WO2013112966A1 - Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil - Google Patents

Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil Download PDF

Info

Publication number
WO2013112966A1
WO2013112966A1 PCT/US2013/023333 US2013023333W WO2013112966A1 WO 2013112966 A1 WO2013112966 A1 WO 2013112966A1 US 2013023333 W US2013023333 W US 2013023333W WO 2013112966 A1 WO2013112966 A1 WO 2013112966A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
product stream
mixed product
stream
oil
Prior art date
Application number
PCT/US2013/023333
Other languages
French (fr)
Inventor
Abdennour Bourane
Raheel Shafi
Essam SAYED
Ibrahim A. ABBA
Abdul Rahman Zafer AKHRAS
Original Assignee
Saudi Arabian Oil Company
Aramco Services Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Company, Aramco Services Company filed Critical Saudi Arabian Oil Company
Priority to EP13705296.5A priority Critical patent/EP2807234B1/en
Priority to CN201380006608.9A priority patent/CN104093820B/en
Priority to KR1020147024069A priority patent/KR102136853B1/en
Priority to JP2014554901A priority patent/JP6133902B2/en
Priority to SG11201404383XA priority patent/SG11201404383XA/en
Priority to US13/865,041 priority patent/US9284497B2/en
Publication of WO2013112966A1 publication Critical patent/WO2013112966A1/en
Priority to US15/069,144 priority patent/US20160194564A1/en
Priority to US15/928,672 priority patent/US10221365B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/22Non-catalytic cracking in the presence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/32Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions in the presence of hydrogen-generating compounds
    • C10G47/34Organic compounds, e.g. hydrogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation

Definitions

  • the present invention relates to an integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil to produce petrochemicals such as olefins and aromatics.
  • the lower olefins i.e., ethylene, propylene, butylene and butadiene
  • aromatics i.e., benzene, toluene and xylene
  • Thermal cracking, or steam pyrolysis is a major type of process for forming these materials, typically in the presence of steam, and in the absence of oxygen.
  • Feedstocks for steam pyrolysis can include petroleum gases and distillates such as naphtha, kerosene and gas oil. The availability of these feedstocks is usually limited and requires costly and energy-intensive process steps in a crude oil refinery.
  • BMCI Bureau of Mines Correlation Index
  • BMCI 87552/VAPB + 473.5 * (sp. gr.) - 456.8 (1)
  • VAPB Volume Average Boiling Point in degrees Rankine
  • the system and process herein provides a steam pyrolysis zone integrated with a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics.
  • the integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream.
  • crude oil is to be understood to include whole crude oil from conventional sources, crude oil that has undergone some pre-treatment.
  • crude oil will also be understood to include that which has been subjected to water-oil separation; and/or gas- oil separation; and/or desalting; and/or stabilization.
  • FIG. 1 is a process flow diagram of an embodiment of an integrated process described herein.
  • FIGs. 2A-2C are schematic illustrations in perspective, top and side views of a vapor- liquid separation device used in certain embodiments of a steam pyrolysis unit in the integrated process described herein.
  • FIG. 17 A flow diagram including an integrated solvent deasphalting and steam pyrolysis process and system is shown in FIG. 1.
  • the integrated system includes a solvent deasphalting zone, a steam pyrolysis zone 30 and a product separation zone.
  • Solvent deasphalting zone generally includes a primary settler 14, a secondary settler 17, a deasphalted/demetalized oil (DA/DMO) separation zone 20, and a separator zone 23.
  • DA/DMO deasphalted/demetalized oil
  • Primary settler 14 includes an inlet for receiving a combined stream 13 including a feed stream 1 and a solvent, which can be fresh solvent 29, recycle solvent 12, recycle solvent 24, or a combination comprising one or more of these solvent sources.
  • Primary settler 14 also includes an outlet for discharging a primary DA/DMO phase 15 and several pipe outlets for discharging a primary asphalt phase 16.
  • Secondary settler 17 includes two tee-type distributors located at both ends for receiving the primary DA/DMO phase 15, an outlet for discharging a secondary DA/DMO phase 19, and an outlet for discharging a secondary asphalt phase 18.
  • DA/DMO separation zone 20 includes an inlet for receiving secondary DA/DMO phase 19, an outlet for discharging a solvent stream 12 and an outlet for discharging a solvent- free DA/DMO stream 21 for use as the steam pyrolysis zone feedstock.
  • Separator vessel 23 includes an inlet for receiving primary asphalt phase 16, an outlet for discharging a solvent stream 24, and an outlet for discharging a bottom asphalt phase 25.
  • Steam pyrolysis zone 30 generally comprises a convection section 32 and a pyrolysis section 34 that can operate based on steam pyrolysis unit operations known in the art, i.e., charging the thermal cracking feed to the convection section in the presence of steam.
  • a vapor- liquid separation section 36 is included between sections 32 and 34.
  • Vapor- liquid separation section 36, through which the heated steam cracking feed from the convection section 32 passes, can be a separation device based on physical or mechanical separation of vapors and liquids.
  • a vapor-liquid separation device is illustrated by, and with reference to FIGs. 2A-2C.
  • a similar arrangement of a vapor-liquid separation device is also described in U.S. Patent Publication Number 2011/0247500 which is incorporated by reference in its entirety herein.
  • vapor and liquid flow through is cyclonic geometry whereby the device operates isothermally and at very low residence time .
  • vapor is swirled in a circular pattern to create forces where heavier droplets and liquid are captured and channeled through to a liquid outlet as low-sulfur fuel oil 38, for instance, which is added to a pyrolysis fuel oil blend, and vapor is channeled through a vapor outlet as the charge 37 to the pyrolysis section 34.
  • the vaporization temperature and fluid velocity are varied to adjust the approximate temperature cutoff point, for instance in certain embodiments compatible with the residue fuel oil blend, e.g.,about 540°C.
  • a quenching zone 40 includes an inlet in fluid communication with the outlet of steam pyrolysis zone 30, an inlet for admitting a quenching solution 42, an outlet for discharging the quenched mixed product stream 44 and an outlet for discharging quenching solution 46.
  • an intermediate quenched mixed product stream 44 is converted into intermediate product stream 65 and hydrogen 62, which is purified in the present process and used as recycle hydrogen stream 2 in the hydroprocessing reaction zone 4.
  • Intermediate product stream 65 is generally fractioned into end-products and residue in separation zone 70, which can one or multiple separation units such as plural fractionation towers including de-ethanizer, de- propanizer and de-butanizer towers, for example as is known to one of ordinary skill in the art.
  • suitable apparatus are described in "Ethylene,” Ullmann's Encyclopedia of Industrial Chemistry, Volume 12, Pages 531 - 581, in particular Fig. 24, Fig 25 and Fig. 26, which is incorporated herein by reference.
  • the product separation zone 70 includes an inlet in fluid communication with the product stream 65, and plural product outlets 73-78, including an outlet 78 for discharging methane, an outlet 77 for discharging ethylene, an outlet 76 for discharging propylene, an outlet 75 for discharging butadiene, an outlet 74 for discharging mixed butylenes, and an outlet 73 for discharging pyrolysis gasoline. Additionally an outlet is provided for discharging pyrolysis fuel oil 71.
  • the bottom asphalt phase 25 from separator vessel 23 and optionally the rejected portion 38 from vapor-liquid separation section 36 are combined with pyrolysis fuel oil 71 and the mixed stream can be withdrawn as a pyrolysis fuel oil blend 72, e.g., a low sulfur fuel oil blend to be further processed in an off- site refinery.
  • a pyrolysis fuel oil blend 72 e.g., a low sulfur fuel oil blend to be further processed in an off- site refinery.
  • a crude oil feedstock 1 is admixed with solvent from one or more of sources 29, 12 and 24.
  • the resulting mixture 13 is then transferred to the primary settler 14.
  • two phases are formed in the primary settler 14: a primary DA/DMO phase 15 and a primary asphalt phase 16.
  • the temperature of the primary settler 14 is sufficiently low to recover all DA/DMO from the feedstock. For instance, for a system using n-butane a suitable temperature range is about 60°C to 150°C and a suitable pressure range is such that it is higher than the vapor pressure of n- butane at the operating temperature e.g. about 15 to 25 bars to maintain the solvent in liquid phase.
  • a suitable temperature range is about 60°C to about 180°C and again a suitable pressure range is such that it is higher than the vapor pressure of n-pentane at the operating temperature e.g. about 10 to 25 bars to maintain the solvent in liquid phase.
  • the temperature in the second settler is usually higher than the one in the first settler.
  • the primary DA/DMO phase 15 including a majority of solvent and DA/DMO with a minor amount of asphalt is discharged via the outlet located at the top of the primary settler 14 and collector pipes (not shown).
  • the primary asphalt phase 16, which contains 40-50 % by volume of solvent, is discharged via several pipe outlets located at the bottom of the primary settler 14.
  • the primary DA/DMO phase 15 enters into the two tee-type distributors at both ends of the secondary settler 17 which serves as the final stage for the extraction.
  • a secondary asphalt phase 18 containing a small amount of solvent and DA/DMO is discharged from the secondary settler 17 and recycled back to the primary settler 14 to recover DA/DMO.
  • a secondary DA/DMO phase 19 is obtained and passed to the DA/DMO separation zone 20 to obtain a solvent stream 12 and a solvent-free DA/DMO stream 21.
  • Greater than 90 wt % of the solvent charged to the settlers enters the DA/DMO separation zone 20, which is dimensioned to permit a rapid and efficient flash separation of solvent from the DA/DMO.
  • the primary asphalt phase 16 is conveyed to the separator vessel 23 for flash separation of a solvent stream 24 and a bottom asphalt phase 25.
  • Solvent streams 12 and 24 can be used as solvent for the primary settler 14, therefore minimizing the fresh solvent 29 requirement.
  • the solvents used in solvent deasphalting zone include pure liquid hydrocarbons such as propane, butanes and pentanes, as well as their mixtures. The selection of solvents depends on the requirement of DAO, as well as the quality and quantity of the final products.
  • the operating conditions for the solvent deasphalting zone include a temperature at or below critical point of the solvent; a solvent-to-oil ratio in the range of from 2: 1 to 50: 1; and a pressure in a range effective to maintain the solvent/feed mixture in the settlers is in the liquid state.
  • the essentially solvent- free DA/DMO stream 21 is optionally steam stripped (not shown) to remove any remaining solvent, and is the pyrolysis feedstream which is passed to the convection section 32 in the presence of an effective amount of steam, e.g., admitted via a steam inlet (not shown).
  • the mixture is heated to a predetermined temperature, e.g., using one or more waste heat streams or other suitable heating arrangement.
  • the heated mixture of the light fraction and steam is optionally passed to the vapor-liquid separation section 36 in which a portion 38 is rejected as a fuel oil component suitable for blending with pyrolysis fuel oil 71.
  • the remaining hydrocarbon portion is conveyed to the pyrolysis section 34 to produce a thermally cracked mixed product stream 39.
  • the steam pyrolysis zone 30 operates under parameters effective to DA/DMO stream 21 into the desired products, including ethylene, propylene, butadiene, mixed butenes and pyrolysis gasoline.
  • steam cracking is carried out using the following conditions: a temperature in the range of from 400°C to 900°C in the convection section and in the pyrolysis section; a steam-to-hydrocarbon ratio in the convection section in the range of from 0.3: 1 to 2: 1; and a residence time in the convection section and in the pyrolysis section in the range of from 0.05 seconds to 2 seconds.
  • the vapor-liquid separation section 36 includes one or a plurality of vapor liquid separation devices 80 as shown in FIGs. 2A-2C.
  • the vapor liquid separation device 80 is economical to operate and maintenance free since it does not require power or chemical supplies.
  • device 80 comprises three ports including an inlet port for receiving a vapor-liquid mixture, a vapor outlet port and a liquid outlet port for discharging and the collection of the separated vapor and liquid, respectively.
  • Device 80 operates based on a combination of phenomena including conversion of the linear velocity of the incoming mixture into a rotational velocity by the global flow pre-rotational section, a controlled centrifugal effect to pre-separate the vapor from liquid (residue), and a cyclonic effect to promote separation of vapor from the liquid (residue).
  • device 80 includes a pre-rotational section 88, a controlled cyclonic vertical section 90 and a liquid collector/settling section 92.
  • the pre-rotational section 88 includes a controlled pre-rotational element between cross-section (SI) and cross-section (S2), and a connection element to the controlled cyclonic vertical section 90 and located between cross-section (S2) and cross-section (S3).
  • the vapor liquid mixture coming from inlet 82 having a diameter (Dl) enters the apparatus tangentially at the cross-section (S I).
  • the area of the entry section (S I) for the incoming flow is at least 10% of the area of the inlet 82 according to the following equation:
  • the pre-rotational element 88 defines a curvilinear flow path, and is characterized by constant, decreasing or increasing cross-section from the inlet cross-section S I to the outlet cross-section S2.
  • the ratio between outlet cross-section from controlled pre-rotational element (S2) and the inlet cross-section (SI) is in certain embodiments in the range of 0.7 ⁇ S2/S 1 ⁇ 1.4.
  • the rotational velocity of the mixture is dependent on the radius of curvature (Rl) of the center-line of the pre-rotational element 38 where the center-line is defined as a curvilinear line joining all the center points of successive cross-sectional surfaces of the pre-rotational element 88.
  • the radius of curvature (Rl) is in the range of 2 ⁇ R1/D1 ⁇ 6 with opening angle in the range of 150° ⁇ aRl ⁇ 250°.
  • the cross- sectional shape at the inlet section S I although depicted as generally square, can be a rectangle, a rounded rectangle, a circle, an oval, or other rectilinear, curvilinear or a combination of the aforementioned shapes.
  • the shape of the cross- section along the curvilinear path of the pre-rotational element 38 through which the fluid passes progressively changes, for instance, from a generally square shape to a rectangular shape.
  • the progressively changing cross-section of element 88 into a rectangular shape advantageously maximizes the opening area, thus allowing the gas to separate from the liquid mixture at an early stage and to attain a uniform velocity profile and minimize shear stresses in the fluid flow.
  • connection element includes an opening region that is open and connected to, or integral with, an inlet in the controlled cyclonic vertical section 90.
  • the fluid flow enters the controlled cyclonic vertical section 90 at a high rotational velocity to generate the cyclonic effect.
  • the ratio between connection element outlet cross-section (S3) and inlet cross-section (S2) in certain embodiments is in the range of 2 ⁇ S 3/S1 ⁇ 5.
  • the internal diameter D2 of the cyclonic vertical section 90 is within the range of 2 ⁇ D2/D1 ⁇ 5 and can be constant along its height, the length (LU) of the upper portion 90a is in the range of 1.2 ⁇ LU/D2 ⁇ 3, and the length (LL) of the lower portion 90b is in the range of 2 ⁇ LL/D2 ⁇ 5.
  • the end of the cyclonic vertical section 90 proximate vapor outlet 34 is connected to a partially open release riser and connected to the pyrolysis section of the steam pyrolysis unit.
  • the diameter (DV) of the partially open release is in certain embodiments in the range of 0.05 ⁇ DV/D2 ⁇ 0.4.
  • a large volume fraction of the vapor therein exits device 80 from the outlet 84 through the partially open release pipe with a diameter DV.
  • the liquid phase e.g., residue
  • the connection area between the cyclonic vertical section 90 and the liquid collector and settling pipe 92 has an angle in certain embodiment of 90°.
  • the internal diameter of the liquid collector and settling pipe 92 is in the range of 2 ⁇ D3/D1 ⁇ 4 and is constant across the pipe length, and the length (LH) of the liquid collector and settling pipe 92 is in the range of 1.2 ⁇ LH/D3 ⁇ 5.
  • the liquid with low vapor volume fraction is removed from the apparatus through pipe 86 having a diameter of DL, which in certain embodiments is in the range of 0.05 ⁇ DL/D3 ⁇ 0.4 and located at the bottom or proximate the bottom of the settling pipe
  • apparatus 80 can be formed as a monolithic structure, e.g., it can be cast or molded, or it can be assembled from separate parts, e.g., by welding or otherwise attaching separate components together which may or may not correspond precisely to the members and portions described herein.
  • Mixed product stream 39 is passed to the inlet of quenching zone 40 with a quenching solution 42 (e.g., water and/or pyrolysis fuel oil) introduced via a separate inlet to produce a quenched mixed product stream 44 having a reduced temperature, e.g., of about 300°C, and spent quenching solution 46 is discharged.
  • a quenching solution 42 e.g., water and/or pyrolysis fuel oil
  • the gas mixture effluent 39 from the cracker is typically a mixture of hydrogen, methane, hydrocarbons, carbon dioxide and hydrogen sulfide.
  • mixture 44 is compressed in a multi-stage compressor zone 51, typically in 4-6 stages to produce a compressed gas mixture 52.
  • the compressed gas mixture 52 is treated in a caustic treatment unit 53 to produce a gas mixture 54 depleted of hydrogen sulfide and carbon dioxide.
  • the gas mixture 54 is further compressed in a compressor zone 55, and the resulting cracked gas 56 typically undergoes a cryogenic treatment in unit 57 to be dehydrated, and is further dried by use of molecular sieves.
  • the cold cracked gas stream 58 from unit 57 is passed to a de-methanizer tower 59, from which an overhead stream 60 is produced containing hydrogen and methane from the cracked gas stream.
  • the bottoms stream 65 from de-methanizer tower 59 is then sent for further processing in product separation zone 70, comprising fractionation towers including de- ethanizer, de-propanizer and de-butanizer towers. Process configurations with a different sequence of de-methanizer, de-ethanizer, de-propanizer and de-butanizer can also be employed.
  • hydrogen 62 having a purity of typically 80-95 vol is obtained, which can be further purified as needed or combined with other off gases in the refinery.
  • a portion of hydrogen from stream 62 can be utilized for the hydrogenation reactions of acetylene, methylacetylene and propadienes (not shown).
  • methane stream 63 can optionally be recycled to the steam cracker to be used as fuel for burners and/or heaters.
  • the bottoms stream 65 from de-methanizer tower 59 is conveyed to the inlet of product separation zone 70 to be separated into product streams methane, ethylene, propylene, butadiene, mixed butylenes and pyrolysis gasoline discharged via outlets 78, 77, 76, 75, 74 and 73, respectively.
  • Pyrolysis gasoline generally includes C5-C9 hydrocarbons, and benzene, toluene and xylenes can be extracted from this cut.
  • one or both of the bottom asphalt phase 25 and the unvaporized heavy liquid fraction 38 from the vapor-liquid separation section 36 are combined with pyrolysis fuel oil 71 (e.g., materials boiling at a temperature higher than the boiling point of the lowest boiling CIO compound, known as a "C10+" stream) and the mixed stream can be withdrawn as a pyrolysis fuel oil blend 16, e.g., to be further processed in an off- site refinery (not shown).
  • the bottom asphalt phase 25 can be sent to an asphalt stripper (not shown) where any remaining solvent is stripped-off, e.g., by steam.
  • Solvent deasphalting is a unique separation process in which residue is separated by molecular weight (density), instead of by boiling point, as in the vacuum distillation process.
  • the solvent deasphalting process thus produces a low-contaminant deasphalted oil (DAO) rich in paraffinic type molecules, consequently decreases the BMCI as compared to the initial feedstock or a hydroprocessed feedstock.
  • DAO deasphalted oil
  • Solvent deasphalting is usually carried out with paraffin streams having carbon number ranging from 3-7, in certain embodiments ranging from 4-5, and below the critical conditions of the solvent. Table 1 lists the properties of commonly used solvents in solvent deasphalting.
  • the feed is mixed with a light paraffinic solvent with carbon numbers ranging 3-7, where the deasphalted oil is solubilized in the solvent.
  • the insoluble pitch will precipitate out of the mixed solution and is separated from the DAO phase (solvent-DAO mixture) in the extractor.
  • Solvent deasphalting is carried-out in liquid phase and therefore the temperature and pressure are set accordingly. There are two stages for phase separation in solvent deasphalting. In the first separation stage, the temperature is maintained lower than that of the second stage to separate the bulk of the asphaltenes. The second stage temperature is maintained to control the deasphalted / demetalized oil (DA/DMO) quality and quantity. The temperature has big impact on the quality and quantity of DA/DMO.
  • DA/DMO deasphalted / demetalized oil
  • An extraction temperature increase will result in a decrease in deasphalted / demetalized oil yield, which means that the DA/DMO will be lighter, less viscous, and contain less metals, asphaltenes, sulfur, and nitrogen.
  • a temperature decrease will have the opposite effects.
  • the DA/DMO yield decreases having higher quality by raising extraction system temperature and increases having lower quality by lowering extraction system temperature.
  • composition of the solvent is an important process variable.
  • the solubility of the solvent increases with increasing critical temperature, generally according to C3 ⁇ iC4 ⁇ nC4 ⁇ iC5.
  • An increase in critical temperature of the solvent increases the DA/DMO yield.
  • the solvent having the lower critical temperature has less selectivity resulting in lower DA/DMO quality.
  • the volumetric ratio of the solvent to the solvent deasphalting unit charge impacts selectivity and to a lesser degree on the DA/DMO yield. Higher solvent-to-oil ratios result in a higher quality of the DA/DMO for a fixed DA/DMO yield. Higher solvent-to-oil ratio is desirable due to better selectivity, but can result in increased operating costs thereby the solvent- to-oil ratio is often limited to a narrow range.
  • the composition of the solvent will also help to establish the required solvent to oil ratios. The required solvent to oil ratio decreases as the critical solvent temperature increases. The solvent to oil ratio is, therefore, a function of desired selectivity, operation costs and solvent composition.
  • coke precursors are significantly removed from the initial whole crude oil which allows a decreased coke formation in the radiant coil;
  • additional impurities such as metals, sulfur and nitrogen compounds are also significantly removed from the starting feed which avoids post treatments of the final products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A process is provided that is directed to a steam pyrolysis zone integrated with a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream.

Description

INTEGRATED SOLVENT DEASPHALTING AND STEAM PYROLYSIS PROCESS FOR DIRECT PROCESSING OF A CRUDE OIL
RELATED APPLICATIONS
[01] This application claims the benefit of U.S. Provisional Patent Application No. 61/591,783 filed January 27, 2012, the disclosure of which is hereby incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION Field of the Invention
[02] The present invention relates to an integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil to produce petrochemicals such as olefins and aromatics.
Description of Related Art
[03] The lower olefins (i.e., ethylene, propylene, butylene and butadiene) and aromatics (i.e., benzene, toluene and xylene) are basic intermediates which are widely used in the petrochemical and chemical industries. Thermal cracking, or steam pyrolysis, is a major type of process for forming these materials, typically in the presence of steam, and in the absence of oxygen. Feedstocks for steam pyrolysis can include petroleum gases and distillates such as naphtha, kerosene and gas oil. The availability of these feedstocks is usually limited and requires costly and energy-intensive process steps in a crude oil refinery.
[04] Studies have been conducted using heavy hydrocarbons as a feedstock for steam pyrolysis reactors. A major drawback in conventional heavy hydrocarbon pyrolysis operations is coke formation. For example, a steam cracking process for heavy liquid hydrocarbons is disclosed in United States Patent Number 4,217,204 in which a mist of molten salt is introduced into a steam cracking reaction zone in an effort to minimize coke formation. In one example using Arabian light crude oil having a Conradson carbon residue of 3.1% by weight, the cracking apparatus was able to continue operating for 624 hours in the presence of molten salt. In a comparative example without the addition of molten salt, the steam cracking reactor became clogged and inoperable after just 5 hours because of the formation of coke in the reactor.
[05] In addition, the yields and distributions of olefins and aromatics using heavy hydrocarbons as a feedstock for a steam pyrolysis reactor are different than those using light hydrocarbon feedstocks. Heavy hydrocarbons have a higher content of aromatics than light hydrocarbons, as indicated by a higher Bureau of Mines Correlation Index (BMCI). BMCI is a measurement of aromaticity of a feedstock and is calculated as follows:
BMCI = 87552/VAPB + 473.5 * (sp. gr.) - 456.8 (1)
where:
VAPB = Volume Average Boiling Point in degrees Rankine and
sp. gr. = specific gravity of the feedstock.
[06] As the BMCI decreases, ethylene yields are expected to increase. Therefore, highly paraffinic or low aromatic feeds are usually preferred for steam pyrolysis to obtain higher yields of desired olefins and to avoid higher undesirable products and coke formation in the reactor coil section.
[07] The absolute coke formation rates in a steam cracker have been reported by Cai et al., "Coke Formation in Steam Crackers for Ethylene Production," Chem. Eng. & Proc, vol. 41, (2002), 199 - 214. In general, the absolute coke formation rates are in the ascending order of olefins > aromatics > paraffins, wherein olefins represent heavy olefins. [08] To be able to respond to the growing demand of these petrochemicals, other type of feeds which can be made available in larger quantities, such as raw crude oil, are attractive to producers. Using crude oil feeds will minimize or eliminate the likelihood of the refinery being a bottleneck in the production of these petrochemicals.
[09] While the steam pyrolysis process is well developed and suitable for its intended purposes, the choice of feedstocks has been very limited.
SUMMARY OF THE INVENTION
[10] The system and process herein provides a steam pyrolysis zone integrated with a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics.
[11] The integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream.
[12] As used herein, the term "crude oil" is to be understood to include whole crude oil from conventional sources, crude oil that has undergone some pre-treatment. The term crude oil will also be understood to include that which has been subjected to water-oil separation; and/or gas- oil separation; and/or desalting; and/or stabilization.
[13] Other aspects, embodiments, and advantages of the process of the present invention are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description are merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed features and embodiments. The accompanying drawings are illustrative and are provided to further the understanding of the various aspects and embodiments of the process of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[14] The invention will be described in further detail below and with reference to the attached drawings where:
[15] FIG. 1 is a process flow diagram of an embodiment of an integrated process described herein; and
[16] FIGs. 2A-2C are schematic illustrations in perspective, top and side views of a vapor- liquid separation device used in certain embodiments of a steam pyrolysis unit in the integrated process described herein.
DETAILED DESCRIPTION OF THE INVENTION
[17] A flow diagram including an integrated solvent deasphalting and steam pyrolysis process and system is shown in FIG. 1. The integrated system includes a solvent deasphalting zone, a steam pyrolysis zone 30 and a product separation zone.
[18] Solvent deasphalting zone generally includes a primary settler 14, a secondary settler 17, a deasphalted/demetalized oil (DA/DMO) separation zone 20, and a separator zone 23.
[19] Primary settler 14 includes an inlet for receiving a combined stream 13 including a feed stream 1 and a solvent, which can be fresh solvent 29, recycle solvent 12, recycle solvent 24, or a combination comprising one or more of these solvent sources. Primary settler 14 also includes an outlet for discharging a primary DA/DMO phase 15 and several pipe outlets for discharging a primary asphalt phase 16. Secondary settler 17 includes two tee-type distributors located at both ends for receiving the primary DA/DMO phase 15, an outlet for discharging a secondary DA/DMO phase 19, and an outlet for discharging a secondary asphalt phase 18. DA/DMO separation zone 20 includes an inlet for receiving secondary DA/DMO phase 19, an outlet for discharging a solvent stream 12 and an outlet for discharging a solvent- free DA/DMO stream 21 for use as the steam pyrolysis zone feedstock. Separator vessel 23 includes an inlet for receiving primary asphalt phase 16, an outlet for discharging a solvent stream 24, and an outlet for discharging a bottom asphalt phase 25.
[20] Steam pyrolysis zone 30 generally comprises a convection section 32 and a pyrolysis section 34 that can operate based on steam pyrolysis unit operations known in the art, i.e., charging the thermal cracking feed to the convection section in the presence of steam. In addition, in certain optional embodiments as described herein (as indicated with dashed lines in FIG. 1), a vapor- liquid separation section 36 is included between sections 32 and 34. Vapor- liquid separation section 36, through which the heated steam cracking feed from the convection section 32 passes, can be a separation device based on physical or mechanical separation of vapors and liquids.
[21] In one embodiment, a vapor-liquid separation device is illustrated by, and with reference to FIGs. 2A-2C. A similar arrangement of a vapor-liquid separation device is also described in U.S. Patent Publication Number 2011/0247500 which is incorporated by reference in its entirety herein. In this device vapor and liquid flow through is cyclonic geometry whereby the device operates isothermally and at very low residence time . In general vapor is swirled in a circular pattern to create forces where heavier droplets and liquid are captured and channeled through to a liquid outlet as low-sulfur fuel oil 38, for instance, which is added to a pyrolysis fuel oil blend, and vapor is channeled through a vapor outlet as the charge 37 to the pyrolysis section 34. The vaporization temperature and fluid velocity are varied to adjust the approximate temperature cutoff point, for instance in certain embodiments compatible with the residue fuel oil blend, e.g.,about 540°C.
[22] A quenching zone 40 includes an inlet in fluid communication with the outlet of steam pyrolysis zone 30, an inlet for admitting a quenching solution 42, an outlet for discharging the quenched mixed product stream 44 and an outlet for discharging quenching solution 46.
[23] In general, an intermediate quenched mixed product stream 44 is converted into intermediate product stream 65 and hydrogen 62, which is purified in the present process and used as recycle hydrogen stream 2 in the hydroprocessing reaction zone 4. Intermediate product stream 65 is generally fractioned into end-products and residue in separation zone 70, which can one or multiple separation units such as plural fractionation towers including de-ethanizer, de- propanizer and de-butanizer towers, for example as is known to one of ordinary skill in the art. For example, suitable apparatus are described in "Ethylene," Ullmann's Encyclopedia of Industrial Chemistry, Volume 12, Pages 531 - 581, in particular Fig. 24, Fig 25 and Fig. 26, which is incorporated herein by reference.
[24] In general the product separation zone 70 includes an inlet in fluid communication with the product stream 65, and plural product outlets 73-78, including an outlet 78 for discharging methane, an outlet 77 for discharging ethylene, an outlet 76 for discharging propylene, an outlet 75 for discharging butadiene, an outlet 74 for discharging mixed butylenes, and an outlet 73 for discharging pyrolysis gasoline. Additionally an outlet is provided for discharging pyrolysis fuel oil 71. The bottom asphalt phase 25 from separator vessel 23 and optionally the rejected portion 38 from vapor-liquid separation section 36 are combined with pyrolysis fuel oil 71 and the mixed stream can be withdrawn as a pyrolysis fuel oil blend 72, e.g., a low sulfur fuel oil blend to be further processed in an off- site refinery. Note that while six product outlets are shown, fewer or more can be provided depending, for instance, on the arrangement of separation units employed and the yield and distribution requirements.
[25] In an embodiment of a process employing the arrangement shown in FIG. 1, a crude oil feedstock 1 is admixed with solvent from one or more of sources 29, 12 and 24. The resulting mixture 13 is then transferred to the primary settler 14. By mixing and settling, two phases are formed in the primary settler 14: a primary DA/DMO phase 15 and a primary asphalt phase 16. The temperature of the primary settler 14 is sufficiently low to recover all DA/DMO from the feedstock. For instance, for a system using n-butane a suitable temperature range is about 60°C to 150°C and a suitable pressure range is such that it is higher than the vapor pressure of n- butane at the operating temperature e.g. about 15 to 25 bars to maintain the solvent in liquid phase. In a system using n-pentane a suitable temperature range is about 60°C to about 180°C and again a suitable pressure range is such that it is higher than the vapor pressure of n-pentane at the operating temperature e.g. about 10 to 25 bars to maintain the solvent in liquid phase. The temperature in the second settler is usually higher than the one in the first settler.
[26] The primary DA/DMO phase 15 including a majority of solvent and DA/DMO with a minor amount of asphalt is discharged via the outlet located at the top of the primary settler 14 and collector pipes (not shown). The primary asphalt phase 16, which contains 40-50 % by volume of solvent, is discharged via several pipe outlets located at the bottom of the primary settler 14.
[27] The primary DA/DMO phase 15 enters into the two tee-type distributors at both ends of the secondary settler 17 which serves as the final stage for the extraction. A secondary asphalt phase 18 containing a small amount of solvent and DA/DMO is discharged from the secondary settler 17 and recycled back to the primary settler 14 to recover DA/DMO. A secondary DA/DMO phase 19 is obtained and passed to the DA/DMO separation zone 20 to obtain a solvent stream 12 and a solvent-free DA/DMO stream 21. Greater than 90 wt % of the solvent charged to the settlers enters the DA/DMO separation zone 20, which is dimensioned to permit a rapid and efficient flash separation of solvent from the DA/DMO. The primary asphalt phase 16 is conveyed to the separator vessel 23 for flash separation of a solvent stream 24 and a bottom asphalt phase 25. Solvent streams 12 and 24 can be used as solvent for the primary settler 14, therefore minimizing the fresh solvent 29 requirement.
[28] The solvents used in solvent deasphalting zone include pure liquid hydrocarbons such as propane, butanes and pentanes, as well as their mixtures. The selection of solvents depends on the requirement of DAO, as well as the quality and quantity of the final products. The operating conditions for the solvent deasphalting zone include a temperature at or below critical point of the solvent; a solvent-to-oil ratio in the range of from 2: 1 to 50: 1; and a pressure in a range effective to maintain the solvent/feed mixture in the settlers is in the liquid state.
[29] The essentially solvent- free DA/DMO stream 21 is optionally steam stripped (not shown) to remove any remaining solvent, and is the pyrolysis feedstream which is passed to the convection section 32 in the presence of an effective amount of steam, e.g., admitted via a steam inlet (not shown). In the convection section 32 the mixture is heated to a predetermined temperature, e.g., using one or more waste heat streams or other suitable heating arrangement. The heated mixture of the light fraction and steam is optionally passed to the vapor-liquid separation section 36 in which a portion 38 is rejected as a fuel oil component suitable for blending with pyrolysis fuel oil 71. The remaining hydrocarbon portion is conveyed to the pyrolysis section 34 to produce a thermally cracked mixed product stream 39.
[30] The steam pyrolysis zone 30 operates under parameters effective to DA/DMO stream 21 into the desired products, including ethylene, propylene, butadiene, mixed butenes and pyrolysis gasoline. In certain embodiments, steam cracking is carried out using the following conditions: a temperature in the range of from 400°C to 900°C in the convection section and in the pyrolysis section; a steam-to-hydrocarbon ratio in the convection section in the range of from 0.3: 1 to 2: 1; and a residence time in the convection section and in the pyrolysis section in the range of from 0.05 seconds to 2 seconds.
[31] In certain embodiments, the vapor-liquid separation section 36 includes one or a plurality of vapor liquid separation devices 80 as shown in FIGs. 2A-2C. The vapor liquid separation device 80 is economical to operate and maintenance free since it does not require power or chemical supplies. In general, device 80 comprises three ports including an inlet port for receiving a vapor-liquid mixture, a vapor outlet port and a liquid outlet port for discharging and the collection of the separated vapor and liquid, respectively. Device 80 operates based on a combination of phenomena including conversion of the linear velocity of the incoming mixture into a rotational velocity by the global flow pre-rotational section, a controlled centrifugal effect to pre-separate the vapor from liquid (residue), and a cyclonic effect to promote separation of vapor from the liquid (residue). To attain these effects, device 80 includes a pre-rotational section 88, a controlled cyclonic vertical section 90 and a liquid collector/settling section 92.
[32] As shown in FIG. 2B, the pre-rotational section 88 includes a controlled pre-rotational element between cross-section (SI) and cross-section (S2), and a connection element to the controlled cyclonic vertical section 90 and located between cross-section (S2) and cross-section (S3). The vapor liquid mixture coming from inlet 82 having a diameter (Dl) enters the apparatus tangentially at the cross-section (S I). The area of the entry section (S I) for the incoming flow is at least 10% of the area of the inlet 82 according to the following equation:
4 (l)
[33] The pre-rotational element 88 defines a curvilinear flow path, and is characterized by constant, decreasing or increasing cross-section from the inlet cross-section S I to the outlet cross-section S2. The ratio between outlet cross-section from controlled pre-rotational element (S2) and the inlet cross-section (SI) is in certain embodiments in the range of 0.7 < S2/S 1 < 1.4.
[34] The rotational velocity of the mixture is dependent on the radius of curvature (Rl) of the center-line of the pre-rotational element 38 where the center-line is defined as a curvilinear line joining all the center points of successive cross-sectional surfaces of the pre-rotational element 88. In certain embodiments the radius of curvature (Rl) is in the range of 2< R1/D1<6 with opening angle in the range of 150° < aRl < 250°.
[35] The cross- sectional shape at the inlet section S I, although depicted as generally square, can be a rectangle, a rounded rectangle, a circle, an oval, or other rectilinear, curvilinear or a combination of the aforementioned shapes. In certain embodiments, the shape of the cross- section along the curvilinear path of the pre-rotational element 38 through which the fluid passes progressively changes, for instance, from a generally square shape to a rectangular shape. The progressively changing cross-section of element 88 into a rectangular shape advantageously maximizes the opening area, thus allowing the gas to separate from the liquid mixture at an early stage and to attain a uniform velocity profile and minimize shear stresses in the fluid flow.
[36] The fluid flow from the controlled pre-rotational element 88 from cross-section (S2) passes section (S3) through the connection element to the controlled cyclonic vertical section 40. The connection element includes an opening region that is open and connected to, or integral with, an inlet in the controlled cyclonic vertical section 90. The fluid flow enters the controlled cyclonic vertical section 90 at a high rotational velocity to generate the cyclonic effect. The ratio between connection element outlet cross-section (S3) and inlet cross-section (S2) in certain embodiments is in the range of 2 <S 3/S1 < 5.
[37] The mixture at a high rotational velocity enters the cyclonic vertical section 90. Kinetic energy is decreased and the vapor separates from the liquid under the cyclonic effect. Cyclones form in the upper level 90a and the lower level 90b of the cyclonic vertical section 90. In the upper level 90a, the mixture is characterized by a high concentration of vapor, while in the lower level 90b the mixture is characterized by a high concentration of liquid.
[38] In certain embodiments, the internal diameter D2 of the cyclonic vertical section 90 is within the range of 2 < D2/D1< 5 and can be constant along its height, the length (LU) of the upper portion 90a is in the range of 1.2 <LU/D2 < 3, and the length (LL) of the lower portion 90b is in the range of 2 < LL/D2 < 5.
[39] The end of the cyclonic vertical section 90 proximate vapor outlet 34 is connected to a partially open release riser and connected to the pyrolysis section of the steam pyrolysis unit. The diameter (DV) of the partially open release is in certain embodiments in the range of 0.05 < DV/D2 < 0.4.
[40] Accordingly, in certain embodiments, and depending on the properties of the incoming mixture, a large volume fraction of the vapor therein exits device 80 from the outlet 84 through the partially open release pipe with a diameter DV. The liquid phase (e.g., residue) with a low or non-existent vapor concentration exits through a bottom portion of the cyclonic vertical section 90 having a cross-sectional area S4, and is collected in the liquid collector and settling pipe 92. [41] The connection area between the cyclonic vertical section 90 and the liquid collector and settling pipe 92 has an angle in certain embodiment of 90°. In certain embodiments the internal diameter of the liquid collector and settling pipe 92 is in the range of 2 < D3/D1 < 4 and is constant across the pipe length, and the length (LH) of the liquid collector and settling pipe 92 is in the range of 1.2 < LH/D3 <5. The liquid with low vapor volume fraction is removed from the apparatus through pipe 86 having a diameter of DL, which in certain embodiments is in the range of 0.05 <DL/D3 < 0.4 and located at the bottom or proximate the bottom of the settling pipe
[42] While the various members are described separately and with separate portions, it will be understood by one of ordinary skill in the art that apparatus 80 can be formed as a monolithic structure, e.g., it can be cast or molded, or it can be assembled from separate parts, e.g., by welding or otherwise attaching separate components together which may or may not correspond precisely to the members and portions described herein.
[43] It will be appreciated that although various dimensions are set forth as diameters, these values can also be equivalent effective diameters in embodiments in which the components parts are not cylindrical.
[44] Mixed product stream 39 is passed to the inlet of quenching zone 40 with a quenching solution 42 (e.g., water and/or pyrolysis fuel oil) introduced via a separate inlet to produce a quenched mixed product stream 44 having a reduced temperature, e.g., of about 300°C, and spent quenching solution 46 is discharged.
[45] The gas mixture effluent 39 from the cracker is typically a mixture of hydrogen, methane, hydrocarbons, carbon dioxide and hydrogen sulfide. After cooling with water or oil quench, mixture 44 is compressed in a multi-stage compressor zone 51, typically in 4-6 stages to produce a compressed gas mixture 52. The compressed gas mixture 52 is treated in a caustic treatment unit 53 to produce a gas mixture 54 depleted of hydrogen sulfide and carbon dioxide. The gas mixture 54 is further compressed in a compressor zone 55, and the resulting cracked gas 56 typically undergoes a cryogenic treatment in unit 57 to be dehydrated, and is further dried by use of molecular sieves.
[46] The cold cracked gas stream 58 from unit 57 is passed to a de-methanizer tower 59, from which an overhead stream 60 is produced containing hydrogen and methane from the cracked gas stream. The bottoms stream 65 from de-methanizer tower 59 is then sent for further processing in product separation zone 70, comprising fractionation towers including de- ethanizer, de-propanizer and de-butanizer towers. Process configurations with a different sequence of de-methanizer, de-ethanizer, de-propanizer and de-butanizer can also be employed.
[47] According to the processes herein, after separation from methane at the de-methanizer tower 59 and hydrogen recovery in unit 61, hydrogen 62 having a purity of typically 80-95 vol is obtained, which can be further purified as needed or combined with other off gases in the refinery. In addition, a portion of hydrogen from stream 62 can be utilized for the hydrogenation reactions of acetylene, methylacetylene and propadienes (not shown). In addition, according to the processes herein, methane stream 63 can optionally be recycled to the steam cracker to be used as fuel for burners and/or heaters.
[48] The bottoms stream 65 from de-methanizer tower 59 is conveyed to the inlet of product separation zone 70 to be separated into product streams methane, ethylene, propylene, butadiene, mixed butylenes and pyrolysis gasoline discharged via outlets 78, 77, 76, 75, 74 and 73, respectively. Pyrolysis gasoline generally includes C5-C9 hydrocarbons, and benzene, toluene and xylenes can be extracted from this cut. Optionally one or both of the bottom asphalt phase 25 and the unvaporized heavy liquid fraction 38 from the vapor-liquid separation section 36 are combined with pyrolysis fuel oil 71 (e.g., materials boiling at a temperature higher than the boiling point of the lowest boiling CIO compound, known as a "C10+" stream) and the mixed stream can be withdrawn as a pyrolysis fuel oil blend 16, e.g., to be further processed in an off- site refinery (not shown). In certain embodiments, the bottom asphalt phase 25 can be sent to an asphalt stripper (not shown) where any remaining solvent is stripped-off, e.g., by steam.
[49] Solvent deasphalting is a unique separation process in which residue is separated by molecular weight (density), instead of by boiling point, as in the vacuum distillation process. The solvent deasphalting process thus produces a low-contaminant deasphalted oil (DAO) rich in paraffinic type molecules, consequently decreases the BMCI as compared to the initial feedstock or a hydroprocessed feedstock.
[50] Solvent deasphalting is usually carried out with paraffin streams having carbon number ranging from 3-7, in certain embodiments ranging from 4-5, and below the critical conditions of the solvent. Table 1 lists the properties of commonly used solvents in solvent deasphalting.
Figure imgf000016_0001
[51] The feed is mixed with a light paraffinic solvent with carbon numbers ranging 3-7, where the deasphalted oil is solubilized in the solvent. The insoluble pitch will precipitate out of the mixed solution and is separated from the DAO phase (solvent-DAO mixture) in the extractor. [52] Solvent deasphalting is carried-out in liquid phase and therefore the temperature and pressure are set accordingly. There are two stages for phase separation in solvent deasphalting. In the first separation stage, the temperature is maintained lower than that of the second stage to separate the bulk of the asphaltenes. The second stage temperature is maintained to control the deasphalted / demetalized oil (DA/DMO) quality and quantity. The temperature has big impact on the quality and quantity of DA/DMO. An extraction temperature increase will result in a decrease in deasphalted / demetalized oil yield, which means that the DA/DMO will be lighter, less viscous, and contain less metals, asphaltenes, sulfur, and nitrogen. A temperature decrease will have the opposite effects. In general, the DA/DMO yield decreases having higher quality by raising extraction system temperature and increases having lower quality by lowering extraction system temperature.
[53] The composition of the solvent is an important process variable. The solubility of the solvent increases with increasing critical temperature, generally according to C3<iC4<nC4<iC5. An increase in critical temperature of the solvent increases the DA/DMO yield. However, it should be noted that the solvent having the lower critical temperature has less selectivity resulting in lower DA/DMO quality.
[54] The volumetric ratio of the solvent to the solvent deasphalting unit charge impacts selectivity and to a lesser degree on the DA/DMO yield. Higher solvent-to-oil ratios result in a higher quality of the DA/DMO for a fixed DA/DMO yield. Higher solvent-to-oil ratio is desirable due to better selectivity, but can result in increased operating costs thereby the solvent- to-oil ratio is often limited to a narrow range. The composition of the solvent will also help to establish the required solvent to oil ratios. The required solvent to oil ratio decreases as the critical solvent temperature increases. The solvent to oil ratio is, therefore, a function of desired selectivity, operation costs and solvent composition.
[55] The method and system herein provides improvements over known steam pyrolysis cracking processes:
use of crude oil as a feedstock to produce petrochemicals such as olefins and aromatics; the hydrogen content of the feed to the steam pyrolysis zone is enriched for high yield of olefins;
in certain embodiments coke precursors are significantly removed from the initial whole crude oil which allows a decreased coke formation in the radiant coil; and
in certain embodiments additional impurities such as metals, sulfur and nitrogen compounds are also significantly removed from the starting feed which avoids post treatments of the final products.
[56] The method and system of the present invention have been described above and in the attached drawings; however, modifications will be apparent to those of ordinary skill in the art and the scope of protection for the invention is to be defined by the claims that follow.

Claims

Claims:
1. An integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals, the process comprising:
a. charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase;
b. thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream;
c. separating the thermally cracked mixed product stream;
d. recovering olefins and aromatics from the separated mixed product stream; and e. recovering pyrolysis fuel oil from the separated mixed product stream.
2. The integrated process of claim 1, wherein step (c) comprises
compressing the thermally cracked mixed product stream with plural compression stages;
subjecting the compressed thermally cracked mixed product stream to caustic treatment to produce a thermally cracked mixed product stream with a reduced content of hydrogen sulfide and carbon dioxide;
compressing the thermally cracked mixed product stream with a reduced content of hydrogen sulfide and carbon dioxide;
dehydrating the compressed thermally cracked mixed product stream with a reduced content of hydrogen sulfide and carbon dioxide;
recovering hydrogen from the dehydrated compressed thermally cracked mixed product stream with a reduced content of hydrogen sulfide and carbon dioxide; and obtaining olefins and aromatics as in step (d) and pyrolysis fuel oil as in step (e) from the remainder of the dehydrated compressed thermally cracked mixed product stream with a reduced content of hydrogen sulfide and carbon dioxide.
3. The integrated process of claim 2, further comprising separately recovering methane from the dehydrated compressed thermally cracked mixed product stream with a reduced content of hydrogen sulfide and carbon dioxide for use as fuel for burners and/or heaters in the thermal cracking step.
4. The integrated process of claim 1 wherein the thermal cracking step comprises heating hydroprocessed effluent in a convection section of a steam pyrolysis zone, separating the heated hydroprocessed effluent into a vapor fraction and a liquid fraction, passing the vapor fraction to a pyrolysis section of a steam pyrolysis zone, and discharging the liquid fraction.
5. The integrated process of claim 4 wherein the discharged liquid fraction is blended with pyrolysis fuel oil recovered in step (e).
6. The integrated process of claim 4 wherein separating the heated hydroprocessed effluent into a vapor fraction and a liquid fraction is with a vapor-liquid separation device based on physical and mechanical separation.
7. The integrated process of claim 6 wherein the vapor- liquid separation device includes a pre-rotational element having an entry portion and a transition portion, the entry portion having an inlet for receiving the flowing fluid mixture and a curvilinear conduit, a controlled cyclonic section having
an inlet adjoined to the pre-rotational element through convergence of the curvilinear conduit and the cyclonic section,
a riser section at an upper end of the cyclonic member through which vapors pass;
and
a liquid collector/settling section through which liquid passes.
8. The integrated process of claim 1, wherein step (a) comprises
mixing the crude oil feedstock with make-up solvent and optionally fresh solvent;
transferring the mixture to a primary settler in which a primary deasphalted and demetalized oil phase and a primary asphalt phase are formed;
transferring the primary deasphalted and demetalized oil phase to a secondary settler in which a secondary deasphalted and demetalized oil phase and a secondary asphalt phase are formed;
recycling the secondary asphalt phaseto the primary settler to recover additional deasphalted and demetalized oil;
conveying the secondary deasphalted and demetalized oil phase to a deasphalted and demetalized oil separation zone to obtain a recycle solvent stream and a substantially solvent- free deasphalted and demetalized oil stream; conveyting the primary asphalt phase is conveyed to a separator vessel for flash separation of an additional recycle solvent stream and a bottom asphalt phase,
wherein the substantially solvent-free deasphalted and demetalized oil stream is the feed to the steam pyrolysis zone.
9. The integrated process as in claim 8, wherein the bottom asphalt phase is blended with pyrolysis fuel oil recovered in step (e).
PCT/US2013/023333 2012-01-27 2013-01-27 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil WO2013112966A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13705296.5A EP2807234B1 (en) 2012-01-27 2013-01-27 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
CN201380006608.9A CN104093820B (en) 2012-01-27 2013-01-27 Solvent deasphalting and steam pyrolysis method for the directly integration of processing crude oil
KR1020147024069A KR102136853B1 (en) 2012-01-27 2013-01-27 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
JP2014554901A JP6133902B2 (en) 2012-01-27 2013-01-27 Integrated solvent history and steam pyrolysis process for direct processing of crude oil
SG11201404383XA SG11201404383XA (en) 2012-01-27 2013-01-27 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
US13/865,041 US9284497B2 (en) 2012-01-27 2013-04-17 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
US15/069,144 US20160194564A1 (en) 2012-01-27 2016-03-14 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
US15/928,672 US10221365B2 (en) 2012-01-27 2018-03-22 Integrated solvent deasphalting and steam pyrolysis system for direct processing of a crude oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261591783P 2012-01-27 2012-01-27
US61/591,783 2012-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/865,041 Continuation-In-Part US9284497B2 (en) 2012-01-27 2013-04-17 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil

Publications (1)

Publication Number Publication Date
WO2013112966A1 true WO2013112966A1 (en) 2013-08-01

Family

ID=47741262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/023333 WO2013112966A1 (en) 2012-01-27 2013-01-27 Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil

Country Status (7)

Country Link
US (1) US20130197289A1 (en)
EP (1) EP2807234B1 (en)
JP (1) JP6133902B2 (en)
KR (1) KR102136853B1 (en)
CN (1) CN104093820B (en)
SG (1) SG11201404383XA (en)
WO (1) WO2013112966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746334B2 (en) 2018-11-21 2023-09-05 Mayo Foundation For Medical Education And Research Adenoviruses and methods for using adenoviruses

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102374848B1 (en) 2014-02-25 2022-03-16 사우디 베이식 인더스트리즈 코포레이션 Process for producing btx from a mixed hydrocarbon source using pyrolysis
US10125318B2 (en) 2016-04-26 2018-11-13 Saudi Arabian Oil Company Process for producing high quality coke in delayed coker utilizing mixed solvent deasphalting
US10233394B2 (en) 2016-04-26 2019-03-19 Saudi Arabian Oil Company Integrated multi-stage solvent deasphalting and delayed coking process to produce high quality coke
ES2904318T3 (en) * 2017-02-02 2022-04-04 Sabic Global Technologies Bv Integrated hydrotreating and steam pyrolysis process for the direct processing of crude oil to produce olefinic and aromatic petrochemicals
US11248174B2 (en) * 2019-12-27 2022-02-15 Saudi Arabian Oil Company Process to remove asphaltene from heavy oil by solvent
US11279891B2 (en) 2020-03-05 2022-03-22 Saudi Arabian Oil Company Systems and processes for direct crude oil upgrading to hydrogen and chemicals

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2729589A (en) * 1952-06-12 1956-01-03 Exxon Research Engineering Co Deasphalting with propane and butane
US4115467A (en) * 1975-08-14 1978-09-19 Davy Powergas Limited Hydrocarbon conversion process
US4217204A (en) 1977-08-12 1980-08-12 Mitsui Engineering And Shipbuilding Co., Ltd. Process for cracking hydrocarbons utilizing a mist of molten salt in the reaction zone
US5192421A (en) * 1991-04-16 1993-03-09 Mobil Oil Corporation Integrated process for whole crude deasphalting and asphaltene upgrading
US6303842B1 (en) * 1997-10-15 2001-10-16 Equistar Chemicals, Lp Method of producing olefins from petroleum residua
US20070090018A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing
US20070232846A1 (en) * 2006-03-29 2007-10-04 Arthur James Baumgartner Process for producing lower olefins
US20110247500A1 (en) 2010-04-12 2011-10-13 Akhras Abdul Rahman Zafer Apparatus for separation of gas-liquid mixtures and promoting coalescence of liquids
US8070938B2 (en) * 2006-12-11 2011-12-06 Shell Oil Company Apparatus and method for superheated vapor contacting and vaporization of feedstocks containing high boiling point and unvaporizable foulants in an olefins furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898387A (en) * 1981-12-09 1983-06-11 Asahi Chem Ind Co Ltd Preparation of gaseous olefin and monocyclic aromatic hydrocarbon
JPS60163996A (en) * 1984-02-03 1985-08-26 Mitsubishi Heavy Ind Ltd Thermal cracking of heavy hydrocarbon
JPH07286183A (en) * 1994-03-22 1995-10-31 Shell Internatl Res Maatschappij Bv Method for conversion of hydrocarbon bottom oil
NO321638B1 (en) * 2003-05-08 2006-06-12 Aibel As Inlet device and a method for controlling the introduction of a fluid into a separator
US7128827B2 (en) * 2004-01-14 2006-10-31 Kellogg Brown & Root Llc Integrated catalytic cracking and steam pyrolysis process for olefins
CN101292013B (en) * 2005-10-20 2012-10-24 埃克森美孚化学专利公司 Hydrocarbon resid processing and visbreaking steam cracker feed
CN101045884B (en) * 2006-03-31 2010-05-12 中国石油化工股份有限公司 Process of producing clean diesel oil and low carbon olefin with residual oil and heavy fraction oil
CN102051221B (en) * 2009-10-30 2013-12-25 中国石油化工股份有限公司 Method for more producing light oil by using hydrocarbon oil
EP2336272A1 (en) * 2009-12-15 2011-06-22 Total Petrochemicals Research Feluy Debottlenecking of a steam cracker unit to enhance propylene production.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2729589A (en) * 1952-06-12 1956-01-03 Exxon Research Engineering Co Deasphalting with propane and butane
US4115467A (en) * 1975-08-14 1978-09-19 Davy Powergas Limited Hydrocarbon conversion process
US4217204A (en) 1977-08-12 1980-08-12 Mitsui Engineering And Shipbuilding Co., Ltd. Process for cracking hydrocarbons utilizing a mist of molten salt in the reaction zone
US5192421A (en) * 1991-04-16 1993-03-09 Mobil Oil Corporation Integrated process for whole crude deasphalting and asphaltene upgrading
US6303842B1 (en) * 1997-10-15 2001-10-16 Equistar Chemicals, Lp Method of producing olefins from petroleum residua
US20070090018A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing
US20070232846A1 (en) * 2006-03-29 2007-10-04 Arthur James Baumgartner Process for producing lower olefins
US8070938B2 (en) * 2006-12-11 2011-12-06 Shell Oil Company Apparatus and method for superheated vapor contacting and vaporization of feedstocks containing high boiling point and unvaporizable foulants in an olefins furnace
US20110247500A1 (en) 2010-04-12 2011-10-13 Akhras Abdul Rahman Zafer Apparatus for separation of gas-liquid mixtures and promoting coalescence of liquids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Ethylene", ULLMANN'S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY, vol. 12, pages 531 - 581
CAI ET AL.: "Coke Formation in Steam Crackers for Ethylene Production", CHEM. ENG. & PROC., vol. 41, 2002, pages 199 - 214

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746334B2 (en) 2018-11-21 2023-09-05 Mayo Foundation For Medical Education And Research Adenoviruses and methods for using adenoviruses

Also Published As

Publication number Publication date
EP2807234B1 (en) 2021-03-17
JP6133902B2 (en) 2017-05-24
EP2807234A1 (en) 2014-12-03
CN104093820B (en) 2017-08-01
JP2015508830A (en) 2015-03-23
KR20140138143A (en) 2014-12-03
CN104093820A (en) 2014-10-08
US20130197289A1 (en) 2013-08-01
SG11201404383XA (en) 2014-10-30
KR102136853B1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
US10221365B2 (en) Integrated solvent deasphalting and steam pyrolysis system for direct processing of a crude oil
US10011788B2 (en) Integrated slurry hydroprocessing and steam pyrolysis of crude oil to produce petrochemicals
US10246651B2 (en) Integrated solvent deasphalting, hydrotreating and steam pyrolysis system for direct processing of a crude oil
US10233400B2 (en) Integrated hydrotreating, solvent deasphalting and steam pyrolysis system for direct processing of a crude oil
EP2807234B1 (en) Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
EP2807232B1 (en) Integrated hydrotreating, solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
EP2807233B1 (en) Integrated solvent deasphalting, hydrotreating and steam pyrolysis process for direct processing of a crude oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13705296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024069

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013705296

Country of ref document: EP