WO2013111840A1 - Coating liquid for forming diffusion prevention layer, method for producing semiconductor substrate with dopant diffusion layer using same, and method for manufacturing solar cell - Google Patents

Coating liquid for forming diffusion prevention layer, method for producing semiconductor substrate with dopant diffusion layer using same, and method for manufacturing solar cell Download PDF

Info

Publication number
WO2013111840A1
WO2013111840A1 PCT/JP2013/051529 JP2013051529W WO2013111840A1 WO 2013111840 A1 WO2013111840 A1 WO 2013111840A1 JP 2013051529 W JP2013051529 W JP 2013051529W WO 2013111840 A1 WO2013111840 A1 WO 2013111840A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion
layer
forming
semiconductor substrate
dopant
Prior art date
Application number
PCT/JP2013/051529
Other languages
French (fr)
Japanese (ja)
Inventor
勝間 勝彦
佐藤 弘章
加藤 邦泰
由佳 堤
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Publication of WO2013111840A1 publication Critical patent/WO2013111840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a coating solution for forming an anti-diffusion layer that is applied to the surface of a semiconductor substrate to prevent dopant diffusion, a method for producing a semiconductor substrate with a dopant diffusion layer using the same, and a method for producing a solar cell. .
  • a pn junction solar cell has a structure in which a p-type semiconductor and an n-type semiconductor are joined. Then, photoelectrons are generated by the light striking the joint surface (internal photoelectric effect), and the photoelectrons move in a certain direction due to the rectifying action of the semiconductor. ) Can be obtained.
  • a dopant such as phosphorus or boron is diffused on one surface of the semiconductor substrate, and a p-type or n-type semiconductor is used depending on the type of the dopant.
  • a method for forming a layer is widely used.
  • a diffusion prevention layer is formed on the semiconductor substrate surface in advance, and after the diffusion of the dopant A technique of removing the diffusion preventing layer has been studied.
  • the diffusion prevention layer can be formed by printing an organic solvent-based solution containing metal oxide fine particles such as titanium oxide and aluminum oxide by screen printing or the like, or by spin coating or the like. (See Patent Documents 1 and 2).
  • the organic solvent-based anti-diffusion layer forming solution as described above has insufficient dispersibility of the metal oxide fine particles, so that the anti-diffusion layer formed thereby has poor uniformity of anti-diffusion performance.
  • the coating by spin coating is difficult to form a coating having a uniform thickness when performed over a wide range, the solution for forming a diffusion preventing layer having poor uniformity of the diffusion preventing performance as described above is applied to this coating method. It is unsuitable.
  • the present invention has been made in view of such circumstances, a coating liquid for forming an anti-diffusion layer having high uniformity of anti-diffusion performance and excellent coating film formation by screen printing, etc., and a dopant using the same
  • the object is to provide a method for producing a semiconductor substrate with a diffusion layer and a method for producing a solar cell.
  • the present invention provides a coating solution for forming a diffusion prevention layer for preventing diffusion of a dopant by coating on the surface of a semiconductor substrate, comprising the following components (A) and (B):
  • the coating liquid for forming the diffusion preventing layer is a first gist.
  • A Polyvinyl alcohol resin.
  • B Metal oxide fine particles.
  • the present invention also includes a step of coating the part of the surface of the semiconductor substrate with the coating liquid for forming the diffusion prevention layer according to the first aspect to form a diffusion prevention layer, and the surface of the semiconductor substrate with the diffusion prevention layer.
  • the manufacturing method of the semiconductor substrate with a dopant diffusion layer provided is a second gist.
  • the diffusion-preventing layer-forming coating solution according to the first aspect is applied so as to cover the application surface, and diffusion is performed.
  • a step of forming a prevention layer, a heat treatment, a step of diffusing the dopant in the applied dopant diffusion solution into the surface layer portion of the semiconductor substrate to form a dopant diffusion layer, and formation of the dopant diffusion layer A method for producing a semiconductor substrate with a dopant diffusion layer, comprising a step of removing a diffusion preventing layer from the semiconductor substrate thus formed, is a third gist.
  • this invention is a manufacturing method of the solar cell provided with the semiconductor substrate with a dopant diffusion layer, Comprising: The manufacturing method of the solar cell which forms the said semiconductor substrate with a dopant diffusion layer by the manufacturing method of the said 2nd or 3rd summary. This is the fourth gist.
  • the present inventors have conducted intensive research to solve the above problems.
  • the present inventors recalled a coating solution containing a polyvinyl alcohol resin (A component) together with metal oxide fine particles (B component) as a solution for forming a diffusion prevention layer.
  • a component polyvinyl alcohol resin
  • B component metal oxide fine particles
  • the presence of the polyvinyl alcohol resin in the coating liquid has led to excellent dispersibility of the metal oxide fine particles, and thus the uniformity of the anti-diffusion performance is increased, and the intended purpose can be achieved.
  • the present invention has been reached.
  • the diffusion-preventing layer forming coating solution of the present invention contains a polyvinyl alcohol resin (component A) and metal oxide fine particles (component B). Therefore, the uniformity of the anti-diffusion performance is high, and the coating film formability by screen printing or the like is excellent. Further, the diffusion preventing layer made of the coating solution can be easily removed by washing with hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • a step of forming a diffusion prevention layer by applying a coating solution for forming a diffusion prevention layer on a part of the surface of the semiconductor substrate, and a diffusion of a dopant on the surface of the semiconductor substrate with the diffusion prevention layer, the diffusion prevention layer A method for producing a semiconductor substrate with a dopant diffusion layer, comprising: a step of forming a surface layer portion of a semiconductor substrate in which no dopant is formed as a dopant diffusion layer; and a step of removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed.
  • the coating solution for forming a diffusion preventing layer of the present invention containing a polyvinyl alcohol resin (component A) and fine metal oxide particles (component B) is used as the coating solution for forming the diffusion preventing layer, the portion other than the desired portion
  • the dopant diffusion layer can be effectively formed on the semiconductor substrate while preventing the diffusion of the dopant into the semiconductor substrate.
  • a diffusion prevention layer forming coating solution so as to cover the coating surface, forming a diffusion prevention layer, and heat treatment.
  • a process for producing a semiconductor substrate with a dopant diffusion layer comprising: a polyvinyl alcohol-based resin (component A) and metal oxide fine particles (component B) as the diffusion-preventing layer forming coating solution.
  • Using a diffusion barrier layer forming coating solution effectively forms a dopant diffusion layer on a semiconductor substrate while preventing diffusion of the dopant to other than the desired location. It can be.
  • the solar cell can be efficiently manufactured.
  • the coating solution for forming the diffusion preventing layer of the present invention contains a polyvinyl alcohol resin (hereinafter abbreviated as “PVA resin”) (A component) and metal oxide fine particles (B component). Moreover, as the solvent, water is mainly used and alcohol is used together as needed. Thus, since the coating liquid for forming the diffusion preventing layer of the present invention is water-based, it is different from conventional organic solvent-based coating solutions. Hereinafter, each of these materials will be described.
  • PVA resin polyvinyl alcohol resin
  • B component metal oxide fine particles
  • the PVA resin used in the coating solution for forming the diffusion prevention layer of the present invention has a saponification degree (measured in accordance with JIS K 6726) of usually 60 to 100 mol%, preferably 70 to 99.9. Those having a mol%, more preferably 80 to 99.9 mol%, particularly preferably 90 to 99.9 mol%, still more preferably 97 to 99.8 mol% are used. That is, if the degree of saponification is too low, the solubility of the PVA-based resin in water decreases, and it may be difficult to obtain a uniform coating solution.
  • the average polymerization degree (measured in accordance with JIS K 6726) of the PVA resin is usually 100 to 8000, preferably 100 to 4000, more preferably 200 to 2000, and still more preferably 250. Those of ⁇ 1500 are used. That is, if the average degree of polymerization is too small, the coating solution becomes low in viscosity, so that the coating film becomes a thin film, and the dispersibility of the metal oxide fine particles is insufficient, so that sufficient diffusion preventing performance can be obtained. This is because, on the contrary, when the average degree of polymerization is too large, the coatability tends to be lowered.
  • the PVA resin used for the coating solution for forming the diffusion preventing layer may be unmodified polyvinyl alcohol or various known modified polyvinyl alcohols. These may be used alone or in combination of two or more.
  • R 1 to R 3 and R 4 to R 6 in the general formula are all hydrogen.
  • R 1 to R 3 and R 4 to R 6 may be organic groups as long as they do not significantly impair the resin characteristics.
  • the organic group include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
  • the said organic group may have functional groups, such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, and a sulfonic acid group, as needed.
  • X in the 1,2-diol structural unit represented by the general formula (1) is most preferably a single bond in terms of thermal stability and stability under high temperature and acidic conditions. preferable. However, a binding chain may be used as long as the effect of the present invention is not impaired.
  • linking chain examples include hydrocarbons such as alkylene, alkenylene, alkynylene, phenylene and naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine and bromine), -O-, — (CH 2 O) m —, — (OCH 2 ) m —, — (CH 2 O) m CH 2 —, —CO—, —COCO—, —CO (CH 2 ) m CO—, —CO (C 6 H 4 ) CO—, —S—, —CS—, —SO—, —SO 2 —, —NR—, —CONR—, —NRCO—, —CSNR—, —NRCS—, —NRNR—, —HPO 4 -, - Si (OR) 2 -, - OSi (OR) 2 -, - OSi (OR) 2 O -, - Ti (OR) 2 -, - OT
  • an alkylene group having 6 or less carbon atoms, particularly a methylene group, or —CH 2 OCH 2 — is preferable from the viewpoint of stability during production or use.
  • the production method of the PVA resin used in the coating solution for forming the diffusion preventing layer of the present invention is not particularly limited.
  • a co-polymer of a vinyl ester monomer and a compound represented by the following general formula (2) A method of saponifying a polymer, (ii) a method of saponifying and decarboxylating a copolymer of a vinyl ester monomer and a compound represented by the following general formula (3), and (iii) a vinyl ester monomer
  • a method of saponifying and deketalizing a copolymer with a compound represented by the following general formula (4) is preferably used.
  • R 1 to R 6 and X are all the same as those in the general formula (1).
  • R 7 and R 8 are each independently a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group having 1 to 4 carbon atoms).
  • R 10 and R 11 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the general formula (2) is 3, from the viewpoint of excellent copolymerization reactivity and industrial handleability.
  • 4-diasiloxy-1-butene is preferably used, and 3,4-diacetoxy-1-butene is particularly preferably used.
  • each of the copolymerized copolymer with 3,4-diacetoxy-1-butene is used.
  • 3,4-diacetoxy-1-butene is a by-product generated during saponification of the copolymer, and is a by-product generated during the saponification from a structural unit derived from vinyl acetate that is frequently used as a vinyl ester monomer. Is the same as Therefore, it is not necessary to provide a special apparatus or process for the post-treatment or solvent recovery system, and it is an industrially significant advantage that conventional equipment can be used.
  • 3,4-diacetoxy-1-butene can be synthesized, for example, by an epoxy butene derivative described in WO 00/24702, USP 5,623,086, USP 6,072,079, 1,4-diacetoxy-1-butene, which is an intermediate product in the diol production process, can be produced by isomerization using a metal catalyst such as palladium chloride. At the reagent level, Across products can be obtained from the market.
  • the PVA resin obtained by the method (ii) or (iii) is insufficiently decarboxylated or deacetalized, a carbonate ring or an acetal ring remains in the side chain.
  • the PVA resin obtained by the method (i) is preferably used in the present invention.
  • vinyl ester monomers used in the methods (i) to (iii) include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, and vinyl caprate. Vinyl laurate, vinyl stearate, vinyl benzoate, vinyl versatate, etc., and vinyl acetate is preferably used economically.
  • copolymer component examples include ⁇ -olefins such as ethylene and propylene; hydroxy group-containing ⁇ such as 3-buten-1-ol, 4-penten-1-ol, and 5-hexene-1,2-diol.
  • -Derivatives such as olefins and acylated products and esterified products thereof; unsaturated acids such as itaconic acid, maleic acid and acrylic acid, or salts or mono- or dialkyl esters thereof; nitriles such as acrylonitrile, methacrylamide, diacetone acrylamide, etc.
  • AMPS acrylamido-2-methylpropane sulfonic acid
  • the content of 1,2-diol structural units contained in the PVA resin in the coating solution for forming the diffusion preventing layer of the present invention is preferably 0.5 to 30 mol%, more preferably 1 to 20 It is in the range of mol%, more preferably 3 to 15 mol%. That is, if the content is too low, the effect of using a PVA resin into which a 1,2-diol structural unit is introduced tends to be too low. On the other hand, if the content is too high, the drying property is lowered and the productivity is lowered. Because there is a tendency to.
  • the content of the 1,2-diol structural unit in the PVA resin was determined by 1 H-NMR spectrum (solvent: DMSO-d6, internal standard substance: tetramethylsilane) of a completely saponified PVA resin. Specifically, from the peak area derived from the hydroxyl proton, methine proton, and methylene proton in the 1,2-diol unit, methylene proton in the main chain, hydroxyl proton linked to the main chain, etc. What is necessary is just to calculate.
  • the content of the PVA resin in the coating solution for forming the diffusion preventing layer of the present invention is usually 1 to 40% by weight, preferably 5 to 30% by weight, more preferably 10 to 25% by weight. That is, if the content of the PVA-based resin is too small, the viscosity of the coating liquid tends to be low, and the coating film tends to be difficult to be formed stably. Conversely, if the content is too large, the viscosity of the coating liquid increases. For this reason, the coating workability is likely to be lowered, and further, when screen printing is performed, the screen mesh tends to be clogged.
  • metal oxide fine particles In the coating liquid for forming the diffusion preventing layer of the present invention, metal oxide fine particles are blended together with the PVA resin.
  • the metal oxide species of the fine particles is at least one selected from Group 4 metal oxides, Group 5 metal oxides, and Group 13 metal oxides of the Periodic Table. Specifically, periodic table group 4 metal oxides such as titanium oxide and zirconium oxide, periodic table group 5 metal oxides such as vanadium oxide, niobium oxide, and tantalum oxide, and periodic periods such as aluminum oxide and gallium oxide. Table 13 Group 13 metal oxides. These may be used alone or in combination of two or more.
  • metal oxides of Group 4 and Group 13 of the periodic table are preferable, and aluminum oxide and titanium oxide are particularly preferable.
  • metal oxide fine particles that are amphoteric oxides are preferred, and fine particles made of aluminum oxide are more preferred.
  • the metal oxide fine particles have an average primary particle size of usually 1 to 500 nm, preferably 3 to 200 nm, particularly preferably 3 to 50 nm, and particularly preferably 3 to 20 nm.
  • the average primary particle size is a value calculated from the BET specific surface area of the metal oxide fine particles.
  • a plurality of metal oxide fine particles having different average primary particle sizes can be used.
  • the average primary particle size is relatively small (for example, the average primary particle size is 1 to 50 nm, preferably 1 to 20 nm), and the average primary particle size is relatively large (for example, the average primary particle size is more than 50 to 500 nm, preferably Are used at the same time, it is possible to reduce the gaps between the metal oxide fine particles in the coating film after coating the coating solution, thereby improving the uniformity of the coated surface.
  • the content of the metal oxide fine particles in the coating solution for forming the diffusion preventing layer of the present invention is usually 0 in terms of the total amount of metal oxide fine particles, even when a plurality of fine particles having different average primary particle sizes are contained. 0.1 to 40% by weight, preferably 0.5 to 35% by weight, more preferably 0.8 to 30% by weight, still more preferably 5 to 30% by weight, and particularly preferably 10 to 30% by weight. is there.
  • the content of the metal oxide fine particles with respect to 100 parts by weight of the PVA resin is usually 0.05 to 200 parts by weight, preferably 10 to 180 parts by weight, more preferably 30 to 150 parts by weight, particularly preferably. Is in the range of 50 to 120 parts by weight.
  • the content of the metal oxide fine particles is too small, the desired anti-diffusion performance cannot be obtained. Conversely, if the content of the metal oxide fine particles is too large, the coating property and the like are hindered. This is because it comes to come.
  • water is used as the solvent.
  • water used for the said coating liquid for diffusion prevention layer formation what has few impurities, such as an alkali metal and a heavy metal, and a foreign material is preferable, Usually, total organic carbon (henceforth TOC) may be 50 ppb or less, Preferably, it is 10 ppb or less, and the electrical resistivity is usually 16 M ⁇ ⁇ cm or more, preferably 17 M ⁇ ⁇ cm or more, more preferably 18 M ⁇ ⁇ cm or more. Ultrapure water is most preferable, but ion-exchanged water or distilled water can also be used.
  • the water content in the coating solution for forming the diffusion preventing layer of the present invention is usually 10 to 80% by weight, preferably 15 to 75% by weight, more preferably 20 to 70% by weight, and particularly preferably 20 to 50% by weight. % Range. That is, if the water content is too small, the viscosity of the coating solution becomes too high, the coating workability tends to be lowered, and further, when screen printing is performed, the screen mesh tends to be clogged. This is because, if the amount is too large, the viscosity becomes too low to form a coating film stably.
  • the diffusion-preventing layer forming coating liquid of the present invention contains a PVA-based resin, metal oxide fine particles, and water as a solvent.
  • PVA-based resin a polyvinyl alcohol
  • metal oxide fine particles metal oxide fine particles
  • water a solvent
  • other materials such as known general alcohols, surfactants, inorganic fine particles and the like can be further blended.
  • the storage stability and flow stability of the coating solution and the leveling property of the coating film can be improved.
  • the alcohols include monohydric alcohols such as methanol (65 ° C.), ethanol (78 ° C.), and isopropanol (82 ° C.); ethylene glycol (197 ° C.), diethylene glycol (244 ° C.), triethylene Dihydric alcohols such as glycol (287 ° C.), tetraethylene glycol (314 ° C.), propylene glycol (188 ° C.); glycerin (290 ° C.), trimethylolpropane (292 ° C.), sorbitol (296 ° C.), mannitol (290) ⁇ 295 ° C.), pentaerythritol (276 ° C.), trihydric or higher polyhydric alcohols such as polyglycerin; and ethylene glycol monomethyl ether (124 ).
  • alcohols having a boiling point higher than that of water that is, alcohols having a boiling point of 100 to 350 ° C.
  • the boiling point is 150 to 350 ° C.
  • the boiling point is 190 to 300 ° C. This is because when the boiling point is too high, there is a tendency to require drying at a high temperature for a long time when alcohols are used.
  • the blending amount is usually 5 to 70 parts by weight, preferably 10 to 60 parts by weight, more preferably based on the total amount of the coating solution. Is in the range of 30 to 50 parts by weight.
  • the blending amount of the alcohol with respect to 100 parts by weight of water is usually 5 to 200 parts by weight, preferably 20 to 170 parts by weight, more preferably 80 to 150 parts by weight. That is, if the content of such alcohols is too small, the fluidity improving effect and the leveling effect cannot be obtained sufficiently. On the other hand, if the content is too large, the solubility of the PVA resin is lowered and a uniform coating solution is obtained. This is because it tends to be difficult to be made.
  • surfactants used in the coating solution can be broadly classified into nonionic surfactants, cationic surfactants, and anionic surfactants, and any of them can be used. Of these, nonionic surfactants are preferred because they are less likely to bring metal components into the semiconductor.
  • nonionic surfactant examples include hydrocarbon surfactants such as ethylene oxide-propylene oxide block copolymers and acetylene glycol derivatives, silicon surfactants, and fluorine surfactants.
  • hydrocarbon surfactants particularly acetylene glycol derivatives, are preferably used in the coating solution for forming the diffusion preventing layer because they are excellent in suppressing foaming and defoaming.
  • acetylene glycol derivative those represented by the following general formula (5) are preferably used.
  • R 12 and R 15 in the general formula (5) each independently represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, more preferably 3 to 5 carbon atoms. It is an alkyl group.
  • R 13 and R 14 each independently represents an alkyl group having 1 to 3 carbon atoms, and a methyl group is particularly preferred.
  • R 12 and R 15 , and R 13 and R 14 may be the same or different, but those having the same structure are preferably used.
  • n and m are integers from 0 to 30, respectively.
  • m + n is preferably 1 to 10, more preferably m + n is 1 to 5, and still more preferably m + n is 1 to 3.
  • acetylene glycol derivative examples include 2,5,8,11-tetramethyl-6-dodecin-5,8-diol ethylene oxide adduct, 5,8-dimethyl-6-dodecin-5, 8-diol ethylene oxide adduct, 2,4,7,9-tetramethyl-5-decyne-4,7diol ethylene oxide adduct, 4,7-dimethyl-5-decyne-4,7-diol Ethylene oxide adduct, 2,3,6,7-tetramethyl-4-octyne-3,6diol ethylene oxide adduct, 3,6-dimethyl-4-octyne-3,6-diol ethylene oxide adduct 2,5-dimethyl-3-hexyne-2,5-diol ethylene oxide adduct and the like.
  • acetylene glycol derivatives examples include the Surfinol series manufactured by Nissin Chemical Industry.
  • the amount is usually 0.01 to 10% by weight, preferably 0.1 to 8%, based on the total amount of the coating solution. % By weight, more preferably in the range of 0.3 to 5% by weight. That is, if the amount of such a surfactant is too small, the anti-foaming / defoaming effect tends to be low, and conversely if too large, it tends to be difficult to obtain a uniform solution by separating from the liquid. Because.
  • various inorganic fine particles other than the metal oxide fine particles can be blended for the purpose of improving screen printing characteristics and the like.
  • silicas such as colloidal silica, amorphous silica, and fumed silica are preferable, and colloidal silica is more preferably used.
  • the blending amount of such inorganic fine particles is usually 0.5 to 20% by weight, preferably 1 to 10% by weight in the coating solution.
  • the diffusion-preventing layer-forming coating solution of the present invention contains a PVA-based resin, metal oxide fine particles, and water as a solvent. Other materials such as an activator and inorganic fine particles are further blended.
  • a preparation method of the said coating liquid after making PVA resin into aqueous solution, for example, the method of mix
  • the coating property resulting from the uniformity of the solution Printing stability can be obtained.
  • conventional organic solvent-based anti-diffusion layer-forming solutions have insufficient dispersibility of metal oxide fine particles, and thus there is a problem that it is difficult to form a uniform-thickness coating film particularly by spin coating.
  • the solvent easily volatilizes, when continuous printing is performed by screen printing or the like, there has been a problem that printing tends to become unstable.
  • these can be solved by the above method.
  • Examples of a method for obtaining a semiconductor substrate with a dopant diffusion layer by forming a dopant diffusion layer on the surface of the semiconductor substrate using the coating solution for forming the diffusion prevention layer include the following methods (I) and (II): can give.
  • a semiconductor substrate with a dopant diffusion layer is manufactured by a step of making a surface layer portion of a semiconductor substrate on which no layer is formed a dopant diffusion layer and a step of removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed.
  • FIG. 1 specifically shows the manufacturing process shown in (I), which is performed in the order of (i) to (iv).
  • (i) shows a state in which a diffusion prevention layer forming coating solution is applied to one surface of a semiconductor substrate 1 to form a diffusion prevention layer 3
  • (ii) shows the atmosphere of a dopant gas
  • a dopant gas For example, a state in which a dopant gas is brought into contact with the surface of the semiconductor substrate 1 with the diffusion prevention layer 3 filled with phosphorus oxychloride (POCl 3 ) gas or boron tribromide (BBr 3 ) gas
  • POCl 3 phosphorus oxychloride
  • BBr 3 boron tribromide
  • FIG. 2 specifically shows the manufacturing process shown in (II), which is performed in the order of (i) to (iv) shown in the figure.
  • (i) shows a state in which a dopant diffusion solution is applied to one surface of the semiconductor substrate 1 to form dopant solution application layers 2a and 2b
  • (ii) shows the application of the dopant solution.
  • the diffusion preventing layer forming coating solution is applied so as to cover the layers 2a and 2b, and the diffusion preventing layer 3 is formed.
  • (Iii) is a heat treatment, and the dopant solution coating layer 2a, The dopant in 2b is diffused in the surface layer portion of the semiconductor substrate 1 to form the dopant diffusion layers 11a and 11b.
  • the diffusion preventing layer 3 prevents the dopant in the dopant diffusion layers 11a and 11b from being used only for forming the dopant diffusion layers 11a and 11b.
  • Iv shows a state in which the diffusion preventing layer 3 is removed from the semiconductor substrate 1 on which the dopant diffusion layers 11a and 11b are formed.
  • the heat treatment in the production process shown in (II) above means the following drying process, firing process, and diffusion process.
  • volatile components such as water are removed from the coating layer.
  • the conditions may be set as appropriate, but are usually 1 to 60 minutes, particularly 5 to 30 minutes under a temperature condition of 20 to 300 ° C., particularly 100 to 200 ° C.
  • the drying method is not particularly limited, and the drying is performed by a known method such as hot air drying, infrared heat drying, or vacuum drying.
  • the volatile components in the coating layer are removed using an electric furnace or the like.
  • the conditions of such a process need to be adjusted as appropriate depending on the composition of the solution and the thickness of the coating layer, but are usually 300 to 1000 ° C., particularly 400 to 800 ° C., 1 to 120 minutes, particularly 5 to 60 minutes Will be implemented in the time.
  • the dopant is further diffused in the semiconductor substrate in the diffusion step, and a diffusion layer is formed.
  • an electric furnace or the like is used in the same manner as in the firing step, and is performed under a temperature condition of 800 to 1400 ° C., in a state of single wafers or a plurality of stacked sheets.
  • Examples of the semiconductor substrate 1 used in the manufacturing method shown in the above (I) and (II) include those made of single crystal or polycrystalline p-type silicon, those made of single crystal or polycrystalline n-type silicon, gallium A material made of doped p-type or n-type silicon is used.
  • the semiconductor substrate 1 may be manufactured by any one of the Czochralski (CZ) method and the float zone (FZ) method.
  • CZ Czochralski
  • FZ float zone
  • various coating methods such as spin coating, spraying, offset printing, and screen printing can be used as the coating method of the coating solution for forming the diffusion preventing layer of the present invention.
  • screen printing is preferable because it is easy to form a uniform coating film in a wide range, and since the coating solution is water-based, there is an advantage that printing is not easily destabilized even if continuous printing is performed. .
  • the dopant may be diffused by a method of applying a dopant diffusion solution in addition to a method of diffusing the dopant by gas contact.
  • a dopant diffusion solution for example, an aqueous solution of phosphoric acid or boric acid is used for this solution.
  • water-soluble compounds such as phosphoric acids and boric acids are used for the dopant diffusion solution used in the method shown in (II) above.
  • the dopant diffusing solution may be blended with materials such as PVA resins, alcohols, surfactants, inorganic fine particles, and the like from the viewpoints of coating properties, forming properties of the dopant solution coating layer, and the like.
  • various coating methods such as a spin coat method, offset printing, and screen printing, are normally applied.
  • an immersion treatment in hydrofluoric acid (HF) is performed.
  • hydrofluoric acid is usually used as an aqueous solution of 3 to 50% by weight, and for the purpose of improving the treatment efficiency, the immersion treatment is heated or irradiated with ultrasonic waves. This is also a preferred embodiment.
  • the dopant glass (phosphorus glass, boron glass, etc.) formed on the surface of the dopant diffusion layer is also removed by the immersion treatment in hydrofluoric acid.
  • the immersion treatment in a basic liquid may be performed.
  • the basic liquid include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
  • the concentration of the basic liquid is usually 0.1 to 10% by weight in terms of workability, and preferably 0.02 to 5% by weight, particularly preferably in terms of preventing excessive etching of the substrate surface. 0.2 to 1% by weight.
  • the working temperature is preferably 50 ° C. or less, more preferably room temperature, specifically 20 to 30 ° C. in terms of preventing excessive etching of the substrate surface.
  • the immersion time in the basic liquid is preferably 5 minutes or less, more preferably 1 minute or less in terms of preventing excessive etching of the substrate surface.
  • the solar cell provided with the semiconductor substrate with the dopant diffusion layer
  • the semiconductor substrate with the dopant diffusion layer is formed by the method as shown in the above (I) and (II)
  • the solar cell is efficiently produced. Can be manufactured.
  • the semiconductor substrate with a dopant diffused layer manufactured by the method as shown to said (I) and (II) has a favorable pn junction structure, generation
  • the semiconductor device include a solar cell, a diode, and a transistor.
  • ultrapure water means water having a TOC of 1.0 ppb or less and an electrical resistivity of 18.2 M ⁇ ⁇ cm.
  • unmodified PVA (a) (saponification degree 78 mol%, average polymerization degree 1400) and modified PVA (a) (saponification degree 98.9 mol%, average polymerization degree 350).
  • modified PVA (a) having a modification degree of 8 mol%.
  • the modified PVA (a) was produced as follows.
  • the methanol solution was further diluted with methanol, adjusted to a concentration of 40%, charged into a kneader, and a 2% methanol solution of sodium hydroxide was added to the vinyl acetate structural unit in the copolymer while maintaining the solution temperature at 40 ° C.
  • saponification was carried out by adding 8 mmol with respect to 1 mol of the total amount of 3,4-diacetoxy-1-butene structural units. As saponification progressed, when saponified substances were precipitated and became particulate, they were separated by filtration, washed well with methanol and dried in a hot air dryer to obtain the desired modified PVA (a).
  • the degree of saponification of the obtained modified PVA (a) was 98.9 mol% when analyzed by the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene.
  • the average degree of polymerization was 350 when analyzed according to JIS K 6726.
  • the content of the 1,2-diol structural unit represented by the general formula (1) is 1 H-NMR (300 MHz proton NMR, DMSO-d6 solution, internal standard substance: tetramethylsilane, 50 ° C.). It was 8 mol% when it computed from the integrated value measured in this way.
  • Example 1 ⁇ Preparation of coating solution ( ⁇ ) for forming diffusion preventing layer> 22 parts of modified PVA (a) was added to 36.5 parts of ultrapure water, and dissolved while stirring under heating to prepare a solution ( ⁇ 1). Further, 40 parts of glycerin, ethylene oxide adduct of 2,4,7,9-tetramethyl-5-decyne-4,7-diol as a surfactant (Shinfin Chemical 420, Surfynol 420) 5 parts were added to prepare a solution ( ⁇ 2).
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ , whereas the surface resistance of the surface on which the coating solution for forming the diffusion preventing layer was applied. was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • Example 2 Same as Example 1, except that 31.5 parts of ultrapure water was used in the coating solution ( ⁇ ) for forming the diffusion preventing layer used in Example 1, ethylene glycol was used instead of glycerin, and 6.0 parts of aluminum oxide fine particles were used. Thus, a water-based anti-diffusion layer forming coating solution was prepared. Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this coating solution for forming the diffusion prevention layer was used.
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ , whereas the surface resistance of the surface on which the coating solution for forming the diffusion preventing layer was applied. was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • Example 3 In the coating liquid ( ⁇ ) for forming the diffusion preventing layer used in Example 1, the above-mentioned unmodified PVA (a) (saponification degree 78 mol%, average polymerization degree 1400) was used instead of the modified PVA (a). Then, a coating solution for forming a diffusion preventing layer was prepared. Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this coating solution for forming the diffusion prevention layer was used.
  • the above-mentioned unmodified PVA (a) (saponification degree 78 mol%, average polymerization degree 1400) was used instead of the modified PVA (a). Then, a coating solution for forming a diffusion preventing layer was prepared. Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this coating solution for forming the diffusion prevention layer was used.
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ , whereas the surface resistance of the surface on which the coating solution for forming the diffusion preventing layer was applied.
  • the surface resistance was 1000 ⁇ / ⁇ . Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • Example 4 In the coating liquid ( ⁇ ) for forming the diffusion preventing layer used in Example 1, the above-mentioned unmodified PVA (a) (saponification degree 78 mol%, average polymerization degree 1400) was used instead of the modified PVA (a).
  • a water-based anti-diffusion layer forming coating solution was prepared in the same manner except that 31.5 parts of ultrapure water was used, ethylene glycol was used instead of glycerin, and 6.0 parts of aluminum oxide fine particles were used. Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this coating solution for forming the diffusion prevention layer was used.
  • Example 5 Using the coating liquid for forming the diffusion prevention layer used in Example 2, “application to a semiconductor substrate” and “diffusion” were performed in the same manner as in Example 1. Thereafter, the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in an aqueous NaOH solution (3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
  • HF hydrofluoric acid
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • the aluminum oxide residue after washing was thin and could be washed cleanly.
  • Example 6 Using the coating solution for forming a diffusion preventing layer used in Example 4, “application to a semiconductor substrate” and “diffusion” were performed in the same manner as in Example 1. Thereafter, the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in an aqueous NaOH solution (3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
  • HF hydrofluoric acid
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 ⁇ / ⁇ . Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • the aluminum oxide residue after washing was thin and could be washed cleanly.
  • Example 7 In Example 5, post-treatment with an aqueous NaOH solution was performed in place of an aqueous KOH solution (3 wt% (prepared with ultrapure water)). Otherwise, “application to semiconductor substrate”, “diffusion”, and “cleaning treatment” were performed in the same manner as in Example 5.
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • the aluminum oxide residue after washing was thin and could be washed cleanly.
  • Example 8 In Example 6, post-treatment with an aqueous NaOH solution was performed in place of an aqueous KOH solution (3 wt% (prepared with ultrapure water)). Other than that, “application to semiconductor substrate”, “diffusion”, and “cleaning treatment” were performed in the same manner as in Example 6.
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 ⁇ / ⁇ . Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • the aluminum oxide residue after washing was thin and could be washed cleanly.
  • Example 9 titanium oxide (manufactured by Nippon Aerosil Co., Ltd., AEROXIDE TiO 2 P-25, average primary particle size 30 nm) was used in place of aluminum oxide in the coating solution for forming the diffusion prevention layer. Other than that, “application to semiconductor substrate”, “diffusion”, and “cleaning treatment” were performed in the same manner as in Example 7.
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • the titanium oxide residue after washing was thin and could be washed cleanly.
  • Example 10 18 parts of modified PVA (a) was added to 29.5 parts of ultrapure water and dissolved while stirring under heating to prepare a solution ( ⁇ 1). In addition, 0.5 part of ethylene oxide adduct of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Shinfin Chemical Co., Surfynol 420) is added to 40 parts of ethylene glycol. The solution ( ⁇ 2) was prepared by addition.
  • the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in a KOH aqueous solution (3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
  • HF hydrofluoric acid
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
  • Example 11 In the coating solution ( ⁇ ) for forming the diffusion preventing layer used in Example 10, the amount of ultrapure water was 28.5 parts, the amount of ethylene glycol was 35 parts, and Tymicron TM-300 as aluminum oxide fine particles. And 12.0 parts of Tymicron TM-DA (manufactured by Daimei Chemical Industries, BET specific surface area 13.5 m 2 / g, average primary particle size 100 nm). Other than that was carried out similarly to Example 10, and performed "application
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
  • Example 12 In the coating solution for forming an anti-diffusion layer used in Example 11, the amount of Tymicron TM-300 was 12.0 parts, and the amount of Tymicron TM-DA was 6.0 parts. Other than that was carried out similarly to Example 11, and performed "application
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
  • Example 13 Using the coating liquid for forming the diffusion preventing layer used in Example 10, screen printing was performed on one side of a semiconductor substrate (p-type single crystal silicon, with alkali etching texture, 156 mm square, 200 ⁇ m thickness) under the following printing conditions. Then, a diffusion preventing layer was formed. Otherwise, “diffusion” and “measurement of surface resistance” were performed in the same manner as in Example 1. (Printing conditions) Printing machine: “LS-34GX” manufactured by Neurong Seimitsu Kogyo Co., Ltd. Squeegee: NM squeegee (Hardness: 60) manufactured by Neurong Precision Industry Co., Ltd.
  • the surface resistance of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇
  • the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was It was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • Example 14 After the diffusion preventing layer was formed under the same printing conditions as in Example 13 using the diffusion preventing layer forming coating solution used in Example 10, “diffusion” was performed in the same manner as in Example 1. Thereafter, the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in a KOH aqueous solution (0.3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
  • HF hydrofluoric acid
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ .
  • the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 ⁇ / ⁇ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
  • the aluminum oxide residue after washing was thin and could be washed cleanly.
  • the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 ⁇ / ⁇ , but the surface resistance of the surface to which the coating solution for forming the diffusion preventing layer was applied. Varied between 60 and 1000 ⁇ / ⁇ . Therefore, it can be seen that this diffusion preventing layer could not sufficiently prevent the diffusion of phosphorus.
  • Example 15 ⁇ Preparation of boron diffusion liquid ( ⁇ )> 15 parts of modified PVA (a) was added to 42.5 parts of ultrapure water, and dissolved while heating and stirring to prepare a solution ( ⁇ 1). Also, 0.5 part of 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethylene oxide adduct (Shinfin Chemical Co., Surfinol 420) is added to 40 parts of glycerin. Thus, a solution ( ⁇ 2) was prepared. To this solution ( ⁇ 1), 2.0 parts of boric acid was added, and further the solution ( ⁇ 2) was added and stirred to prepare a boron diffusion solution ( ⁇ ).
  • a solution ( ⁇ 2) was prepared by adding 15 parts of SiO 2 aqueous solution (Fujimi Incorporated, Planerlite 4101, SiO 2 20%, water 80%). To this solution ( ⁇ 1), 2.0 parts of phosphoric acid was added, and further the solution ( ⁇ 2) was added and stirred to prepare a phosphorus diffusion solution ( ⁇ ).
  • Example 1 Thereafter, the coating solution ( ⁇ ) for formation of the diffusion preventing layer used in Example 1 is applied under the same conditions as in Example 1 so as to cover the coated surfaces of the boron diffusion solution ( ⁇ ) and the phosphorus diffusion solution ( ⁇ ).
  • the screen was printed on the entire surface of one side of the semiconductor substrate (see FIG. 2 (ii)).
  • the semiconductor substrate is taken out and immersed in a 46% hydrofluoric acid (HF) aqueous solution (prepared with ultrapure water) for 3 minutes to provide a PSG (phosphorus glass) layer, BSG (boron glass) layer, and diffusion prevention. After removing the layers, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 2 (iii) and (iv)).
  • HF hydrofluoric acid
  • the diffusion preventing layer forming coating liquid used in the examples contains fine particles of aluminum oxide or titanium oxide, and prevents the diffusion of the dopant by the shielding effect of the fine particles. It can be said that the same result can be obtained even if this is a metal oxide fine particle composed of vanadium oxide, niobium oxide, and tantalum oxide.
  • the coating solution for forming the diffusion preventing layer of the present invention is for preventing the diffusion of the dopant by coating it on the surface of the semiconductor substrate, has a high uniformity of the diffusion preventing performance, and can also form a coating film by screen printing or the like. Since it is excellent, it can be used widely and suitably in the field of manufacturing semiconductors and semiconductor devices.

Abstract

A coating liquid for forming diffusion prevention layers, which is applied to the surface of a semiconductor substrate for the purpose of preventing diffusion of a dopant, and which contains a polyvinyl alcohol resin (component (A)) and fine metal oxide particles (component (B)). Consequently, there can be provided: a coating liquid for forming diffusion prevention layers, which is highly uniform in diffusion prevention performance and has excellent coating film formability by screen printing or the like; a method for producing a semiconductor substrate with a dopant diffusion layer, said method using the coating liquid for forming diffusion prevention layers; and a method for manufacturing a solar cell.

Description

拡散防止層形成用塗布液およびそれを用いたドーパント拡散層付き半導体基板の製法、並びに太陽電池の製法Coating solution for forming diffusion preventing layer, method for producing semiconductor substrate with dopant diffusion layer using the same, and method for producing solar cell
 本発明は、半導体基板表面に塗布してドーパントの拡散を防止するための拡散防止層形成用塗布液、およびそれを用いたドーパント拡散層付き半導体基板の製法、並びに太陽電池の製法に関するものである。 The present invention relates to a coating solution for forming an anti-diffusion layer that is applied to the surface of a semiconductor substrate to prevent dopant diffusion, a method for producing a semiconductor substrate with a dopant diffusion layer using the same, and a method for producing a solar cell. .
 pn接合型太陽電池は、p型の半導体とn型の半導体とを接合した構造を有している。
 そして、その接合面に当たった光によって、光電子が発生し(内部光電効果)、半導体の整流作用によって上記光電子が一定方向に移動することから、これを電極から外部に取り出すことにより、電気(電流)を得ることができる。
A pn junction solar cell has a structure in which a p-type semiconductor and an n-type semiconductor are joined.
Then, photoelectrons are generated by the light striking the joint surface (internal photoelectric effect), and the photoelectrons move in a certain direction due to the rectifying action of the semiconductor. ) Can be obtained.
 上記のようなpn接合構造を半導体基板に形成する方法としては、例えば、半導体基板の一面に、リンやホウ素などのドーパント(不純物)を拡散させ、そのドーパントの種類によりp型またはn型の半導体層(ドーパント拡散層)を形成する方法が、広く行われている。 As a method of forming the pn junction structure as described above on a semiconductor substrate, for example, a dopant (impurity) such as phosphorus or boron is diffused on one surface of the semiconductor substrate, and a p-type or n-type semiconductor is used depending on the type of the dopant. A method for forming a layer (dopant diffusion layer) is widely used.
 そして、上記のように半導体基板にドーパント拡散層を形成する際に、所望の個所以外へのドーパントの拡散を防ぐため、事前に、半導体基板表面に拡散防止層を形成して、ドーパントの拡散後に上記拡散防止層を除去等するといった手法が検討されている。 Then, when forming the dopant diffusion layer on the semiconductor substrate as described above, in order to prevent the diffusion of the dopant to other than the desired location, a diffusion prevention layer is formed on the semiconductor substrate surface in advance, and after the diffusion of the dopant A technique of removing the diffusion preventing layer has been studied.
 上記のような拡散防止層の形成は、例えば、酸化チタン、酸化アルミニウムなどの金属酸化物微粒子を含有する有機溶剤系の溶液を、スクリーン印刷等により印刷したり、スピンコート法等により塗布したりすることによって行われる(特許文献1,2参照)。 For example, the diffusion prevention layer can be formed by printing an organic solvent-based solution containing metal oxide fine particles such as titanium oxide and aluminum oxide by screen printing or the like, or by spin coating or the like. (See Patent Documents 1 and 2).
特開平7-221333号公報JP-A-7-221333 特開2003-158277号公報JP 2003-158277 A
 しかしながら、上記のような有機溶剤系の拡散防止層形成用溶液は、金属酸化物微粒子の分散性が不充分なため、それにより形成された拡散防止層は、拡散防止性能の均一性に乏しい。特に、スピンコート法による塗布は、広範囲で行うと均一な厚みの塗膜を形成し難いことから、上記のように拡散防止性能の均一性に乏しい拡散防止層形成用溶液は、この塗布法に不向きである。 However, the organic solvent-based anti-diffusion layer forming solution as described above has insufficient dispersibility of the metal oxide fine particles, so that the anti-diffusion layer formed thereby has poor uniformity of anti-diffusion performance. In particular, since the coating by spin coating is difficult to form a coating having a uniform thickness when performed over a wide range, the solution for forming a diffusion preventing layer having poor uniformity of the diffusion preventing performance as described above is applied to this coating method. It is unsuitable.
 本発明は、このような事情に鑑みなされたもので、拡散防止性能の均一性が高く、スクリーン印刷等による塗膜形成性に優れた、拡散防止層形成用塗布液、およびそれを用いたドーパント拡散層付き半導体基板の製法、並びに太陽電池の製法の提供をその目的とする。 The present invention has been made in view of such circumstances, a coating liquid for forming an anti-diffusion layer having high uniformity of anti-diffusion performance and excellent coating film formation by screen printing, etc., and a dopant using the same The object is to provide a method for producing a semiconductor substrate with a diffusion layer and a method for producing a solar cell.
 上記の目的を達成するために、本発明は、半導体基板表面に塗布してドーパントの拡散を防止するための拡散防止層形成用塗布液であって、下記の(A)および(B)成分を含有する拡散防止層形成用塗布液を第1の要旨とする。
(A)ポリビニルアルコール系樹脂。
(B)金属酸化物微粒子。
In order to achieve the above object, the present invention provides a coating solution for forming a diffusion prevention layer for preventing diffusion of a dopant by coating on the surface of a semiconductor substrate, comprising the following components (A) and (B): The coating liquid for forming the diffusion preventing layer is a first gist.
(A) Polyvinyl alcohol resin.
(B) Metal oxide fine particles.
 また、本発明は、半導体基板表面の一部に、上記第1の要旨の拡散防止層形成用塗布液を塗布して拡散防止層を形成する工程と、上記拡散防止層付きの半導体基板の表面にドーパントを拡散させ、上記拡散防止層が形成されていない半導体基板の表層部をドーパント拡散層にする工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程と、を備えているドーパント拡散層付き半導体基板の製法を第2の要旨とする。 The present invention also includes a step of coating the part of the surface of the semiconductor substrate with the coating liquid for forming the diffusion prevention layer according to the first aspect to form a diffusion prevention layer, and the surface of the semiconductor substrate with the diffusion prevention layer. A step of diffusing the dopant into the surface layer portion of the semiconductor substrate on which the diffusion prevention layer is not formed, and a step of removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed. The manufacturing method of the semiconductor substrate with a dopant diffusion layer provided is a second gist.
 また、本発明は、半導体基板表面の一部に、ドーパント拡散用溶液を塗布した後、その塗布面上を覆うように、上記第1の要旨の拡散防止層形成用塗布液を塗布し、拡散防止層を形成する工程と、熱処理を行い、上記塗布されたドーパント拡散用溶液中のドーパントを、半導体基板の表層部に拡散させて、ドーパント拡散層を形成する工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程と、を備えているドーパント拡散層付き半導体基板の製法を第3の要旨とする。 In the present invention, after the dopant diffusion solution is applied to a part of the surface of the semiconductor substrate, the diffusion-preventing layer-forming coating solution according to the first aspect is applied so as to cover the application surface, and diffusion is performed. A step of forming a prevention layer, a heat treatment, a step of diffusing the dopant in the applied dopant diffusion solution into the surface layer portion of the semiconductor substrate to form a dopant diffusion layer, and formation of the dopant diffusion layer A method for producing a semiconductor substrate with a dopant diffusion layer, comprising a step of removing a diffusion preventing layer from the semiconductor substrate thus formed, is a third gist.
 また、本発明は、ドーパント拡散層付き半導体基板を備えた太陽電池の製法であって、上記ドーパント拡散層付き半導体基板を、上記第2または第3の要旨の製法により形成する太陽電池の製法を第4の要旨とする。 Moreover, this invention is a manufacturing method of the solar cell provided with the semiconductor substrate with a dopant diffusion layer, Comprising: The manufacturing method of the solar cell which forms the said semiconductor substrate with a dopant diffusion layer by the manufacturing method of the said 2nd or 3rd summary. This is the fourth gist.
 すなわち、本発明者らは、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、本発明者らは、拡散防止層形成用溶液として、金属酸化物微粒子(B成分)とともに、ポリビニルアルコール系樹脂(A成分)を含有する塗布液を想起した。すなわち、塗布液中にポリビニルアルコール系樹脂が存在することにより、金属酸化物微粒子の分散性が優れるようになったため、拡散防止性能の均一性が高くなり、所期の目的が達成できることを見いだし、本発明に到達した。 That is, the present inventors have conducted intensive research to solve the above problems. In the course of the research, the present inventors recalled a coating solution containing a polyvinyl alcohol resin (A component) together with metal oxide fine particles (B component) as a solution for forming a diffusion prevention layer. In other words, the presence of the polyvinyl alcohol resin in the coating liquid has led to excellent dispersibility of the metal oxide fine particles, and thus the uniformity of the anti-diffusion performance is increased, and the intended purpose can be achieved. The present invention has been reached.
 このように、本発明の拡散防止層形成用塗布液は、ポリビニルアルコール系樹脂(A成分)および金属酸化物微粒子(B成分)を含有する。そのため、拡散防止性能の均一性が高く、しかも、スクリーン印刷等による塗膜形成性に優れている。また、上記塗布液からなる拡散防止層は、フッ化水素酸(HF)による洗浄等で容易に除去することが可能である。 Thus, the diffusion-preventing layer forming coating solution of the present invention contains a polyvinyl alcohol resin (component A) and metal oxide fine particles (component B). Therefore, the uniformity of the anti-diffusion performance is high, and the coating film formability by screen printing or the like is excellent. Further, the diffusion preventing layer made of the coating solution can be easily removed by washing with hydrofluoric acid (HF).
 また、半導体基板表面の一部に、拡散防止層形成用塗布液を塗布して拡散防止層を形成する工程と、上記拡散防止層付きの半導体基板の表面にドーパントを拡散させ、上記拡散防止層が形成されていない半導体基板の表層部をドーパント拡散層にする工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程と、を備えたドーパント拡散層付き半導体基板の製法において、上記拡散防止層形成用塗布液として、ポリビニルアルコール系樹脂(A成分)および金属酸化物微粒子(B成分)を含有する本発明の拡散防止層形成用塗布液を用いると、所望の個所以外へのドーパントの拡散を防ぎつつ、半導体基板に、効果的にドーパント拡散層を形成することができる。 Further, a step of forming a diffusion prevention layer by applying a coating solution for forming a diffusion prevention layer on a part of the surface of the semiconductor substrate, and a diffusion of a dopant on the surface of the semiconductor substrate with the diffusion prevention layer, the diffusion prevention layer A method for producing a semiconductor substrate with a dopant diffusion layer, comprising: a step of forming a surface layer portion of a semiconductor substrate in which no dopant is formed as a dopant diffusion layer; and a step of removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed. When the coating solution for forming a diffusion preventing layer of the present invention containing a polyvinyl alcohol resin (component A) and fine metal oxide particles (component B) is used as the coating solution for forming the diffusion preventing layer, the portion other than the desired portion The dopant diffusion layer can be effectively formed on the semiconductor substrate while preventing the diffusion of the dopant into the semiconductor substrate.
 さらに、半導体基板表面の一部に、ドーパント拡散用溶液を塗布した後、その塗布面上を覆うように、拡散防止層形成用塗布液を塗布し、拡散防止層を形成する工程と、熱処理を行い、上記塗布されたドーパント拡散用溶液中のドーパントを、半導体基板の表層部に拡散させて、ドーパント拡散層を形成する工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程と、を備えたドーパント拡散層付き半導体基板の製法において、上記拡散防止層形成用塗布液として、ポリビニルアルコール系樹脂(A成分)および金属酸化物微粒子(B成分)を含有する本発明の拡散防止層形成用塗布液を用いると、所望の個所以外へのドーパントの拡散を防ぎつつ、半導体基板に、効果的にドーパント拡散層を形成することができる。 Further, after applying the dopant diffusion solution to a part of the surface of the semiconductor substrate, applying a diffusion prevention layer forming coating solution so as to cover the coating surface, forming a diffusion prevention layer, and heat treatment. A step of diffusing the dopant in the applied dopant diffusion solution to the surface layer portion of the semiconductor substrate to form a dopant diffusion layer, and removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed And a process for producing a semiconductor substrate with a dopant diffusion layer, comprising: a polyvinyl alcohol-based resin (component A) and metal oxide fine particles (component B) as the diffusion-preventing layer forming coating solution. Using a diffusion barrier layer forming coating solution effectively forms a dopant diffusion layer on a semiconductor substrate while preventing diffusion of the dopant to other than the desired location. It can be.
 そして、ドーパント拡散層付き半導体基板を備えた太陽電池の製法において、上記ドーパント拡散層付き半導体基板を、上記各製法により形成すると、効率的に上記太陽電池を製造することができる。 And in the manufacturing method of the solar cell provided with the semiconductor substrate with a dopant diffusion layer, when the semiconductor substrate with a dopant diffusion layer is formed by the above-described manufacturing methods, the solar cell can be efficiently manufactured.
本発明のドーパント拡散層付き半導体基板の製法における、製造工程の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing process in the manufacturing method of the semiconductor substrate with a dopant diffusion layer of this invention. 本発明のドーパント拡散層付き半導体基板の製法における、製造工程の他の例を示す説明図である。It is explanatory drawing which shows the other example of a manufacturing process in the manufacturing method of the semiconductor substrate with a dopant diffusion layer of this invention.
 つぎに、本発明を実施するための形態について具体的に説明するが、本発明はこれらに限定されるものではない。 Next, modes for carrying out the present invention will be specifically described, but the present invention is not limited to these.
 本発明の拡散防止層形成用塗布液は、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と略す)(A成分)と、金属酸化物微粒子(B成分)とを含有する。また、その溶媒としては、主に水が用いられ、必要に応じてアルコール類が併用される。このように本発明の拡散防止層形成用塗布液は、水系のものであるため、従来の有機溶剤系のものとは異なる。以下、これら各材料について説明する。 The coating solution for forming the diffusion preventing layer of the present invention contains a polyvinyl alcohol resin (hereinafter abbreviated as “PVA resin”) (A component) and metal oxide fine particles (B component). Moreover, as the solvent, water is mainly used and alcohol is used together as needed. Thus, since the coating liquid for forming the diffusion preventing layer of the present invention is water-based, it is different from conventional organic solvent-based coating solutions. Hereinafter, each of these materials will be described.
〔PVA系樹脂〕
 本発明の拡散防止層形成用塗布液に用いられるPVA系樹脂は、そのケン化度(JIS K 6726に準拠して測定)が、通常60~100モル%であり、好ましくは70~99.9モル%、より好ましくは80~99.9モル%、特により好ましくは90~99.9モル%、さらに好ましくは97~99.8モル%であるものが用いられる。すなわち、かかるケン化度が低すぎると、PVA系樹脂の水への溶解性が低下し、均一な塗布液を得ることが困難になる場合があるからである。
[PVA resin]
The PVA resin used in the coating solution for forming the diffusion prevention layer of the present invention has a saponification degree (measured in accordance with JIS K 6726) of usually 60 to 100 mol%, preferably 70 to 99.9. Those having a mol%, more preferably 80 to 99.9 mol%, particularly preferably 90 to 99.9 mol%, still more preferably 97 to 99.8 mol% are used. That is, if the degree of saponification is too low, the solubility of the PVA-based resin in water decreases, and it may be difficult to obtain a uniform coating solution.
 また、上記PVA系樹脂は、その平均重合度(JIS K 6726に準拠して測定)が、通常100~8000であり、好ましくは100~4000であり、より好ましくは200~2000、さらに好ましくは250~1500であるものが用いられる。すなわち、かかる平均重合度が小さすぎると、塗布液が低粘度となることから、塗膜が薄膜となり、さらに金属酸化物微粒子の分散性も不充分となるため、充分な拡散防止性能が得られないからであり、逆に平均重合度が大きすぎると、塗工性が低下する傾向があるからである。 The average polymerization degree (measured in accordance with JIS K 6726) of the PVA resin is usually 100 to 8000, preferably 100 to 4000, more preferably 200 to 2000, and still more preferably 250. Those of ~ 1500 are used. That is, if the average degree of polymerization is too small, the coating solution becomes low in viscosity, so that the coating film becomes a thin film, and the dispersibility of the metal oxide fine particles is insufficient, so that sufficient diffusion preventing performance can be obtained. This is because, on the contrary, when the average degree of polymerization is too large, the coatability tends to be lowered.
 上記拡散防止層形成用塗布液に用いられるPVA系樹脂は、未変性ポリビニルアルコールであっても、公知の各種の変性ポリビニルアルコールであってもよい。そして、これらは単独で用いるか、もしくは二種以上併せて用いてもよい。 The PVA resin used for the coating solution for forming the diffusion preventing layer may be unmodified polyvinyl alcohol or various known modified polyvinyl alcohols. These may be used alone or in combination of two or more.
 特に、上記PVA系樹脂として、下記の一般式(1)で示される1,2-ジオール構造単位を有するPVA系樹脂を用いると、経時による塗布液の増粘が生じ難い。したがって、長期間にわたり良好な塗工精度、印刷精度が得られるといった、より高度な効果が得られるために好ましい。 In particular, when a PVA resin having a 1,2-diol structural unit represented by the following general formula (1) is used as the PVA resin, it is difficult for the coating liquid to thicken over time. Therefore, it is preferable because higher effects such as good coating accuracy and printing accuracy can be obtained over a long period of time.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記の観点から、上記一般式(1)で表わされる1,2-ジオール構造単位を有するPVA系樹脂のなかでも、その一般式中のR1~R3、及びR4~R6がすべて水素原子であり、Xが単結合であるもの、すなわち、下記の一般式(1′)で表される1,2-ジオール構造単位を有するPVA系樹脂が好ましい。 From the above viewpoint, among the PVA resins having a 1,2-diol structural unit represented by the general formula (1), R 1 to R 3 and R 4 to R 6 in the general formula are all hydrogen. A PVA resin having an atom and X being a single bond, that is, a 1,2-diol structural unit represented by the following general formula (1 ′) is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 なお、前記一般式(1)で表わされる構造単位中のR1~R3、及びR4~R6は、樹脂特性を大幅に損なわない程度の量であれば有機基であってもよく、その有機基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の、炭素数1~4のアルキル基等があげられる。また、上記有機基は、必要に応じ、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の官能基を有していてもよい。 In the structural unit represented by the general formula (1), R 1 to R 3 and R 4 to R 6 may be organic groups as long as they do not significantly impair the resin characteristics. Examples of the organic group include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. Moreover, the said organic group may have functional groups, such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, and a sulfonic acid group, as needed.
 また、前記一般式(1)で表わされる1,2-ジオール構造単位中のXは、熱安定性の点や高温下や酸性条件下での安定性の点で、単結合であるものが最も好ましい。但し、本発明の効果を阻害しない範囲であれば結合鎖であってもよい。かかる結合鎖としては、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素(これらの炭化水素は、フッ素、塩素、臭素等のハロゲン等で置換されていても良い)の他、-O-、-(CH2O)m-、-(OCH2m-、-(CH2O)mCH2-、-CO-、-COCO-、-CO(CH2mCO-、-CO(C64)CO-、-S-、-CS-、-SO-、-SO2-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO4-、-Si(OR)2-、-OSi(OR)2-、-OSi(OR)2O-、-Ti(OR)2-、-OTi(OR)2-、-OTi(OR)2O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-、等(Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは自然数である)があげられる。
 なかでも、製造時あるいは使用時の安定性の点で炭素数6以下のアルキレン基、特にメチレン基、あるいは-CH2OCH2-が好ましい。
X in the 1,2-diol structural unit represented by the general formula (1) is most preferably a single bond in terms of thermal stability and stability under high temperature and acidic conditions. preferable. However, a binding chain may be used as long as the effect of the present invention is not impaired. Examples of such a linking chain include hydrocarbons such as alkylene, alkenylene, alkynylene, phenylene and naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine and bromine), -O-, — (CH 2 O) m —, — (OCH 2 ) m —, — (CH 2 O) m CH 2 —, —CO—, —COCO—, —CO (CH 2 ) m CO—, —CO (C 6 H 4 ) CO—, —S—, —CS—, —SO—, —SO 2 —, —NR—, —CONR—, —NRCO—, —CSNR—, —NRCS—, —NRNR—, —HPO 4 -, - Si (OR) 2 -, - OSi (OR) 2 -, - OSi (OR) 2 O -, - Ti (OR) 2 -, - OTi (OR) 2 -, - OTi (OR) 2 O-, -Al (OR)-, -OAl (OR)-, -OAl (OR) O-, etc. Any substituents independently a hydrogen atom, an alkyl group preferably, and m is a natural number) and the like.
Among these, an alkylene group having 6 or less carbon atoms, particularly a methylene group, or —CH 2 OCH 2 — is preferable from the viewpoint of stability during production or use.
 本発明の拡散防止層形成用塗布液に用いられるPVA系樹脂の製造法としては、特に限定されないが、例えば、(i)ビニルエステル系モノマーと下記一般式(2)で示される化合物との共重合体をケン化する方法や、(ii)ビニルエステル系モノマーと下記一般式(3)で示される化合物との共重合体をケン化及び脱炭酸する方法や、(iii)ビニルエステル系モノマーと下記一般式(4)で示される化合物との共重合体をケン化及び脱ケタール化する方法が好ましく用いられる。 The production method of the PVA resin used in the coating solution for forming the diffusion preventing layer of the present invention is not particularly limited. For example, (i) a co-polymer of a vinyl ester monomer and a compound represented by the following general formula (2) A method of saponifying a polymer, (ii) a method of saponifying and decarboxylating a copolymer of a vinyl ester monomer and a compound represented by the following general formula (3), and (iii) a vinyl ester monomer A method of saponifying and deketalizing a copolymer with a compound represented by the following general formula (4) is preferably used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(2)、(3)、(4)中の、R1~R6及びXは、いずれも、前記一般式(1)の場合と同様である。また、上記一般式(2)中のR7及びR8はそれぞれ独立して水素原子またはR9-CO-(式中、R9は炭素数1~4のアルキル基)である。また、上記一般式(4)中のR10及びR11はそれぞれ独立して水素原子または炭素数1~4のアルキル基である。 In the general formulas (2), (3), and (4), R 1 to R 6 and X are all the same as those in the general formula (1). In the general formula (2), R 7 and R 8 are each independently a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group having 1 to 4 carbon atoms). In the general formula (4), R 10 and R 11 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 前記(i)~(iii)の方法のなかでも、共重合反応性および工業的な取り扱い性に優れるという点から、(i)の方法において、前記一般式(2)で表わされる化合物として3,4-ジアシロキシ-1-ブテンを用いることが好ましく、3,4-ジアセトキシ-1-ブテンを用いることが特に好ましい。 Among the methods (i) to (iii), in the method (i), the compound represented by the general formula (2) is 3, from the viewpoint of excellent copolymerization reactivity and industrial handleability. 4-diasiloxy-1-butene is preferably used, and 3,4-diacetoxy-1-butene is particularly preferably used.
 なお、前記(i)のPVA系樹脂の製造法に使用されるビニルエステル系モノマーとして、酢酸ビニルを用いた場合、これと3,4-ジアセトキシ-1-ブテンとを共重合させた際の各モノマーの反応性比rは、r(酢酸ビニル)=0.710、r(3,4-ジアセトキシ-1-ブテン)=0.701、である。これは、酢酸ビニルと、前記(ii)のPVA系樹脂の製造法に使用される前記一般式(3)の化合物(ビニルエチレンカーボネート)とを共重合させた場合の、r(酢酸ビニル)=0.85、r(ビニルエチレンカーボネート)=5.4、と比較して、3,4-ジアセトキシ-1-ブテンが酢酸ビニルとの共重合反応性に優れることを示すものである。 In addition, when vinyl acetate is used as the vinyl ester monomer used in the method for producing the PVA resin of (i) above, each of the copolymerized copolymer with 3,4-diacetoxy-1-butene is used. The monomer reactivity ratio r is r (vinyl acetate) = 0.710 and r (3,4-diacetoxy-1-butene) = 0.701. This is because when vinyl acetate is copolymerized with the compound of formula (3) (vinyl ethylene carbonate) used in the method for producing the PVA resin (ii), r (vinyl acetate) = Compared with 0.85 and r (vinyl ethylene carbonate) = 5.4, 3,4-diacetoxy-1-butene is excellent in copolymerization reactivity with vinyl acetate.
 また、3,4-ジアセトキシ-1-ブテンの連鎖移動定数は、Cx(3,4-ジアセトキシ-1-ブテン)=0.003(65℃)であり、これはビニルエチレンカーボネートのCx(ビニルエチレンカーボネート)=0.005(65℃)や、(iii)の方法で用いられる前記一般式(4)の化合物である2,2-ジメチル-4-ビニル-1,3-ジオキソランのCx(2,2-ジメチル-4-ビニル-1,3-ジオキソラン)=0.023(65℃)よりも低い。このことから、3,4-ジアセトキシ-1-ブテンは、重合速度低下の原因となり難いことが示される。 The chain transfer constant of 3,4-diacetoxy-1-butene is Cx (3,4-diacetoxy-1-butene) = 0.003 (65 ° C.), which is Cx (vinyl ethylene) of vinyl ethylene carbonate. Carbonate) = 0.005 (65 ° C.), and Cx (2,2) -dimethyl-4-vinyl-1,3-dioxolane which is a compound of the general formula (4) used in the method (iii) 2-dimethyl-4-vinyl-1,3-dioxolane) = 0.023 (65 ° C.). This indicates that 3,4-diacetoxy-1-butene is unlikely to cause a decrease in the polymerization rate.
 また、3,4-ジアセトキシ-1-ブテンは、その共重合体をケン化する際に発生する副生物が、ビニルエステル系モノマーとして多用される酢酸ビニルに由来する構造単位からケン化時に副生する化合物と同一である。そのため、その後処理や溶剤回収系に敢えて特別な装置や工程を設ける必要がなく、従来からの設備を利用できるという点も、工業的に大きな利点である。 In addition, 3,4-diacetoxy-1-butene is a by-product generated during saponification of the copolymer, and is a by-product generated during the saponification from a structural unit derived from vinyl acetate that is frequently used as a vinyl ester monomer. Is the same as Therefore, it is not necessary to provide a special apparatus or process for the post-treatment or solvent recovery system, and it is an industrially significant advantage that conventional equipment can be used.
 なお、3,4-ジアセトキシ-1-ブテンは、例えば、WO00/24702、USP5,623,086、USP6,072,079などに記載されたエポキシブテン誘導体を経由する合成方法や、1,4-ブタンジオール製造工程の中間生成物である1,4-ジアセトキシ-1-ブテンを塩化パラジウムなどの金属触媒を用いて異性化する反応によって製造することができる。また、試薬レベルではアクロス社の製品を市場から入手することができる。 3,4-diacetoxy-1-butene can be synthesized, for example, by an epoxy butene derivative described in WO 00/24702, USP 5,623,086, USP 6,072,079, 1,4-diacetoxy-1-butene, which is an intermediate product in the diol production process, can be produced by isomerization using a metal catalyst such as palladium chloride. At the reagent level, Across products can be obtained from the market.
 ところで、前記(ii)や(iii)の方法によって得られたPVA系樹脂は、脱炭酸あるいは脱アセタール化が不充分であると、側鎖にカーボネート環あるいはアセタール環が残存する。そのようなPVA系樹脂を本発明の拡散防止層形成用塗布液に調合すると、塗布液中の金属酸化物微粒子の分散性が不充分となる傾向がある。よって、この点からも、前記(i)の方法によって得られたPVA系樹脂が本発明においては好適に用いられる。 By the way, if the PVA resin obtained by the method (ii) or (iii) is insufficiently decarboxylated or deacetalized, a carbonate ring or an acetal ring remains in the side chain. When such a PVA-based resin is formulated in the coating solution for forming the diffusion preventing layer of the present invention, the dispersibility of the metal oxide fine particles in the coating solution tends to be insufficient. Therefore, also from this point, the PVA resin obtained by the method (i) is preferably used in the present invention.
 前記(i)~(iii)の方法で用いられるビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等があげられるが、経済的に酢酸ビニルが好ましく用いられる。 Examples of the vinyl ester monomers used in the methods (i) to (iii) include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, and vinyl caprate. Vinyl laurate, vinyl stearate, vinyl benzoate, vinyl versatate, etc., and vinyl acetate is preferably used economically.
 なお、上述のモノマー(ビニルエステル系モノマー、前記一般式(2)、(3)、(4)で示される化合物)の他に、樹脂物性に大幅な影響を及ぼさない範囲、例えば20モル%以下であれば、他の共重合成分を含有しても良い。共重合成分としては、例えば、エチレンやプロピレン等のα-オレフィン;3-ブテン-1-オール、4-ぺンテン-1-オール、5-へキセン-1,2-ジオール等のヒドロキシ基含有α-オレフィン類、およびそのアシル化物、エステル化物などの誘導体;イタコン酸、マレイン酸、アクリル酸等の不飽和酸類あるいはその塩あるいはモノ又はジアルキルエステル;アクリロニトリル等のニトリル類、メタクリルアミド、ジアセトンアクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、AMPS(アクリルアミド-2-メチルプロパンスルホン酸)等のオレフィンスルホン酸あるいはその塩などの化合物、等があげられる。 In addition to the above-described monomers (vinyl ester monomers, compounds represented by the general formulas (2), (3), and (4)), a range that does not significantly affect the physical properties of the resin, for example, 20 mol% or less If so, other copolymer components may be contained. Examples of the copolymer component include α-olefins such as ethylene and propylene; hydroxy group-containing α such as 3-buten-1-ol, 4-penten-1-ol, and 5-hexene-1,2-diol. -Derivatives such as olefins and acylated products and esterified products thereof; unsaturated acids such as itaconic acid, maleic acid and acrylic acid, or salts or mono- or dialkyl esters thereof; nitriles such as acrylonitrile, methacrylamide, diacetone acrylamide, etc. Amides, ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, olefin sulfonic acid such as AMPS (acrylamido-2-methylpropane sulfonic acid) or a salt thereof, and the like.
 本発明の拡散防止層形成用塗布液中のPVA系樹脂に含まれる、1,2-ジオール構造単位の含有量は、0.5~30モル%であることが好ましく、より好ましくは1~20モル%、さらに好ましくは3~15モル%の範囲である。すなわち、かかる含有量が低すぎると、1,2-ジオール構造単位を導入したPVA系樹脂を用いた効果が低すぎる傾向があり、逆に高すぎると、乾燥性が低下し、生産性が低下する傾向があるからである。 The content of 1,2-diol structural units contained in the PVA resin in the coating solution for forming the diffusion preventing layer of the present invention is preferably 0.5 to 30 mol%, more preferably 1 to 20 It is in the range of mol%, more preferably 3 to 15 mol%. That is, if the content is too low, the effect of using a PVA resin into which a 1,2-diol structural unit is introduced tends to be too low. On the other hand, if the content is too high, the drying property is lowered and the productivity is lowered. Because there is a tendency to.
 なお、上記PVA系樹脂中の、1,2-ジオール構造単位の含有率は、PVA系樹脂を完全にケン化したものの1H-NMRスペクトル(溶媒:DMSO-d6、内部標準物質:テトラメチルシラン)から求めることができ、具体的には1,2-ジオール単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出すればよい。 The content of the 1,2-diol structural unit in the PVA resin was determined by 1 H-NMR spectrum (solvent: DMSO-d6, internal standard substance: tetramethylsilane) of a completely saponified PVA resin. Specifically, from the peak area derived from the hydroxyl proton, methine proton, and methylene proton in the 1,2-diol unit, methylene proton in the main chain, hydroxyl proton linked to the main chain, etc. What is necessary is just to calculate.
 本発明の拡散防止層形成用塗布液中のPVA系樹脂の含有量は、通常1~40重量%であり、好ましくは5~30重量%、より好ましくは10~25重量%の範囲である。すなわち、上記PVA系樹脂の含有量が少なすぎると、塗布液の粘度が低くなり、塗膜が安定して形成されにくくなる傾向があり、逆に、多すぎると、塗布液の粘度が高くなるため、塗布作業性が低下しやすく、さらに、スクリーン印刷を行った場合、スクリーンメッシュの目詰まりが起りやすくなる傾向があるからである。 The content of the PVA resin in the coating solution for forming the diffusion preventing layer of the present invention is usually 1 to 40% by weight, preferably 5 to 30% by weight, more preferably 10 to 25% by weight. That is, if the content of the PVA-based resin is too small, the viscosity of the coating liquid tends to be low, and the coating film tends to be difficult to be formed stably. Conversely, if the content is too large, the viscosity of the coating liquid increases. For this reason, the coating workability is likely to be lowered, and further, when screen printing is performed, the screen mesh tends to be clogged.
〔金属酸化物微粒子〕
 本発明の拡散防止層形成用塗布液において、PVA系樹脂とともに金属酸化物微粒子が配合される。かかる微粒子の金属酸化物種は、周期表第4族の金属酸化物、周期表第5族の金属酸化物、周期表第13族の金属酸化物から選ばれる少なくとも一つである。具体的には、酸化チタン,酸化ジルコニウムなどの周期表第4族の金属酸化物、酸化バナジウム,酸化ニオブ,酸化タンタルなどの周期表第5族の金属酸化物、酸化アルミニウム,酸化ガリウムなどの周期表第13族の金属酸化物等である。これらは単独でもしくは二種以上併せて用いられる。なかでも、拡散防止性やドーパントとの親和性の観点から、好ましくは、周期表第4族、周期表第13族の金属酸化物であり、特に好ましくは酸化アルミニウム、酸化チタンである。また、両性酸化物である金属酸化物微粒子が好ましいことから、ことさらには酸化アルミニウムからなる微粒子が好ましい。
[Metal oxide fine particles]
In the coating liquid for forming the diffusion preventing layer of the present invention, metal oxide fine particles are blended together with the PVA resin. The metal oxide species of the fine particles is at least one selected from Group 4 metal oxides, Group 5 metal oxides, and Group 13 metal oxides of the Periodic Table. Specifically, periodic table group 4 metal oxides such as titanium oxide and zirconium oxide, periodic table group 5 metal oxides such as vanadium oxide, niobium oxide, and tantalum oxide, and periodic periods such as aluminum oxide and gallium oxide. Table 13 Group 13 metal oxides. These may be used alone or in combination of two or more. Among these, from the viewpoint of diffusion prevention and affinity with a dopant, metal oxides of Group 4 and Group 13 of the periodic table are preferable, and aluminum oxide and titanium oxide are particularly preferable. In addition, metal oxide fine particles that are amphoteric oxides are preferred, and fine particles made of aluminum oxide are more preferred.
 そして、上記金属酸化物微粒子は、拡散防止性の観点から、その平均一次粒径が通常1~500nmであり、好ましくは3~200nmであり、特に好ましくは3~50nm、殊に好ましくは3~20nmである。なお、上記平均一次粒径は、金属酸化物微粒子のBET比表面積より算出される値である。 From the viewpoint of preventing diffusion, the metal oxide fine particles have an average primary particle size of usually 1 to 500 nm, preferably 3 to 200 nm, particularly preferably 3 to 50 nm, and particularly preferably 3 to 20 nm. The average primary particle size is a value calculated from the BET specific surface area of the metal oxide fine particles.
 本発明においては、平均一次粒径が異なる金属酸化物微粒子を複数種用いることも可能である。その際、平均一次粒径が比較的小さいもの(例えば、平均一次粒径が1~50nm、好ましくは1~20nm)と、比較的大きいもの(例えば、平均一次粒径が50超~500nm、好ましくは80~200nm)を同時に用いる場合、塗布液を塗布した後の塗膜における金属酸化物微粒子間の隙間を小さくすることができ、ひいては塗面の均一性が向上する点で好ましい。 In the present invention, a plurality of metal oxide fine particles having different average primary particle sizes can be used. At that time, the average primary particle size is relatively small (for example, the average primary particle size is 1 to 50 nm, preferably 1 to 20 nm), and the average primary particle size is relatively large (for example, the average primary particle size is more than 50 to 500 nm, preferably Are used at the same time, it is possible to reduce the gaps between the metal oxide fine particles in the coating film after coating the coating solution, thereby improving the uniformity of the coated surface.
 本発明の拡散防止層形成用塗布液中の金属酸化物微粒子の含有量は、平均一次粒径が異なる複数の微粒子を含有する場合であっても、金属酸化物微粒子の総量にて、通常0.1~40重量%であり、好ましくは0.5~35重量%、より好ましくは0.8~30重量%、さらに好ましくは5~30重量%、特に好ましくは10~30重量%の範囲である。また、上記金属酸化物微粒子の、PVA系樹脂100重量部に対する含有量は、通常0.05~200重量部であり、好ましくは10~180重量部、より好ましくは30~150重量部、特に好ましくは50~120重量部の範囲である。すなわち、上記金属酸化物微粒子の含有量が少なすぎると、所望の拡散防止性能が得られないからであり、逆に、上記金属酸化物微粒子の含有量が多すぎると、塗工性等に支障をきたすようになるからである。 The content of the metal oxide fine particles in the coating solution for forming the diffusion preventing layer of the present invention is usually 0 in terms of the total amount of metal oxide fine particles, even when a plurality of fine particles having different average primary particle sizes are contained. 0.1 to 40% by weight, preferably 0.5 to 35% by weight, more preferably 0.8 to 30% by weight, still more preferably 5 to 30% by weight, and particularly preferably 10 to 30% by weight. is there. The content of the metal oxide fine particles with respect to 100 parts by weight of the PVA resin is usually 0.05 to 200 parts by weight, preferably 10 to 180 parts by weight, more preferably 30 to 150 parts by weight, particularly preferably. Is in the range of 50 to 120 parts by weight. That is, if the content of the metal oxide fine particles is too small, the desired anti-diffusion performance cannot be obtained. Conversely, if the content of the metal oxide fine particles is too large, the coating property and the like are hindered. This is because it comes to come.
〔水〕
 本発明の拡散防止層形成用塗布液では、先にも述べたように、溶媒に水が用いられる。上記拡散防止層形成用塗布液に用いられる水としては、アルカリ金属や重金属などの不純物、および異物が少ないものが好ましく、通常全有機炭素(以下、TOCと表記することがある)が50ppb以下、好ましくは10ppb以下であり、電気抵抗率が通常16MΩ・cm以上、好ましくは17MΩ・cm以上、より好ましくは18MΩ・cm以上のものである。超純水が最も好ましいが、イオン交換水、蒸留水を用いることも可能である。
〔water〕
In the coating solution for forming the diffusion preventing layer of the present invention, as described above, water is used as the solvent. As water used for the said coating liquid for diffusion prevention layer formation, what has few impurities, such as an alkali metal and a heavy metal, and a foreign material is preferable, Usually, total organic carbon (henceforth TOC) may be 50 ppb or less, Preferably, it is 10 ppb or less, and the electrical resistivity is usually 16 MΩ · cm or more, preferably 17 MΩ · cm or more, more preferably 18 MΩ · cm or more. Ultrapure water is most preferable, but ion-exchanged water or distilled water can also be used.
 本発明の拡散防止層形成用塗布液における水の含有量は、通常10~80重量%であり、好ましくは15~75重量%、より好ましくは20~70重量%、特に好ましくは20~50重量%の範囲である。すなわち、かかる水の含有量が少なすぎると、塗布液の粘度が高くなりすぎ、塗布作業性が低下しやすく、さらに、スクリーン印刷を行った場合、スクリーンメッシュの目詰まりが起りやすくなる傾向があるからであり、逆に多すぎると、粘度が低くなりすぎて塗膜が安定して形成されにくくなるからである。 The water content in the coating solution for forming the diffusion preventing layer of the present invention is usually 10 to 80% by weight, preferably 15 to 75% by weight, more preferably 20 to 70% by weight, and particularly preferably 20 to 50% by weight. % Range. That is, if the water content is too small, the viscosity of the coating solution becomes too high, the coating workability tends to be lowered, and further, when screen printing is performed, the screen mesh tends to be clogged. This is because, if the amount is too large, the viscosity becomes too low to form a coating film stably.
 従来の有機溶剤系の拡散防止層形成用溶液は、溶剤が揮発しやすいことから、スクリーン印刷等により連続印刷を行った場合、印刷が不安定化しやすいといった問題があった。しかしながら本発明では、PVA系樹脂(A成分)を用いることにより通常10~80重量%の水を含有する拡散防止層形成用塗布液を得ることが可能である。かかる水系の拡散防止層形成用塗布液は、有機溶剤系の拡散防止層形成用溶液よりも揮発しにくく、スクリーン印刷等による塗膜形成性に優れる。 Conventional organic solvent-based anti-diffusion layer forming solutions have a problem in that printing tends to become unstable when continuous printing is performed by screen printing or the like because the solvent easily volatilizes. However, in the present invention, by using a PVA resin (component A), it is possible to obtain a coating solution for forming a diffusion preventing layer containing usually 10 to 80% by weight of water. Such a water-based anti-diffusion layer forming coating solution is less volatile than an organic solvent-based anti-diffusion layer forming solution, and is excellent in film-forming properties by screen printing or the like.
〔その他の材料〕
 以上のように、本発明の拡散防止層形成用塗布液は、PVA系樹脂と、金属酸化物微粒子と、溶媒である水とを含有するものである。しかし、必要に応じ、公知の一般的なアルコール類、界面活性剤、無機微粒子等といった、その他の材料を更に配合することもできる。
[Other materials]
As described above, the diffusion-preventing layer forming coating liquid of the present invention contains a PVA-based resin, metal oxide fine particles, and water as a solvent. However, if necessary, other materials such as known general alcohols, surfactants, inorganic fine particles and the like can be further blended.
 上記拡散防止層形成用塗布液に、アルコール類を配合すると、塗布液の保存安定性や流動安定性、塗布膜のレベリング性を改善することが可能である。上記アルコール類としては、具体的には、メタノール(65℃)、エタノール(78℃)、イソプロパノール(82℃)などの一価アルコール類;エチレングリコール(197℃)、ジエチレングリコール(244℃)、トリエチレングリコール(287℃)、テトラエチレングリコール(314℃)、プロピレングリコール(188℃)などのニ価アルコール類;グリセリン(290℃)、トリメチロールプロパン(292℃)、ソルビトール(296℃)、マンニトール(290~295℃)、ペンタエリスリトール(276℃)、ポリグリセリンなどの三価以上の多価アルコール類;および、エチレングリコールモノメチルエーテル(124℃)、エチレングリコールモノエチルエーテル(136℃)、エチレングリコールモノ-n-ブチルエーテル(171℃)、プロピレングリコールモノメチルエーテル(120℃)、ジエチレングリコールモノメチルエーテル(メチルカルビトール)(194℃)などのアルコール誘導体があげられる。なお、上記( )内の温度は沸点を示す。これらのアルコール類は、単独で用いても良く、二種以上を併用しても良い。 When an alcohol is added to the coating solution for forming the diffusion preventing layer, the storage stability and flow stability of the coating solution and the leveling property of the coating film can be improved. Specific examples of the alcohols include monohydric alcohols such as methanol (65 ° C.), ethanol (78 ° C.), and isopropanol (82 ° C.); ethylene glycol (197 ° C.), diethylene glycol (244 ° C.), triethylene Dihydric alcohols such as glycol (287 ° C.), tetraethylene glycol (314 ° C.), propylene glycol (188 ° C.); glycerin (290 ° C.), trimethylolpropane (292 ° C.), sorbitol (296 ° C.), mannitol (290) ˜295 ° C.), pentaerythritol (276 ° C.), trihydric or higher polyhydric alcohols such as polyglycerin; and ethylene glycol monomethyl ether (124 ° C.), ethylene glycol monoethyl ether (136 ° C.), ethylene glycol mono- n- Chirueteru (171 ° C.), propylene glycol monomethyl ether (120 ° C.), can be mentioned alcohol derivatives such as diethylene glycol monomethyl ether (methyl carbitol) (194 ° C.). In addition, the temperature in said () shows a boiling point. These alcohols may be used independently and may use 2 or more types together.
 特に、印刷後の塗膜の急速な乾燥が抑制され、レベリング性の改善効果が大きい点で、水よりも沸点が高いアルコール類、すなわち沸点が100~350℃のアルコール類を用いることが好ましく、より好ましくは、沸点が150~350℃のもの、さらに好ましくは、沸点が190~300℃のものが用いられる。かかる沸点が高すぎる場合、アルコール類を用いた際に高温・長時間の乾燥を要する傾向があるからである。 In particular, it is preferable to use alcohols having a boiling point higher than that of water, that is, alcohols having a boiling point of 100 to 350 ° C., in that rapid drying of the coated film after printing is suppressed and the leveling property is greatly improved. More preferably, the boiling point is 150 to 350 ° C., and still more preferably, the boiling point is 190 to 300 ° C. This is because when the boiling point is too high, there is a tendency to require drying at a high temperature for a long time when alcohols are used.
 本発明の拡散防止層形成用塗布液にアルコール類を配合する場合、その配合量は、通常、塗布液の全量に対して5~70重量部であり、好ましくは10~60重量部、より好ましくは30~50重量部の範囲である。また、アルコール類の、水100重量部に対する配合量は、通常5~200重量部であり、好ましくは20~170重量部、より好ましくは80~150重量部の範囲である。すなわち、かかるアルコール類の含有量が少なすぎると、流動性の改善効果、およびレベリング効果が充分得られなくなり、逆に多すぎると、PVA系樹脂の溶解性が低下し、均一な塗布液が得られにくくなる傾向があるからである。 When an alcohol is blended in the coating solution for forming the diffusion preventing layer of the present invention, the blending amount is usually 5 to 70 parts by weight, preferably 10 to 60 parts by weight, more preferably based on the total amount of the coating solution. Is in the range of 30 to 50 parts by weight. The blending amount of the alcohol with respect to 100 parts by weight of water is usually 5 to 200 parts by weight, preferably 20 to 170 parts by weight, more preferably 80 to 150 parts by weight. That is, if the content of such alcohols is too small, the fluidity improving effect and the leveling effect cannot be obtained sufficiently. On the other hand, if the content is too large, the solubility of the PVA resin is lowered and a uniform coating solution is obtained. This is because it tends to be difficult to be made.
 また、本発明の拡散防止層形成用塗布液に、界面活性剤を配合すると、半導体表面への濡れ性が向上し、さらに塗布液の発泡が抑制され、気泡に起因する印刷不良を防止することが可能となるため好ましい。上記塗布液に用いられる界面活性剤は、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤に大別でき、いずれも使用することができる。なかでも、半導体への金属成分等の持込が少ないことから、ノニオン系界面活性剤が好ましい。 In addition, when a surfactant is added to the coating solution for forming the diffusion preventing layer of the present invention, wettability to the semiconductor surface is improved, foaming of the coating solution is further suppressed, and printing defects caused by bubbles are prevented. Is preferable. Surfactants used in the coating solution can be broadly classified into nonionic surfactants, cationic surfactants, and anionic surfactants, and any of them can be used. Of these, nonionic surfactants are preferred because they are less likely to bring metal components into the semiconductor.
 上記ノニオン系界面活性剤としては、例えば、エチレンオキサイド-プロピレンオキサイドのブロック共重合体、アセチレングリコール誘導体などの炭化水素系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤等があげられる。なかでも、拡散防止層形成用塗布液において、発泡の抑制、および消泡性に優れている点で、炭化水素系界面活性剤、特にアセチレングリコール誘導体が、好ましく用いられる。 Examples of the nonionic surfactant include hydrocarbon surfactants such as ethylene oxide-propylene oxide block copolymers and acetylene glycol derivatives, silicon surfactants, and fluorine surfactants. Of these, hydrocarbon surfactants, particularly acetylene glycol derivatives, are preferably used in the coating solution for forming the diffusion preventing layer because they are excellent in suppressing foaming and defoaming.
 上記アセチレングリコール誘導体としては、下記の一般式(5)で表されるものが好ましく用いられる。 As the acetylene glycol derivative, those represented by the following general formula (5) are preferably used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(5)中のR12,R15は、それぞれ独立して、炭素数1~20のアルキル基を示し、好ましくは炭素数1~5のアルキル基、より好ましくは炭素数3~5のアルキル基である。また、R13,R14は、それぞれ独立して、炭素数1~3のアルキル基を示し、特にメチル基のものが好ましく用いられる。なお、R12とR15、およびR13とR14は、それぞれ同一であっても異なったものであってもよいが、それぞれ同一構造のものが好ましく用いられる。また、上記一般式(5)中のn,mは、それぞれ0~30の整数である。
 そして、特に、m+nが1~10のものが好ましく、より好ましくはm+nが1~5、さらに好ましくはm+nが1~3のものである。
R 12 and R 15 in the general formula (5) each independently represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, more preferably 3 to 5 carbon atoms. It is an alkyl group. R 13 and R 14 each independently represents an alkyl group having 1 to 3 carbon atoms, and a methyl group is particularly preferred. R 12 and R 15 , and R 13 and R 14 may be the same or different, but those having the same structure are preferably used. In the general formula (5), n and m are integers from 0 to 30, respectively.
In particular, m + n is preferably 1 to 10, more preferably m + n is 1 to 5, and still more preferably m + n is 1 to 3.
 上記アセチレングリコール誘導体としては、具体的には、2,5,8,11-テトラメチル-6-ドデシン-5,8-ジオールのエチレンオキサイド付加物、5,8-ジメチル-6-ドデシン-5,8-ジオールのエチレンオキサイド付加物、2,4,7,9-テトラメチル-5-デシン-4,7ジオールのエチレンオキサイド付加物、4,7-ジメチル-5-デシン-4,7-ジオールのエチレンオキサイド付加物、2,3,6,7-テトラメチル-4-オクチン-3,6ジオールのエチレンオキサイド付加物、3,6-ジメチル-4-オクチン-3,6-ジオールのエチレンオキサイド付加物、2,5-ジメチル-3-へキシン-2,5-ジオールのエチレンオキサイド付加物等があげられる。
 これらのなかでも、2,4,7,9-テトラメチル-5-デシン-4,7ジオールのエチレンオキサイド付加物であって、エチレンオキサイドの付加量(m+n)が1~2であるものが、好ましく用いられる。
Specific examples of the acetylene glycol derivative include 2,5,8,11-tetramethyl-6-dodecin-5,8-diol ethylene oxide adduct, 5,8-dimethyl-6-dodecin-5, 8-diol ethylene oxide adduct, 2,4,7,9-tetramethyl-5-decyne-4,7diol ethylene oxide adduct, 4,7-dimethyl-5-decyne-4,7-diol Ethylene oxide adduct, 2,3,6,7-tetramethyl-4-octyne-3,6diol ethylene oxide adduct, 3,6-dimethyl-4-octyne-3,6-diol ethylene oxide adduct 2,5-dimethyl-3-hexyne-2,5-diol ethylene oxide adduct and the like.
Among these, an ethylene oxide adduct of 2,4,7,9-tetramethyl-5-decyne-4,7 diol having an ethylene oxide addition amount (m + n) of 1 to 2, Preferably used.
 かかるアセチレングリコール誘導体(界面活性剤)の市販品としては、日信化学工業社製のサーフィノールシリーズ等があげられる。 Examples of such commercially available acetylene glycol derivatives (surfactants) include the Surfinol series manufactured by Nissin Chemical Industry.
 本発明の拡散防止層形成用塗布液に界面活性剤を配合する場合、その配合量は、通常、塗布液の全量に対して0.01~10重量%であり、好ましくは0.1~8重量%、より好ましくは0.3~5重量%の範囲である。すなわち、かかる界面活性剤の配合量が少なすぎると、抑泡・消泡効果が低くなる傾向があり、逆に多すぎると、液から分離して、均一な溶液が得られにくくなる傾向があるからである。 When a surfactant is added to the coating solution for forming the diffusion preventing layer of the present invention, the amount is usually 0.01 to 10% by weight, preferably 0.1 to 8%, based on the total amount of the coating solution. % By weight, more preferably in the range of 0.3 to 5% by weight. That is, if the amount of such a surfactant is too small, the anti-foaming / defoaming effect tends to be low, and conversely if too large, it tends to be difficult to obtain a uniform solution by separating from the liquid. Because.
 また、本発明の拡散防止層形成用塗布液には、その他、スクリーン印刷特性等を改善する目的で、上記金属酸化物微粒子以外の各種の無機微粒子を配合することが可能である。 In addition, in the coating solution for forming the diffusion preventing layer of the present invention, various inorganic fine particles other than the metal oxide fine particles can be blended for the purpose of improving screen printing characteristics and the like.
 上記無機微粒子としては、コロイダルシリカ、非晶質シリカ、フュームドシリカなどのシリカ類が好ましく、特に、コロイダルシリカがより好ましく用いられる。 As the inorganic fine particles, silicas such as colloidal silica, amorphous silica, and fumed silica are preferable, and colloidal silica is more preferably used.
 かかる無機微粒子の配合量は、通常、塗布液中0.5~20重量%であり、好ましくは1~10重量%の範囲である。 The blending amount of such inorganic fine particles is usually 0.5 to 20% by weight, preferably 1 to 10% by weight in the coating solution.
〔拡散防止層形成用塗布液の調製〕
 本発明の拡散防止層形成用塗布液は、先に述べたように、PVA系樹脂と、金属酸化物微粒子と、溶媒である水とを含有するものであり、必要に応じ、アルコール類、界面活性剤、無機微粒子等といった、その他の材料を更に配合してなるものである。そして、上記塗布液の調製法としては、例えば、PVA系樹脂を水溶液とした後、これに金属酸化物微粒子、および他の添加剤を配合する方法や、上記方法において他の添加剤を予め水溶液として配合する方法、さらに、PVA系樹脂と金属酸化物微粒子を混合しておき、これを水中に投入、撹拌しながら加熱し溶解した後、他の添加剤を配合する方法等があげられる。
(Preparation of coating solution for forming diffusion preventing layer)
As described above, the diffusion-preventing layer-forming coating solution of the present invention contains a PVA-based resin, metal oxide fine particles, and water as a solvent. Other materials such as an activator and inorganic fine particles are further blended. And as a preparation method of the said coating liquid, after making PVA resin into aqueous solution, for example, the method of mix | blending metal oxide microparticles | fine-particles and another additive in this, and other additives are previously aqueous solution in the said method In addition, a method in which a PVA resin and metal oxide fine particles are mixed, put into water, heated and dissolved while stirring, and then other additives are added.
 上記のようにして調製された拡散防止層形成用塗布液を、半導体基板表面の一部に塗布し、半導体基板表面に拡散防止層を形成する方法では、溶液の均一性に起因する塗工性、印刷の安定性が得られるようになる。すなわち、従来の有機溶剤系の拡散防止層形成用溶液では、金属酸化物微粒子の分散性が不充分なため、特にスピンコート法による塗布において均一な厚みの塗膜を形成し難いといった問題が発生しやすく、また、溶剤が揮発しやすいために、スクリーン印刷等により連続印刷を行った場合、印刷が不安定化しやすいといった問題がみられた。しかしながら本発明では、上記方法により、これらを解決することができる。 In the method of applying the coating solution for forming the diffusion preventing layer prepared as described above to a part of the surface of the semiconductor substrate and forming the diffusion preventing layer on the surface of the semiconductor substrate, the coating property resulting from the uniformity of the solution Printing stability can be obtained. In other words, conventional organic solvent-based anti-diffusion layer-forming solutions have insufficient dispersibility of metal oxide fine particles, and thus there is a problem that it is difficult to form a uniform-thickness coating film particularly by spin coating. In addition, since the solvent easily volatilizes, when continuous printing is performed by screen printing or the like, there has been a problem that printing tends to become unstable. However, in the present invention, these can be solved by the above method.
〔ドーパント拡散層付き半導体基板の製法〕
 上記拡散防止層形成用塗布液を用いて、半導体基板表面にドーパント拡散層を形成し、ドーパント拡散層付き半導体基板を得る方法としては、例えば、次の(I)、(II)に示す方法があげられる。
[Production method of semiconductor substrate with dopant diffusion layer]
Examples of a method for obtaining a semiconductor substrate with a dopant diffusion layer by forming a dopant diffusion layer on the surface of the semiconductor substrate using the coating solution for forming the diffusion prevention layer include the following methods (I) and (II): can give.
(I)半導体基板表面の一部に、拡散防止層形成用塗布液を塗布して拡散防止層を形成する工程と、上記拡散防止層付きの半導体基板の表面にドーパントを拡散させ、上記拡散防止層が形成されていない半導体基板の表層部をドーパント拡散層にする工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程とによって、ドーパント拡散層付き半導体基板を製造する方法。 (I) A step of forming a diffusion preventing layer by applying a coating solution for forming a diffusion preventing layer on a part of the surface of the semiconductor substrate, and a diffusion of the dopant on the surface of the semiconductor substrate with the diffusion preventing layer, thereby preventing the diffusion. A semiconductor substrate with a dopant diffusion layer is manufactured by a step of making a surface layer portion of a semiconductor substrate on which no layer is formed a dopant diffusion layer and a step of removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed. Method.
(II)半導体基板表面の一部に、ドーパント拡散用溶液を塗布した後、その塗布面上を覆うように、拡散防止層形成用塗布液を塗布し、拡散防止層を形成する工程と、熱処理を行い、上記塗布されたドーパント拡散用溶液中のドーパントを、半導体基板の表層部に拡散させて、ドーパント拡散層を形成する工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程とによって、ドーパント拡散層付き半導体基板を製造する方法。 (II) After applying the dopant diffusion solution to a part of the semiconductor substrate surface, coating the diffusion prevention layer forming coating solution so as to cover the coating surface, and forming a diffusion prevention layer, and heat treatment And a step of diffusing the dopant in the applied dopant diffusion solution to the surface layer portion of the semiconductor substrate to form a dopant diffusion layer, and a diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed. The method of manufacturing a semiconductor substrate with a dopant diffusion layer by the process to remove.
 図1は、(I)に示す製造工程を具体的に示すものであり、図示の(i)から(iv)の順で行われる。図1について詳しく説明すると、(i)は半導体基板1の一面に拡散防止層形成用塗布液を塗布して拡散防止層3を形成した状態を示しており、(ii)は雰囲気をドーパントガス(例えば、オキシ塩化リン(POCl3)ガスや三臭化ホウ素(BBr3)ガス)で満たし、拡散防止層3付きの半導体基板1の表面にドーパントガスを接触させた状態を示しており、(iii)は上記ガスの接触により、拡散防止層3が形成されていない面の半導体基板1の表層部にドーパント(例えば、リンまたはホウ素)を拡散させてドーパント拡散層11にした状態を示している。すなわち、拡散防止層3が形成された半導体基板1の面は、ドーパントの拡散が防がれたこととなる。そして、(iv)はドーパント拡散層11が形成された半導体基板1から拡散防止層3を除去した状態を示している。 FIG. 1 specifically shows the manufacturing process shown in (I), which is performed in the order of (i) to (iv). Referring to FIG. 1 in detail, (i) shows a state in which a diffusion prevention layer forming coating solution is applied to one surface of a semiconductor substrate 1 to form a diffusion prevention layer 3, and (ii) shows the atmosphere of a dopant gas ( For example, a state in which a dopant gas is brought into contact with the surface of the semiconductor substrate 1 with the diffusion prevention layer 3 filled with phosphorus oxychloride (POCl 3 ) gas or boron tribromide (BBr 3 ) gas) is shown. ) Shows a state in which the dopant (for example, phosphorus or boron) is diffused into the surface of the semiconductor substrate 1 on the surface where the diffusion prevention layer 3 is not formed by contacting the gas to form the dopant diffusion layer 11. That is, the diffusion of the dopant is prevented on the surface of the semiconductor substrate 1 on which the diffusion preventing layer 3 is formed. And (iv) has shown the state which removed the diffusion prevention layer 3 from the semiconductor substrate 1 in which the dopant diffusion layer 11 was formed.
 図2は、(II)に示す製造工程を具体的に示すものであり、図示の(i)から(iv)の順で行われる。図2について詳しく説明すると、(i)は半導体基板1の一面に、ドーパント拡散用溶液を塗布してドーパント溶液塗布層2a,2bを形成した状態を示しており、(ii)は上記ドーパント溶液塗布層2a,2bの上を覆うように、拡散防止層形成用塗布液を塗布し、拡散防止層3を形成した状態を示しており、(iii)は熱処理を行い、上記ドーパント溶液塗布層2a,2b中のドーパントを、半導体基板1の表層部に拡散させて、ドーパント拡散層11a,11bを形成した状態を示している。すなわち、熱処理によりドーパント溶液塗布層2a,2bから気化した一部のドーパントがアウト拡散現象(半導体基板1のドーパント溶液塗布層2a,2b形成面以外にドーパントを拡散させる現象)を発生させるのを、上記拡散防止層3が防ぎ、ドーパント拡散層11a,11bの形成にのみ、ドーパント拡散層11a,11b中のドーパントが使用されることとなる。そして、(iv)はドーパント拡散層11a,11bが形成された半導体基板1から拡散防止層3を除去した状態を示している。 FIG. 2 specifically shows the manufacturing process shown in (II), which is performed in the order of (i) to (iv) shown in the figure. Referring to FIG. 2 in detail, (i) shows a state in which a dopant diffusion solution is applied to one surface of the semiconductor substrate 1 to form dopant solution application layers 2a and 2b, and (ii) shows the application of the dopant solution. The diffusion preventing layer forming coating solution is applied so as to cover the layers 2a and 2b, and the diffusion preventing layer 3 is formed. (Iii) is a heat treatment, and the dopant solution coating layer 2a, The dopant in 2b is diffused in the surface layer portion of the semiconductor substrate 1 to form the dopant diffusion layers 11a and 11b. That is, some dopants vaporized from the dopant solution coating layers 2a and 2b by the heat treatment cause an out-diffusion phenomenon (a phenomenon in which the dopant is diffused outside the formation surface of the dopant solution coating layers 2a and 2b of the semiconductor substrate 1) The diffusion preventing layer 3 prevents the dopant in the dopant diffusion layers 11a and 11b from being used only for forming the dopant diffusion layers 11a and 11b. (Iv) shows a state in which the diffusion preventing layer 3 is removed from the semiconductor substrate 1 on which the dopant diffusion layers 11a and 11b are formed.
 なお、上記(II)に示す製造工程における熱処理とは、下記の乾燥工程、焼成工程、拡散工程を意味する。 The heat treatment in the production process shown in (II) above means the following drying process, firing process, and diffusion process.
 乾燥工程では、塗布層から水等の揮発成分の除去を行う。その条件は、適宜設定すればよいが、通常、20~300℃、特に100~200℃での温度条件下、1~60分、特に5~30分で行われる。乾燥方法についても特に限定されず、熱風乾燥、赤外線加熱乾燥、真空乾燥、などの公知の方法で行われる。 In the drying process, volatile components such as water are removed from the coating layer. The conditions may be set as appropriate, but are usually 1 to 60 minutes, particularly 5 to 30 minutes under a temperature condition of 20 to 300 ° C., particularly 100 to 200 ° C. The drying method is not particularly limited, and the drying is performed by a known method such as hot air drying, infrared heat drying, or vacuum drying.
 続く焼成工程では、電気炉等を用い、塗布層中の揮発成分の大半が除去される。かかる工程の条件は、溶液の組成や塗布層の厚さによって適宜調節する必要があるが、通常、300~1000℃、特に400~800℃の温度条件、1~120分、特に5~60分の時間で実施される。 In the subsequent firing step, most of the volatile components in the coating layer are removed using an electric furnace or the like. The conditions of such a process need to be adjusted as appropriate depending on the composition of the solution and the thickness of the coating layer, but are usually 300 to 1000 ° C., particularly 400 to 800 ° C., 1 to 120 minutes, particularly 5 to 60 minutes Will be implemented in the time.
 焼成工程の後、さらに、拡散工程で半導体基板中にドーパントが拡散され、拡散層が形成される。上記拡散工程では、焼成工程と同様に電気炉等を用い、800~1400℃の温度条件下、枚葉、あるいは複数枚を重ね合わせた状態で行われる。 After the firing step, the dopant is further diffused in the semiconductor substrate in the diffusion step, and a diffusion layer is formed. In the diffusion step, an electric furnace or the like is used in the same manner as in the firing step, and is performed under a temperature condition of 800 to 1400 ° C., in a state of single wafers or a plurality of stacked sheets.
 なお、これらの工程は一工程として連続して熱処理として実施することも可能であり、また、場合によっては、一部の工程を省略することも可能である。 It should be noted that these steps can be carried out as a heat treatment continuously as one step, and in some cases, some steps can be omitted.
 前記(I)、(II)に示す製造方法に用いられる半導体基板1としては、例えば、単結晶あるいは多結晶のp型シリコンからなるもの、単結晶あるいは多結晶のn型シリコンからなるもの、ガリウムドープしたp型あるいはn型のシリコンからなるもの等が用いられる。また、上記半導体基板1は、単結晶の場合、チョクラルスキー(CZ)法およびフロートゾーン(FZ)法のいずれの方法によって作製されたものであってもよい。さらに、上記半導体基板1を太陽電池の材料として用いる場合、上記半導体基板1の表面(受光面)には、可視光域の反射率を低減させるため、エッチング等により、微小な凹凸形状を形成することが好ましい。 Examples of the semiconductor substrate 1 used in the manufacturing method shown in the above (I) and (II) include those made of single crystal or polycrystalline p-type silicon, those made of single crystal or polycrystalline n-type silicon, gallium A material made of doped p-type or n-type silicon is used. In the case of a single crystal, the semiconductor substrate 1 may be manufactured by any one of the Czochralski (CZ) method and the float zone (FZ) method. Furthermore, when the semiconductor substrate 1 is used as a material for a solar cell, a minute uneven shape is formed on the surface (light-receiving surface) of the semiconductor substrate 1 by etching or the like in order to reduce the reflectance in the visible light region. It is preferable.
 そして、上記(I)、(II)に示す方法において、本発明の拡散防止層形成用塗布液を用いると、所望の個所以外へのドーパントの拡散を防ぎつつ、半導体基板に、効果的にドーパント拡散層を形成することができるようになる。 And in the method shown in said (I) and (II), when the spreading | diffusion prevention layer forming coating liquid of this invention is used, a dopant is effectively made into a semiconductor substrate, preventing the spreading | diffusion of a dopant to other than a desired location. A diffusion layer can be formed.
 また、上記(I)、(II)に示す方法における、本発明の拡散防止層形成用塗布液の塗工方法としては、スピンコート法、スプレー法、オフセット印刷、スクリーン印刷等の各種塗工法が適用される。なかでも、スクリーン印刷は、広範囲で均一な塗膜の形成が容易であり、しかも上記塗布液が水系であることから、連続印刷を行っても印刷が不安定化しにくいといった利点があるため、好ましい。 In addition, in the methods shown in (I) and (II) above, various coating methods such as spin coating, spraying, offset printing, and screen printing can be used as the coating method of the coating solution for forming the diffusion preventing layer of the present invention. Applied. Among these, screen printing is preferable because it is easy to form a uniform coating film in a wide range, and since the coating solution is water-based, there is an advantage that printing is not easily destabilized even if continuous printing is performed. .
 ところで、上記(I)に示す方法において、ガスの接触によりドーパントを拡散させる方法の他、ドーパント拡散用溶液を塗布する方法によりドーパントを拡散させてもよい。この溶液には、例えば、リン酸類やホウ酸類等の水溶液が用いられる。 By the way, in the method shown in (I) above, the dopant may be diffused by a method of applying a dopant diffusion solution in addition to a method of diffusing the dopant by gas contact. For example, an aqueous solution of phosphoric acid or boric acid is used for this solution.
 また、上記(II)に示す方法において使用されるドーパント拡散用溶液も同様に、リン酸類やホウ酸類等の水溶性化合物が用いられる。そして、上記ドーパント拡散用溶液には、その塗工性,ドーパント溶液塗布層の形成性等の観点から、PVA系樹脂、アルコール類、界面活性剤、無機微粒子等といった材料を配合することもできる。なお、上記ドーパント拡散用溶液の塗工方法としては、通常スピンコート法、オフセット印刷、スクリーン印刷等の各種塗工法が適用される。 Also, water-soluble compounds such as phosphoric acids and boric acids are used for the dopant diffusion solution used in the method shown in (II) above. The dopant diffusing solution may be blended with materials such as PVA resins, alcohols, surfactants, inorganic fine particles, and the like from the viewpoints of coating properties, forming properties of the dopant solution coating layer, and the like. In addition, as a coating method of the said dopant diffusion solution, various coating methods, such as a spin coat method, offset printing, and screen printing, are normally applied.
 上記(I)、(II)に示す方法において、ドーパント拡散層が形成された半導体基板から拡散防止層を除去する方法としては、例えば、フッ化水素酸(HF)への浸漬処理を行うことが好ましい。かかる浸漬処理において、フッ化水素酸は、通常、3~50重量%の水溶液として用いられ、さらに、処理効率を向上させる目的で、上記浸漬処理を、加温したり、超音波を照射したりしながら行うことも、好ましい実施態様である。なお、フッ化水素酸への浸漬処理により、ドーパント拡散層表面に形成されたドーパントガラス(リンガラス、ホウ素ガラス等)も除去される。 In the methods shown in (I) and (II) above, as a method for removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed, for example, an immersion treatment in hydrofluoric acid (HF) is performed. preferable. In such immersion treatment, hydrofluoric acid is usually used as an aqueous solution of 3 to 50% by weight, and for the purpose of improving the treatment efficiency, the immersion treatment is heated or irradiated with ultrasonic waves. This is also a preferred embodiment. The dopant glass (phosphorus glass, boron glass, etc.) formed on the surface of the dopant diffusion layer is also removed by the immersion treatment in hydrofluoric acid.
 また、上記フッ化水素酸(HF)への浸漬処理を行った後、塩基性液体への浸漬処理を行ってもよい。かかる処理により、金属酸化物の残渣を除去することが可能である。かかる塩基性液体としては、例えば、水酸化ナトリウム水溶液や、水酸化カリウム水溶液等があげられる。塩基性液体の濃度に関しては、作業性の点で通常0.1~10重量%であり、更に、基板表面の過度のエッチング防止の点で、好ましくは0.02~5重量%、特に好ましくは0.2~1重量%である。さらに、基板表面の過度のエッチング防止の点で作業実施温度は50℃以下が好ましく、より好ましくは室温であり、具体的には20~30℃である。また、基板表面の過度のエッチング防止の点で塩基性液体への浸漬時間は5分以下が好ましく、より好ましくは1分以下である。 Further, after the immersion treatment in hydrofluoric acid (HF), the immersion treatment in a basic liquid may be performed. By such treatment, it is possible to remove metal oxide residues. Examples of the basic liquid include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution. The concentration of the basic liquid is usually 0.1 to 10% by weight in terms of workability, and preferably 0.02 to 5% by weight, particularly preferably in terms of preventing excessive etching of the substrate surface. 0.2 to 1% by weight. Furthermore, the working temperature is preferably 50 ° C. or less, more preferably room temperature, specifically 20 to 30 ° C. in terms of preventing excessive etching of the substrate surface. In addition, the immersion time in the basic liquid is preferably 5 minutes or less, more preferably 1 minute or less in terms of preventing excessive etching of the substrate surface.
 なお、ドーパント拡散層付き半導体基板を備えた太陽電池の製法において、そのドーパント拡散層付き半導体基板を、上記(I)、(II)に示すような方法により形成すると、効率的に上記太陽電池を製造することができる。 In addition, in the manufacturing method of the solar cell provided with the semiconductor substrate with the dopant diffusion layer, when the semiconductor substrate with the dopant diffusion layer is formed by the method as shown in the above (I) and (II), the solar cell is efficiently produced. Can be manufactured.
 そして、上記(I)、(II)に示すような方法により製造されたドーパント拡散層付き半導体基板は、pn接合構造が良好に形成されていることから、リーク電流の発生を抑えることができる。そのため、上記方法により製造されたドーパント拡散層付き半導体基板を、太陽電池をはじめ各種の半導体装置に組み込むことにより、半導体装置の品質向上に寄与することができる。なお、上記半導体装置としては、例えば、太陽電池、ダイオード、トランジスタ等があげられる。 And since the semiconductor substrate with a dopant diffused layer manufactured by the method as shown to said (I) and (II) has a favorable pn junction structure, generation | occurrence | production of a leakage current can be suppressed. Therefore, incorporating the semiconductor substrate with a dopant diffusion layer manufactured by the above method into various semiconductor devices including solar cells can contribute to improving the quality of the semiconductor device. Note that examples of the semiconductor device include a solar cell, a diode, and a transistor.
 つぎに、実施例について、比較例と併せて説明する。ただし、本発明は、その要旨を超えない限り、これら実施例に限定されるものではない。なお、例中、「部」、「%」とあるのは、断りのない限り重量基準を意味する。
 また、実施例において超純水とは、TOC1.0ppb以下、電気抵抗率が18.2MΩ・cmの水を意味する。
Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded. In the examples, “parts” and “%” mean weight basis unless otherwise specified.
In the examples, ultrapure water means water having a TOC of 1.0 ppb or less and an electrical resistivity of 18.2 MΩ · cm.
 まず、実施例および比較例に先立ち、未変性PVA(a)(ケン化度78モル%、平均重合度1400)と、変性PVA(a)(ケン化度98.9モル%、平均重合度350、変性度8モル%の、1,2-ジオール構造含有PVA)とを準備した。上記変性PVA(a)は、以下のようにして作製した。 First, prior to Examples and Comparative Examples, unmodified PVA (a) (saponification degree 78 mol%, average polymerization degree 1400) and modified PVA (a) (saponification degree 98.9 mol%, average polymerization degree 350). 1, 2-diol structure-containing PVA) having a modification degree of 8 mol%. The modified PVA (a) was produced as follows.
<変性PVA(a)の作製>
 還流冷却器、滴下漏斗、撹拌機を備えた反応容器に、酢酸ビニル1500部、メタノール800部、3,4-ジアセトキシ-1-ブテン240部を仕込み、アソビスイソブチロニトリルを0.05モル%(対仕込み酢酸ビニル)投入し、撹拌しながら室素気流下で温度を上昇させ、還流させながら重合を開始した。酢酸ビニルの重合率が87%となった時点で、m-ジニトロベンセンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液とした。
<Production of modified PVA (a)>
A reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer was charged with 1500 parts of vinyl acetate, 800 parts of methanol, and 240 parts of 3,4-diacetoxy-1-butene, and 0.05 mol% of asobisisobutyronitrile. (Various charged vinyl acetate) was charged, the temperature was raised under a room air flow while stirring, and polymerization was started while refluxing. When the polymerization rate of vinyl acetate reached 87%, m-dinitrobenzene was added to complete the polymerization, and then unreacted vinyl acetate monomer was removed out of the system by blowing methanol vapor. A combined methanol solution was obtained.
 ついで、上記メタノール溶液をさらにメタノールで希釈し、濃度40%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル構造単位および3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して8ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的とする変性PVA(a)を得た。 Next, the methanol solution was further diluted with methanol, adjusted to a concentration of 40%, charged into a kneader, and a 2% methanol solution of sodium hydroxide was added to the vinyl acetate structural unit in the copolymer while maintaining the solution temperature at 40 ° C. Further, saponification was carried out by adding 8 mmol with respect to 1 mol of the total amount of 3,4-diacetoxy-1-butene structural units. As saponification progressed, when saponified substances were precipitated and became particulate, they were separated by filtration, washed well with methanol and dried in a hot air dryer to obtain the desired modified PVA (a).
 得られた変性PVA(a)のケン化度は、残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの加水分解に要するアルカリ消費量にて分析したところ、98.9モル%であった。また、平均重合度は、JIS K 6726に準じて分析を行ったところ、350であった。また、前記一般式(1)で表される1,2-ジオール構造単位の含有量は、1H-NMR(300MHzプロトンNMR、DMSO-d6溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、8モル%であった。 The degree of saponification of the obtained modified PVA (a) was 98.9 mol% when analyzed by the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene. The average degree of polymerization was 350 when analyzed according to JIS K 6726. The content of the 1,2-diol structural unit represented by the general formula (1) is 1 H-NMR (300 MHz proton NMR, DMSO-d6 solution, internal standard substance: tetramethylsilane, 50 ° C.). It was 8 mol% when it computed from the integrated value measured in this way.
〔実施例1〕
<拡散防止層形成用塗布液(α)の調製>
 超純水36.5部に、変性PVA(a)22部を加え、加熱撹拌しながら溶解し、溶液(α1)を作製した。また、グリセリン40部に、界面活性剤として2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエチレンオキサイド付加物(日信化学工業社製、サーフィノール420)0.5部を添加して、溶液(α2)を作製した。かかる溶液(α1)に、酸化アルミニウム微粒子(大明化学工業社製、タイミクロンTM-300、BET比表面積220m2/g、平均一次粒径7nm(BET比表面積値より算出))1.0部を添加し、さらに溶液(α2)を添加し、撹拌して、水系の拡散防止層形成用塗布液(α)を調製した。
[Example 1]
<Preparation of coating solution (α) for forming diffusion preventing layer>
22 parts of modified PVA (a) was added to 36.5 parts of ultrapure water, and dissolved while stirring under heating to prepare a solution (α1). Further, 40 parts of glycerin, ethylene oxide adduct of 2,4,7,9-tetramethyl-5-decyne-4,7-diol as a surfactant (Shinfin Chemical 420, Surfynol 420) 5 parts were added to prepare a solution (α2). In this solution (α1), 1.0 part of aluminum oxide fine particles (manufactured by Daimei Chemical Industry Co., Ltd., Tymicron TM-300, BET specific surface area 220 m 2 / g, average primary particle size 7 nm (calculated from BET specific surface area value)) Then, the solution (α2) was further added and stirred to prepare an aqueous diffusion barrier layer forming coating solution (α).
<半導体基板への塗布>
 上記作製の拡散防止層形成用塗布液(α)を用い、半導体基板(p型単結晶シリコン、アルカリエッチングテクスチャ付き、156mm角、200μm厚)の片面に、下記の印刷条件にてスクリーン印刷を行い、拡散防止層の形成を行った(図1(i)参照)。
(印刷条件)
 印刷機:ニューロング精密工業社製「LS-34GX」
  スキージー:ニューロング精密工業社製NMスキージー(硬度:60)
  スキージー角:80度
  スクレッパー:ニューロング精密工業社製NMスキージー(硬度:60)
  スクレッパー角:86度
  印圧;0.2MPa
 スクリーン版:東京プロセスサービス社製
  版サイズ:450mm角
  メッシュ種:V330
  塗布厚:2μm(乾燥後)
  パターン;ウエハ全面印刷
 印刷環境:23℃、60%RH
 乾燥条件:150℃、2分
<Application to semiconductor substrate>
Screen-printing was performed on one side of a semiconductor substrate (p-type single crystal silicon, with alkali etching texture, 156 mm square, 200 μm thickness) using the coating liquid for forming the diffusion prevention layer (α) prepared above under the following printing conditions. Then, a diffusion preventing layer was formed (see FIG. 1 (i)).
(Printing conditions)
Printing machine: “LS-34GX” manufactured by Neurong Seimitsu Kogyo Co., Ltd.
Squeegee: NM squeegee (Hardness: 60) manufactured by Neurong Precision Industry Co., Ltd.
Squeegee angle: 80 degrees Scraper: NM squeegee (Hardness: 60) made by Neurong Seimitsu Kogyo
Scraper angle: 86 degrees Printing pressure; 0.2 MPa
Screen version: manufactured by Tokyo Process Service Co., Ltd. Plate size: 450 mm square Mesh type: V330
Application thickness: 2 μm (after drying)
Pattern: Wafer whole surface printing Printing environment: 23 ° C, 60% RH
Drying conditions: 150 ° C, 2 minutes
<拡散>
 次に、POCl3(オキシ塩化リン)を含む840℃の雰囲気の横型チューブ式電気炉中の治具に、上記拡散防止層が形成された半導体基板を5mm間隔で10枚配置して、約20分間リン拡散(熱拡散)を行った。その後、46重量%フッ化水素酸(HF)水溶液(超純水にて作製)中に3分間浸漬することにより、PSG(リンガラス)層、および拡散防止層を除去した後、超純水による洗浄および150℃乾燥(10分間)を行った(図1(ii)~(iv)参照)。
<Diffusion>
Next, 10 semiconductor substrates on which the diffusion preventing layer is formed are arranged at intervals of 5 mm on a jig in a horizontal tube electric furnace containing POCl 3 (phosphorus oxychloride) at 840 ° C. Phosphorus diffusion (thermal diffusion) was performed for a minute. Thereafter, the PSG (phosphorus glass) layer and the diffusion prevention layer were removed by immersing in a 46 wt% hydrofluoric acid (HF) aqueous solution (prepared with ultra pure water) for 3 minutes, and then with ultra pure water. Washing and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
<表面抵抗値の測定>
 抵抗測定器(三菱化学アナリテック社製、ロレスター(PSPプローブ使用))を用い、その4探針を、上記拡散処理後の半導体基板表面の任意の個所にあて、表面抵抗値を測定した。
<Measurement of surface resistance value>
Using a resistance measuring instrument (manufactured by Mitsubishi Chemical Analytech Co., Ltd., Lorester (using a PSP probe)), the surface resistance value was measured by placing the four probes on arbitrary positions on the surface of the semiconductor substrate after the diffusion treatment.
<測定結果>
 上記拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。
<Measurement results>
The surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 Ω / □, whereas the surface resistance of the surface on which the coating solution for forming the diffusion preventing layer was applied. Was 1000Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
〔実施例2〕
 実施例1で使用の拡散防止層形成用塗布液(α)において、超純水を31.5部用い、グリセリンに代えてエチレングリコールを用い、酸化アルミニウム微粒子を6.0部用いた以外は同様にして、水系の拡散防止層形成用塗布液を調製した。そして、この拡散防止層形成用塗布液を用いたこと以外は、実施例1と同様にして、「半導体基板への塗布」、「拡散」、「表面抵抗値の測定」を行った。
[Example 2]
Same as Example 1, except that 31.5 parts of ultrapure water was used in the coating solution (α) for forming the diffusion preventing layer used in Example 1, ethylene glycol was used instead of glycerin, and 6.0 parts of aluminum oxide fine particles were used. Thus, a water-based anti-diffusion layer forming coating solution was prepared. Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this coating solution for forming the diffusion prevention layer was used.
<測定結果>
 上記拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。
<Measurement results>
The surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 Ω / □, whereas the surface resistance of the surface on which the coating solution for forming the diffusion preventing layer was applied. Was 1000Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
〔実施例3〕
 実施例1で使用の拡散防止層形成用塗布液(α)において、変性PVA(a)に代えて、前記の未変性PVA(a)(ケン化度78モル%、平均重合度1400)を用い、拡散防止層形成用塗布液を調製した。そして、この拡散防止層形成用塗布液を用いたこと以外は、実施例1と同様にして、「半導体基板への塗布」、「拡散」、「表面抵抗値の測定」を行った。
Example 3
In the coating liquid (α) for forming the diffusion preventing layer used in Example 1, the above-mentioned unmodified PVA (a) (saponification degree 78 mol%, average polymerization degree 1400) was used instead of the modified PVA (a). Then, a coating solution for forming a diffusion preventing layer was prepared. Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this coating solution for forming the diffusion prevention layer was used.
 その結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。 As a result, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □, whereas the surface resistance of the surface on which the coating solution for forming the diffusion preventing layer was applied. The surface resistance was 1000Ω / □. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
〔実施例4〕
 実施例1で使用の拡散防止層形成用塗布液(α)において、変性PVA(a)に代えて、前記の未変性PVA(a)(ケン化度78モル%、平均重合度1400)を用い、超純水を31.5部用い、グリセリンに代えてエチレングリコールを用い、酸化アルミニウム微粒子を6.0部用いた以外は同様にして、水系の拡散防止層形成用塗布液を調製した。そして、この拡散防止層形成用塗布液を用いたこと以外は、実施例1と同様にして、「半導体基板への塗布」、「拡散」、「表面抵抗値の測定」を行った。
Example 4
In the coating liquid (α) for forming the diffusion preventing layer used in Example 1, the above-mentioned unmodified PVA (a) (saponification degree 78 mol%, average polymerization degree 1400) was used instead of the modified PVA (a). A water-based anti-diffusion layer forming coating solution was prepared in the same manner except that 31.5 parts of ultrapure water was used, ethylene glycol was used instead of glycerin, and 6.0 parts of aluminum oxide fine particles were used. Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this coating solution for forming the diffusion prevention layer was used.
<測定結果>
 上記拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。
<Measurement results>
The surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60 Ω / □, whereas the surface resistance of the surface on which the coating solution for forming the diffusion preventing layer was applied. Was 1000Ω / □. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
〔実施例5〕
 実施例2で使用の拡散防止層形成用塗布液を用いて、実施例1と同様にして「半導体基板への塗布」、「拡散」を行った。
 その後、得られた半導体基板を、46重量%フッ化水素酸(HF)水溶液中に3分間浸漬し、超純水による洗浄後、充分に乾燥させた。続いて、後処理として、上記半導体基板を、NaOH水溶液(3重量%(超純水にて作製))に30秒浸漬した。このようにして、PSG(リンガラス)層、および拡散防止層を除去した後、超純水による洗浄および150℃乾燥(10分間)を行った(図1(ii)~(iv)参照)。
Example 5
Using the coating liquid for forming the diffusion prevention layer used in Example 2, “application to a semiconductor substrate” and “diffusion” were performed in the same manner as in Example 1.
Thereafter, the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in an aqueous NaOH solution (3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 As a result of performing “measurement of the surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. In contrast, the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
〔実施例6〕
 実施例4で使用の拡散防止層形成用塗布液を用いて、実施例1と同様にして「半導体基板への塗布」、「拡散」を行った。
 その後、得られた半導体基板を、46重量%フッ化水素酸(HF)水溶液中に3分間浸漬し、超純水による洗浄後、充分に乾燥させた。続いて、後処理として、上記半導体基板を、NaOH水溶液(3重量%(超純水にて作製))に30秒浸漬した。このようにして、PSG(リンガラス)層、および拡散防止層を除去した後、超純水による洗浄および150℃乾燥(10分間)を行った(図1(ii)~(iv)参照)。
Example 6
Using the coating solution for forming a diffusion preventing layer used in Example 4, “application to a semiconductor substrate” and “diffusion” were performed in the same manner as in Example 1.
Thereafter, the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in an aqueous NaOH solution (3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 As a result of performing “measurement of the surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. In contrast, the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000Ω / □. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
〔実施例7〕
 実施例5において、NaOH水溶液による後処理を、KOH水溶液(3重量%(超純水にて作製))に代えて行った。それ以外は実施例5と同様にして「半導体基板への塗布」、「拡散」、「洗浄処理」を行った。
Example 7
In Example 5, post-treatment with an aqueous NaOH solution was performed in place of an aqueous KOH solution (3 wt% (prepared with ultrapure water)). Otherwise, “application to semiconductor substrate”, “diffusion”, and “cleaning treatment” were performed in the same manner as in Example 5.
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 As a result of performing “measurement of the surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. In contrast, the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
〔実施例8〕
 実施例6において、NaOH水溶液による後処理を、KOH水溶液(3重量%(超純水にて作製))に代えて行った。それ以外は実施例6と同様にして「半導体基板への塗布」、「拡散」、「洗浄処理」を行った。
Example 8
In Example 6, post-treatment with an aqueous NaOH solution was performed in place of an aqueous KOH solution (3 wt% (prepared with ultrapure water)). Other than that, “application to semiconductor substrate”, “diffusion”, and “cleaning treatment” were performed in the same manner as in Example 6.
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 As a result of performing “measurement of the surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. In contrast, the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000Ω / □. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
〔実施例9〕
 実施例7において、拡散防止層形成用塗布液中の酸化アルミ二ウムに代えて酸化チタン(日本エアロジル社製、AEROXIDE TiO2 P-25、平均一次粒径30nm)を用いた。それ以外は実施例7と同様にして「半導体基板への塗布」、「拡散」、「洗浄処理」を行った。
Example 9
In Example 7, titanium oxide (manufactured by Nippon Aerosil Co., Ltd., AEROXIDE TiO 2 P-25, average primary particle size 30 nm) was used in place of aluminum oxide in the coating solution for forming the diffusion prevention layer. Other than that, “application to semiconductor substrate”, “diffusion”, and “cleaning treatment” were performed in the same manner as in Example 7.
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化チタン残渣が薄く、綺麗に洗浄できた。 As a result of performing “measurement of the surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. In contrast, the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the titanium oxide residue after washing was thin and could be washed cleanly.
〔実施例10〕
 超純水29.5部に、変性PVA(a)18部を加え、加熱撹拌しながら溶解し、溶液(ε1)を作製した。また、エチレングリコール40部に、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエチレンオキサイド付加物(日信化学工業社製、サーフィノール420)0.5部を添加して、溶液(ε2)を作製した。かかる溶液(ε1)に、酸化アルミニウム微粒子(大明化学工業社製、タイミクロンTM-300、BET比表面積220m2/g、平均一次粒径7nm(BET比表面積値より算出))12.0部を添加し、さらに溶液(ε2)を添加し、撹拌して、水系の拡散防止層形成用塗布液(ε)を調製した。そして、この拡散防止層形成用塗布液(ε)を用いたこと以外は、実施例1と同様にして、「半導体基板への塗布」、「拡散」を行った。
 その後、得られた半導体基板を、46重量%フッ化水素酸(HF)水溶液中に3分間浸漬し、超純水による洗浄後、充分に乾燥させた。続いて、後処理として、上記半導体基板を、KOH水溶液(3重量%(超純水にて作製))に30秒浸漬した。このようにして、PSG(リンガラス)層、および拡散防止層を除去した後、超純水による洗浄および150℃乾燥(10分間)を行った(図1(ii)~(iv)参照)。
Example 10
18 parts of modified PVA (a) was added to 29.5 parts of ultrapure water and dissolved while stirring under heating to prepare a solution (ε1). In addition, 0.5 part of ethylene oxide adduct of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Shinfin Chemical Co., Surfynol 420) is added to 40 parts of ethylene glycol. The solution (ε2) was prepared by addition. In this solution (ε1), 12.0 parts of aluminum oxide fine particles (manufactured by Daimei Chemical Industry Co., Ltd., Tymicron TM-300, BET specific surface area 220 m 2 / g, average primary particle size 7 nm (calculated from BET specific surface area value)) Then, a solution (ε2) was further added and stirred to prepare an aqueous diffusion barrier layer forming coating solution (ε). And "application | coating to a semiconductor substrate" and "diffusion" were performed like Example 1 except having used this coating liquid (epsilon) for diffusion prevention layer formation.
Thereafter, the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in a KOH aqueous solution (3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、上記拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 Then, as a result of performing “measurement of surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. On the other hand, the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was 1000Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
〔実施例11〕
 実施例10で使用の拡散防止層形成用塗布液(ε)において、超純水の配合量を28.5部とし、エチレングリコールの配合量を35部とし、酸化アルミニウム微粒子としてタイミクロンTM-300を6.0部とともに、タイミクロンTM-DA(大明化学工業社製、BET比表面積13.5m2/g、平均一次粒径100nm)12.0部を配合した。それ以外は実施例10と同様にして、「半導体基板への塗布」、「拡散」、「洗浄処理」を行った。
Example 11
In the coating solution (ε) for forming the diffusion preventing layer used in Example 10, the amount of ultrapure water was 28.5 parts, the amount of ethylene glycol was 35 parts, and Tymicron TM-300 as aluminum oxide fine particles. And 12.0 parts of Tymicron TM-DA (manufactured by Daimei Chemical Industries, BET specific surface area 13.5 m 2 / g, average primary particle size 100 nm). Other than that was carried out similarly to Example 10, and performed "application | coating to a semiconductor substrate", "diffusion", and "cleaning process."
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、上記拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 Then, as a result of performing “measurement of surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. On the other hand, the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was 1000Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
〔実施例12〕
 実施例11で使用の拡散防止層形成用塗布液において、タイミクロンTM-300の配合量を12.0部とし、タイミクロンTM-DAの配合量を6.0部とした。それ以外は実施例11と同様にして、「半導体基板への塗布」、「拡散」、「洗浄処理」を行った。
Example 12
In the coating solution for forming an anti-diffusion layer used in Example 11, the amount of Tymicron TM-300 was 12.0 parts, and the amount of Tymicron TM-DA was 6.0 parts. Other than that was carried out similarly to Example 11, and performed "application | coating to a semiconductor substrate", "diffusion", and "cleaning process."
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、上記拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 Then, as a result of performing “measurement of surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. On the other hand, the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was 1000Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
〔実施例13〕
 実施例10で使用の拡散防止層形成用塗布液を用い、半導体基板(p型単結晶シリコン、アルカリエッチングテクスチャ付き、156mm角、200μm厚)の片面に、下記の印刷条件にてスクリーン印刷を行い、拡散防止層の形成を行った。それ以外は実施例1と同様にして「拡散」、「表面抵抗値の測定」を行った。
(印刷条件)
 印刷機:ニューロング精密工業社製「LS-34GX」
  スキージー:ニューロング精密工業社製NMスキージー(硬度:60)
  スキージー角:80度
  スクレッパー:ニューロング精密工業社製NMスキージー(硬度:60)
  スクレッパー角:86度
  印圧;0.2MPa
 スクリーン版:東京プロセスサービス社製
  版サイズ:450mm角
  メッシュ種:V330
  塗布厚:2μm(乾燥後)
  パターン;ウエハ全面印刷
 印刷環境:23℃、60%RH
 乾燥条件:150℃、10分
Example 13
Using the coating liquid for forming the diffusion preventing layer used in Example 10, screen printing was performed on one side of a semiconductor substrate (p-type single crystal silicon, with alkali etching texture, 156 mm square, 200 μm thickness) under the following printing conditions. Then, a diffusion preventing layer was formed. Otherwise, “diffusion” and “measurement of surface resistance” were performed in the same manner as in Example 1.
(Printing conditions)
Printing machine: “LS-34GX” manufactured by Neurong Seimitsu Kogyo Co., Ltd.
Squeegee: NM squeegee (Hardness: 60) manufactured by Neurong Precision Industry Co., Ltd.
Squeegee angle: 80 degrees Scraper: NM squeegee (Hardness: 60) made by Neurong Seimitsu Kogyo
Scraper angle: 86 degrees Printing pressure; 0.2 MPa
Screen version: manufactured by Tokyo Process Service Co., Ltd. Plate size: 450 mm square Mesh type: V330
Application thickness: 2 μm (after drying)
Pattern: Wafer whole surface printing Printing environment: 23 ° C, 60% RH
Drying conditions: 150 ° C., 10 minutes
<測定結果>
 拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。
<Measurement results>
The surface resistance of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □, whereas the surface resistance of the surface coated with the coating solution for forming the diffusion preventing layer was It was 1000Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate.
〔実施例14〕
 実施例10で使用の拡散防止層形成用塗布液を用いて、実施例13と同様の印刷条件で拡散防止層の形成を行った後、実施例1と同様にして「拡散」を行った。
 その後、得られた半導体基板を、46重量%フッ化水素酸(HF)水溶液中に3分間浸漬し、超純水による洗浄後、充分に乾燥させた。続いて、後処理として、上記半導体基板を、KOH水溶液(0.3重量%(超純水にて作製))に30秒浸漬した。このようにして、PSG(リンガラス)層、および拡散防止層を除去した後、超純水による洗浄および150℃乾燥(10分間)を行った(図1(ii)~(iv)参照)。
Example 14
After the diffusion preventing layer was formed under the same printing conditions as in Example 13 using the diffusion preventing layer forming coating solution used in Example 10, “diffusion” was performed in the same manner as in Example 1.
Thereafter, the obtained semiconductor substrate was immersed in a 46 wt% hydrofluoric acid (HF) aqueous solution for 3 minutes, washed with ultrapure water, and sufficiently dried. Subsequently, as a post-treatment, the semiconductor substrate was immersed in a KOH aqueous solution (0.3 wt% (produced with ultrapure water)) for 30 seconds. In this way, after removing the PSG (phosphorus glass) layer and the diffusion prevention layer, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 1 (ii) to (iv)).
 そして、実施例1と同様にして「表面抵抗値の測定」を行った結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗が60Ω/□であったのに対し、拡散防止層形成用塗布液を塗布した面の表面抵抗は1000Ω/□以上であった。したがって、拡散防止層による拡散防止性能により、半導体基板の拡散防止層形成面へのリンの拡散が完全に防がれたことがわかる。また、洗浄後の酸化アルミ二ウム残渣が薄く、綺麗に洗浄できた。 As a result of performing “measurement of the surface resistance value” in the same manner as in Example 1, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □. In contrast, the surface resistance of the surface coated with the diffusion-preventing layer forming coating solution was 1000 Ω / □ or more. Therefore, it can be seen that the diffusion preventing property by the diffusion preventing layer completely prevents the diffusion of phosphorus to the diffusion preventing layer forming surface of the semiconductor substrate. In addition, the aluminum oxide residue after washing was thin and could be washed cleanly.
 ここで、実施例1~14における、拡散防止層形成用塗布液材料(部)、後処理の有無、表面抵抗値の測定結果を、下記の表1にまとめて示す。 Here, the measurement results of the coating solution material (part) for forming the diffusion preventing layer, the presence or absence of post-treatment, and the surface resistance value in Examples 1 to 14 are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〔比較例1〕
<拡散防止層形成用塗布液(β)の調製>
 ブチルカルビトールアセテート80部に、エチルセルロース(東京化成製、エチルセルロース 18-22mPa・s、5% in Toluene+Ethanol(80:20)at25℃)19部と、酸化アルミニウム微粒子(大明化学工業社製、タイミクロンTM-300)1.0部とを添加し、撹拌して、有機溶剤系の拡散防止層形成用塗布液(β)を作製した。
[Comparative Example 1]
<Preparation of coating solution (β) for formation of diffusion preventing layer>
80 parts of butyl carbitol acetate, 19 parts of ethyl cellulose (manufactured by Tokyo Chemical Industry Co., Ltd., ethyl cellulose 18-22 mPa · s, 5% in Toluene + Ethanol (80:20) at 25 ° C.), and aluminum oxide fine particles (manufactured by Taimei Chemical Co., Ltd., Tymicron ™) -300) 1.0 part was added and stirred to prepare an organic solvent-based anti-diffusion layer forming coating solution (β).
 そして、この拡散防止層形成用塗布液(β)を用いたこと以外は、実施例1と同様にして、「半導体基板への塗布」、「拡散」、「表面抵抗値の測定」を行った。 Then, “application to semiconductor substrate”, “diffusion”, and “measurement of surface resistance value” were performed in the same manner as in Example 1 except that this diffusion-preventing layer forming coating solution (β) was used. .
 その結果、拡散処理後の半導体基板の、拡散防止層形成用塗布液を塗布しなかった面の表面抵抗は60Ω/□であったが、拡散防止層形成用塗布液を塗布した面の表面抵抗は60~1000Ω/□の間でばらついていた。したがって、この拡散防止層は、充分にリンの拡散を防ぐことができなかったことがわかる。 As a result, the surface resistance of the surface of the semiconductor substrate after the diffusion treatment on which the coating solution for forming the diffusion preventing layer was not applied was 60Ω / □, but the surface resistance of the surface to which the coating solution for forming the diffusion preventing layer was applied. Varied between 60 and 1000 Ω / □. Therefore, it can be seen that this diffusion preventing layer could not sufficiently prevent the diffusion of phosphorus.
〔実施例15〕
<ホウ素拡散液(γ)の調製>
 超純水42.5部に、変性PVA(a)15部を加え、加熱撹拌しながら溶解し、溶液(γ1)を作製した。また、グリセリン40部に、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエチレンオキサイド付加物(日信化学工業社製、サーフィノール420)0.5部を添加して、溶液(γ2)を作製した。かかる溶液(γ1)に、ホウ酸2.0部を添加し、さらに溶液(γ2)を添加し、撹拌して、ホウ素拡散液(γ)を調製した。
Example 15
<Preparation of boron diffusion liquid (γ)>
15 parts of modified PVA (a) was added to 42.5 parts of ultrapure water, and dissolved while heating and stirring to prepare a solution (γ1). Also, 0.5 part of 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethylene oxide adduct (Shinfin Chemical Co., Surfinol 420) is added to 40 parts of glycerin. Thus, a solution (γ2) was prepared. To this solution (γ1), 2.0 parts of boric acid was added, and further the solution (γ2) was added and stirred to prepare a boron diffusion solution (γ).
<リン拡散液(δ)の調製>
 超純水20.5部に、変性PVA(a)22部を加え、加熱撹拌しながら溶解し、溶液(δ1)を作製した。また、グリセリン40部に、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエチレンオキサイド付加物(日信化学工業社製、サーフィノール420)0.5部と、SiO2水溶液15部(フジミインコーポレーテッド社製、Planerlite4101、SiO2 20%、水80%)を添加して、溶液(δ2)を作製した。かかる溶液(δ1)に、リン酸2.0部を添加し、さらに溶液(δ2)を添加し、撹拌して、リン拡散液(δ)を調製した。
<Preparation of phosphorus diffusion liquid (δ)>
22 parts of modified PVA (a) was added to 20.5 parts of ultrapure water and dissolved while stirring under heating to prepare a solution (δ1). In addition, 40 parts of glycerin, 0.5 parts of ethylene oxide adduct of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (manufactured by Nissin Chemical Industry Co., Ltd., Surfynol 420), A solution (δ2) was prepared by adding 15 parts of SiO 2 aqueous solution (Fujimi Incorporated, Planerlite 4101, SiO 2 20%, water 80%). To this solution (δ1), 2.0 parts of phosphoric acid was added, and further the solution (δ2) was added and stirred to prepare a phosphorus diffusion solution (δ).
<半導体基板への塗布>
 上記調製のホウ素拡散液(γ)を用い、半導体基板(n型単結晶シリコン、アルカリエッチングテクスチャ付き、156mm角、200μm厚)の片面に、下記の印刷条件にてスクリーン印刷を行った(図2(i)に示すドーパント溶液塗布層2aの形成を参照)。(印刷条件)
 印刷機:ニューロング精密工業社製「LS-34GX」
  スキージー:ニューロング精密工業社製NMスキージー(硬度:60)
  スキージー角:80度
  スクレッパー:ニューロング精密工業社製NMスキージー(硬度:60)
  スクレッパー角:86度
  印圧:0.2MPa
 スクリーン版:東京プロセスサービス社製
  版サイズ:450mm角
  メッシュ種:V330
  塗布厚:2μm(乾燥後)
  パターン:1mm幅ライン×60本、3mmピッチ
 印刷環境:23℃、60%RH
 乾燥条件:150℃、2分
<Application to semiconductor substrate>
Using the boron diffusion liquid (γ) prepared above, screen printing was performed on one side of a semiconductor substrate (n-type single crystal silicon, with an alkali etching texture, 156 mm square, 200 μm thickness) under the following printing conditions (FIG. 2). (Refer to formation of the dopant solution coating layer 2a shown in (i)). (Printing conditions)
Printing machine: “LS-34GX” manufactured by Neurong Seimitsu Kogyo Co., Ltd.
Squeegee: NM squeegee (Hardness: 60) manufactured by Neurong Precision Industry Co., Ltd.
Squeegee angle: 80 degrees Scraper: NM squeegee (Hardness: 60) made by Neurong Seimitsu Kogyo
Scraper angle: 86 degrees Printing pressure: 0.2 MPa
Screen version: manufactured by Tokyo Process Service Co., Ltd. Plate size: 450 mm square Mesh type: V330
Application thickness: 2 μm (after drying)
Pattern: 1mm width line x 60, 3mm pitch Printing environment: 23 ° C, 60% RH
Drying conditions: 150 ° C, 2 minutes
 次いで、上記調製のリン拡散液(δ)を用い、半導体基板のホウ素拡散液(γ)塗布面に、ホウ素拡散液(γ)の印刷条件と同様の条件にて、スクリーン印刷を行った。ただし、印刷位置は、ホウ素拡散液(γ)の印刷ラインと隣り合うよう、半ピッチずらして印刷した(図2(i)に示すドーパント溶液塗布層2bの形成を参照)。 Next, screen printing was performed using the phosphorus diffusion liquid (δ) prepared above on the boron diffusion liquid (γ) application surface of the semiconductor substrate under the same conditions as the printing conditions for the boron diffusion liquid (γ). However, the printing position was shifted by a half pitch so as to be adjacent to the printing line of the boron diffusion liquid (γ) (see formation of the dopant solution coating layer 2b shown in FIG. 2 (i)).
 その後、上記ホウ素拡散液(γ)およびリン拡散液(δ)の塗布面上を覆うように、実施例1で使用の拡散防止層形成用塗布液(α)を、実施例1と同様の条件で半導体基板の片面全面にスクリーン印刷した(図2(ii)参照)。 Thereafter, the coating solution (α) for formation of the diffusion preventing layer used in Example 1 is applied under the same conditions as in Example 1 so as to cover the coated surfaces of the boron diffusion solution (γ) and the phosphorus diffusion solution (δ). The screen was printed on the entire surface of one side of the semiconductor substrate (see FIG. 2 (ii)).
<拡散>
 次に、横型チューブ式電気炉中の治具に、上記拡散防止層が形成された半導体基板を2.5mm間隔で10枚配置して、700℃のチューブ炉に投入し、15分間保持した後、チューブ炉の温度を940℃にして10分間保持し、さらに700℃で60分間保持した。上記チューブ炉による熱処理は、N2流量98L/min、O2流量2L/minの雰囲気下で行った。上記熱処理後、半導体基板を取り出し、46%フッ化水素酸(HF)水溶液(超純水にて作製)に3分間浸漬し、PSG(リンガラス)層、BSG(ホウ素ガラス)層、および拡散防止層などを除去した後、超純水による洗浄および150℃乾燥(10分間)を行った(図2(iii),(iv)参照)。
<Diffusion>
Next, 10 semiconductor substrates on which the diffusion preventing layer is formed are placed in a jig in a horizontal tube type electric furnace at intervals of 2.5 mm, put into a 700 ° C. tube furnace, and held for 15 minutes. The temperature of the tube furnace was kept at 940 ° C. for 10 minutes, and further kept at 700 ° C. for 60 minutes. The heat treatment by the tube furnace was performed in an atmosphere with an N 2 flow rate of 98 L / min and an O 2 flow rate of 2 L / min. After the heat treatment, the semiconductor substrate is taken out and immersed in a 46% hydrofluoric acid (HF) aqueous solution (prepared with ultrapure water) for 3 minutes to provide a PSG (phosphorus glass) layer, BSG (boron glass) layer, and diffusion prevention. After removing the layers, washing with ultrapure water and drying at 150 ° C. (10 minutes) were performed (see FIGS. 2 (iii) and (iv)).
<表面抵抗の測定結果>
 抵抗測定器(三菱化学アナリテック社製、ロレスター(PSPプローブ使用))を用い、その4探針を、上記処理後の半導体基板表面の任意の個所にあて、表面抵抗値を測定した。その結果、ホウ素拡散液を塗布した面(ホウ素拡散部)の表面抵抗が80Ω/□、リン拡散液を塗布した面(リン拡散部)の表面抵抗が30Ω/□であったのに対し、ホウ素拡散液・リン拡散液のいずれも塗布していない半導体基板表面であって拡散防止層形成用塗布液を塗布した面の表面抵抗が1000Ω/□以上であった。したがって、拡散防止層が、リンおよびホウ素の外部および周辺への拡散を防いだことわかる。
<Measurement results of surface resistance>
Using a resistance measuring instrument (Mitsubishi Chemical Analytech Co., Ltd., Lorester (using a PSP probe)), the surface resistance value was measured by applying the four probes to arbitrary locations on the surface of the semiconductor substrate after the treatment. As a result, the surface resistance of the surface coated with the boron diffusion solution (boron diffusion portion) was 80Ω / □, and the surface resistance of the surface coated with the phosphorus diffusion solution (phosphorus diffusion portion) was 30Ω / □. The surface resistance of the surface of the semiconductor substrate on which neither the diffusion liquid nor the phosphorus diffusion liquid was applied and to which the coating liquid for forming the diffusion preventing layer was applied was 1000Ω / □ or more. Therefore, it can be seen that the diffusion preventing layer prevented the diffusion of phosphorus and boron to the outside and the periphery.
 なお、実施例で使用の拡散防止層形成用塗布液には、酸化アルミニウムや酸化チタンの微粒子が配合されており、かかる微粒子の遮蔽効果によってドーパントの拡散を防止するものであるので、本発明においては、これが、酸化バナジウム,酸化ニオブ,酸化タンタルからなる金属酸化物微粒子であっても、同様の結果が得られるといえる。 In the present invention, the diffusion preventing layer forming coating liquid used in the examples contains fine particles of aluminum oxide or titanium oxide, and prevents the diffusion of the dopant by the shielding effect of the fine particles. It can be said that the same result can be obtained even if this is a metal oxide fine particle composed of vanadium oxide, niobium oxide, and tantalum oxide.
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In addition, although the specific form in this invention was shown in the said Example, the said Example is only a mere illustration and is not interpreted limitedly. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の拡散防止層形成用塗布液は、半導体基板表面に塗布してドーパントの拡散を防止するためのものであり、拡散防止性能の均一性が高く、スクリーン印刷等による塗膜形成性にも優れていることから、半導体や半導体装置の製造分野において広く好適に用いることができる。 The coating solution for forming the diffusion preventing layer of the present invention is for preventing the diffusion of the dopant by coating it on the surface of the semiconductor substrate, has a high uniformity of the diffusion preventing performance, and can also form a coating film by screen printing or the like. Since it is excellent, it can be used widely and suitably in the field of manufacturing semiconductors and semiconductor devices.
 1  :半導体基板
 2a :ドーパント溶液塗布層
 2b :ドーパント溶液塗布層
 11 :ドーパント拡散層
 11a:ドーパント拡散層
 11b:ドーパント拡散層
 3  :拡散防止層
1: Semiconductor substrate 2a: Dopant solution coating layer 2b: Dopant solution coating layer 11: Dopant diffusion layer 11a: Dopant diffusion layer 11b: Dopant diffusion layer 3: Diffusion prevention layer

Claims (13)

  1.  半導体基板表面に塗布してドーパントの拡散を防止するための拡散防止層形成用塗布液であって、下記の(A)および(B)成分を含有することを特徴とする拡散防止層形成用塗布液。
    (A)ポリビニルアルコール系樹脂。
    (B)金属酸化物微粒子。
    An anti-diffusion layer-forming coating solution that is applied to the surface of a semiconductor substrate to prevent dopant diffusion and contains the following components (A) and (B): liquid.
    (A) Polyvinyl alcohol resin.
    (B) Metal oxide fine particles.
  2.  上記(B)の金属酸化物微粒子の含有量が、拡散防止層形成用塗布液の全量に対して0.1~40重量%である、請求項1記載の拡散防止層形成用塗布液。 The coating solution for forming a diffusion preventing layer according to claim 1, wherein the content of the metal oxide fine particles (B) is 0.1 to 40% by weight based on the total amount of the coating solution for forming the diffusion preventing layer.
  3.  上記拡散防止層形成用塗布液が、10~80重量%の水を含有するものである請求項1または2記載の拡散防止層形成用塗布液。 The coating solution for forming a diffusion preventing layer according to claim 1 or 2, wherein the coating solution for forming a diffusion preventing layer contains 10 to 80% by weight of water.
  4.  上記(A)のポリビニルアルコール系樹脂のケン化度が、60~100モル%である請求項1~3のいずれか一項に記載の拡散防止層形成用塗布液。 The coating solution for forming a diffusion preventing layer according to any one of claims 1 to 3, wherein the degree of saponification of the polyvinyl alcohol-based resin (A) is 60 to 100 mol%.
  5.  上記(A)のポリビニルアルコール系樹脂が、下記の一般式(1)で表される1,2-ジオール構造単位を有するポリビニルアルコール系樹脂である請求項1~4のいずれか一項に記載の拡散防止層形成用塗布液。
    Figure JPOXMLDOC01-appb-C000001
    The polyvinyl alcohol resin according to any one of claims 1 to 4, wherein the polyvinyl alcohol resin (A) is a polyvinyl alcohol resin having a 1,2-diol structural unit represented by the following general formula (1). Coating solution for forming a diffusion barrier layer.
    Figure JPOXMLDOC01-appb-C000001
  6.  上記拡散防止層形成用塗布液が、アルコール類を含有するものである請求項1~5のいずれか一項に記載の拡散防止層形成用塗布液。 The coating solution for forming a diffusion preventing layer according to any one of claims 1 to 5, wherein the coating solution for forming a diffusion preventing layer contains an alcohol.
  7.  上記拡散防止層形成用塗布液が、界面活性剤を含有するものである請求項1~6のいずれか一項に記載の拡散防止層形成用塗布液。 The diffusion-preventing layer-forming coating solution according to any one of claims 1 to 6, wherein the diffusion-preventing layer-forming coating solution contains a surfactant.
  8.  上記(B)の金属酸化物微粒子が、周期表第4族の金属酸化物、周期表第5族の金属酸化物、周期表第13族の金属酸化物から選ばれる少なくとも1つである請求項1~7のいずれか一項に記載の拡散防止層形成用塗布液。 The metal oxide fine particle (B) is at least one selected from Group 4 metal oxides of the periodic table, Group 5 metal oxides of the periodic table, and Group 13 metal oxides of the periodic table. 8. A coating solution for forming a diffusion preventing layer according to any one of 1 to 7.
  9.  半導体基板表面の一部に、請求項1~8のいずれか一項に記載の拡散防止層形成用塗布液を塗布することにより、半導体基板表面に拡散防止層を形成する方法。 A method for forming a diffusion barrier layer on the surface of a semiconductor substrate by applying the diffusion barrier layer forming coating solution according to any one of claims 1 to 8 to a part of the surface of the semiconductor substrate.
  10.  半導体基板表面の一部に、請求項1~8のいずれか一項に記載の拡散防止層形成用塗布液を塗布して拡散防止層を形成する工程と、上記拡散防止層付きの半導体基板の表面にドーパントを拡散させ、上記拡散防止層が形成されていない半導体基板の表層部をドーパント拡散層にする工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程と、を備えていることを特徴とするドーパント拡散層付き半導体基板の製法。 A step of forming a diffusion prevention layer by applying the diffusion barrier layer forming coating solution according to any one of claims 1 to 8 to a part of the surface of the semiconductor substrate; and a step of forming a semiconductor substrate with the diffusion prevention layer. A step of diffusing a dopant on the surface and forming a surface layer portion of a semiconductor substrate on which the diffusion prevention layer is not formed as a dopant diffusion layer; a step of removing the diffusion prevention layer from the semiconductor substrate on which the dopant diffusion layer is formed; A process for producing a semiconductor substrate with a dopant diffusion layer, comprising:
  11.  半導体基板表面の一部に、ドーパント拡散用溶液を塗布した後、その塗布面上を覆うように、請求項1~8のいずれか一項に記載の拡散防止層形成用塗布液を塗布し、拡散防止層を形成する工程と、熱処理を行い、上記塗布されたドーパント拡散用溶液中のドーパントを、半導体基板の表層部に拡散させて、ドーパント拡散層を形成する工程と、上記ドーパント拡散層が形成された半導体基板から拡散防止層を除去する工程と、を備えていることを特徴とするドーパント拡散層付き半導体基板の製法。 A coating solution for forming a diffusion prevention layer according to any one of claims 1 to 8 is applied so as to cover a portion of the surface of the semiconductor substrate after the dopant diffusion solution is coated, A step of forming a diffusion preventing layer, a heat treatment, and a step of diffusing the dopant in the applied dopant diffusion solution into the surface layer portion of the semiconductor substrate to form a dopant diffusion layer, and the dopant diffusion layer comprising: And a step of removing the diffusion barrier layer from the formed semiconductor substrate. A method for producing a semiconductor substrate with a dopant diffusion layer, comprising:
  12.  上記拡散防止層形成用塗布液の塗布をスクリーン印刷により行う、請求項10または11記載のドーパント拡散層付き半導体基板の製法。 The method for producing a semiconductor substrate with a dopant diffusion layer according to claim 10 or 11, wherein the coating liquid for forming the diffusion preventing layer is applied by screen printing.
  13.  ドーパント拡散層付き半導体基板を備えた太陽電池の製法であって、上記ドーパント拡散層付き半導体基板を、請求項10~12のいずれか一項に記載の製法により形成することを特徴とする太陽電池の製法。 A method for producing a solar cell comprising a semiconductor substrate with a dopant diffusion layer, wherein the semiconductor substrate with a dopant diffusion layer is formed by the production method according to any one of claims 10 to 12. The manufacturing method.
PCT/JP2013/051529 2012-01-26 2013-01-25 Coating liquid for forming diffusion prevention layer, method for producing semiconductor substrate with dopant diffusion layer using same, and method for manufacturing solar cell WO2013111840A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012014117 2012-01-26
JP2012-014117 2012-01-26
JP2012-249714 2012-11-13
JP2012249714 2012-11-13

Publications (1)

Publication Number Publication Date
WO2013111840A1 true WO2013111840A1 (en) 2013-08-01

Family

ID=48873552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051529 WO2013111840A1 (en) 2012-01-26 2013-01-25 Coating liquid for forming diffusion prevention layer, method for producing semiconductor substrate with dopant diffusion layer using same, and method for manufacturing solar cell

Country Status (3)

Country Link
JP (1) JP5567163B2 (en)
TW (1) TW201341453A (en)
WO (1) WO2013111840A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020833A1 (en) * 2005-08-12 2007-02-22 Sharp Kabushiki Kaisha Masking paste, method for producing same, and method for manufacturing solar cell using masking paste
WO2010101054A1 (en) * 2009-03-02 2010-09-10 シャープ株式会社 Process for producing semiconductor device
JP2011029553A (en) * 2009-07-29 2011-02-10 Sharp Corp Method of manufacturing semiconductor device
JP2011035252A (en) * 2009-08-04 2011-02-17 Sharp Corp Method of manufacturing semiconductor device
WO2011132744A1 (en) * 2010-04-23 2011-10-27 シャープ株式会社 Method for producing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319296A (en) * 2012-01-10 2015-01-28 日立化成株式会社 Mask forming composition, production method for solar cell substrate, and production method for solar cell element
JP5339013B1 (en) * 2012-01-10 2013-11-13 日立化成株式会社 Method for manufacturing solar cell substrate and method for manufacturing solar cell element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020833A1 (en) * 2005-08-12 2007-02-22 Sharp Kabushiki Kaisha Masking paste, method for producing same, and method for manufacturing solar cell using masking paste
WO2010101054A1 (en) * 2009-03-02 2010-09-10 シャープ株式会社 Process for producing semiconductor device
JP2011029553A (en) * 2009-07-29 2011-02-10 Sharp Corp Method of manufacturing semiconductor device
JP2011035252A (en) * 2009-08-04 2011-02-17 Sharp Corp Method of manufacturing semiconductor device
WO2011132744A1 (en) * 2010-04-23 2011-10-27 シャープ株式会社 Method for producing semiconductor device

Also Published As

Publication number Publication date
TW201341453A (en) 2013-10-16
JP5567163B2 (en) 2014-08-06
JP2014116572A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
WO2012073920A1 (en) Coating liquid for impurity diffusion
JP5748388B2 (en) Boron diffusion coating solution
JP5679545B2 (en) Diffusion agent composition, impurity diffusion layer forming method, and solar cell
JP2012114298A (en) Coating type diffusion agent composition
TW201710410A (en) Screen-printable boron doping paste having simultaneous inhibition of phosphorus diffusion in co-diffusion processes
JP2014030011A (en) Coating liquid for dopant diffusion, method for applying the same, method for manufacturing semiconductor using the same, and semiconductor
KR101697997B1 (en) Method of cleaning and micro-etching semiconductor wafers
WO2012161107A1 (en) Coating liquid for diffusing impurity
JP2014175407A (en) Diffusion material composition, method for forming impurity diffusion layer, and solar battery
JP6022243B2 (en) Diffusion agent composition and method for forming impurity diffusion layer
JP5567163B2 (en) Coating solution for forming diffusion preventing layer, method for producing semiconductor substrate with dopant diffusion layer using the same, and method for producing solar cell
WO2013022076A1 (en) Manufacturing method for solar cell, and solar cell obtained from same
JP2013070048A (en) Method for manufacturing solar cell, and solar cell obtained by the same
JP2012138568A (en) Coating liquid for impurity diffusion
US10562989B2 (en) Fluorine-containing boric acid PVB composite
JP2016108350A (en) Coating film and coating film forming agent
JP2013070047A (en) Method for manufacturing solar cell, and solar cell obtained by the same
JP2013070049A (en) Method for manufacturing solar cell, and solar cell obtained by the same
JP2016134558A (en) Coating liquid for dopant diffusion, and method of manufacturing semiconductor prepared therefrom
JP2012138569A (en) Coating liquid for impurity diffusion
JP6009245B2 (en) P-type diffusion layer coating solution
JP5731885B2 (en) Boron diffusion coating solution
JP2014099466A (en) Coating liquid for dopant diffusion
JP2013038411A (en) Method for producing semiconductor
JP2015060870A (en) Coating liquid for dispersing dopant, coating method thereof, and method of manufacturing semiconductor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740845

Country of ref document: EP

Kind code of ref document: A1