WO2013114800A1 - Fuel cell and fuel cell system - Google Patents

Fuel cell and fuel cell system Download PDF

Info

Publication number
WO2013114800A1
WO2013114800A1 PCT/JP2013/000186 JP2013000186W WO2013114800A1 WO 2013114800 A1 WO2013114800 A1 WO 2013114800A1 JP 2013000186 W JP2013000186 W JP 2013000186W WO 2013114800 A1 WO2013114800 A1 WO 2013114800A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
fuel cell
water channel
anode catalyst
cathode catalyst
Prior art date
Application number
PCT/JP2013/000186
Other languages
French (fr)
Japanese (ja)
Inventor
博晶 鈴木
安尾 耕司
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013114800A1 publication Critical patent/WO2013114800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04171Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal using adsorbents, wicks or hydrophilic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and a fuel cell system.
  • a fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency.
  • the main features of the fuel cell are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good.
  • fuel cells can be used effectively for the chemical energy of fuel and have environmentally friendly characteristics, so they are expected as energy supply systems for the 21st century, and are widely used in space, automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used for various applications from scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
  • Patent Document 1 discloses a solid polymer type comprising a plurality of membrane electrode assemblies (cells) arranged in a plane and an interconnector that connects one anode and the other cathode of adjacent membrane electrode assemblies.
  • a fuel cell is disclosed.
  • Patent Document 2 discloses a fuel cell including a cell stack in which a plurality of cells are arranged in a plane, and a mesh-shaped condensed water retaining material arranged on the cathode side of the cell stack.
  • Patent Document 3 discloses a fuel cell including a plurality of planarly arranged cell units and a water reservoir formed by protruding an electrolyte membrane to the anode side between the cell units. .
  • Patent Document 4 includes an electrode non-formation region including a thin film region having a thickness smaller than that of the electrode formation region without a cathode provided on the surface, and an electrode formation region having a cathode provided on the surface.
  • a fuel cell with an electrolyte membrane is disclosed.
  • the electrolyte membrane sandwiched between the anode and the cathode functions as an ion exchange membrane that moves protons between the anode catalyst layer and the cathode catalyst layer.
  • the material constituting the electrolyte membrane a material that exhibits good ion conductivity in a wet state is used.
  • the cathode catalyst layer and the anode catalyst layer may contain an ion exchange resin of the same material as the electrolyte membrane in order to realize good proton transmission between the electrolyte membrane and the catalyst particles. Therefore, it is desirable that the electrolyte membrane, the anode catalyst layer, and the cathode catalyst layer be maintained in a wet state.
  • the present invention has been made in view of these problems, and an object thereof is to provide a technique for improving the power generation performance of a fuel cell.
  • the fuel cell includes an electrolyte membrane, a membrane electrode assembly composed of an electrolyte membrane, a cathode catalyst layer provided on one surface of the electrolyte membrane, and an anode catalyst layer provided on the other surface of the electrolyte membrane. Comprising a water channel portion made of different materials, connecting the cathode catalyst layer and the region near the anode catalyst layer of the electrolyte membrane, and allowing water contained in the cathode catalyst layer to move to the region near the anode catalyst layer.
  • the power generation performance of the fuel cell can be improved.
  • FIG. 1 is a perspective view showing an appearance of a fuel cell according to Embodiment 1.
  • FIG. FIG. 2A is a schematic cross-sectional view along the line AA in FIG.
  • FIG. 2B is a plan view showing a schematic structure of the membrane electrode assembly and the connection part of the fuel cell according to Embodiment 1.
  • FIG. FIG. 3 is an enlarged view of a region B surrounded by a broken line in FIG. 4 (A) to 4 (C) are process diagrams showing a method for manufacturing a fuel cell according to Embodiment 1.
  • FIG. 5 (A) to 5 (C) are process diagrams showing a method for manufacturing a fuel cell according to Embodiment 1.
  • FIG. 6 (A) and 6 (B) are process charts showing the fuel cell manufacturing method according to Embodiment 1.
  • FIG. 6 is a cross-sectional view partially showing a schematic structure of a fuel cell according to Embodiment 2.
  • FIG. 8A to 8D are process diagrams showing a method for manufacturing a fuel cell according to the second embodiment.
  • FIG. 9A is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from above.
  • FIG. 9B is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from below.
  • FIG. 10A is a front view showing a schematic structure inside the housing of the fuel cell system according to Embodiment 3.
  • FIG. 10B is a perspective view showing a schematic structure inside the housing of the fuel cell system according to the third embodiment.
  • FIG. 11A is an enlarged plan view of the reinforcing portion.
  • FIG. 11B is a schematic cross-sectional view along the line EE in FIG.
  • FIG. 11C is a schematic cross-sectional view along the line FF in FIG.
  • FIG. 1 is a perspective view showing an appearance of a fuel cell according to Embodiment 1.
  • FIG. 2A is a schematic cross-sectional view along the line AA in FIG.
  • FIG. 2B is a plan view showing a schematic structure of the membrane electrode assembly and the connection part of the fuel cell according to Embodiment 1.
  • FIG. 3 is an enlarged view of a region B surrounded by a broken line in FIG.
  • the cathode catalyst layer 104 is indicated by a broken line, and the cathode catalyst layer 104 is seen through.
  • the fuel cell 10 includes a plurality of membrane electrode assemblies (cells) 100, a connection portion 120, a cathode housing 12, and an anode housing 14.
  • the fuel cell 10 of the present embodiment includes the five membrane electrode assemblies 100, the number of the membrane electrode assemblies 100 is not particularly limited, and may be one or more than five.
  • Each membrane electrode assembly 100 includes an electrolyte membrane 102, a cathode catalyst layer 104 provided on one surface of the electrolyte membrane 102, and an anode catalyst layer 106 provided on the other surface of the electrolyte membrane 102.
  • a cell is configured by sandwiching the electrolyte membrane 102 between the cathode catalyst layer 104 and the anode catalyst layer 106.
  • air as an oxidant is supplied to the cathode catalyst layer 104
  • hydrogen as a fuel gas is supplied to the anode catalyst layer 106.
  • the cell generates electricity by an electrochemical reaction between hydrogen and oxygen in the air.
  • the electrolyte membrane 102 preferably exhibits good ionic conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the anode catalyst layer 106 and the cathode catalyst layer 104.
  • the electrolyte membrane 102 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer, and for example, a sulfonic acid type perfluorocarbon polymer, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group. Etc. can be used.
  • sulfonic acid type perfluorocarbon polymer examples include Nafion (manufactured by DuPont: registered trademark) 112.
  • non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone.
  • the thickness of the electrolyte membrane 102 is, for example, 10 to 200 ⁇ m.
  • the cathode catalyst layer 104 and the anode catalyst layer 106 have ion-exchange resin and catalyst particles, and possibly carbon particles, respectively.
  • the ion exchange resin included in the cathode catalyst layer 104 and the anode catalyst layer 106 connects the catalyst particles and the electrolyte membrane 102 and has a role of transmitting protons therebetween.
  • This ion exchange resin can be formed of the same polymer material as the electrolyte membrane 102.
  • catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned.
  • the thickness of the cathode catalyst layer 104 and the anode catalyst layer 106 is, for example, 10 to 40 ⁇ m.
  • the plurality of membrane electrode assemblies 100 are arranged in a plane.
  • a connecting portion 120 is disposed between adjacent membrane electrode assemblies 100, and adjacent membrane electrode assemblies 100 are electrically connected via an interconnector 122 of the connecting portion 120.
  • the anode catalyst layer 106 of one membrane electrode assembly 100a and the cathode catalyst layer 104 of the other membrane electrode assembly 100b are respectively current collectors. (Not shown) is connected.
  • the plurality of membrane electrode assemblies 100 can also have a stacked structure or the like.
  • the fuel cell 10 of the present embodiment has a module structure having a plurality of cells, the fuel cell 10 may be a single cell.
  • the connecting portion 120 includes an interconnector 122, a first insulating layer 124, a second insulating layer 126, a water channel portion 128, a waterproof portion 130, and a gas seal portion 132.
  • the connecting portion 120 will be described in detail with reference to FIG. 3, taking the connecting portion 120 a disposed between the membrane electrode assembly 100 b and the membrane electrode assembly 100 c as an example.
  • the plurality of membrane electrode assemblies 100 and the plurality of water channel portions 128 correspond one-to-one, and each water channel portion 128 corresponds to the cathode catalyst in the corresponding membrane electrode assembly 100. Water transfer from the layer 104 to the anode catalyst layer vicinity region 102a is enabled.
  • the membrane electrode assembly 100b corresponds to the water channel portion 128 of the outer connection portion 140
  • the membrane electrode assembly 100c corresponds to the water channel portion 128 of the connection portion 120a.
  • the interconnector 122 is made of a conductive material.
  • the conductive material include carbon materials such as carbon fiber, graphite sheet, carbon paper, and carbon powder, and metal materials such as platinum, gold, stainless steel, titanium, and nickel.
  • the interconnector 122 has gas impermeability. Since the interconnector 122 has gas impermeability, the occurrence of cross leaks via the interconnector 122 can be suppressed.
  • the anode catalyst layer 106 of the membrane electrode assembly 100b is connected to one end (the lower end in FIG. 3) of the interconnector 122 of the connecting portion 120a.
  • the cathode catalyst layer 104 of the membrane electrode assembly 100c is connected to the other end (the upper end in FIG.
  • the anode catalyst layer 106 of the membrane electrode assembly 100b and the cathode catalyst layer 104 of the membrane electrode assembly 100c are electrically connected.
  • the cathode catalyst layer 104 and the anode catalyst layer 106 may be connected to the interconnector 122 via current collectors (not shown).
  • a first insulating layer 124 is interposed between the membrane electrode assembly 100 b and the interconnector 122.
  • a second insulating layer 126 is interposed between the membrane electrode assembly 100 c and the interconnector 122.
  • the first insulating layer 124 and the second insulating layer 126 are made of an insulating material such as a general plastic resin such as phenol resin, vinyl resin, polyethylene resin, polypropylene resin, polystyrene resin, polyethylene terephthalate resin, urea resin, and fluorine resin. It is formed.
  • the first insulating layer 124 and the second insulating layer 126 have gas impermeability and waterproofness.
  • first insulating layer 124 and the second insulating layer 126 are gas-impermeable, occurrence of cross leak through the first insulating layer 124 and the second insulating layer 126 can be suppressed. Further, since the first insulating layer 124 is waterproof, it is possible to suppress water in the electrolyte membrane 102 from leaking to the interconnector 122 side through the first insulating layer 124. Moreover, since the 2nd insulating layer 126 has waterproofness, it can suppress that the water in the water channel part 128 leaks out to the interconnector 122 side via the 2nd insulating layer 126.
  • the anode catalyst layer 106 of the membrane electrode assembly 100b extends beyond the first insulating layer 124 to the interconnector 122 of the connecting portion 120a on the lower surface side of the membrane electrode assembly 100b, and is connected to the interconnector 122. In contact. Further, the cathode catalyst layer 104 of the membrane electrode assembly 100c extends beyond the second insulating layer 126 to the interconnector 122 of the connecting portion 120a on the upper surface side of the membrane electrode assembly 100c, and contacts the interconnector 122. Yes.
  • the cathode catalyst layer 104 of the membrane electrode assembly 100 b is located near the boundary between the electrolyte membrane 102 and the first insulating layer 124 at the end on the membrane electrode assembly 100 c side. Therefore, the cathode catalyst layer 104 of the membrane electrode assembly 100b and the interconnector 122 of the connection part 120a are not in contact with each other. Further, the anode catalyst layer 106 of the membrane electrode assembly 100 c is located near the boundary between the electrolyte membrane 102 and the gas seal portion 132 at the end on the membrane electrode assembly 100 b side. Therefore, the anode catalyst layer 106 of the membrane electrode assembly 100c and the interconnector 122 of the connecting portion 120a are not in contact with each other.
  • a water channel portion 128 is provided between the second insulating layer 126 and the membrane electrode assembly 100c.
  • the water channel portion 128 has a function of connecting the cathode catalyst layer 104 and the anode catalyst layer vicinity region 102a of the electrolyte membrane 102 and allowing movement of water contained in the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a.
  • the water contained in the cathode catalyst layer 104 is, for example, water generated in the cathode catalyst layer 104 by an electrochemical reaction, water moved from the electrolyte membrane 102 to the cathode catalyst layer 104, or the like.
  • water can be transferred from the cathode catalyst layer 104 containing a large amount of water to the anode catalyst layer vicinity region 102 a of the electrolyte membrane 102 that is easy to dry, and the anode catalyst is passed through the electrolyte membrane 102. Water can also be transferred to the layer 106. Thereby, drying of the anode catalyst layer vicinity region 102a and the anode catalyst layer 106 of the electrolyte membrane 102 can be suppressed.
  • the thickness of the water channel part 128, that is, the distance from the interface between the water channel part 128 and the second insulating layer 126 to the interface between the water channel part 128 and the waterproof part 130 is, for example, 100 to 500 ⁇ m.
  • the anode catalyst layer vicinity region 102 a is, for example, a plane that bisects the electrolyte membrane 102 in the thickness direction of the electrolyte membrane 102, that is, a plane that is equidistant from the cathode catalyst layer 104 and the anode catalyst layer 106 ( Hereinafter, this plane will be referred to as a central plane as appropriate) and at least a part of a region closer to the anode catalyst layer 106 side.
  • the water channel part 128 of this embodiment has a water absorbing material.
  • a water absorbing material an inorganic water absorbing material such as silica gel, or an organic water absorbing material such as cellulose or rayon is used.
  • water is generated in the cathode catalyst layer 104 by an electrochemical reaction.
  • the gradient of water content is usually high on the cathode catalyst layer 104 side and low on the anode catalyst layer vicinity region 102a side.
  • water can be transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a with excellent responsiveness.
  • the water channel part 128 may be configured by a space surrounded by the second insulating layer 126 and a waterproof part 130 and a gas seal part 132 described later. In this case, water can be transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a using a capillary phenomenon or the like or using air blown by a blower described later.
  • the water channel portion 128 is disposed on the side surface side of the membrane electrode assembly 100c.
  • the end surface 128a (upper surface in FIG. 3) on the cathode catalyst layer 104 side is in contact with the cathode catalyst layer 104
  • the side surface 128b on the anode catalyst layer side end is in contact with the anode catalyst layer vicinity region 102a.
  • a substantially plate-shaped waterproof part 130 is interposed between the water channel part 128 and the membrane electrode assembly 100c.
  • the waterproof portion 130 can more reliably ensure the flow of water from the cathode catalyst layer 104 side to the anode catalyst layer vicinity region 102a side in the water channel portion 128, so that the water in the water channel portion 128 can be more reliably supplied to the anode catalyst.
  • the layer vicinity region 102a can be reached.
  • the waterproof part 130 has gas impermeability and insulation. Thereby, generation
  • the waterproof part 130 may be made of the same material as the first insulating layer 124 and the second insulating layer 126.
  • the waterproof portion 130 of the present embodiment is in contact with the region of the side surface of the water channel portion 128 excluding the side surface 128b at the anode catalyst layer side end portion and the side surface 128c at the cathode catalyst layer side end portion. That is, the side surface 128b of the end portion on the anode catalyst layer side is in contact with the anode catalyst layer vicinity region 102a of the electrolyte membrane 102, and the side surface 128c of the cathode catalyst layer side end portion is the region near the cathode catalyst layer of the electrolyte membrane 102. 102b is touched.
  • the water channel portion 128 is in contact with the cathode catalyst layer vicinity region 102b, water in the cathode catalyst layer vicinity region 102b having a relatively large water content can also be transferred to the anode catalyst layer vicinity region 102a. Therefore, drying of the anode catalyst layer vicinity region 102a and the anode catalyst layer 106 can be further suppressed.
  • the waterproof part 130 is disposed so as to be embedded in the electrolyte membrane 102. Therefore, the joint surface between the waterproof portion 130 and the water channel portion 128 and the joint surface between the water channel portion 128 and the electrolyte membrane 102 are located on the same plane.
  • the cathode catalyst layer vicinity region 102b refers to, for example, at least a part of the region closer to the cathode catalyst layer 104 than the center surface of the electrolyte membrane 102 described above.
  • the anode catalyst layer vicinity region 102a By adjusting the contact area between at least one of the cathode catalyst layer 104, the anode catalyst layer vicinity region 102a, and the cathode catalyst layer vicinity region 102b and the water passage portion 128, adjusting the water absorption performance of the water passage portion 128, and the like, the anode catalyst layer vicinity region 102a.
  • the amount of water transferred to the water can be controlled. Thereby, the occurrence of flooding in the anode catalyst layer 106 can be suppressed.
  • the end surface 128d (the lower surface in FIG. 3) on the anode catalyst layer side of the water channel portion 128 is covered with a substantially plate-like gas seal portion 132.
  • the gas seal part 132 is a seal member that suppresses gas movement between the anode catalyst layer 106 side and the cathode catalyst layer 104 side via the water channel part 128, and the gas seal part 132 passes the water channel part 128 via the water channel part 128.
  • the occurrence of cross leak can be suppressed. It is preferable that the gas seal part 132 has insulation and waterproofness. Generation
  • production of a short circuit can be suppressed because the gas-seal part 132 has insulation.
  • the gas seal part 132 has waterproofness, leakage of water from the water channel part 128 to the fuel gas chamber 18 described later can be suppressed.
  • the gas seal portion 132 and the second insulating layer 126 are integral. Therefore, it can be said that the second insulating layer 126 has a function of suppressing the occurrence of cross leak through the water channel portion 128. Thereby, the increase in the number of parts of the fuel cell 10 can be suppressed.
  • the water channel portion 128 is made of a material different from that of the electrolyte membrane 102.
  • the water channel part 128 may have non-proton conductivity. Thereby, it is possible to suppress the conduction of protons from the anode catalyst layer 106 to the cathode catalyst layer 104 through the water channel portion 128, and the transfer of water from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a is prevented. It is possible to suppress obstruction.
  • the water channel portion 128 may be a proton conductive material having a proton conductivity lower than that of the electrolyte membrane 102.
  • the proton conductivity of the material constituting the water channel portion 128 is lower than that of the electrolyte membrane 102, the proportion of protons passing through the water channel portion 128 during power generation is smaller than that of the electrolyte membrane 102. Therefore, compared to the case where the water channel portion 128 is made of the same proton conductivity material as that of the electrolyte membrane 102, it is possible to suppress the hindering of water transfer from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a. it can.
  • the outer connection part 140 includes a second insulating layer 126, a water channel part 128, a waterproof part 130, and a gas seal part 132.
  • a first insulating layer 124 is interposed between the side surface of the other outermost membrane electrode assembly 100 a and the side surfaces of the cathode housing 12 and the anode housing 14.
  • the second insulating layer 126 of the outer connecting portion 140 located on one outermost side and the first insulating layer 124 located on the other outermost side are composed of the cathode housing 12 and the anode.
  • the housing 14 is fixed in a housing space formed by the cathode housing 12 and the anode housing 14.
  • a gasket or the like may be disposed at the joint between the cathode housing 12 and the anode housing 14 or at the joint between the first insulating layer 124 and the second insulating layer 126 in order to ensure gas sealability. .
  • the cathode housing 12 is a member constituting a part of the exterior of the fuel cell 10 and is disposed so as to face the cathode catalyst layer 104.
  • the cathode housing 12 is provided with a plurality of openings 12a for taking in air from the outside.
  • An air chamber 16 through which air flows is provided between the cathode housing 12 and the cathode catalyst layer 104.
  • the anode housing 14 is a member constituting a part of the exterior of the fuel cell 10 and is disposed so as to face the anode catalyst layer 106. Between the anode housing 14 and the anode catalyst layer 106, a fuel gas chamber 18 for distributing fuel gas supplied from the outside to the anode catalyst layer 106 is provided.
  • the anode housing 14 is provided with a fuel supply port (not shown), and fuel gas is supplied from an external fuel cartridge.
  • each membrane electrode assembly 100 has a substantially rectangular shape when viewed from a direction perpendicular to the main surface of the membrane electrode assembly 100 (see FIG. 2B), and the connection portion of the membrane electrode assembly 100
  • a water channel portion 128 extends over the entire side surface in contact with 120 or the outer connecting portion 140.
  • the water channel portion 128 may be disposed on a part of the side surface for the purpose of adjusting the amount of water transferred to the anode catalyst layer vicinity region 102a.
  • the water channel part 128 is provided in the connection part 120. That is, the water channel part 128 is incorporated in the connection part 120. More specifically, the water channel portion 128 is disposed in a space formed by reducing the thickness of the second insulating layer 126. Therefore, an increase in the size of the fuel cell 10 due to the provision of the water channel portion 128 can be suppressed.
  • the water channel portion 128 may also be provided between the first insulating layer 124 and the membrane electrode assembly 100b. That is, each membrane electrode assembly 100 may be sandwiched between two water channel portions 128. In this case, the water channel portion 128 is disposed in a space formed by reducing the thickness of the first insulating layer 124.
  • the water channel portion 128 may be provided on the side surface of the membrane electrode assembly 100 extending perpendicularly to the extending direction of the connecting portion 120.
  • FIG. 4C is a schematic cross-sectional view taken along the line CC of FIG. 4B. 5A to 5C, FIG. 6A, and FIG. 6B, the three membrane electrode assemblies 100 including the outermost membrane electrode assembly 100b in the fuel cell 10 are illustrated. Is shown as an example.
  • the part 128 and the waterproof part 130 are laminated in this order.
  • the crimping spacers 200 are disposed on both sides of the waterproof part 130. Then, the laminate is heat-pressed using a press. After the thermocompression bonding, the pressure bonding spacer 200 is removed. As a result, as shown in FIGS. 4B and 4C, the connecting portion 120 is formed.
  • the connecting portions 120 are arranged on the base 210 with a predetermined interval.
  • the connection part 120 is arrange
  • FIG. An outer connection portion 140 is disposed on one outermost side of the array of the connection portions 120.
  • the outer connecting portion 140 is a laminated body of the second insulating layer 126 integrally provided with the gas seal portion 132, the water channel portion 128 in which the base material is impregnated with the water absorbing material, and the waterproof portion 130. It is manufactured in the same process as 120.
  • a first insulating layer 124 is disposed on the other outermost side of the arrangement of the connection portions 120 (see FIG. 2A).
  • an electrolyte solution containing an ion exchanger such as Nafion is applied to the space between the connection portions 120, and the electrolyte solution is dried to form the electrolyte membrane 102.
  • the cathode slurry 103 is applied to one main surface of the plate-like body constituted by the electrolyte membrane 102, the connection portion 120, and the outer connection portion 140, and dried.
  • the cathode slurry 103 is applied to the main surface on the side where the water channel portion 128 is exposed.
  • the anode slurry 105 is applied to the other main surface of the plate-like body and dried.
  • the anode slurry 105 is applied to the main surface on the side where the gas seal portion 132 is exposed.
  • predetermined regions of the cathode slurry 103 and the anode slurry 105 are removed by laser irradiation or the like to form the cathode catalyst layer 104 and the anode catalyst layer 106.
  • the cathode catalyst layer 104 and the anode catalyst layer 106 are provided with a masking material in a predetermined region before the cathode slurry 103 and the anode slurry 105 are applied, and after the cathode slurry 103 and the anode slurry 105 are applied, the masking material is removed. You may form by.
  • the cathode housing 12 is provided on the cathode catalyst layer 104 side, and the anode housing 14 is provided on the anode catalyst layer 106 side.
  • the fuel cell 10 is manufactured through the above steps.
  • the fuel cell 10 according to Embodiment 1 includes the membrane electrode assembly 100 including the electrolyte membrane 102, the cathode catalyst layer 104, and the anode catalyst layer 106, and the anode of the cathode catalyst layer 104 and the electrolyte membrane 102.
  • a water channel portion 128 that connects the catalyst layer vicinity region 102a and allows movement of water contained in the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a is provided.
  • FIG. 7 is a cross-sectional view partially showing the schematic structure of the fuel cell according to the second embodiment. Note that FIG. 7 corresponds to a region B surrounded by a broken line in FIG.
  • the waterproof part 130 is arranged so as to be embedded in the water channel part 128. Therefore, the joint surface between the waterproof portion 130 and the electrolyte membrane 102 and the joint surface (that is, the side surfaces 128b and 128c) between the water channel portion 128 and the electrolyte membrane 102 are located on the same plane.
  • An extension 134 made of the same material as the gas seal 132 is connected to the gas seal 132.
  • the extension part 134 is interposed between the end face 128d of the water channel part 128 on the anode catalyst layer 106 side and the anode catalyst layer 106, and the gas seal part 132 and the extension part 134 cause a cross leak and a short circuit via the water channel part 128. Occurrence is suppressed.
  • the gas seal portion 132 and the extension portion 134 may be integrated.
  • FIGS. 8 (A) to 8 (D) are process diagrams showing a method of manufacturing a fuel cell according to the second embodiment.
  • the manufacturing process of the connecting portion 120 which is different from the manufacturing method of the fuel cell according to the first embodiment, will be described.
  • a first insulating layer 124, an interconnector 122, and a second insulating layer 126 integrally provided with a gas seal portion 132 are laminated in this order. Further, the extension part 134 is stacked on the gas seal part 132, and the waterproof part 130 is stacked on the second insulating layer 126 with a predetermined distance from the extension part 134. Then, the laminate is heat-pressed using a press. Thereby, a complex 119 is formed as shown in FIG.
  • the space 127 surrounded by the second insulating layer 126, the waterproof portion 130, and the gas seal portion 132 in the composite body 119 is filled with a water absorbing material.
  • the water channel portion 128 is formed.
  • the water absorbing material is filled up to the same height as the upper surfaces of the waterproof part 130 and the extension part 134.
  • the connection part 120 is formed.
  • the steps shown in FIGS. 5A to 5C, FIG. 6A, and FIG. 6B are performed, and the fuel cell 10 is obtained.
  • the area of the end surface 128a of the water channel portion 128 on the cathode catalyst layer 104 side can be increased, so that the contact area between the water channel portion 128 and the cathode catalyst layer 104 is reduced.
  • a design larger than that of the first embodiment is possible. Therefore, the amount of water transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a can be further increased.
  • Embodiment 3 is a fuel cell system equipped with the fuel cell 10 according to Embodiment 1 or 2 described above.
  • the same components as those in the first or second embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • FIG. 9A is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from above.
  • FIG. 9B is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from below.
  • FIG. 10A is a front view showing a schematic structure inside the housing of the fuel cell system according to Embodiment 3.
  • FIG. 10B is a perspective view showing a schematic structure inside the housing of the fuel cell system according to the third embodiment.
  • the membrane electrode assembly 100 and the water channel 128 of the fuel cell 10 are schematically shown.
  • the fuel cell system 1 includes a housing 300, a plurality of fuel cells 10, a fuel storage unit 330, a fuel supply unit 332, a blower unit 340, a rectifying unit 350, and a control unit 370.
  • the fuel cell system 1 of the present embodiment is a passive fuel cell system that does not use an auxiliary machine such as a pump for supplying fuel.
  • the housing 300 contains a plurality of fuel cells 10, a fuel storage unit 330, a fuel supply unit 332, a blower unit 340, a rectifying unit 350, and a control unit 370 in a compact form that is easy to carry. As shown in FIG. 9A, most of the housing 300 is integrally formed, but for convenience, it is mainly divided into a base portion 310 and a protruding portion 320.
  • the base portion 310 has a rectangular parallelepiped shape, and leg portions 312 for mounting on a setting surface such as a desk are provided at both longitudinal ends of the bottom surface.
  • An air inlet 314 is provided on the bottom surface of the base 310, and outside air is taken into the base 310 through the air inlet 314.
  • a region where the air inlet 314 is provided is a concave portion with respect to the leg 312, and the leg 312 is in contact with the installation surface and between the installation surface and the air intake 314.
  • a gap is created. Thereby, outside air can be taken in from the bottom surface of the base 310 in a state where the housing 300 is placed on the installation surface.
  • the number and position of the air inlets 314 are appropriately set according to the form of the air blowing unit 340 described later.
  • the upper surface of the base 310 is divided into a region M along one side along the longitudinal direction and a region N along the other side along the longitudinal direction (see FIG. 9A).
  • the region M two sets of exhaust ports 316a and 316b are provided.
  • the region N two sets of exhaust ports (not shown) are provided as in the region M.
  • the protruding portion 320 protrudes above the base portion 310 in a region sandwiched between the region M and the region N.
  • the casing 300 has an inverted T shape when viewed from the side. Openings 318m, 318n, 318o and 318p corresponding to the installation area of the fuel cell 10 provided on the region M side are provided on one side of the protrusion 320 (region M side). Similarly, openings 318m ′, 318n ′, 318o ′ and 318p ′ corresponding to the installation area of the fuel cell 10 provided on the region N side are provided on the other side (region N side) of the protrusion 320. It has been.
  • the openings 318m, 318n, 318o, and 318p are arranged in a 2 ⁇ 2 matrix, and the openings 318m and 318o are arranged in the vicinity of the exhaust port 316a and the exhaust port 316b, respectively.
  • the opening 318n is located above the opening 318m.
  • the opening 318p is located above the opening 318o.
  • a reinforcing portion 301a is provided between the opening 318m and the opening 318n and between the opening 318o and the opening 318p.
  • the reinforcing portion 301a extends in a direction orthogonal to the blowing direction from the exhaust ports 316a and 316b (the direction of the arrow X in FIG. 9A).
  • the fuel cell 10 can be held more stably in the housing 300. Details of the reinforcing portion 301a will be described later.
  • Reinforcing portions 301b are provided between the opening 318m and the opening 318o and between the opening 318n and the opening 318p.
  • the reinforcement part 301b is extended along the ventilation direction from the exhaust port 316a, 316b.
  • a plurality of fuel cells 10, a fuel storage unit 330, and a fuel supply unit 332 are stored in the protrusion 320.
  • the fuel storage unit 330 stores a hydrogen storage alloy.
  • the hydrogen storage alloy can store hydrogen and release the stored hydrogen, and is, for example, rare earth-based MmNi 4.32 Mn 0.18 Al 0.1 Fe 0.1 Co 0.3 (Mm is Misch metal).
  • the hydrogen storage alloy is not limited to this, but other rare earth alloys such as La—Ni alloys, Ti—Mn alloys, Ti—Fe alloys, Ti—Zr alloys, Mg—Ni alloys. Zr—Mn alloy or the like may be used.
  • the hydrogen storage alloy can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the above-mentioned hydrogen storage alloy powder and compression molding with a press. If necessary, a sintering process may be performed after the compression molding.
  • the hydrogen storage alloy may not be in the form of a pellet, but may be one in which the fuel storage space is filled with a powder of the hydrogen storage alloy.
  • the shape of the hydrogen storage alloy is not particularly limited.
  • Fuel cells 10 are disposed on both main surfaces of the fuel storage unit 330, respectively.
  • the four fuel cells 10 are arranged in a plane on both main surfaces of the fuel storage portion 330 so as to overlap the four openings 318 provided in the protruding portion 320 of the housing 300.
  • the fuel cell 10 is a fuel cell according to the first embodiment or the second embodiment described above.
  • the cathode protective layer 400 described later constitutes the cathode housing of the four fuel cells 10.
  • the fuel cell 10 is arranged so that the main surface on the cathode catalyst layer 104 side faces the outside of the fuel cell system 1.
  • the cathode protective layer 400 disposed on the cathode catalyst layer 104 side is formed of a flat plate-like member, and has a plurality of openings 401 like the cathode housing 12 (see FIG. 11A). These openings 401 provide air permeability between the cathode catalyst layer 104 and the outside of the fuel cell.
  • the material of the cathode protective layer 400 is not particularly limited, and examples thereof include insulators such as anodized aluminum and polyacrylate.
  • a gas-liquid separation membrane (not shown) may be provided between the cathode protective layer 400 and the cathode catalyst layer 104.
  • the main surface of the fuel cell 10 on the cathode catalyst layer 104 side faces outward. Therefore, the main surface of the fuel cell 10 blown by the blower 340 is the main surface on the cathode catalyst layer 104 side. Therefore, the supply of air as an oxidant gas and the supply of air for cooling the fuel cell 10 can be achieved by the blower 340.
  • a temperature detection unit (not shown) is provided on the main surface of the fuel cell 10 on the cathode catalyst layer 104 side. The temperature of the fuel cell 10 is measured by the temperature detector, and the temperature information of the fuel cell 10 obtained by the temperature detector is transmitted to the controller 370 described later.
  • the fuel supply unit 332 includes a hydrogen supply path and a regulator (both not shown) as main components.
  • One end of the hydrogen supply path communicates with the outlet of the fuel storage unit 330, and the other end communicates with the anode catalyst layer 106 side of the fuel cell 10.
  • a regulator is provided in the middle of the hydrogen supply path. When the hydrogen is released from the hydrogen storage alloy by the regulator, the pressure of the hydrogen supplied to the fuel cell 10 is reduced. Thereby, the anode catalyst layer 106 of the fuel cell 10 is protected.
  • the base 310 mainly accommodates a blower 340, a rectifier 350, and a controller 370.
  • the control unit 370 is mounted on a member that forms the bottom surface of the base 310.
  • the control unit 370 includes a CPU, a ROM, a memory, and the like as a hardware configuration, and controls the operation of the air blowing unit 340. For example, the control unit 370 starts the blowing by the blowing unit 340 when the temperature measured by the temperature detection unit reaches a predetermined high temperature.
  • the blower 340 is installed above the controller 370.
  • the blower 340 blows air from a direction orthogonal to the main surface of the fuel cell 10 on the cathode catalyst layer 104 side.
  • two sets of blowers 342 that generate a swirling flow are arranged in parallel in the longitudinal direction of the base 310 as the blower 340.
  • the blower 342 is an axial fan (propeller fan). The wind generated by one of the blowers 342 is blown to both the exhaust port 316a on the region M side and the exhaust port 316a on the region N side with the projecting portion 320 as an axis of symmetry and the exhaust port located in line symmetry.
  • the wind generated by the other blower 342 is blown to both the exhaust port 316b on the region M side and the exhaust port 316b on the region N side with the projecting portion 320 as an axis of symmetry and the exhaust port located in line symmetry.
  • the configuration is simplified by taking charge of the air to the fuel cells 10 respectively provided on the two main surfaces of the fuel storage portion 330 with one blower, and the fuel cell system 1 is made compact and saves power. be able to.
  • the rectifying unit 350 is provided above the air blowing unit 340.
  • the rectifying unit 350 makes an angle so that the direction of the wind sent from the air blowing unit 340 faces the main surface of the fuel cell 10 on the cathode catalyst layer 104 side.
  • it has a rectifying plate 352 having a shape that reflects the swirling flow generated by the blower 340 toward the main surface of the fuel cell 10 on the cathode catalyst layer 104 side.
  • the blower 340 blows along the main surface of the fuel cell 10 on the cathode catalyst layer 104 side.
  • the arrow X represents the wind.
  • the fuel cell 10 is arranged such that the extending direction of the water channel portion 128 is substantially perpendicular to the blowing direction of the blowing unit 340. That is, the series connection direction of the membrane electrode assembly 100 and the blowing direction of the blowing unit 340 are parallel. Further, each combination Z of the membrane electrode assembly 100 and the water channel portion 128 (for example, the combination of the membrane electrode assembly 100b and the water channel portion 128 of the outer connection portion 140 shown in FIG.
  • the membrane electrode assembly 100 In combination with the water channel portion 128 of the portion 120a), the membrane electrode assembly 100 is disposed on the leeward side of the air blowing unit 340, and the water channel portion 128 is disposed on the leeward side of the air blowing unit 340 in the air blowing direction. Thereby, the water contained in the cathode catalyst layer 104 can be moved to the water channel part 128 by the air blowing of the air blowing part 340.
  • the interconnector 122 is connected to the cathode.
  • the connecting layer 120 may be protruded upward from the catalyst layer 104, or a bank portion protruding above the cathode catalyst layer 104 may be provided on the end surface of the connecting portion 120.
  • FIG. 11A is an enlarged schematic plan view of the reinforcing portion 301a and the reinforcing portion 301b.
  • FIG. 11B is a schematic cross-sectional view along the line EE in FIG.
  • FIG. 11C is a cross-sectional view taken along the line FF in FIG.
  • the arrow X represents the wind.
  • the thickness of the reinforcing part 301a is thinner than the thickness of the reinforcing part 301b, the reinforcing part 301b is convex on the fuel cell 10 side, and the reinforcing part 301a and the reinforcing part 301b are on the opposite side (outside) from the fuel cell 10. It is designed so that there is no step between them. Thereby, a flow path 410 serving as a path for the wind X is formed between the reinforcing portion 301 a and the cathode protective layer 400.
  • the reinforcing portion 301a is above the reinforcing portion 301b (the reinforcing portion 301b is more fuel cell than the reinforcing portion 301a). (10 side) may be arranged. In this case, a flow path 410 equivalent to the thickness of the reinforcing portion 301b can be formed between the reinforcing portion 301a and the cathode protective layer 400.
  • the water contained in the cathode catalyst layer 104 can be moved to the water channel portion 128 using the air blow for supplying air to the cathode catalyst layer 104 of the fuel cell 10. .
  • water can be efficiently transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a.
  • the side surface 128b of the end portion of the water channel portion 128 on the anode catalyst layer side is in contact with the anode catalyst layer vicinity region 102a, and the water channel portion 128 and the anode catalyst layer 106 are not in contact with each other. If 128 is capable of flowing water and has gas impermeability, the side surface 128b may be in contact with the anode catalyst layer 106 in addition to the anode catalyst layer vicinity region 102a, or only on the anode catalyst layer 106. You may touch.
  • SYMBOLS 1 Fuel cell system 10 Fuel cell, 100 Membrane electrode assembly, 102 Electrolyte membrane, 102a Anode catalyst layer vicinity area, 102b Cathode catalyst layer vicinity area, 104 Cathode catalyst layer, 106 Anode catalyst layer, 122 Interconnector, 124 1st Insulating layer, 126, second insulating layer, 128 waterway part, 130 waterproofing part, 132 gas seal part, 340 air blowing part.
  • the present invention can be used for fuel cells and fuel cell systems.

Abstract

A fuel cell (10) is provided with: a film electrode bonded body (100), which is configured of an electrolyte film (102), a cathode catalyst layer (104), which is provided on one surface of the electrolyte film (102), and an anode catalyst layer (106), which is provided on the other surface of the electrolyte film (102); and a water channel (128), which is configured of a material different from that of the electrolyte film (102), connects the cathode catalyst layer (104), and an anode catalyst layer neighborhood region (102a) of the electrolyte film (102) to each other, and permits water contained in the cathode catalyst layer (104) to move to the anode catalyst layer neighborhood region (102a).

Description

燃料電池及び燃料電池システムFuel cell and fuel cell system
 本発明は、燃料電池及び燃料電池システムに関する。 The present invention relates to a fuel cell and a fuel cell system.
 燃料電池は、水素と酸素とから電気エネルギーを発生させる装置であり、高い発電効率を得ることができる。燃料電池の主な特徴としては、従来の発電方式のように熱エネルギーや運動エネルギーの過程を経ることがない直接発電であるので、小規模でも高い発電効率が期待できること、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性が良いことなどが挙げられる。このように、燃料電池は燃料のもつ化学エネルギーを有効に利用でき、環境にやさしい特性を備えるため、21世紀を担うエネルギー供給システムとして期待され、宇宙用から自動車用、携帯機器用まで、また大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。 A fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency. The main features of the fuel cell are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good. In this way, fuel cells can be used effectively for the chemical energy of fuel and have environmentally friendly characteristics, so they are expected as energy supply systems for the 21st century, and are widely used in space, automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used for various applications from scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
 特許文献1には、平面配列された複数の膜電極接合体(セル)と、隣接する膜電極接合体の一方のアノードと他方のカソードとを接続するインターコネクタと、を備えた固体高分子形の燃料電池が開示されている。また、特許文献2には、複数のセルが平面配置されたセルスタックと、セルスタックのカソード側に配置されたメッシュ状の結露水保持材とを備えた燃料電池が開示されている。また、特許文献3には、平面的に複数配列されたセルユニットと、セルユニット間で電解質膜がアノード側に突出することで形成された水分貯留部とを備えた燃料電池が開示されている。また、特許文献4には、表面にカソードが設けられておらず電極形成領域よりも膜厚の薄い薄膜領域を含む電極非形成領域と、表面にカソードが設けられている電極形成領域とを有する電解質膜を備えた燃料電池が開示されている。 Patent Document 1 discloses a solid polymer type comprising a plurality of membrane electrode assemblies (cells) arranged in a plane and an interconnector that connects one anode and the other cathode of adjacent membrane electrode assemblies. A fuel cell is disclosed. Patent Document 2 discloses a fuel cell including a cell stack in which a plurality of cells are arranged in a plane, and a mesh-shaped condensed water retaining material arranged on the cathode side of the cell stack. Further, Patent Document 3 discloses a fuel cell including a plurality of planarly arranged cell units and a water reservoir formed by protruding an electrolyte membrane to the anode side between the cell units. . Further, Patent Document 4 includes an electrode non-formation region including a thin film region having a thickness smaller than that of the electrode formation region without a cathode provided on the surface, and an electrode formation region having a cathode provided on the surface. A fuel cell with an electrolyte membrane is disclosed.
特開2003-197225号公報JP 2003-197225 A 国際公開第2007/105458号パンフレットInternational Publication No. 2007/105458 Pamphlet 特開2008-243696JP2008-243696 特開2008-258142JP 2008-258142 A
 上述した固体高分子形燃料電池の膜電極接合体では、例えばアノードに燃料としての水素が、カソードに酸化剤としての酸素が供給されることで起電力が生じ、発電する。その際、カソードには生成物として水が発生する。ここで、アノード触媒層及びカソード触媒層での反応は以下の通りとなる。
 アノード触媒層:H→2H+2e
 カソード触媒層:2H+(1/2)O+2e→H
In the above-described membrane / electrode assembly of a polymer electrolyte fuel cell, for example, hydrogen as fuel is supplied to the anode and oxygen as oxidant is supplied to the cathode to generate electromotive force and generate electric power. At that time, water is generated as a product at the cathode. Here, the reaction in the anode catalyst layer and the cathode catalyst layer is as follows.
Anode catalyst layer: H 2 → 2H + + 2e
Cathode catalyst layer: 2H + + (1/2) O 2 + 2e → H 2 O
 膜電極接合体において、アノードとカソードとの間に挟まれた電解質膜は、アノード触媒層とカソード触媒層との間でプロトンを移動させるイオン交換膜として機能する。一般に、電解質膜を構成する材料としては、湿潤状態において良好なイオン伝導性を示すものが用いられる。また、カソード触媒層及びアノード触媒層にも、電解質膜と触媒粒子との間の良好なプロトンの伝達を実現すべく、電解質膜と同じ材料のイオン交換樹脂が含まれることがある。したがって、電解質膜、アノード触媒層及びカソード触媒層は、湿潤状態が維持されていることが望ましい。電解質膜、アノード触媒層及びカソード触媒層の乾燥が進むと、いわゆるドライアウトが発生し、燃料電池の発電性能が低下してしまう。 In the membrane electrode assembly, the electrolyte membrane sandwiched between the anode and the cathode functions as an ion exchange membrane that moves protons between the anode catalyst layer and the cathode catalyst layer. Generally, as the material constituting the electrolyte membrane, a material that exhibits good ion conductivity in a wet state is used. Also, the cathode catalyst layer and the anode catalyst layer may contain an ion exchange resin of the same material as the electrolyte membrane in order to realize good proton transmission between the electrolyte membrane and the catalyst particles. Therefore, it is desirable that the electrolyte membrane, the anode catalyst layer, and the cathode catalyst layer be maintained in a wet state. When the electrolyte membrane, the anode catalyst layer, and the cathode catalyst layer are dried, so-called dry-out occurs, and the power generation performance of the fuel cell decreases.
 ここで、アノード触媒層からカソード触媒層にプロトンが伝達される際、プロトンとともに、アノード触媒層及び電解質膜のアノード触媒層近傍領域中の水もカソード触媒層側に移動する(電気化学浸透)。そのため、アノード触媒層と電解質膜のアノード触媒層近傍領域とは、カソード触媒層と電解質膜のカソード触媒層近傍領域とに比べて乾燥しやすかった。カソード触媒層では電気化学反応により水が生成され、この水の一部が逆拡散により電解質膜中をアノード側に移動するため、アノード側を多少は加湿することができる。しかしながら、燃料電池の発電性能のさらなる向上を図る上で、アノード側の乾燥抑制について改善の余地があった。上述の特許文献2の燃料電池では、カソードで生成された水が結露水保持材に吸収されて保持されるため、膜電極接合体のカソード側の乾燥は抑制することができたが、アノード側の乾燥抑制は不十分であった。また、特許文献3、4の燃料電池では、電解質膜で形成した水分貯留部もしくは溝部に、カソード側で生成された水を溜め、この水をアノード側の加湿に利用していた。そのため、水分貯留部もしくは溝部に水が溜まるまではアノード側の乾燥抑制効果が得られず、アノード側の乾燥を速やかに抑制したいという応答性の点で改善の余地があった。 Here, when protons are transferred from the anode catalyst layer to the cathode catalyst layer, water in the vicinity of the anode catalyst layer and the anode catalyst layer of the electrolyte membrane also moves to the cathode catalyst layer side together with the proton (electrochemical permeation). Therefore, the anode catalyst layer and the region near the anode catalyst layer of the electrolyte membrane were easier to dry than the cathode catalyst layer and the region near the cathode catalyst layer of the electrolyte membrane. In the cathode catalyst layer, water is generated by an electrochemical reaction, and a part of the water moves to the anode side through the reverse diffusion, so that the anode side can be somewhat humidified. However, in order to further improve the power generation performance of the fuel cell, there has been room for improvement in the suppression of drying on the anode side. In the fuel cell of Patent Document 2 described above, since water generated at the cathode is absorbed and retained by the dew condensation water retaining material, drying on the cathode side of the membrane electrode assembly can be suppressed. Inhibition of drying was insufficient. Further, in the fuel cells of Patent Documents 3 and 4, water generated on the cathode side is stored in a moisture storage portion or groove portion formed of an electrolyte membrane, and this water is used for humidification on the anode side. Therefore, until the water is accumulated in the moisture storage portion or the groove portion, the anode side drying suppression effect cannot be obtained, and there is room for improvement in terms of responsiveness that it is desired to quickly suppress the anode side drying.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、燃料電池の発電性能の向上を図る技術を提供することにある。 The present invention has been made in view of these problems, and an object thereof is to provide a technique for improving the power generation performance of a fuel cell.
 本発明のある態様は、燃料電池である。当該燃料電池は、電解質膜、電解質膜の一方の面に設けられたカソード触媒層、及び電解質膜の他方の面に設けられたアノード触媒層で構成される膜電極接合体と、電解質膜とは異なる材料で構成され、カソード触媒層と電解質膜のアノード触媒層近傍領域とを接続し、カソード触媒層に含まれる水のアノード触媒層近傍領域への移動を許容する水路部と、を備えることを特徴とする。 One aspect of the present invention is a fuel cell. The fuel cell includes an electrolyte membrane, a membrane electrode assembly composed of an electrolyte membrane, a cathode catalyst layer provided on one surface of the electrolyte membrane, and an anode catalyst layer provided on the other surface of the electrolyte membrane. Comprising a water channel portion made of different materials, connecting the cathode catalyst layer and the region near the anode catalyst layer of the electrolyte membrane, and allowing water contained in the cathode catalyst layer to move to the region near the anode catalyst layer. Features.
 本発明によれば、燃料電池の発電性能の向上を図ることができる。 According to the present invention, the power generation performance of the fuel cell can be improved.
実施形態1に係る燃料電池の外観を示す斜視図である。1 is a perspective view showing an appearance of a fuel cell according to Embodiment 1. FIG. 図2(A)は、図1のA-A線に沿った概略断面図である。図2(B)は、実施形態1に係る燃料電池の膜電極接合体及び接続部の概略構造を示す平面図である。FIG. 2A is a schematic cross-sectional view along the line AA in FIG. FIG. 2B is a plan view showing a schematic structure of the membrane electrode assembly and the connection part of the fuel cell according to Embodiment 1. FIG. 図2(A)の破線で囲まれた領域Bの拡大図である。FIG. 3 is an enlarged view of a region B surrounded by a broken line in FIG. 図4(A)~図4(C)は、実施形態1に係る燃料電池の製造方法を示す工程図である。4 (A) to 4 (C) are process diagrams showing a method for manufacturing a fuel cell according to Embodiment 1. FIG. 図5(A)~図5(C)は、実施形態1に係る燃料電池の製造方法を示す工程図である。5 (A) to 5 (C) are process diagrams showing a method for manufacturing a fuel cell according to Embodiment 1. FIG. 図6(A)及び図6(B)は、実施形態1に係る燃料電池の製造方法を示す工程図である。6 (A) and 6 (B) are process charts showing the fuel cell manufacturing method according to Embodiment 1. FIG. 実施形態2に係る燃料電池の概略構造を部分的に示す断面図である。6 is a cross-sectional view partially showing a schematic structure of a fuel cell according to Embodiment 2. FIG. 図8(A)~図8(D)は、実施形態2に係る燃料電池の製造方法を示す工程図である。8A to 8D are process diagrams showing a method for manufacturing a fuel cell according to the second embodiment. 図9(A)は、実施形態3に係る燃料電池システムを斜め上方から見た斜視図である。図9(B)は、実施形態3に係る燃料電池システムを斜め下方から見た斜視図である。FIG. 9A is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from above. FIG. 9B is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from below. 図10(A)は、実施形態3に係る燃料電池システムの筐体内部の概略構造を示す正面図である。図10(B)は、実施形態3に係る燃料電池システムの筐体内部の概略構造を示す斜視図である。FIG. 10A is a front view showing a schematic structure inside the housing of the fuel cell system according to Embodiment 3. FIG. FIG. 10B is a perspective view showing a schematic structure inside the housing of the fuel cell system according to the third embodiment. 図11(A)は、補強部を拡大した平面図である。図11(B)は、図11(A)のE-E線に沿った概略断面図である。図11(C)は、図11(A)のF-F線に沿った概略断面図である。FIG. 11A is an enlarged plan view of the reinforcing portion. FIG. 11B is a schematic cross-sectional view along the line EE in FIG. FIG. 11C is a schematic cross-sectional view along the line FF in FIG.
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 (実施形態1)
 図1は、実施形態1に係る燃料電池の外観を示す斜視図である。図2(A)は、図1のA-A線に沿った概略断面図である。図2(B)は、実施形態1に係る燃料電池の膜電極接合体及び接続部の概略構造を示す平面図である。図3は、図2(A)の破線で囲まれた領域Bの拡大図である。なお、図2(B)では、カソード触媒層104を破線で表して、カソード触媒層104を透視した状態を示している。
(Embodiment 1)
FIG. 1 is a perspective view showing an appearance of a fuel cell according to Embodiment 1. FIG. FIG. 2A is a schematic cross-sectional view along the line AA in FIG. FIG. 2B is a plan view showing a schematic structure of the membrane electrode assembly and the connection part of the fuel cell according to Embodiment 1. FIG. FIG. 3 is an enlarged view of a region B surrounded by a broken line in FIG. In FIG. 2B, the cathode catalyst layer 104 is indicated by a broken line, and the cathode catalyst layer 104 is seen through.
 本実施形態に係る燃料電池10は、複数の膜電極接合体(セル)100と、接続部120と、カソード用ハウジング12と、アノード用ハウジング14とを備える。なお、本実施形態の燃料電池10は、5つの膜電極接合体100を備えているが、膜電極接合体100の数は特に限定されず、単数でも5以外の複数でもよい。 The fuel cell 10 according to the present embodiment includes a plurality of membrane electrode assemblies (cells) 100, a connection portion 120, a cathode housing 12, and an anode housing 14. In addition, although the fuel cell 10 of the present embodiment includes the five membrane electrode assemblies 100, the number of the membrane electrode assemblies 100 is not particularly limited, and may be one or more than five.
 各膜電極接合体100は、電解質膜102、電解質膜102の一方の面に設けられたカソード触媒層104、及び電解質膜102の他方の面に設けられたアノード触媒層106で構成される。カソード触媒層104とアノード触媒層106とで電解質膜102が挟持されることによりセルが構成される。例えば、カソード触媒層104には酸化剤としての空気が供給され、アノード触媒層106には燃料ガスとしての水素が供給される。セルは、水素と空気中の酸素との電気化学反応により発電する。 Each membrane electrode assembly 100 includes an electrolyte membrane 102, a cathode catalyst layer 104 provided on one surface of the electrolyte membrane 102, and an anode catalyst layer 106 provided on the other surface of the electrolyte membrane 102. A cell is configured by sandwiching the electrolyte membrane 102 between the cathode catalyst layer 104 and the anode catalyst layer 106. For example, air as an oxidant is supplied to the cathode catalyst layer 104, and hydrogen as a fuel gas is supplied to the anode catalyst layer 106. The cell generates electricity by an electrochemical reaction between hydrogen and oxygen in the air.
 電解質膜102は、湿潤状態において良好なイオン伝導性を示すことが好ましく、アノード触媒層106とカソード触媒層104との間でプロトンを移動させるイオン交換膜として機能する。電解質膜102は、含フッ素重合体や非フッ素重合体等の固体高分子材料によって形成され、例えば、スルホン酸型パーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。スルホン酸型パーフルオロカーボン重合体の例として、ナフィオン(デュポン社製:登録商標)112などが挙げられる。また、非フッ素重合体の例として、スルホン化された、芳香族ポリエーテルエーテルケトン、ポリスルホンなどが挙げられる。電解質膜102の厚さは、例えば10~200μmである。 The electrolyte membrane 102 preferably exhibits good ionic conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the anode catalyst layer 106 and the cathode catalyst layer 104. The electrolyte membrane 102 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer, and for example, a sulfonic acid type perfluorocarbon polymer, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group. Etc. can be used. Examples of the sulfonic acid type perfluorocarbon polymer include Nafion (manufactured by DuPont: registered trademark) 112. Examples of non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone. The thickness of the electrolyte membrane 102 is, for example, 10 to 200 μm.
 カソード触媒層104及びアノード触媒層106は、それぞれイオン交換樹脂及び触媒粒子、場合によって炭素粒子を有する。カソード触媒層104及びアノード触媒層106が有するイオン交換樹脂は、触媒粒子と電解質膜102を接続し、両者間においてプロトンを伝達する役割を持つ。このイオン交換樹脂は、電解質膜102と同様の高分子材料から形成することができる。触媒金属としては、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体が挙げられる。また触媒を担持する場合には炭素粒子として、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどを用いてもよい。カソード触媒層104およびアノード触媒層106の厚さは、それぞれ、例えば10~40μmである。 The cathode catalyst layer 104 and the anode catalyst layer 106 have ion-exchange resin and catalyst particles, and possibly carbon particles, respectively. The ion exchange resin included in the cathode catalyst layer 104 and the anode catalyst layer 106 connects the catalyst particles and the electrolyte membrane 102 and has a role of transmitting protons therebetween. This ion exchange resin can be formed of the same polymer material as the electrolyte membrane 102. Examples of catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned. When the catalyst is supported, acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles. The thickness of the cathode catalyst layer 104 and the anode catalyst layer 106 is, for example, 10 to 40 μm.
 複数の膜電極接合体100は、平面配列されている。隣り合う膜電極接合体100の間には接続部120が配置され、接続部120のインターコネクタ122を介して隣接する膜電極接合体100が電気的に接続される。最外側に位置する2つの膜電極接合体100a,100bにおける、一方の膜電極接合体100aのアノード触媒層106と、他方の膜電極接合体100bのカソード触媒層104とには、それぞれ集電体(図示せず)が接続される。なお、複数の膜電極接合体100は、積層されたスタック構造等をとることもできる。また、本実施形態の燃料電池10は複数のセルを有するモジュール構造をとるが、燃料電池10は単セルであってもよい。 The plurality of membrane electrode assemblies 100 are arranged in a plane. A connecting portion 120 is disposed between adjacent membrane electrode assemblies 100, and adjacent membrane electrode assemblies 100 are electrically connected via an interconnector 122 of the connecting portion 120. In the two outermost membrane electrode assemblies 100a and 100b, the anode catalyst layer 106 of one membrane electrode assembly 100a and the cathode catalyst layer 104 of the other membrane electrode assembly 100b are respectively current collectors. (Not shown) is connected. The plurality of membrane electrode assemblies 100 can also have a stacked structure or the like. Further, although the fuel cell 10 of the present embodiment has a module structure having a plurality of cells, the fuel cell 10 may be a single cell.
 接続部120は、インターコネクタ122、第1絶縁層124、第2絶縁層126、水路部128、防水部130及びガスシール部132を有する。以下、図3を参照しながら、膜電極接合体100bと膜電極接合体100cとの間に配置された接続部120aを例に取り、接続部120について詳細に説明する。なお、本実施形態の燃料電池10では、複数の膜電極接合体100と複数の水路部128とが一対一で対応しており、各水路部128は、対応する膜電極接合体100におけるカソード触媒層104からアノード触媒層近傍領域102aへの水移送を可能とする。図3では、膜電極接合体100bと外側用接続部140の水路部128とが対応しており、膜電極接合体100cと接続部120aの水路部128とが対応している。 The connecting portion 120 includes an interconnector 122, a first insulating layer 124, a second insulating layer 126, a water channel portion 128, a waterproof portion 130, and a gas seal portion 132. Hereinafter, the connecting portion 120 will be described in detail with reference to FIG. 3, taking the connecting portion 120 a disposed between the membrane electrode assembly 100 b and the membrane electrode assembly 100 c as an example. In the fuel cell 10 of the present embodiment, the plurality of membrane electrode assemblies 100 and the plurality of water channel portions 128 correspond one-to-one, and each water channel portion 128 corresponds to the cathode catalyst in the corresponding membrane electrode assembly 100. Water transfer from the layer 104 to the anode catalyst layer vicinity region 102a is enabled. In FIG. 3, the membrane electrode assembly 100b corresponds to the water channel portion 128 of the outer connection portion 140, and the membrane electrode assembly 100c corresponds to the water channel portion 128 of the connection portion 120a.
 インターコネクタ122は、導電性材料で形成される。導電性材料としては、例えば、カーボンファイバ、グラファイトシート、カーボンペーパ、カーボン粉末等のカーボン系の材料、白金、金、ステンレス、チタン、ニッケル等の金属系の材料が挙げられる。また、インターコネクタ122は、ガス不透過性を有する。インターコネクタ122がガス不透過性を有することで、インターコネクタ122を介したクロスリークの発生を抑制することができる。接続部120aのインターコネクタ122の一端(図3における下側の端部)には、膜電極接合体100bのアノード触媒層106が接続される。接続部120aのインターコネクタ122の他端(図3における上側の端部)には、膜電極接合体100cのカソード触媒層104が接続される。これにより、膜電極接合体100bのアノード触媒層106と膜電極接合体100cのカソード触媒層104とが電気的に接続される。なお、カソード触媒層104及びアノード触媒層106は、それぞれ集電体(図示せず)を介してインターコネクタ122に接続されてもよい。 The interconnector 122 is made of a conductive material. Examples of the conductive material include carbon materials such as carbon fiber, graphite sheet, carbon paper, and carbon powder, and metal materials such as platinum, gold, stainless steel, titanium, and nickel. Further, the interconnector 122 has gas impermeability. Since the interconnector 122 has gas impermeability, the occurrence of cross leaks via the interconnector 122 can be suppressed. The anode catalyst layer 106 of the membrane electrode assembly 100b is connected to one end (the lower end in FIG. 3) of the interconnector 122 of the connecting portion 120a. The cathode catalyst layer 104 of the membrane electrode assembly 100c is connected to the other end (the upper end in FIG. 3) of the interconnector 122 of the connecting portion 120a. Thereby, the anode catalyst layer 106 of the membrane electrode assembly 100b and the cathode catalyst layer 104 of the membrane electrode assembly 100c are electrically connected. The cathode catalyst layer 104 and the anode catalyst layer 106 may be connected to the interconnector 122 via current collectors (not shown).
 膜電極接合体100bとインターコネクタ122との間には、第1絶縁層124が介在する。膜電極接合体100cとインターコネクタ122との間には、第2絶縁層126が介在する。第1絶縁層124及び第2絶縁層126は、フェノール樹脂、ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエチレンテレフタレート樹脂、尿素樹脂、フッ素樹脂等の一般的なプラスティック樹脂などの絶縁性材料により形成される。また、第1絶縁層124及び第2絶縁層126は、ガス不透過性及び防水性を有する。第1絶縁層124及び第2絶縁層126がガス不透過性を有することで、第1絶縁層124及び第2絶縁層126を介したクロスリークの発生を抑制することができる。また、第1絶縁層124が防水性を有することで、電解質膜102中の水が第1絶縁層124を介してインターコネクタ122側へ漏出することを抑制することができる。また、第2絶縁層126が防水性を有することで、水路部128中の水が第2絶縁層126を介してインターコネクタ122側へ漏出することを抑制することができる。 A first insulating layer 124 is interposed between the membrane electrode assembly 100 b and the interconnector 122. A second insulating layer 126 is interposed between the membrane electrode assembly 100 c and the interconnector 122. The first insulating layer 124 and the second insulating layer 126 are made of an insulating material such as a general plastic resin such as phenol resin, vinyl resin, polyethylene resin, polypropylene resin, polystyrene resin, polyethylene terephthalate resin, urea resin, and fluorine resin. It is formed. The first insulating layer 124 and the second insulating layer 126 have gas impermeability and waterproofness. Since the first insulating layer 124 and the second insulating layer 126 are gas-impermeable, occurrence of cross leak through the first insulating layer 124 and the second insulating layer 126 can be suppressed. Further, since the first insulating layer 124 is waterproof, it is possible to suppress water in the electrolyte membrane 102 from leaking to the interconnector 122 side through the first insulating layer 124. Moreover, since the 2nd insulating layer 126 has waterproofness, it can suppress that the water in the water channel part 128 leaks out to the interconnector 122 side via the 2nd insulating layer 126.
 本実施形態では、膜電極接合体100bのアノード触媒層106が、膜電極接合体100bの下面側において第1絶縁層124を越えて接続部120aのインターコネクタ122まで延在し、インターコネクタ122に接触している。また、膜電極接合体100cのカソード触媒層104が、膜電極接合体100cの上面側において第2絶縁層126を越えて接続部120aのインターコネクタ122まで延在し、インターコネクタ122に接触している。 In the present embodiment, the anode catalyst layer 106 of the membrane electrode assembly 100b extends beyond the first insulating layer 124 to the interconnector 122 of the connecting portion 120a on the lower surface side of the membrane electrode assembly 100b, and is connected to the interconnector 122. In contact. Further, the cathode catalyst layer 104 of the membrane electrode assembly 100c extends beyond the second insulating layer 126 to the interconnector 122 of the connecting portion 120a on the upper surface side of the membrane electrode assembly 100c, and contacts the interconnector 122. Yes.
 膜電極接合体100bのカソード触媒層104は、膜電極接合体100c側の端部が電解質膜102と第1絶縁層124との境界近傍に位置する。したがって、膜電極接合体100bのカソード触媒層104と接続部120aのインターコネクタ122とは非接触である。また、膜電極接合体100cのアノード触媒層106は、膜電極接合体100b側の端部が電解質膜102とガスシール部132との境界近傍に位置する。したがって、膜電極接合体100cのアノード触媒層106と接続部120aのインターコネクタ122とは非接触である。 The cathode catalyst layer 104 of the membrane electrode assembly 100 b is located near the boundary between the electrolyte membrane 102 and the first insulating layer 124 at the end on the membrane electrode assembly 100 c side. Therefore, the cathode catalyst layer 104 of the membrane electrode assembly 100b and the interconnector 122 of the connection part 120a are not in contact with each other. Further, the anode catalyst layer 106 of the membrane electrode assembly 100 c is located near the boundary between the electrolyte membrane 102 and the gas seal portion 132 at the end on the membrane electrode assembly 100 b side. Therefore, the anode catalyst layer 106 of the membrane electrode assembly 100c and the interconnector 122 of the connecting portion 120a are not in contact with each other.
 第2絶縁層126と膜電極接合体100cとの間には、水路部128が設けられる。水路部128は、カソード触媒層104と電解質膜102のアノード触媒層近傍領域102aとを接続し、カソード触媒層104に含まれる水のアノード触媒層近傍領域102aへの移動を許容する機能を備える。カソード触媒層104に含まれる水は、例えば電気化学反応によりカソード触媒層104で生成された水や、電解質膜102からカソード触媒層104に移動した水等である。水路部128を設けることで、水を多量に含むカソード触媒層104から、乾燥しやすい電解質膜102のアノード触媒層近傍領域102aへ水を移送することができ、また電解質膜102を介してアノード触媒層106へも水を移送することができる。これにより、電解質膜102のアノード触媒層近傍領域102a及びアノード触媒層106の乾燥を抑制することができる。水路部128の厚さ、すなわち、水路部128と第2絶縁層126との界面から水路部128と防水部130との界面までの距離は、例えば100~500μmである。ここで、アノード触媒層近傍領域102aとは、例えば、電解質膜102の厚さ方向で電解質膜102を2等分する平面、すなわちカソード触媒層104及びアノード触媒層106から等距離に位置する平面(以下、適宜この平面を中心面と称する)よりもアノード触媒層106側の領域の少なくとも一部をいう。 A water channel portion 128 is provided between the second insulating layer 126 and the membrane electrode assembly 100c. The water channel portion 128 has a function of connecting the cathode catalyst layer 104 and the anode catalyst layer vicinity region 102a of the electrolyte membrane 102 and allowing movement of water contained in the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a. The water contained in the cathode catalyst layer 104 is, for example, water generated in the cathode catalyst layer 104 by an electrochemical reaction, water moved from the electrolyte membrane 102 to the cathode catalyst layer 104, or the like. By providing the water channel portion 128, water can be transferred from the cathode catalyst layer 104 containing a large amount of water to the anode catalyst layer vicinity region 102 a of the electrolyte membrane 102 that is easy to dry, and the anode catalyst is passed through the electrolyte membrane 102. Water can also be transferred to the layer 106. Thereby, drying of the anode catalyst layer vicinity region 102a and the anode catalyst layer 106 of the electrolyte membrane 102 can be suppressed. The thickness of the water channel part 128, that is, the distance from the interface between the water channel part 128 and the second insulating layer 126 to the interface between the water channel part 128 and the waterproof part 130 is, for example, 100 to 500 μm. Here, the anode catalyst layer vicinity region 102 a is, for example, a plane that bisects the electrolyte membrane 102 in the thickness direction of the electrolyte membrane 102, that is, a plane that is equidistant from the cathode catalyst layer 104 and the anode catalyst layer 106 ( Hereinafter, this plane will be referred to as a central plane as appropriate) and at least a part of a region closer to the anode catalyst layer 106 side.
 本実施形態の水路部128は、吸水材を有する。吸水材としては、シリカゲル等の無機系吸水材、セルロース、レーヨン等の有機系吸水材が用いられる。なお、水路部128には、ガラス繊維等の基材に上記の吸水材をフィラーとして充填したものを用いてもよい。水路部128が吸水材を有することで、水路部128内において、含水量が大きい方から小さい方(湿度が高い方から低い方)に自然に水が移動する。すなわち、水路部128において、含水量の勾配にしたがって水が移動する。本実施形態の燃料電池10において、カソード触媒層104では電気化学反応により水が生成される。そのため、含水量の勾配は、通常カソード触媒層104側が高く、アノード触媒層近傍領域102a側が低くなる。このように、電気化学反応の開始と同時に自然に含水量の勾配ができるため、優れた応答性を持ってカソード触媒層104からアノード触媒層近傍領域102aへの水の移送を実施することができる。なお、水路部128は、第2絶縁層126と、後述する防水部130及びガスシール部132とで囲まれる空間によって構成されてもよい。この場合、毛細管現象等を利用して、もしくは後述する送風部による送風を利用して、カソード触媒層104からアノード触媒層近傍領域102aへ水を移送することができる。 The water channel part 128 of this embodiment has a water absorbing material. As the water absorbing material, an inorganic water absorbing material such as silica gel, or an organic water absorbing material such as cellulose or rayon is used. In addition, you may use for the water channel part 128 what filled the base material, such as glass fiber, with said water absorbing material as a filler. Since the water channel portion 128 has the water absorbing material, water naturally moves from the larger water content to the smaller water content (from the higher humidity to the lower one) in the water channel portion 128. That is, in the water channel portion 128, water moves according to the water content gradient. In the fuel cell 10 of the present embodiment, water is generated in the cathode catalyst layer 104 by an electrochemical reaction. Therefore, the gradient of water content is usually high on the cathode catalyst layer 104 side and low on the anode catalyst layer vicinity region 102a side. As described above, since the water content can be naturally gradient at the same time as the electrochemical reaction starts, water can be transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a with excellent responsiveness. . In addition, the water channel part 128 may be configured by a space surrounded by the second insulating layer 126 and a waterproof part 130 and a gas seal part 132 described later. In this case, water can be transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a using a capillary phenomenon or the like or using air blown by a blower described later.
 水路部128は、膜電極接合体100cの側面側に配置される。そして、水路部128は、カソード触媒層104側の端面128a(図3における上面)がカソード触媒層104に接し、アノード触媒層側端部の側面128bがアノード触媒層近傍領域102aに接する。水路部128と膜電極接合体100cとの間には、略板状の防水部130が介在する。防水部130により、水路部128におけるカソード触媒層104側からアノード触媒層近傍領域102a側への水の流れをより確実に確保することができるため、水路部128中の水をより確実にアノード触媒層近傍領域102aに到達させることができる。なお、防水部130は、ガス不透過性及び絶縁性を有することが好ましい。これにより、防水部130を介したクロスリーク及びショートの発生を抑制することができる。なお、防水部130は、第1絶縁層124及び第2絶縁層126と同じ材質であってもよい。 The water channel portion 128 is disposed on the side surface side of the membrane electrode assembly 100c. In the water channel portion 128, the end surface 128a (upper surface in FIG. 3) on the cathode catalyst layer 104 side is in contact with the cathode catalyst layer 104, and the side surface 128b on the anode catalyst layer side end is in contact with the anode catalyst layer vicinity region 102a. A substantially plate-shaped waterproof part 130 is interposed between the water channel part 128 and the membrane electrode assembly 100c. The waterproof portion 130 can more reliably ensure the flow of water from the cathode catalyst layer 104 side to the anode catalyst layer vicinity region 102a side in the water channel portion 128, so that the water in the water channel portion 128 can be more reliably supplied to the anode catalyst. The layer vicinity region 102a can be reached. In addition, it is preferable that the waterproof part 130 has gas impermeability and insulation. Thereby, generation | occurrence | production of the cross leak and short circuit through the waterproof part 130 can be suppressed. The waterproof part 130 may be made of the same material as the first insulating layer 124 and the second insulating layer 126.
 本実施形態の防水部130は、水路部128の側面のうち、アノード触媒層側端部の側面128b及びカソード触媒層側端部の側面128cを除く領域に接している。すなわち、水路部128は、アノード触媒層側端部の側面128bが電解質膜102のアノード触媒層近傍領域102aに接するとともに、カソード触媒層側端部の側面128cが電解質膜102のカソード触媒層近傍領域102bに接する。水路部128がカソード触媒層近傍領域102bに接することで、比較的含水量が大きいカソード触媒層近傍領域102b中の水もアノード触媒層近傍領域102aに移送することができる。そのため、アノード触媒層近傍領域102a及びアノード触媒層106の乾燥をより抑制することができる。また、防水部130は、電解質膜102に埋め込まれるように配置されている。したがって、防水部130と水路部128との接合面と、水路部128と電解質膜102との接合面とが同一平面上に位置する。ここで、カソード触媒層近傍領域102bとは、例えば、上述した電解質膜102の中心面よりもカソード触媒層104側の領域の少なくとも一部をいう。 The waterproof portion 130 of the present embodiment is in contact with the region of the side surface of the water channel portion 128 excluding the side surface 128b at the anode catalyst layer side end portion and the side surface 128c at the cathode catalyst layer side end portion. That is, the side surface 128b of the end portion on the anode catalyst layer side is in contact with the anode catalyst layer vicinity region 102a of the electrolyte membrane 102, and the side surface 128c of the cathode catalyst layer side end portion is the region near the cathode catalyst layer of the electrolyte membrane 102. 102b is touched. Since the water channel portion 128 is in contact with the cathode catalyst layer vicinity region 102b, water in the cathode catalyst layer vicinity region 102b having a relatively large water content can also be transferred to the anode catalyst layer vicinity region 102a. Therefore, drying of the anode catalyst layer vicinity region 102a and the anode catalyst layer 106 can be further suppressed. Moreover, the waterproof part 130 is disposed so as to be embedded in the electrolyte membrane 102. Therefore, the joint surface between the waterproof portion 130 and the water channel portion 128 and the joint surface between the water channel portion 128 and the electrolyte membrane 102 are located on the same plane. Here, the cathode catalyst layer vicinity region 102b refers to, for example, at least a part of the region closer to the cathode catalyst layer 104 than the center surface of the electrolyte membrane 102 described above.
 カソード触媒層104、アノード触媒層近傍領域102a及びカソード触媒層近傍領域102bの少なくとも1つと水路部128との接触面積の調整や、水路部128の吸水性能の調整等により、アノード触媒層近傍領域102aに移送される水量を制御することができる。これにより、アノード触媒層106におけるフラッディングの発生を抑制することができる。 By adjusting the contact area between at least one of the cathode catalyst layer 104, the anode catalyst layer vicinity region 102a, and the cathode catalyst layer vicinity region 102b and the water passage portion 128, adjusting the water absorption performance of the water passage portion 128, and the like, the anode catalyst layer vicinity region 102a. The amount of water transferred to the water can be controlled. Thereby, the occurrence of flooding in the anode catalyst layer 106 can be suppressed.
 水路部128のアノード触媒層側の端面128d(図3における下面)は、略板状のガスシール部132で被覆されている。ガスシール部132は、水路部128を介したアノード触媒層106側とカソード触媒層104側との間でのガスの移動を抑制するシール部材であり、ガスシール部132によって水路部128を介したクロスリークの発生を抑制することができる。ガスシール部132は、絶縁性及び防水性を有することが好ましい。ガスシール部132が絶縁性を有することで、ショートの発生を抑制することができる。また、ガスシール部132が防水性を有することで、水路部128から後述する燃料ガス室18への水の漏出を抑制することができる。本実施形態では、ガスシール部132と第2絶縁層126とは一体である。したがって、第2絶縁層126が水路部128を介したクロスリークの発生を抑制する機能を備えているといえる。これにより、燃料電池10の部品点数の増大を抑制することができる。 The end surface 128d (the lower surface in FIG. 3) on the anode catalyst layer side of the water channel portion 128 is covered with a substantially plate-like gas seal portion 132. The gas seal part 132 is a seal member that suppresses gas movement between the anode catalyst layer 106 side and the cathode catalyst layer 104 side via the water channel part 128, and the gas seal part 132 passes the water channel part 128 via the water channel part 128. The occurrence of cross leak can be suppressed. It is preferable that the gas seal part 132 has insulation and waterproofness. Generation | occurrence | production of a short circuit can be suppressed because the gas-seal part 132 has insulation. Moreover, since the gas seal part 132 has waterproofness, leakage of water from the water channel part 128 to the fuel gas chamber 18 described later can be suppressed. In the present embodiment, the gas seal portion 132 and the second insulating layer 126 are integral. Therefore, it can be said that the second insulating layer 126 has a function of suppressing the occurrence of cross leak through the water channel portion 128. Thereby, the increase in the number of parts of the fuel cell 10 can be suppressed.
 水路部128は、電解質膜102とは異なる材料で構成される。ここで、水路部128は、非プロトン伝導性を有してもよい。これにより、水路部128を介して、アノード触媒層106からカソード触媒層104へプロトンが伝導されることを抑制することができ、カソード触媒層104からアノード触媒層近傍領域102aへの水の移送が妨げられることを抑制することができる。また、水路部128は、電解質膜102よりもプロトン伝導性の低いプロトン伝導性材料であってもよい。水路部128を構成する材料のプロトン伝導性が電解質膜102よりも低ければ、発電中に水路部128を通るプロトンの割合が電解質膜102よりも小さくなる。そのため、水路部128を電解質膜102と同じプロトン伝導性を有する材料で構成した場合に比べて、カソード触媒層104からアノード触媒層近傍領域102aへの水の移送が妨げられることを抑制することができる。 The water channel portion 128 is made of a material different from that of the electrolyte membrane 102. Here, the water channel part 128 may have non-proton conductivity. Thereby, it is possible to suppress the conduction of protons from the anode catalyst layer 106 to the cathode catalyst layer 104 through the water channel portion 128, and the transfer of water from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a is prevented. It is possible to suppress obstruction. Further, the water channel portion 128 may be a proton conductive material having a proton conductivity lower than that of the electrolyte membrane 102. If the proton conductivity of the material constituting the water channel portion 128 is lower than that of the electrolyte membrane 102, the proportion of protons passing through the water channel portion 128 during power generation is smaller than that of the electrolyte membrane 102. Therefore, compared to the case where the water channel portion 128 is made of the same proton conductivity material as that of the electrolyte membrane 102, it is possible to suppress the hindering of water transfer from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a. it can.
 平面配列の最外側に位置する膜電極接合体100bの側面と、カソード用ハウジング12及びアノード用ハウジング14の側面との間には、外側用接続部140が介在している。外側用接続部140は、第2絶縁層126、水路部128、防水部130及びガスシール部132で構成される。他方の最外側に位置する膜電極接合体100aの側面と、カソード用ハウジング12及びアノード用ハウジング14の側面との間には、第1絶縁層124が介在している。複数の膜電極接合体100は、一方の最外側に位置する外側用接続部140の第2絶縁層126と他方の最外側に位置する第1絶縁層124とが、カソード用ハウジング12及びアノード用ハウジング14で挟持されることで、カソード用ハウジング12及びアノード用ハウジング14で形成される収容空間内に固定されている。カソード用ハウジング12とアノード用ハウジング14との接合部、もしくはこれらと第1絶縁層124及び第2絶縁層126との接合部には、ガスシール性を確保すべくガスケット等を配置してもよい。 Between the side surface of the membrane electrode assembly 100b located on the outermost side of the planar arrangement and the side surfaces of the cathode housing 12 and the anode housing 14, an outer connection portion 140 is interposed. The outer connection part 140 includes a second insulating layer 126, a water channel part 128, a waterproof part 130, and a gas seal part 132. A first insulating layer 124 is interposed between the side surface of the other outermost membrane electrode assembly 100 a and the side surfaces of the cathode housing 12 and the anode housing 14. In the plurality of membrane electrode assemblies 100, the second insulating layer 126 of the outer connecting portion 140 located on one outermost side and the first insulating layer 124 located on the other outermost side are composed of the cathode housing 12 and the anode. By being sandwiched between the housings 14, the housing 14 is fixed in a housing space formed by the cathode housing 12 and the anode housing 14. A gasket or the like may be disposed at the joint between the cathode housing 12 and the anode housing 14 or at the joint between the first insulating layer 124 and the second insulating layer 126 in order to ensure gas sealability. .
 カソード用ハウジング12は、燃料電池10の外装の一部を構成する部材であり、カソード触媒層104と対向するように配置される。カソード用ハウジング12には、外部から空気を取り込むための複数の開口12aが設けられている。カソード用ハウジング12とカソード触媒層104との間には、空気が流通する空気室16が設けられている。 The cathode housing 12 is a member constituting a part of the exterior of the fuel cell 10 and is disposed so as to face the cathode catalyst layer 104. The cathode housing 12 is provided with a plurality of openings 12a for taking in air from the outside. An air chamber 16 through which air flows is provided between the cathode housing 12 and the cathode catalyst layer 104.
 アノード用ハウジング14は、燃料電池10の外装の一部を構成する部材であり、アノード触媒層106と対向するように配置される。アノード用ハウジング14とアノード触媒層106との間には、外部から供給される燃料ガスをアノード触媒層106へ分配する燃料ガス室18が設けられている。例えば、アノード用ハウジング14には燃料供給口(図示せず)が設けられ、外部の燃料カートリッジから燃料ガスが供給される。 The anode housing 14 is a member constituting a part of the exterior of the fuel cell 10 and is disposed so as to face the anode catalyst layer 106. Between the anode housing 14 and the anode catalyst layer 106, a fuel gas chamber 18 for distributing fuel gas supplied from the outside to the anode catalyst layer 106 is provided. For example, the anode housing 14 is provided with a fuel supply port (not shown), and fuel gas is supplied from an external fuel cartridge.
 本実施形態では、膜電極接合体100の主表面と垂直な方向から見て(図2(B)参照)、各膜電極接合体100は略矩形状であり、膜電極接合体100の接続部120もしくは外側用接続部140と接する側面の全域に水路部128が延在している。これにより、水路部128が膜電極接合体100の当該側面の一部に配置される場合に比べて、アノード触媒層近傍領域102aのより広い範囲に水を移送することができる。なお、水路部128は、アノード触媒層近傍領域102aへの水移送量の調節等を目的として、当該側面の一部に配置されてもよい。 In the present embodiment, each membrane electrode assembly 100 has a substantially rectangular shape when viewed from a direction perpendicular to the main surface of the membrane electrode assembly 100 (see FIG. 2B), and the connection portion of the membrane electrode assembly 100 A water channel portion 128 extends over the entire side surface in contact with 120 or the outer connecting portion 140. Thereby, compared with the case where the water channel part 128 is arrange | positioned in a part of the said side surface of the membrane electrode assembly 100, water can be transferred to the wider range of the anode catalyst layer vicinity area | region 102a. The water channel portion 128 may be disposed on a part of the side surface for the purpose of adjusting the amount of water transferred to the anode catalyst layer vicinity region 102a.
 本実施形態では、水路部128は接続部120内に設けられている。すなわち、水路部128は接続部120に組み込まれている。より詳細には、第2絶縁層126の厚さを薄くすることで形成されるスペースに水路部128を配置している。そのため、水路部128を設けたことによる燃料電池10のサイズの増大を抑制することができる。なお、水路部128は、第1絶縁層124と膜電極接合体100bとの間にも設けてもよい。すなわち、各膜電極接合体100は、2つの水路部128で挟まれてもよい。この場合、第1絶縁層124の厚さを薄くすることで形成されるスペースに水路部128を配置する。これにより、燃料電池10のサイズの増大を抑制しながら、アノード触媒層近傍領域102aのより広い範囲に水を移送することができる。さらに、燃料電池10のサイズの増大が許容される場合には、接続部120の延在方向と垂直に延在する膜電極接合体100の側面に、水路部128を設けてもよい。 In this embodiment, the water channel part 128 is provided in the connection part 120. That is, the water channel part 128 is incorporated in the connection part 120. More specifically, the water channel portion 128 is disposed in a space formed by reducing the thickness of the second insulating layer 126. Therefore, an increase in the size of the fuel cell 10 due to the provision of the water channel portion 128 can be suppressed. The water channel portion 128 may also be provided between the first insulating layer 124 and the membrane electrode assembly 100b. That is, each membrane electrode assembly 100 may be sandwiched between two water channel portions 128. In this case, the water channel portion 128 is disposed in a space formed by reducing the thickness of the first insulating layer 124. Thereby, water can be transferred to a wider range of the anode catalyst layer vicinity region 102 a while suppressing an increase in the size of the fuel cell 10. Furthermore, when an increase in the size of the fuel cell 10 is allowed, the water channel portion 128 may be provided on the side surface of the membrane electrode assembly 100 extending perpendicularly to the extending direction of the connecting portion 120.
 (燃料電池の製造工程)
 続いて、実施形態1に係る燃料電池10の製造方法について説明する。図4(A)~図4(C)、図5(A)~図5(C)、図6(A)及び図6(B)は、実施形態1に係る燃料電池の製造方法を示す工程図である。なお、図4(C)は、図4(B)のC-C線に沿った概略断面図である。また、図5(A)~図5(C)、図6(A)及び図6(B)では、燃料電池10のうち、最外側の膜電極接合体100bを含む3つの膜電極接合体100の部分を例として示している。
(Fuel cell manufacturing process)
Then, the manufacturing method of the fuel cell 10 which concerns on Embodiment 1 is demonstrated. 4 (A) to 4 (C), 5 (A) to 5 (C), 6 (A), and 6 (B) are steps showing a method of manufacturing the fuel cell according to the first embodiment. FIG. FIG. 4C is a schematic cross-sectional view taken along the line CC of FIG. 4B. 5A to 5C, FIG. 6A, and FIG. 6B, the three membrane electrode assemblies 100 including the outermost membrane electrode assembly 100b in the fuel cell 10 are illustrated. Is shown as an example.
 まず、図4(A)に示すように、第1絶縁層124、インターコネクタ122、ガスシール部132が一体的に設けられた第2絶縁層126、基材に吸水材を含浸させてなる水路部128、防水部130をこの順に積層する。また、防水部130の両側に圧着用スペーサ200を配置する。そして、プレス機を用いて、積層体を加熱圧着する。加熱圧着後、圧着用スペーサ200を取り外す。これにより、図4(B)及び図4(C)に示すように、接続部120が形成される。 First, as shown in FIG. 4A, a first insulating layer 124, an interconnector 122, a second insulating layer 126 in which a gas seal portion 132 is integrally provided, and a water channel in which a base material is impregnated with a water absorbing material. The part 128 and the waterproof part 130 are laminated in this order. In addition, the crimping spacers 200 are disposed on both sides of the waterproof part 130. Then, the laminate is heat-pressed using a press. After the thermocompression bonding, the pressure bonding spacer 200 is removed. As a result, as shown in FIGS. 4B and 4C, the connecting portion 120 is formed.
 次に、図5(A)に示すように、接続部120を所定の間隔をあけて台座210上に配置する。本実施形態では、ガスシール部132が台座210と接するように接続部120を配置している。接続部120の配列の一方の最外側には、外側用接続部140が配置される。外側用接続部140は、ガスシール部132が一体的に設けられた第2絶縁層126、基材に吸水材を含浸させてなる水路部128、及び防水部130の積層体であり、接続部120と同様の工程で製造される。接続部120の配列の他方の最外側には、第1絶縁層124が配置される(図2(A)参照)。 Next, as shown in FIG. 5A, the connecting portions 120 are arranged on the base 210 with a predetermined interval. In this embodiment, the connection part 120 is arrange | positioned so that the gas seal part 132 may contact | connect the base 210. FIG. An outer connection portion 140 is disposed on one outermost side of the array of the connection portions 120. The outer connecting portion 140 is a laminated body of the second insulating layer 126 integrally provided with the gas seal portion 132, the water channel portion 128 in which the base material is impregnated with the water absorbing material, and the waterproof portion 130. It is manufactured in the same process as 120. A first insulating layer 124 is disposed on the other outermost side of the arrangement of the connection portions 120 (see FIG. 2A).
 次に、図5(B)に示すように、接続部120で挟まれた空間にナフィオンなどのイオン交換体を含む電解質溶液を塗布し、電解質溶液を乾燥させて電解質膜102を形成する。 Next, as shown in FIG. 5B, an electrolyte solution containing an ion exchanger such as Nafion is applied to the space between the connection portions 120, and the electrolyte solution is dried to form the electrolyte membrane 102.
 次に、図5(C)に示すように、電解質膜102、接続部120及び外側用接続部140で構成される板状体の一方の主表面に、カソードスラリー103を塗布し、乾燥させる。カソードスラリー103は、水路部128が露出する側の主表面に塗布される。また、板状体の他方の主表面に、アノードスラリー105を塗布し、乾燥させる。アノードスラリー105は、ガスシール部132が露出する側の主表面に塗布される。 Next, as shown in FIG. 5C, the cathode slurry 103 is applied to one main surface of the plate-like body constituted by the electrolyte membrane 102, the connection portion 120, and the outer connection portion 140, and dried. The cathode slurry 103 is applied to the main surface on the side where the water channel portion 128 is exposed. Also, the anode slurry 105 is applied to the other main surface of the plate-like body and dried. The anode slurry 105 is applied to the main surface on the side where the gas seal portion 132 is exposed.
 次に、図6(A)に示すように、レーザー照射等によりカソードスラリー103及びアノードスラリー105の所定領域を除去して、カソード触媒層104及びアノード触媒層106を形成する。なお、カソード触媒層104及びアノード触媒層106は、カソードスラリー103及びアノードスラリー105の塗布前に、所定領域にマスキング材を配置し、カソードスラリー103及びアノードスラリー105を塗布した後にマスキング材を除去することで形成してもよい。 Next, as shown in FIG. 6A, predetermined regions of the cathode slurry 103 and the anode slurry 105 are removed by laser irradiation or the like to form the cathode catalyst layer 104 and the anode catalyst layer 106. The cathode catalyst layer 104 and the anode catalyst layer 106 are provided with a masking material in a predetermined region before the cathode slurry 103 and the anode slurry 105 are applied, and after the cathode slurry 103 and the anode slurry 105 are applied, the masking material is removed. You may form by.
 次に、図6(B)に示すように、カソード触媒層104側にカソード用ハウジング12を設け、アノード触媒層106側にアノード用ハウジング14を設ける。以上の工程により、燃料電池10が製造される。 Next, as shown in FIG. 6B, the cathode housing 12 is provided on the cathode catalyst layer 104 side, and the anode housing 14 is provided on the anode catalyst layer 106 side. The fuel cell 10 is manufactured through the above steps.
 以上説明したように、実施形態1に係る燃料電池10は、電解質膜102、カソード触媒層104及びアノード触媒層106で構成される膜電極接合体100と、カソード触媒層104と電解質膜102のアノード触媒層近傍領域102aとを接続し、カソード触媒層104に含まれる水のアノード触媒層近傍領域102aへの移動を許容する水路部128とを備える。これにより、カソード触媒層104、及び電解質膜102のカソード触媒層近傍領域102bに比べて乾燥しやすいアノード触媒層106、及び電解質膜102のアノード触媒層近傍領域102aの乾燥を抑制することができる。そのため、燃料電池10の発電性能の向上を図ることができる。 As described above, the fuel cell 10 according to Embodiment 1 includes the membrane electrode assembly 100 including the electrolyte membrane 102, the cathode catalyst layer 104, and the anode catalyst layer 106, and the anode of the cathode catalyst layer 104 and the electrolyte membrane 102. A water channel portion 128 that connects the catalyst layer vicinity region 102a and allows movement of water contained in the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a is provided. Thereby, it is possible to suppress drying of the anode catalyst layer 106 and the anode catalyst layer vicinity region 102a of the electrolyte membrane 102, which are easier to dry than the cathode catalyst layer 104 and the cathode catalyst layer vicinity region 102b of the electrolyte membrane 102. Therefore, the power generation performance of the fuel cell 10 can be improved.
 (実施形態2)
 実施形態2に係る燃料電池10は、接続部120の構造及び製造方法を除き、実施形態1に係る燃料電池10の構成及び製造方法と共通する。以下、実施形態2に係る燃料電池10について実施形態1と異なる構成を中心に説明する。なお、実施形態1と同一の構成については同一の符号を付し、その説明は適宜省略する。図7は、実施形態2に係る燃料電池の概略構造を部分的に示す断面図である。なお、図7は、図2(A)の破線で囲まれた領域Bに対応する。
(Embodiment 2)
The fuel cell 10 according to the second embodiment is common to the configuration and the manufacturing method of the fuel cell 10 according to the first embodiment, except for the structure of the connecting portion 120 and the manufacturing method. Hereinafter, the fuel cell 10 according to the second embodiment will be described focusing on the configuration different from the first embodiment. In addition, the same code | symbol is attached | subjected about the structure same as Embodiment 1, and the description is abbreviate | omitted suitably. FIG. 7 is a cross-sectional view partially showing the schematic structure of the fuel cell according to the second embodiment. Note that FIG. 7 corresponds to a region B surrounded by a broken line in FIG.
 実施形態2に係る燃料電池10において、防水部130は、水路部128に埋め込まれるように配置されている。したがって、防水部130と電解質膜102との接合面と、水路部128と電解質膜102との接合面(すなわち側面128b,128c)とが同一平面上に位置する。ガスシール部132には、ガスシール部132と同質の材料からなる延長部134が接続される。延長部134は、水路部128のアノード触媒層106側の端面128dと、アノード触媒層106との間に介在し、ガスシール部132及び延長部134によって水路部128を介したクロスリークとショートの発生とが抑制される。なお、ガスシール部132と延長部134とは一体であってもよい。 In the fuel cell 10 according to Embodiment 2, the waterproof part 130 is arranged so as to be embedded in the water channel part 128. Therefore, the joint surface between the waterproof portion 130 and the electrolyte membrane 102 and the joint surface (that is, the side surfaces 128b and 128c) between the water channel portion 128 and the electrolyte membrane 102 are located on the same plane. An extension 134 made of the same material as the gas seal 132 is connected to the gas seal 132. The extension part 134 is interposed between the end face 128d of the water channel part 128 on the anode catalyst layer 106 side and the anode catalyst layer 106, and the gas seal part 132 and the extension part 134 cause a cross leak and a short circuit via the water channel part 128. Occurrence is suppressed. The gas seal portion 132 and the extension portion 134 may be integrated.
 図8(A)~図8(D)は、実施形態2に係る燃料電池の製造方法を示す工程図である。なお、ここでは実施形態1に係る燃料電池の製造方法と異なる、接続部120の製造工程のみについて説明する。 8 (A) to 8 (D) are process diagrams showing a method of manufacturing a fuel cell according to the second embodiment. Here, only the manufacturing process of the connecting portion 120, which is different from the manufacturing method of the fuel cell according to the first embodiment, will be described.
 まず、図8(A)に示すように、第1絶縁層124、インターコネクタ122、ガスシール部132が一体的に設けられた第2絶縁層126をこの順に積層する。またガスシール部132上に延長部134を積層し、延長部134と所定の間隔をあけて第2絶縁層126上に防水部130を積層する。そして、プレス機を用いて、積層体を加熱圧着する。これにより、図8(B)に示すように、複合体119が形成される。 First, as shown in FIG. 8A, a first insulating layer 124, an interconnector 122, and a second insulating layer 126 integrally provided with a gas seal portion 132 are laminated in this order. Further, the extension part 134 is stacked on the gas seal part 132, and the waterproof part 130 is stacked on the second insulating layer 126 with a predetermined distance from the extension part 134. Then, the laminate is heat-pressed using a press. Thereby, a complex 119 is formed as shown in FIG.
 次に、図8(C)及び図8(D)に示すように、複合体119における、第2絶縁層126、防水部130及びガスシール部132で囲まれた空間127に吸水材を充填して、水路部128を形成する。吸水材は、防水部130及び延長部134の上面と同じ高さになるまで充填される。これにより、接続部120が形成される。以降は、図5(A)~図5(C)、図6(A)及び図6(B)に示す工程が実施されて燃料電池10が得られる。 Next, as shown in FIGS. 8C and 8D, the space 127 surrounded by the second insulating layer 126, the waterproof portion 130, and the gas seal portion 132 in the composite body 119 is filled with a water absorbing material. Thus, the water channel portion 128 is formed. The water absorbing material is filled up to the same height as the upper surfaces of the waterproof part 130 and the extension part 134. Thereby, the connection part 120 is formed. Thereafter, the steps shown in FIGS. 5A to 5C, FIG. 6A, and FIG. 6B are performed, and the fuel cell 10 is obtained.
 以上説明した実施形態2に係る燃料電池10によれば、水路部128のカソード触媒層104側の端面128aの面積を大きくすることができるため、水路部128とカソード触媒層104との接触面積を実施形態1よりも大きくする設計が可能となる。そのため、カソード触媒層104からアノード触媒層近傍領域102aへの水の移送量をより増やすことができる。 According to the fuel cell 10 according to the second embodiment described above, the area of the end surface 128a of the water channel portion 128 on the cathode catalyst layer 104 side can be increased, so that the contact area between the water channel portion 128 and the cathode catalyst layer 104 is reduced. A design larger than that of the first embodiment is possible. Therefore, the amount of water transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a can be further increased.
 (実施形態3)
 実施形態3は、上述した実施形態1又は2に係る燃料電池10を搭載した燃料電池システムである。実施形態1又は2と同一の構成については同一の符号を付し、その説明は適宜省略する。
(Embodiment 3)
Embodiment 3 is a fuel cell system equipped with the fuel cell 10 according to Embodiment 1 or 2 described above. The same components as those in the first or second embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 図9(A)は、実施形態3に係る燃料電池システムを斜め上方から見た斜視図である。図9(B)は、実施形態3に係る燃料電池システムを斜め下方から見た斜視図である。図10(A)は、実施形態3に係る燃料電池システムの筐体内部の概略構造を示す正面図である。図10(B)は、実施形態3に係る燃料電池システムの筐体内部の概略構造を示す斜視図である。なお、図10(A)では、燃料電池10の膜電極接合体100と水路部128とを模式的に示している。 FIG. 9A is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from above. FIG. 9B is a perspective view of the fuel cell system according to Embodiment 3 as viewed obliquely from below. FIG. 10A is a front view showing a schematic structure inside the housing of the fuel cell system according to Embodiment 3. FIG. FIG. 10B is a perspective view showing a schematic structure inside the housing of the fuel cell system according to the third embodiment. In FIG. 10A, the membrane electrode assembly 100 and the water channel 128 of the fuel cell 10 are schematically shown.
 燃料電池システム1は、筐体300、複数の燃料電池10、燃料収容部330、燃料供給部332、送風部340、整流部350及び制御部370を備える。本実施形態の燃料電池システム1は、燃料の供給にポンプなどの補機を使用しないパッシブ型の燃料電池システムである。筐体300は、複数の燃料電池10、燃料収容部330、燃料供給部332、送風部340、整流部350及び制御部370を持ち運びに容易な形態でコンパクトに収容している。図9(A)に示すように、筐体300の大部分は一体的に形成されているが、便宜的に主に基部310と突出部320とに分けられる。 The fuel cell system 1 includes a housing 300, a plurality of fuel cells 10, a fuel storage unit 330, a fuel supply unit 332, a blower unit 340, a rectifying unit 350, and a control unit 370. The fuel cell system 1 of the present embodiment is a passive fuel cell system that does not use an auxiliary machine such as a pump for supplying fuel. The housing 300 contains a plurality of fuel cells 10, a fuel storage unit 330, a fuel supply unit 332, a blower unit 340, a rectifying unit 350, and a control unit 370 in a compact form that is easy to carry. As shown in FIG. 9A, most of the housing 300 is integrally formed, but for convenience, it is mainly divided into a base portion 310 and a protruding portion 320.
 基部310は直方体形状であり、底面の長手方向両端部に机などの設置面に載置するための脚部312が設けられている。基部310の底面には吸気口314が設けられており、吸気口314を介して外気が基部310の中に取り込まれる。基部310の底面は、吸気口314が設けられている領域が脚部312に対して凹部になっており、脚部312が設置面に接した状態で、設置面と吸気口314との間に隙間が生じるようになっている。これにより、筐体300を設置面に載置した状態で、基部310の底面から外気を取り込むことができる。吸気口314の数および位置は、後述する送風部340の形態に応じて適宜設定される。 The base portion 310 has a rectangular parallelepiped shape, and leg portions 312 for mounting on a setting surface such as a desk are provided at both longitudinal ends of the bottom surface. An air inlet 314 is provided on the bottom surface of the base 310, and outside air is taken into the base 310 through the air inlet 314. In the bottom surface of the base 310, a region where the air inlet 314 is provided is a concave portion with respect to the leg 312, and the leg 312 is in contact with the installation surface and between the installation surface and the air intake 314. A gap is created. Thereby, outside air can be taken in from the bottom surface of the base 310 in a state where the housing 300 is placed on the installation surface. The number and position of the air inlets 314 are appropriately set according to the form of the air blowing unit 340 described later.
 また、基部310の上面は、長手方向に沿った一方の辺に沿った領域Mと、長手方向に沿った他方の辺に沿った領域Nに分けられている(図9(A)参照)。領域Mには、2組の排気口316a、316bが設けられている。また、領域Nには、領域Mと同様に2組の排気口(図示せず)が設けられている。 Further, the upper surface of the base 310 is divided into a region M along one side along the longitudinal direction and a region N along the other side along the longitudinal direction (see FIG. 9A). In the region M, two sets of exhaust ports 316a and 316b are provided. In the region N, two sets of exhaust ports (not shown) are provided as in the region M.
 突出部320は、領域Mと領域Nに挟まれた領域において、基部310の上方に突出している。筐体300は、側面方向から見ると逆T字形状になっている。突出部320の一方の側(領域Mの側)には、領域M側に設けられた燃料電池10の設置領域に応じた開口部318m、318n、318o及び318pが設けられている。同様に、突出部320の他方の側(領域Nの側)には、領域N側に設けられた燃料電池10の設置領域に応じた開口部318m’、318n’、318o’及び318p’が設けられている。 The protruding portion 320 protrudes above the base portion 310 in a region sandwiched between the region M and the region N. The casing 300 has an inverted T shape when viewed from the side. Openings 318m, 318n, 318o and 318p corresponding to the installation area of the fuel cell 10 provided on the region M side are provided on one side of the protrusion 320 (region M side). Similarly, openings 318m ′, 318n ′, 318o ′ and 318p ′ corresponding to the installation area of the fuel cell 10 provided on the region N side are provided on the other side (region N side) of the protrusion 320. It has been.
 以下、突出部320の領域Mの側を例に取り、筐体300についてより詳細に説明する。開口部318m、318n、318o及び318pは、2×2のマトリクス状に配置されており、開口部318m、開口部318oはそれぞれ排気口316a、排気口316bの近傍に配置されている。開口部318nは開口部318mの上方に位置している。また、開口部318pは開口部318oの上方に位置している。開口部318mと開口部318nとの間、及び開口部318oと開口部318pとの間には、補強部301aが設けられている。言い換えると補強部301aは、排気口316a、316bからの送風方向(図9(A)中の矢印Xの方向)と直交する方向に延在している。補強部301aを設けることで、燃料電池10を筐体300内により安定に保持することができる。なお、補強部301aの詳細については後述する。 Hereinafter, the case 300 will be described in more detail by taking the region M side of the protrusion 320 as an example. The openings 318m, 318n, 318o, and 318p are arranged in a 2 × 2 matrix, and the openings 318m and 318o are arranged in the vicinity of the exhaust port 316a and the exhaust port 316b, respectively. The opening 318n is located above the opening 318m. The opening 318p is located above the opening 318o. A reinforcing portion 301a is provided between the opening 318m and the opening 318n and between the opening 318o and the opening 318p. In other words, the reinforcing portion 301a extends in a direction orthogonal to the blowing direction from the exhaust ports 316a and 316b (the direction of the arrow X in FIG. 9A). By providing the reinforcing portion 301 a, the fuel cell 10 can be held more stably in the housing 300. Details of the reinforcing portion 301a will be described later.
 開口部318mと開口部318oとの間、及び開口部318nと開口部318pとの間に補強部301bが設けられている。言い換えると、補強部301bは、排気口316a、316bからの送風方向に沿って延在している。補強部301bを設けることで、補強部301aと同様に、燃料電池10を筐体300内により安定に保持することができる。 Reinforcing portions 301b are provided between the opening 318m and the opening 318o and between the opening 318n and the opening 318p. In other words, the reinforcement part 301b is extended along the ventilation direction from the exhaust port 316a, 316b. By providing the reinforcing portion 301b, the fuel cell 10 can be more stably held in the housing 300 in the same manner as the reinforcing portion 301a.
 突出部320の中には、複数の燃料電池10、燃料収容部330、燃料供給部332が収容されている。 A plurality of fuel cells 10, a fuel storage unit 330, and a fuel supply unit 332 are stored in the protrusion 320.
 燃料収容部330には水素吸蔵合金が収容されている。水素吸蔵合金は、水素の吸蔵と、吸蔵した水素の放出とが可能であり、例えば、希土類系のMmNi4.32Mn0.18Al0.1Fe0.1Co0.3(Mmはミッシュメタル)である。なお、水素吸蔵合金は、これに限定されず、例えばLa-Ni系等の他の希土類系の合金、Ti-Mn系合金、Ti-Fe系合金、Ti-Zr系合金、Mg-Ni系合金、Zr-Mn系合金等であってもよい。具体的には、水素吸蔵合金としてLaNi合金、MgNi合金、Ti1+xCr2-yMn(x=0.1~0.3、y=0~1.0)合金などを挙げることができる。水素吸蔵合金は、上述した水素吸蔵合金の粉末にポリテトラフルオロエチレン(PTFE)デイスパージョンなどの結着剤を混合し、プレス機で圧縮成形した圧縮成形体(ペレット)とすることができる。必要に応じて、圧縮成形後に焼結処理がなされていてもよい。また、水素吸蔵合金は、ペレット形状ではなく、水素吸蔵合金の粉末が燃料収容空間に充填されたものであってもよい。水素吸蔵合金の形状は、特に限定されない。 The fuel storage unit 330 stores a hydrogen storage alloy. The hydrogen storage alloy can store hydrogen and release the stored hydrogen, and is, for example, rare earth-based MmNi 4.32 Mn 0.18 Al 0.1 Fe 0.1 Co 0.3 (Mm is Misch metal). The hydrogen storage alloy is not limited to this, but other rare earth alloys such as La—Ni alloys, Ti—Mn alloys, Ti—Fe alloys, Ti—Zr alloys, Mg—Ni alloys. Zr—Mn alloy or the like may be used. Specifically, LaNi 5 alloy, Mg 2 Ni alloy, Ti 1 + x Cr 2- y Mn y (x = 0.1 ~ 0.3, y = 0 ~ 1.0) as a hydrogen storage alloy and the like alloys Can do. The hydrogen storage alloy can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the above-mentioned hydrogen storage alloy powder and compression molding with a press. If necessary, a sintering process may be performed after the compression molding. The hydrogen storage alloy may not be in the form of a pellet, but may be one in which the fuel storage space is filled with a powder of the hydrogen storage alloy. The shape of the hydrogen storage alloy is not particularly limited.
 燃料収容部330の両主表面にそれぞれ燃料電池10が配設されている。本実施形態では、燃料収容部330の両主表面に、それぞれ、筐体300の突出部320に設けられた4つの開口部318と重なるように4つの燃料電池10が平面配列されている。燃料電池10は、上述の実施形態1もしくは実施形態2に係る燃料電池である。なお、本実施形態では、後述するカソード保護層400が4つの燃料電池10のカソード用ハウジングを構成している。 Fuel cells 10 are disposed on both main surfaces of the fuel storage unit 330, respectively. In the present embodiment, the four fuel cells 10 are arranged in a plane on both main surfaces of the fuel storage portion 330 so as to overlap the four openings 318 provided in the protruding portion 320 of the housing 300. The fuel cell 10 is a fuel cell according to the first embodiment or the second embodiment described above. In the present embodiment, the cathode protective layer 400 described later constitutes the cathode housing of the four fuel cells 10.
 燃料電池10は、カソード触媒層104側の主表面が燃料電池システム1の外部側を向くように配置されている。カソード触媒層104側に配置されたカソード保護層400は、平板状の部材で形成されており、カソード用ハウジング12と同様に複数の開口401を有する(図11(A)参照)。これらの開口401によりカソード触媒層104と燃料電池外部との間の通気性が得られている。カソード保護層400の材料は特に限定されないが、例えば、アルマイト処理したアルミニウムやポリアクリレートなどの絶縁体が挙げられる。カソード保護層400とカソード触媒層104との間には、気液分離膜(図示せず)が設けられてもよい。 The fuel cell 10 is arranged so that the main surface on the cathode catalyst layer 104 side faces the outside of the fuel cell system 1. The cathode protective layer 400 disposed on the cathode catalyst layer 104 side is formed of a flat plate-like member, and has a plurality of openings 401 like the cathode housing 12 (see FIG. 11A). These openings 401 provide air permeability between the cathode catalyst layer 104 and the outside of the fuel cell. The material of the cathode protective layer 400 is not particularly limited, and examples thereof include insulators such as anodized aluminum and polyacrylate. A gas-liquid separation membrane (not shown) may be provided between the cathode protective layer 400 and the cathode catalyst layer 104.
 本実施形態では、燃料電池10のカソード触媒層104側の主表面が外側を向いている。したがって、送風部340により送風される燃料電池10の主表面は、カソード触媒層104側の主表面である。そのため、送風部340によって、酸化剤ガスとしての空気の供給と、燃料電池10冷却用の空気の供給とを達成することができる。燃料電池10のカソード触媒層104側の主表面には、温度検出部(図示せず)が設けられている。温度検出部により燃料電池10の温度が測定され、温度検出部で得られた燃料電池10の温度情報が後述する制御部370に送信される。 In the present embodiment, the main surface of the fuel cell 10 on the cathode catalyst layer 104 side faces outward. Therefore, the main surface of the fuel cell 10 blown by the blower 340 is the main surface on the cathode catalyst layer 104 side. Therefore, the supply of air as an oxidant gas and the supply of air for cooling the fuel cell 10 can be achieved by the blower 340. A temperature detection unit (not shown) is provided on the main surface of the fuel cell 10 on the cathode catalyst layer 104 side. The temperature of the fuel cell 10 is measured by the temperature detector, and the temperature information of the fuel cell 10 obtained by the temperature detector is transmitted to the controller 370 described later.
 燃料供給部332は、水素供給路およびレギュレータ(ともに図示せず)を主な構成として備える。水素供給路は、一端が燃料収容部330の出口と連通し、他端が燃料電池10のアノード触媒層106側と連通している。水素供給路の途中にレギュレータが設けられている。レギュレータにより、水素吸蔵合金から水素が放出される際に、燃料電池10に供給される水素の圧力が低減される。これにより、燃料電池10のアノード触媒層106が保護される。 The fuel supply unit 332 includes a hydrogen supply path and a regulator (both not shown) as main components. One end of the hydrogen supply path communicates with the outlet of the fuel storage unit 330, and the other end communicates with the anode catalyst layer 106 side of the fuel cell 10. A regulator is provided in the middle of the hydrogen supply path. When the hydrogen is released from the hydrogen storage alloy by the regulator, the pressure of the hydrogen supplied to the fuel cell 10 is reduced. Thereby, the anode catalyst layer 106 of the fuel cell 10 is protected.
 基部310には、主に送風部340、整流部350及び制御部370が収容されている。 The base 310 mainly accommodates a blower 340, a rectifier 350, and a controller 370.
 制御部370は、基部310の底面をなす部材に搭載されている。制御部370は、ハードウェア構成として、CPU、ROM、メモリ等を有し、送風部340の動作を制御する。例えば、制御部370は、温度検出部によって測定された温度が所定の高温になったとき、送風部340による送風を開始させる。 The control unit 370 is mounted on a member that forms the bottom surface of the base 310. The control unit 370 includes a CPU, a ROM, a memory, and the like as a hardware configuration, and controls the operation of the air blowing unit 340. For example, the control unit 370 starts the blowing by the blowing unit 340 when the temperature measured by the temperature detection unit reaches a predetermined high temperature.
 制御部370の上方に送風部340が設置されている。送風部340は、燃料電池10のカソード触媒層104側の主表面に対して直交する方向から送風を行う。本実施形態では、送風部340として旋回流を発生させる送風機342が基部310の長手方向に2組並設されている。具体的には、送風機342は軸流ファン(プロペラファン)である。一方の送風機342で発生した風は、領域M側の排気口316a、領域N側において突出部320を対称軸として排気口316aと線対称の位置にある排気口の両方に送風される。また、他方の送風機342で発生した風は、領域M側の排気口316b、領域N側において突出部320を対称軸として排気口316bと線対称の位置にある排気口の両方に送風される。このように、一つの送風機で、燃料収容部330の両主表面にそれぞれ設けられた燃料電池10への送風を担うことにより構成を簡単化し、燃料電池システム1をコンパクト化及び省電力化を図ることができる。 The blower 340 is installed above the controller 370. The blower 340 blows air from a direction orthogonal to the main surface of the fuel cell 10 on the cathode catalyst layer 104 side. In this embodiment, two sets of blowers 342 that generate a swirling flow are arranged in parallel in the longitudinal direction of the base 310 as the blower 340. Specifically, the blower 342 is an axial fan (propeller fan). The wind generated by one of the blowers 342 is blown to both the exhaust port 316a on the region M side and the exhaust port 316a on the region N side with the projecting portion 320 as an axis of symmetry and the exhaust port located in line symmetry. In addition, the wind generated by the other blower 342 is blown to both the exhaust port 316b on the region M side and the exhaust port 316b on the region N side with the projecting portion 320 as an axis of symmetry and the exhaust port located in line symmetry. In this way, the configuration is simplified by taking charge of the air to the fuel cells 10 respectively provided on the two main surfaces of the fuel storage portion 330 with one blower, and the fuel cell system 1 is made compact and saves power. be able to.
 整流部350は送風部340の上方に設けられている。整流部350は、送風部340から送出された風の方向を燃料電池10のカソード触媒層104側の主表面に向くように角度を付ける。具体的には、送風部340によって生じた旋回流を燃料電池10のカソード触媒層104側の主表面に向けて反射する形状を持つ整流板352を有する。 The rectifying unit 350 is provided above the air blowing unit 340. The rectifying unit 350 makes an angle so that the direction of the wind sent from the air blowing unit 340 faces the main surface of the fuel cell 10 on the cathode catalyst layer 104 side. Specifically, it has a rectifying plate 352 having a shape that reflects the swirling flow generated by the blower 340 toward the main surface of the fuel cell 10 on the cathode catalyst layer 104 side.
 送風部340は、燃料電池10のカソード触媒層104側の主表面に沿って送風する。図10(A)では、矢印Xが風を表している。燃料電池10は、水路部128の延在方向が送風部340の送風方向と略直行するように配置される。すなわち、膜電極接合体100の直列接続方向と送風部340の送風方向とが平行である。また、膜電極接合体100と水路部128との各組み合わせZ(例えば、図3に示す膜電極接合体100bと外側用接続部140の水路部128との組み合わせ、及び膜電極接合体100cと接続部120aの水路部128との組み合わせ)において、膜電極接合体100が送風部340の風上側に配置され、水路部128が送風部340の送風方向の風下側に配置される。これにより、送風部340の送風によって、カソード触媒層104に含まれる水を水路部128に移動させることができる。なお、送風により風上側の膜電極接合体100の水が隣接する接続部120を越えて風下側の膜電極接合体100に到達することでショートが発生することを防ぐために、インターコネクタ122をカソード触媒層104よりも上方に突出させたり、接続部120の端面にカソード触媒層104よりも上方に突出する堤防部を設けたりしてもよい。 The blower 340 blows along the main surface of the fuel cell 10 on the cathode catalyst layer 104 side. In FIG. 10A, the arrow X represents the wind. The fuel cell 10 is arranged such that the extending direction of the water channel portion 128 is substantially perpendicular to the blowing direction of the blowing unit 340. That is, the series connection direction of the membrane electrode assembly 100 and the blowing direction of the blowing unit 340 are parallel. Further, each combination Z of the membrane electrode assembly 100 and the water channel portion 128 (for example, the combination of the membrane electrode assembly 100b and the water channel portion 128 of the outer connection portion 140 shown in FIG. 3, and the membrane electrode assembly 100c) In combination with the water channel portion 128 of the portion 120a), the membrane electrode assembly 100 is disposed on the leeward side of the air blowing unit 340, and the water channel portion 128 is disposed on the leeward side of the air blowing unit 340 in the air blowing direction. Thereby, the water contained in the cathode catalyst layer 104 can be moved to the water channel part 128 by the air blowing of the air blowing part 340. In order to prevent a short circuit from occurring when the air of the membrane electrode assembly 100 on the windward side passes through the adjacent connecting portion 120 and reaches the membrane electrode assembly 100 on the leeward side by blowing air, the interconnector 122 is connected to the cathode. The connecting layer 120 may be protruded upward from the catalyst layer 104, or a bank portion protruding above the cathode catalyst layer 104 may be provided on the end surface of the connecting portion 120.
 図11(A)は、補強部301a、補強部301bを拡大した概略平面図である。図11(B)は、図11(A)のE-E線に沿った概略断面図である。図11(C)は、図11(A)のF-F線に沿った断面図である。なお、図11(A)及び図11(C)では、矢印Xが風を表している。 FIG. 11A is an enlarged schematic plan view of the reinforcing portion 301a and the reinforcing portion 301b. FIG. 11B is a schematic cross-sectional view along the line EE in FIG. FIG. 11C is a cross-sectional view taken along the line FF in FIG. In FIGS. 11A and 11C, the arrow X represents the wind.
 補強部301aの肉厚は、補強部301bの肉厚より薄くなっており、燃料電池10側に補強部301bが凸となり、燃料電池10と反対側(外側)では補強部301aと補強部301bとの間に段差がないように設計されている。これにより、補強部301aとカソード保護層400との間に風Xの通り道となる流路410が形成されている。これによれば、送風部340から送出された風が流路410を通ることにより、補強部301aで遮られることなく、送風部340からみて補強部301aの背後の領域を含む開口部318n、318pに向かうことができる。したがって、燃料電池10のカソード触媒層104側の主表面全体に均一な風量で送風することができるため、場所による温度のばらつきを低減することができ、ひいては、燃料電池10による発電を安定化させることができる。 The thickness of the reinforcing part 301a is thinner than the thickness of the reinforcing part 301b, the reinforcing part 301b is convex on the fuel cell 10 side, and the reinforcing part 301a and the reinforcing part 301b are on the opposite side (outside) from the fuel cell 10. It is designed so that there is no step between them. Thereby, a flow path 410 serving as a path for the wind X is formed between the reinforcing portion 301 a and the cathode protective layer 400. According to this, the openings 318n and 318p including the region behind the reinforcing portion 301a as viewed from the blowing portion 340 without being blocked by the reinforcing portion 301a when the wind sent from the blowing portion 340 passes through the flow path 410. Can head to. Therefore, since it is possible to blow air over the entire main surface of the fuel cell 10 on the cathode catalyst layer 104 side with a uniform air volume, it is possible to reduce variations in temperature depending on the location, and to stabilize power generation by the fuel cell 10. be able to.
 なお、補強部301a,301bを同一の肉厚とし、補強部301aと補強部301bとが交差する領域において、補強部301aが補強部301bの上(補強部301bの方が補強部301aより燃料電池10側)に位置するように配置してもよい。この場合、補強部301aとカソード保護層400との間に、補強部301bの厚さと同等な流路410を形成することができる。 In the region where the reinforcing portions 301a and 301b have the same thickness and the reinforcing portion 301a and the reinforcing portion 301b intersect, the reinforcing portion 301a is above the reinforcing portion 301b (the reinforcing portion 301b is more fuel cell than the reinforcing portion 301a). (10 side) may be arranged. In this case, a flow path 410 equivalent to the thickness of the reinforcing portion 301b can be formed between the reinforcing portion 301a and the cathode protective layer 400.
 以上説明した燃料電池システム1によれば、燃料電池10のカソード触媒層104に空気を供給するための送風を利用して、カソード触媒層104に含まれる水を水路部128に移動させることができる。これにより、カソード触媒層104からアノード触媒層近傍領域102aへ効率的に水を移送することができる。 According to the fuel cell system 1 described above, the water contained in the cathode catalyst layer 104 can be moved to the water channel portion 128 using the air blow for supplying air to the cathode catalyst layer 104 of the fuel cell 10. . Thereby, water can be efficiently transferred from the cathode catalyst layer 104 to the anode catalyst layer vicinity region 102a.
 本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiments to which such modifications are added. Can also be included in the scope of the present invention.
 上述の実施形態1~3では、水路部128のアノード触媒層側端部の側面128bがアノード触媒層近傍領域102aに接し、水路部128とアノード触媒層106とは非接触であるが、水路部128が水の流通が可能で且つガス不透過性を備えるものであれば、側面128bはアノード触媒層近傍領域102aに加えてアノード触媒層106に接してもよく、また、アノード触媒層106のみに接してもよい。 In the first to third embodiments described above, the side surface 128b of the end portion of the water channel portion 128 on the anode catalyst layer side is in contact with the anode catalyst layer vicinity region 102a, and the water channel portion 128 and the anode catalyst layer 106 are not in contact with each other. If 128 is capable of flowing water and has gas impermeability, the side surface 128b may be in contact with the anode catalyst layer 106 in addition to the anode catalyst layer vicinity region 102a, or only on the anode catalyst layer 106. You may touch.
 1 燃料電池システム、 10 燃料電池、 100 膜電極接合体、 102 電解質膜、 102a アノード触媒層近傍領域、 102b カソード触媒層近傍領域、 104 カソード触媒層、 106 アノード触媒層、 122 インターコネクタ、 124 第1絶縁層、 126 第2絶縁層、 128 水路部、 130 防水部、 132 ガスシール部、 340 送風部。 DESCRIPTION OF SYMBOLS 1 Fuel cell system, 10 Fuel cell, 100 Membrane electrode assembly, 102 Electrolyte membrane, 102a Anode catalyst layer vicinity area, 102b Cathode catalyst layer vicinity area, 104 Cathode catalyst layer, 106 Anode catalyst layer, 122 Interconnector, 124 1st Insulating layer, 126, second insulating layer, 128 waterway part, 130 waterproofing part, 132 gas seal part, 340 air blowing part.
 本発明は、燃料電池及び燃料電池システムに利用可能である。 The present invention can be used for fuel cells and fuel cell systems.

Claims (10)

  1.  電解質膜、前記電解質膜の一方の面に設けられたカソード触媒層、及び前記電解質膜の他方の面に設けられたアノード触媒層で構成される膜電極接合体と、
     前記電解質膜とは異なる材料で構成され、前記カソード触媒層と前記電解質膜のアノード触媒層近傍領域とを接続し、前記カソード触媒層に含まれる水の前記アノード触媒層近傍領域への移動を許容する水路部と、
    を備えることを特徴とする燃料電池。
    A membrane electrode assembly comprising an electrolyte membrane, a cathode catalyst layer provided on one surface of the electrolyte membrane, and an anode catalyst layer provided on the other surface of the electrolyte membrane;
    It is made of a material different from that of the electrolyte membrane, connects the cathode catalyst layer and the region near the anode catalyst layer of the electrolyte membrane, and allows water contained in the cathode catalyst layer to move to the region near the anode catalyst layer. A waterway to
    A fuel cell comprising:
  2.  前記水路部は、吸水材を有する請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the water channel portion has a water absorbing material.
  3.  前記水路部は、前記膜電極接合体の側面側に配置され、水路部の側面が前記アノード触媒層近傍領域に接し、
     前記水路部と前記膜電極接合体との間に介在する防水部を備える請求項1又は2に記載の燃料電池。
    The water channel part is disposed on a side surface side of the membrane electrode assembly, and a side surface of the water channel unit is in contact with a region near the anode catalyst layer,
    The fuel cell according to claim 1, further comprising a waterproof part interposed between the water channel part and the membrane electrode assembly.
  4.  前記水路部のアノード触媒層側の端面を被覆し、前記水路部を介した前記アノード触媒層側と前記カソード触媒層側との間でのガスの移動を抑制するガスシール部を備える請求項1乃至3のいずれか1項に記載の燃料電池。 The gas seal part which coat | covers the end surface by the side of the anode catalyst layer of the said water channel part, and suppresses the movement of the gas between the said anode catalyst layer side and the said cathode catalyst layer side via the said water channel part is provided. 4. The fuel cell according to any one of items 1 to 3.
  5.  前記水路部は、前記電解質膜のカソード触媒層近傍領域に接する請求項1乃至4のいずれか1項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 4, wherein the water channel portion is in contact with a region near the cathode catalyst layer of the electrolyte membrane.
  6.  平面配列された複数の前記膜電極接合体と、
     隣接する膜電極接合体の一方のアノード触媒層と他方のカソード触媒層とを電気的に接続するためのインターコネクタと、
     前記膜電極接合体と前記インターコネクタとの間に介在する絶縁層と、を備え、
     前記水路部は、前記絶縁層と前記膜電極接合体との間に設けられる請求項1乃至5のいずれか1項に記載の燃料電池。
    A plurality of membrane electrode assemblies arranged in a plane;
    An interconnector for electrically connecting one anode catalyst layer and the other cathode catalyst layer of an adjacent membrane electrode assembly;
    An insulating layer interposed between the membrane electrode assembly and the interconnector,
    The fuel cell according to any one of claims 1 to 5, wherein the water channel portion is provided between the insulating layer and the membrane electrode assembly.
  7.  前記水路部のアノード触媒層側の端面を被覆し、前記水路部を介した前記アノード触媒層と前記カソード触媒層との間のガスの移動を抑制するガスシール部を備え、
     前記ガスシール部と前記絶縁層とは一体である請求項6に記載の燃料電池。
    A gas seal portion that covers an end surface of the water channel portion on the anode catalyst layer side and suppresses gas movement between the anode catalyst layer and the cathode catalyst layer via the water channel portion;
    The fuel cell according to claim 6, wherein the gas seal portion and the insulating layer are integrated.
  8.  前記水路部は、非プロトン伝導性を有する請求項1乃至7のいずれか1項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 7, wherein the water channel portion has aprotic conductivity.
  9.  前記水路部は、前記電解質膜よりもプロトン伝導性の低いプロトン伝導性材料で構成される請求項1乃至7のいずれか1項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 7, wherein the water channel portion is made of a proton conductive material having a proton conductivity lower than that of the electrolyte membrane.
  10.  請求項1乃至9のいずれか1項に記載の燃料電池と、
     前記燃料電池のカソード触媒層側主表面に沿って送風する送風部と、を備え、
     前記水路部は、前記送風部の送風方向の風下側に配置されることを特徴とする燃料電池システム。
    The fuel cell according to any one of claims 1 to 9,
    An air blowing section for blowing air along the cathode catalyst layer side main surface of the fuel cell,
    The said water channel part is arrange | positioned in the leeward side of the ventilation direction of the said ventilation part, The fuel cell system characterized by the above-mentioned.
PCT/JP2013/000186 2012-01-31 2013-01-17 Fuel cell and fuel cell system WO2013114800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-018768 2012-01-31
JP2012018768A JP2015079562A (en) 2012-01-31 2012-01-31 Fuel cell and fuel cell system

Publications (1)

Publication Number Publication Date
WO2013114800A1 true WO2013114800A1 (en) 2013-08-08

Family

ID=48904852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000186 WO2013114800A1 (en) 2012-01-31 2013-01-17 Fuel cell and fuel cell system

Country Status (2)

Country Link
JP (1) JP2015079562A (en)
WO (1) WO2013114800A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103971B2 (en) * 2019-02-19 2022-07-20 本田技研工業株式会社 Fuel cell and its manufacturing method
JP7103970B2 (en) * 2019-02-19 2022-07-20 本田技研工業株式会社 Fuel cell and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283094A (en) * 1992-03-31 1993-10-29 Toshiba Corp Fuel cell
JP2002025584A (en) * 2000-07-04 2002-01-25 Fuji Electric Co Ltd Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP2005078998A (en) * 2003-09-02 2005-03-24 Toyota Motor Corp Fuel cell
JP2008177047A (en) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp Fuel cell
JP2008288045A (en) * 2007-05-17 2008-11-27 Canon Inc Ion conductive membrane and fuel cell
JP2010199050A (en) * 2009-01-29 2010-09-09 Toyota Motor Corp Composite electrolyte membrane for fuel cell and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283094A (en) * 1992-03-31 1993-10-29 Toshiba Corp Fuel cell
JP2002025584A (en) * 2000-07-04 2002-01-25 Fuji Electric Co Ltd Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP2005078998A (en) * 2003-09-02 2005-03-24 Toyota Motor Corp Fuel cell
JP2008177047A (en) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp Fuel cell
JP2008288045A (en) * 2007-05-17 2008-11-27 Canon Inc Ion conductive membrane and fuel cell
JP2010199050A (en) * 2009-01-29 2010-09-09 Toyota Motor Corp Composite electrolyte membrane for fuel cell and method for manufacturing the same

Also Published As

Publication number Publication date
JP2015079562A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
US7851105B2 (en) Electrochemical fuel cell stack having staggered fuel and oxidant plenums
WO2010106753A1 (en) Fuel cell stack
WO2004004055A1 (en) Solid high polymer type cell assembly
US20090004521A1 (en) Alkaline fuel cell
JP5890171B2 (en) Fuel cell layer and method for producing fuel cell layer
CN107180986B (en) Membrane electrode assembly and fuel cell including the same
JP2011204609A (en) Fuel cell layer, fuel cell system, and method for manufacturing the fuel cell layer
JP5454301B2 (en) Fuel cell stack
WO2016157714A1 (en) Fuel cell and method for manufacturing fuel cell
JP2009009715A (en) Fuel cell
WO2013114800A1 (en) Fuel cell and fuel cell system
JP5362406B2 (en) Fuel cell
KR100728787B1 (en) Direct methanol fuel cell
US11508982B2 (en) Fuel cell stack
JP2010198903A (en) Fuel cell and method for manufacturing the same
JP2009037991A (en) Mobile body
JPWO2008050640A1 (en) Fuel cell
EP2375485B1 (en) Fuel cell system
JP2001338656A (en) Fuel cell
JP2007042600A (en) Fuel cell
KR102664114B1 (en) Air shut off valve apparatus for fuel cell system
WO2013145776A1 (en) Fuel cell system comprising a detachable fuel cartridge including a hydrogen storage alloy
US20130260284A1 (en) Fuel cell system
WO2013018124A1 (en) Fuel cell system
JP2009238611A (en) Mea member, fuel battery cell, and polymer electrolyte fuel battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP