WO2013018124A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2013018124A1
WO2013018124A1 PCT/JP2011/004351 JP2011004351W WO2013018124A1 WO 2013018124 A1 WO2013018124 A1 WO 2013018124A1 JP 2011004351 W JP2011004351 W JP 2011004351W WO 2013018124 A1 WO2013018124 A1 WO 2013018124A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
opening
cathode
protective layer
reinforcing portion
Prior art date
Application number
PCT/JP2011/004351
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 井村
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2011/004351 priority Critical patent/WO2013018124A1/en
Publication of WO2013018124A1 publication Critical patent/WO2013018124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a fuel cell system is a device that generates electrical energy from, for example, hydrogen and oxygen, and can achieve high power generation efficiency.
  • the main features of the fuel cell system are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so that high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good.
  • the fuel cell system can effectively use the chemical energy of the fuel and has environmentally friendly characteristics, so it is expected as an energy supply system for the 21st century, from space use to automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used in various applications from large-scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
  • Fuel cells generate heat and increase in temperature with power generation. If the temperature of the fuel cell rises excessively, performance degradation due to dryout occurs. In order to prevent this, an air cooling technique using a blowing means such as a fan is known (see Patent Documents 1 to 3).
  • the configuration of the fuel cell includes an opening provided in the housing by a blowing means that houses the fuel cell in the housing and can blow along the main surface of the fuel cell.
  • a blowing means that houses the fuel cell in the housing and can blow along the main surface of the fuel cell.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a technique capable of reducing variation in air-cooling effect depending on a place when the fuel cell is air-cooled.
  • the first aspect of the present invention is a fuel cell system.
  • the fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell.
  • a cathode protective layer having air permeability provided on the side, a first opening and a second opening for accommodating the fuel cell and exposing a part of the cathode protective layer; and the first opening And a reinforcing portion provided between the first opening and the second opening, and on the main surface of the fuel cell on the cathode side, from the first opening to the second opening.
  • An air blowing section, and a flow path is provided between the reinforcing section and the cathode protective layer.
  • the second aspect of the present invention is a fuel cell system.
  • the fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell.
  • a housing having a reinforcing portion provided between the opening and the air blowing portion, and the air blowing portion blows air from the reinforcing portion toward the opening, and the opening of the reinforcing portion.
  • the side surface is tapered so that the angle formed by the side surface on the part side and the cathode protective layer is an acute angle.
  • the third aspect of the present invention is a fuel cell system.
  • the fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell.
  • the cathode protective layer has a through hole including a region overlapping with the reinforcing portion, and the through hole is exposed at the first opening and the second opening. It is characterized by.
  • the fourth aspect of the present invention is a fuel cell system.
  • the fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell.
  • a cathode protective layer having air permeability provided on the side, a first opening and a second opening for accommodating the fuel cell and exposing a part of the cathode protective layer; and the first opening And a reinforcing portion provided between the first opening and the second opening, and on the main surface of the fuel cell on the cathode side, from the first opening to the second opening.
  • the cathode protective layer has a through hole in a region overlapping the reinforcing portion, the first opening and the through hole communicate with each other, and the through hole and the second
  • the cathode retainer of the reinforcing part is in communication with the opening of the reinforcing part. Wherein the corners of the side layers are chamfered.
  • FIG. 1A is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from above.
  • FIG. 1B is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from below.
  • 2A to 2D are a top view, a bottom view, a front view, and a side view, respectively, of the housing of the first embodiment.
  • FIGS. 3A and 3B are a front view and a perspective view, respectively, showing an outline of the configuration of the fuel cell system housed in the housing in relation to the first embodiment. It is sectional drawing which shows schematic structure of the fuel cell module which concerns on Embodiment 1 of this invention.
  • FIG. 1A is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from above.
  • FIG. 1B is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from below.
  • 2A to 2D are
  • FIG. 5 (A) is a schematic diagram showing the shape of the rectifying plate according to Embodiment 1 of the present invention.
  • FIG. 5B is a diagram showing a state of rectification according to Embodiment 1 of the present invention in a cross section taken along line AA in FIG.
  • FIG. 2 is a schematic diagram showing how air is blown in the fuel cell system of Embodiment 1.
  • FIG. 7A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 1.
  • FIG. FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 7C is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 8A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 2.
  • FIG. 8B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 8C is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 9A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 3.
  • FIG. 9B is a cross-sectional view taken along line A-A ′ of FIG.
  • FIG. 9C is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 10A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 4.
  • FIG. 10B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 10C is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 11A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 5.
  • FIG. 11B is a cross-sectional view taken along line A-A ′ of FIG.
  • FIG. 11C is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 12 is a cross-sectional view of main parts along the line A-A ′ shown in FIG.
  • FIG. 13A is an enlarged plan view of a reinforcing portion and a cathode protective layer that the fuel cell system according to Embodiment 6 has.
  • FIG. 13B is a cross-sectional view taken along line A-A ′ of FIG.
  • FIG. 13C is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 14A is an enlarged plan view of a reinforcing portion and a cathode protective layer included in the fuel cell system according to Embodiment 7.
  • FIG. 14B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 14C is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 1A is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from above.
  • FIG. 1B is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from below.
  • 2A to 2D are a top view, a bottom view, a front view, and a side view, respectively, of the housing of the first embodiment.
  • 3A and 3B are a front view and a perspective view, respectively, showing an outline of the configuration of the fuel cell system 10 in relation to the first embodiment.
  • the fuel cell system 10 includes a housing 100, a fuel cell module 20, a fuel storage unit 30, a fuel supply unit 32, a blower unit 40, a rectification unit 50, a temperature detection unit 60, and a control unit 70.
  • the fuel cell system 10 of the present embodiment is a passive fuel cell system that does not use an auxiliary machine such as a pump for supplying fuel.
  • the housing 100 contains a plurality of fuel cell modules 20, a fuel storage unit 30, a blower unit 40, a rectification unit 50, a temperature detection unit 60, and a control unit 70 in a compact form that is easy to carry. As shown in FIGS. 2A to 2D, most of the housing 100 is integrally formed, but for convenience, it is mainly divided into a base portion 110 and a protruding portion 120.
  • the base portion 110 has a rectangular parallelepiped shape, and leg portions 112 for mounting on an installation surface such as a desk are provided at both longitudinal ends of the bottom surface.
  • An air inlet 114 is provided on the bottom surface of the base 110, and outside air is taken into the base 110 through the air inlet 114.
  • the region where the air inlet 114 is provided is a concave portion with respect to the leg 112, and the leg 112 is in contact with the installation surface, and is between the installation surface and the air intake 114. A gap is created. Thereby, outside air can be taken in from the bottom surface of the base 110 in a state where the housing 100 is placed on the installation surface.
  • the number and position of the air inlets 114 are appropriately set according to the form of the air blowing unit 40 described later.
  • the upper surface of the base 110 is divided into a region M along one side along the longitudinal direction and a region N along the other side along the longitudinal direction (see FIG. 2A).
  • a region M two sets of exhaust ports 116a and 116b are provided.
  • two sets of exhaust ports 116c and 116d are provided.
  • the opening shapes of the exhaust ports 116a to 116d are both shapes in which a circular arc and both ends of the circular arc are connected by strings.
  • the protruding portion 120 protrudes above the base 110 in a region sandwiched between the region M and the region N. When viewed from the side, it has an inverted T shape (see FIG. 2D). Openings 118m, 118n, 118o, and 118p corresponding to the installation area of the fuel cell module 20 provided on the region M side are provided on one side of the protrusion 120 (region M side). Similarly, openings 118m ′, 118n ′, 118o ′ and 118p ′ corresponding to the installation region of the fuel cell module 20 provided on the region N side are provided on the other side (region N side) of the protrusion 120. Is provided.
  • the openings 118m, 118n, 118o and 118p are arranged in a 2 ⁇ 2 matrix, and the opening 118m and the opening 118o as the first openings are arranged in the vicinity of the exhaust port 116a and the exhaust port 116b, respectively.
  • the opening 118n as the second opening is located above the opening 118m.
  • the opening 118p as the second opening is located above the opening 118o.
  • Reinforcing portions 101a are provided between the opening 118m and the opening 118n, and between the opening 118o and the opening 118p.
  • the reinforcing portion 101a extends in a direction perpendicular to the direction of air blowing from the exhaust ports 116a and 116b.
  • the fuel cell module 20 can be prevented from floating from the housing 100. Details of the reinforcing portion 101a will be described later.
  • Reinforcing portions 101b are provided between the opening 118m and the opening 118o and between the opening 118n and the opening 118p. In other words, the reinforcement part 101b is extended along the ventilation direction from the exhaust ports 116a and 116b. By providing the reinforcing portion 101b, it is possible to suppress the fuel cell module 20 from floating from the housing 100, similarly to the reinforcing portion 101a.
  • a plurality of fuel cell modules 20, a fuel storage unit 30, and a fuel supply unit 32 are stored in the protrusion 120 (not shown).
  • the fuel storage unit 30 stores a hydrogen storage alloy.
  • the hydrogen storage alloy can store hydrogen and release the stored hydrogen, and is, for example, rare earth-based MmNi4.32Mn0.18Al0.1Fe0.1Co0.3 (Mm is Misch metal).
  • the hydrogen storage alloy can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the hydrogen storage alloy powder described above and compression-molding it with a press. If necessary, a sintering process may be performed after the compression molding.
  • a binder such as polytetrafluoroethylene (PTFE) dispersion
  • PTFE polytetrafluoroethylene
  • Fuel cell modules 20 are disposed on both main surfaces of the fuel storage unit 30, respectively.
  • the four fuel cell modules 20 are arranged in a plane on both main surfaces of the fuel storage portion 30 so as to overlap the four openings 118 provided in the protruding portion 120 of the housing 100, respectively.
  • the outermost member of the fuel cell module 20 is a cathode protective layer 200 described later.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of the fuel cell module 20.
  • the fuel cell module 20 has a plurality of membrane electrode assemblies 21.
  • the plurality of membrane electrode assemblies 21 are disposed in openings formed in the base material 22 and are arranged in a plane.
  • the base material 22 is formed of an insulating material such as polyacrylate.
  • the membrane electrode assembly 21 includes an electrolyte membrane 23, a cathode 24 provided on one surface of the electrolyte membrane 23, and an anode 25 provided on the other surface of the electrolyte membrane 23.
  • the electrolyte membrane 23 is provided so as to fill the opening provided in the base material 22.
  • air is supplied to the cathode 24 as an oxidant.
  • hydrogen is supplied to the anode 25 as a fuel gas.
  • a cell is formed by sandwiching the electrolyte membrane 23 between the pair of cathodes 24 and the anode 25, and each cell generates power by an electrochemical reaction between hydrogen and oxygen in the air.
  • a plurality of cells are formed in a planar shape.
  • the interconnector 26 is provided through the base material 22 between the adjacent membrane electrode assemblies 21.
  • the cathode 24 of one membrane electrode assembly 21 is connected to one end of the interconnector 26, and the anode 25 of the other membrane electrode assembly 21 is connected to the other end of the interconnector 26.
  • the interconnector 26 is made of a conductive material such as carbon. With the above configuration, the adjacent membrane electrode assemblies 21 are connected in series by the interconnector 26.
  • the electrolyte membrane 23 preferably exhibits good ion conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the cathode 24 and the anode 25.
  • the electrolyte membrane 23 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer, and for example, a sulfonic acid type perfluorocarbon polymer, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group. Etc. can be used.
  • the sulfonic acid type perfluorocarbon polymer include Nafion (manufactured by DuPont: registered trademark) 112.
  • non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone.
  • the cathode 24 and the anode 25 have ion exchange resin and catalyst particles, and possibly carbon particles.
  • the ion exchange resin which the cathode 24 and the anode 25 have has a role which connects a catalyst particle and the electrolyte membrane 23, and transmits a proton between both.
  • This ion exchange resin may be formed of the same polymer material as the electrolyte membrane 23.
  • catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned.
  • acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles.
  • the fuel cell module 20 is arranged such that the main surface on the cathode 24 side faces the outside of the fuel cell system 10.
  • the fuel cell module 20 includes a cathode protective layer 200 provided on the cathode 24 side of the membrane electrode assembly 21 with the membrane electrode assembly 21 interposed therebetween.
  • the cathode protective layer 200 is a member located on the outermost side of the fuel cell module 20 on the cathode side.
  • the cathode protective layer 200 is formed of a flat plate member, and the cathode protective layer 200 is formed with a large number of through holes 201 penetrating from one main surface to the other main surface. These through holes 201 provide air permeability between the cathode 24 and the outside of the fuel cell.
  • the material of the cathode protective layer 200 is not particularly limited, and examples thereof include insulators such as anodized aluminum and polyacrylate.
  • a gas-liquid separation membrane 220 is provided between the cathode protective layer 200 and the cathode 24.
  • the gas-liquid separation membrane 220 has a function of passing air taken in from the outside of the fuel cell and vapor generated at the cathode 24 and blocking condensed water adhering to the cathode protective layer 200.
  • An example of the gas-liquid separation membrane 220 is Teflon.
  • the main surface of the fuel cell module 20 on the cathode 24 side faces outward. Therefore, the main surface of the fuel cell module 20 blown by the blower 40 is the main surface on the cathode 24 side. Therefore, the supply of air as the oxidant gas and the supply of air for cooling the fuel cell module 20 can be achieved by the blower unit 40.
  • a space 28 sandwiched between the membrane electrode assembly 21 and the wall surface of the fuel storage unit 30 is formed on the anode 25 side of the membrane electrode assembly 21.
  • the space 28 functions as a storage unit for fuel supplied from the fuel storage unit 30 via the fuel supply unit 32.
  • a temperature detection unit 60 is provided on the main surface of the fuel cell module 20 on the cathode side. The temperature of the fuel cell module 20 is measured by the temperature detector 60, and the temperature information of the fuel cell module 20 obtained by the temperature detector 60 is transmitted to the controller 70 described later.
  • the fuel supply unit 32 includes a hydrogen supply path and a regulator (both not shown) as main components.
  • One end of the hydrogen supply path communicates with the outlet of the fuel storage unit 30, and the other end communicates with the anodes of the pair of fuel cell modules 20.
  • a regulator is provided in the middle of the hydrogen supply path. When the hydrogen is released from the hydrogen storage alloy by the regulator, the pressure of the hydrogen supplied to the pair of fuel cell modules 20 is reduced. Thereby, the anode catalyst layer of the fuel cell module 20 is protected.
  • the base 110 mainly accommodates the air blowing unit 40, the rectifying unit 50, and the control unit 70.
  • the control unit 70 is mounted on a member that forms the bottom surface of the base 110.
  • the control unit 70 includes a CPU, a ROM, a memory, and the like as a hardware configuration, and controls the operation of the blower unit 40. Specifically, when the temperature measured by the temperature detection unit 60 reaches the vicinity of the temperature at which dryout starts to occur in the fuel cell module 20, the control unit 70 starts blowing by the blowing unit 40.
  • the vicinity of the temperature at which dryout begins to occur refers to a range of 5 ° C. from temperature T at which dryout begins to occur.
  • the air blower 40 is installed above the controller 70.
  • the air blower 40 blows air from a direction orthogonal to the cathode-side main surface of the fuel cell module 20.
  • two sets of blowers 42 that generate a swirling flow are arranged in parallel in the longitudinal direction of the base 110 as the blower 40.
  • the blower 42 is an axial fan (propeller fan).
  • the wind generated by one blower 42 is blown to both the region M side exhaust port 116a and the region N side exhaust port 116c.
  • the wind generated by the other blower 42 is blown to both the region M side exhaust port 116b and the region N side exhaust port 116d.
  • the structure is simplified by taking charge of the air to the fuel cell modules 20 provided on both main surfaces of the fuel storage unit 30 with one blower, and the fuel cell system 10 is made compact and power-saving. You can plan.
  • the rectifying unit 50 is provided above the blowing unit 40.
  • the rectifying unit 50 makes an angle so that the direction of the wind sent from the air blowing unit 40 faces the main surface of the fuel cell module 20 on the cathode side.
  • it has a rectifying plate 52 having a shape that reflects the swirling flow generated by the blower 40 toward the main surface of the fuel cell module 20 on the cathode side.
  • FIG. 5A is a schematic view showing the shape of the rectifying plate 52.
  • FIG. 5B is a diagram showing a state of rectification in a cross section taken along the line AA in FIG.
  • FIG. 6 is a schematic diagram showing how air is blown in the fuel cell system 10 of the first embodiment.
  • the rectifying plate 52 has an involute curve shape Q.
  • An involute curve is a curve drawn by the tip of a thread when the thread is wound around a constant circle and unwound while pulling the end of the thread.
  • solid arrows indicate the direction of swirling flow.
  • the swirl flow is reflected by the rectifying plate 52, is directed upward above the rectifying plate 52, and flows toward the main surface on the cathode side of the fuel cell module 20.
  • the wind rectified at the point P ⁇ b> 1 is directed to the lower part of the main surface on the cathode side of the fuel cell module 20.
  • the wind rectified at the point P2 is directed toward the center of the main surface of the fuel cell module 20 on the cathode side.
  • the wind rectified at the point P3 is directed to the upper part of the main surface of the fuel cell module 20 on the cathode side.
  • the upstream side refers to the side close to the air blowing unit 40
  • the downstream side refers to the side away from the air blowing unit 40
  • the cross section orthogonal to the blowing direction on the upstream side of the rectifying unit 50 indicates a plane orthogonal to the wind parallel to the main surface on the cathode side in the blowing direction, and indicates a plane indicated by a dotted line D in FIG.
  • FIG. 7A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b.
  • FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 7C is a cross-sectional view taken along line B-B ′ of FIG.
  • the thickness of the reinforcing part 101a is thinner than the thickness of the reinforcing part 101b, the reinforcing part 101b is convex on the fuel cell side, and between the reinforcing part 101a and the reinforcing part 101b on the side opposite to the fuel cell (outside). It is designed so that there is no step.
  • a flow path 210 is formed between the reinforcing portion 101a and the cathode protective layer 200 as a wind passage. According to this, the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210 and is not blocked by the reinforcement 101a, but behind the reinforcement 101 as viewed from the blower 40.
  • the opening 118p including the region can be directed.
  • the blast volume is hardly reduced by pressure loss. For this reason, the electric power required for an auxiliary machine can be suppressed.
  • air can be blown with a uniform air volume over the entire main surface on the cathode side of the fuel cell, variation in temperature depending on location can be reduced, and power generation by the fuel cell can be stabilized.
  • the main surface on the cathode side of the fuel cell is exposed to the outside without being blocked by the flow path, it is possible to ensure heat dissipation from the main surface on the cathode side of the fuel cell even when the blower is not used.
  • the heat dissipation of the entire battery system can be improved.
  • the wind can be spread over the entire opening corresponding to the cathode of the fuel cell. Therefore, it can suppress further that the variation by the place in the temperature distribution of a fuel cell arises.
  • the thermal conductivity between the fuel cell module and the fuel storage unit is improved. be able to.
  • a blower mechanism suitable for a passive fuel cell is realized.
  • FIG. 8A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b that the fuel cell system according to Embodiment 2 has.
  • FIG. 8B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 8C is a cross-sectional view taken along line B-B ′ of FIG.
  • the reinforcing portion 101a in the region where the reinforcing portion 101a and the reinforcing portion 101b intersect, the reinforcing portion 101a is positioned above the reinforcing portion 101b (the reinforcing portion 101b is closer to the fuel cell than the reinforcing portion 101a).
  • the flow path 210 equivalent to the thickness of the reinforcement part 101b is produced between the reinforcement part 101a and the cathode protective layer 200.
  • the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210 and is not blocked by the reinforcement 101a, but behind the reinforcement 101 as viewed from the blower 40.
  • the opening 118p including the region can be directed.
  • the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
  • the basic configuration of the fuel cell system 10 of the third embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a and the reinforcing portion 101b.
  • the fuel cell system according to the third embodiment will be described with a focus on differences from the first embodiment.
  • FIG. 9A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b that the fuel cell system according to Embodiment 3 has.
  • FIG. 9B is a cross-sectional view taken along line A-A ′ of FIG.
  • FIG. 9C is a cross-sectional view taken along line B-B ′ of FIG.
  • a plurality of flow paths 210 extending in the blowing direction are formed in the reinforcing portion 101a, and the reinforcing portion 101a is in partial contact with the cathode protective layer 200. According to this, when the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210, the region behind the reinforcement 101 as viewed from the blower 40 without being blocked by the reinforcement 101a. To the opening 118p including
  • the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
  • the basic configuration of the fuel cell system 10 of the fourth embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a and the reinforcing portion 101b.
  • the fuel cell system according to the fourth embodiment will be described with a focus on differences from the first embodiment.
  • FIG. 10A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b included in the fuel cell system according to Embodiment 4.
  • FIG. 10B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 10C is a cross-sectional view taken along line B-B ′ of FIG.
  • a concave flow path 210 extending in the blowing direction is formed on the main surface of the reinforcing portion 101a opposite to the fuel cell. According to this, the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210 and is not blocked by the reinforcement 101a, but behind the reinforcement 101 as viewed from the blower 40.
  • the opening 118p including the region can be directed.
  • the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
  • the form which combined the flow path 210 of this Embodiment and the flow path 210 demonstrated in Embodiment 3 as a reinforcement part 101a is also employable.
  • the flow path 210 of the present embodiment and the flow path 210 described in the third embodiment may be alternately arranged.
  • the basic configuration of the fuel cell system 10 of the fifth embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a and the reinforcing portion 101b.
  • the fuel cell system according to the fifth embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 11A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b included in the fuel cell system according to Embodiment 5.
  • FIG. 11B is a cross-sectional view taken along line A-A ′ of FIG.
  • FIG. 11C is a cross-sectional view taken along line B-B ′ of FIG.
  • the side surface on the opening 118p side is tapered in the cross section parallel to the blowing direction of the reinforcing portion 101a.
  • the angle ⁇ formed between the side surface of the reinforcing portion 101a on the opening 118p side and the cathode protective layer 200 is an acute angle. According to this, the wind sent from the air blower 40 shown in FIG. 3A flows along the tapered side surface formed in the reinforcing part 101 a, so that the back of the reinforcing part 101 as viewed from the air blowing part 40. Can be directed to the opening 118p including the region.
  • the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
  • FIG. 12 is a cross-sectional view of the principal part along the line A-A ′ shown in FIG.
  • the side surface of the casing 100 facing the opening 118o is tapered.
  • the angle ⁇ ′ formed between the side surface of the housing 100 facing the opening 118o and the cathode protective layer 200 is an acute angle. According to this, the wind sent from the air blower 40 shown in FIG.
  • the basic configuration of the fuel cell system 10 of the sixth embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200.
  • the fuel cell system according to the sixth embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 13A is an enlarged plan view of the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200 that the fuel cell system according to Embodiment 6 has.
  • FIG. 13B is a cross-sectional view taken along line A-A ′ of FIG.
  • FIG. 13C is a cross-sectional view taken along line B-B ′ of FIG.
  • the reinforcing portion 101a and the cathode protective layer 200 are in contact with each other, and a through hole 201a having an opening extending in the air blowing direction is provided in a portion of the cathode protective layer 200 overlapping the reinforcing portion 101a.
  • the length L2 of the opening in the blowing direction of the through hole 201a is longer than the width L1 of the reinforcing portion 101a in the blowing direction, and a part of the through hole 201a is exposed in the opening 118o (see FIG. 13A).
  • a part of the through hole 201a is exposed (region (A) in FIG. 13). According to this, as shown in FIG. 13C, the wind sent to the opening 118o can pass through the through hole 201a and flow to the opening 118p.
  • the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
  • the basic configuration of the fuel cell system 10 of the seventh embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200.
  • the fuel cell system according to the seventh embodiment will be described with a focus on differences from the first embodiment.
  • FIG. 14A is an enlarged plan view of the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200 that the fuel cell system according to Embodiment 4 has.
  • FIG. 14B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 14C is a cross-sectional view taken along line B-B ′ of FIG.
  • the corners of the reinforcing portion 101a on the cathode protective layer 200 side are both chamfered in the cross section in the blowing direction.
  • a through-hole 201a whose opening extends in the air blowing direction is provided in the cathode protective layer 200 that overlaps the reinforcing portion 101a.
  • the length L2 of the opening in the blowing direction of the through-hole 201a is equal to or less than the width L1 of the reinforcing portion 101a in the blowing direction, and the through-hole 201a is hidden behind the reinforcing portion 101a and cannot be seen as shown in FIG.
  • the opening 118o and the through hole 201a communicate with each other, and the through hole 201a and the opening 118p communicate with each other. Yes. According to this, as shown in FIG. 14C, the wind sent to the opening 118o can pass through the through hole 201a and flow to the opening 118p.
  • the same effect as that of the fuel cell system 10 of the first embodiment can be obtained. Furthermore, according to the present embodiment, it is possible to smoothly send wind through the through hole 201a by the chamfered reinforcing portion 101a, and by extension, the opening 118p.
  • the passive fuel cell system 10 is exemplified, but the fuel cell system 10 may be changed to an active fuel cell system having an auxiliary machine or the like.
  • a cover such as that described in Patent Document 3 may be installed outside the housing 100 to form a flow path for the wind from the blower 40.
  • the number of cells incorporated in the fuel electric system 10, the size of the cells, the arrangement of the cells, the electrical connection form between the cells and between the fuel cell modules, etc. are not limited to the above-described embodiments, and can be changed as appropriate.
  • the fuel electric system 10 includes the fuel cell module 20 in which a plurality of cells are arranged in a planar shape, but the fuel electric system 10 may be a single cell.
  • the fuel cell module 20 may be a single fuel cell in which an electrolyte membrane is sandwiched between a pair of cathode and anode.
  • the rectifying unit 50 for directing the air blown from the air blowing unit 40 toward the cathode protective layer 200 is provided, but the rectifying unit 50 may not be provided.
  • the present invention can be applied to a fuel cell system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system (10) comprises: a fuel storage section (30) for storing a hydrogen storage alloy; and fuel cell modules (20) respectively disposed on both main surfaces of the fuel storage section (30). An air blowing section (40) is provided below the fuel cell modules (20). The air blowing section (40) blows air in the direction perpendicular to the cathode-side main front surfaces of the fuel cell modules (20). A flow regulation section (50) tilts the direction of air discharged from the air blowing section (40) so that the air is directed toward the cathode-side main front surfaces of the fuel cell modules (20). A flow path is provided between the cathode protection layer of each of the fuel cell module (20) and the portion of a housing which is located between a first opening and a second opening which expose the cathode protection layer of the fuel cell module (20).

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 燃料電池システムは、たとえば水素と酸素とから電気エネルギを発生させる装置であり、高い発電効率を得ることができる。燃料電池システムの主な特徴としては、従来の発電方式のように熱エネルギや運動エネルギの過程を経ることがない直接発電であるので、小規模でも高い発電効率が期待できること、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性が良いことなどが挙げられる。このように、燃料電池システムは燃料のもつ化学エネルギを有効に利用でき、環境にやさしい特性を持っているので、21世紀を担うエネルギ供給システムとして期待され、宇宙用から自動車用、携帯機器用まで、大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。 A fuel cell system is a device that generates electrical energy from, for example, hydrogen and oxygen, and can achieve high power generation efficiency. The main features of the fuel cell system are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so that high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good. In this way, the fuel cell system can effectively use the chemical energy of the fuel and has environmentally friendly characteristics, so it is expected as an energy supply system for the 21st century, from space use to automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used in various applications from large-scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
 燃料電池は発電に伴い発熱し、温度が上昇する。燃料電池の温度が過度に上昇すると、ドライアウトによる性能低下が生じる。その防止のために、ファンなどの送風手段を用いた空冷技術が知られている(特許文献1~3参照)。 Fuel cells generate heat and increase in temperature with power generation. If the temperature of the fuel cell rises excessively, performance degradation due to dryout occurs. In order to prevent this, an air cooling technique using a blowing means such as a fan is known (see Patent Documents 1 to 3).
特開2008-251338号公報JP 2008-251338 A 特開2009-238592号公報JP 2009-238592 A 特開2007-184157号公報JP 2007-184157 A
 上記特許文献で記載される燃料電池システムにおいて、燃料電池の構成を、筐体の中に燃料電池を収め、燃料電池の主表面に沿って送風可能な送風手段により、筐体に設けられた開口部から燃料電池に送風を行うようにした場合、送風手段からの風が筐体の一部によって遮られることで、開口部全体に風が行き渡らないという課題が生じる。つまり、開口部の一部において風が滞り、この部分での冷却効果が低減するという問題がある。 In the fuel cell system described in the above-mentioned patent document, the configuration of the fuel cell includes an opening provided in the housing by a blowing means that houses the fuel cell in the housing and can blow along the main surface of the fuel cell. When the air is blown from the portion to the fuel cell, the wind from the blowing means is blocked by a part of the casing, which causes a problem that the wind does not reach the entire opening. That is, there is a problem that the wind is stagnated in a part of the opening, and the cooling effect in this part is reduced.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、燃料電池を空冷する場合に、場所による空冷効果のばらつきを低減させることができる技術の提供にある。 The present invention has been made in view of these problems, and an object of the present invention is to provide a technique capable of reducing variation in air-cooling effect depending on a place when the fuel cell is air-cooled.
 本発明の第1の態様は燃料電池システムである。当該燃料電池システムは、電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、前記燃料電池を収容し、前記カソード保護層の一部が露出する第1の開口部および第2の開口部と、前記第1の開口部と前記第2の開口部との間に設けられた補強部とを有する筐体と、前記燃料電池のカソード側の主表面に、前記第1の開口部から前記第2の開口部の方向に送風する送風部と、を備え、前記補強部と前記カソード保護層との間に流路が設けられていることを特徴とする。 The first aspect of the present invention is a fuel cell system. The fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell. A cathode protective layer having air permeability provided on the side, a first opening and a second opening for accommodating the fuel cell and exposing a part of the cathode protective layer; and the first opening And a reinforcing portion provided between the first opening and the second opening, and on the main surface of the fuel cell on the cathode side, from the first opening to the second opening. An air blowing section, and a flow path is provided between the reinforcing section and the cathode protective layer.
 本発明の第2の態様は燃料電池システムである。当該燃料電池システムは、電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、前記燃料電池のカソード側の主表面に送風する送風部と、前記燃料電池を収容し、前記カソード保護層の一部が露出する開口部と、前記開口部と前記送風部との間に設けられた補強部とを有する筐体と、を備え、前記送風部は前記補強部から前記開口部の方へ送風し、前記補強部の前記開口部側の側面と前記カソード保護層とのなす角が鋭角となるように前記側面がテーパー状となっていることを特徴とする。 The second aspect of the present invention is a fuel cell system. The fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell. A cathode protective layer having air permeability provided on the side, a blower for blowing air to a main surface of the fuel cell on the cathode side, an opening for housing the fuel cell and exposing a part of the cathode protective layer; A housing having a reinforcing portion provided between the opening and the air blowing portion, and the air blowing portion blows air from the reinforcing portion toward the opening, and the opening of the reinforcing portion. The side surface is tapered so that the angle formed by the side surface on the part side and the cathode protective layer is an acute angle.
 本発明の第3の態様は燃料電池システムである。当該燃料電池システムは、電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、前記燃料電池を収容し、前記カソード保護層の一部が露出する第1の開口部および第2の開口部と、前記第1の開口部と前記第2の開口部との間に設けられた補強部とを有する筐体と、前記燃料電池のカソード側の主表面に、前記第1の開口部から前記第2の開口部の方向に送風する送風部と、を備え、前記カソード保護層は前記補強部と重なる領域を含むような貫通孔を有し、前記貫通孔は前記第1の開口部および前記第2の開口部において露出していることを特徴とする。 The third aspect of the present invention is a fuel cell system. The fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell. A cathode protective layer having air permeability provided on the side, a first opening and a second opening for accommodating the fuel cell and exposing a part of the cathode protective layer; and the first opening And a reinforcing portion provided between the first opening and the second opening, and on the main surface of the fuel cell on the cathode side, from the first opening to the second opening. The cathode protective layer has a through hole including a region overlapping with the reinforcing portion, and the through hole is exposed at the first opening and the second opening. It is characterized by.
 本発明の第4の態様は燃料電池システムである。当該燃料電池システムは、電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、前記燃料電池を収容し、前記カソード保護層の一部が露出する第1の開口部および第2の開口部と、前記第1の開口部と前記第2の開口部との間に設けられた補強部とを有する筐体と、前記燃料電池のカソード側の主表面に、前記第1の開口部から前記第2の開口部の方向に送風する送風部と、を備え、前記カソード保護層は前記補強部と重なる領域内に貫通孔を有し、前記第1の開口部と前記貫通孔とが連通し、前記貫通孔と前記第2の開口部とが連通するように前記補強部の前記カソード保護層の側の角が面取りされていることを特徴とする。 The fourth aspect of the present invention is a fuel cell system. The fuel cell system includes an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, an anode provided on the other surface of the electrolyte membrane, and a cathode of the fuel cell. A cathode protective layer having air permeability provided on the side, a first opening and a second opening for accommodating the fuel cell and exposing a part of the cathode protective layer; and the first opening And a reinforcing portion provided between the first opening and the second opening, and on the main surface of the fuel cell on the cathode side, from the first opening to the second opening. The cathode protective layer has a through hole in a region overlapping the reinforcing portion, the first opening and the through hole communicate with each other, and the through hole and the second The cathode retainer of the reinforcing part is in communication with the opening of the reinforcing part. Wherein the corners of the side layers are chamfered.
 本発明によれば、燃料電池を空冷する場合に、場所による空冷効果のばらつきを低減させることができる。 According to the present invention, when the fuel cell is air-cooled, variation in the air-cooling effect depending on the place can be reduced.
図1(A)は、実施の形態1に係る燃料電池システムを斜め上方から見た斜視図である。図1(B)は、実施の形態1に係る燃料電池システムを斜め下方から見た斜視図である。FIG. 1A is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from above. FIG. 1B is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from below. 図2(A)~(D)は、それぞれ実施の形態1の筐体の上面図、底面図、正面図および側面図である。2A to 2D are a top view, a bottom view, a front view, and a side view, respectively, of the housing of the first embodiment. 図3(A)、(B)は、それぞれ、実施の形態1に関し、筐体に収容された燃料電池システムの構成の概略を示す正面図および斜視図である。FIGS. 3A and 3B are a front view and a perspective view, respectively, showing an outline of the configuration of the fuel cell system housed in the housing in relation to the first embodiment. 本発明の実施の形態1に係る燃料電池モジュールの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fuel cell module which concerns on Embodiment 1 of this invention. 図5(A)は、本発明の実施の形態1に係る整流板の形状を示す概略図である。図5(B)は、図5(A)のA-A線に沿った断面における本発明の実施の形態1に係る整流の様子を示す図である。FIG. 5 (A) is a schematic diagram showing the shape of the rectifying plate according to Embodiment 1 of the present invention. FIG. 5B is a diagram showing a state of rectification according to Embodiment 1 of the present invention in a cross section taken along line AA in FIG. 実施の形態1の燃料電池システムにおける送風の様子を示す概略図である。FIG. 2 is a schematic diagram showing how air is blown in the fuel cell system of Embodiment 1. 図7(A)は、実施の形態1に係る燃料電池システムが有する補強部を拡大した平面図である。図7(B)は、図7(A)のA-A’線に沿った断面図である。図7(C)は、図7(A)のB-B’線に沿った断面図である。FIG. 7A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 1. FIG. FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 7C is a cross-sectional view taken along line B-B ′ of FIG. 図8(A)は、実施の形態2に係る燃料電池システムが有する補強部を拡大した平面図である。図8(B)は、図8(A)のA-A’線に沿った断面図である。図8(C)は、図8(A)のB-B’線に沿った断面図である。FIG. 8A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 2. FIG. FIG. 8B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 8C is a cross-sectional view taken along line B-B ′ of FIG. 図9(A)は、実施の形態3に係る燃料電池システムが有する補強部を拡大した平面図である。図9(B)は、図9(A)のA-A’線に沿った断面図である。図9(C)は、図9(A)のB-B’線に沿った断面図である。FIG. 9A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 3. FIG. FIG. 9B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 9C is a cross-sectional view taken along line B-B ′ of FIG. 図10(A)は、実施の形態4に係る燃料電池システムが有する補強部を拡大した平面図である。図10(B)は、図10(A)のA-A’線に沿った断面図である。図10(C)は、図10(A)のB-B’線に沿った断面図である。FIG. 10A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 4. FIG. FIG. 10B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 10C is a cross-sectional view taken along line B-B ′ of FIG. 図11(A)は、実施の形態5に係る燃料電池システムが有する補強部を拡大した平面図である。図11(B)は、図11(A)のA-A’線に沿った断面図である。図11(C)は、図11(A)のB-B’線に沿った断面図である。FIG. 11A is an enlarged plan view of a reinforcing portion included in the fuel cell system according to Embodiment 5. FIG. FIG. 11B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 11C is a cross-sectional view taken along line B-B ′ of FIG. 図12は、図2(C)に示すA-A’線に沿った要部断面図である。FIG. 12 is a cross-sectional view of main parts along the line A-A ′ shown in FIG. 図13(A)は、実施の形態6に係る燃料電池システムが有する補強部、カソード保護層を拡大した平面図である。図13(B)は、図13(A)のA-A’線に沿った断面図である。図13(C)は、図13(A)のB-B’線に沿った断面図である。FIG. 13A is an enlarged plan view of a reinforcing portion and a cathode protective layer that the fuel cell system according to Embodiment 6 has. FIG. 13B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 13C is a cross-sectional view taken along line B-B ′ of FIG. 図14(A)は、実施の形態7に係る燃料電池システムが有する補強部、カソード保護層を拡大した平面図である。図14(B)は、図14(A)のA-A’線に沿った断面図である。図14(C)は、図14(A)のB-B’線に沿った断面図である。FIG. 14A is an enlarged plan view of a reinforcing portion and a cathode protective layer included in the fuel cell system according to Embodiment 7. FIG. FIG. 14B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 14C is a cross-sectional view taken along line B-B ′ of FIG.
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1(A)は、実施の形態1に係る燃料電池システムを斜め上方から見た斜視図である。図1(B)は、実施の形態1に係る燃料電池システムを斜め下方から見た斜視図である。図2(A)~(D)は、それぞれ実施の形態1の筐体の上面図、底面図、正面図および側面図である。図3(A)、(B)は、それぞれ、実施の形態1に関し、燃料電池システム10の構成の概略を示す正面図および斜視図である。 FIG. 1A is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from above. FIG. 1B is a perspective view of the fuel cell system according to Embodiment 1 as viewed obliquely from below. 2A to 2D are a top view, a bottom view, a front view, and a side view, respectively, of the housing of the first embodiment. 3A and 3B are a front view and a perspective view, respectively, showing an outline of the configuration of the fuel cell system 10 in relation to the first embodiment.
 燃料電池システム10は、筐体100、燃料電池モジュール20、燃料収容部30、燃料供給部32、送風部40、整流部50、温度検出部60および制御部70を備える。本実施の形態の燃料電池システム10は、燃料の供給にポンプなどの補機を使用しないパッシブ型の燃料電池システムである。 The fuel cell system 10 includes a housing 100, a fuel cell module 20, a fuel storage unit 30, a fuel supply unit 32, a blower unit 40, a rectification unit 50, a temperature detection unit 60, and a control unit 70. The fuel cell system 10 of the present embodiment is a passive fuel cell system that does not use an auxiliary machine such as a pump for supplying fuel.
 筐体100は、複数の燃料電池モジュール20、燃料収容部30、送風部40、整流部50、温度検出部60および制御部70を持ち運びに容易な形態でコンパクトに収容している。図2(A)~(D)に示すように、筐体100の大部分は一体的に形成されているが、便宜的に主に基部110と突出部120とに分けられる。 The housing 100 contains a plurality of fuel cell modules 20, a fuel storage unit 30, a blower unit 40, a rectification unit 50, a temperature detection unit 60, and a control unit 70 in a compact form that is easy to carry. As shown in FIGS. 2A to 2D, most of the housing 100 is integrally formed, but for convenience, it is mainly divided into a base portion 110 and a protruding portion 120.
 基部110は直方体形状であり、底面の長手方向両端部に机などの設置面に載置するための脚部112が設けられている。基部110の底面には吸気口114が設けられており、吸気口114を介して外気が基部110の中に取り込まれる。基部110の底面は、吸気口114が設けられている領域が脚部112に対して凹部になっており、脚部112が設置面に接した状態で、設置面と吸気口114との間に隙間が生じるようになっている。これにより、筐体100を設置面に載置した状態で、基部110の底面から外気を取り込むことができる。吸気口114の数および位置は、後述する送風部40の形態に応じて適宜設定される。 The base portion 110 has a rectangular parallelepiped shape, and leg portions 112 for mounting on an installation surface such as a desk are provided at both longitudinal ends of the bottom surface. An air inlet 114 is provided on the bottom surface of the base 110, and outside air is taken into the base 110 through the air inlet 114. In the bottom surface of the base 110, the region where the air inlet 114 is provided is a concave portion with respect to the leg 112, and the leg 112 is in contact with the installation surface, and is between the installation surface and the air intake 114. A gap is created. Thereby, outside air can be taken in from the bottom surface of the base 110 in a state where the housing 100 is placed on the installation surface. The number and position of the air inlets 114 are appropriately set according to the form of the air blowing unit 40 described later.
 また、基部110の上面は、長手方向に沿った一方の辺に沿った領域Mと、長手方向に沿った他方の辺に沿った領域Nに分けられている(図2(A)参照)。領域Mには、2組の排気口116a、116bが設けられている。また、領域Nには、2組の排気口116c、116dが設けられている。排気口116a~dの開口形状は、ともに円弧と当該円弧の両端を弦で結んだ形状である。 The upper surface of the base 110 is divided into a region M along one side along the longitudinal direction and a region N along the other side along the longitudinal direction (see FIG. 2A). In the region M, two sets of exhaust ports 116a and 116b are provided. In the region N, two sets of exhaust ports 116c and 116d are provided. The opening shapes of the exhaust ports 116a to 116d are both shapes in which a circular arc and both ends of the circular arc are connected by strings.
 突出部120は、領域Mと領域Nに挟まれた領域において、基部110の上方に突出している。側面方向から見ると逆T字形状になっている(図2(D)参照)。突出部120の一方の側(領域Mの側)には、領域M側に設けられた燃料電池モジュール20の設置領域に応じた開口部118m、118n、118oおよび118pが設けられている。同様に、突出部120の他方の側(領域Nの側)には、領域N側に設けられた燃料電池モジュール20の設置領域に応じた開口部118m’、118n’、118o’および118p’が設けられている。 The protruding portion 120 protrudes above the base 110 in a region sandwiched between the region M and the region N. When viewed from the side, it has an inverted T shape (see FIG. 2D). Openings 118m, 118n, 118o, and 118p corresponding to the installation area of the fuel cell module 20 provided on the region M side are provided on one side of the protrusion 120 (region M side). Similarly, openings 118m ′, 118n ′, 118o ′ and 118p ′ corresponding to the installation region of the fuel cell module 20 provided on the region N side are provided on the other side (region N side) of the protrusion 120. Is provided.
 以下、突出部120の一方の側(領域Mの側)を例に取り、筐体100についてより詳細に説明する。開口部118m、118n、118oおよび118pは、2×2のマトリクス状に配置されており、第1の開口部としての開口部118m、開口部118oはそれぞれ排気口116a、排気口116bの近傍に配置されている。第2の開口部としての開口部118nは開口部118mの上方に位置している。また、第2の開口部としての開口部118pは開口部118oの上方に位置している。開口部118mと開口部118nとの間、および開口部118oと開口部118pとの間に補強部101aが設けられている。言い換えると補強部101aは、排気口116a、116bからの送風方向と直交する方向に延在している。補強部101aを設けることで、燃料電池モジュール20が筐体100から浮くことを抑制することができる。なお、補強部101aの詳細については後述する。 Hereinafter, the case 100 will be described in more detail by taking one side of the protruding portion 120 (the region M side) as an example. The openings 118m, 118n, 118o and 118p are arranged in a 2 × 2 matrix, and the opening 118m and the opening 118o as the first openings are arranged in the vicinity of the exhaust port 116a and the exhaust port 116b, respectively. Has been. The opening 118n as the second opening is located above the opening 118m. Further, the opening 118p as the second opening is located above the opening 118o. Reinforcing portions 101a are provided between the opening 118m and the opening 118n, and between the opening 118o and the opening 118p. In other words, the reinforcing portion 101a extends in a direction perpendicular to the direction of air blowing from the exhaust ports 116a and 116b. By providing the reinforcing portion 101a, the fuel cell module 20 can be prevented from floating from the housing 100. Details of the reinforcing portion 101a will be described later.
 開口部118mと開口部118oとの間、および開口部118nと開口部118pとの間に補強部101bが設けられている。言い換えると、補強部101bは、排気口116a、116bからの送風方向に沿って延在している。補強部101bを設けることで、補強部101aと同様に、燃料電池モジュール20が筐体100から浮くことを抑制することができる。 Reinforcing portions 101b are provided between the opening 118m and the opening 118o and between the opening 118n and the opening 118p. In other words, the reinforcement part 101b is extended along the ventilation direction from the exhaust ports 116a and 116b. By providing the reinforcing portion 101b, it is possible to suppress the fuel cell module 20 from floating from the housing 100, similarly to the reinforcing portion 101a.
 図3(B)に示すように、突出部120(図示せず)の中には、複数の燃料電池モジュール20、燃料収容部30、燃料供給部32が収容されている。 As shown in FIG. 3B, a plurality of fuel cell modules 20, a fuel storage unit 30, and a fuel supply unit 32 are stored in the protrusion 120 (not shown).
 燃料収容部30には水素吸蔵合金が収容されている。水素吸蔵合金は、水素の吸蔵と、吸蔵した水素の放出とが可能であり、たとえば、希土類系のMmNi4.32Mn0.18Al0.1Fe0.1Co0.3(Mmはミッシュメタル)である。なお、水素吸蔵合金は、希土類系の合金に限られず、たとえばTi-Mn系合金、Ti-Fe系合金、Ti-Zr系合金、Mg-Ni系合金、Zr-Mn系合金等であってもよい。具体的には、水素吸蔵合金としてLaNi合金、MgNi合金、Ti1+xCr2-yMn(x=0.1~0.3、y=0~1.0)合金などを挙げることができる。水素吸蔵合金は、上述した水素吸蔵合金の粉末にポリテトラフルオロエチレン(PTFE)デイスパージョンなどの結着剤を混合し、プレス機で圧縮成形した圧縮成形体(ペレット)とすることができる。必要に応じて、圧縮成形後に焼結処理がなされていてもよい。 The fuel storage unit 30 stores a hydrogen storage alloy. The hydrogen storage alloy can store hydrogen and release the stored hydrogen, and is, for example, rare earth-based MmNi4.32Mn0.18Al0.1Fe0.1Co0.3 (Mm is Misch metal). The hydrogen storage alloy is not limited to a rare earth alloy, and may be a Ti—Mn alloy, a Ti—Fe alloy, a Ti—Zr alloy, a Mg—Ni alloy, a Zr—Mn alloy, or the like. Good. Specifically, LaNi 5 alloy, Mg 2 Ni alloy, Ti 1 + x Cr 2- y Mn y (x = 0.1 ~ 0.3, y = 0 ~ 1.0) as a hydrogen storage alloy and the like alloys Can do. The hydrogen storage alloy can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the hydrogen storage alloy powder described above and compression-molding it with a press. If necessary, a sintering process may be performed after the compression molding.
 燃料収容部30の両主表面にそれぞれ燃料電池モジュール20が配設されている。本実施の形態では、燃料収容部30の両主表面に、それぞれ、筐体100の突出部120に設けられた4つの開口部118と重なるように4つの燃料電池モジュール20が平面配列されている。なお、燃料電池モジュール20の最外となる部材は後述するカソード保護層200である。 Fuel cell modules 20 are disposed on both main surfaces of the fuel storage unit 30, respectively. In the present embodiment, the four fuel cell modules 20 are arranged in a plane on both main surfaces of the fuel storage portion 30 so as to overlap the four openings 118 provided in the protruding portion 120 of the housing 100, respectively. . The outermost member of the fuel cell module 20 is a cathode protective layer 200 described later.
 図4は、燃料電池モジュール20の概略構成を示す断面図である。燃料電池モジュール20は、複数の膜電極接合体21を有する。複数の膜電極接合体21は、基材22に形成された開口内に配設され、平面配列されている。基材22は、ポリアクリレートなどの絶縁性の材料により形成される。 FIG. 4 is a cross-sectional view showing a schematic configuration of the fuel cell module 20. The fuel cell module 20 has a plurality of membrane electrode assemblies 21. The plurality of membrane electrode assemblies 21 are disposed in openings formed in the base material 22 and are arranged in a plane. The base material 22 is formed of an insulating material such as polyacrylate.
 膜電極接合体21は、電解質膜23、電解質膜23の一方の面に設けられているカソード24、および電解質膜23の他方の面に設けられているアノード25を有する。電解質膜23は、基材22に設けられた開口部を充填するように設けられている。カソード24には、酸化剤としてたとえば空気が供給される。一方、アノード25には燃料ガスとしてたとえば水素が供給される。一対のカソード24とアノード25との間に電解質膜23が狭持されることによりセルが構成され、各セルは水素と空気中の酸素との電気化学反応により発電する。本実施形態の燃料電池モジュール20では、複数のセルが平面状に形成されている。 The membrane electrode assembly 21 includes an electrolyte membrane 23, a cathode 24 provided on one surface of the electrolyte membrane 23, and an anode 25 provided on the other surface of the electrolyte membrane 23. The electrolyte membrane 23 is provided so as to fill the opening provided in the base material 22. For example, air is supplied to the cathode 24 as an oxidant. On the other hand, for example, hydrogen is supplied to the anode 25 as a fuel gas. A cell is formed by sandwiching the electrolyte membrane 23 between the pair of cathodes 24 and the anode 25, and each cell generates power by an electrochemical reaction between hydrogen and oxygen in the air. In the fuel cell module 20 of the present embodiment, a plurality of cells are formed in a planar shape.
 インターコネクタ26は、隣接する膜電極接合体21の間において、基材22を貫通して設けられている。隣接する膜電極接合体21において、一方の膜電極接合体21のカソード24がインターコネクタ26の一端に接続され、他方の膜電極接合体21のアノード25がインターコネクタ26の他端に接続されている。インターコネクタ26はカーボンなどの導電性の材料で形成されている。以上の構成により、隣接する膜電極接合体21同士はインターコネクタ26により直列接続されている。 The interconnector 26 is provided through the base material 22 between the adjacent membrane electrode assemblies 21. In the adjacent membrane electrode assembly 21, the cathode 24 of one membrane electrode assembly 21 is connected to one end of the interconnector 26, and the anode 25 of the other membrane electrode assembly 21 is connected to the other end of the interconnector 26. Yes. The interconnector 26 is made of a conductive material such as carbon. With the above configuration, the adjacent membrane electrode assemblies 21 are connected in series by the interconnector 26.
 電解質膜23は、湿潤状態において良好なイオン伝導性を示すことが好ましく、カソード24とアノード25との間でプロトンを移動させるイオン交換膜として機能する。電解質膜23は、含フッ素重合体や非フッ素重合体等の固体高分子材料によって形成され、例えば、スルホン酸型パーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。スルホン酸型パーフルオロカーボン重合体の例として、ナフィオン(デュポン社製:登録商標)112などが挙げられる。また、非フッ素重合体の例として、スルホン化された、芳香族ポリエーテルエーテルケトン、ポリスルホンなどが挙げられる。 The electrolyte membrane 23 preferably exhibits good ion conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the cathode 24 and the anode 25. The electrolyte membrane 23 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer, and for example, a sulfonic acid type perfluorocarbon polymer, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group. Etc. can be used. Examples of the sulfonic acid type perfluorocarbon polymer include Nafion (manufactured by DuPont: registered trademark) 112. Examples of non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone.
 カソード24およびアノード25は、イオン交換樹脂ならびに触媒粒子、場合によって炭素粒子を有する。カソード24およびアノード25が有するイオン交換樹脂は、触媒粒子と電解質膜23を接続し、両者間においてプロトンを伝達する役割を持つ。このイオン交換樹脂は、電解質膜23と同様の高分子材料から形成されてよい。触媒金属としては、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体が挙げられる。また触媒を担持する場合には炭素粒子として、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどを用いてもよい。 The cathode 24 and the anode 25 have ion exchange resin and catalyst particles, and possibly carbon particles. The ion exchange resin which the cathode 24 and the anode 25 have has a role which connects a catalyst particle and the electrolyte membrane 23, and transmits a proton between both. This ion exchange resin may be formed of the same polymer material as the electrolyte membrane 23. Examples of catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned. When the catalyst is supported, acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles.
 燃料電池モジュール20は、カソード24側の主表面が燃料電池システム10の外部側を向くように配置されている。また、燃料電池モジュール20は、膜電極接合体21のカソード24側に膜電極接合体21を挟んで設けられたカソード保護層200を有する。カソード保護層200は、燃料電池モジュール20のカソード側の最外に位置する部材である。カソード保護層200は、平板状の部材で形成されており、カソード保護層200には一方の主表面から他方の主表面に貫通する多数の貫通孔201が形成されている。これらの貫通孔201によりカソード24と燃料電池外部との間の通気性が得られている。カソード保護層200の材料は特に限定されないが、たとえば、アルマイト処理したアルミニウムやポリアクリレートなどの絶縁体が挙げられる。カソード保護層200とカソード24との間に気液分離膜220が設けられている。気液分離膜220は、燃料電池外部から取り入れられた空気や、カソード24で生じた蒸気を通過させ、かつ、カソード保護層200に付着した凝縮水を遮断する機能を有する。気液分離膜220としては、たとえばテフロンが挙げられる。 The fuel cell module 20 is arranged such that the main surface on the cathode 24 side faces the outside of the fuel cell system 10. The fuel cell module 20 includes a cathode protective layer 200 provided on the cathode 24 side of the membrane electrode assembly 21 with the membrane electrode assembly 21 interposed therebetween. The cathode protective layer 200 is a member located on the outermost side of the fuel cell module 20 on the cathode side. The cathode protective layer 200 is formed of a flat plate member, and the cathode protective layer 200 is formed with a large number of through holes 201 penetrating from one main surface to the other main surface. These through holes 201 provide air permeability between the cathode 24 and the outside of the fuel cell. The material of the cathode protective layer 200 is not particularly limited, and examples thereof include insulators such as anodized aluminum and polyacrylate. A gas-liquid separation membrane 220 is provided between the cathode protective layer 200 and the cathode 24. The gas-liquid separation membrane 220 has a function of passing air taken in from the outside of the fuel cell and vapor generated at the cathode 24 and blocking condensed water adhering to the cathode protective layer 200. An example of the gas-liquid separation membrane 220 is Teflon.
 本実施形態では、燃料電池モジュール20のカソード24側の主表面が外側を向いている。したがって、送風部40により送風される燃料電池モジュール20の主表面は、カソード24側の主表面である。そのため、送風部40によって、酸化剤ガスとしての空気の供給と、燃料電池モジュール20冷却用の空気の供給とを達成することができる。 In the present embodiment, the main surface of the fuel cell module 20 on the cathode 24 side faces outward. Therefore, the main surface of the fuel cell module 20 blown by the blower 40 is the main surface on the cathode 24 side. Therefore, the supply of air as the oxidant gas and the supply of air for cooling the fuel cell module 20 can be achieved by the blower unit 40.
 膜電極接合体21のアノード25側には、膜電極接合体21と燃料収容部30の壁面とで挟まれた空間28が形成されている。この空間28は、燃料収容部30から燃料供給部32を介して供給される燃料の貯蔵部として機能する。 A space 28 sandwiched between the membrane electrode assembly 21 and the wall surface of the fuel storage unit 30 is formed on the anode 25 side of the membrane electrode assembly 21. The space 28 functions as a storage unit for fuel supplied from the fuel storage unit 30 via the fuel supply unit 32.
 燃料電池モジュール20のカソード側の主表面には、温度検出部60が設けられている。温度検出部60により燃料電池モジュール20の温度が測定され、温度検出部60で得られた燃料電池モジュール20の温度情報が後述する制御部70に送信される。 A temperature detection unit 60 is provided on the main surface of the fuel cell module 20 on the cathode side. The temperature of the fuel cell module 20 is measured by the temperature detector 60, and the temperature information of the fuel cell module 20 obtained by the temperature detector 60 is transmitted to the controller 70 described later.
 燃料供給部32は、水素供給路およびレギュレータ(ともに図示せず)を主な構成として備える。水素供給路は、一端が燃料収容部30の出口と連通し、他端が一対の燃料電池モジュール20のアノードと連通している。水素供給路の途中にレギュレータが設けられている。レギュレータにより、水素吸蔵合金から水素が放出される際に、一対の燃料電池モジュール20に供給される水素の圧力が低減される。これにより、燃料電池モジュール20のアノード触媒層が保護される。 The fuel supply unit 32 includes a hydrogen supply path and a regulator (both not shown) as main components. One end of the hydrogen supply path communicates with the outlet of the fuel storage unit 30, and the other end communicates with the anodes of the pair of fuel cell modules 20. A regulator is provided in the middle of the hydrogen supply path. When the hydrogen is released from the hydrogen storage alloy by the regulator, the pressure of the hydrogen supplied to the pair of fuel cell modules 20 is reduced. Thereby, the anode catalyst layer of the fuel cell module 20 is protected.
 図3(A)および図3(B)に示すように、基部110に、主に送風部40、整流部50および制御部70が収容されている。 As shown in FIGS. 3A and 3B, the base 110 mainly accommodates the air blowing unit 40, the rectifying unit 50, and the control unit 70.
 制御部70は、基部110の底面をなす部材に搭載されている。制御部70は、ハードウェア構成として、CPU、ROM、メモリ等を有し、送風部40の動作を制御する。具体的には、制御部70は、温度検出部60によって測定された温度が、燃料電池モジュール20でドライアウトが生じ始める温度近傍に達したとき、送風部40による送風を開始させる。ドライアウトが生じ始める温度近傍とは、ドライアウトが生じ始める温度Tから5℃の範囲をいう。 The control unit 70 is mounted on a member that forms the bottom surface of the base 110. The control unit 70 includes a CPU, a ROM, a memory, and the like as a hardware configuration, and controls the operation of the blower unit 40. Specifically, when the temperature measured by the temperature detection unit 60 reaches the vicinity of the temperature at which dryout starts to occur in the fuel cell module 20, the control unit 70 starts blowing by the blowing unit 40. The vicinity of the temperature at which dryout begins to occur refers to a range of 5 ° C. from temperature T at which dryout begins to occur.
 制御部70の上方に送風部40が設置されている。送風部40は、燃料電池モジュール20のカソード側の主表面に対して直交する方向から送風を行う。本実施の形態では、送風部40として旋回流を発生させる送風機42が基部110の長手方向に2組並設されている。具体的には、送風機42は軸流ファン(プロペラファン)である。一方の送風機42で発生した風は、領域M側の排気口116a、領域N側の排気口116cの両方に送風される。また、他方の送風機42で発生した風は、領域M側の排気口116b、領域N側の排気口116dの両方に送風される。このように、一つの送風機で、燃料収容部30の両主表面にそれぞれ設けられた燃料電池モジュール20への送風を担うことにより構成を簡単化し、燃料電池システム10をコンパクト化および省電力化を図ることができる。 The air blower 40 is installed above the controller 70. The air blower 40 blows air from a direction orthogonal to the cathode-side main surface of the fuel cell module 20. In the present embodiment, two sets of blowers 42 that generate a swirling flow are arranged in parallel in the longitudinal direction of the base 110 as the blower 40. Specifically, the blower 42 is an axial fan (propeller fan). The wind generated by one blower 42 is blown to both the region M side exhaust port 116a and the region N side exhaust port 116c. The wind generated by the other blower 42 is blown to both the region M side exhaust port 116b and the region N side exhaust port 116d. Thus, the structure is simplified by taking charge of the air to the fuel cell modules 20 provided on both main surfaces of the fuel storage unit 30 with one blower, and the fuel cell system 10 is made compact and power-saving. You can plan.
 整流部50は送風部40の上方に設けられている。整流部50は、送風部40から送出された風の方向を燃料電池モジュール20のカソード側の主表面に向くように角度を付ける。具体的には、送風部40によって生じた旋回流を燃料電池モジュール20のカソード側の主表面に向けて反射する形状を持つ整流板52を有する。 The rectifying unit 50 is provided above the blowing unit 40. The rectifying unit 50 makes an angle so that the direction of the wind sent from the air blowing unit 40 faces the main surface of the fuel cell module 20 on the cathode side. Specifically, it has a rectifying plate 52 having a shape that reflects the swirling flow generated by the blower 40 toward the main surface of the fuel cell module 20 on the cathode side.
 図5(A)は、整流板52の形状を示す概略図である。図5(B)は、図5(A)のA-A線に沿った断面における整流の様子を示す図である。図6は、実施の形態1の燃料電池システム10における送風の様子を示す概略図である。 FIG. 5A is a schematic view showing the shape of the rectifying plate 52. FIG. 5B is a diagram showing a state of rectification in a cross section taken along the line AA in FIG. FIG. 6 is a schematic diagram showing how air is blown in the fuel cell system 10 of the first embodiment.
 図5(A)に示すように、整流板52は、インボリュート曲線形状Qを有する。インボリュート曲線とは定円に糸を巻きつけて、糸の端を引っぱりながらほどくとき、その糸の先端が描く曲線である。図5(A)において、実線矢印は旋回流の方向を示す。図5(B)に示すように、旋回流は整流板52で反射し、整流板52の上方に向かい、燃料電池モジュール20のカソード側の主表面に向く流れとなる。図6に示すように、点P1で整流された風は、燃料電池モジュール20のカソード側の主表面の下部に向けられる。点P2で整流された風は、燃料電池モジュール20のカソード側の主表面の中央部に向けられる。また、点P3で整流された風は、燃料電池モジュール20のカソード側の主表面の上部に向けられる。本実施の形態の燃料電池システム10における送風の態様をまとめると、送風部40によって供給される風に関し、整流部50の上流側で、送風方向と直交する断面において燃料電池モジュール20のカソード側の主表面からの距離が長くなるほど、整流部50から燃料電池モジュール20のカソード側の主表面において到達する部分までの距離が長くなる。なお、上流側とは送風部40に近い側を指し、下流側とは送風部40から離れた側を指す。また、整流部50の上流側で送風方向と直交する断面とは、送風方向のうちカソード側の主表面と平行な風と直交する面を指し、図6において点線Dで示した面を指す。 As shown in FIG. 5A, the rectifying plate 52 has an involute curve shape Q. An involute curve is a curve drawn by the tip of a thread when the thread is wound around a constant circle and unwound while pulling the end of the thread. In FIG. 5A, solid arrows indicate the direction of swirling flow. As shown in FIG. 5B, the swirl flow is reflected by the rectifying plate 52, is directed upward above the rectifying plate 52, and flows toward the main surface on the cathode side of the fuel cell module 20. As shown in FIG. 6, the wind rectified at the point P <b> 1 is directed to the lower part of the main surface on the cathode side of the fuel cell module 20. The wind rectified at the point P2 is directed toward the center of the main surface of the fuel cell module 20 on the cathode side. The wind rectified at the point P3 is directed to the upper part of the main surface of the fuel cell module 20 on the cathode side. When the mode of ventilation in the fuel cell system 10 of the present embodiment is summarized, regarding the wind supplied by the blowing unit 40, on the cathode side of the fuel cell module 20 in the cross section orthogonal to the blowing direction on the upstream side of the rectifying unit 50. The longer the distance from the main surface, the longer the distance from the rectifying unit 50 to the portion reaching the main surface on the cathode side of the fuel cell module 20. The upstream side refers to the side close to the air blowing unit 40, and the downstream side refers to the side away from the air blowing unit 40. Moreover, the cross section orthogonal to the blowing direction on the upstream side of the rectifying unit 50 indicates a plane orthogonal to the wind parallel to the main surface on the cathode side in the blowing direction, and indicates a plane indicated by a dotted line D in FIG.
 図7(A)は、補強部101a、補強部101bを拡大した平面図である。図7(B)は、図7(A)のA-A’線に沿った断面図である。図7(C)は、図7(A)のB-B’線に沿った断面図である。 FIG. 7A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b. FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 7C is a cross-sectional view taken along line B-B ′ of FIG.
 補強部101aの肉厚は、補強部101bの肉厚より薄くなっており、燃料電池側に補強部101bが凸となり、燃料電池と反対側(外側)では補強部101aと補強部101bとの間に段差がないように設計されている。これにより、補強部101aとカソード保護層200との間に風の通り道となる流路210が形成されている。これによれば、図3(A)に示した送風部40から送出された風が流路210を通ることにより、補強部101aで遮られることなく、送風部40からみて補強部101の背後の領域を含む開口部118pに向かうことができる。 The thickness of the reinforcing part 101a is thinner than the thickness of the reinforcing part 101b, the reinforcing part 101b is convex on the fuel cell side, and between the reinforcing part 101a and the reinforcing part 101b on the side opposite to the fuel cell (outside). It is designed so that there is no step. As a result, a flow path 210 is formed between the reinforcing portion 101a and the cathode protective layer 200 as a wind passage. According to this, the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210 and is not blocked by the reinforcement 101a, but behind the reinforcement 101 as viewed from the blower 40. The opening 118p including the region can be directed.
 以上説明した燃料電池システムによれば、送風の流路を要しないため、送風量が圧損により低減することがほとんどない。このため、補機に必要な電力を抑制することができる。 According to the fuel cell system described above, since the flow path of the blast is not required, the blast volume is hardly reduced by pressure loss. For this reason, the electric power required for an auxiliary machine can be suppressed.
 燃料電池のカソード側の主表面全体に均一な風量で送風することができるため、場所による温度のばらつきを低減することができ、ひいては、燃料電池による発電を安定化させることができる。 Since air can be blown with a uniform air volume over the entire main surface on the cathode side of the fuel cell, variation in temperature depending on location can be reduced, and power generation by the fuel cell can be stabilized.
 燃料電池のカソード側の主表面のある箇所で発生した熱や水蒸気が別の箇所に与える影響を低減することができるため、燃料電池の発電を安定化させることができる。 Since it is possible to reduce the influence of heat and water vapor generated at a certain part of the main surface on the cathode side of the fuel cell on another part, the power generation of the fuel cell can be stabilized.
 燃料電池のカソード側の主表面が流路に遮られることなく外部に露出しているため、送風機を使用しないときでも、燃料電池のカソード側の主表面からの放熱を確保することができ、燃料電池システム全体の放熱性を向上させることができる。 Since the main surface on the cathode side of the fuel cell is exposed to the outside without being blocked by the flow path, it is possible to ensure heat dissipation from the main surface on the cathode side of the fuel cell even when the blower is not used. The heat dissipation of the entire battery system can be improved.
 また、燃料電池のドライアウト温度に応じてファンを動作させることにより、燃料電池でドライアウトが生じることを抑制することができ、ひいては燃料電池による発電を安定化させることができる。 Also, by operating the fan according to the dry-out temperature of the fuel cell, it is possible to suppress the dry-out from occurring in the fuel cell, and thus stabilize the power generation by the fuel cell.
 さらに、筐体の一部が筐体に設けられた開口部への送風の妨げにならないように構成されているため、燃料電池のカソードに対応する開口部全体に風を行き渡らせることができる。これにより、燃料電池の温度分布に場所によるばらつきが生じることをより一層抑制することができる。 Furthermore, since a part of the casing is configured not to obstruct air blowing to the opening provided in the casing, the wind can be spread over the entire opening corresponding to the cathode of the fuel cell. Thereby, it can suppress further that the variation by the place in the temperature distribution of a fuel cell arises.
 さらに、筐体の一部がカソード保護層を介して燃料電池モジュールを燃料収容部側へ密着するように構成されているため、燃料電池モジュールと燃料収容部との間の熱伝導性を向上させることができる。 Furthermore, since a part of the housing is configured to closely contact the fuel cell module to the fuel storage unit side via the cathode protective layer, the thermal conductivity between the fuel cell module and the fuel storage unit is improved. be able to.
 以上説明したように、実施の形態1の燃料電池システム10によれば、パッシブ型の燃料電池に適した送風機構が実現される。 As described above, according to the fuel cell system 10 of the first embodiment, a blower mechanism suitable for a passive fuel cell is realized.
(実施の形態2)
 実施の形態2乃至の燃料電池システム10の基本的な構成は、補強部101a、補強部101bを除き実施の形態1の燃料電池システム10と同様である。以下、実施の形態2の燃料電池システムについて、実施の形態1と異なる部分を中心に説明する。
(Embodiment 2)
The basic configuration of the fuel cell system 10 according to the second to second embodiments is the same as that of the fuel cell system 10 according to the first embodiment except for the reinforcing portion 101a and the reinforcing portion 101b. Hereinafter, the fuel cell system according to the second embodiment will be described with a focus on differences from the first embodiment.
 図8(A)は、実施の形態2に係る燃料電池システムが有する補強部101a、補強部101bを拡大した平面図である。図8(B)は、図8(A)のA-A’線に沿った断面図である。図8(C)は、図8(A)のB-B’線に沿った断面図である。 FIG. 8A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b that the fuel cell system according to Embodiment 2 has. FIG. 8B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 8C is a cross-sectional view taken along line B-B ′ of FIG.
 本実施の形態では、補強部101aと補強部101bとが交差する領域において、補強部101aが補強部101bの上(補強部101bの方が補強部101aより燃料電池側)に位置している。これにより、補強部101aとカソード保護層200との間に、補強部101bの厚さと同等な流路210が生じている。これによれば、図3(A)に示した送風部40から送出された風が流路210を通ることにより、補強部101aで遮られることなく、送風部40からみて補強部101の背後の領域を含む開口部118pに向かうことができる。 In the present embodiment, in the region where the reinforcing portion 101a and the reinforcing portion 101b intersect, the reinforcing portion 101a is positioned above the reinforcing portion 101b (the reinforcing portion 101b is closer to the fuel cell than the reinforcing portion 101a). Thereby, the flow path 210 equivalent to the thickness of the reinforcement part 101b is produced between the reinforcement part 101a and the cathode protective layer 200. According to this, the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210 and is not blocked by the reinforcement 101a, but behind the reinforcement 101 as viewed from the blower 40. The opening 118p including the region can be directed.
 実施の形態2の燃料電池システム10によれば、実施の形態1の燃料電池システム10と同様な効果を得ることができる。 According to the fuel cell system 10 of the second embodiment, the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
(実施の形態3)
 実施の形態3の燃料電池システム10の基本的な構成は、補強部101a、補強部101bを除き実施の形態1の燃料電池システム10と同様である。以下、実施の形態3の燃料電池システムについて、実施の形態1と異なる部分を中心に説明する。
(Embodiment 3)
The basic configuration of the fuel cell system 10 of the third embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a and the reinforcing portion 101b. Hereinafter, the fuel cell system according to the third embodiment will be described with a focus on differences from the first embodiment.
 図9(A)は、実施の形態3に係る燃料電池システムが有する補強部101a、補強部101bを拡大した平面図である。図9(B)は、図9(A)のA-A’線に沿った断面図である。図9(C)は、図9(A)のB-B’線に沿った断面図である。 FIG. 9A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b that the fuel cell system according to Embodiment 3 has. FIG. 9B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 9C is a cross-sectional view taken along line B-B ′ of FIG.
 本実施の形態では、補強部101aに送風方向に延在してくりぬかれた複数の流路210が形成されており、補強部101aはカソード保護層200と部分的に接している。これによれば、図3(A)に示した送風部40から送出された風が流路210を通ることにより、補強部101aで遮られることなく送風部40からみて補強部101の背後の領域を含む開口部118pに向かうことができる。 In this embodiment, a plurality of flow paths 210 extending in the blowing direction are formed in the reinforcing portion 101a, and the reinforcing portion 101a is in partial contact with the cathode protective layer 200. According to this, when the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210, the region behind the reinforcement 101 as viewed from the blower 40 without being blocked by the reinforcement 101a. To the opening 118p including
 実施の形態3の燃料電池システム10によれば、実施の形態1の燃料電池システム10と同様な効果を得ることができる。 According to the fuel cell system 10 of the third embodiment, the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
(実施の形態4)
 実施の形態4の燃料電池システム10の基本的な構成は、補強部101a、補強部101bを除き実施の形態1の燃料電池システム10と同様である。以下、実施の形態4の燃料電池システムについて、実施の形態1と異なる部分を中心に説明する。
(Embodiment 4)
The basic configuration of the fuel cell system 10 of the fourth embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a and the reinforcing portion 101b. Hereinafter, the fuel cell system according to the fourth embodiment will be described with a focus on differences from the first embodiment.
 図10(A)は、実施の形態4に係る燃料電池システムが有する補強部101a、補強部101bを拡大した平面図である。図10(B)は、図10(A)のA-A’線に沿った断面図である。図10(C)は、図10(A)のB-B’線に沿った断面図である。 FIG. 10A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b included in the fuel cell system according to Embodiment 4. FIG. 10B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 10C is a cross-sectional view taken along line B-B ′ of FIG.
 本実施の形態では、燃料電池とは反対側の補強部101aの主表面に、送風方向に延在する凹部状の流路210が形成されている。これによれば、図3(A)に示した送風部40から送出された風が流路210を通ることにより、補強部101aで遮られることなく、送風部40からみて補強部101の背後の領域を含む開口部118pに向かうことができる。 In the present embodiment, a concave flow path 210 extending in the blowing direction is formed on the main surface of the reinforcing portion 101a opposite to the fuel cell. According to this, the wind sent from the blower 40 shown in FIG. 3 (A) passes through the flow path 210 and is not blocked by the reinforcement 101a, but behind the reinforcement 101 as viewed from the blower 40. The opening 118p including the region can be directed.
 実施の形態4の燃料電池システム10によれば、実施の形態1の燃料電池システム10と同様な効果を得ることができる。 According to the fuel cell system 10 of the fourth embodiment, the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
 なお、補強部101aとして、本実施の形態の流路210と実施の形態3で説明した流路210とを組み合わせた形態も採用しうる。この場合、たとえば、本実施の形態の流路210と実施の形態3で説明した流路210とを交互に配置してもよい。 In addition, the form which combined the flow path 210 of this Embodiment and the flow path 210 demonstrated in Embodiment 3 as a reinforcement part 101a is also employable. In this case, for example, the flow path 210 of the present embodiment and the flow path 210 described in the third embodiment may be alternately arranged.
(実施の形態5)
 実施の形態5の燃料電池システム10の基本的な構成は、補強部101a、補強部101bを除き実施の形態1の燃料電池システム10と同様である。以下、実施の形態5の燃料電池システムについて、実施の形態1と異なる部分を中心に説明する。
(Embodiment 5)
The basic configuration of the fuel cell system 10 of the fifth embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a and the reinforcing portion 101b. Hereinafter, the fuel cell system according to the fifth embodiment will be described focusing on the differences from the first embodiment.
 図11(A)は、実施の形態5に係る燃料電池システムが有する補強部101a、補強部101bを拡大した平面図である。図11(B)は、図11(A)のA-A’線に沿った断面図である。図11(C)は、図11(A)のB-B’線に沿った断面図である。 FIG. 11A is an enlarged plan view of the reinforcing portion 101a and the reinforcing portion 101b included in the fuel cell system according to Embodiment 5. FIG. 11B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 11C is a cross-sectional view taken along line B-B ′ of FIG.
 本実施の形態では、図11(C)に示すように、補強部101aの送風方向に平行な断面において、開口部118p側の側面がテーパー状になっている。言い換えると、開口部118p側の補強部101aの側面とカソード保護層200とのなす角θは鋭角である。これによれば、図3(A)に示した送風部40から送出された風が補強部101aに形成されたテーパー状の側面に沿って流れることにより、送風部40からみて補強部101の背後の領域を含む開口部118pに向かうことができる。 In this embodiment, as shown in FIG. 11C, the side surface on the opening 118p side is tapered in the cross section parallel to the blowing direction of the reinforcing portion 101a. In other words, the angle θ formed between the side surface of the reinforcing portion 101a on the opening 118p side and the cathode protective layer 200 is an acute angle. According to this, the wind sent from the air blower 40 shown in FIG. 3A flows along the tapered side surface formed in the reinforcing part 101 a, so that the back of the reinforcing part 101 as viewed from the air blowing part 40. Can be directed to the opening 118p including the region.
 実施の形態5の燃料電池システム10によれば、実施の形態1の燃料電池システム10と同様な効果を得ることができる。 According to the fuel cell system 10 of the fifth embodiment, the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
 上述したような実施の形態5の補強部101aの形態は、開口部118oと開口部118pとの間以外の筐体100にも適用可能である。図12は、図2(A)に示すA-A’線に沿った要部断面図である。開口部118oの下側(送風部40に近い側)に位置する筐体100の送風方向の断面において、開口部118oに面する筐体100の側面がテーパー状になっている。言い換えると、開口部118oに面する筐体100の側面とカソード保護層200とのなす角θ’は鋭角である。これによれば、図3(A)に示した送風部40から送出された風が筐体100に形成されたテーパー状の側面に沿って流れることにより、開口部118oの下側に位置する筐体100の背後の領域を含む開口部118o全体に向かうことができる。この結果、燃料電池の場所による温度のばらつきをより一層低減することができる。 The form of the reinforcing portion 101a of the fifth embodiment as described above can be applied to the casing 100 other than between the opening 118o and the opening 118p. FIG. 12 is a cross-sectional view of the principal part along the line A-A ′ shown in FIG. In the cross section in the blowing direction of the casing 100 located on the lower side of the opening 118o (side closer to the blowing section 40), the side surface of the casing 100 facing the opening 118o is tapered. In other words, the angle θ ′ formed between the side surface of the housing 100 facing the opening 118o and the cathode protective layer 200 is an acute angle. According to this, the wind sent from the air blower 40 shown in FIG. 3A flows along the tapered side surface formed in the housing 100, so that the housing located below the opening 118o. The entire opening 118o including the region behind the body 100 can be directed. As a result, temperature variations due to the location of the fuel cell can be further reduced.
(実施の形態6)
 実施の形態6の燃料電池システム10の基本的な構成は、補強部101a、補強部101b、カソード保護層200を除き実施の形態1の燃料電池システム10と同様である。以下、実施の形態6の燃料電池システムについて、実施の形態1と異なる部分を中心に説明する。
(Embodiment 6)
The basic configuration of the fuel cell system 10 of the sixth embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200. Hereinafter, the fuel cell system according to the sixth embodiment will be described focusing on the differences from the first embodiment.
 図13(A)は、実施の形態6に係る燃料電池システムが有する補強部101a、補強部101b、カソード保護層200を拡大した平面図である。図13(B)は、図13(A)のA-A’線に沿った断面図である。図13(C)は、図13(A)のB-B’線に沿った断面図である。 FIG. 13A is an enlarged plan view of the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200 that the fuel cell system according to Embodiment 6 has. FIG. 13B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 13C is a cross-sectional view taken along line B-B ′ of FIG.
 本実施の形態では、補強部101aとカソード保護層200とが接しており、補強部101aと重なる部分のカソード保護層200に送風方向に開口が延在する貫通孔201aが設けられている。貫通孔201aの送風方向の開口の長さL2は送風方向の補強部101aの幅L1より長く、開口部118oにおいて貫通孔201aの一部分が露出し(図13(A)参照)、開口部118pにおいて貫通孔201aの一部分が露出している(図13(A)領域)。これによれば、図13(C)に示すように、開口部118oに送り込まれた風が貫通孔201aを通り抜けて開口部118pに流れることができる。 In the present embodiment, the reinforcing portion 101a and the cathode protective layer 200 are in contact with each other, and a through hole 201a having an opening extending in the air blowing direction is provided in a portion of the cathode protective layer 200 overlapping the reinforcing portion 101a. The length L2 of the opening in the blowing direction of the through hole 201a is longer than the width L1 of the reinforcing portion 101a in the blowing direction, and a part of the through hole 201a is exposed in the opening 118o (see FIG. 13A). A part of the through hole 201a is exposed (region (A) in FIG. 13). According to this, as shown in FIG. 13C, the wind sent to the opening 118o can pass through the through hole 201a and flow to the opening 118p.
 実施の形態6の燃料電池システム10によれば、実施の形態1の燃料電池システム10と同様な効果を得ることができる。 According to the fuel cell system 10 of the sixth embodiment, the same effect as that of the fuel cell system 10 of the first embodiment can be obtained.
(実施の形態7)
 実施の形態7の燃料電池システム10の基本的な構成は、補強部101a、補強部101b、カソード保護層200を除き実施の形態1の燃料電池システム10と同様である。以下、実施の形態7の燃料電池システムについて、実施の形態1と異なる部分を中心に説明する。
(Embodiment 7)
The basic configuration of the fuel cell system 10 of the seventh embodiment is the same as that of the fuel cell system 10 of the first embodiment except for the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200. Hereinafter, the fuel cell system according to the seventh embodiment will be described with a focus on differences from the first embodiment.
 図14(A)は、実施の形態4に係る燃料電池システムが有する補強部101a、補強部101b、カソード保護層200を拡大した平面図である。図14(B)は、図14(A)のA-A’線に沿った断面図である。図14(C)は、図14(A)のB-B’線に沿った断面図である。 FIG. 14A is an enlarged plan view of the reinforcing portion 101a, the reinforcing portion 101b, and the cathode protective layer 200 that the fuel cell system according to Embodiment 4 has. FIG. 14B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 14C is a cross-sectional view taken along line B-B ′ of FIG.
 本実施の形態では、図14(C)に示すように、送風方向の断面において、カソード保護層200側の補強部101aの角が共に面取りされている。また、補強部101aと重なる部分のカソード保護層200に送風方向に開口が延在する貫通孔201aが設けられている。貫通孔201aの送風方向の開口の長さL2は送風方向の補強部101aの幅L1以下であり、図14(A)に示すように、貫通孔201aは補強部101aに隠れて視認できない。しかし、上述したように、補強部101aのカソード保護層200側の角が面取りされているため、開口部118oと貫通孔201aとが連通し、さらに貫通孔201aと開口部118pとが連通している。これによれば、図14(C)に示すように、開口部118oに送り込まれた風が貫通孔201aを通り抜けて開口部118pに流れることができる。 In this embodiment, as shown in FIG. 14C, the corners of the reinforcing portion 101a on the cathode protective layer 200 side are both chamfered in the cross section in the blowing direction. In addition, a through-hole 201a whose opening extends in the air blowing direction is provided in the cathode protective layer 200 that overlaps the reinforcing portion 101a. The length L2 of the opening in the blowing direction of the through-hole 201a is equal to or less than the width L1 of the reinforcing portion 101a in the blowing direction, and the through-hole 201a is hidden behind the reinforcing portion 101a and cannot be seen as shown in FIG. However, as described above, since the corner of the reinforcing portion 101a on the cathode protective layer 200 side is chamfered, the opening 118o and the through hole 201a communicate with each other, and the through hole 201a and the opening 118p communicate with each other. Yes. According to this, as shown in FIG. 14C, the wind sent to the opening 118o can pass through the through hole 201a and flow to the opening 118p.
 実施の形態7の燃料電池システム10によれば、実施の形態1の燃料電池システム10と同様な効果を得ることができる。さらに、本実施の形態によれば、面取りされた補強部101aにより貫通孔201a、ひいては開口部118pによりスムースに風を送ることができる。 According to the fuel cell system 10 of the seventh embodiment, the same effect as that of the fuel cell system 10 of the first embodiment can be obtained. Furthermore, according to the present embodiment, it is possible to smoothly send wind through the through hole 201a by the chamfered reinforcing portion 101a, and by extension, the opening 118p.
 本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.
 上述の各実施の形態では、パッシブ型の燃料電池システム10が例示されているが、燃料電池システム10は補機等を有するアクティブ型の燃料電池システムに変更してもよい。 In each of the above-described embodiments, the passive fuel cell system 10 is exemplified, but the fuel cell system 10 may be changed to an active fuel cell system having an auxiliary machine or the like.
 筐体100の外側に、特許文献3に記載されたようなカバーを設置し、送風部40からの風の流路を形成してもよい。 A cover such as that described in Patent Document 3 may be installed outside the housing 100 to form a flow path for the wind from the blower 40.
 燃料電システム10に組み込まれるセル数、セルの大きさ、セルの配置、セル間や燃料電池モジュール間の電気的な接続形態等は上述した実施の形態に限定されず、適宜変更可能である。 The number of cells incorporated in the fuel electric system 10, the size of the cells, the arrangement of the cells, the electrical connection form between the cells and between the fuel cell modules, etc. are not limited to the above-described embodiments, and can be changed as appropriate.
 上述の各実施の形態では、燃料電システム10は複数のセルが平面状に配設された燃料電池モジュール20を有するが、燃料電システム10は単セルであってもよい。また、燃料電池モジュール20は、一対のカソードとアノードとの間に電解質膜が挟持された一つの燃料電池セルでもよい In each of the above-described embodiments, the fuel electric system 10 includes the fuel cell module 20 in which a plurality of cells are arranged in a planar shape, but the fuel electric system 10 may be a single cell. The fuel cell module 20 may be a single fuel cell in which an electrolyte membrane is sandwiched between a pair of cathode and anode.
 上述の各実施の形態では、送風部40からの送風をカソード保護層200の方へ向けるための整流部50が設けられているが、整流部50がなくてもよい。 In each of the above-described embodiments, the rectifying unit 50 for directing the air blown from the air blowing unit 40 toward the cathode protective layer 200 is provided, but the rectifying unit 50 may not be provided.
10 燃料電池システム、20 燃料電池モジュール、30 燃料収容部、32 燃料供給部、40 送風部、50 整流部、60 温度検出部、70 制御部、100 筐体、110 基部、118a 補強部、118b 補強部、120 突出部、200 カソード保護層、210 流路、220 気液分離膜 10 fuel cell system, 20 fuel cell module, 30 fuel storage unit, 32 fuel supply unit, 40 air blowing unit, 50 rectification unit, 60 temperature detection unit, 70 control unit, 100 housing, 110 base, 118a reinforcement unit, 118b reinforcement Part, 120 projecting part, 200 cathode protective layer, 210 flow path, 220 gas-liquid separation membrane
 本発明は、燃料電池システムに適用されうる。 The present invention can be applied to a fuel cell system.

Claims (6)

  1.  電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、
     前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、
     前記燃料電池を収容し、前記カソード保護層の一部が露出する第1の開口部および第2の開口部と、前記第1の開口部と前記第2の開口部との間に設けられた補強部とを有する筐体と、
     前記燃料電池のカソード側の主表面に、前記第1の開口部から前記第2の開口部の方向に送風する送風部と、
     を備え、
     前記補強部と前記カソード保護層との間に流路が設けられていることを特徴とする燃料電池システム。
    A fuel cell having an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane;
    An air-permeable cathode protective layer provided on the cathode side of the fuel cell;
    The fuel cell is accommodated and provided between the first opening and the second opening, and the first opening and the second opening from which a part of the cathode protective layer is exposed. A housing having a reinforcing portion;
    A blower that blows air from the first opening toward the second opening on the cathode-side main surface of the fuel cell;
    With
    A fuel cell system, wherein a flow path is provided between the reinforcing portion and the cathode protective layer.
  2.  電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、
     前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、
     前記燃料電池のカソード側の主表面に送風する送風部と、
     前記燃料電池を収容し、前記カソード保護層の一部が露出する開口部と、前記開口部と前記送風部との間に設けられた補強部とを有する筐体と、
     を備え、
     前記送風部は前記補強部から前記開口部の方へ送風し、
     前記補強部の前記開口部側の側面と前記カソード保護層とのなす角が鋭角となるように前記側面がテーパー状となっていることを特徴とする燃料電池システム。
    A fuel cell having an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane;
    An air-permeable cathode protective layer provided on the cathode side of the fuel cell;
    An air blower for blowing air to the cathode-side main surface of the fuel cell;
    A housing containing the fuel cell and having an opening from which a part of the cathode protective layer is exposed, and a reinforcing portion provided between the opening and the air blowing portion;
    With
    The air blowing part blows air from the reinforcing part toward the opening,
    The fuel cell system, wherein the side surface is tapered so that an angle formed between the side surface of the reinforcing portion on the opening side and the cathode protective layer is an acute angle.
  3.  前記筐体は前記送風部からの送風方向に並設された第1の開口部および第2の開口部を有し、
     前記補強部は前記第1の開口部と第2の開口部との間に設けられている請求項2に記載の燃料電池システム。
    The housing has a first opening and a second opening arranged in parallel in the blowing direction from the blower,
    The fuel cell system according to claim 2, wherein the reinforcing portion is provided between the first opening and the second opening.
  4.  電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、
     前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、
     前記燃料電池を収容し、前記カソード保護層の一部が露出する第1の開口部および第2の開口部と、前記第1の開口部と前記第2の開口部との間に設けられた補強部とを有する筐体と、
     前記燃料電池のカソード側の主表面に、前記第1の開口部から前記第2の開口部の方向に送風する送風部と、
     を備え、
     前記カソード保護層は前記補強部と重なる領域を含むような貫通孔を有し、
     前記貫通孔は前記第1の開口部および前記第2の開口部において露出していることを特徴とする燃料電池システム。
    A fuel cell having an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane;
    An air-permeable cathode protective layer provided on the cathode side of the fuel cell;
    The fuel cell is accommodated and provided between the first opening and the second opening, and the first opening and the second opening from which a part of the cathode protective layer is exposed. A housing having a reinforcing portion;
    A blower that blows air from the first opening toward the second opening on the cathode-side main surface of the fuel cell;
    With
    The cathode protective layer has a through-hole that includes a region overlapping the reinforcing portion,
    The fuel cell system, wherein the through hole is exposed in the first opening and the second opening.
  5.  電解質膜と、前記電解質膜の一方の面に設けられているカソードと、前記電解質膜の他方の面に設けられているアノードとを有する燃料電池と、
     前記燃料電池のカソード側に設けられた通気性を有するカソード保護層と、
     前記燃料電池を収容し、前記カソード保護層の一部が露出する第1の開口部および第2の開口部と、前記第1の開口部と前記第2の開口部との間に設けられた補強部とを有する筐体と、
     前記燃料電池のカソード側の主表面に、前記第1の開口部から前記第2の開口部の方向に送風する送風部と、
     を備え、
     前記カソード保護層は前記補強部と重なる領域内に貫通孔を有し、
     前記第1の開口部と前記貫通孔とが連通し、前記貫通孔と前記第2の開口部とが連通するように前記補強部の前記カソード保護層の側の角が面取りされていることを特徴とする燃料電池システム。
    A fuel cell having an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane;
    An air-permeable cathode protective layer provided on the cathode side of the fuel cell;
    The fuel cell is accommodated and provided between the first opening and the second opening, and the first opening and the second opening from which a part of the cathode protective layer is exposed. A housing having a reinforcing portion;
    A blower that blows air from the first opening toward the second opening on the cathode-side main surface of the fuel cell;
    With
    The cathode protective layer has a through hole in a region overlapping the reinforcing portion,
    The corner on the cathode protective layer side of the reinforcing portion is chamfered so that the first opening and the through hole communicate with each other, and the through hole and the second opening communicate with each other. A fuel cell system.
  6.  前記送風部から送出された風の方向を前記カソード保護層の主表面に向くように角度を付ける整流部を備える請求項1乃至5のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 5, further comprising a rectifying unit that makes an angle so that a direction of the wind sent from the air blowing unit faces a main surface of the cathode protective layer.
PCT/JP2011/004351 2011-07-29 2011-07-29 Fuel cell system WO2013018124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004351 WO2013018124A1 (en) 2011-07-29 2011-07-29 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004351 WO2013018124A1 (en) 2011-07-29 2011-07-29 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2013018124A1 true WO2013018124A1 (en) 2013-02-07

Family

ID=47628706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004351 WO2013018124A1 (en) 2011-07-29 2011-07-29 Fuel cell system

Country Status (1)

Country Link
WO (1) WO2013018124A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163215A (en) * 1988-12-16 1990-06-22 Osaka Prefecture Device for controlling injecting direction of fluid
JP2003346850A (en) * 2002-05-23 2003-12-05 Sony Corp Fuel cell device and method of operating the device
JP2006032363A (en) * 2001-07-06 2006-02-02 Sony Corp Fuel cell, function card, gas supply mechanism for fuel cell, power generator and production method for power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163215A (en) * 1988-12-16 1990-06-22 Osaka Prefecture Device for controlling injecting direction of fluid
JP2006032363A (en) * 2001-07-06 2006-02-02 Sony Corp Fuel cell, function card, gas supply mechanism for fuel cell, power generator and production method for power generator
JP2003346850A (en) * 2002-05-23 2003-12-05 Sony Corp Fuel cell device and method of operating the device

Similar Documents

Publication Publication Date Title
JP4950505B2 (en) Fuel cell stack
EP1469542A1 (en) Polymer electrolyte fuel cell
JP6477681B2 (en) Fuel cell module and fuel cell stack
US20070178358A1 (en) Direct liquid feed fuel cell system
JP2009070622A (en) Fuel cell and its manufacturing method
JP5362406B2 (en) Fuel cell
WO2012053164A1 (en) Fuel cell system
WO2013018124A1 (en) Fuel cell system
WO2013065083A1 (en) Fuel cell system
WO2013114800A1 (en) Fuel cell and fuel cell system
JP2009164051A (en) Fuel battery
JP2008146902A (en) Unit cell for fuel cell and fuel cell stack
KR101542970B1 (en) Fuel cell stack
JP4659376B2 (en) Polymer electrolyte fuel cell
WO2013065082A1 (en) Fuel cell system
JP2013115016A (en) Fuel cell
WO2013018125A1 (en) Fuel cell system
KR101107081B1 (en) Stack for fuel cell and fuel cell system with the same
US7824816B2 (en) Fuel cell system
JP5162937B2 (en) Fuel cell
WO2013030894A1 (en) Fuel cell module
JP2014072057A (en) Fuel cell system
KR101433933B1 (en) separator module and fuel cell stack comprising it
JP2014049345A (en) Fuel cell system
KR20220151947A (en) Air cooler and fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP