WO2013111602A1 - Zoom lens system, image capturing device and camera - Google Patents

Zoom lens system, image capturing device and camera Download PDF

Info

Publication number
WO2013111602A1
WO2013111602A1 PCT/JP2013/000386 JP2013000386W WO2013111602A1 WO 2013111602 A1 WO2013111602 A1 WO 2013111602A1 JP 2013000386 W JP2013000386 W JP 2013000386W WO 2013111602 A1 WO2013111602 A1 WO 2013111602A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom lens
lens system
image
Prior art date
Application number
PCT/JP2013/000386
Other languages
French (fr)
Japanese (ja)
Inventor
健一 惠美
朴 一武
恭一 美藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013111602A1 publication Critical patent/WO2013111602A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+

Definitions

  • the present disclosure relates to a zoom lens system, an imaging device, and a camera.
  • a digital camera such as a digital still camera or a digital video camera
  • a compact digital camera equipped with a zoom lens system having a high zooming ratio is strongly demanded for its convenience.
  • a zoom lens system for example, a positive lead type in which at least a first lens group having a positive power and a second lens group having a negative power are arranged in order from the object side to the image side.
  • Various zoom lens systems have been proposed.
  • Patent Documents 1 and 4 disclose a zoom lens having the positive lead type and a positive, negative, positive, and positive five-group configuration.
  • Patent Document 2 discloses a zoom lens of the positive lead type and having a positive, negative, positive four-group configuration.
  • Patent Document 3 discloses a zoom lens of the positive lead type and having a five-group configuration of positive, negative, positive and positive.
  • Patent Document 5 discloses a variable magnification optical system of the positive lead type and having at least a positive and negative three-group configuration.
  • Patent Document 6 discloses an imaging optical system of the positive lead type and having a positive / negative two-group configuration and at least two subsequent lens groups.
  • the present disclosure not only has an extremely high zooming ratio, but also reduces the burden of correcting aberrations of lens elements in the vicinity of the aperture stop in zooming, particularly in the middle position.
  • a zoom lens system having high resolution with reduced aberrations in position.
  • the present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
  • the present disclosure provides a zoom lens system that not only has an extremely high zooming ratio but also has improved optical performance especially at the telephoto end and excellent optical characteristics.
  • the present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
  • a zoom lens system includes: Having a plurality of lens groups composed of at least one lens element; In order from the object side to the image side, at least a first lens group having positive power and a second lens group having negative power are provided, During zooming from the wide-angle end to the telephoto end during imaging, the interval between the first lens group and the second lens group is increased,
  • An imaging apparatus An optical image of an object can be output as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having a plurality of lens groups composed of at least one lens element; In order from the object side to the image side, at least a first lens group having positive power and a second lens group having negative power are provided, During zooming from the wide-angle end to the telephoto end during imaging, the interval between the first lens group and the second lens group is increased,
  • the camera in the present disclosure is Converting an optical image of an object into an electrical image signal, displaying and storing the converted image signal, and
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having a plurality of lens groups composed of at least one lens element; In order from the object side to the image side, at least a first lens group having positive power and a second lens group having negative power are provided, During zooming from the wide-angle end to the telephoto end during imaging, the interval between the first lens group and the second lens group is increased,
  • the zoom lens system in the present disclosure is: Having at least five lens groups composed of at least one lens element; In order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power are provided.
  • the first lens group has the following condition (II-1): ⁇ d 1 ⁇ 65 (II-1) (here, ⁇ d 1 : Abbe number with respect to d-line of lens elements included in the first lens group) And at least two lens elements satisfying the following condition (II-2): ⁇ d 3 ⁇ 65 (II-2) (here, ⁇ d 3 : Abbe number for the d-line of the lens elements included in the third lens group) It includes at least one lens element that satisfies the above.
  • An imaging apparatus An optical image of an object can be output as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having at least five lens groups composed of at least one lens element; In order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power are provided.
  • the first lens group has the following condition (II-1): ⁇ d 1 ⁇ 65 (II-1) (here, ⁇ d 1 : Abbe number with respect to d-line of lens elements included in the first lens group) And at least two lens elements satisfying the following condition (II-2): ⁇ d 3 ⁇ 65 (II-2) (here, ⁇ d 3 : Abbe number for the d-line of the lens elements included in the third lens group)
  • the zoom lens system includes at least one lens element satisfying the above.
  • the camera in the present disclosure is Converting an optical image of an object into an electrical image signal, displaying and storing the converted image signal, and
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having at least five lens groups composed of at least one lens element; In order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power are provided.
  • the first lens group has the following condition (II-1): ⁇ d 1 ⁇ 65 (II-1) (here, ⁇ d 1 : Abbe number with respect to d-line of lens elements included in the first lens group) And at least two lens elements satisfying the following condition (II-2): ⁇ d 3 ⁇ 65 (II-2) (here, ⁇ d 3 : Abbe number for the d-line of the lens elements included in the third lens group)
  • the zoom lens system includes at least one lens element satisfying the above.
  • the zoom lens system according to the present disclosure not only has an extremely high zooming ratio, but also reduces the burden of correcting aberrations of the lens elements in the vicinity of the aperture stop, particularly at an intermediate position during zooming, thereby achieving downsizing. In addition, particularly, aberration at an intermediate position is reduced, and high resolution is achieved.
  • the zoom lens system according to the present disclosure not only has an extremely high zooming ratio, but also has excellent optical characteristics with improved imaging performance particularly at the telephoto end.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 4 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 6 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 5 (Numerical Example 5).
  • FIG. 10 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 5 when the zoom lens system is in focus at infinity.
  • FIG. 11 is a schematic configuration diagram of a digital still camera according to the sixth embodiment.
  • Embodiments 1 to 5 1, 3, 5, 7, and 9 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 5, respectively, and all represent the zoom lens system in an infinitely focused state.
  • the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
  • the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line.
  • the wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
  • FIGS. 1, 3, 5, 7, and 9 show directions in which a later-described fourth lens group G4 moves during focusing from the infinite focus state to the close object focus state.
  • the zoom lens system includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power.
  • 3 lens group G3, 4th lens group G4 which has negative power, and 5th lens group G5 which has positive power are provided.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the third lens group G3 and the fourth lens group G4.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4, and the distance between the fourth lens group G4 and the fifth lens group G5 are all changed.
  • the lens group G4 moves in the direction along the optical axis.
  • the zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S, and is located on the object side of the image plane S (between the image plane S and the most image side lens surface of the fifth lens group G5).
  • a low-pass filter FL and a cover glass CG which are parallel plates in order from the object side to the image side.
  • an aperture stop A is provided on the most object side of the third lens group G3, that is, between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens element L2 and the third lens element L3 satisfy a condition (II-1) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5. 6 lens elements L6.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10.
  • the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer.
  • the seventh lens element L7 has two aspheric surfaces.
  • the seventh lens element L7 satisfies the condition (II-2) described later.
  • the fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a positive meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the twelfth lens element L12 has two aspheric surfaces.
  • An aperture stop A is provided on the object side of the third lens group G3.
  • the aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging.
  • the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
  • a low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
  • the first lens group G1 moves toward the object side with a slightly convex locus on the image side
  • the second lens group G2 slightly moves toward the image side
  • the third lens group G3 moves to the object side with a slightly convex locus on the object side
  • the fourth lens group G4 has a convex locus on the image side.
  • the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes.
  • the group G4 moves along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the entire third lens group G3 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens element L2 and the third lens element L3 satisfy a condition (II-1) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5. 6 lens elements L6.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10.
  • the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer.
  • the seventh lens element L7 has two aspheric surfaces.
  • the seventh lens element L7 satisfies the condition (II-2) described later.
  • the fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a positive meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the twelfth lens element L12 has two aspheric surfaces.
  • An aperture stop A is provided on the object side of the third lens group G3.
  • the aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging.
  • the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
  • a low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
  • the first lens group G1 moves toward the object side with a slightly convex locus on the image side, and the second lens group G2 protrudes toward the image side.
  • the third lens group G3 moves toward the object side with a slightly convex locus on the object side, and the fourth lens group G4 draws a locus along the image side. Therefore, the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes.
  • the group G4 moves along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the entire third lens group G3 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens element L2 and the third lens element L3 satisfy the condition (II-1) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5. 6 lens elements L6.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10.
  • the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer.
  • the seventh lens element L7 has two aspheric surfaces.
  • the seventh lens element L7 satisfies the condition (II-2) described later.
  • the fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a positive meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the twelfth lens element L12 has two aspheric surfaces.
  • An aperture stop A is provided on the object side of the third lens group G3.
  • the aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging.
  • the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
  • a low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
  • the first lens group G1 moves toward the object side with a slightly convex locus on the image side
  • the second lens group G2 slightly moves toward the image side
  • the third lens group G3 moves to the object side with a slightly convex locus on the object side
  • the fourth lens group G4 has a convex locus on the image side.
  • the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes.
  • the group G4 moves along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the entire third lens group G3 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens element L2 and the third lens element L3 satisfy a condition (II-1) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4, a biconcave fifth lens element L5, and a biconvex sixth lens element L6. .
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10.
  • the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer.
  • the seventh lens element L7 has two aspheric surfaces.
  • the seventh lens element L7 satisfies the condition (II-2) described later.
  • the fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a biconvex twelfth lens element L12.
  • the twelfth lens element L12 has two aspheric surfaces.
  • An aperture stop A is provided on the object side of the third lens group G3.
  • the aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging.
  • the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
  • a low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
  • the first lens group G1 moves toward the object side with a slightly convex locus on the image side
  • the second lens group G2 slightly moves toward the image side
  • the third lens group G3 moves to the object side with a slightly convex locus on the object side
  • the fourth lens group G4 has a convex locus on the image side.
  • the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes.
  • the group G4 moves along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the entire third lens group G3 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape
  • the third lens element L3 having a positive meniscus shape having a convex surface facing the object side
  • the fourth lens element L4 having a positive meniscus shape having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens element L2, the third lens element L3, and the fourth lens element L4 satisfy a condition (II-1) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface facing the object side, a biconcave sixth lens element L6, and a biconvex first lens element L6. 7 lens elements L7.
  • the fifth lens element L5 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a positive meniscus ninth lens element L9 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus tenth lens element L10 and a biconvex eleventh lens element L11.
  • the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces.
  • the eighth lens element L8 and the eleventh lens element L11 satisfy a condition (II-2) described later.
  • the fourth lens group G4 comprises solely a bi-concave twelfth lens element L12.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • An aperture stop A is provided on the object side of the third lens group G3.
  • the aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging.
  • the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
  • a low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the thirteenth lens element L13.
  • the first lens group G1 moves toward the object side with a slightly convex locus on the image side
  • the second lens group G2 slightly moves toward the image side
  • the third lens group G3 moves to the object side with a slightly convex locus on the object side
  • the fourth lens group G4 has a convex locus on the image side.
  • the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes.
  • the group G4 moves along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the entire third lens group G3 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • one of the following lens groups arranged on the image side of the second lens group G2, that is, the third lens group G3 and the third lens group By performing focusing with any one of the lens groups disposed on the image side of the lens group G3, the lens outer diameter and the weight of the lens group to be focused can be reduced, and mechanically. Miniaturization of the lens barrel can be achieved.
  • the zoom lens system according to Embodiments 1 to 5 has a five-group configuration
  • a first lens group having a positive power and a negative lens group are used.
  • the number of lens groups constituting the lens system is not particularly limited as long as the configuration includes two or more groups including at least a second lens group having the following power.
  • a zoom lens system having a basic configuration II according to an embodiment described later a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power.
  • the number of lens groups constituting the lens system is not particularly limited. Further, in any of the zoom lens system having the basic configuration I of the embodiment and the zoom lens system having the basic configuration II of the embodiment, there is no particular limitation on the power of each lens group constituting the lens system.
  • Embodiments 1 to 5 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the first lens has a plurality of lens groups including at least one lens element and has positive power in order from the object side to the image side. And at least a second lens group having a negative power, and the distance between the first lens group and the second lens group is increased during zooming from the wide-angle end to the telephoto end during imaging (
  • the zoom lens system (hereinafter referred to as the basic configuration I of the embodiment) satisfies the following conditions (I-1) and (I-2) at the same time.
  • the condition (I-1) is a condition for reducing the burden of aberration correction of each lens element at an intermediate position during zooming, particularly a lens element arranged near the aperture stop. If the condition (I-1) is not satisfied, the effective diameter of the aperture stop at the intermediate position is larger than or equal to the effective diameter of the aperture stop at the wide-angle end during zooming. The burden of correcting the aberration of the lens element thus made becomes large, and it becomes difficult to obtain good imaging performance over the entire zoom range. Further, if it is attempted to improve the imaging performance over the entire zoom range, it is difficult to reduce the size of the zoom lens system.
  • the condition (I-2) is a condition for obtaining a small F number at the telephoto end. If the condition (I-2) is not satisfied, the effective diameter of the aperture stop at the telephoto end is smaller than or equal to the effective diameter of the aperture stop at the intermediate position during zooming. It becomes large and it becomes difficult to obtain a bright image.
  • the zoom lens system having the basic configuration I further satisfies the following condition (I-3).
  • D1 D3 (I-3) here, D1: Effective diameter (mm) of the aperture stop at the wide angle end, D3: Effective diameter of aperture stop at telephoto end (mm) It is.
  • the condition (I-3) is a condition for further simplifying the configuration of the zoom lens system.
  • the effective diameter of the aperture stop at the wide-angle end is equal to the effective diameter of the aperture stop at the telephoto end during zooming. It can be substantially circular, which is advantageous for reducing flare and the like at the wide-angle end and the telephoto end.
  • the zoom lens system includes at least five lens units each including at least one lens element, and has positive power in order from the object side to the image side.
  • a zoom lens system including at least one lens group, a second lens group having negative power, and a third lens group having positive power hereinafter, this lens configuration is referred to as a basic configuration II of the embodiment
  • the first lens group includes at least two lens elements satisfying the following condition (II-1), and at the same time, the third lens group satisfies the following condition (II-2): Including at least one sheet.
  • the condition (II-1) is a condition for reducing chromatic aberration at the telephoto end.
  • the condition (II-1) is not satisfied, the axial chromatic aberration and the chromatic aberration of magnification particularly when the magnification is increased are lowered, and it is difficult to increase the magnification of the zoom lens system.
  • the condition (II-2) is a condition for reducing chromatic aberration over the entire zoom range.
  • the condition (II-2) is not satisfied, the axial chromatic aberration and the chromatic aberration of magnification in the entire zoom range are reduced, and it is difficult to increase the magnification of the zoom lens system.
  • the first lens group includes at least two lens elements that satisfy the following condition (II-1) ′, or the lens element that the third lens group satisfies the following condition (II-2) ′: In the case where at least one sheet is included or both of them, the above-described effect can be further achieved.
  • the first lens group includes at least two lens elements that satisfy the following condition (II-1) ′′, the above effect can be further achieved. ⁇ d 1 ⁇ 75 (II-1) ′′
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 5 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
  • FIG. 11 is a schematic configuration diagram of a digital still camera according to the sixth embodiment.
  • the digital still camera includes an imaging device including a zoom lens system 1 and an imaging device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4.
  • the zoom lens system 1 includes a first lens group G1, a second lens group G2, an aperture stop A, a third lens group G3, a fourth lens group G4, and a fifth lens group G5. It is configured.
  • the zoom lens system 1 is disposed on the front side
  • the imaging element 2 is disposed on the rear side of the zoom lens system 1.
  • a liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
  • the lens barrel is composed of a main lens barrel 5, a movable lens barrel 6, and a cylindrical cam 7.
  • the first lens group G1, the second lens group G2, the aperture stop A, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 are based on the imaging device 2. Moving to a predetermined position, zooming from the wide-angle end to the telephoto end can be performed.
  • the fourth lens group G4 is movable in the optical axis direction by a focus adjustment motor.
  • the zoom lens system according to Embodiment 1 for a digital still camera, it is possible to provide a small digital still camera that has a high ability to correct resolution and curvature of field and has a short overall lens length when not in use. it can.
  • any of the zoom lens systems according to Embodiments 2 to 5 may be used instead of the zoom lens system according to Embodiment 1.
  • the optical system of the digital still camera shown in FIG. 11 can be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
  • the zoom lens system according to the first to fifth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured may be cut out according to a desired zooming area, and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fifth embodiments.
  • a prism having an internal reflection surface or a surface reflection mirror may be disposed at an arbitrary position such as in the first lens group G1, and the zoom lens system may be applied to a so-called bent lens barrel.
  • a zoom lens system including the entire second lens group G2, the entire third lens group G3, a part of the second lens group G2, and a part of the third lens group G3 is configured.
  • the zoom lens system may be applied to a so-called sliding lens barrel in which the lens group of the part is retracted from the optical axis when retracted.
  • the sixth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 5 described above and an image pickup element such as a CCD or a CMOS is used as a camera of a portable information terminal such as a smartphone, a monitor camera in a monitoring system, a Web
  • a portable information terminal such as a smartphone, a monitor camera in a monitoring system, a Web
  • the present invention can also be applied to cameras, in-vehicle cameras, and the like.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line.
  • the aperture radius represents the effective diameter of the aperture stop as a radius.
  • the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • An n-order aspherical coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • Tables 16 and 17 below show the corresponding values for each condition in the zoom lens system of each numerical example.
  • the present disclosure can be applied to digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • the present disclosure can be applied to a photographing optical system that requires high image quality, such as a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

A zoom lens system is provided with, in order from the object side to the image side, at least a first lens group having positive power, and a second lens group having negative power, increases the distance between the first lens group and the second lens group during zooming from a wide angle end to a telephoto end when an image is captured, and satisfies conditions: D1>D2 and D3>D2 at the same time, where D1 is the effective diameter of an aperture stop at the wide angle end, D2 is the effective diameter of the aperture stop at an intermediate position, and D3 is the effective diameter of the aperture stop at the telephoto end.

Description

ズームレンズ系、撮像装置及びカメラZoom lens system, imaging device and camera
 本開示は、ズームレンズ系、撮像装置及びカメラに関する。 The present disclosure relates to a zoom lens system, an imaging device, and a camera.
 デジタルスチルカメラやデジタルビデオカメラ等の、光電変換を行う撮像素子を持つカメラ(以下、単にデジタルカメラという)に対するコンパクト化及び高性能化の要求は極めて強い。特に、ズーミング比が高いズームレンズ系を搭載したコンパクトタイプのデジタルカメラが、その利便性から強く要望されている。このようなズームレンズ系としては、例えば、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群とが少なくとも配置された、ポジティブリードタイプのズームレンズ系が種々提案されている。 Demand for downsizing and high performance of a camera having an image sensor that performs photoelectric conversion (hereinafter simply referred to as a digital camera) such as a digital still camera or a digital video camera is extremely strong. In particular, a compact digital camera equipped with a zoom lens system having a high zooming ratio is strongly demanded for its convenience. As such a zoom lens system, for example, a positive lead type in which at least a first lens group having a positive power and a second lens group having a negative power are arranged in order from the object side to the image side. Various zoom lens systems have been proposed.
 特許文献1及び4には、前記ポジティブリードタイプで、正負正負正の5群構成を有するズームレンズが開示されている。 Patent Documents 1 and 4 disclose a zoom lens having the positive lead type and a positive, negative, positive, and positive five-group configuration.
 特許文献2には、前記ポジティブリードタイプで、正負正正の4群構成を有するズームレンズが開示されている。 Patent Document 2 discloses a zoom lens of the positive lead type and having a positive, negative, positive four-group configuration.
 特許文献3には、前記ポジティブリードタイプで、正負正正正の5群構成を有するズームレンズが開示されている。 Patent Document 3 discloses a zoom lens of the positive lead type and having a five-group configuration of positive, negative, positive and positive.
 特許文献5には、前記ポジティブリードタイプで、少なくとも正負正の3群構成を有する変倍光学系が開示されている。 Patent Document 5 discloses a variable magnification optical system of the positive lead type and having at least a positive and negative three-group configuration.
 特許文献6には、前記ポジティブリードタイプで、正負の2群構成とさらに少なくとも2つの後続レンズ群とを有する撮像光学系が開示されている。 Patent Document 6 discloses an imaging optical system of the positive lead type and having a positive / negative two-group configuration and at least two subsequent lens groups.
特開2009-282429号公報JP 2009-282429 A 特開2009-115875号公報JP 2009-115875 A 特開2009-086437号公報JP 2009-086437 A 特開2008-304708号公報JP 2008-304708 A 特開2008-281927号公報JP 2008-281927 A 特開2007-047538号公報JP 2007-047538 A
 (I)本開示は、極めて高いズーミング比を有するだけでなく、ズーミングの際に特に中間位置において、開口絞り近傍のレンズ素子の収差補正の負担が軽減されて小型化が図られ、しかも特に中間位置における収差が低減されて高解像度を有するズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む撮像装置、及び該撮像装置を備えた薄型でコンパクトなカメラを提供する。 (I) The present disclosure not only has an extremely high zooming ratio, but also reduces the burden of correcting aberrations of lens elements in the vicinity of the aperture stop in zooming, particularly in the middle position. Provided is a zoom lens system having high resolution with reduced aberrations in position. The present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
 (II)本開示は、極めて高いズーミング比を有するだけでなく、特に望遠端における結像性能が改善されて光学特性に優れたズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む撮像装置、及び該撮像装置を備えた薄型でコンパクトなカメラを提供する。 (II) The present disclosure provides a zoom lens system that not only has an extremely high zooming ratio but also has improved optical performance especially at the telephoto end and excellent optical characteristics. The present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
 (I)本開示におけるズームレンズ系は、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群とを少なくとも備え、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群と前記第2レンズ群との間隔を増大させ、
以下の条件(I-1)及び(I-2):
  D1>D2 ・・・(I-1)
  D3>D2 ・・・(I-2)
(ここで、
 D1:広角端における開口絞りの有効径(mm)、
 D2:中間位置における開口絞りの有効径(mm)、
 D3:望遠端における開口絞りの有効径(mm)
である)
を同時に満足する、ことを特徴とする。
(I) A zoom lens system according to the present disclosure includes:
Having a plurality of lens groups composed of at least one lens element;
In order from the object side to the image side, at least a first lens group having positive power and a second lens group having negative power are provided,
During zooming from the wide-angle end to the telephoto end during imaging, the interval between the first lens group and the second lens group is increased,
The following conditions (I-1) and (I-2):
D1> D2 (I-1)
D3> D2 (I-2)
(here,
D1: Effective diameter (mm) of the aperture stop at the wide angle end,
D2: effective diameter (mm) of the aperture stop at the intermediate position,
D3: Effective diameter of aperture stop at telephoto end (mm)
Is)
Is satisfied at the same time.
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能であり、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群とを少なくとも備え、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群と前記第2レンズ群との間隔を増大させ、
以下の条件(I-1)及び(I-2):
  D1>D2 ・・・(I-1)
  D3>D2 ・・・(I-2)
(ここで、
 D1:広角端における開口絞りの有効径(mm)、
 D2:中間位置における開口絞りの有効径(mm)、
 D3:望遠端における開口絞りの有効径(mm)
である)
を同時に満足するズームレンズ系である
ことを特徴とする。
An imaging apparatus according to the present disclosure
An optical image of an object can be output as an electrical image signal,
A zoom lens system that forms an optical image of the object;
An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
Having a plurality of lens groups composed of at least one lens element;
In order from the object side to the image side, at least a first lens group having positive power and a second lens group having negative power are provided,
During zooming from the wide-angle end to the telephoto end during imaging, the interval between the first lens group and the second lens group is increased,
The following conditions (I-1) and (I-2):
D1> D2 (I-1)
D3> D2 (I-2)
(here,
D1: Effective diameter (mm) of the aperture stop at the wide angle end,
D2: effective diameter (mm) of the aperture stop at the intermediate position,
D3: Effective diameter of aperture stop at telephoto end (mm)
Is)
It is a zoom lens system that satisfies the above.
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行い、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群とを少なくとも備え、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群と前記第2レンズ群との間隔を増大させ、
以下の条件(I-1)及び(I-2):
  D1>D2 ・・・(I-1)
  D3>D2 ・・・(I-2)
(ここで、
 D1:広角端における開口絞りの有効径(mm)、
 D2:中間位置における開口絞りの有効径(mm)、
 D3:望遠端における開口絞りの有効径(mm)
である)
を同時に満足するズームレンズ系である
ことを特徴とする。
The camera in the present disclosure is
Converting an optical image of an object into an electrical image signal, displaying and storing the converted image signal, and
An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
Having a plurality of lens groups composed of at least one lens element;
In order from the object side to the image side, at least a first lens group having positive power and a second lens group having negative power are provided,
During zooming from the wide-angle end to the telephoto end during imaging, the interval between the first lens group and the second lens group is increased,
The following conditions (I-1) and (I-2):
D1> D2 (I-1)
D3> D2 (I-2)
(here,
D1: Effective diameter (mm) of the aperture stop at the wide angle end,
D2: effective diameter (mm) of the aperture stop at the intermediate position,
D3: Effective diameter of aperture stop at telephoto end (mm)
Is)
It is a zoom lens system that satisfies the above.
 (II)本開示におけるズームレンズ系は、
少なくとも1枚のレンズ素子で構成されたレンズ群を少なくとも5つ有し、
物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを少なくとも備え、
前記第1レンズ群が、以下の条件(II-1):
  νd≧65 ・・・(II-1)
(ここで、
 νd:第1レンズ群に含まれるレンズ素子のd線に対するアッベ数
である)
を満足するレンズ素子を少なくとも2枚含み、同時に、前記第3レンズ群が、以下の条件(II-2):
  νd≧65 ・・・(II-2)
(ここで、
 νd:第3レンズ群に含まれるレンズ素子のd線に対するアッベ数
である)
を満足するレンズ素子を少なくとも1枚含む、ことを特徴とする。
(II) The zoom lens system in the present disclosure is:
Having at least five lens groups composed of at least one lens element;
In order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power are provided.
The first lens group has the following condition (II-1):
νd 1 ≧ 65 (II-1)
(here,
νd 1 : Abbe number with respect to d-line of lens elements included in the first lens group)
And at least two lens elements satisfying the following condition (II-2):
νd 3 ≧ 65 (II-2)
(here,
νd 3 : Abbe number for the d-line of the lens elements included in the third lens group)
It includes at least one lens element that satisfies the above.
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能であり、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を少なくとも5つ有し、
物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを少なくとも備え、
前記第1レンズ群が、以下の条件(II-1):
  νd≧65 ・・・(II-1)
(ここで、
 νd:第1レンズ群に含まれるレンズ素子のd線に対するアッベ数
である)
を満足するレンズ素子を少なくとも2枚含み、同時に、前記第3レンズ群が、以下の条件(II-2):
  νd≧65 ・・・(II-2)
(ここで、
 νd:第3レンズ群に含まれるレンズ素子のd線に対するアッベ数
である)
を満足するレンズ素子を少なくとも1枚含むズームレンズ系である
ことを特徴とする。
An imaging apparatus according to the present disclosure
An optical image of an object can be output as an electrical image signal,
A zoom lens system that forms an optical image of the object;
An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
Having at least five lens groups composed of at least one lens element;
In order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power are provided.
The first lens group has the following condition (II-1):
νd 1 ≧ 65 (II-1)
(here,
νd 1 : Abbe number with respect to d-line of lens elements included in the first lens group)
And at least two lens elements satisfying the following condition (II-2):
νd 3 ≧ 65 (II-2)
(here,
νd 3 : Abbe number for the d-line of the lens elements included in the third lens group)
The zoom lens system includes at least one lens element satisfying the above.
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行い、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を少なくとも5つ有し、
物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを少なくとも備え、
前記第1レンズ群が、以下の条件(II-1):
  νd≧65 ・・・(II-1)
(ここで、
 νd:第1レンズ群に含まれるレンズ素子のd線に対するアッベ数
である)
を満足するレンズ素子を少なくとも2枚含み、同時に、前記第3レンズ群が、以下の条件(II-2):
  νd≧65 ・・・(II-2)
(ここで、
 νd:第3レンズ群に含まれるレンズ素子のd線に対するアッベ数
である)
を満足するレンズ素子を少なくとも1枚含むズームレンズ系である
ことを特徴とする。
The camera in the present disclosure is
Converting an optical image of an object into an electrical image signal, displaying and storing the converted image signal, and
An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
Having at least five lens groups composed of at least one lens element;
In order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power are provided.
The first lens group has the following condition (II-1):
νd 1 ≧ 65 (II-1)
(here,
νd 1 : Abbe number with respect to d-line of lens elements included in the first lens group)
And at least two lens elements satisfying the following condition (II-2):
νd 3 ≧ 65 (II-2)
(here,
νd 3 : Abbe number for the d-line of the lens elements included in the third lens group)
The zoom lens system includes at least one lens element satisfying the above.
 (I)本開示におけるズームレンズ系は、極めて高いズーミング比を有するだけでなく、ズーミングの際に特に中間位置において、開口絞り近傍のレンズ素子の収差補正の負担が軽減されて小型化が図られ、しかも特に中間位置における収差が低減されて高解像度を有する。 (I) The zoom lens system according to the present disclosure not only has an extremely high zooming ratio, but also reduces the burden of correcting aberrations of the lens elements in the vicinity of the aperture stop, particularly at an intermediate position during zooming, thereby achieving downsizing. In addition, particularly, aberration at an intermediate position is reduced, and high resolution is achieved.
 (II)本開示におけるズームレンズ系は、極めて高いズーミング比を有するだけでなく、特に望遠端における結像性能が改善されて光学特性に優れる。 (II) The zoom lens system according to the present disclosure not only has an extremely high zooming ratio, but also has excellent optical characteristics with improved imaging performance particularly at the telephoto end.
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1). 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity. 図3は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2). 図4は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 4 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity. 図5は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3). 図6は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity. 図7は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4). 図8は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity. 図9は、実施の形態5(数値実施例5)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 9 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 5 (Numerical Example 5). 図10は、数値実施例5に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 5 when the zoom lens system is in focus at infinity. 図11は、実施の形態6に係るデジタルスチルカメラの概略構成図である。FIG. 11 is a schematic configuration diagram of a digital still camera according to the sixth embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims. Absent.
 (実施の形態1~5) 
 図1、3、5、7及び9は、各々実施の形態1~5に係るズームレンズ系のレンズ配置図であり、いずれも無限遠合焦状態にあるズームレンズ系を表している。
(Embodiments 1 to 5)
1, 3, 5, 7, and 9 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 5, respectively, and all represent the zoom lens system in an infinitely focused state.
 各図において、(a)図は広角端(最短焦点距離状態:焦点距離f)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離f=√(f*f))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離f)のレンズ構成をそれぞれ表している。また各図において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。 In each figure, (a) shows a lens configuration at the wide angle end (shortest focal length state: focal length f W ), and (b) shows an intermediate position (intermediate focal length state: focal length f M = √ (f W * f). The lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ). Also, in each figure, the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line. The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
 さらに各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図1、3、5、7及び9では、後述する第4レンズ群G4が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。 Further, in each figure, an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIGS. 1, 3, 5, 7, and 9 show directions in which a later-described fourth lens group G4 moves during focusing from the infinite focus state to the close object focus state.
 各実施の形態に係るズームレンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、負のパワーを有する第4レンズ群G4と、正のパワーを有する第5レンズ群G5とを備える。ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、及び第4レンズ群G4と第5レンズ群G5との間隔がいずれも変化するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4が光軸に沿った方向にそれぞれ移動する。各実施の形態に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。 The zoom lens system according to each embodiment includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power. 3 lens group G3, 4th lens group G4 which has negative power, and 5th lens group G5 which has positive power are provided. During zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the third lens group G3 and the fourth lens group G4. The first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4, and the distance between the fourth lens group G4 and the fifth lens group G5 are all changed. The lens group G4 moves in the direction along the optical axis. The zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
 なお図1、3、5、7及び9において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表し、該像面Sの物体側(像面Sと第5レンズ群G5の最像側レンズ面との間)には、物体側から像側へと順に、平行平板であるローパスフィルタFL及びカバーガラスCGが設けられている。 In FIGS. 1, 3, 5, 7, and 9, an asterisk * attached to a specific surface indicates that the surface is aspherical. In each figure, a symbol (+) and a symbol (−) attached to a symbol of each lens group correspond to a power symbol of each lens group. In each drawing, the straight line described on the rightmost side represents the position of the image plane S, and is located on the object side of the image plane S (between the image plane S and the most image side lens surface of the fifth lens group G5). Are provided with a low-pass filter FL and a cover glass CG which are parallel plates in order from the object side to the image side.
 さらに図1、3、5、7及び9において、第3レンズ群G3の最物体側、すなわち、第2レンズ群G2と第3レンズ群G3との間に開口絞りAが設けられている。 Further, in FIGS. 1, 3, 5, 7, and 9, an aperture stop A is provided on the most object side of the third lens group G3, that is, between the second lens group G2 and the third lens group G3.
(実施の形態1)
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。なお、第2レンズ素子L2及び第3レンズ素子L3は、後述する条件(II-1)を満足する。
(Embodiment 1)
As shown in FIG. 1, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side. Among these, the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer. The second lens element L2 and the third lens element L3 satisfy a condition (II-1) described later.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5. 6 lens elements L6. Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第7レンズ素子L7と、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、物体側に凸面を向けた負メニスカス形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10とからなる。これらのうち、第8レンズ素子L8と第9レンズ素子L9とが接合されており、後述する対応数値実施例における面データでは、これら第8レンズ素子L8と第9レンズ素子L9との間の接着剤層に面番号17が付与されている。また、第7レンズ素子L7は、その両面が非球面である。なお、第7レンズ素子L7は、後述する条件(II-2)を満足する。 The third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10. Among these, the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer. The seventh lens element L7 has two aspheric surfaces. The seventh lens element L7 satisfies the condition (II-2) described later.
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第11レンズ素子L11のみからなる。 The fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
 第5レンズ群G5は、物体側に凸面を向けた正メニスカス形状の第12レンズ素子L12のみからなる。この第12レンズ素子L12は、その両面が非球面である。 The fifth lens group G5 comprises solely a positive meniscus twelfth lens element L12 with the convex surface facing the object side. The twelfth lens element L12 has two aspheric surfaces.
 第3レンズ群G3の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第3レンズ群G3と一体的に光軸上を物体側へ移動する。なお、後述する対応数値実施例において示すとおり、該開口絞りAは、広角端における有効径と、中間位置における有効径と、望遠端における有効径とについて、後述する条件(I-1)、(I-2)及び(I-3)を同時に満足する。 An aperture stop A is provided on the object side of the third lens group G3. The aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging. As shown in the corresponding numerical examples described later, the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
 像面Sの物体側、すなわち像面Sと第12レンズ素子L12との間には、物体側から像側へと順に、ローパスフィルタFLとカバーガラスCGとが設けられている。 A low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に僅かに凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に僅かに凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に僅かに凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side with a slightly convex locus on the image side, and the second lens group G2 slightly moves toward the image side. The third lens group G3 moves to the object side with a slightly convex locus on the object side, and the fourth lens group G4 has a convex locus on the image side. And the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes. The group G4 moves along the optical axis.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the fourth lens group G4 moves to the image side along the optical axis.
 第3レンズ群G3全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第3レンズ群G3全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
(実施の形態2)
 図3に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。なお、第2レンズ素子L2及び第3レンズ素子L3は、後述する条件(II-1)を満足する。
(Embodiment 2)
As shown in FIG. 3, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side. Among these, the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer. The second lens element L2 and the third lens element L3 satisfy a condition (II-1) described later.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5. 6 lens elements L6. Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第7レンズ素子L7と、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、物体側に凸面を向けた負メニスカス形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10とからなる。これらのうち、第8レンズ素子L8と第9レンズ素子L9とが接合されており、後述する対応数値実施例における面データでは、これら第8レンズ素子L8と第9レンズ素子L9との間の接着剤層に面番号17が付与されている。また、第7レンズ素子L7は、その両面が非球面である。なお、第7レンズ素子L7は、後述する条件(II-2)を満足する。 The third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10. Among these, the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer. The seventh lens element L7 has two aspheric surfaces. The seventh lens element L7 satisfies the condition (II-2) described later.
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第11レンズ素子L11のみからなる。 The fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
 第5レンズ群G5は、物体側に凸面を向けた正メニスカス形状の第12レンズ素子L12のみからなる。この第12レンズ素子L12は、その両面が非球面である。 The fifth lens group G5 comprises solely a positive meniscus twelfth lens element L12 with the convex surface facing the object side. The twelfth lens element L12 has two aspheric surfaces.
 第3レンズ群G3の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第3レンズ群G3と一体的に光軸上を物体側へ移動する。なお、後述する対応数値実施例において示すとおり、該開口絞りAは、広角端における有効径と、中間位置における有効径と、望遠端における有効径とについて、後述する条件(I-1)、(I-2)及び(I-3)を同時に満足する。 An aperture stop A is provided on the object side of the third lens group G3. The aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging. As shown in the corresponding numerical examples described later, the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
 像面Sの物体側、すなわち像面Sと第12レンズ素子L12との間には、物体側から像側へと順に、ローパスフィルタFLとカバーガラスCGとが設けられている。 A low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に僅かに凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に僅かに凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side with a slightly convex locus on the image side, and the second lens group G2 protrudes toward the image side. The third lens group G3 moves toward the object side with a slightly convex locus on the object side, and the fourth lens group G4 draws a locus along the image side. Therefore, the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes. The group G4 moves along the optical axis.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the fourth lens group G4 moves to the image side along the optical axis.
 第3レンズ群G3全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第3レンズ群G3全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
(実施の形態3)
 図5に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。なお、第2レンズ素子L2は及び第3レンズ素子L3は、後述する条件(II-1)を満足する。
(Embodiment 3)
As shown in FIG. 5, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side. Among these, the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer. The second lens element L2 and the third lens element L3 satisfy the condition (II-1) described later.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5. 6 lens elements L6. Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第7レンズ素子L7と、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、物体側に凸面を向けた負メニスカス形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10とからなる。これらのうち、第8レンズ素子L8と第9レンズ素子L9とが接合されており、後述する対応数値実施例における面データでは、これら第8レンズ素子L8と第9レンズ素子L9との間の接着剤層に面番号17が付与されている。また、第7レンズ素子L7は、その両面が非球面である。なお、第7レンズ素子L7は、後述する条件(II-2)を満足する。 The third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10. Among these, the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer. The seventh lens element L7 has two aspheric surfaces. The seventh lens element L7 satisfies the condition (II-2) described later.
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第11レンズ素子L11のみからなる。 The fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
 第5レンズ群G5は、物体側に凸面を向けた正メニスカス形状の第12レンズ素子L12のみからなる。この第12レンズ素子L12は、その両面が非球面である。 The fifth lens group G5 comprises solely a positive meniscus twelfth lens element L12 with the convex surface facing the object side. The twelfth lens element L12 has two aspheric surfaces.
 第3レンズ群G3の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第3レンズ群G3と一体的に光軸上を物体側へ移動する。なお、後述する対応数値実施例において示すとおり、該開口絞りAは、広角端における有効径と、中間位置における有効径と、望遠端における有効径とについて、後述する条件(I-1)、(I-2)及び(I-3)を同時に満足する。 An aperture stop A is provided on the object side of the third lens group G3. The aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging. As shown in the corresponding numerical examples described later, the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
 像面Sの物体側、すなわち像面Sと第12レンズ素子L12との間には、物体側から像側へと順に、ローパスフィルタFLとカバーガラスCGとが設けられている。 A low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に僅かに凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に僅かに凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に僅かに凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side with a slightly convex locus on the image side, and the second lens group G2 slightly moves toward the image side. The third lens group G3 moves to the object side with a slightly convex locus on the object side, and the fourth lens group G4 has a convex locus on the image side. And the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes. The group G4 moves along the optical axis.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the fourth lens group G4 moves to the image side along the optical axis.
 第3レンズ群G3全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第3レンズ群G3全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
(実施の形態4)
 図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。なお、第2レンズ素子L2及び第3レンズ素子L3は、後述する条件(II-1)を満足する。
(Embodiment 4)
As shown in FIG. 7, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side. Among these, the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer. The second lens element L2 and the third lens element L3 satisfy a condition (II-1) described later.
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4, a biconcave fifth lens element L5, and a biconvex sixth lens element L6. . Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第7レンズ素子L7と、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、物体側に凸面を向けた負メニスカス形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10とからなる。これらのうち、第8レンズ素子L8と第9レンズ素子L9とが接合されており、後述する対応数値実施例における面データでは、これら第8レンズ素子L8と第9レンズ素子L9との間の接着剤層に面番号17が付与されている。また、第7レンズ素子L7は、その両面が非球面である。なお、第7レンズ素子L7は、後述する条件(II-2)を満足する。 The third lens group G3 includes, in order from the object side to the image side, a biconvex seventh lens element L7, a positive meniscus eighth lens element L8 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus ninth lens element L9 and a biconvex tenth lens element L10. Among these, the eighth lens element L8 and the ninth lens element L9 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the eighth lens element L8 and the ninth lens element L9. Surface number 17 is given to the agent layer. The seventh lens element L7 has two aspheric surfaces. The seventh lens element L7 satisfies the condition (II-2) described later.
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第11レンズ素子L11のみからなる。 The fourth lens group G4 comprises solely a negative meniscus eleventh lens element L11 with the convex surface facing the object side.
 第5レンズ群G5は、両凸形状の第12レンズ素子L12のみからなる。この第12レンズ素子L12は、その両面が非球面である。 The fifth lens group G5 comprises solely a biconvex twelfth lens element L12. The twelfth lens element L12 has two aspheric surfaces.
 第3レンズ群G3の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第3レンズ群G3と一体的に光軸上を物体側へ移動する。なお、後述する対応数値実施例において示すとおり、該開口絞りAは、広角端における有効径と、中間位置における有効径と、望遠端における有効径とについて、後述する条件(I-1)、(I-2)及び(I-3)を同時に満足する。 An aperture stop A is provided on the object side of the third lens group G3. The aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging. As shown in the corresponding numerical examples described later, the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
 像面Sの物体側、すなわち像面Sと第12レンズ素子L12との間には、物体側から像側へと順に、ローパスフィルタFLとカバーガラスCGとが設けられている。 A low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the twelfth lens element L12.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に僅かに凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に僅かに凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に僅かに凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side with a slightly convex locus on the image side, and the second lens group G2 slightly moves toward the image side. The third lens group G3 moves to the object side with a slightly convex locus on the object side, and the fourth lens group G4 has a convex locus on the image side. And the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes. The group G4 moves along the optical axis.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the fourth lens group G4 moves to the image side along the optical axis.
 第3レンズ群G3全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第3レンズ群G3全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
(実施の形態5)
 図9に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3と、物体側に凸面を向けた正メニスカス形状の第4レンズ素子L4とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。なお、第2レンズ素子L2、第3レンズ素子L3及び第4レンズ素子L4は、後述する条件(II-1)を満足する。
(Embodiment 5)
As shown in FIG. 9, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. The second lens element L2 having a shape, the third lens element L3 having a positive meniscus shape having a convex surface facing the object side, and the fourth lens element L4 having a positive meniscus shape having a convex surface facing the object side. Among these, the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical examples described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer. The second lens element L2, the third lens element L3, and the fourth lens element L4 satisfy a condition (II-1) described later.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凹形状の第6レンズ素子L6と、両凸形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface facing the object side, a biconcave sixth lens element L6, and a biconvex first lens element L6. 7 lens elements L7. Among these, the fifth lens element L5 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、物体側に凸面を向けた正メニスカス形状の第9レンズ素子L9と、物体側に凸面を向けた負メニスカス形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とが接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面である。なお、第8レンズ素子L8及び第11レンズ素子L11は、後述する条件(II-2)を満足する。 The third lens group G3 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a positive meniscus ninth lens element L9 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus tenth lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer. The eighth lens element L8 has two aspheric surfaces. The eighth lens element L8 and the eleventh lens element L11 satisfy a condition (II-2) described later.
 第4レンズ群G4は、両凹形状の第12レンズ素子L12のみからなる。 The fourth lens group G4 comprises solely a bi-concave twelfth lens element L12.
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。この第13レンズ素子L13は、その両面が非球面である。 The fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13. The thirteenth lens element L13 has two aspheric surfaces.
 第3レンズ群G3の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第3レンズ群G3と一体的に光軸上を物体側へ移動する。なお、後述する対応数値実施例において示すとおり、該開口絞りAは、広角端における有効径と、中間位置における有効径と、望遠端における有効径とについて、後述する条件(I-1)、(I-2)及び(I-3)を同時に満足する。 An aperture stop A is provided on the object side of the third lens group G3. The aperture stop A moves on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging. As shown in the corresponding numerical examples described later, the aperture stop A has conditions (I-1), (described later) for the effective diameter at the wide-angle end, the effective diameter at the intermediate position, and the effective diameter at the telephoto end. I-2) and (I-3) are satisfied simultaneously.
 像面Sの物体側、すなわち像面Sと第13レンズ素子L13との間には、物体側から像側へと順に、ローパスフィルタFLとカバーガラスCGとが設けられている。 A low-pass filter FL and a cover glass CG are provided in order from the object side to the image side on the object side of the image plane S, that is, between the image plane S and the thirteenth lens element L13.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に僅かに凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に僅かに凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に僅かに凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side with a slightly convex locus on the image side, and the second lens group G2 slightly moves toward the image side. The third lens group G3 moves to the object side with a slightly convex locus on the object side, and the fourth lens group G4 has a convex locus on the image side. And the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 changes. The group G4 moves along the optical axis.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the fourth lens group G4 moves to the image side along the optical axis.
 第3レンズ群G3全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第3レンズ群G3全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
 実施の形態1~5に係るズームレンズ系のように、第2レンズ群G2の像側に配置された後続レンズ群のうちのいずれかのレンズ群、すなわち、第3レンズ群G3及び該第3レンズ群G3よりも像側に配置されたレンズ群のうちのいずれかのレンズ群にてフォーカシングを行うことにより、フォーカシングを行うレンズ群のレンズ外径及び重量を小さくすることができ、機構的に鏡筒の小型化を達成することができる。 Like the zoom lens systems according to Embodiments 1 to 5, one of the following lens groups arranged on the image side of the second lens group G2, that is, the third lens group G3 and the third lens group By performing focusing with any one of the lens groups disposed on the image side of the lens group G3, the lens outer diameter and the weight of the lens group to be focused can be reduced, and mechanically. Miniaturization of the lens barrel can be achieved.
 なお、実施の形態1~5に係るズームレンズ系は5群構成であるが、後述する実施の形態の基本構成Iを有するズームレンズ系の場合、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群とを少なくとも備える2群以上の構成である限り、レンズ系を構成するレンズ群の数には特に限定がない。また、後述する実施の形態の基本構成IIを有するズームレンズ系の場合、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを少なくとも備える5群以上の構成である限り、レンズ系を構成するレンズ群の数には特に限定がない。また、実施の形態の基本構成Iを有するズームレンズ系及び実施の形態の基本構成IIを有するズームレンズ系いずれにおいても、レンズ系を構成する各レンズ群のパワーにも特に限定がない。 Although the zoom lens system according to Embodiments 1 to 5 has a five-group configuration, in the case of a zoom lens system having a basic configuration I according to an embodiment described later, a first lens group having a positive power and a negative lens group are used. The number of lens groups constituting the lens system is not particularly limited as long as the configuration includes two or more groups including at least a second lens group having the following power. In the case of a zoom lens system having a basic configuration II according to an embodiment described later, a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power. The number of lens groups constituting the lens system is not particularly limited. Further, in any of the zoom lens system having the basic configuration I of the embodiment and the zoom lens system having the basic configuration II of the embodiment, there is no particular limitation on the power of each lens group constituting the lens system.
 以上のように、本出願において開示する技術の例示として、実施の形態1~5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, Embodiments 1 to 5 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 以下、例えば実施の形態1~5に係るズームレンズ系のごときズームレンズ系が満足することが有益な条件を説明する。なお、各実施の形態に係るズームレンズ系に対して、複数の有益な条件が規定されるが、これら複数の条件すべてを満足するズームレンズ系の構成が最も効果的である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するズームレンズ系を得ることも可能である。 Hereinafter, conditions in which it is beneficial for the zoom lens system such as the zoom lens systems according to Embodiments 1 to 5 to be satisfied will be described. A plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most effective. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
 例えば実施の形態1~5に係るズームレンズ系のように、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群とを少なくとも備え、撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群と前記第2レンズ群との間隔を増大させる(以下、このレンズ構成を、実施の形態の基本構成Iという)ズームレンズ系は、以下の条件(I-1)及び(I-2)を同時に満足する。
  D1>D2 ・・・(I-1)
  D3>D2 ・・・(I-2)
ここで、
 D1:広角端における開口絞りの有効径(mm)、
 D2:中間位置における開口絞りの有効径(mm)、
 D3:望遠端における開口絞りの有効径(mm)
である。
For example, as in the zoom lens systems according to Embodiments 1 to 5, the first lens has a plurality of lens groups including at least one lens element and has positive power in order from the object side to the image side. And at least a second lens group having a negative power, and the distance between the first lens group and the second lens group is increased during zooming from the wide-angle end to the telephoto end during imaging ( Hereinafter, the zoom lens system (hereinafter referred to as the basic configuration I of the embodiment) satisfies the following conditions (I-1) and (I-2) at the same time.
D1> D2 (I-1)
D3> D2 (I-2)
here,
D1: Effective diameter (mm) of the aperture stop at the wide angle end,
D2: effective diameter (mm) of the aperture stop at the intermediate position,
D3: Effective diameter of aperture stop at telephoto end (mm)
It is.
 前記条件(I-1)は、ズーミングの際の中間位置における各レンズ素子、特に開口絞り近傍に配置されたレンズ素子の収差補正の負担を軽減するための条件である。条件(I-1)を満足しない場合、ズーミングの際に中間位置における開口絞りの有効径が広角端における開口絞りの有効径よりも大きいか、もしくは両者が等しくなるので、特に開口絞り近傍に配置されたレンズ素子の収差補正の負担が大きくなり、ズーム全域で良好な結像性能を得ることが困難となる。また、ズーム全域の結像性能を良好にしようとすると、ズームレンズ系の小型化が困難となる。 The condition (I-1) is a condition for reducing the burden of aberration correction of each lens element at an intermediate position during zooming, particularly a lens element arranged near the aperture stop. If the condition (I-1) is not satisfied, the effective diameter of the aperture stop at the intermediate position is larger than or equal to the effective diameter of the aperture stop at the wide-angle end during zooming. The burden of correcting the aberration of the lens element thus made becomes large, and it becomes difficult to obtain good imaging performance over the entire zoom range. Further, if it is attempted to improve the imaging performance over the entire zoom range, it is difficult to reduce the size of the zoom lens system.
 前記条件(I-2)は、望遠端において小さなFナンバーを得るための条件である。条件(I-2)を満足しない場合、ズーミングの際に望遠端における開口絞りの有効径が中間位置における開口絞りの有効径よりも小さいか、もしくは両者が等しくなるので、望遠端におけるFナンバーが大きくなり、明るい像を得ることが困難となる。 The condition (I-2) is a condition for obtaining a small F number at the telephoto end. If the condition (I-2) is not satisfied, the effective diameter of the aperture stop at the telephoto end is smaller than or equal to the effective diameter of the aperture stop at the intermediate position during zooming. It becomes large and it becomes difficult to obtain a bright image.
 例えば実施の形態1~5に係るズームレンズ系のように、基本構成Iを有するズームレンズ系は、さらに以下の条件(I-3)を満足することが有益である。
  D1=D3 ・・・(I-3)
ここで、
 D1:広角端における開口絞りの有効径(mm)、
 D3:望遠端における開口絞りの有効径(mm)
である。
For example, as in the zoom lens systems according to Embodiments 1 to 5, it is beneficial that the zoom lens system having the basic configuration I further satisfies the following condition (I-3).
D1 = D3 (I-3)
here,
D1: Effective diameter (mm) of the aperture stop at the wide angle end,
D3: Effective diameter of aperture stop at telephoto end (mm)
It is.
 前記条件(I-3)は、ズームレンズ系の構成のさらなる簡略化を図るための条件である。条件(I-3)を満足することにより、ズーミングの際に広角端における開口絞りの有効径と望遠端における開口絞りの有効径とが等しくなるので、例えば、広角端及び望遠端における開口絞りを略円形とすることができ、広角端及び望遠端においてフレア等の低減に有利となる。 The condition (I-3) is a condition for further simplifying the configuration of the zoom lens system. By satisfying the condition (I-3), the effective diameter of the aperture stop at the wide-angle end is equal to the effective diameter of the aperture stop at the telephoto end during zooming. It can be substantially circular, which is advantageous for reducing flare and the like at the wide-angle end and the telephoto end.
 例えば実施の形態1~5に係るズームレンズ系のように、少なくとも1枚のレンズ素子で構成されたレンズ群を少なくとも5つ有し、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを少なくとも備える(以下、このレンズ構成を、実施の形態の基本構成IIという)ズームレンズ系においては、前記第1レンズ群が、以下の条件(II-1)を満足するレンズ素子を少なくとも2枚含み、同時に、前記第3レンズ群が、以下の条件(II-2)を満足するレンズ素子を少なくとも1枚含む。
  νd≧65 ・・・(II-1)
  νd≧65 ・・・(II-2)
ここで、
 νd:第1レンズ群に含まれるレンズ素子のd線に対するアッベ数、
 νd:第3レンズ群に含まれるレンズ素子のd線に対するアッベ数
である。
For example, as in the zoom lens systems according to Embodiments 1 to 5, the zoom lens system includes at least five lens units each including at least one lens element, and has positive power in order from the object side to the image side. In a zoom lens system including at least one lens group, a second lens group having negative power, and a third lens group having positive power (hereinafter, this lens configuration is referred to as a basic configuration II of the embodiment) The first lens group includes at least two lens elements satisfying the following condition (II-1), and at the same time, the third lens group satisfies the following condition (II-2): Including at least one sheet.
νd 1 ≧ 65 (II-1)
νd 3 ≧ 65 (II-2)
here,
νd 1 : Abbe number for the d-line of the lens elements included in the first lens group,
νd 3 is an Abbe number with respect to the d-line of the lens elements included in the third lens group.
 前記条件(II-1)は、望遠端における色収差を低減するための条件である。条件(II-1)を満足しない場合、特に高倍率とした際の軸上色収差及び倍率色収差が低下し、ズームレンズ系の高倍率化が困難となる。 The condition (II-1) is a condition for reducing chromatic aberration at the telephoto end. When the condition (II-1) is not satisfied, the axial chromatic aberration and the chromatic aberration of magnification particularly when the magnification is increased are lowered, and it is difficult to increase the magnification of the zoom lens system.
 前記条件(II-2)は、ズーム全域での色収差を低減するための条件である。条件(II-2)を満足しない場合、ズーム全域の軸上色収差及び倍率色収差が低下し、ズームレンズ系の高倍率化が困難となる。 The condition (II-2) is a condition for reducing chromatic aberration over the entire zoom range. When the condition (II-2) is not satisfied, the axial chromatic aberration and the chromatic aberration of magnification in the entire zoom range are reduced, and it is difficult to increase the magnification of the zoom lens system.
 なお、前記第1レンズ群が以下の条件(II-1)’を満足するレンズ素子を少なくとも2枚含むか、又は前記第3レンズ群が以下の条件(II-2)’を満足するレンズ素子を少なくとも1枚含むか、又はその両方である場合、前記効果をさらに奏功させることができる。
  νd≧68 ・・・(II-1)’
  νd≧68 ・・・(II-2)’
The first lens group includes at least two lens elements that satisfy the following condition (II-1) ′, or the lens element that the third lens group satisfies the following condition (II-2) ′: In the case where at least one sheet is included or both of them, the above-described effect can be further achieved.
νd 1 ≧ 68 (II-1) ′
νd 3 ≧ 68 (II-2) '
 さらに、前記第1レンズ群が以下の条件(II-1)’’を満足するレンズ素子を少なくとも2枚含む場合、前記効果をより一層奏功させることができる。
  νd≧75 ・・・(II-1)’’
Further, when the first lens group includes at least two lens elements that satisfy the following condition (II-1) ″, the above effect can be further achieved.
νd 1 ≧ 75 (II-1) ″
 実施の形態1~5に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、有益である。 Each lens group constituting the zoom lens system according to Embodiments 1 to 5 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes) However, the present invention is not limited to this. For example, a diffractive lens element that deflects incident light by diffraction, a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium Each lens group may be composed of a distributed lens element or the like. In particular, in a refractive / diffractive hybrid lens element, forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
 (実施の形態6) 
 図11は、実施の形態6に係るデジタルスチルカメラの概略構成図である。図11において、デジタルスチルカメラは、ズームレンズ系1とCCDである撮像素子2とを含む撮像装置と、液晶モニタ3と、筐体4とから構成される。ズームレンズ系1として、実施の形態1に係るズームレンズ系が用いられている。図11において、ズームレンズ系1は、第1レンズ群G1と、第2レンズ群G2と、開口絞りAと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とから構成されている。筐体4は、前側にズームレンズ系1が配置され、ズームレンズ系1の後側には、撮像素子2が配置されている。筐体4の後側に液晶モニタ3が配置され、ズームレンズ系1による被写体の光学的な像が像面Sに形成される。
(Embodiment 6)
FIG. 11 is a schematic configuration diagram of a digital still camera according to the sixth embodiment. In FIG. 11, the digital still camera includes an imaging device including a zoom lens system 1 and an imaging device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4. As the zoom lens system 1, the zoom lens system according to Embodiment 1 is used. In FIG. 11, the zoom lens system 1 includes a first lens group G1, a second lens group G2, an aperture stop A, a third lens group G3, a fourth lens group G4, and a fifth lens group G5. It is configured. In the housing 4, the zoom lens system 1 is disposed on the front side, and the imaging element 2 is disposed on the rear side of the zoom lens system 1. A liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
 鏡筒は、主鏡筒5と、移動鏡筒6と、円筒カム7とで構成されている。円筒カム7を回転させると、第1レンズ群G1、第2レンズ群G2、開口絞りAと第3レンズ群G3、第4レンズ群G4、及び第5レンズ群G5が撮像素子2を基準にした所定の位置に移動し、広角端から望遠端までのズーミングを行うことができる。第4レンズ群G4はフォーカス調整用モータにより光軸方向に移動可能である。 The lens barrel is composed of a main lens barrel 5, a movable lens barrel 6, and a cylindrical cam 7. When the cylindrical cam 7 is rotated, the first lens group G1, the second lens group G2, the aperture stop A, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 are based on the imaging device 2. Moving to a predetermined position, zooming from the wide-angle end to the telephoto end can be performed. The fourth lens group G4 is movable in the optical axis direction by a focus adjustment motor.
 こうして、デジタルスチルカメラに実施の形態1に係るズームレンズ系を用いることにより、解像度及び像面湾曲を補正する能力が高く、非使用時のレンズ全長が短い小型のデジタルスチルカメラを提供することができる。なお、図11に示したデジタルスチルカメラには、実施の形態1に係るズームレンズ系の替わりに実施の形態2~5に係るズームレンズ系のいずれかを用いてもよい。また、図11に示したデジタルスチルカメラの光学系は、動画像を対象とするデジタルビデオカメラに用いることもできる。この場合、静止画像だけでなく、解像度の高い動画像を撮影することができる。 Thus, by using the zoom lens system according to Embodiment 1 for a digital still camera, it is possible to provide a small digital still camera that has a high ability to correct resolution and curvature of field and has a short overall lens length when not in use. it can. In the digital still camera shown in FIG. 11, any of the zoom lens systems according to Embodiments 2 to 5 may be used instead of the zoom lens system according to Embodiment 1. Further, the optical system of the digital still camera shown in FIG. 11 can be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
 なお、本実施の形態6に係るデジタルスチルカメラでは、ズームレンズ系1として実施の形態1~5に係るズームレンズ系を示したが、これらのズームレンズ系は、全てのズーミング域を使用しなくてもよい。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、実施の形態1~5で説明したズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。 In the digital still camera according to the sixth embodiment, the zoom lens system according to the first to fifth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured may be cut out according to a desired zooming area, and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fifth embodiments.
 さらに、実施の形態6では、いわゆる沈胴構成の鏡筒にズームレンズ系を適用した例を示したが、これに限られない。例えば、第1レンズ群G1内等の任意の位置に、内部反射面を持つプリズムや、表面反射ミラーを配置し、いわゆる屈曲構成の鏡筒にズームレンズ系を適用してもよい。さらに、実施の形態6において、第2レンズ群G2全体、第3レンズ群G3全体、第2レンズ群G2の一部、第3レンズ群G3の一部等のズームレンズ系を構成している一部のレンズ群を、沈胴時に光軸上から退避させる、いわゆるスライディング鏡筒にズームレンズ系を適用してもよい。 Furthermore, in the sixth embodiment, an example in which the zoom lens system is applied to a so-called collapsible lens barrel is shown, but the present invention is not limited to this. For example, a prism having an internal reflection surface or a surface reflection mirror may be disposed at an arbitrary position such as in the first lens group G1, and the zoom lens system may be applied to a so-called bent lens barrel. Further, in Embodiment 6, a zoom lens system including the entire second lens group G2, the entire third lens group G3, a part of the second lens group G2, and a part of the third lens group G3 is configured. The zoom lens system may be applied to a so-called sliding lens barrel in which the lens group of the part is retracted from the optical axis when retracted.
 以上のように、本出願において開示する技術の例示として、実施の形態6を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, the sixth embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 また、以上説明した実施の形態1~5に係るズームレンズ系と、CCDやCMOS等の撮像素子とから構成される撮像装置を、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。 In addition, an image pickup apparatus including the zoom lens system according to Embodiments 1 to 5 described above and an image pickup element such as a CCD or a CMOS is used as a camera of a portable information terminal such as a smartphone, a monitor camera in a monitoring system, a Web The present invention can also be applied to cameras, in-vehicle cameras, and the like.
 以下、実施の形態1~5に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。なお、絞り半径は、開口絞りの有効径を半径で表している。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
Hereinafter, numerical examples in which the zoom lens systems according to Embodiments 1 to 5 are specifically implemented will be described. In each numerical example, the unit of length in the table is “mm”, and the unit of angle of view is “°”. In each numerical example, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and vd is an Abbe number with respect to the d line. The aperture radius represents the effective diameter of the aperture stop as a radius. In each numerical example, the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
here,
Z: distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex,
h: height from the optical axis,
r: vertex radius of curvature,
κ: conic constant,
An: n-order aspherical coefficient.
 図2、4、6、8及び10は、各々数値実施例1~5に係るズームレンズ系の縦収差図である。 2, 4, 6, 8, and 10 are longitudinal aberration diagrams of the zoom lens systems according to Numerical Examples 1 to 5, respectively.
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。 In each longitudinal aberration diagram, (a) shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line). In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).
(数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、各種データを表3に示す。
(Numerical example 1)
The zoom lens system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG. Table 1 shows surface data of the zoom lens system of Numerical Example 1, Table 2 shows aspheric data, and Table 3 shows various data.
表 1(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         37.37280     0.75000     1.84666    23.8               
     2         25.83290     0.01000     1.56732    42.8               
     3         25.83290     3.30000     1.49700    81.6               
     4       -176.78680     0.15000                                   
     5         22.80580     1.95680     1.59282    68.7               
     6         55.99180        可変                                   
     7*       108.56210     0.50000     1.80470    41.0               
     8*         5.50820     3.55990                                   
     9         -8.34990     0.30000     1.80420    46.5               
    10        949.02850     0.29540                                   
    11         28.64210     1.30000     1.94595    18.0               
    12        -28.64210        可変                                   
  13(絞り)           ∞     0.30000                                   
    14*         5.68180     2.03000     1.51845    70.0               
    15*       -19.60350     0.62300                                   
    16         10.00060     1.20000     1.51823    59.0               
    17         26.75760     0.01000     1.56732    42.8               
    18         26.75760     0.30000     1.90366    31.3               
    19          5.05870     0.47690                                   
    20          8.56960     1.16790     1.52996    55.8               
    21        -36.91150        可変                                   
    22         12.26960     0.30000     1.83481    42.7               
    23          7.00680        可変                                   
    24*        10.04750     2.19000     1.52996    55.8               
    25*        76.76380     3.00000                                   
    26               ∞     0.28000     1.51680    64.2               
    27               ∞     0.12000                                   
    28               ∞     0.50000     1.51680    64.2               
    29               ∞     0.37000                                   
    30               ∞        (BF)                                       
    像面             ∞                                               
Table 1 (surface data)

Surface number r d nd vd
Object ∞
1 37.37280 0.75000 1.84666 23.8
2 25.83290 0.01000 1.56732 42.8
3 25.83290 3.30000 1.49700 81.6
4 -176.78680 0.15000
5 22.80580 1.95680 1.59282 68.7
6 55.99180 Variable
7 * 108.56210 0.50000 1.80470 41.0
8 * 5.50820 3.55990
9 -8.34990 0.30000 1.80420 46.5
10 949.02850 0.29540
11 28.64210 1.30000 1.94595 18.0
12 -28.64210 variable
13 (Aperture) ∞ 0.30000
14 * 5.68180 2.03000 1.51845 70.0
15 * -19.60350 0.62300
16 10.00060 1.20000 1.51823 59.0
17 26.75760 0.01000 1.56732 42.8
18 26.75760 0.30000 1.90366 31.3
19 5.05870 0.47690
20 8.56960 1.16790 1.52996 55.8
21 -36.91150 Variable
22 12.26960 0.30000 1.83481 42.7
23 7.00680 Variable
24 * 10.04750 2.19000 1.52996 55.8
25 * 76.76380 3.00000
26 ∞ 0.28000 1.51680 64.2
27 ∞ 0.12000
28 ∞ 0.50000 1.51680 64.2
29 ∞ 0.37000
30 ∞ (BF)
Image plane ∞
表 2(非球面データ)
 
  第7面
   K= 0.00000E+00, A4=-2.50004E-04, A6= 1.96580E-05, A8=-3.28001E-07 
   A10= 8.55228E-09, A12=-6.28968E-10, A14= 1.70366E-11, A16=-1.51771E-13 
  第8面
   K= 0.00000E+00, A4=-3.12612E-04, A6=-3.48429E-05, A8= 1.13165E-05 
   A10=-1.16801E-06, A12= 8.03270E-08, A14=-2.79962E-09, A16= 3.90303E-11 
  第14面
   K= 0.00000E+00, A4=-5.88999E-04, A6=-1.07484E-06, A8=-2.17358E-06 
   A10= 2.58194E-07, A12=-1.52854E-08, A14= 0.00000E+00, A16= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 2.48725E-04, A6=-9.68037E-06, A8= 1.82750E-06 
   A10=-1.07543E-07, A12=-4.36854E-09, A14= 0.00000E+00, A16= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4= 3.80397E-04, A6= 6.23300E-05, A8=-1.82422E-05 
   A10= 1.75445E-06, A12=-7.53639E-08, A14= 1.18900E-09, A16= 0.00000E+00 
  第25面
   K= 0.00000E+00, A4= 8.58282E-04, A6=-3.10506E-05, A8=-1.35900E-05 
   A10= 1.71031E-06, A12=-8.21376E-08, A14= 1.39615E-09, A16= 0.00000E+00
Table 2 (Aspheric data)

7th surface K = 0.00000E + 00, A4 = -2.50004E-04, A6 = 1.96580E-05, A8 = -3.28001E-07
A10 = 8.55228E-09, A12 = -6.28968E-10, A14 = 1.70366E-11, A16 = -1.51771E-13
8th surface K = 0.00000E + 00, A4 = -3.12612E-04, A6 = -3.48429E-05, A8 = 1.13165E-05
A10 = -1.16801E-06, A12 = 8.03270E-08, A14 = -2.79962E-09, A16 = 3.90303E-11
14th surface K = 0.00000E + 00, A4 = -5.88999E-04, A6 = -1.07484E-06, A8 = -2.17358E-06
A10 = 2.58194E-07, A12 = -1.52854E-08, A14 = 0.00000E + 00, A16 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 2.48725E-04, A6 = -9.68037E-06, A8 = 1.82750E-06
A10 = -1.07543E-07, A12 = -4.36854E-09, A14 = 0.00000E + 00, A16 = 0.00000E + 00
24th surface K = 0.00000E + 00, A4 = 3.80397E-04, A6 = 6.23300E-05, A8 = -1.82422E-05
A10 = 1.75445E-06, A12 = -7.53639E-08, A14 = 1.18900E-09, A16 = 0.00000E + 00
25th surface K = 0.00000E + 00, A4 = 8.58282E-04, A6 = -3.10506E-05, A8 = -1.35900E-05
A10 = 1.71031E-06, A12 = -8.21376E-08, A14 = 1.39615E-09, A16 = 0.00000E + 00
表 3(各種データ)
 
  ズーム比    18.82867
                広角      中間      望遠
  焦点距離       4.4160   19.1596   83.1473
 Fナンバー     3.39736   5.32757   6.11133
    画角        41.2756   11.2292    2.6901
    像高         3.3100    3.8770    3.8770
 レンズ全長     51.0256   58.0563   67.3844
    BF        0.01279  -0.01410  -0.01721
    d6           0.3000   12.2349   23.3589 
    d12         19.1000    6.4789    0.9500 
    d21          4.4794   11.5183    7.7124 
    d23          2.1436    2.8485   10.3904 
 入射瞳位置     12.0075   42.6174  155.7596
 射出瞳位置    -18.3774  -29.7585 -102.1355
 前側主点位置   15.3631   49.4355  171.2063
 後側主点位置   46.6096   38.8967  -15.7629
  絞り半径        2.537     2.450     2.537
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -101.8482
     2         3       45.5976
     3         5       63.5132
     4         7       -7.2265
     5         9      -10.2909
     6        11       15.3083
     7        14        8.7361
     8        16       30.0792
     9        18       -6.9487
    10        20       13.2412
    11        22      -20.0890
    12        24       21.5690
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    36.52727     6.16680         1.19246       3.35104
   2      7    -5.84472     5.95530         0.54302       1.42818
   3     13    10.39941     6.10780        -0.20639       1.58893
   4     22   -20.08899     0.30000         0.39134       0.52348
   5     24    21.56896     6.09000        -0.21315       0.82729
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.21628   -0.38735   -1.47413
   3     13   -0.51661   -1.22218   -1.11439
   4     22    1.46563    1.49827    1.87341
   5     24    0.73826    0.73951    0.73965
Table 3 (various data)

Zoom ratio 18.82867
Wide angle Medium telephoto Focal length 4.4160 19.1596 83.1473
F number 3.39736 5.32757 6.11133
Angle of View 41.2756 11.2292 2.6901
Image height 3.3 100 3.8770 3.8770
Total lens length 51.0256 58.0563 67.3844
BF 0.01279 -0.01410 -0.01721
d6 0.3000 12.2349 23.3589
d12 19.1000 6.4789 0.9500
d21 4.4794 11.5183 7.7124
d23 2.1436 2.8485 10.3904
Entrance pupil position 12.0075 42.6174 155.7596
Exit pupil position -18.3774 -29.7585 -102.1355
Front principal point position 15.3631 49.4355 171.22063
Rear principal point position 46.6096 38.8967 -15.7629
Aperture radius 2.537 2.450 2.537

Single lens data Lens Start surface Focal length 1 1 -101.8482
2 3 45.5976
3 5 63.5132
4 7 -7.2265
5 9 -10.2909
6 11 15.3083
7 14 8.7361
8 16 30.0792
9 18 -6.9487
10 20 13.2412
11 22 -20.0890
12 24 21.5690

Zoom lens group data Group Start surface Focal length Lens composition length Front principal point position Rear principal point position 1 1 36.52727 6.16680 1.19246 3.35104
2 7 -5.84472 5.95530 0.54302 1.42818
3 13 10.39941 6.10780 -0.20639 1.58893
4 22 -20.08899 0.30000 0.39134 0.52348
5 24 21.56896 6.09000 -0.21315 0.82729

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.21628 -0.38735 -1.47413
3 13 -0.51661 -1.22218 -1.11439
4 22 1.46563 1.49827 1.87341
5 24 0.73826 0.73951 0.73965
(数値実施例2)
 数値実施例2のズームレンズ系は、図3に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表4に、非球面データを表5に、各種データを表6に示す。
(Numerical example 2)
The zoom lens system of Numerical Example 2 corresponds to Embodiment 2 shown in FIG. Table 4 shows surface data of the zoom lens system of Numerical Example 2, Table 5 shows aspheric data, and Table 6 shows various data.
表 4(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         33.80380     0.75000     1.84666    23.8               
     2         24.76800     0.01000     1.56732    42.8               
     3         24.76800     3.40000     1.49700    81.6               
     4       -256.85280     0.15000                                   
     5         22.15220     2.10000     1.49700    81.6               
     6         57.08190        可変                                   
     7*       803.92520     0.50000     1.87872    37.1               
     8*         6.26700     3.19500                                   
     9         -8.92500     0.30000     1.80420    46.5               
    10         50.27120     0.39500                                   
    11         25.99300     1.27000     1.94595    18.0               
    12        -25.99300        可変                                   
  13(絞り)           ∞     0.30000                                   
    14*         5.58170     1.95000     1.51776    69.9               
    15*       -22.60550     0.20000                                   
    16          9.06440     1.47000     1.51823    59.0               
    17         32.30660     0.01000     1.56732    42.8               
    18         32.30660     0.30000     1.90366    31.3               
    19          5.07740     0.41000                                   
    20          9.54190     1.15000     1.54310    56.0               
    21        -20.99820        可変                                   
    22         38.58740     0.30000     1.88300    40.8               
    23          9.14340        可変                                   
    24*         7.93810     2.44000     1.54310    56.0               
    25*        41.08140     2.13680                                   
    26               ∞     0.28000     1.51680    64.2               
    27               ∞     0.12000                                   
    28               ∞     0.50000     1.51680    64.2               
    29               ∞     0.37000                                   
    30               ∞        (BF)                                       
    像面             ∞                                               
Table 4 (surface data)

Surface number r d nd vd
Object ∞
1 33.80380 0.75000 1.84666 23.8
2 24.76800 0.01000 1.56732 42.8
3 24.76800 3.40000 1.49700 81.6
4 -256.85280 0.15000
5 22.15220 2.10000 1.49700 81.6
6 57.08190 Variable
7 * 803.92520 0.50000 1.87872 37.1
8 * 6.26700 3.19500
9 -8.92500 0.30000 1.80420 46.5
10 50.27120 0.39500
11 25.99300 1.27000 1.94595 18.0
12 -25.99300 variable
13 (Aperture) ∞ 0.30000
14 * 5.58170 1.95000 1.51776 69.9
15 * -22.60550 0.20000
16 9.06440 1.47000 1.51823 59.0
17 32.30660 0.01000 1.56732 42.8
18 32.30660 0.30000 1.90366 31.3
19 5.07740 0.41000
20 9.54190 1.15000 1.54310 56.0
21 -20.99820 Variable
22 38.58740 0.30000 1.88300 40.8
23 9.14340 Variable
24 * 7.93810 2.44000 1.54310 56.0
25 * 41.08140 2.13680
26 ∞ 0.28000 1.51680 64.2
27 ∞ 0.12000
28 ∞ 0.50000 1.51680 64.2
29 ∞ 0.37000
30 ∞ (BF)
Image plane ∞
表 5(非球面データ)
 
  第7面
   K= 0.00000E+00, A4=-1.27031E-04, A6= 1.74687E-05, A8=-2.51691E-07 
   A10= 1.01251E-08, A12=-7.61084E-10, A14= 1.74758E-11, A16=-1.22170E-13 
  第8面
   K= 0.00000E+00, A4=-1.11940E-04, A6=-1.33043E-05, A8= 8.97201E-06 
   A10=-1.03899E-06, A12= 8.11223E-08, A14=-2.90319E-09, A16= 3.64152E-11 
  第14面
   K= 0.00000E+00, A4=-5.19180E-04, A6=-3.77855E-06, A8=-1.11172E-06 
   A10= 2.48137E-07, A12=-1.39628E-08, A14= 0.00000E+00, A16= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 3.55926E-04, A6=-1.86447E-05, A8= 5.80987E-06 
   A10=-5.92858E-07, A12= 2.45731E-08, A14= 0.00000E+00, A16= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4=-3.64007E-06, A6= 6.46331E-05, A8=-1.26082E-05 
   A10= 1.25191E-06, A12=-6.47131E-08, A14= 1.65459E-09, A16=-1.76796E-11 
  第25面
   K= 0.00000E+00, A4= 1.19333E-03, A6=-1.49744E-04, A8= 6.86248E-06 
   A10= 3.73263E-07, A12=-5.17758E-08, A14= 1.77675E-09, A16=-2.04767E-11
Table 5 (Aspheric data)

7th surface K = 0.00000E + 00, A4 = -1.27031E-04, A6 = 1.74687E-05, A8 = -2.51691E-07
A10 = 1.01251E-08, A12 = -7.61084E-10, A14 = 1.74758E-11, A16 = -1.22170E-13
8th surface K = 0.00000E + 00, A4 = -1.11940E-04, A6 = -1.33043E-05, A8 = 8.97201E-06
A10 = -1.03899E-06, A12 = 8.11223E-08, A14 = -2.90319E-09, A16 = 3.64152E-11
14th surface K = 0.00000E + 00, A4 = -5.19180E-04, A6 = -3.77855E-06, A8 = -1.11172E-06
A10 = 2.48137E-07, A12 = -1.39628E-08, A14 = 0.00000E + 00, A16 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 3.55926E-04, A6 = -1.86447E-05, A8 = 5.80987E-06
A10 = -5.92858E-07, A12 = 2.45731E-08, A14 = 0.00000E + 00, A16 = 0.00000E + 00
24th surface K = 0.00000E + 00, A4 = -3.64007E-06, A6 = 6.46331E-05, A8 = -1.26082E-05
A10 = 1.25191E-06, A12 = -6.47131E-08, A14 = 1.65459E-09, A16 = -1.76796E-11
25th surface K = 0.00000E + 00, A4 = 1.19333E-03, A6 = -1.49744E-04, A8 = 6.86248E-06
A10 = 3.73263E-07, A12 = -5.17758E-08, A14 = 1.77675E-09, A16 = -2.04767E-11
表 6(各種データ)
 
  ズーム比    18.48345
                広角      中間      望遠
  焦点距離       4.4349   19.2663   81.9716
 Fナンバー     3.40796   5.54140   6.68361
    画角        41.7412   11.2528    2.6539
    像高         3.3100    3.8770    3.8770
 レンズ全長     50.4539   56.0526   67.4770
    BF        0.00010   0.00777  -0.03358
    d6           0.3380   12.5138   23.1986 
    d12         19.0000    5.8414    0.9500 
    d21          4.5353   10.8317    9.0191 
    d23          2.5737    2.8511   10.3361 
 入射瞳位置     12.3056   43.2691  141.1457
 射出瞳位置    -18.0789  -26.0523 -293.7951
 前側主点位置   15.6525   48.2918  200.2439
 後側主点位置   46.0190   36.7864  -14.4946
  絞り半径        2.511     2.273     2.511
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -113.7703
     2         3       45.6353
     3         5       71.4140
     4         7       -7.1901
     5         9       -9.4035
     6        11       13.9043
     7        14        8.8547
     8        16       23.7988
     9        18       -6.7015
    10        20       12.2422
    11        22      -13.6356
    12        24       17.6594
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    37.62663     6.41000         1.02008       3.18170
   2      7    -5.85973     5.66000         0.42747       1.22010
   3     13     9.72362     5.79000         0.02662       1.77872
   4     22   -13.63565     0.30000         0.20980       0.34971
   5     24    17.65943     5.47680        -0.36915       0.79531
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.21099   -0.37569   -1.19280
   3     13   -0.46661   -1.12471   -1.13832
   4     22    1.67694    1.69838    2.24138
   5     24    0.71394    0.71351    0.71585
Table 6 (various data)

Zoom ratio 18.48345
Wide angle Medium telephoto Focal length 4.4349 19.2663 81.9716
F number 3.40796 5.54140 6.68361
Angle of View 41.7412 11.2528 2.6539
Image height 3.3 100 3.8770 3.8770
Total lens length 50.4539 56.0526 67.4770
BF 0.00010 0.00777 -0.03358
d6 0.3380 12.5138 23.1986
d12 19.0000 5.8414 0.9500
d21 4.5353 10.8317 9.0191
d23 2.5737 2.8511 10.3361
Entrance pupil position 12.3056 43.2691 141.1457
Exit pupil position -18.0789 -26.0523 -293.7951
Front principal point position 15.6525 48.2918 200.2439
Rear principal point position 46.0190 36.7864 -14.4946
Aperture radius 2.511 2.273 2.511

Single lens data Lens Start surface Focal length 1 1 -113.7703
2 3 45.6353
3 5 71.4140
4 7 -7.1901
5 9 -9.4035
6 11 13.9043
7 14 8.8547
8 16 23.7988
9 18 -6.7015
10 20 12.2422
11 22 -13.6356
12 24 17.6594

Zoom lens group data Group Start surface Focal length Lens configuration length Front principal point position Rear principal point position 1 1 37.62663 6.41000 1.02008 3.18170
2 7 -5.85973 5.66000 0.42747 1.22010
3 13 9.72362 5.79000 0.02662 1.77872
4 22 -13.63565 0.30000 0.20980 0.34971
5 24 17.65943 5.47680 -0.36915 0.79531

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.21099 -0.37569 -1.19280
3 13 -0.46661 -1.12471 -1.13832
4 22 1.67694 1.69838 2.24138
5 24 0.71394 0.71351 0.71585
(数値実施例3)
 数値実施例3のズームレンズ系は、図5に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表7に、非球面データを表8に、各種データを表9に示す。
(Numerical Example 3)
The zoom lens system of Numerical Example 3 corresponds to Embodiment 3 shown in FIG. Table 7 shows surface data of the zoom lens system of Numerical Example 3, Table 8 shows aspheric data, and Table 9 shows various data.
表 7(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         37.60320     0.75000     1.84666    23.8               
     2         25.92660     0.01000     1.56732    42.8               
     3         25.92660     3.40000     1.49700    81.6               
     4       -191.44060     0.15000                                   
     5         22.83060     1.96000     1.59282    68.7               
     6         55.71460        可変                                   
     7*        96.96720     0.50000     1.80470    41.0               
     8*         5.53510     3.53500                                   
     9         -8.61090     0.30000     1.80420    46.5               
    10        206.59700     0.29330                                   
    11         28.50050     1.30000     1.94595    18.0               
    12        -28.50050        可変                                   
  13(絞り)           ∞     0.30000                                   
    14*         5.38110     2.05000     1.49710    81.5               
    15*       -19.73160     0.60000                                   
    16         10.15020     1.20000     1.51823    59.0               
    17         16.30560     0.01000     1.56732    42.8               
    18         16.30560     0.30000     1.90366    31.3               
    19          5.04140     0.46000                                   
    20          8.90340     1.10000     1.54410    56.1               
    21        -60.68850        可変                                   
    22         18.58030     0.30000     1.88300    40.8               
    23          8.83370        可変                                   
    24*         9.51960     2.01510     1.54410    56.1               
    25*        55.21200     2.88230                                   
    26               ∞     0.28000     1.51680    64.2               
    27               ∞     0.12000                                   
    28               ∞     0.50000     1.51680    64.2               
    29               ∞     0.37000                                   
    30               ∞        (BF)                                       
    像面             ∞                                               
Table 7 (surface data)

Surface number r d nd vd
Object ∞
1 37.60320 0.75000 1.84666 23.8
2 25.92660 0.01000 1.56732 42.8
3 25.92660 3.40000 1.49700 81.6
4 -191.44060 0.15000
5 22.83060 1.96000 1.59282 68.7
6 55.71460 Variable
7 * 96.96720 0.50000 1.80470 41.0
8 * 5.53510 3.53500
9 -8.61090 0.30000 1.80420 46.5
10 206.59700 0.29330
11 28.50050 1.30000 1.94595 18.0
12 -28.50050 Variable
13 (Aperture) ∞ 0.30000
14 * 5.38110 2.05000 1.49710 81.5
15 * -19.73160 0.60000
16 10.15020 1.20000 1.51823 59.0
17 16.30560 0.01000 1.56732 42.8
18 16.30560 0.30000 1.90366 31.3
19 5.04140 0.46000
20 8.90340 1.10000 1.54410 56.1
21 -60.68850 Variable
22 18.58030 0.30000 1.88300 40.8
23 8.83370 Variable
24 * 9.51960 2.01510 1.54410 56.1
25 * 55.21200 2.88230
26 ∞ 0.28000 1.51680 64.2
27 ∞ 0.12000
28 ∞ 0.50000 1.51680 64.2
29 ∞ 0.37000
30 ∞ (BF)
Image plane ∞
表 8(非球面データ)
 
  第7面
   K= 0.00000E+00, A4=-2.62456E-04, A6= 2.00458E-05, A8=-3.42410E-07 
   A10= 8.56348E-09, A12=-6.33719E-10, A14= 1.76240E-11, A16=-1.61220E-13 
  第8面
   K= 0.00000E+00, A4=-3.32511E-04, A6=-3.41151E-05, A8= 1.08798E-05 
   A10=-1.12088E-06, A12= 7.93803E-08, A14=-2.93445E-09, A16= 4.37384E-11 
  第14面
   K= 0.00000E+00, A4=-4.85802E-04, A6= 1.87790E-05, A8=-1.77069E-06 
   A10= 2.69271E-07, A12= 1.09823E-08, A14= 0.00000E+00, A16= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 5.51548E-04, A6= 2.34601E-05, A8= 1.95097E-06 
   A10=-1.43378E-07, A12= 4.06859E-08, A14= 0.00000E+00, A16= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4= 2.17580E-04, A6= 7.24324E-05, A8=-1.73136E-05 
   A10= 1.55000E-06, A12=-6.85016E-08, A14= 1.34068E-09, A16=-8.41357E-12 
  第25面
   K= 0.00000E+00, A4= 9.54666E-04, A6=-5.28827E-05, A8=-6.64665E-06 
   A10= 9.78986E-07, A12=-5.56248E-08, A14= 1.37481E-09, A16=-1.20479E-11
Table 8 (Aspherical data)

7th surface K = 0.00000E + 00, A4 = -2.62456E-04, A6 = 2.00458E-05, A8 = -3.42410E-07
A10 = 8.56348E-09, A12 = -6.33719E-10, A14 = 1.76240E-11, A16 = -1.61220E-13
8th surface K = 0.00000E + 00, A4 = -3.32511E-04, A6 = -3.41151E-05, A8 = 1.08798E-05
A10 = -1.12088E-06, A12 = 7.93803E-08, A14 = -2.93445E-09, A16 = 4.37384E-11
14th surface K = 0.00000E + 00, A4 = -4.85802E-04, A6 = 1.87790E-05, A8 = -1.77069E-06
A10 = 2.69271E-07, A12 = 1.09823E-08, A14 = 0.00000E + 00, A16 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 5.51548E-04, A6 = 2.34601E-05, A8 = 1.95097E-06
A10 = -1.43378E-07, A12 = 4.06859E-08, A14 = 0.00000E + 00, A16 = 0.00000E + 00
24th surface K = 0.00000E + 00, A4 = 2.17580E-04, A6 = 7.24324E-05, A8 = -1.73136E-05
A10 = 1.55000E-06, A12 = -6.85016E-08, A14 = 1.34068E-09, A16 = -8.41357E-12
25th surface K = 0.00000E + 00, A4 = 9.54666E-04, A6 = -5.28827E-05, A8 = -6.64665E-06
A10 = 9.78986E-07, A12 = -5.56248E-08, A14 = 1.37481E-09, A16 = -1.20479E-11
表 9(各種データ)
 
  ズーム比    17.97515
                広角      中間      望遠
  焦点距離       4.4914   19.0533   80.7339
 Fナンバー     3.36784   5.26017   5.78446
    画角        40.6834   11.2735    2.7085
    像高         3.3100    3.8770    3.8770
 レンズ全長     50.5705   57.9566   66.4883
    BF        0.00829  -0.00771  -0.03122
    d6           0.3000   13.0355   23.8041 
    d12         18.7666    6.6667    0.9500 
    d21          4.3347   10.5145    7.1671 
    d23          2.4752    3.0619    9.9126 
 入射瞳位置     12.1064   46.1231  159.9667
 射出瞳位置    -18.7750  -29.2347  -91.9215
 前側主点位置   15.5238   52.7554  169.7686
 後側主点位置   46.0791   38.9033  -14.2456
  絞り半径        2.553     2.384     2.553
  
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -101.6072
     2         3       46.1841
     3         5       63.8337
     4         7       -7.3127
     5         9      -10.2726
     6        11       15.2335
     7        14        8.7424
     8        16       48.6467
     9        18       -8.1792
    10        20       14.3500
    11        22      -19.3507
    12        24       20.8177
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    37.04845     6.27000         1.22320       3.41520
   2      7    -5.91206     5.92830         0.54306       1.42733
   3     13    10.22048     6.02000        -0.27921       1.55187
   4     22   -19.35066     0.30000         0.30817       0.44651
   5     24    20.81768     5.79740        -0.26773       0.72807
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.21547   -0.40210   -1.50264
   3     13   -0.51221   -1.14103   -1.04857
   4     22    1.48781    1.51661    1.86842
   5     24    0.73832    0.73909    0.74022
Table 9 (various data)

Zoom ratio 17.97515
Wide angle Medium telephoto Focal length 4.4914 19.0533 80.7339
F number 3.36784 5.26017 5.78446
Angle of view 40.6834 11.2735 2.7085
Image height 3.3 100 3.8770 3.8770
Total lens length 50.5705 57.9566 66.4883
BF 0.00829 -0.00771 -0.03122
d6 0.3000 13.0355 23.8041
d12 18.7666 6.6667 0.9500
d21 4.3347 10.5145 7.1671
d23 2.4752 3.0619 9.9126
Entrance pupil position 12.1064 46.1231 159.9667
Exit pupil position -18.7750 -29.2347 -91.9215
Front principal point position 15.5238 52.7554 169.7686
Rear principal point position 46.0791 38.9033 -14.2456
Aperture radius 2.553 2.384 2.553

Single lens data Lens Start surface Focal length 1 1 -101.6072
2 3 46.1841
3 5 63.8337
4 7 -7.3127
5 9 -10.2726
6 11 15.2335
7 14 8.7424
8 16 48.6467
9 18 -8.1792
10 20 14.3500
11 22 -19.3507
12 24 20.8177

Zoom lens group data Group Start surface Focal length Lens configuration length Front principal point position Rear principal point position 1 1 37.04845 6.27000 1.22320 3.41520
2 7 -5.91206 5.92830 0.54306 1.42733
3 13 10.22048 6.02000 -0.27921 1.55187
4 22 -19.35066 0.30000 0.30817 0.44651
5 24 20.81768 5.79740 -0.26773 0.72807

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.21547 -0.40210 -1.50264
3 13 -0.51221 -1.14103 -1.04857
4 22 1.48781 1.51661 1.86842
5 24 0.73832 0.73909 0.74022
(数値実施例4)
 数値実施例4のズームレンズ系は、図7に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表10に、非球面データを表11に、各種データを表12に示す。
(Numerical example 4)
The zoom lens system of Numerical Example 4 corresponds to Embodiment 4 shown in FIG. Table 10 shows surface data of the zoom lens system of Numerical Example 4, Table 11 shows aspheric data, and Table 12 shows various data.
表 10(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         36.74400     0.75000     1.84666    23.8               
     2         26.10030     0.01000     1.56732    42.8               
     3         26.10030     3.30000     1.45860    90.3               
     4       -142.56620     0.15000                                   
     5         22.91800     1.92000     1.59282    68.7               
     6         55.51700        可変                                   
     7*      -211.61750     0.30000     1.80470    41.0               
     8*         5.93290     3.53570                                   
     9         -8.92280     0.30000     1.80420    46.5               
    10        127.00340     0.32180                                   
    11         28.84840     1.08600     1.94595    18.0               
    12        -28.84840        可変                                   
  13(絞り)           ∞     0.30000                                   
    14*         5.91700     2.06250     1.59240    68.4               
    15*       -22.51650     0.70000                                   
    16         12.94680     1.20000     1.51742    52.1               
    17         81.42570     0.01000     1.56732    42.8               
    18         81.42570     0.30000     1.90366    31.3               
    19          5.30460     0.48370                                   
    20          8.91230     1.20000     1.52996    55.8               
    21        -26.13570        可変                                   
    22         14.30230     0.30000     1.88300    40.8               
    23          7.83530        可変                                   
    24*        11.28200     2.39500     1.52996    55.8               
    25*      -151.39700     3.00000                                   
    26               ∞     0.28000     1.51680    64.2               
    27               ∞     0.12000                                   
    28               ∞     0.50000     1.51680    64.2               
    29               ∞     0.37000                                   
    30               ∞        (BF)                                       
    像面             ∞                                               
Table 10 (surface data)

Surface number r d nd vd
Object ∞
1 36.74400 0.75000 1.84666 23.8
2 26.10030 0.01000 1.56732 42.8
3 26.10030 3.30000 1.45860 90.3
4 -142.56620 0.15000
5 22.91800 1.92000 1.59282 68.7
6 55.51700 Variable
7 * -211.61750 0.30000 1.80470 41.0
8 * 5.93290 3.53570
9 -8.92280 0.30000 1.80420 46.5
10 127.00340 0.32180
11 28.84840 1.08600 1.94595 18.0
12 -28.84840 Variable
13 (Aperture) ∞ 0.30000
14 * 5.91700 2.06250 1.59240 68.4
15 * -22.51650 0.70000
16 12.94680 1.20000 1.51742 52.1
17 81.42570 0.01000 1.56732 42.8
18 81.42570 0.30000 1.90366 31.3
19 5.30460 0.48370
20 8.91230 1.20000 1.52996 55.8
21 -26.13570 Variable
22 14.30230 0.30000 1.88300 40.8
23 7.83530 Variable
24 * 11.28200 2.39500 1.52996 55.8
25 * -151.39700 3.00000
26 ∞ 0.28000 1.51680 64.2
27 ∞ 0.12000
28 ∞ 0.50000 1.51680 64.2
29 ∞ 0.37000
30 ∞ (BF)
Image plane ∞
表 11(非球面データ)
 
  第7面
   K= 0.00000E+00, A4= 5.07056E-05, A6= 1.63975E-05, A8=-3.56375E-07 
   A10= 7.90942E-09, A12=-6.22041E-10, A14= 1.76933E-11, A16=-1.59606E-13 
  第8面
   K= 0.00000E+00, A4= 3.04819E-05, A6=-3.30219E-05, A8= 1.17854E-05 
   A10=-1.18441E-06, A12= 8.21892E-08, A14=-2.87156E-09, A16= 3.67498E-11 
  第14面
   K= 0.00000E+00, A4=-3.89111E-04, A6=-7.16833E-07, A8=-1.24467E-06 
   A10= 4.03670E-07, A12=-2.10270E-08, A14= 0.00000E+00, A16= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 3.94371E-04, A6=-3.97003E-06, A8= 2.19321E-06 
   A10= 6.61118E-08, A12=-9.97575E-09, A14= 0.00000E+00, A16= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4=-6.00404E-06, A6= 1.78207E-05, A8=-1.36323E-05 
   A10= 1.37231E-06, A12=-5.92619E-08, A14= 9.26073E-10, A16= 0.00000E+00 
  第25面
   K= 0.00000E+00, A4= 6.05442E-04, A6=-1.55789E-04, A8= 3.03155E-06 
   A10= 3.83567E-07, A12=-2.58096E-08, A14= 4.56893E-10, A16= 0.00000E+00
Table 11 (Aspheric data)

7th surface K = 0.00000E + 00, A4 = 5.07056E-05, A6 = 1.63975E-05, A8 = -3.56375E-07
A10 = 7.90942E-09, A12 = -6.22041E-10, A14 = 1.76933E-11, A16 = -1.59606E-13
8th surface K = 0.00000E + 00, A4 = 3.04819E-05, A6 = -3.30219E-05, A8 = 1.17854E-05
A10 = -1.18441E-06, A12 = 8.21892E-08, A14 = -2.87156E-09, A16 = 3.67498E-11
14th surface K = 0.00000E + 00, A4 = -3.89111E-04, A6 = -7.16833E-07, A8 = -1.24467E-06
A10 = 4.03670E-07, A12 = -2.10270E-08, A14 = 0.00000E + 00, A16 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 3.94371E-04, A6 = -3.97003E-06, A8 = 2.19321E-06
A10 = 6.61118E-08, A12 = -9.97575E-09, A14 = 0.00000E + 00, A16 = 0.00000E + 00
24th surface K = 0.00000E + 00, A4 = -6.00404E-06, A6 = 1.78207E-05, A8 = -1.36323E-05
A10 = 1.37231E-06, A12 = -5.92619E-08, A14 = 9.26073E-10, A16 = 0.00000E + 00
25th surface K = 0.00000E + 00, A4 = 6.05442E-04, A6 = -1.55789E-04, A8 = 3.03155E-06
A10 = 3.83567E-07, A12 = -2.58096E-08, A14 = 4.56893E-10, A16 = 0.00000E + 00
表 12(各種データ)
 
  ズーム比    18.90289
                広角      中間      望遠
  焦点距離       4.4130   19.1811   83.4190
 Fナンバー     3.35162   5.14442   6.12555
    画角        41.2912   11.2216    2.6394
    像高         3.3100    3.8770    3.8770
 レンズ全長     51.1297   58.6917   69.0494
    BF        0.00232  -0.02602  -0.04245
    d6           0.3000   12.7541   24.1980 
    d12         19.1630    6.5555    1.2368 
    d21          3.8424   11.5189    8.5748 
    d23          2.9273    2.9945   10.1877 
 入射瞳位置     11.6823   42.9360  157.3740
 射出瞳位置    -21.4337  -35.0005 -205.5068
 前側主点位置   15.1868   51.5976  206.9247
 後側主点位置   46.7167   39.5106  -14.3696
  絞り半径        2.622     2.578     2.622
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -109.9742
     2         3       48.4038
     3         5       64.4256
     4         7       -7.1673
     5         9      -10.3567
     6        11       15.3893
     7        14        8.1290
     8        16       29.5758
     9        18       -6.2910
    10        20       12.6911
    11        22      -20.0609
    12        24       19.9136
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    37.53278     6.13000         1.26865       3.35266
   2      7    -5.78886     5.54350         0.42748       1.14687
   3     13    10.35410     6.25620        -0.31241       1.55045
   4     22   -20.06086     0.30000         0.36019       0.49732
   5     24    19.91357     6.29500         0.10912       1.19645
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.20499   -0.36673   -1.33349
   3     13   -0.52113   -1.26308   -1.22170
   4     22    1.51754    1.51821    1.87523
   5     24    0.72527    0.72669    0.72752
Table 12 (various data)

Zoom ratio 18.90289
Wide angle Medium telephoto Focal length 4.4130 19.1811 83.4190
F number 3.35162 5.14442 6.12555
Angle of View 41.2912 11.2216 2.6394
Image height 3.3 100 3.8770 3.8770
Total lens length 51.1297 58.6917 69.0494
BF 0.00232 -0.02602 -0.04245
d6 0.3000 12.7541 24.1980
d12 19.1630 6.5555 1.2368
d21 3.8424 11.5189 8.5748
d23 2.9273 2.9945 10.1877
Entrance pupil position 11.6823 42.9360 157.3740
Exit pupil position -21.4337 -35.0005 -205.5068
Front principal point position 15.1868 51.5976 206.9247
Rear principal point position 46.7167 39.5106 -14.3696
Aperture radius 2.622 2.578 2.622

Single lens data Lens Start surface Focal length 1 1 -109.9742
2 3 48.4038
3 5 64.4256
4 7 -7.1673
5 9 -10.3567
6 11 15.3893
7 14 8.1290
8 16 29.5758
9 18 -6.2910
10 20 12.6911
11 22 -20.0609
12 24 19.9136

Zoom lens group data Group Start surface Focal length Lens configuration length Front principal point position Rear principal point position 1 1 37.53278 6.13000 1.26865 3.35266
2 7 -5.78886 5.54350 0.42748 1.14687
3 13 10.35410 6.25620 -0.31241 1.55045
4 22 -20.06086 0.30000 0.36019 0.49732
5 24 19.91357 6.29500 0.10912 1.19645

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.20499 -0.36673 -1.33349
3 13 -0.52113 -1.26308 -1.22170
4 22 1.51754 1.51821 1.87523
5 24 0.72527 0.72669 0.72752
(数値実施例5)
 数値実施例5のズームレンズ系は、図9に示した実施の形態5に対応する。数値実施例5のズームレンズ系の面データを表13に、非球面データを表14に、各種データを表15に示す。
(Numerical example 5)
The zoom lens system of Numerical Example 5 corresponds to Embodiment 5 shown in FIG. Table 13 shows surface data of the zoom lens system of Numerical Example 5, Table 14 shows aspheric data, and Table 15 shows various data.
表 13(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         41.82520     0.75000     1.84666    23.8               
     2         29.43770     0.01000     1.56732    42.8               
     3         29.43770     2.69270     1.49700    81.6               
     4       1024.46400     0.15000                                   
     5         27.18500     1.40000     1.45860    90.3               
     6         43.21930     0.15000                                   
     7         29.03590     1.40000     1.49700    81.6               
     8         83.95680        可変                                   
     9*      1000.00000     0.30000     1.80470    41.0               
    10*         6.21940     3.53570                                   
    11         -9.38370     0.30000     1.77250    49.6               
    12         60.91170     0.32180                                   
    13         29.92930     1.08600     1.94595    18.0               
    14        -29.92930        可変                                   
  15(絞り)           ∞     0.30000                                   
    16*         6.23220     2.06250     1.51845    70.0               
    17*       -18.68700     0.70000                                   
    18          6.94310     1.20660     1.51742    52.1               
    19         23.91590     0.01000     1.56732    42.8               
    20         23.91590     0.30000     1.90366    31.3               
    21          5.04860     0.48370                                   
    22         12.91690     1.19610     1.59282    68.7               
    23        -46.93350        可変                                   
    24       -332.78670     0.30000     1.83481    42.7               
    25         13.42790        可変                                   
    26*         9.88220     2.39500     1.54310    56.0               
    27*       -59.84640     2.79520                                   
    28               ∞     0.28000     1.51680    64.2               
    29               ∞     0.12000                                   
    30               ∞     0.50000     1.51680    64.2               
    31               ∞     0.37000                                   
    32               ∞        (BF)                                       
    像面             ∞                                               
Table 13 (surface data)

Surface number r d nd vd
Object ∞
1 41.82520 0.75000 1.84666 23.8
2 29.43770 0.01000 1.56732 42.8
3 29.43770 2.69270 1.49700 81.6
4 1024.46400 0.15000
5 27.18500 1.40000 1.45860 90.3
6 43.21930 0.15000
7 29.03590 1.40000 1.49700 81.6
8 83.95680 Variable
9 * 1000.00000 0.30000 1.80470 41.0
10 * 6.21940 3.53570
11 -9.38370 0.30000 1.77250 49.6
12 60.91170 0.32180
13 29.92930 1.08600 1.94595 18.0
14 -29.92930 Variable
15 (Aperture) ∞ 0.30000
16 * 6.23220 2.06250 1.51845 70.0
17 * -18.68700 0.70000
18 6.94310 1.20660 1.51742 52.1
19 23.91590 0.01000 1.56732 42.8
20 23.91590 0.30000 1.90366 31.3
21 5.04860 0.48370
22 12.91690 1.19610 1.59282 68.7
23 -46.93350 Variable
24 -332.78670 0.30000 1.83481 42.7
25 13.42790 Variable
26 * 9.88220 2.39500 1.54310 56.0
27 * -59.84640 2.79520
28 ∞ 0.28000 1.51680 64.2
29 ∞ 0.12000
30 ∞ 0.50000 1.51680 64.2
31 ∞ 0.37000
32 ∞ (BF)
Image plane ∞
表 14(非球面データ)
 
  第9面
   K= 0.00000E+00, A4=-8.37698E-04, A6= 9.56321E-05, A8=-3.15143E-06 
   A10= 3.26656E-08, A12= 1.04819E-10, A14= 2.44038E-12, A16=-1.00850E-13 
  第10面
   K= 0.00000E+00, A4=-9.46241E-04, A6= 5.25326E-05, A8= 7.92795E-06 
   A10=-1.24531E-06, A12= 1.27717E-07, A14=-6.65174E-09, A16= 1.28631E-10 
  第16面
   K= 0.00000E+00, A4=-4.24751E-04, A6=-2.18713E-05, A8= 6.91679E-07 
   A10=-1.55348E-07, A12= 2.70789E-09, A14= 0.00000E+00, A16= 0.00000E+00 
  第17面
   K= 0.00000E+00, A4= 2.48331E-04, A6=-3.07182E-05, A8= 4.61417E-06 
   A10=-7.37912E-07, A12= 3.27787E-08, A14= 0.00000E+00, A16= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4= 9.21633E-04, A6=-2.48365E-05, A8=-7.18193E-06 
   A10= 8.89764E-07, A12=-4.02139E-08, A14= 6.32545E-10, A16= 0.00000E+00 
  第27面
   K= 0.00000E+00, A4= 2.29051E-03, A6=-1.63248E-04, A8=-2.33278E-06 
   A10= 1.05403E-06, A12=-5.86972E-08, A14= 1.02817E-09, A16= 0.00000E+00
Table 14 (Aspherical data)

9th surface K = 0.00000E + 00, A4 = -8.37698E-04, A6 = 9.56321E-05, A8 = -3.15143E-06
A10 = 3.26656E-08, A12 = 1.04819E-10, A14 = 2.44038E-12, A16 = -1.00850E-13
10th surface K = 0.00000E + 00, A4 = -9.46241E-04, A6 = 5.25326E-05, A8 = 7.92795E-06
A10 = -1.24531E-06, A12 = 1.27717E-07, A14 = -6.65174E-09, A16 = 1.28631E-10
16th surface K = 0.00000E + 00, A4 = -4.24751E-04, A6 = -2.18713E-05, A8 = 6.91679E-07
A10 = -1.55348E-07, A12 = 2.70789E-09, A14 = 0.00000E + 00, A16 = 0.00000E + 00
17th surface K = 0.00000E + 00, A4 = 2.48331E-04, A6 = -3.07182E-05, A8 = 4.61417E-06
A10 = -7.37912E-07, A12 = 3.27787E-08, A14 = 0.00000E + 00, A16 = 0.00000E + 00
26th surface K = 0.00000E + 00, A4 = 9.21633E-04, A6 = -2.48365E-05, A8 = -7.18193E-06
A10 = 8.89764E-07, A12 = -4.02139E-08, A14 = 6.32545E-10, A16 = 0.00000E + 00
Surface 27 K = 0.00000E + 00, A4 = 2.29051E-03, A6 = -1.63248E-04, A8 = -2.33278E-06
A10 = 1.05403E-06, A12 = -5.86972E-08, A14 = 1.02817E-09, A16 = 0.00000E + 00
表 15(各種データ)
 
  ズーム比    18.69556
                広角      中間      望遠
  焦点距離       4.4759   17.7712   83.6795
 Fナンバー     3.43039   5.34096   6.09213
    画角        41.6856   12.1922    2.5892
    像高         3.3100    3.8770    3.8770
 レンズ全長     51.1399   57.9762   68.4472
    BF        0.01252   0.02195  -0.01928
    d8           0.3000   12.6591   25.5535 
    d14         19.2960    6.9896    0.7276 
    d23          4.4193   10.4268    8.9345 
    d25          1.9968    2.7636    8.1355 
 入射瞳位置     12.5747   42.5828  163.6601
 射出瞳位置    -20.7828  -37.0684 -910.0970
 前側主点位置   16.0872   51.8392  239.6455
 後側主点位置   46.6640   40.2051  -15.2324
  絞り半径        2.476     2.338     2.476
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -120.7462
     2         3       60.9287
     3         5      155.5111
     4         7       88.5604
     5         9       -7.7783
     6        11      -10.5061
     7        13       15.9606
     8        16        9.2766
     9        18       18.4604
    10        20       -7.1357
    11        22       17.2145
    12        24      -15.4550
    13        26       15.8082
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    39.76996     6.55270         1.29166       3.41342
   2      9    -6.11947     5.54350         0.49060       1.23716
   3     15    10.15852     6.25890        -0.29682       1.67901
   4     24   -15.45503     0.30000         0.15710       0.29366
   5     26    15.80822     6.09020         0.22266       1.31235
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      9   -0.20590   -0.35247   -1.36991
   3     15   -0.49490   -1.11424   -1.11863
   4     24    1.63973    1.69069    2.03241
   5     26    0.67356    0.67297    0.67558
Table 15 (various data)

Zoom ratio 18.69556
Wide angle Medium telephoto Focal length 4.4759 17.7712 83.6795
F number 3.43039 5.34096 6.09213
Angle of View 41.6856 12.1922 2.5892
Image height 3.3 100 3.8770 3.8770
Total lens length 51.1399 57.9762 68.4472
BF 0.01252 0.02195 -0.01928
d8 0.3000 12.6591 25.5535
d14 19.2960 6.9896 0.7276
d23 4.4193 10.4268 8.9345
d25 1.9968 2.7636 8.1355
Entrance pupil position 12.5747 42.5828 163.6601
Exit pupil position -20.7828 -37.0684 -910.0970
Front principal point position 16.0872 51.8392 239.6455
Rear principal point position 46.6640 40.2051 -15.2324
Aperture radius 2.476 2.338 2.476

Single lens data Lens Start surface Focal length 1 1 -120.7462
2 3 60.9287
3 5 155.5111
4 7 88.5604
5 9 -7.7783
6 11 -10.5061
7 13 15.9606
8 16 9.2766
9 18 18.4604
10 20 -7.1357
11 22 17.2145
12 24 -15.4550
13 26 15.8082

Zoom lens group data Group Start surface Focal length Lens composition length Front principal point position Rear principal point position 1 1 39.76996 6.55270 1.29166 3.41342
2 9 -6.11947 5.54350 0.49060 1.23716
3 15 10.15852 6.25890 -0.29682 1.67901
4 24 -15.45503 0.30000 0.15710 0.29366
5 26 15.80822 6.09020 0.22266 1.31235

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 9 -0.20590 -0.35247 -1.36991
3 15 -0.49490 -1.11424 -1.11863
4 24 1.63973 1.69069 2.03241
5 26 0.67356 0.67297 0.67558
 以下の表16及び表17に、各数値実施例のズームレンズ系における各条件の対応値を示す。 Tables 16 and 17 below show the corresponding values for each condition in the zoom lens system of each numerical example.
表 16(条件の対応値) 
Figure JPOXMLDOC01-appb-T000001
Table 16 (corresponding values of conditions)
Figure JPOXMLDOC01-appb-T000001
表 17(条件の対応値) 
Figure JPOXMLDOC01-appb-T000002
Table 17 (corresponding values of conditions)
Figure JPOXMLDOC01-appb-T000002
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示は、デジタルカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等のデジタル入力装置に適用可能である。特に本開示は、デジタルカメラ等の高画質が要求される撮影光学系に適用可能である。 The present disclosure can be applied to digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras. In particular, the present disclosure can be applied to a photographing optical system that requires high image quality, such as a digital camera.
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
G5  第5レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
L12 第12レンズ素子
L13 第13レンズ素子
A   開口絞り
FL  ローパスフィルタ
CG  カバーガラス
S   像面
1   ズームレンズ系
2   撮像素子
3   液晶モニタ
4   筐体
5   主鏡筒
6   移動鏡筒
7   円筒カム
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group L1 1st lens element L2 2nd lens element L3 3rd lens element L4 4th lens element L5 5th lens element L6 6th lens element L7 7th lens element L8 8th lens element L9 9th lens element L10 10th lens element L11 11th lens element L12 12th lens element L13 13th lens element A Aperture stop FL Low pass filter CG Cover glass S Image plane 1 Zoom lens system 2 Image sensor 3 Liquid crystal monitor 4 Case 5 Main barrel 6 Moving barrel 7 Cylindrical cam

Claims (10)

  1.  少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するズームレンズ系であって、
    物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群とを少なくとも備え、
    撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群と前記第2レンズ群との間隔を増大させ、
    以下の条件(I-1)及び(I-2)を同時に満足することを特徴とする、ズームレンズ系:
      D1>D2 ・・・(I-1)
      D3>D2 ・・・(I-2)
    ここで、
     D1:広角端における開口絞りの有効径(mm)、
     D2:中間位置における開口絞りの有効径(mm)、
     D3:望遠端における開口絞りの有効径(mm)
    である。
    A zoom lens system having a plurality of lens groups each composed of at least one lens element,
    In order from the object side to the image side, at least a first lens group having positive power and a second lens group having negative power are provided,
    During zooming from the wide-angle end to the telephoto end during imaging, the interval between the first lens group and the second lens group is increased,
    A zoom lens system characterized by simultaneously satisfying the following conditions (I-1) and (I-2):
    D1> D2 (I-1)
    D3> D2 (I-2)
    here,
    D1: Effective diameter (mm) of the aperture stop at the wide angle end,
    D2: effective diameter (mm) of the aperture stop at the intermediate position,
    D3: Effective diameter of aperture stop at telephoto end (mm)
    It is.
  2.  さらに以下の条件(I-3)を満足する、請求項1に記載のズームレンズ系:
      D1=D3 ・・・(I-3)
    ここで、
     D1:広角端における開口絞りの有効径(mm)、
     D3:望遠端における開口絞りの有効径(mm)
    である。
    The zoom lens system according to claim 1, further satisfying the following condition (I-3):
    D1 = D3 (I-3)
    here,
    D1: Effective diameter (mm) of the aperture stop at the wide angle end,
    D3: Effective diameter of aperture stop at telephoto end (mm)
    It is.
  3.  第2レンズ群の像側に少なくとも1つの後続レンズ群を備え、該後続レンズ群のうちのいずれかのレンズ群にてフォーカシングを行う、請求項1又は2に記載のズームレンズ系。 3. The zoom lens system according to claim 1, wherein at least one subsequent lens group is provided on the image side of the second lens group, and focusing is performed by any one of the subsequent lens groups.
  4.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、撮像装置。
    An imaging apparatus capable of outputting an optical image of an object as an electrical image signal,
    A zoom lens system that forms an optical image of the object;
    An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    An imaging apparatus, wherein the zoom lens system is the zoom lens system according to claim 1.
  5.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、カメラ。
    A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
    An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    The camera according to claim 1, wherein the zoom lens system is the zoom lens system according to claim 1.
  6.  少なくとも1枚のレンズ素子で構成されたレンズ群を少なくとも5つ有するズームレンズ系であって、
    物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを少なくとも備え、
    前記第1レンズ群が、以下の条件(II-1)を満足するレンズ素子を少なくとも2枚含み、同時に、前記第3レンズ群が、以下の条件(II-2)を満足するレンズ素子を少なくとも1枚含むことを特徴とする、ズームレンズ系:
      νd≧65 ・・・(II-1)
      νd≧65 ・・・(II-2)
    ここで、
     νd:第1レンズ群に含まれるレンズ素子のd線に対するアッベ数、
     νd:第3レンズ群に含まれるレンズ素子のd線に対するアッベ数
    である。
    A zoom lens system having at least five lens groups each composed of at least one lens element,
    In order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power are provided.
    The first lens group includes at least two lens elements that satisfy the following condition (II-1). At the same time, the third lens group includes at least lens elements that satisfy the following condition (II-2): A zoom lens system characterized by including one lens:
    νd 1 ≧ 65 (II-1)
    νd 3 ≧ 65 (II-2)
    here,
    νd 1 : Abbe number for the d-line of the lens elements included in the first lens group,
    νd 3 is an Abbe number with respect to the d-line of the lens elements included in the third lens group.
  7.  第1レンズ群が、以下の条件(II-1)’’を満足するレンズ素子を少なくとも2枚含む、請求項6に記載のズームレンズ系:
      νd≧75 ・・・(II-1)’’
    ここで、
     νd:第1レンズ群に含まれるレンズ素子のd線に対するアッベ数
    である。
    The zoom lens system according to claim 6, wherein the first lens group includes at least two lens elements that satisfy the following condition (II-1) '':
    νd 1 ≧ 75 (II-1) ″
    here,
    νd 1 : Abbe number for the d-line of the lens elements included in the first lens group.
  8.  第3レンズ群及び該第3レンズ群よりも像側に配置されたレンズ群のうちのいずれかのレンズ群にてフォーカシングを行う、請求項6又は7に記載のズームレンズ系。 The zoom lens system according to claim 6 or 7, wherein focusing is performed by any one of the third lens group and the lens group disposed closer to the image side than the third lens group.
  9.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項6に記載のズームレンズ系である、撮像装置。
    An imaging apparatus capable of outputting an optical image of an object as an electrical image signal,
    A zoom lens system that forms an optical image of the object;
    An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    An imaging apparatus, wherein the zoom lens system is the zoom lens system according to claim 6.
  10.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項6に記載のズームレンズ系である、カメラ。
    A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
    An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    A camera, wherein the zoom lens system is the zoom lens system according to claim 6.
PCT/JP2013/000386 2012-01-27 2013-01-25 Zoom lens system, image capturing device and camera WO2013111602A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-015772 2012-01-27
JP2012-015771 2012-01-27
JP2012015772 2012-01-27
JP2012015771 2012-01-27

Publications (1)

Publication Number Publication Date
WO2013111602A1 true WO2013111602A1 (en) 2013-08-01

Family

ID=48873326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000386 WO2013111602A1 (en) 2012-01-27 2013-01-25 Zoom lens system, image capturing device and camera

Country Status (1)

Country Link
WO (1) WO2013111602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096331A (en) * 2019-12-16 2021-06-24 オリンパス株式会社 Zoom optical system, image capturing optical system, and image capturing device having the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281927A (en) * 2007-05-14 2008-11-20 Konica Minolta Opto Inc Variable magnification optical system, imaging apparatus and digital equipment
JP2009282429A (en) * 2008-05-26 2009-12-03 Konica Minolta Opto Inc Zoom lens
JP2011186417A (en) * 2009-07-23 2011-09-22 Fujifilm Corp Zoom lens and imaging apparatus
JP2012247564A (en) * 2011-05-26 2012-12-13 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2012247562A (en) * 2011-05-26 2012-12-13 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2012247563A (en) * 2011-05-26 2012-12-13 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2013044755A (en) * 2011-08-19 2013-03-04 Konica Minolta Advanced Layers Inc Zoom lens and imaging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281927A (en) * 2007-05-14 2008-11-20 Konica Minolta Opto Inc Variable magnification optical system, imaging apparatus and digital equipment
JP2009282429A (en) * 2008-05-26 2009-12-03 Konica Minolta Opto Inc Zoom lens
JP2011186417A (en) * 2009-07-23 2011-09-22 Fujifilm Corp Zoom lens and imaging apparatus
JP2012247564A (en) * 2011-05-26 2012-12-13 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2012247562A (en) * 2011-05-26 2012-12-13 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2012247563A (en) * 2011-05-26 2012-12-13 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2013044755A (en) * 2011-08-19 2013-03-04 Konica Minolta Advanced Layers Inc Zoom lens and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096331A (en) * 2019-12-16 2021-06-24 オリンパス株式会社 Zoom optical system, image capturing optical system, and image capturing device having the same

Similar Documents

Publication Publication Date Title
JP5891447B2 (en) Zoom lens system, interchangeable lens device and camera system
WO2012101959A1 (en) Zoom-lens system, imaging device, and camera
JP2011232543A (en) Zoom lens system, imaging apparatus and camera
JP5919519B2 (en) Zoom lens system, imaging device and camera
JP2012198504A (en) Zoom lens system, imaging device, and camera
JP2017146588A (en) Zoom lens system, interchangeable lens device and camera system with zoom lens system, and imaging apparatus with zoom lens system
JP2012133229A (en) Zoom lens system, interchangeable lens device and camera system
JP2012198503A (en) Zoom lens system, imaging device, and camera
WO2015004703A1 (en) Zoom lens system, imaging device, and camera
JP2012048200A (en) Zoom lens system, image pickup device, and camera
WO2014006653A1 (en) Zoom lens system, image capturing device and camera
JP5162729B2 (en) Zoom lens system, imaging device and camera
JP2012198505A (en) Zoom lens system, imaging device, and camera
JP5919518B2 (en) Zoom lens system, imaging device and camera
JP2012198506A (en) Zoom lens system, imaging device, and camera
WO2013105190A1 (en) Zoom lens system, imaging device, and camera
JP2011064933A (en) Zoom lens system, imaging apparatus and camera
JP6198071B2 (en) Zoom lens system, imaging device and camera
JP2012150432A (en) Zoom lens system, imaging device and camera
JP2010160334A (en) Zoom lens system, imaging apparatus, and camera
JP2010160329A (en) Zoom lens system, imaging apparatus, and camera
JPWO2011048789A1 (en) Zoom lens system, imaging device and camera
JP5669105B2 (en) Zoom lens system, imaging device and camera
JP5271090B2 (en) Zoom lens system, imaging device and camera
WO2013111602A1 (en) Zoom lens system, image capturing device and camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP