から選ばれる有機化合物であるのが好ましい。 The organic ligand constituting the porous metal complex (A) according to the present invention has two or more sites capable of coordinate bonding with a metal ion in the molecule, and a specific molecule is formed by organization with the metal ion. The organic compound is not particularly limited as long as it can form a porous structure having a plurality of pores that can be accommodated, but at least one of the organic compounds is selected from the following groups (1) to (3): preferable.
 (1)分子内に、カルボキシル基及び/又は水酸基を2つ以上有し、複素環を有さず、金属イオンに二座配位可能な有機化合物
 (2)分子内に、N、O又はSから選択される1のヘテロ原子を有する単環式又は多環式の飽和又は不飽和の複素環と、カルボキシル基又は水酸基を有する、金属イオンに二座配位可能な有機化合物
 (3)分子内に、N、O及びSよりなる群から選択されるヘテロ原子を2以上有する単環式又は多環式の飽和又は不飽和の複素環を有する、金属イオンに二座配位可能な有機化合物
(1) Organic compound having two or more carboxyl groups and / or hydroxyl groups in the molecule, having no heterocyclic ring, and capable of bidentate coordination with metal ions (2) N, O or S in the molecule A monocyclic or polycyclic saturated or unsaturated heterocycle having one heteroatom selected from the following, an organic compound having a carboxyl group or a hydroxyl group and capable of bidentate coordination to a metal ion (3) Intramolecular And a bidentate organic compound having a monocyclic or polycyclic saturated or unsaturated heterocycle having 2 or more heteroatoms selected from the group consisting of N, O and S
 (1)分子内に、カルボキシル基及び/又は水酸基を2つ以上有し、複素環を有さず、金属イオンに二座配位可能な有機化合物(以下、有機化合物(1)と称する)としては、炭素数4~20のアルキレンジカルボン酸化合物(前記炭素数には、カルボキシ基を構成する炭素が含まれる)、炭素数4~20のアルケニレンジカルボン酸化合物(前記炭素数には、カルボキシ基を構成する炭素が含まれる)、下記一般式(I)~(III)で表されるジカルボン酸化合物、下記一般式(IV)で表されるジカルボン酸化合物及び下記一般式(V)で表される有機化合物が挙げられる。 (1) As an organic compound having two or more carboxyl groups and / or hydroxyl groups in the molecule, having no heterocyclic ring and capable of bidentate coordination with a metal ion (hereinafter referred to as organic compound (1)) Is an alkylene dicarboxylic acid compound having 4 to 20 carbon atoms (the carbon number includes carbon constituting a carboxy group), an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms (the carbon number is a carboxy group). And carbon atoms constituting), dicarboxylic acid compounds represented by the following general formulas (I) to (III), dicarboxylic acid compounds represented by the following general formula (IV), and the following general formula (V) An organic compound is mentioned.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
  式(I)~(III)中、R1はそれぞれ同一又は異なって、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ホルミル基、炭素数1~4のアシロキシ基、炭素数1~4のアルコキシ基を有するアルコキシカルボニル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、炭素数1~4のモノアルキルアミノ基、炭素数1~4のアルキル基を有するジアルキルアミノ基又は炭素数1~4のアシルアミノ基であり、2つ以上のR1は環状であってもよく、また、2つ以上のR1は環状に縮合してもよい。上記ジアルキルアミノ基においては、2つのアルキル基は同一であっても、異なっていてもよい(以下同様)。 In formulas (I) to (III), each R 1 is the same or different and is a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or an alkoxy having 1 to 4 carbon atoms. Group, formyl group, acyloxy group having 1 to 4 carbon atoms, alkoxycarbonyl group having an alkoxy group having 1 to 4 carbon atoms, nitro group, cyano group, carboxyl group, amino group, monoalkylamino group having 1 to 4 carbon atoms A dialkylamino group having an alkyl group having 1 to 4 carbon atoms or an acylamino group having 1 to 4 carbon atoms, wherein two or more R 1 may be cyclic, and two or more R 1 may be cyclic May be condensed. In the dialkylamino group, the two alkyl groups may be the same or different (the same applies hereinafter).
 上記アルキル基としては、直鎖、分枝状又は環状のいずれであってもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等が挙げられ、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が挙げられ、アシロキシ基としては、炭素数1~4の直鎖状又は分枝状のアルキル基が置換したものが挙げられ(例えば、アセトキシ基、プロピオニロキシ基、イソプロピオニロキシ基等)、アルコキシカルボニル基としては、炭素数1~4の直鎖又は分枝状のアルキル基が置換したものが挙げられ(例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基等)、モノアルキルアミノ基としては、炭素数1~4の直鎖又は分枝状のアルキル基が置換したものが挙げられ(例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基等)、ジアルキルアミノ基としては、炭素数1~4の直鎖又は分枝状のアルキル基が置換したものが挙げられ(例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、s-ブチルアミノ基等)、アシルアミノ基としては、炭素数1~4の直鎖又は分枝状のアルキル基が置換したもの(例えば、アセチルアミノ基、プロピオニルアミノ基等)が挙げられる。これらの中でもR1としては水素原子が好ましい。 The alkyl group may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. The alkoxy group includes a methoxy group. , An ethoxy group, a propoxy group, and a butoxy group. Examples of the acyloxy group include those substituted with a linear or branched alkyl group having 1 to 4 carbon atoms (for example, an acetoxy group, a propionyloxy group). Group, isopropionyloxy group, etc.) and alkoxycarbonyl group include those substituted with a linear or branched alkyl group having 1 to 4 carbon atoms (eg, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group). Group, isopropoxycarbonyl group, butoxycarbonyl group, etc.) and monoalkylamino group include straight-chain Examples include those substituted with a branched alkyl group (for example, methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, etc.). Examples thereof include those having 1 to 4 linear or branched alkyl groups substituted (for example, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, s-butylamino group, etc.), and acylamino group Includes those substituted with a linear or branched alkyl group having 1 to 4 carbon atoms (for example, acetylamino group, propionylamino group, etc.). Among these, R 1 is preferably a hydrogen atom.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(IV)中、R2はそれぞれ同一又は異なって、水素原子、ハロゲン原子又は置換基を有していてもよい炭素数1~4のアルキル基であり、Xは水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、炭素数1~4のアルコキシ基、ニトロ基、カルボキシル基、水酸基又はアミノ基である。これらの中でもR2は水素原子であるのが好ましい。 In formula (IV), R 2 s are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms which may have a substituent, and X represents a hydrogen atom or a substituent. An alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a nitro group, a carboxyl group, a hydroxyl group or an amino group. It is. Among these, R 2 is preferably a hydrogen atom.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(V)中、R3はそれぞれ同一又は異なって、水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基又は炭素数1~4のアルコキシ基である。これらの中でもR3は水素原子であるのが好ましい。 In formula (V), each R 3 is the same or different and is a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkyl group having 2 to 4 carbon atoms. An alkynyl group or an alkoxy group having 1 to 4 carbon atoms. Among these, R 3 is preferably a hydrogen atom.
 (2)分子内に、N、O又はSから選択される1のヘテロ原子を有する単環式又は多環式の飽和又は不飽和の複素環と、カルボキシル基又は水酸基を有する、金属イオンに二座配位可能な有機化合物(以下、有機化合物(2)と称する)としては、下記一般式(VI)~(VIII))で表される有機化合物が挙げられる。 (2) Two or more metal ions having a monocyclic or polycyclic saturated or unsaturated heterocycle having one heteroatom selected from N, O or S and a carboxyl group or a hydroxyl group in the molecule. Examples of the organic compound capable of conformation (hereinafter referred to as organic compound (2)) include organic compounds represented by the following general formulas (VI) to (VIII)).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(VI)~(VIII)中、R3はそれぞれ同一又は異なって、水素原子、置換基を有してもよい炭素数の1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、又は、炭素数1~4のアルコキシ基である。これらの中でもR3は水素原子であるのが好ましい。 In formulas (VI) to (VIII), R 3 s are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, carbon An alkynyl group having 2 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. Among these, R 3 is preferably a hydrogen atom.
 (3)分子内に、N、O及びSよりなる群から選択されるヘテロ原子を2以上有する単環式又は多環式の飽和又は不飽和の複素環を有する、金属イオンに二座配位可能な有機化合物(以下、有機化合物(3)と称する)としては、下記一般式(IX)~(XII)で表される有機化合物が挙げられる。 (3) bidentate coordination to a metal ion having a monocyclic or polycyclic saturated or unsaturated heterocycle having two or more heteroatoms selected from the group consisting of N, O and S in the molecule Examples of possible organic compounds (hereinafter referred to as organic compounds (3)) include organic compounds represented by the following general formulas (IX) to (XII).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(IX)~(XII)中、Yは同一又は異なって、酸素原子、硫黄原子、-CH2-、-CH(OH)-、-CO-、-NH-、-C24-(1,2,4,5-テトラジン-3,6-ジイル基)、-C≡C-、-C22-又は-C64-であり、好ましくは-C22-又は-C64-である。R4はそれぞれ同一又は異なって、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ホルミル基、炭素数1~4のアシロキシ基、炭素数1~4のアルコキシ基を有するアルコキシカルボニル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、炭素数1~4のモノアルキルアミノ基、炭素数1~4のアルキル基を有するジアルキルアミノ基又は炭素数1~4のアシルアミノ基である。具体的な、アシロキシ基、アルコキシカルボニル基、モノ-又はジ-アルキルアミノ基、及び、アシルアミノ基としては、有機化合物(1)のR1と同じものが挙げられる。これらの中でも、R4としては水素原子が好ましい。なお、nは0~3の整数であり、好ましくは0又は1である。 In formulas (IX) to (XII), Y is the same or different and represents an oxygen atom, a sulfur atom, —CH 2 —, —CH (OH) —, —CO—, —NH—, —C 2 N 4 — ( 1,2,4,5-tetrazine-3,6-diyl group), —C≡C—, —C 2 H 2 — or —C 6 H 4 —, preferably —C 2 H 2 — or — C 6 H 4 —. R 4 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a formyl group, or 1 to 4 carbon atoms. An acyloxy group, an alkoxycarbonyl group having an alkoxy group having 1 to 4 carbon atoms, a nitro group, a cyano group, a carboxyl group, an amino group, a monoalkylamino group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Or a dialkylamino group having 1 to 4 carbon atoms. Specific examples of the acyloxy group, alkoxycarbonyl group, mono- or di-alkylamino group, and acylamino group are the same as those for R 1 of the organic compound (1). Among these, R 4 is preferably a hydrogen atom. Note that n is an integer of 0 to 3, preferably 0 or 1.
 上記有機配位子は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよく、吸着等の対象とするガスの種類に応じて適宜選択すればよい。上記有機化合物の中でも、炭素数4~20のアルキレンジカルボン酸化合物、有機化合物(I)、有機化合物(IV)、有機化合物(IX)及び有機化合物(X)が好ましく、より好ましくは、フマル酸、テレフタル酸及びその誘導体、イソフタル酸及びその誘導体、ピラジン及びその誘導体、4,4’-ビピリジン、1,2-ビス(4-ピリジル)エタン、1,2-ビス(4-ピリジル)エチレン、1,2-ビス(4-ピリジル)アセチレンであり、さらに好ましくは、1,3,5-ベンゼントリカルボン酸、5-ニトロイソフタル酸、ピラジン、2,3-ピラジンカルボン酸、1,2-ビス(4-ピリジル)エチレンである。 The above organic ligands may be used alone or in combination of two or more, and may be appropriately selected according to the type of gas to be adsorbed. Among the organic compounds, alkylene dicarboxylic acid compounds having 4 to 20 carbon atoms, organic compound (I), organic compound (IV), organic compound (IX), and organic compound (X) are preferable, and fumaric acid, Terephthalic acid and its derivatives, isophthalic acid and its derivatives, pyrazine and its derivatives, 4,4′-bipyridine, 1,2-bis (4-pyridyl) ethane, 1,2-bis (4-pyridyl) ethylene, 1, 2-bis (4-pyridyl) acetylene, more preferably 1,3,5-benzenetricarboxylic acid, 5-nitroisophthalic acid, pyrazine, 2,3-pyrazinecarboxylic acid, 1,2-bis (4- Pyridyl) ethylene.
 また、2種以上の有機配位子を使用する場合の有機配位子の組み合わせにも特に制限はないが、例えば、上記(1)で特定される有機化合物群と(3)で特定される有機化合物群のそれぞれから選択される有機配位子の組み合わせ;上記(3)で特定される有機化合物群から選択される2種以上の有機配位子の組み合わせが好ましく、より好ましくは有機化合物(I)と有機化合物(IX)との組み合わせ、有機化合物(IV)と有機化合物(IX)との組み合わせ、有機化合物(X)と有機化合物(IX)との組み合わせ、有機化合物(X)で表される2種以上の化合物の組み合わせが挙げられ、さらに好ましくは5-ニトロイソフタル酸と1,2-ビス(4-ピリジル)エチレンとの組み合わせ、2,3-ピラジンカルボン酸とピラジンとの組み合わせが挙げられる。 Moreover, there is no restriction | limiting in particular also in the combination of the organic ligand in the case of using 2 or more types of organic ligands, For example, it specifies with the organic compound group specified by said (1), and (3). A combination of organic ligands selected from each of the organic compound groups; a combination of two or more organic ligands selected from the organic compound group specified in (3) above is preferred, more preferably an organic compound ( I) and a combination of organic compound (IX), a combination of organic compound (IV) and organic compound (IX), a combination of organic compound (X) and organic compound (IX), represented by organic compound (X) A combination of two or more compounds, more preferably a combination of 5-nitroisophthalic acid and 1,2-bis (4-pyridyl) ethylene, 2,3-pyrazinecarboxylic acid and pyrazi It includes the combination of a.
 多孔性金属錯体(A)は、上記金属の塩(例えば、硝酸塩、硫酸塩、蟻酸塩、酢酸塩、炭酸塩、塩酸塩、臭化水素酸塩、四フッ化ホウ酸塩、六フッ化リン酸塩等)と上述の有機配位子とを、水又は有機溶媒に溶解させ、数時間から数日間反応させることにより得られる。有機溶媒としては、上記金属塩及び有機配位子が溶解するものであればよく、例えば、メタノール、エタノール、プロパノール、ジエチルエーテル、テトラヒドロフラン、ヘキサン、シクロヘキサン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド(DMF)、水又はこれらの2種以上の混合溶媒等が使用できる。反応条件も特に限定されず、反応の進行度合いに応じて適宜調節すればよいが、例えば、反応温度は室温(25℃)~150℃とするのが好ましい。また、上記反応は加圧下で行ってもよい。 The porous metal complex (A) is a salt of the above metal (for example, nitrate, sulfate, formate, acetate, carbonate, hydrochloride, hydrobromide, tetrafluoroborate, phosphorus hexafluoride). Acid salt) and the above-mentioned organic ligand are dissolved in water or an organic solvent and reacted for several hours to several days. The organic solvent only needs to dissolve the metal salt and the organic ligand. For example, methanol, ethanol, propanol, diethyl ether, tetrahydrofuran, hexane, cyclohexane, benzene, toluene, methylene chloride, chloroform, acetone, Ethyl acetate, acetonitrile, dimethyl sulfoxide, dimethylformamide (DMF), water, or a mixed solvent of two or more of these can be used. The reaction conditions are not particularly limited, and may be appropriately adjusted according to the progress of the reaction. For example, the reaction temperature is preferably room temperature (25 ° C.) to 150 ° C. Moreover, you may perform the said reaction under pressure.
 本発明に係る多孔性金属錯体(A)の形態としては粒状、粉末状、繊維状、フィルム状、板状など種々の態様が挙げられるが、粉末状若しくは粒状のものが好ましく、粉末状であるのがより好ましい。多孔性金属錯体(A)は平均粒径が0.1μm以上であるのが好ましく、より好ましくは1μm以上であり、さらに好ましくは5μm以上であり、好ましくは500μm以下であり、より好ましくは200μm以下であり、さらに好ましくは100μm以下のものが好ましく使用できる。平均粒子径が小さすぎると、取り扱いが困難であり、また、平均粒子径が大きすぎると、吸着シートに多孔性金属錯体を十分に担持させ難くなり、多孔性金属錯体の脱落が多くなる場合がある。なお、本発明において「平均粒径」とは、数累積頻度50%径(メジアン径)であって、例えば、レーザ回折/散乱式粒度分布測定装置により測定することができる。 Examples of the form of the porous metal complex (A) according to the present invention include various forms such as granular, powdery, fibrous, film-like, and plate-like, preferably powdery or granular, preferably powdery. Is more preferable. The average particle size of the porous metal complex (A) is preferably 0.1 μm or more, more preferably 1 μm or more, further preferably 5 μm or more, preferably 500 μm or less, more preferably 200 μm or less. More preferably, those having a thickness of 100 μm or less can be preferably used. If the average particle size is too small, it is difficult to handle, and if the average particle size is too large, it may be difficult to sufficiently support the porous metal complex on the adsorption sheet, and the porous metal complex may drop off frequently. is there. In the present invention, the “average particle diameter” is a 50% diameter (median diameter), and can be measured by, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
 多孔性金属錯体の77K窒素吸着法によるBET比表面積は、特に限定されないが、例えば500m2/g以上であることが好ましい。BET比表面積が500m2/gより小さいと、十分な吸着性能を得難い場合がある。BET比表面積は、1000m2/g以上であるのがより好ましい。BET比表面積の上限は特に限定されないが、6000m2/g以下であることが好ましい。この範囲を超えると、多孔性金属錯体の製造が非常に困難になるという不都合が生じるからである。
 なお、平均粒子径及びBET比表面積は、実施例に記載の方法により測定することができる。
The BET specific surface area of the porous metal complex by the 77K nitrogen adsorption method is not particularly limited, but is preferably 500 m 2 / g or more, for example. If the BET specific surface area is smaller than 500 m 2 / g, it may be difficult to obtain sufficient adsorption performance. The BET specific surface area is more preferably 1000 m 2 / g or more. The upper limit of the BET specific surface area is not particularly limited, but is preferably 6000 m 2 / g or less. If this range is exceeded, the production of the porous metal complex becomes very difficult.
In addition, an average particle diameter and a BET specific surface area can be measured by the method as described in an Example.
 本発明の第1の吸着シートに含まれる多孔性金属錯体(A)の量は50質量%~90質量%であるのが好ましい。吸着性能及び吸着シートの生産性、多孔性金属錯体(A)の脱落等を考慮すると、多孔性金属錯体(A)の含有量は60質量%~80質量%であるのがより好ましい。多孔性金属錯体(A)の含有量が50質量%未満では単位質量当たりのガスの吸着効率が悪くなり、一方90質量%を超えると吸着シートの生産性が低下したり、多孔性金属錯体(A)の脱落が多くなる傾向がある。 The amount of the porous metal complex (A) contained in the first adsorption sheet of the present invention is preferably 50% by mass to 90% by mass. Considering the adsorption performance, the productivity of the adsorption sheet, the dropping of the porous metal complex (A), etc., the content of the porous metal complex (A) is more preferably 60% by mass to 80% by mass. When the content of the porous metal complex (A) is less than 50% by mass, the gas adsorption efficiency per unit mass is deteriorated. On the other hand, when the content exceeds 90% by mass, the productivity of the adsorbing sheet is lowered or the porous metal complex ( There is a tendency for dropout of A) to increase.
1-1-2.有機繊維(B)
 本発明の第1の吸着シートにおける有機繊維(B)は、多孔性金属錯体(A)を担持する担体として機能する成分であり、パルプ状の繊維が好ましい。第1の吸着シートに多孔性金属錯体(A)を高担持させる観点からは、有機繊維(B)はフィブリル化していることが望ましい。なお、パルプ状とは製紙に用いるために分離、加工した状態を意味する。
1-1-2. Organic fiber (B)
The organic fiber (B) in the 1st adsorption sheet of this invention is a component which functions as a support | carrier which carries a porous metal complex (A), and a pulp-like fiber is preferable. From the viewpoint of highly supporting the porous metal complex (A) on the first adsorbing sheet, the organic fiber (B) is desirably fibrillated. The pulp form means a state separated and processed for use in papermaking.
 有機繊維(B)としては、セルロース繊維、ポリエステル、ビニロン、ポリプロピレン、ポリアミド、レーヨン、アクリル繊維、ポリ乳酸繊維、ポリベンズイミダゾール、ポリベンゾオキサゾール、ポリイミド、ポリアミドイミド、ポリエーテルケトンなど挙げられる。なお、吸着シートに耐熱性が要求される場合は、より好ましくはアラミド、メタアラミド等の全芳香族ポリアミド、ポリベンズイミダゾール、ポリベンゾオキサゾール、ポリイミド、ポリアミドイミド又はポリエーテルケトンから製造された繊維が用いられる。上記有機繊維(B)は単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of the organic fiber (B) include cellulose fiber, polyester, vinylon, polypropylene, polyamide, rayon, acrylic fiber, polylactic acid fiber, polybenzimidazole, polybenzoxazole, polyimide, polyamideimide, and polyether ketone. When heat resistance is required for the adsorption sheet, more preferably, fibers made from wholly aromatic polyamides such as aramid and meta-aramid, polybenzimidazole, polybenzoxazole, polyimide, polyamideimide or polyether ketone are used. It is done. The said organic fiber (B) may be used independently, and 2 or more types may be mixed and used for it.
 本発明の第1の吸着シートに含まれる有機繊維(B)の量は、5質量%~20質量%であるのが好ましい。有機繊維(B)の含有量が5質量%未満では多孔性金属錯体の担持能が不足する傾向があり、一方、20質量%を超えると、吸着シートに含まれる多孔性金属錯体(A)の量が相対的に少なくなるため、充分な吸着効果が得られ難くなる虞がある。より好ましくは10質量%~20質量%であり、さらに好ましくは15質量%~20質量%である。 The amount of the organic fiber (B) contained in the first adsorption sheet of the present invention is preferably 5% by mass to 20% by mass. When the content of the organic fiber (B) is less than 5% by mass, the supporting ability of the porous metal complex tends to be insufficient. On the other hand, when the content exceeds 20% by mass, the porous metal complex (A) contained in the adsorption sheet Since the amount is relatively small, it may be difficult to obtain a sufficient adsorption effect. More preferably, it is 10% by mass to 20% by mass, and further preferably 15% by mass to 20% by mass.
1-1-3.その他の成分
 本発明の第1の吸着シートにおいては、必要に応じて、多孔性金属錯体(A)を有機繊維(B)に担持させるための結合剤として有機バインダー(C)を使用してもよい。有機バインダー(C)としては、吸着シート製造時、吸着シートに多孔性金属錯体(A)を高比率で担持させられるものであれば特に制限されない。例えば、有機バインダー(C)としては、ポリビニルアルコール系ポリマー、ポリアクリロニトリル系ポリマー、ポリエチレン系ポリマー、ポリエステル系ポリマー、澱粉系バインダー、セルロース系ポリマー等を用いることができる。具体的には、ポリビニルアルコール(PVA)、澱粉、あるいはポリアクリロニトリル、メチルセルロース、カルボキシメチルセルロース等が挙げられる。
1-1-3. Other components In the 1st adsorption sheet of this invention, even if it uses an organic binder (C) as a binder for carrying | supporting a porous metal complex (A) on an organic fiber (B) as needed. Good. The organic binder (C) is not particularly limited as long as the porous metal complex (A) can be supported on the adsorption sheet at a high ratio during the production of the adsorption sheet. For example, as the organic binder (C), a polyvinyl alcohol polymer, a polyacrylonitrile polymer, a polyethylene polymer, a polyester polymer, a starch binder, a cellulose polymer, or the like can be used. Specific examples include polyvinyl alcohol (PVA), starch, polyacrylonitrile, methyl cellulose, carboxymethyl cellulose, and the like.
 有機バインダー(C)の量は、吸着シートの構成成分の合計100質量%に対して5質量%~30質量%であるのが好ましい(より好ましくは5質量%~10質量%、さらに好ましくは5質量%~7質量%)。有機バインダー(C)量が5質量%未満では、多孔性金属錯体(A)の有機繊維(B)等の繊維成分への定着性や、繊維成分間における結合性が乏しくなる傾向があり、一方30質量%を超えると、吸着シートにおける多孔性金属錯体(A)量が相対的に少なくなるため、十分な吸着効果が得られ難くなる虞がある。 The amount of the organic binder (C) is preferably 5% by mass to 30% by mass with respect to a total of 100% by mass of the constituent components of the adsorption sheet (more preferably 5% by mass to 10% by mass, and even more preferably 5% by mass). Mass% to 7 mass%). When the amount of the organic binder (C) is less than 5% by mass, the fixability of the porous metal complex (A) to the fiber component such as the organic fiber (B) and the bonding property between the fiber components tend to be poor. If it exceeds 30% by mass, the amount of the porous metal complex (A) in the adsorbing sheet is relatively small, so that it may be difficult to obtain a sufficient adsorbing effect.
 好ましい実施形態において、本発明の第1の吸着シートは、多孔性金属錯体(A)、有機繊維(B)及び有機バインダー(C)以外の添加剤を必要に応じて含んでいてもよい。添加剤としては、例えば、吸着シートの機械的強度の向上を目的とするガラス繊維、高分子凝集剤、顔料等が挙げられる。なお、これらの成分の使用量は、吸着シートの構成成分の合計100質量%に対して0質量%~10質量%とするのが好ましい(より好ましくは3質量%~7質量%)。 In a preferred embodiment, the first adsorption sheet of the present invention may contain additives other than the porous metal complex (A), the organic fiber (B), and the organic binder (C) as necessary. Examples of the additive include glass fiber, polymer flocculant, and pigment for the purpose of improving the mechanical strength of the adsorption sheet. The amount of these components to be used is preferably 0% by mass to 10% by mass (more preferably 3% by mass to 7% by mass) with respect to a total of 100% by mass of the constituent components of the adsorption sheet.
 本発明の第1の吸着シートは、多孔性金属錯体(A)がその構造やサイズの変化を伴いながら特定種類のガスのみを選択的に吸着でき、また、圧力の変化により特定ガスを吸脱着し得る多孔性金属錯体(A)を有しているので、混合ガスから特定のガスを分離する分離性能に優れるものである。また、第1の吸着シートを構成する成分は比較的柔軟であり、多孔性金属錯体(A)の構造変化にも追随することができるため、吸着シートにおいても多孔性金属錯体(A)が有する優れた性能を発揮することができる。よって、本発明の第1の吸着シートは、例えば圧力スイング吸着法ガス分離装置における吸着エレメントを構成する吸着シートとして好ましく用いられる。 The first adsorbing sheet of the present invention can selectively adsorb only a specific kind of gas while the porous metal complex (A) changes its structure and size, and adsorbs and desorbs the specific gas by changing the pressure. Since it has a porous metal complex (A) that can be used, it has excellent separation performance for separating a specific gas from a mixed gas. Moreover, since the component which comprises a 1st adsorption sheet is comparatively flexible and can follow the structural change of a porous metal complex (A), a porous metal complex (A) has also in an adsorption sheet. Excellent performance can be demonstrated. Therefore, the 1st adsorption sheet of this invention is preferably used as an adsorption sheet which comprises the adsorption element in a pressure swing adsorption method gas separation apparatus, for example.
1-2.第2の吸着シート
 次に、第2の吸着シートについて説明する。
 本発明の第2の吸着シートは、多孔性金属錯体(A)、および、耐熱性繊維(D)を含有する。多孔性金属錯体を含有することにより、十分な吸着性能が得られ、また、耐熱性繊維(D)を含有することにより、80℃以上の温度条件下においても著しい強度の低下を生じ難く、十分な耐熱性が得られるからである。吸着シートが多孔性金属錯体(A)を含有していない場合は、吸着性能が不十分となる。また、吸着シートが耐熱性繊維(D)を含有していなければ、十分な耐熱性が得られず、80℃以上の温度条件下において、吸着シートに著しい強度の低下が起こる。
1-2. Second Adsorption Sheet Next, the second adsorption sheet will be described.
The 2nd adsorption sheet of the present invention contains a porous metal complex (A) and a heat resistant fiber (D). By containing the porous metal complex, sufficient adsorption performance can be obtained, and by containing the heat resistant fiber (D), it is difficult to cause a significant decrease in strength even under a temperature condition of 80 ° C. or higher. This is because excellent heat resistance can be obtained. When the adsorption sheet does not contain the porous metal complex (A), the adsorption performance becomes insufficient. Moreover, if the adsorbing sheet does not contain the heat resistant fiber (D), sufficient heat resistance cannot be obtained, and the strength of the adsorbing sheet is significantly reduced under a temperature condition of 80 ° C. or higher.
 本発明の第2の吸着シートの厚みは0.1mm~0.6mmであることが好ましく、より好ましくは0.1mm~0.5mmである。厚みが0.1mm未満ではシート強度が著しく低下するため、後加工においてハニカム状等の吸着エレメントに加工することが困難になる場合がある。また、厚みが0.6mmより大きければ、吸着シートをハニカム状等に加工した時の吸着エレメントの圧損が高くなる傾向がある。 The thickness of the second suction sheet of the present invention is preferably 0.1 mm to 0.6 mm, more preferably 0.1 mm to 0.5 mm. If the thickness is less than 0.1 mm, the sheet strength is remarkably reduced, and it may be difficult to process the honeycomb-shaped adsorption element in post-processing. Further, if the thickness is larger than 0.6 mm, the pressure loss of the adsorbing element tends to increase when the adsorbing sheet is processed into a honeycomb shape or the like.
 本発明の第2の吸着シートの坪量は25g/m2~200g/m2が好ましい。より好ましくは40g/m2~150g/m2である。坪量が25g/m2未満であれば、シートの厚みが薄くなり、シート強度が著しく低下する虞があり、後加工においてハニカム状等の吸着エレメントへの加工が困難になる場合がある。また、坪量が200g/m2を超えると、シートの厚みが大きくなり過ぎ、ハニカム状等に加工した時の吸着エレメントの圧損が高くなる場合がある。 The basis weight of the second adsorbing sheet of the present invention is preferably 25 g / m 2 to 200 g / m 2 . More preferably, it is 40 g / m 2 to 150 g / m 2 . If the basis weight is less than 25 g / m 2 , the thickness of the sheet may be reduced, and the sheet strength may be significantly reduced, which may make it difficult to process the honeycomb-shaped adsorption element in post-processing. On the other hand, if the basis weight exceeds 200 g / m 2 , the thickness of the sheet becomes too large, and the pressure loss of the adsorption element when processed into a honeycomb or the like may increase.
1-2-1.多孔性金属錯体(A)
 本発明に係る多孔性金属錯体(A)は、金属イオンと、配位子を有する化合物とからなる多孔性材料である。多孔性金属錯体(A)としては、第1の吸着シートで使用する物と同じ物が使用できる。
1-2-1. Porous metal complex (A)
The porous metal complex (A) according to the present invention is a porous material composed of a metal ion and a compound having a ligand. As a porous metal complex (A), the same thing as the thing used with a 1st adsorption sheet can be used.
 第2の吸着シートに係る多孔性金属錯体(A)を構成する好ましい金属イオンとしては、特に限定されないが、例えば、アルミニウムイオン等の典型金属元素、鉄イオン、銅イオン及び亜鉛イオン等の遷移金属元素が挙げられる。一方、配位子を有する好ましい化合物としては、例えば、2-メチルイミダゾール、テレフタル酸及びトリメシン酸等が挙げられる。第2の吸着シートを構成する具体的な多孔性金属錯体(A)としては、例えば、亜鉛イオンと2-メチルイミダゾールから構成される多孔性金属錯体(BASF社製、Basolite(登録商標、以下同様) Z1200)、アルミニウムイオンとテレフタル酸から構成される多孔性金属錯体(BASF社製、Basolite A100)、銅イオンとトリメシン酸から構成される多孔性金属錯体(BASF社製、Basolite C300)、鉄イオンとトリメシン酸から構成される多孔性金属錯体(BASF社製、Basolite F300)等が好ましい。
 吸着シートの使用目的が、水分を含むガスから有機溶剤、および、悪臭成分の効率的な分離・回収、もしくは、吸着・除去である場合は、疎水性の高い多孔性金属錯体を採用するのが好ましい。疎水性の高い多孔性金属錯体とは、真空条件下、温度200℃で48時間以上の真空加熱処理を施した後の多孔性金属錯体を、30℃、相対湿度60%RHの窒素雰囲気下に3日以上静置したときの質量増加を、上記真空加熱処理直後の多孔性金属錯体の質量で割った質量増加率が10質量%未満である多孔性金属錯体のことを指す。具体的な疎水性の高い多孔性金属錯体(A)としては、亜鉛イオンと2-メチルイミダゾールから構成される多孔性金属錯体(BASF社製、Basolite Z1200)等が挙げられる。
Although it does not specifically limit as a preferable metal ion which comprises the porous metal complex (A) which concerns on a 2nd adsorption sheet, For example, transition metal, such as typical metal elements, such as aluminum ion, iron ion, copper ion, and zinc ion Elements. On the other hand, preferred compounds having a ligand include, for example, 2-methylimidazole, terephthalic acid and trimesic acid. As a specific porous metal complex (A) constituting the second adsorbing sheet, for example, a porous metal complex composed of zinc ions and 2-methylimidazole (manufactured by BASF, Basolite (registered trademark, the same applies hereinafter) Z1200), porous metal complex composed of aluminum ion and terephthalic acid (BASF, Basolite A100), porous metal complex composed of copper ion and trimesic acid (BASF, Basolite C300), iron ion And a porous metal complex composed of trimesic acid (BASF Corp., Basolite F300) is preferred.
If the purpose of using the adsorbent sheet is to efficiently separate / recover, or adsorb / remove organic solvents and malodorous components from moisture-containing gases, a highly hydrophobic porous metal complex should be used. preferable. A highly hydrophobic porous metal complex is a porous metal complex that has been subjected to a vacuum heat treatment at a temperature of 200 ° C. for 48 hours or more under vacuum conditions in a nitrogen atmosphere at 30 ° C. and a relative humidity of 60% RH. It refers to a porous metal complex having a mass increase rate of less than 10% by mass obtained by dividing the mass increase when left standing for 3 days or more by the mass of the porous metal complex immediately after the vacuum heat treatment. Specific examples of the highly hydrophobic porous metal complex (A) include a porous metal complex composed of zinc ions and 2-methylimidazole (Basolite Z1200, manufactured by BASF).
 本発明の第2の吸着シートにおける、多孔性金属錯体(A)の含有量は50質量%~85質量%であるのが好ましく、より好ましくは60質量%~80質量%である。含有量が50質量%未満では十分な吸着性能を得ることが難しい場合がある。一方、含有量が85質量%を超えると、吸着シートに多孔性金属錯体を十分に担持させることが困難になり、脱落量が多くなる。また、シート強度も著しく低下する虞がある。 In the second adsorption sheet of the present invention, the content of the porous metal complex (A) is preferably 50% by mass to 85% by mass, more preferably 60% by mass to 80% by mass. If the content is less than 50% by mass, it may be difficult to obtain sufficient adsorption performance. On the other hand, when the content exceeds 85% by mass, it becomes difficult to sufficiently support the porous metal complex on the adsorption sheet, and the amount of dropping off increases. In addition, the sheet strength may be significantly reduced.
1-2-2.耐熱性繊維(D)
 本発明の第2の吸着シートに含まれる耐熱性繊維(D)は、吸着シートの耐熱性を確保する成分である。ここで、耐熱性繊維(D)とは、あらかじめ150℃、真空下で12時間乾燥させたサンプル30mgを、熱量計測測定装置(Q50、ティー・エイ・インスツルメント・ジャパン株式会社製)を使用し、空気流量60mL/min、昇温速度20℃/minで常温から300℃まで昇温させたときの重量減少率が5%以下の繊維を意味する。斯かる耐熱性繊維(D)は、80℃以上の温度条件下において強度の著しい低下を生じ難く、吸着シートに耐熱性を付与する成分として好ましい。なお、強度の著しい低下とは、80℃以上の加熱雰囲気下において、本発明の第2の吸着シートを90度に折り曲げた際に、吸着シートに割れや亀裂等が生じ難いことをいう。
1-2-2. Heat resistant fiber (D)
The heat resistant fiber (D) contained in the second adsorbing sheet of the present invention is a component that ensures the heat resistance of the adsorbing sheet. Here, the heat-resistant fiber (D) is a calorimeter measuring device (Q50, manufactured by TA Instruments Japan Co., Ltd.) using 30 mg of a sample dried in advance at 150 ° C. under vacuum for 12 hours. It means a fiber having a weight loss rate of 5% or less when the temperature is raised from room temperature to 300 ° C. at an air flow rate of 60 mL / min and a temperature increase rate of 20 ° C./min. Such a heat-resistant fiber (D) is less likely to cause a significant decrease in strength under a temperature condition of 80 ° C. or higher, and is preferable as a component that imparts heat resistance to the adsorption sheet. Note that the significant decrease in strength means that when the second adsorbing sheet of the present invention is bent at 90 degrees in a heated atmosphere of 80 ° C. or higher, the adsorbing sheet is not easily cracked or cracked.
 具体的な耐熱性繊維(D)としては、ガラス繊維、セラミック繊維、ロックウール繊維等の無機繊維;第1の吸着シートで例示した有機繊維(B)の内、耐熱性を有するもの、具体的には、アラミド繊維、メタアラミド繊維、ポリベンズイミダゾール繊維、ポリベンズオキサゾール繊維、ポリイミド繊維、ポリアミド繊維、ポリアミドイミド繊維、ポリエーテルケトン繊維等の有機繊維;および、これらをフィブリル化した繊維;等が挙げられ、これらの中の1種又は2種以上を用いることが好ましい。耐熱性繊維(D)の繊維径は1μm~15μmであるのが好ましく、1μm~10μmであるのがより好ましい。また、繊維長は1mm~10mmであるのが好ましく、2mm~5mmであるのがより好ましい。第2の吸着シートの強度および柔軟性の両方を向上させる観点から、耐熱性繊維(D)には、繊維径1μm~10μmであり、且つ、繊維長2mm~5mmのガラス繊維が含まれているのが好ましい。 Specific examples of the heat resistant fiber (D) include inorganic fibers such as glass fiber, ceramic fiber, rock wool fiber, etc .; among the organic fibers (B) exemplified in the first adsorption sheet, those having heat resistance, specifically Include organic fibers such as aramid fiber, meta-aramid fiber, polybenzimidazole fiber, polybenzoxazole fiber, polyimide fiber, polyamide fiber, polyamideimide fiber, polyetherketone fiber; and fibers obtained by fibrillating them; Of these, it is preferable to use one or more of them. The fiber diameter of the heat resistant fiber (D) is preferably 1 μm to 15 μm, and more preferably 1 μm to 10 μm. The fiber length is preferably 1 mm to 10 mm, more preferably 2 mm to 5 mm. From the viewpoint of improving both the strength and flexibility of the second adsorbing sheet, the heat resistant fiber (D) contains glass fibers having a fiber diameter of 1 μm to 10 μm and a fiber length of 2 mm to 5 mm. Is preferred.
 第2の吸着シートにおける耐熱性繊維(D)の含有率は、5質量%~30質量%が好ましく、より好ましくは10質量%~25質量%であり、さらに好ましくは10質量%~20質量%である。耐熱性繊維(D)の量が多すぎると吸着シートに含まれる多孔性金属錯体(A)の量が相対的に少なくなるため、充分な吸着効果が得られ難くなる虞があり、一方、耐熱性繊維(D)の量が少なすぎると、十分な耐熱性が得られ難い場合がある。 The content of the heat resistant fiber (D) in the second adsorption sheet is preferably 5% by mass to 30% by mass, more preferably 10% by mass to 25% by mass, and further preferably 10% by mass to 20% by mass. It is. If the amount of the heat-resistant fiber (D) is too large, the amount of the porous metal complex (A) contained in the adsorption sheet is relatively small, so that it may be difficult to obtain a sufficient adsorption effect. If the amount of the conductive fiber (D) is too small, it may be difficult to obtain sufficient heat resistance.
1-2-3.粘土鉱物繊維(E)
 本発明における第2の吸着シートは自己固結性を有する粘土鉱物繊維(E)を含有することが好ましい。ここで、自己固結性とは、それ自身のみで固結する特性のことを表す。したがって、自己固結性を有する粘土鉱物繊維(E)を使用することで、吸着シートの耐熱性、および、多孔性金属錯体(A)の担持性を向上させることができ、さらに、粘土鉱物繊維(E)の自己固結性により吸着シート強度を一層向上させることができる。前記粘土鉱物繊維(E)の種類については特に限定されないが、入手が容易であることから、珪酸マグネシウム繊維、もしくは、珪酸カルシウム繊維が好ましい。
 前記粘土鉱物繊維(E)の繊維径と繊維長については特に限定されないが、繊維径は、好ましくは0.1μm~0.5μmであり、より好ましくは0.1μm~0.2μmであり、繊維長は、好ましくは1μm~50μmであり、より好ましくは1μm~30μmである。繊維径が0.1μm未満で、繊維長が1μm未満の場合、繊維が微細すぎるため、多孔性金属錯体(A)の担持性が低下する傾向があるだけでなく、吸着シートの強度も低下し、さらにシート作製時等の粘土鉱物繊維(E)の取り扱いが困難になることがある。一方、繊維径が0.5μmより大きく、また、繊維長が50μmより長くなると、十分な自己固結性を発現させるために高温で長時間の加熱が必要となり、多孔性金属錯体(A)の細孔構造が壊れてしまう虞がある。
1-2-3. Clay mineral fiber (E)
It is preferable that the 2nd adsorption sheet in this invention contains the clay mineral fiber (E) which has self-consolidating property. Here, the self-consolidating property represents a property of consolidating only by itself. Therefore, by using the clay mineral fiber (E) having self-consolidating properties, the heat resistance of the adsorption sheet and the supportability of the porous metal complex (A) can be improved. The adsorption sheet strength can be further improved by the self-consolidating property of (E). Although it does not specifically limit about the kind of said clay mineral fiber (E), Since it is easy to acquire, a magnesium silicate fiber or a calcium silicate fiber is preferable.
The fiber diameter and fiber length of the clay mineral fiber (E) are not particularly limited, but the fiber diameter is preferably 0.1 μm to 0.5 μm, more preferably 0.1 μm to 0.2 μm. The length is preferably 1 μm to 50 μm, more preferably 1 μm to 30 μm. When the fiber diameter is less than 0.1 μm and the fiber length is less than 1 μm, the fiber is too fine, so that not only the support property of the porous metal complex (A) tends to be lowered, but also the strength of the adsorption sheet is lowered. Furthermore, it may be difficult to handle the clay mineral fiber (E) during sheet production. On the other hand, when the fiber diameter is larger than 0.5 μm and the fiber length is longer than 50 μm, heating at a high temperature for a long time is required to develop sufficient self-consolidation properties, and the porous metal complex (A) The pore structure may be broken.
 第2の吸着シートにおける粘土鉱物繊維(E)の含有率は、5質量%~35質量%が好ましく、より好ましくは5質量%~25質量%である。粘土鉱物繊維(E)の含有率が5質量%未満では、多孔性金属錯体(A)の担持性が不足し、一方、35質量%を超えると、多孔性金属錯体(A)が粘土鉱物繊維(E)により被覆されてしまい、十分な吸着性能を得難い場合がある。 The content of the clay mineral fiber (E) in the second adsorption sheet is preferably 5% by mass to 35% by mass, more preferably 5% by mass to 25% by mass. When the content of the clay mineral fiber (E) is less than 5% by mass, the supportability of the porous metal complex (A) is insufficient. On the other hand, when the content exceeds 35% by mass, the porous metal complex (A) becomes the clay mineral fiber. It may be covered with (E) and it may be difficult to obtain sufficient adsorption performance.
1-2-4.有機バインダー(C)
 本発明における第2の吸着シートは、有機バインダー(C)を含むことが好ましい。吸着シートの柔軟性や強度を向上させられるからである。有機バインダー(C)としては、多孔性金属錯体(A)(吸着材)と耐熱性繊維(D)とを接合できるものであれば特に限定されない。例えば、ポリビニルアルコール系ポリマー、ポリアクリロニトリル系ポリマー、ポリエチレン系ポリマー、ポリエステル系ポリマー等、第1の吸着シートと同様の有機バインダーを用いることができる。取り扱い性の面からは、ポリビニルアルコール系ポリマーが好ましい。
 有機バインダー(C)の使用態様は特に限定されないが、繊維状のものを使用すると、吸着シートを簡便に作製できるため好ましい。第2の吸着シートにおける有機バインダーの(C)含有率は、5質量%~15質量%が好ましく、5質量%~10質量%がより好ましい。5質量%未満では多孔性金属錯体(A)の担持性が不足し、15質量%を超えると多孔性金属錯体(A)が有機バインダー(C)により被覆されてしまい、十分な吸着性能が得られ難くなる傾向がある。
1-2-4. Organic binder (C)
It is preferable that the 2nd adsorption sheet in this invention contains an organic binder (C). This is because the flexibility and strength of the adsorption sheet can be improved. The organic binder (C) is not particularly limited as long as it can join the porous metal complex (A) (adsorbent) and the heat-resistant fiber (D). For example, the same organic binder as that of the first adsorption sheet, such as a polyvinyl alcohol polymer, a polyacrylonitrile polymer, a polyethylene polymer, and a polyester polymer, can be used. From the viewpoint of handleability, polyvinyl alcohol polymers are preferred.
Although the usage mode of an organic binder (C) is not specifically limited, Since a fibrous thing is used, since an adsorption sheet can be produced simply, it is preferable. The content (C) of the organic binder in the second adsorption sheet is preferably 5% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass. If it is less than 5% by mass, the supportability of the porous metal complex (A) is insufficient, and if it exceeds 15% by mass, the porous metal complex (A) is coated with the organic binder (C), and sufficient adsorption performance is obtained. There is a tendency to become difficult to get.
1-2-5.その他の成分
 本発明の第2の吸着シートは、前記多孔性金属錯体(A)以外の多孔質材料を含んでいてもよく、本発明の吸着シートに含有される多孔質材料については特に限定されないが、例えば、活性炭、ゼオライト、シリカゲル、活性アルミナ、粘土鉱物(前述の粘土鉱物繊維(E)を除く)、アルミノリン酸塩、シリコアルミノリン酸、スチレン-ジビニルベンゼン共重合体等の有機高分子多孔質体等が挙げられる。好ましくは、安価に入手できる活性炭、ゼオライト、シリカゲル、活性アルミナである。第2の吸着シートにおけるその他の成分の含有率は、20質量%以下が好ましい。
1-2-5. Other Components The second adsorbing sheet of the present invention may contain a porous material other than the porous metal complex (A), and the porous material contained in the adsorbing sheet of the present invention is not particularly limited. However, organic polymer porous materials such as activated carbon, zeolite, silica gel, activated alumina, clay mineral (excluding the clay mineral fiber (E) described above), aluminophosphate, silicoaluminophosphoric acid, styrene-divinylbenzene copolymer, etc. Examples include masses. Preferred are activated carbon, zeolite, silica gel and activated alumina, which can be obtained at low cost. The content of other components in the second adsorption sheet is preferably 20% by mass or less.
 本発明の第2の吸着シートは、屋内、乗り物内、壁紙、家具、内装材、樹脂成形体、電気機器等で、悪臭成分等を低減する目的や、工場等から排出される空気中の有機溶剤の分離・回収、もしくは、吸着・除去の目的で広く用いることができる。 The second adsorbing sheet of the present invention is an indoor, vehicle, wallpaper, furniture, interior material, resin molded body, electrical device, etc., for the purpose of reducing malodorous components, etc., or in the air discharged from factories, etc. It can be widely used for the purpose of solvent separation / recovery or adsorption / removal.
2.吸着シートの製造方法
 本発明の吸着シートを製造する方法は特に制限されず、従来公知の加工方法を用いることができる。好ましくは、多孔性金属錯体(A)、有機繊維(B)及び/又は耐熱性繊維(D)、及び、必要により用いられる有機バインダー(C)及び粘土鉱物繊維(E)等のシート構成材料を、水、有機溶媒又はこれらの混合物中に分散させ、成形、脱水、乾燥することによりシート状物を得る湿式シート化法が挙げられる。
2. Manufacturing method of adsorption sheet The method in particular of manufacturing the adsorption sheet of this invention is not restrict | limited, A conventionally well-known processing method can be used. Preferably, sheet constituent materials such as porous metal complex (A), organic fiber (B) and / or heat resistant fiber (D), and organic binder (C) and clay mineral fiber (E) used as necessary. There is a wet sheeting method in which a sheet-like material is obtained by dispersing in water, an organic solvent or a mixture thereof, molding, dehydrating and drying.
 例えば、湿式抄紙法によりシート状物を作製する場合、まず、多孔性金属錯体(A)、有機繊維(B)又は耐熱性繊維(D)、及び、任意で用いられる有機バインダー(C)や粘度鉱物繊維(E)等の他の成分を所定の配合比で水中に分散させる(分散スラリーの調製)。この際、分散スラリー中における各成分の濃度は、吸着シート中における含有量が上述の範囲内となるように適宜調整すればよい。 For example, when producing a sheet-like material by a wet papermaking method, first, a porous metal complex (A), an organic fiber (B) or a heat-resistant fiber (D), and an optionally used organic binder (C) and viscosity Other components such as mineral fiber (E) are dispersed in water at a predetermined blending ratio (preparation of dispersion slurry). At this time, the concentration of each component in the dispersed slurry may be appropriately adjusted so that the content in the adsorption sheet is within the above-described range.
 次いで、得られた分散スラリーを抄紙機で抄紙し、シート状物を得た後、これを脱水、乾燥することで吸着シートが得られる。脱水、乾燥の方法も特に限定されず、例えば、一対のロール間にシート状物を通過させることにより加圧脱水する方法等の脱水方法;天日乾燥、脱水後のシート状物に熱風を吹き付ける方法;等、従来公知の方法はいずれも使用することができる。 Next, the obtained dispersion slurry is paper-made with a paper machine to obtain a sheet-like material, which is then dehydrated and dried to obtain an adsorption sheet. The method of dehydration and drying is not particularly limited, for example, a dehydration method such as a method of dehydrating under pressure by passing a sheet-like material between a pair of rolls; hot air is blown on the sheet-like material after sun-drying and dehydration Any conventionally known method such as a method; etc. can be used.
 なお、上記多孔性金属錯体(A)は、その細孔内に溶媒分子を有する状態で、上記シート構成材料と混合し、シート化工程に供するのが好ましい。多孔性金属錯体(A)が細孔内に溶媒分子を有していない場合、吸着シートを構成する有機バインダー(C)が、当該細孔内に吸着されてしまう虞がある。この場合、シート化後、後述する脱溶媒処理を実施しても多孔性金属錯体(A)の細孔内に捕捉された有機バインダー(C)を除去することは難しく、吸着シートの吸着性能が劣る結果となる。すなわち、多孔性金属錯体(A)の細孔に溶媒分子を吸着させておくことにより、シート化工程における有機バインダー(C)等の細孔への吸着を防止し、シート化工程後、後述する脱溶媒処理により細孔内から溶媒分子を除去することにより、吸着シートの吸着性能を確保できる。通常は、多孔性金属錯体(A)を合成する段階で、当該多孔性金属錯体(A)の細孔内に溶媒分子が吸着するが、多孔性金属錯体(A)が細孔内に溶媒分子を有していない場合又は溶媒分子の吸着量が不十分である場合は、後述する実施例に記載の方法により細孔内に有機溶媒を吸着させることができる。尚、ここでいう溶媒分子とは、水や一般的な有機溶媒分子を指す。 In addition, it is preferable that the porous metal complex (A) is mixed with the sheet constituent material in a state having solvent molecules in the pores and subjected to a sheet forming step. When the porous metal complex (A) does not have solvent molecules in the pores, the organic binder (C) constituting the adsorption sheet may be adsorbed in the pores. In this case, it is difficult to remove the organic binder (C) trapped in the pores of the porous metal complex (A) even if the solvent removal treatment described later is performed after forming the sheet, and the adsorption performance of the adsorption sheet is The result is inferior. That is, by adsorbing solvent molecules to the pores of the porous metal complex (A), adsorption to the pores of the organic binder (C) and the like in the sheeting step is prevented, and will be described later after the sheeting step. By removing the solvent molecules from the pores by the solvent removal treatment, the adsorption performance of the adsorption sheet can be secured. Usually, at the stage of synthesizing the porous metal complex (A), solvent molecules are adsorbed in the pores of the porous metal complex (A), but the porous metal complex (A) is solvent molecules in the pores. In the case where the organic solvent is not present or the amount of adsorption of the solvent molecules is insufficient, the organic solvent can be adsorbed in the pores by the method described in the examples described later. In addition, the solvent molecule | numerator here refers to water and a general organic solvent molecule.
 本発明の吸着シートの製造では、シート化工程後に、吸着シート内に含まれる溶媒を除去する脱溶媒処理工程を実施するのが好ましい。上述の様に、前記多孔性金属錯体(A)は、その細孔内に溶媒分子を有する状態でシート化されている場合には、多孔性金属錯体(A)がその細孔内に溶媒分子を有しており、この状態では、十分な吸着性能が得られ難い。よって、吸着性能を発現させるため、シート化工程後に脱溶媒処理を実施するのが好ましい。尚、脱溶媒処理の実施時期はシート化工程以降であれば特に限定されない。 In the production of the adsorbing sheet of the present invention, it is preferable to carry out a desolvation treatment process for removing the solvent contained in the adsorbing sheet after the sheeting process. As described above, when the porous metal complex (A) is formed into a sheet with solvent molecules in the pores, the porous metal complex (A) is solvent molecules in the pores. In this state, it is difficult to obtain sufficient adsorption performance. Therefore, in order to develop the adsorption performance, it is preferable to perform a solvent removal treatment after the sheet forming step. In addition, if the implementation time of a solvent removal process is after the sheet forming process, it will not be specifically limited.
 脱溶媒処理の条件は特に限定されないが、温度は80℃~300℃であることが好ましい。80℃未満では、溶媒の除去が不完全となる虞があり、十分な吸着性能が得られ難い場合がある。一方、300℃を超えると、多孔性金属錯体(A)の細孔構造が壊れてしまう虞があり、この場合も十分な吸着性能が得られ難くなる。より好ましくは100℃~200℃である。また、脱溶媒処理は、減圧下で実施することで一層効率よく溶媒を除去できる。この際、減圧度は特に限定されず、多孔性金属錯体(A)の物性や配合量に応じて適宜調整すればよいが、例えば、103Pa~10-5Paが好ましく、10-1Pa~10-5Paであるのがより好ましい。脱溶媒処理時間も特に限定されないが、例えば1時間~100時間とするのが好ましく、より好ましくは3時間~48時間であり、さらに好ましくは3時間~24時間である。尚、最も好ましい脱溶媒処理の条件は、真空条件下で100℃~200℃、3時間~24時間である。 The conditions for the solvent removal treatment are not particularly limited, but the temperature is preferably 80 ° C. to 300 ° C. If it is less than 80 degreeC, there exists a possibility that the removal of a solvent may become incomplete and sufficient adsorption | suction performance may be difficult to be obtained. On the other hand, when it exceeds 300 ° C., the pore structure of the porous metal complex (A) may be broken, and in this case, it is difficult to obtain sufficient adsorption performance. More preferably, it is 100 ° C to 200 ° C. Moreover, the solvent removal can be more efficiently removed by carrying out the solvent removal treatment under reduced pressure. At this time, the degree of reduced pressure is not particularly limited, and may be appropriately adjusted according to the physical properties and blending amount of the porous metal complex (A). For example, 10 3 Pa to 10 −5 Pa is preferable, and 10 −1 Pa. More preferably, it is ˜10 −5 Pa. Although the solvent removal treatment time is not particularly limited, it is preferably, for example, 1 hour to 100 hours, more preferably 3 hours to 48 hours, and further preferably 3 hours to 24 hours. The most preferable solvent removal treatment conditions are 100 to 200 ° C. and 3 to 24 hours under vacuum.
 本発明の吸着シートは、平面状で使用してもよく、また、適宜、プリーツ加工、ハニカム加工、又は、コルゲート加工等を施して、所望の形状として用いてもよい。 The adsorption sheet of the present invention may be used in a planar shape, or may be used in a desired shape by appropriately performing pleating processing, honeycomb processing, corrugating processing, or the like.
3.吸着エレメント
 本発明の吸着エレメントは、本発明の吸着シートを備えているところに特徴を有する。本発明に係る吸着エレメントの型式は特に限定されず、従来公知の型式はいずれも採用でき、用途や目的に応じて適宜選択すればよい。また、本発明の吸着エレメントに備えられる吸着シートの形状には特に定めはないが、例えば、吸着シートを平面状、プリーツ状、ハニカム状等に加工したものを用いることができる。例えば、プリーツ状に加工された吸着シートは直交流型吸着エレメントとしての使用において、また、ハニカム状に加工された吸着シートは平行流型吸着エレメントとしての使用において、それぞれ、処理する気体との接触面積を大きくして除去効率の向上と、吸着エレメントの低圧損化とを同時に図ることができる。平行流型吸着エレメントは、直交流型吸着エレメントと比較して、ミストやゴミによる目詰まりの防止、低圧損化、軽量化の点で優れているため、当該吸着エレメントに備えられる吸着シートはハニカム状であることが好ましい。
3. Adsorption element The adsorption element of the present invention is characterized by being provided with the adsorption sheet of the present invention. The type of the adsorbing element according to the present invention is not particularly limited, and any conventionally known type can be adopted and may be appropriately selected according to the application and purpose. Further, the shape of the suction sheet provided in the suction element of the present invention is not particularly limited, but for example, a suction sheet processed into a flat shape, a pleat shape, a honeycomb shape, or the like can be used. For example, when the adsorption sheet processed into a pleat is used as a cross-flow type adsorption element, and when the adsorption sheet processed into a honeycomb is used as a parallel flow type adsorption element, contact with the gas to be treated respectively. By increasing the area, it is possible to improve the removal efficiency and reduce the pressure loss of the adsorption element at the same time. The parallel flow type adsorption element is superior to the cross flow type adsorption element in terms of prevention of clogging due to mist and dust, low pressure loss, and weight reduction. Therefore, the adsorption sheet provided in the adsorption element is a honeycomb. It is preferable that it is a shape.
 本発明の吸着シートを用いた吸着エレメントは、屋内、乗り物内、壁紙、家具、内装材、樹脂成形体、電気機器等で、悪臭成分等を低減する目的や、工場等から排出される空気中の有機溶剤の分離・回収、もしくは、吸着・除去の目的で広く用いることができる。 The adsorbing element using the adsorbing sheet of the present invention is used in indoors, in vehicles, for wallpaper, furniture, interior materials, resin moldings, electrical equipment, etc., for reducing malodorous components, etc. It can be widely used for the purpose of separation / recovery or adsorption / removal of organic solvents.
 本出願は、2012年1月30日に出願された日本国特許出願第2012-17192号および2012年1月30日に出願された日本国特許出願第2012-17193号に基づく優先権の利益を主張するものである。2012年1月30日に出願された日本国特許出願第2012-17192号および2012年1月30日に出願された日本国特許出願第2012-17193号の明細書の全内容が、本願に参考のため援用される。 This application is based on Japanese patent application No. 2012-17192 filed on January 30, 2012 and Japanese patent application No. 2012-17193 filed on January 30, 2012. It is what I insist. The entire contents of the specifications of Japanese Patent Application No. 2012-17192 filed on January 30, 2012 and Japanese Patent Application No. 2012-17193 filed on January 30, 2012 are hereby incorporated by reference. Incorporated for.
 以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 なお、特に断らない限り、「部」は「質量部」を、「%」は「質量%」をそれぞれ意味する。
Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
Unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.
 実験例1
 [吸脱着等温線の作成]
 下記実験例で得られた多孔性金属錯体、吸着シート又はペレットを423K、50Paで6時間以上減圧乾燥し、吸着水などを除去した後、ガス吸着量測定装置(日本ベル株式会社製「BELSORP-HP」)を用いて容量法(平衡待ち時間:500秒)で測定を行い、吸脱着等温線を作成した。いずれの試料の場合も、試料中の多孔性金属錯体量が0.3g~0.5gとなるようにして測定した。
Experimental example 1
[Creation of adsorption / desorption isotherm]
The porous metal complex, adsorbent sheet or pellet obtained in the following experimental example was dried under reduced pressure at 423 K and 50 Pa for 6 hours or more to remove adsorbed water and the like, and then a gas adsorption amount measuring device (“BELSORP-” manufactured by Bell Japan Co., Ltd.). HP ”) was used to measure by the volume method (equilibrium waiting time: 500 seconds), and an adsorption / desorption isotherm was created. In any sample, the measurement was performed such that the amount of the porous metal complex in the sample was 0.3 g to 0.5 g.
 (実験例1-1)
 多孔性金属錯体(A1-1):[Cu2(pzdc)2(prz)]の合成
 ナスフラスコ(500ml)に硝酸銅三水和物(1.23g、5.0mmol、1.0eq.)、ピラジン(4.05g、50.0mmol、10.0eq.)、純水(100ml)を加え混合した。得られた青色透明溶液に、2,3-ピラジンジカルボン酸(0.84g、5.0mmol、1.0eq.)の水溶液(80ml)と1N NaOH水溶液(20ml)の混合液を滴下しながら加えた。混合溶液を室温(25℃)で2時間攪拌した後、得られた青色固体を桐山漏斗(登録商標)でろ過し、純水、メタノールで順に洗浄し、乾燥して、青色粉体(多孔性金属錯体(A1-1))を得た(収量:1.32g)。レーザ回折/散乱式粒子径分布測定装置(株式会社堀場製作所製「Partica(登録商標) LA-950V2」)を使用して測定したところ、多孔性金属錯体(A1-1)の平均粒子径は23μmであった。なお、上記式中「prz」はピラジンを、「pzdc」は2,3-ピラジンジカルボン酸を意味する。
(Experimental example 1-1)
Porous metal complex (A1-1): Synthesis of [Cu 2 (pzdc) 2 (prz)] Copper nitrate trihydrate (1.23 g, 5.0 mmol, 1.0 eq.) Was added to an eggplant flask (500 ml), Pyrazine (4.05 g, 50.0 mmol, 10.0 eq.) And pure water (100 ml) were added and mixed. To the obtained blue transparent solution, a mixed solution of an aqueous solution (80 ml) of 2,3-pyrazinedicarboxylic acid (0.84 g, 5.0 mmol, 1.0 eq.) And an aqueous 1N NaOH solution (20 ml) was added dropwise. . After stirring the mixed solution at room temperature (25 ° C.) for 2 hours, the obtained blue solid was filtered with Kiriyama funnel (registered trademark), washed with pure water and methanol in this order, dried, and blue powder (porous) Metal complex (A1-1)) was obtained (yield: 1.32 g). When measured using a laser diffraction / scattering particle size distribution measuring apparatus (“Partica (registered trademark) LA-950V2” manufactured by Horiba, Ltd.), the average particle size of the porous metal complex (A1-1) was 23 μm. Met. In the above formula, “prz” means pyrazine, and “pzdc” means 2,3-pyrazinedicarboxylic acid.
 得られた多孔性金属錯体(A1-1)の粉末X線回折パターンを測定した。測定はX線回折装置(株式会社リガク製「マルチフレックス」)を用いて、回折角(2θ)=3~50°の範囲を走査速度3°/分で走査し、対称反射法で行った。測定結果を図13に示す。 The powder X-ray diffraction pattern of the obtained porous metal complex (A1-1) was measured. The measurement was performed by a symmetric reflection method using an X-ray diffractometer (“Multiflex” manufactured by Rigaku Corporation), scanning a range of diffraction angle (2θ) = 3 to 50 ° at a scanning speed of 3 ° / min. The measurement results are shown in FIG.
 吸着シートの製造
 吸着シートにおける組成が、多孔性金属錯体(A1-1)70質量%、有機繊維(B)としてパルプ状セルロース20質量%、有機バインダー(C)としてPVAを5質量%、無機繊維としてガラス繊維5質量%となるように、湿式抄紙装置を使用し、厚み約0.26mm、坪量約150g/m2のシート状の成形体である吸着シート(1)を製造した。なお、実験例1では、吸脱着等温線の作成時の減圧乾燥処理が、脱溶媒工程に相当する。
Production of Adsorbent Sheet The composition of the adsorbent sheet is 70% by mass of the porous metal complex (A1-1), 20% by mass of pulp-like cellulose as the organic fiber (B), 5% by mass of PVA as the organic binder (C), inorganic fiber The adsorbent sheet (1), which is a sheet-like molded body having a thickness of about 0.26 mm and a basis weight of about 150 g / m 2 , was manufactured using a wet papermaking apparatus so that the glass fiber was 5% by mass. In Experimental Example 1, the reduced-pressure drying process at the time of creating the adsorption / desorption isotherm corresponds to the desolvation step.
 (吸着特性評価)
 実験例1-1で得られた多孔性金属錯体(A1-1)と吸着シート(1)について、298Kにおける二酸化炭素の吸脱着等温線と、273Kにおけるエチレンの吸脱着等温線をそれぞれ測定した。結果を図1~図4に示す。尚、いずれの場合も縦軸は、多孔性金属錯体(A1-1)の単位質量当たりの対象ガス(CO2又はC24)の吸着量を示す(以下同様)。
(Adsorption characteristics evaluation)
For the porous metal complex (A1-1) and the adsorption sheet (1) obtained in Experimental Example 1-1, the adsorption / desorption isotherm of carbon dioxide at 298K and the adsorption / desorption isotherm of ethylene at 273K were measured, respectively. The results are shown in FIGS. In either case, the vertical axis represents the amount of adsorption of the target gas (CO 2 or C 2 H 4 ) per unit mass of the porous metal complex (A1-1) (the same applies hereinafter).
 図1、図2の比較により、多孔性金属錯体(A1-1)の場合(図1)と吸着シートの場合(図2)で、多孔性金属錯体(A1-1)の単位質量当たりのCO2吸着量の差はほとんどなく、吸着シート(1)は、担持する多孔性金属錯体(A1-1)の質量に相当するCO2吸着量を有していることがわかる。 1 and FIG. 2, CO 2 per unit mass of the porous metal complex (A1-1) in the case of the porous metal complex (A1-1) (FIG. 1) and the case of the adsorption sheet (FIG. 2) are compared. 2 There is almost no difference in the adsorption amount, and it can be seen that the adsorption sheet (1) has a CO 2 adsorption amount corresponding to the mass of the porous metal complex (A1-1) to be supported.
 また、図3、図4の比較により、エチレンガスを吸着対象とする場合も、多孔性金属錯体(A1-1)の場合(図3)と吸着シート(1)の場合(図4)で、多孔性金属錯体(A1-1)の単位質量当たりのエチレンガスの吸着量にほとんど差がなく、吸着シート(1)は担持する多孔性金属錯体(A1-1)の質量に相当するエチレン吸着量を示していた。また、図4には、図3と同様、ガスの吸着量が約200kPaを境に急激に増加するのに対して、ガスの放出量は約230kPaを境に急激に増加するヒステリシスループが確認でき、吸着シート(1)ではゲート型の吸着挙動も再現されていた。この結果より、本発明の吸着シートは多孔性金属錯体の粉体の吸着性能を損なわず吸着材として優れていることは明らかである。 3 and 4, when ethylene gas is to be adsorbed, the porous metal complex (A1-1) (FIG. 3) and the adsorption sheet (1) (FIG. 4) There is almost no difference in the adsorption amount of ethylene gas per unit mass of the porous metal complex (A1-1), and the adsorption sheet (1) has an ethylene adsorption amount corresponding to the mass of the porous metal complex (A1-1) supported. Was showing. In addition, in FIG. 4, as in FIG. 3, it is possible to confirm a hysteresis loop in which the gas adsorption amount increases rapidly at about 200 kPa, whereas the gas release amount increases rapidly at about 230 kPa. In the adsorption sheet (1), the gate-type adsorption behavior was also reproduced. From this result, it is clear that the adsorption sheet of the present invention is excellent as an adsorbent without impairing the adsorption performance of the porous metal complex powder.
 (実験例1-2)
 多孔性金属錯体(A1-2):[Zn(NO2-ip)(bpe)]の合成
 ナスフラスコ(300ml)に硝酸亜鉛六水和物(1.50g、5.04mmol、1.0eq.)、5-ニトロイソフタル酸(1.07g、5.07mmol、1.0eq.)、1,2-ビス(4-ピリジル)エチレン(0.91g、5.01mmol、1.0eq.)、DMF(100ml)を加え、120℃で16時間加熱した(N2ガス雰囲気下)。得られた白色固体を桐山漏斗(登録商標)でろ過し、DMF、メタノールで順に洗浄した後、乾燥して、白色粉体(多孔性金属錯体(A1-2))を得た(収量:2.3g、平均粒子径63μm)。なお、上記式中「NO2-ip」は5-ニトロイソフタル酸を、「bpe」は1,2-ビス(4-ピリジル)エチレンを意味する。
(Experimental example 1-2)
Synthesis of Porous Metal Complex (A1-2): [Zn (NO 2 -ip) (bpe)] Zinc nitrate hexahydrate (1.50 g, 5.04 mmol, 1.0 eq.) Was added to an eggplant flask (300 ml). , 5-nitroisophthalic acid (1.07 g, 5.07 mmol, 1.0 eq.), 1,2-bis (4-pyridyl) ethylene (0.91 g, 5.01 mmol, 1.0 eq.), DMF (100 ml ) And heated at 120 ° C. for 16 hours (under N 2 gas atmosphere). The obtained white solid was filtered through Kiriyama funnel (registered trademark), washed in turn with DMF and methanol, and then dried to obtain a white powder (porous metal complex (A1-2)) (yield: 2). .3 g, average particle size 63 μm). In the above formula, “NO 2 -ip” means 5-nitroisophthalic acid, and “bpe” means 1,2-bis (4-pyridyl) ethylene.
 得られた多孔性金属錯体(A1-2)について、実験例1-1と同様の方法で粉末X線回折パターンを測定した。結果を図14に示す。 For the obtained porous metal complex (A1-2), a powder X-ray diffraction pattern was measured in the same manner as in Experimental Example 1-1. The results are shown in FIG.
 吸着シートの製造
 吸着シートにおける組成が、多孔性金属錯体(A1-2)70質量%、有機繊維(B)としてパルプ状セルロース20質量%、有機バインダー(C)としてPVA5質量%、無機繊維としてガラス繊維5質量%となるように、湿式抄紙装置を使い、厚み約0.25mm、坪量約150g/m2の吸着シート(2)を製造した。
Production of Adsorbent Sheet The composition of the adsorbent sheet is 70% by mass of the porous metal complex (A1-2), 20% by mass of the pulp-like cellulose as the organic fiber (B), 5% by mass of PVA as the organic binder (C), and glass as the inorganic fiber. An adsorption sheet (2) having a thickness of about 0.25 mm and a basis weight of about 150 g / m 2 was produced using a wet papermaking machine so that the fiber content was 5% by mass.
 (吸着特性評価)
 実験例1-2で得られた多孔性金属錯体(A1-2)と吸着シート(2)のそれぞれについて、298Kにおける二酸化炭素の吸脱着等温線を測定した。結果を図5、図6に示す。
(Adsorption characteristics evaluation)
For each of the porous metal complex (A1-2) and the adsorption sheet (2) obtained in Experimental Example 1-2, the adsorption / desorption isotherm of carbon dioxide at 298 K was measured. The results are shown in FIGS.
 図5、図6の比較により、多孔性金属錯体(A1-2)の場合(図5)と吸着シート(2)の場合(図6)で、多孔性金属錯体(A1-2)の単位質量当たりのCO2吸着量にほとんど差はなく、吸着シート(2)は、担持する多孔性金属錯体(A1-2)の質量に相当するCO2吸着量を有していることがわかる。この結果より、本発明の吸着シートは多孔性金属錯体の吸着性能を損なわず吸着材として優れていることは明らかである。 5 and FIG. 6, the unit mass of the porous metal complex (A1-2) in the case of the porous metal complex (A1-2) (FIG. 5) and the case of the adsorption sheet (2) (FIG. 6) is shown. almost no difference in the CO 2 adsorption amount per adsorption sheet (2) is found to have a CO 2 adsorption amount corresponding to the mass of the porous metal complex (A1-2) carrying. From this result, it is clear that the adsorbing sheet of the present invention is excellent as an adsorbing material without impairing the adsorption performance of the porous metal complex.
 (実験例1-3)
 吸着シートの製造
 多孔性金属錯体(A1-3)として「Basolite(登録商標)C300」(シグマ アルドリッチ ジャパン株式会社より入手、平均粒子径35μm)の青色粉体を使用し、吸着シートにおける組成が、多孔性金属錯体(A1-3)60質量%、有機繊維(B)としてパルプ状セルロース20質量%、有機バインダー(C)としてPVAを5質量%、無機繊維としてガラス繊維5質量%となるように、湿式抄紙装置を使い、厚み約0.28mm、坪量約156g/m2の吸着シート(3)を製造した。
(Experimental Example 1-3)
Production of Adsorption Sheet Using blue powder of “Basolite (registered trademark) C300” (obtained from Sigma Aldrich Japan Co., Ltd., average particle size 35 μm) as the porous metal complex (A1-3), the composition in the adsorption sheet is 60% by mass of the porous metal complex (A1-3), 20% by mass of the pulp-like cellulose as the organic fiber (B), 5% by mass of PVA as the organic binder (C), and 5% by mass of glass fiber as the inorganic fiber. Then, using a wet papermaking apparatus, an adsorption sheet (3) having a thickness of about 0.28 mm and a basis weight of about 156 g / m 2 was produced.
 (吸着特性評価)
 多孔性金属錯体(A1-3)と吸着シート(3)のそれぞれについて、298Kにおける二酸化炭素の吸脱着等温線を測定した。結果を図7、図8に示す。
(Adsorption characteristics evaluation)
For each of the porous metal complex (A1-3) and the adsorption sheet (3), the adsorption / desorption isotherm of carbon dioxide at 298 K was measured. The results are shown in FIGS.
 図7、図8の比較により、多孔性金属錯体(A1-3)の場合(図7)と吸着シート(3)の場合(図8)で、多孔性金属錯体(A1-3)の単位質量当たりのCO2吸着量の差はほとんどなく、吸着シート(3)は、担持する多孔性金属錯体(A1-3)の質量に相当するCO2吸着量を有していることがわかる。この結果より、本発明の吸着シートは多孔性金属錯体の吸着性能を損なわず吸着材として優れていることは明らかである。 7 and FIG. 8, the unit mass of the porous metal complex (A1-3) in the case of the porous metal complex (A1-3) (FIG. 7) and the case of the adsorption sheet (3) (FIG. 8) CO 2 difference in adsorption amount is little per adsorption sheet (3) is found to have a CO 2 adsorption amount corresponding to the mass of the porous metal complex (A1-3) carrying. From this result, it is clear that the adsorbing sheet of the present invention is excellent as an adsorbing material without impairing the adsorption performance of the porous metal complex.
 (実験例1-4)
 多孔性金属錯体として実験例1-1で得られた多孔性金属錯体(A1-1)を使用し、ペレットにおける組成が、多孔性金属錯体(A1-1)94質量%、有機バインダー(C)としてPVA3質量%、滑沢剤としてグラファイト3質量%となるように、錠剤成型装置により、厚み約4mm、直径3mmのペレット(1)を成型した。
(Experimental Example 1-4)
The porous metal complex (A1-1) obtained in Experimental Example 1-1 was used as the porous metal complex, and the composition in the pellet was 94% by mass of the porous metal complex (A1-1), the organic binder (C) Pellets (1) having a thickness of about 4 mm and a diameter of 3 mm were molded by a tablet molding apparatus so that 3% by mass of PVA and 3% by mass of graphite as a lubricant were obtained.
 (吸着特性評価)
 得られたペレット(1)の298Kにおける二酸化炭素の吸脱着等温線と、273Kにおけるエチレンの吸脱着等温線とを測定した。結果を図9、図10に示す。
(Adsorption characteristics evaluation)
Carbon dioxide adsorption / desorption isotherm at 298K and ethylene adsorption / desorption isotherm at 273K of the obtained pellet (1) were measured. The results are shown in FIGS.
 図1、3と、図9、10との比較より、ペレット(1)のCO2吸着量及びエチレン吸着量は、いずれの場合も使用した多孔性金属錯体(A1-1)の単位質量あたりの吸着量の90%にとどまっていた。また、多孔質金属錯体(A1-1)の吸脱着等温線(エチレン)では、200kPa付近で急激な吸着量の立ち上がりが見られたが(図3)、図10では、吸着開始圧における吸着量の立ち上がりは不鮮明であった。これは、圧縮成型により製造されたペレット(1)では、多孔性金属錯体(A1-1)と他の成分とが強固に固められており、多孔性金属錯体(A1-1)がその構造を変化させ難かったため本来の吸着性能が発揮できず、吸着量の立ち上がりが不鮮明になったものと考えられる。この結果より、ペレットへの成型により多孔性金属錯体(A1-1)の吸着性能が損なわれることは明らかである。 From comparison between FIGS. 1 and 3 and FIGS. 9 and 10, the CO 2 adsorption amount and ethylene adsorption amount of the pellet (1) were in each case per unit mass of the porous metal complex (A1-1) used. It was only 90% of the adsorption amount. Further, in the adsorption / desorption isotherm (ethylene) of the porous metal complex (A1-1), a sudden rise in the adsorption amount was observed at around 200 kPa (FIG. 3). In FIG. 10, the adsorption amount at the adsorption start pressure was observed. The rise of was unclear. In the pellet (1) produced by compression molding, the porous metal complex (A1-1) and other components are firmly solidified, and the porous metal complex (A1-1) has its structure. It is considered that the original adsorption performance could not be exhibited because it was difficult to change, and the rise of the adsorption amount became unclear. From this result, it is clear that the adsorption performance of the porous metal complex (A1-1) is impaired by molding into pellets.
 (実験例1-5)
 多孔性金属錯体として実験例1-3で使用した多孔性金属錯体(A1-3)を使用し、ペレットにおける組成が、多孔性金属錯体(A1-3)94質量%、有機バインダー成分としてPVA3質量%、滑沢剤としてグラファイト3質量%となるように、錠剤成型装置により、厚み約4mm、直径3mmのペレット(2)を成型した。
(Experimental Example 1-5)
The porous metal complex (A1-3) used in Experimental Example 1-3 was used as the porous metal complex, the composition in the pellet was 94% by mass of the porous metal complex (A1-3), and 3% of PVA was used as the organic binder component. %, Pellets (2) having a thickness of about 4 mm and a diameter of 3 mm were molded by a tablet molding apparatus so that the lubricant was 3% by mass of graphite.
 (吸着特性評価)
 得られたペレット(2)について、298Kにおける二酸化炭素の吸脱着等温線を測定した。結果を図11に示す。
(Adsorption characteristics evaluation)
With respect to the obtained pellet (2), an adsorption and desorption isotherm of carbon dioxide at 298K was measured. The results are shown in FIG.
 図7、図11の比較より、ペレット(2)のCO2吸着量は、使用した多孔性金属錯体(A1-3)の単位質量あたりの吸着量の約18%にとどまっていた。この結果より、ペレットへの成型により多孔性金属錯体の吸着性能が損なわれていることは明らかである。 From the comparison between FIG. 7 and FIG. 11, the CO 2 adsorption amount of the pellet (2) was only about 18% of the adsorption amount per unit mass of the porous metal complex (A1-3) used. From this result, it is clear that the adsorption performance of the porous metal complex is impaired by molding into pellets.
 実験例2
 [BET比表面積の測定方法]
 下記実験例で使用した多孔性金属錯体サンプル(有機溶媒処理前)約100mgを採取し、120℃で12時間真空乾燥した後、秤量した。自動比表面積測定装置(ジェミニ2375、マイクロメリティックス社製)を使用し、液体窒素の沸点(-195.8℃)における窒素ガスの吸着量を、相対圧を0.02~0.95の範囲で徐々に高めながら40点測定し、前記サンプルの吸着等温線を作成した。自動比表面積測定装置に付属の解析ソフト(GEMINI-PCW version1.01)にて、BET条件で、表面積解析範囲を0.01~0.15に設定して、BET比表面積[m2/g]を求めた。
Experimental example 2
[Measurement method of BET specific surface area]
About 100 mg of a porous metal complex sample (before treatment with an organic solvent) used in the following experimental examples was collected, vacuum-dried at 120 ° C. for 12 hours, and weighed. Using an automatic specific surface area measuring device (Gemini 2375, manufactured by Micromeritics), the amount of nitrogen gas adsorbed at the boiling point of liquid nitrogen (-195.8 ° C.) was set to a relative pressure of 0.02 to 0.95. 40 points were measured while gradually increasing in the range, and an adsorption isotherm of the sample was created. With the analysis software (GEMINI-PCW version 1.01) attached to the automatic specific surface area measurement device, set the surface area analysis range to 0.01 to 0.15 under the BET conditions, and the BET specific surface area [m 2 / g] Asked.
 [平均粒子径の測定方法]
 走査型電子顕微鏡(株式会社日立製作所製、S-3500)を使用して、下記実験例で用いた多孔性金属錯体の直径を100点測定し、それを相加平均して、多孔性金属錯体の平均粒子径[μm]を求めた。
[Measurement method of average particle size]
Using a scanning electron microscope (manufactured by Hitachi, Ltd., S-3500), the diameter of the porous metal complex used in the following experimental examples was measured at 100 points, and this was averaged to obtain a porous metal complex. The average particle diameter [μm] was determined.
 [繊維径、繊維長の測定方法]
 走査型電子顕微鏡(株式会社日立製作所製、S-3500)により、下記実験例で用いた耐熱性繊維、粘土鉱物繊維、有機バインダーの100点分の繊維直径[μm]、繊維長[mm]を測定した。100点分の繊維直径を相加平均して、サンプルの繊維径[μm]を求めた。また、100点分の繊維長を相加平均して、サンプルの繊維長[mm]を求めた。
[Measurement method of fiber diameter and fiber length]
Using a scanning electron microscope (manufactured by Hitachi, Ltd., S-3500), the fiber diameter [μm] and fiber length [mm] of 100 points of heat resistant fiber, clay mineral fiber, and organic binder used in the following experimental examples were measured. It was measured. The fiber diameter [μm] of the sample was obtained by arithmetically averaging the fiber diameters of 100 points. Moreover, the fiber length [mm] of the sample was calculated by averaging the fiber lengths of 100 points.
 [耐熱性の測定方法]
 下記実験例で製造した吸着シートから切り出した10cm×10cmの試験片について、空気雰囲気下250℃で10時間処理を行った後、処理後の試験片の両端を持ち、90度に折り曲げた。この時、シートが割れなかったものを○、亀裂が生じたものを△、割れてしまったものを×として評価した。
[Measurement method of heat resistance]
A test piece of 10 cm × 10 cm cut out from the adsorbent sheet produced in the following experimental example was treated at 250 ° C. for 10 hours in an air atmosphere, and then both ends of the treated test piece were held and bent at 90 degrees. At this time, the case where the sheet was not broken was evaluated as ◯, the case where the crack was generated was evaluated as Δ, and the case where the sheet was broken was evaluated as ×.
 [担持性の測定方法]
 下記実験例で製造した吸着シートから切り出した10cm×10cmの試験片に、直径2.4cm、質量20gの球体(素材:アルミニウム)を、10cm/sの速度で10回衝突させ、脱落した多孔性金属錯体の量が、0.1mgより少ない場合を○、10mgより多い場合を×、0.1mg~10mgの場合を△とした。
[Measurement method of supportability]
A 10 cm × 10 cm test piece cut out from the adsorbent sheet produced in the following experimental example was impacted with a sphere (material: aluminum) having a diameter of 2.4 cm and a mass of 20 g 10 times at a speed of 10 cm / s and dropped. The case where the amount of the metal complex was less than 0.1 mg was marked as ◯, the case where it was larger than 10 mg was marked as x, and the case where the amount was from 0.1 mg to 10 mg was marked as Δ.
 [柔軟性の測定方法]
 下記実験例で製造した吸着シートから切り出した10cm×10cmの試験片の両端を持ち、90度に折り曲げた。この時、シートが割れなかったものを○、亀裂が生じたものを△、割れてしまったものを×として評価した。
[Measurement method of flexibility]
A 10 cm × 10 cm test piece cut out from the adsorption sheet manufactured in the following experimental example was held and bent at 90 degrees. At this time, the case where the sheet was not broken was evaluated as ◯, the case where the crack was generated was evaluated as Δ, and the case where the sheet was broken was evaluated as ×.
 [吸着性能の測定方法]
 バインダーとして無機接着剤(水ガラス)を使用し、吸着シートを定法によりコルゲート化し、さらに、得られたコルゲートボードを、無機接着剤(水ガラス)を使用して積層することにより、ハニカム化し、300セル/inch2のハニカムサンプルを作製した。60mmφのガラス製カラムにハニカムサンプル(60mmφ、厚み20mm)をセットし、そのカラム中にトルエン5ppmを含む温度25℃の乾燥空気を2m/sの速度で通過させた。FID付きガスクロマトグラフ(株式会社島津製作所製、GC-2014)にて、ハニカムサンプル通過前後のトルエン濃度を1分毎に測定し、その通過前後の濃度変化からトルエンの除去率を算出した。除去率が20%になるまで測定を続け、その経過時間、除去率よりトルエンの総除去質量[g]を算出し、それをハニカムサンプルの体積で割ることによりトルエン除去量[g/L]を算出した。
[Measurement method of adsorption performance]
An inorganic adhesive (water glass) is used as a binder, the adsorbing sheet is corrugated by a regular method, and the obtained corrugated board is laminated by using an inorganic adhesive (water glass) to form a honeycomb, 300 A cell / inch 2 honeycomb sample was prepared. A honeycomb sample (60 mmφ, thickness 20 mm) was set in a 60 mmφ glass column, and dry air containing 5 ppm of toluene at a temperature of 25 ° C. was passed through the column at a speed of 2 m / s. Using a gas chromatograph with FID (manufactured by Shimadzu Corporation, GC-2014), the toluene concentration before and after passing through the honeycomb sample was measured every minute, and the toluene removal rate was calculated from the change in concentration before and after the passage. The measurement is continued until the removal rate reaches 20%, and the total removal mass [g] of toluene is calculated from the elapsed time and the removal rate, and the toluene removal amount [g / L] is calculated by dividing it by the volume of the honeycomb sample. Calculated.
 (実験例2-1)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-1)を得た。その多孔性金属錯体サンプル(A2-1)を70質量%(溶媒分子を除く)、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置(東洋紡エンジニアリング株式会社製、以下同様。)を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルについて、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-1)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-1) in which solvent molecules were adsorbed in the pores. 70% by mass of the porous metal complex sample (A2-1) (excluding solvent molecules), 15% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm) as heat-resistant fiber (D), clay mineral fiber ( E), magnesium silicate fiber (fiber diameter 0.1 μm, fiber length 1 μm) 5 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) was mixed at a ratio of 10% by mass, and an adsorbing sheet was prepared using a wet papermaking machine (manufactured by Toyobo Engineering Co., Ltd., the same applies hereinafter) at a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained sample was measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-2)
 多孔性金属錯体(A)として、Basolite A100(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-2)を得た。その多孔性金属錯体サンプル(A2-2)を70質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-2)
As the porous metal complex (A), Basolite A100 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-2) in which solvent molecules were adsorbed in the pores. 70% by mass of the porous metal complex sample (A2-2), heat-resistant fiber (D), 15% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm), and clay mineral fiber (E), magnesium silicate Fiber (fiber diameter 0.1 μm, fiber length 1 μm) 5 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) 10 mass% The adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-3)
 多孔性金属錯体(A)として、Basolite C300(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをエタノール中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-3)を得た。その多孔性金属錯体サンプル(A2-3)を70質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental Example 2-3)
As a porous metal complex (A), Basolite C300 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in ethanol for 24 hours and then filtered to obtain a porous metal complex sample (A2-3) in which solvent molecules were adsorbed in the pores. 70% by mass of the porous metal complex sample (A2-3), heat-resistant fiber (D), 15% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm), and clay mineral fiber (E), magnesium silicate Fiber (fiber diameter 0.1 μm, fiber length 1 μm) 5 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) 10 mass% The adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-4)
 多孔性金属錯体(A)として、Basolite F300(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-4)を得た。その多孔性金属錯体サンプル(A2-4)を70質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-4)
As a porous metal complex (A), Basolite F300 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-4) in which solvent molecules were adsorbed in the pores. 70% by mass of the porous metal complex sample (A2-4), heat-resistant fiber (D), 15% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm), and magnesium mineral silicate as clay mineral fiber (E) Fiber (fiber diameter 0.1 μm, fiber length 1 μm) 5 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) 10 mass% The adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-5)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-5)を得た。その多孔性金属錯体サンプル(A2-5)を60質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.2μm、繊維長30μm)を15質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、150℃、1気圧条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental Example 2-5)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-5) in which solvent molecules were adsorbed in the pores. The porous metal complex sample (A2-5) is 60% by mass, heat-resistant fiber (D), glass fiber (fiber diameter 6 μm, fiber length 3 mm) is 15% by mass, and clay mineral fiber (E) is magnesium silicate. Fiber (fiber diameter 0.2 μm, fiber length 30 μm) 15 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) 10 mass% The adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Further, the solvent removal treatment was performed at 150 ° C. and 1 atm for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-6)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-6)を得た。その多孔性金属錯体サンプル(A2-6)を60質量%、耐熱性繊維(D)として、フィブリル化されたアラミド繊維(帝人製、トワロン(登録商標)、繊維径12μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を15質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、150℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental Example 2-6)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-6) in which solvent molecules were adsorbed in the pores. 60% by mass of the porous metal complex sample (A2-6), heat-resistant fiber (D), and fibrillated aramid fiber (Teijin, Twaron (registered trademark), fiber diameter 12 μm, fiber length 3 mm) 15 15% by mass of magnesium silicate fiber (fiber diameter: 0.1 μm, fiber length: 1 μm) as clay mineral fiber (E), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105) as organic binder (C) , Fiber diameter 11 μm, fiber length 3 mm) were mixed at a ratio of 10% by mass, and an adsorbent sheet was prepared using a wet papermaking apparatus at a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 150 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-7)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を篩いにかけ、平均粒子径が10μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-7)を得た。その多孔性金属錯体サンプル(A2-7)を60質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を15質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、150℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-7)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was sieved to prepare an average particle size of 10 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-7) in which solvent molecules were adsorbed in the pores. Magnesium silicate containing 60% by mass of the porous metal complex sample (A2-7), heat-resistant fiber (D), 15% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm), and clay mineral fiber (E) Fiber (fiber diameter 0.1 μm, fiber length 1 μm) 15 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) 10 mass% The adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 150 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-8)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を10kgf/cm2の圧力で軽く押し固め、篩いにかけ、平均粒子径が150μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-8)を得た。その多孔性金属錯体サンプル(A2-8)を60質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を15質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、150℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental Example 2-8)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was lightly pressed and hardened at a pressure of 10 kgf / cm 2 and sieved to prepare an average particle size of 150 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-8) in which solvent molecules were adsorbed in the pores. The porous metal complex sample (A2-8) is 60% by mass, heat-resistant fiber (D), glass fiber (fiber diameter 6 μm, fiber length 3 mm) is 15% by mass, and clay mineral fiber (E) is magnesium silicate. Fiber (fiber diameter 0.1 μm, fiber length 1 μm) 15 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) 10 mass% The adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 150 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-9)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-9)を得た。その多孔性金属錯体サンプル(A2-9)を80質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を10質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を5質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得、得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-9)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-9) in which solvent molecules were adsorbed in the pores. 80% by mass of the porous metal complex sample (A2-9), heat-resistant fiber (D), 10% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm), and clay mineral fiber (E), magnesium silicate 5% by mass of fibers (fiber diameter 0.1 μm, fiber length 1 μm) and 5% by mass of polyvinyl alcohol (PVA) fibers (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) as organic binder (C) The adsorbent sheet was prepared using a wet papermaking machine with a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample, and the obtained sample was measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-10)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-10)を得た。その多孔性金属錯体サンプル(A2-10)を70質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を20質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-10)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-10) in which solvent molecules were adsorbed in the pores. 70% by mass of the porous metal complex sample (A2-10), heat-resistant fiber (D), 20% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm), polyvinyl alcohol (C) as polyvinyl alcohol (C) PVA) fibers (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) were mixed at a ratio of 10% by mass, and an adsorbent sheet was prepared using a wet papermaking machine at a mass of basis weight 70 g / m 2 . . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-11)
 多孔性金属錯体(A)として、Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-11)を得た。その多孔性金属錯体サンプル(A2-11)を70質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を20質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-11)
As the porous metal complex (A), Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and then sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-11) in which solvent molecules were adsorbed in the pores. 70% by mass of the porous metal complex sample (A2-11), heat-resistant fiber (D), 20% by mass of glass fiber (fiber diameter 6 μm, fiber length 3 mm), and clay mineral fiber (E), magnesium silicate Fibers (fiber diameter: 0.1 μm, fiber length: 1 μm) were mixed at a ratio of 10% by mass, and an adsorbing sheet was prepared using a wet papermaking machine at a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-12)
 HSZ-390HUA(東ソー社製、Y型ゼオライト)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。得られたゼオライトサンプルを70質量%、耐熱性繊維(D)として、ガラス繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental example 2-12)
HSZ-390HUA (Y-type zeolite manufactured by Tosoh Corporation) was pulverized in a mortar and sieved to prepare an average particle size of 1 μm. The obtained zeolite sample was 70% by mass, heat-resistant fiber (D), glass fiber (fiber diameter 6 μm, fiber length 3 mm) 15% by mass, clay mineral fiber (E), magnesium silicate fiber (fiber diameter 0. 1 μm, fiber length of 1 μm) as an organic binder (C), polyvinyl alcohol (PVA) fibers (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter of 11 μm, fiber length of 3 mm) are mixed at a ratio of 10% by mass, An adsorption sheet was prepared using a wet papermaking machine at a mass of basis weight 70 g / m 2 . Furthermore, it processed in 200 degreeC and vacuum conditions for 24 hours, and the adsorption sheet sample was obtained. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-13)
 Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルをN,N-ジメチルホルムアミド中に24時間浸漬させた後に、ろ過し、細孔内に溶媒分子が吸着された多孔性金属錯体サンプル(A2-12)を得た。その多孔性金属錯体サンプル(A2-12)を70質量%、耐熱性繊維(D)の代わりにポリブチレンテレフタレート繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental Example 2-13)
Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and sieved to prepare an average particle size of 1 μm. Further, the sample was immersed in N, N-dimethylformamide for 24 hours and then filtered to obtain a porous metal complex sample (A2-12) in which solvent molecules were adsorbed in the pores. 70% by mass of the porous metal complex sample (A2-12), 15% by mass of polybutylene terephthalate fiber (fiber diameter 6 μm, fiber length 3 mm) instead of heat resistant fiber (D), and clay mineral fiber (E) , Magnesium silicate fiber (fiber diameter 0.1 μm, fiber length 1 μm) 5 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) An adsorbing sheet was prepared using a wet papermaking apparatus at a mass of 70 g / m 2 with a basis weight of 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-14)
 Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルを200℃、真空条件下、24時間で脱溶媒処理を行い、多孔性金属錯体サンプル(A2-13)を得た。その多孔性金属錯体サンプル(A2-13)を70質量%、ポリブチレンテレフタレート繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental Example 2-14)
Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and sieved to prepare an average particle size of 1 μm. Further, the sample was subjected to solvent removal treatment at 200 ° C. under vacuum for 24 hours to obtain a porous metal complex sample (A2-13). The porous metal complex sample (A2-13) was 70% by mass, the polybutylene terephthalate fiber (fiber diameter 6 μm, fiber length 3 mm) was 15% by mass, and the clay mineral fiber (E) was magnesium silicate fiber (fiber diameter 0. 1 μm, fiber length of 1 μm) as an organic binder (C), polyvinyl alcohol (PVA) fibers (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter of 11 μm, fiber length of 3 mm) are mixed at a ratio of 10% by mass, An adsorption sheet was prepared using a wet papermaking machine at a mass of basis weight 70 g / m 2 . Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 (実験例2-15)
 Basolite Z1200(BASF社製)を乳鉢で粉砕した後に篩いにかけ、平均粒子径が1μmになるように調製した。さらに、そのサンプルを200℃、真空条件下、24時間で脱溶媒処理を行い、多孔性金属錯体サンプル(A2-14)を得た。その多孔性金属錯体サンプル(A2-14)を70質量%、耐熱性繊維(D)の代わりに、ポリブチレンテレフタレート繊維(繊維径6μm、繊維長3mm)を15質量%、粘土鉱物繊維(E)として、珪酸マグネシウム繊維(繊維径0.1μm、繊維長1μm)を5質量%、有機バインダー(C)として、ポリビニルアルコール(PVA)繊維(株式会社クラレ製、VPB105、繊維径11μm、繊維長3mm)を10質量%の比率で混合し、坪量70g/m2となる質量にて湿式抄紙装置を使い吸着シートを作製した。さらに、200℃、真空条件下、24時間で脱溶媒処理を行い、吸着シートサンプルを得た。得られたサンプルに対して、耐熱性、担持性、柔軟性、吸着性能を測定した。
(Experimental Example 2-15)
Basolite Z1200 (manufactured by BASF) was pulverized in a mortar and sieved to prepare an average particle size of 1 μm. Further, the sample was subjected to solvent removal treatment at 200 ° C. under vacuum for 24 hours to obtain a porous metal complex sample (A2-14). 70% by mass of the porous metal complex sample (A2-14), 15% by mass of polybutylene terephthalate fiber (fiber diameter 6 μm, fiber length 3 mm) instead of heat resistant fiber (D), clay mineral fiber (E) As magnesium silicate fiber (fiber diameter 0.1 μm, fiber length 1 μm) 5 mass%, organic binder (C), polyvinyl alcohol (PVA) fiber (manufactured by Kuraray Co., Ltd., VPB105, fiber diameter 11 μm, fiber length 3 mm) Were mixed at a ratio of 10% by mass, and an adsorbing sheet was prepared using a wet papermaking apparatus at a mass of 70 g / m 2 basis weight. Furthermore, the solvent removal treatment was performed at 200 ° C. under vacuum for 24 hours to obtain an adsorption sheet sample. The obtained samples were measured for heat resistance, supportability, flexibility, and adsorption performance.
 実験例2-1~2-15のサンプルに関して、耐熱性、担持性、柔軟性、吸着性能を測定した結果を表1又は2に示す。表1、2より明らかなように、本発明例である実験例2-1~2-11は、吸着材が多孔性金属錯体(A)ではない場合(実験例2-12)、耐熱性繊維(D)を含まない場合(実験例2-13、2-14、2-15)と比較して、耐熱性、担持性、柔軟性、吸着性能の面で優れていることが分かる。また、粘土鉱物繊維(E)を含まない場合(実験例2-10)、有機バインダー(C)を含まない場合(実験例2-11)は、これらを含む実験例に比べて、耐熱性、担持性、又は柔軟性にやや劣る傾向が見られた。 Table 1 or 2 shows the results of measuring the heat resistance, supportability, flexibility, and adsorption performance of the samples of Experimental Examples 2-1 to 2-15. As is apparent from Tables 1 and 2, in Examples 2-1 to 2-11, which are examples of the present invention, when the adsorbent is not the porous metal complex (A) (Experimental Example 2-12), the heat resistant fiber It can be seen that heat resistance, supportability, flexibility, and adsorption performance are superior to those in the case where (D) is not included (Experimental Examples 2-13, 2-14, and 2-15). Further, when the clay mineral fiber (E) is not included (Experimental Example 2-10), and when the organic binder (C) is not included (Experimental Example 2-11), the heat resistance, A tendency to be slightly inferior in supportability or flexibility was observed.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 本発明の第1の吸着シートは、ガスの種類によっては吸脱着等温線においてヒステリシスループが見られる多孔性金属錯体(A)の吸着挙動を損なうことなく再現できる。また、吸着シートの形状とすることで、多孔性金属錯体(A)の含有比率を高めることもできるので、本発明の第1の吸着シートは優れた吸脱着特性を有するものとなる。したがって、本発明の第1の吸着シートは、吸着材、吸蔵材、分離材などの用途で使用でき、また、本発明の第1の吸着シートを減圧下におくことよって被吸着物を脱着でき、吸着性能の再生が容易であるので、産業上極めて有意義である。 The first adsorption sheet of the present invention can be reproduced without impairing the adsorption behavior of the porous metal complex (A) in which a hysteresis loop is seen in the adsorption / desorption isotherm depending on the type of gas. Moreover, since the content ratio of a porous metal complex (A) can also be raised by setting it as the shape of an adsorption sheet, the 1st adsorption sheet of this invention has the outstanding adsorption / desorption characteristic. Therefore, the first adsorbing sheet of the present invention can be used in applications such as adsorbents, occlusion materials, and separating materials, and the adsorbent can be desorbed by placing the first adsorbing sheet of the present invention under reduced pressure. Since the regeneration of the adsorption performance is easy, it is extremely meaningful in the industry.
 また、本発明の第2の吸着シート又は吸着エレメントによれば、空気中の水分、有機溶剤、および、悪臭成分を効率的に分離・回収、もしくは、吸着・除去するができるようになり、産業界に大きく寄与することが期待できる。 In addition, according to the second adsorbing sheet or adsorbing element of the present invention, it becomes possible to efficiently separate / recover or adsorb / remove moisture, organic solvents, and malodorous components in the air. It can be expected to greatly contribute to the world.

Claims (11)

  1.  金属イオンと、前記金属イオンと結合可能な有機配位子によって多孔質構造を構成している多孔性金属錯体(A)、及び、有機繊維(B)を含むことを特徴とする吸着シート。 An adsorbent sheet comprising a porous metal complex (A) having a porous structure composed of a metal ion and an organic ligand capable of binding to the metal ion, and an organic fiber (B).
  2.  前記多孔性金属錯体(A)を50質量%~90質量%含有する請求項1に記載の吸着シート。 The adsorbent sheet according to claim 1, comprising 50% by mass to 90% by mass of the porous metal complex (A).
  3.  水素、酸素、窒素、一酸化炭素、二酸化炭素、炭素数1~4の炭化水素よりなる群から選択される少なくとも1種のガスに対する前記多孔性金属錯体(A)の吸脱着等温線がヒステリシスループを示す請求項1又は2に記載の吸着シート。 The adsorption and desorption isotherm of the porous metal complex (A) with respect to at least one gas selected from the group consisting of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, and hydrocarbons having 1 to 4 carbon atoms is a hysteresis loop. The adsorption sheet according to claim 1 or 2 showing.
  4.  前記有機配位子が、下記(1)~(3)よりなる群から選ばれる少なくとも1種の有機化合物である請求項1~3のいずれか一項に記載の吸着シート。
    (1)分子内に、カルボキシル基及び/又は水酸基を2つ以上有し、複素環を有さず、金属イオンに二座配位可能な有機化合物
    (2)分子内に、N、O又はSから選択される1のヘテロ原子を有する単環式又は多環式の飽和又は不飽和の複素環と、カルボキシル基又は水酸基を有する、金属イオンに二座配位可能な有機化合物
    (3)分子内に、N、O及びSよりなる群から選択されるヘテロ原子を2以上有する単環式又は多環式の飽和又は不飽和の複素環を有する、金属イオンに二座配位可能な有機化合物
    The adsorbing sheet according to any one of claims 1 to 3, wherein the organic ligand is at least one organic compound selected from the group consisting of the following (1) to (3).
    (1) Organic compound having two or more carboxyl groups and / or hydroxyl groups in the molecule, having no heterocyclic ring, and capable of bidentate coordination with metal ions (2) In the molecule, N, O or S A monocyclic or polycyclic saturated or unsaturated heterocyclic ring having one heteroatom selected from the following: an organic compound having a carboxyl group or a hydroxyl group and capable of bidentate coordination to a metal ion (3) Intramolecular And a bidentate organic compound having a monocyclic or polycyclic saturated or unsaturated heterocycle having 2 or more heteroatoms selected from the group consisting of N, O and S
  5.  前記有機配位子が、炭素数4~20のアルキレンジカルボン酸化合物、炭素数4~20のアルケニレンジカルボン酸化合物、下記一般式(I)~(III)で表されるジカルボン酸化合物;
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1はそれぞれ同一又は異なって、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ホルミル基、炭素数1~4のアシロキシ基、炭素数1~4のアルコキシ基を有するアルコキシカルボニル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、炭素数1~4のモノアルキルアミノ基、炭素数1~4のアルキル基を有するジアルキルアミノ基又は炭素数1~4のアシルアミノ基であり、2つ以上のR1が環状であってもよく、2つ以上のR1が環状に縮合してもよい。)、
     下記一般式(IV)で表されるジカルボン酸化合物;
    Figure JPOXMLDOC01-appb-C000002

    (式中、R2はそれぞれ同一又は異なって、水素原子、ハロゲン原子又は置換基を有していてもよい炭素数1~4のアルキル基であり、Xは水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、炭素数1~4のアルコキシ基、ニトロ基、カルボキシル基、水酸基又はアミノ基である。)、
     下記一般式(V)で表される有機化合物;
    Figure JPOXMLDOC01-appb-C000003

    (式中、R3はそれぞれ同一又は異なって、水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基又は炭素数1~4のアルコキシ基である。)、
     下記一般式(VI)~(VIII)で表される有機化合物;
    Figure JPOXMLDOC01-appb-C000004

    (式中、R3はそれぞれ同一又は異なって、水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基又は炭素数1~4のアルコキシ基である。)、及び、
     下記一般式(IX)~(XII)で表される有機化合物;
    Figure JPOXMLDOC01-appb-C000005

    (式中、Yは同一又は異なって、酸素原子、硫黄原子、-CH2-、-CH(OH)-、-CO-、-NH-、-C24-、-C≡C-、-C22-又は-C64-であり、R4はそれぞれ同一又は異なって、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ホルミル基、炭素数1~4のアシロキシ基、炭素数1~4のアルコキシ基を有するアルコキシカルボニル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、炭素数1~4のモノアルキルアミノ基、炭素数1~4のアルキル基を有するジアルキルアミノ基又は炭素数1~4のアシルアミノ基であり、nは0~3の整数である。)よりなる群から選択される1以上の有機化合物である請求項1~4のいずれか一項に記載の吸着シート。
    The organic ligand is an alkylene dicarboxylic acid compound having 4 to 20 carbon atoms, an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, or a dicarboxylic acid compound represented by the following general formulas (I) to (III);
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a formyl group, carbon An acyloxy group having 1 to 4 carbon atoms, an alkoxycarbonyl group having an alkoxy group having 1 to 4 carbon atoms, a nitro group, a cyano group, a carboxyl group, an amino group, a monoalkylamino group having 1 to 4 carbon atoms, and 1 to 4 carbon atoms And a dialkylamino group having an alkyl group or an acylamino group having 1 to 4 carbon atoms, and two or more R 1 may be cyclic, or two or more R 1 may be condensed cyclically.) ,
    Dicarboxylic acid compound represented by the following general formula (IV);
    Figure JPOXMLDOC01-appb-C000002

    (Wherein R 2 s are the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent, and X represents a hydrogen atom or a substituent. Or an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a nitro group, a carboxyl group, a hydroxyl group, or an amino group. ),
    An organic compound represented by the following general formula (V);
    Figure JPOXMLDOC01-appb-C000003

    (Wherein R 3 are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms) Or an alkoxy group having 1 to 4 carbon atoms).
    Organic compounds represented by the following general formulas (VI) to (VIII);
    Figure JPOXMLDOC01-appb-C000004

    (Wherein R 3 are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms) Or an alkoxy group having 1 to 4 carbon atoms), and
    Organic compounds represented by the following general formulas (IX) to (XII);
    Figure JPOXMLDOC01-appb-C000005

    Wherein Y is the same or different and represents an oxygen atom, a sulfur atom, —CH 2 —, —CH (OH) —, —CO—, —NH—, —C 2 N 4 —, —C≡C—, —C 2 H 2 — or —C 6 H 4 —, wherein R 4 s are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, carbon An alkoxy group having 1 to 4 carbon atoms, a formyl group, an acyloxy group having 1 to 4 carbon atoms, an alkoxycarbonyl group having an alkoxy group having 1 to 4 carbon atoms, a nitro group, a cyano group, a carboxyl group, an amino group, 1 to carbon atoms 4 monoalkylamino groups, dialkylamino groups having 1 to 4 carbon atoms or acylamino groups having 1 to 4 carbon atoms, and n is an integer of 0 to 3). The organic compound according to any one of claims 1 to 4, which is one or more organic compounds. Adsorption sheet according.
  6.  前記有機繊維(B)がセルロースである請求項1~5のいずれか一項に記載の吸着シート。 The adsorbent sheet according to any one of claims 1 to 5, wherein the organic fiber (B) is cellulose.
  7.  湿式抄紙法により製造されたものである請求項1~6のいずれか一項に記載の吸着シート。 The adsorbent sheet according to any one of claims 1 to 6, which is produced by a wet papermaking method.
  8.  多孔性金属錯体(A)、および、耐熱性繊維(D)を含有することを特徴とする吸着シート。 An adsorption sheet comprising a porous metal complex (A) and a heat-resistant fiber (D).
  9.  前記吸着シートが、自己固結性を有する粘土鉱物繊維(E)を含有するものである請求項8に記載の吸着シート。 The adsorbent sheet according to claim 8, wherein the adsorbent sheet contains clay mineral fibers (E) having self-consolidating properties.
  10.  前記吸着シートが、有機バインダー(C)を含有するものである請求項8又は9に記載の吸着シート。 The adsorption sheet according to claim 8 or 9, wherein the adsorption sheet contains an organic binder (C).
  11.  請求項8~10のいずれかに記載の吸着シートを備えることを特徴とする吸着エレメント。 A suction element comprising the suction sheet according to any one of claims 8 to 10.
PCT/JP2013/051308 2012-01-30 2013-01-23 Adsorption sheet and adsorption element used for same WO2013115033A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-017192 2012-01-30
JP2012-017193 2012-01-30
JP2012017192A JP5935354B2 (en) 2012-01-30 2012-01-30 Adsorption sheet and adsorption element using the same
JP2012017193A JP2013154302A (en) 2012-01-30 2012-01-30 Adsorption sheet

Publications (1)

Publication Number Publication Date
WO2013115033A1 true WO2013115033A1 (en) 2013-08-08

Family

ID=48905075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051308 WO2013115033A1 (en) 2012-01-30 2013-01-23 Adsorption sheet and adsorption element used for same

Country Status (1)

Country Link
WO (1) WO2013115033A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039273A1 (en) * 2019-08-23 2021-03-04
WO2021200072A1 (en) * 2020-03-31 2021-10-07 ダイキン工業株式会社 Air quality adjustment system
JP7461850B2 (en) 2020-10-20 2024-04-04 大陽日酸株式会社 Detection element, method for manufacturing detection element, and gas concentration measurement unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290151A (en) * 1996-04-26 1997-11-11 Osaka Gas Co Ltd Chemical substance adsorbing material and its preparation
JP2004074026A (en) * 2002-08-19 2004-03-11 Nippon Steel Corp Gas adsorbent and gas separation apparatus and gas storage apparatus using the gas adsorbent
JP2007014880A (en) * 2005-07-07 2007-01-25 Toyobo Co Ltd Adsorbing sheet, adsorbing element and production method thereof
JP2007167821A (en) * 2005-12-26 2007-07-05 Honda Motor Co Ltd Hydrogen adsorbent and its manufacturing method
JP2011502041A (en) * 2007-11-04 2011-01-20 ブリュッヒャー ゲーエムベーハー Sorption filter material and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290151A (en) * 1996-04-26 1997-11-11 Osaka Gas Co Ltd Chemical substance adsorbing material and its preparation
JP2004074026A (en) * 2002-08-19 2004-03-11 Nippon Steel Corp Gas adsorbent and gas separation apparatus and gas storage apparatus using the gas adsorbent
JP2007014880A (en) * 2005-07-07 2007-01-25 Toyobo Co Ltd Adsorbing sheet, adsorbing element and production method thereof
JP2007167821A (en) * 2005-12-26 2007-07-05 Honda Motor Co Ltd Hydrogen adsorbent and its manufacturing method
JP2011502041A (en) * 2007-11-04 2011-01-20 ブリュッヒャー ゲーエムベーハー Sorption filter material and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039273A1 (en) * 2019-08-23 2021-03-04
WO2021039273A1 (en) * 2019-08-23 2021-03-04 昭和電工株式会社 Method for recovering olefin
CN113906001A (en) * 2019-08-23 2022-01-07 昭和电工株式会社 Process for recovery of olefins
JP7375822B2 (en) 2019-08-23 2023-11-08 株式会社レゾナック Olefin recovery method
WO2021200072A1 (en) * 2020-03-31 2021-10-07 ダイキン工業株式会社 Air quality adjustment system
JP2021159830A (en) * 2020-03-31 2021-10-11 ダイキン工業株式会社 Air quality regulating system
JP7104339B2 (en) 2020-03-31 2022-07-21 ダイキン工業株式会社 Air quality adjustment system
JP7461850B2 (en) 2020-10-20 2024-04-04 大陽日酸株式会社 Detection element, method for manufacturing detection element, and gas concentration measurement unit

Similar Documents

Publication Publication Date Title
Yan et al. Remarkable CO 2/CH 4 selectivity and CO 2 adsorption capacity exhibited by polyamine-decorated metal–organic framework adsorbents
Zhan et al. Adsorption of Cu (ii), Zn (ii), and Pb (ii) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine
KR101740352B1 (en) Gas separation method using metal complex
Liu et al. Control of porosity of novel carbazole-modified polytriazine frameworks for highly selective separation of CO 2–N 2
Qu et al. Mercury adsorption by sulfur-and amidoxime-containing bifunctional silica gel based hybrid materials
Fujiki et al. The increased CO 2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping
ES2746198T3 (en) Adsorbent granule of composite material, process for its production and gas separation process
JP6237059B2 (en) Molded body containing porous metal complex and filter using the same
WO2015012068A1 (en) Molded article for hydrocarbon adsorption
KR101273877B1 (en) Composites comprising crystallne porous hybrid powders and a method for preparing thereof
Zohdi et al. Improved CO2 adsorption capacity and CO2/CH4 and CO2/N2 selectivity in novel hollow silica particles by modification with multi-walled carbon nanotubes containing amine groups
JP6089618B2 (en) Sulfur compound adsorption / removal filter
JP6988477B2 (en) Filter media for air purification
US9687813B2 (en) Activated carbon/aluminum oxide/polyethylenimine composites and methods thereof
Luz et al. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas
WO2009108483A1 (en) Filtration media for the removal of basic molecular contaminants for use in a clean environment
Montazerolghaem et al. A comparative investigation of CO2 adsorption on powder and pellet forms of MIL-101
JP7188383B2 (en) Gas adsorbent, deodorant fiber sheet, and method for producing gas adsorbent
Salehi et al. Improving CO2/CH4 and CO2/N2 adsorptive selectivity of cu‐BTC and MOF‐derived nanoporous carbon by modification with nitrogen‐containing groups
JP5935354B2 (en) Adsorption sheet and adsorption element using the same
WO2013115033A1 (en) Adsorption sheet and adsorption element used for same
CN115087499A (en) Adsorption sheet, adsorption element, and adsorption treatment device using same
Wadi et al. Formulation, adsorption performance, and mechanical integrity of triamine grafted binder-based mesoporous silica pellets for CO2 capture
JP2013154302A (en) Adsorption sheet
JP2015029770A (en) Air cleaning filter medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742959

Country of ref document: EP

Kind code of ref document: A1