WO2013111559A1 - Optical film manufacturing method - Google Patents

Optical film manufacturing method Download PDF

Info

Publication number
WO2013111559A1
WO2013111559A1 PCT/JP2013/000263 JP2013000263W WO2013111559A1 WO 2013111559 A1 WO2013111559 A1 WO 2013111559A1 JP 2013000263 W JP2013000263 W JP 2013000263W WO 2013111559 A1 WO2013111559 A1 WO 2013111559A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
slitting
transport
width direction
width
Prior art date
Application number
PCT/JP2013/000263
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 溝口
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2013555191A priority Critical patent/JP5907178B2/en
Publication of WO2013111559A1 publication Critical patent/WO2013111559A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D2007/0012Details, accessories or auxiliary or special operations not otherwise provided for
    • B26D2007/0068Trimming and removing web edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention can also be used for various functional films such as a protective film for a polarizing plate used for a liquid crystal display (LCD), a retardation film, a viewing angle widening film, an antireflection film used for a plasma display, and the like.
  • the present invention relates to a method for producing an optical film.
  • liquid crystal display panels have also been used for mobile phone smartphones and personal computer tablet terminals (slate PCs), and optical films corresponding to various widths are required as thin films.
  • tablet terminals are often viewed with their screens closer to the eyes, and the liquid crystal display panel has noticeable light unevenness that has not been noticeable until now. Therefore, a high-quality optical film is required.
  • the slitter moves inward or outward.
  • the slitter moves inward, and as a result, stress is generated in the inner direction, wrinkles are generated in the center of the transport film, and the film is folded back when wrinkles become strong. Has a problem of breaking.
  • Patent Document 1 discloses a cellulose ester film and a manufacturing apparatus thereof, and describes that both ends in the width direction of a transport film (transport web) are simultaneously cut by a pair of slitting devices facing each other. ing. Further, in Patent Document 2 below, cutting is performed by cutting a wide web such as a film, paper, metal foil or the like while the flexible web is running into a plurality of narrow webs. An automatic cutting ear processing apparatus for automatically processing an ear generated in a machine is disclosed. Regarding the change of the slit width of the web, a plurality of slitting blades arranged in a line in the width direction of the web are used. A method of moving in a direction orthogonal to the transport direction is disclosed.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, to investigate the cause of light unevenness in optical films in recent years, and to provide a method for producing a high-quality optical film without light unevenness, And to provide a method for producing a high-quality optical film with little risk of film breakage even when changing the width of a thin film (web) or changing the width of a film with low breaking strength and without causing light unevenness. is there.
  • One aspect of the present invention is a method of manufacturing an optical film having a film thickness of 10 to 50 ⁇ m, and a pair of slitting positioned on both ends of the transport film in the width direction on the film transport line before the film winding process.
  • the first slitting device provided at one end and the second slitting device provided at the other end are arranged in a staggered manner with an interval of 1 to 20 m in the film longitudinal direction. It is characterized by having.
  • the first slitting device and the second slitting device are arranged in a staggered manner with a predetermined interval in the film longitudinal direction, so that the film at the time of slitting at both ends in the width direction of the transport film Since the stress applied to each side can escape to the opposite side of each slitting device, there is no generation of small wrinkles, thereby eliminating the occurrence of scratches and scratches. There exists an effect that a film can be manufactured.
  • FIG. 1 is a schematic flow sheet showing an embodiment of a solution casting film forming apparatus for carrying out the method for producing an optical film of the present invention.
  • FIG. 2 is an enlarged perspective view of a main part of a slitting device portion in the apparatus of FIG.
  • the front means the downstream direction of the film transport direction.
  • FIG. 1 is a schematic flow sheet showing an embodiment of a solution casting film forming apparatus for carrying out the optical film manufacturing method of the present embodiment.
  • FIG. 2 is an enlarged perspective view of a main part of a slitting device portion in the apparatus of FIG.
  • each reference numeral is 1: a rotational drive endless belt support made of stainless steel, 2: a casting die, 3: a peeling roll, 4: a first drying zone, 5: a tenter, and 6: a second drying.
  • the optical film manufacturing method by the solution casting film forming method includes a dope preparation step (dissolution step), a dope casting step, a web peeling step, a web first drying step, a web stretching step, a web second drying step, and a film width. It comprises a cutting process at both ends in the direction and a film winding process.
  • a resin such as cellulose ester is dissolved in a mixed solvent of a good solvent and a poor solvent in a dissolution pot (not shown), and an additive such as a plasticizer or an ultraviolet absorber is added to the resin solution ( (Dope) is prepared (dope preparation step).
  • the dope is fed from the casting die (2) to the casting position on the support (1) made of, for example, a rotationally driven stainless steel endless belt, which sends the dope to the casting die (2) and transfers it infinitely.
  • the web (10) formed by casting is brought into contact with the endless belt support (1) (dope casting step).
  • the web (10) After drying and solidifying the endless belt support (1) until the web (10) has a peelable film strength, the web (10) is peeled off by the peeling roll (3) (web peeling step).
  • the peeled web (10) is introduced into the first drying zone (4).
  • the web (10) is meandered by a plurality of conveying rolls (7) arranged in a staggered manner when viewed from the side, and the web (10) is dried by warm air during that time ( Web first drying step).
  • the web after drying is introduced into a tenter (5) in a stretching process, stretched to a predetermined width, and dried (web stretching process).
  • the stretched film (web) (10) is further introduced into the second drying zone (6), and a plurality of transport rolls (8) arranged in a staggered manner as viewed from the side in the second drying zone (6).
  • the web (10) is meandered by this, and the web (10) is dried with warm air during that time (web second drying step).
  • the both ends in the width direction of the transport film (F) are, for example, 10 by a pair of slitting devices (11) and (12) positioned at both ends in the film width direction.
  • a base film is formed so as to have a product width by slitting with a width of ⁇ 50 mm and cutting and cutting (cutting process at both ends in the film width direction).
  • the end of the base film in the width direction is knurled by a pair of upper and lower embossing rolls (15) and (16) to form an embossed part, and a roll-shaped optical film (F) is wound on a winder (17 ) (Film winding process).
  • the manufacturing method of the optical film according to the present embodiment is a manufacturing method of an optical film having a film thickness of 10 to 50 ⁇ m, and is provided on the film transport line before the film winding process.
  • the film is arranged in a staggered manner with an interval (D) of 1 to 20 m in the longitudinal direction of the film.
  • the film edge cutting part (20) of the width direction both ends of the conveyance film (F) slit by the pair of slitting apparatuses (11) and (12) is a pair of take-up rolls (13) and (14). Are taken down and removed, respectively, and reused as a raw material for producing optical films.
  • the first slitting device (11) and the second slitting device (12) are arranged in a staggered manner with a predetermined interval (D) in the film longitudinal direction.
  • the stress applied to the film (F) when slitting at both ends in the width direction of the transport film (F) can escape to the opposite sides of the slitting devices (11) and (12). Since the generation of small wrinkles is eliminated, thereby eliminating the occurrence of scratches and scratches, it is possible to produce a high-quality optical film (F) with no occurrence of light unevenness.
  • positioned mutually staggered is enabled to each move in a film width direction, and both slitting apparatus (11)
  • the slit widths at both ends in the width direction of the transport film (F) are changed by the movement of (12).
  • a manufacturing apparatus used for the manufacturing method of this embodiment if the said slitting apparatus is arrange
  • the first slitting device (11) and the second slitting device (12) are alternately arranged at predetermined intervals in the film longitudinal direction as described above. Since the stress applied to the film (F) at the time of slitting at both ends in the width direction of (F) can escape to the opposite sides of the slitting devices (11) and (12), the film (F) is scratched. It will not break due to the occurrence of. This tendency was found to be a particularly remarkable phenomenon in the thin film, and the film (F) was broken even when the width of the thin film (web) was changed or the width of the film (F) having low breaking strength was changed. Therefore, it is possible to produce a high-quality optical film (F) that is free from the occurrence of light unevenness.
  • the width change amount of the film edge cut portion (20) to be slit is 30 to 300 mm on one side of both ends in the width direction of the transport film (F).
  • the amount of change in the slit width at both ends in the width direction of the transport film (F) is the width of the transport film (F). If it is in the range of 30 to 300 mm on one side of both ends in the direction, the stress applied to the film at the time of slitting will be on the opposite sides of the slitting devices (11) and (12) arranged alternately in the longitudinal direction of the film. Since it is possible to escape, there is no generation of small wrinkles, and thus no generation of rubbing scratches. Therefore, there is an advantage that a high-quality optical film free from light unevenness can be produced.
  • the slit width changing speed at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) is the slitting device (11) ( 12) is preferably 10 to 100 mm / min on one side.
  • the transport film (F) Since the stress applied to the film at the time of slitting at both ends in the width direction can escape to the opposite sides of the slitting devices (11) and (12) arranged alternately in the longitudinal direction of the film. Since the generation of wrinkles is eliminated and the generation of rubbing scratches is eliminated, there is an advantage that a high-quality optical film free from light unevenness can be produced.
  • the width of the transport film (F) is preferably 1500 to 2500 mm.
  • the traveling speed of the transport film (F) is preferably 80 to 200 m / min.
  • the method for producing an optical film according to the present embodiment is performed by, for example, a solution casting film forming method, which will be described in more detail below.
  • various resins can be used as the film material.
  • Examples of the resin preferably used in the method of this embodiment include cellulose ester resins having an acyl group substitution degree of 1.8 to 2.8, such as cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate.
  • cellulose ester resins such as cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate, cycloolefin resins, norbornene resins, and polycarbonate resins are particularly preferable.
  • two or more types of compatible polymers may be blended and dope dissolution described later may be performed, but this embodiment is not limited to these.
  • resins preferably used in the present embodiment include homopolymers or copolymers having an ethylenically unsaturated monomer unit. More preferably, poly (methyl acrylate), poly (ethyl acrylate), poly (propyl acrylate), poly (cyclohexyl acrylate), copolymers of alkyl acrylate, poly (methyl methacrylate), poly (ethyl methacrylate), poly (cyclohexyl methacrylate), alkyl methacrylate (s). Examples include homopolymers or copolymers of acrylic acid or methacrylic acid esters such as ester copolymers.
  • acrylic acid or methacrylic acid esters are excellent in transparency and compatibility, homopolymers or copolymers having acrylic acid ester or methacrylic acid ester units, particularly homopolymers having acrylic acid or methyl methacrylate units. Polymers or copolymers are preferred. Specifically, polymethyl methacrylate is preferable. Preferred are alicyclic alkyl esters of acrylic acid or methacrylic acid such as polyacrylic acid or polymethacrylic acid cyclohexane, which have advantages such as high heat resistance, low hygroscopicity, and low birefringence. .
  • a cellulose ester solution containing a cellulose ester and an organic solvent is referred to as a dope, and this is used to form a cellulose ester film by solution casting.
  • Cellulose ester is a cellulose ester in which a hydroxyl group derived from cellulose is substituted with an acyl group or the like.
  • examples thereof include cellulose acylates such as cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate and cellulose acetate propionate butyrate, and cellulose acetate having an aliphatic polyester graft side chain.
  • cellulose acetate, cellulose acetate propionate, and cellulose acetate having an aliphatic polyester graft side chain are preferable.
  • Other substituents may be included as long as the effects of the present invention are not impaired.
  • the substitution degree of acetyl group is preferably 2.0 or more and 3.0 or less. By making the degree of substitution within this range, good moldability can be obtained, and desired in-plane retardation (Ro) and thickness direction retardation (Rt) can be obtained. If the substitution degree of the acetyl group is lower than this range, the heat resistance as a retardation film, particularly the dimensional stability under wet heat may be inferior, and if the substitution degree is too large, the necessary retardation characteristics will not be exhibited. There is a case.
  • the cellulose used as the raw material for the cellulose ester used in the present embodiment is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
  • the number average molecular weight of the cellulose ester is preferably in the range of 60,000 to 300,000, since the mechanical strength of the resulting film is strong. Furthermore, 70,000 to 200,000 are preferable.
  • the solvent of the cellulose ester is not particularly limited as long as it is a solvent that can dissolve the cellulose ester, but even a solvent that cannot be dissolved alone can be used if it can be dissolved by mixing with other solvents. Can do.
  • a mixed solvent consisting of a good solvent, methylene chloride and a poor solvent of cellulose ester, is used, and the mixed solvent preferably contains 4 to 30% by weight of the poor solvent.
  • solvents that can be used include, for example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like, such as methylene chloride.
  • organic solvents such as dioxolane derivatives, methyl acetate, ethyl acetate, acetone
  • methyl acetate is particularly preferred because the resulting film has less curl.
  • Examples of the poor solvent for cellulose ester include alcohols having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, methyl ethyl ketone, methyl isobutyl ketone, and acetic acid. Examples thereof include ethyl, propyl acetate, monochlorobenzene, benzene, cyclohexane, tetrahydrofuran, methyl cellosolve, and ethylene glycol monomethyl ether. These poor solvents can be used alone or in combination of two or more.
  • various additives can be added to the cellulose ester.
  • plasticizer in order to improve dimensional stability under wet heat. It has not been known so far that a plasticizer has an effect of improving dimensional stability under wet heat.
  • plasticizer conventionally known plasticizers for cellulose esters can be preferably used. In particular, those having excellent compatibility are preferred, and for example, phosphate esters and carboxylic acid esters are preferred. Examples of phosphate esters include triphenyl phosphate, tricresyl phosphate, phenyl diphenyl phosphate, and the like. Examples of the carboxylic acid ester include phthalic acid ester and citric acid ester.
  • Examples of the phthalic acid ester include dimethyl phthalate, diethyl phthalate, dioctyl phthalate, and diethyl hexyl phthalate.
  • Examples of the citrate ester include acetyl triethyl citrate and acetyl citrate. Mention may be made of tributyl. In addition, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, triacetin, and the like are also included.
  • Alkylphthalylalkyl glycolates are also preferably used for this purpose. The alkyl in the alkylphthalylalkyl glycolate is an alkyl group having 1 to 8 carbon atoms.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl glycolate, Ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, propyl phthalyl ethyl glycolate, methyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl Phthalyl ethyl glycolate, propyl phthalyl butyl glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, e
  • a plasticizer having a large molecular weight is preferable because it can suppress volatilization during extrusion.
  • these include aliphatic polyesters composed of glycol and dibasic acids such as polyethylene adipate, polybutylene adipate, polyethylene succinate and polybutylene succinate, and fats composed of oxycarboxylic acids such as polylactic acid and polyglycolic acid.
  • Aliphatic polyesters composed of lactones such as aromatic polyesters, polycaprolactone, polypropiolactone and polyvalerolactone, and vinyl polymers such as polyvinylpyrrolidone. These plasticizers can be used alone or in combination.
  • the content of the plasticizer described above is preferably 1 to 30% by weight based on the cellulose ester. By containing the plasticizer in this range, the dimensional stability of the cellulose ester film under wet heat can be improved.
  • examples of the ultraviolet absorber that can be used include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, a benzotriazole-based compound with little coloring is preferable. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used.
  • an ultraviolet absorber from the viewpoint of preventing the deterioration of polarizers and liquid crystals, it is excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, the absorption of visible light having a wavelength of 400 nm or more is small. Is preferred.
  • ultraviolet absorbers useful in this embodiment include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl) Phenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy- '-Tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2′-
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • the blending amount of these ultraviolet absorbers is preferably in the range of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the cellulose ester. If the amount used is too small, the UV absorption effect may be insufficient, and if it is too large, the transparency of the film may be deteriorated.
  • the ultraviolet absorber is preferably one having high heat stability.
  • the plasticizer and the ultraviolet absorber described above may also have a role as an additive for reducing the thickness direction retardation (Rt).
  • the substitution degree of the acetyl group of the cellulose ester is low, the heat resistance may decrease. In this case, it is effective to add an antioxidant.
  • antioxidant a hindered phenol compound is preferably used, and 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5 -Triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 5-di-t-butyl-4-hydroxypheny
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di-t Phosphorus processing stabilizers such as -butylphenyl phosphate may be used in combination.
  • fine particles such as a matting agent
  • the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
  • inorganic compound fine particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, tin oxide, and the like. Of these, fine particles of a compound containing a silicon atom are preferred, and fine silicon dioxide particles are particularly preferred.
  • silicon dioxide fine particles include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
  • organic compound fine particles include fine particles of acrylic resin, silicone resin, fluorine compound resin, urethane resin, and the like.
  • the primary particle size of the fine particles is not particularly limited, but the average particle size in the film is preferably about 0.05 to 5.0 ⁇ m. More preferably, it is 0.1 to 1.0 ⁇ m.
  • the average particle diameter of the fine particles refers to the average value of the lengths of the particles in the major axis direction when the cellulose ester film is observed with an electron microscope or an optical microscope. As long as the particles are observed in the film, they may be primary particles or secondary particles in which the primary particles are aggregated, but most of the particles that are usually observed are secondary particles.
  • the primary particle size, the particle size after being dispersed in a solvent, and the particle size after being added to the film often change, and what is important is that the fine particles are finally combined with the cellulose ester in the film. And controlling the particle size formed by aggregation.
  • the average particle diameter of the fine particles exceeds 5 ⁇ m, haze deterioration or the like may be observed, or a failure may occur in a wound state as a foreign matter. Moreover, when the average particle diameter of fine particles is less than 0.05 ⁇ m, it becomes difficult to impart slipperiness to the film.
  • the above fine particles are used by adding 0.04 to 1.0% by weight to the cellulose ester.
  • the amount of fine particles added is 0.04% by weight or less, the film surface roughness becomes too smooth and blocking occurs due to an increase in the friction coefficient. If the amount of fine particles added exceeds 0.5% by weight, the coefficient of friction on the film surface will be too low, causing winding misalignment during winding, and the transparency of the film will be low and haze will be high.
  • the above range is indispensable because it has no value as a film for an apparatus.
  • the high-pressure dispersion apparatus used in the present embodiment is an apparatus that creates special conditions such as high shear and high-pressure conditions by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
  • the maximum pressure condition inside the apparatus is 980 N / cm 2 or more in a thin tube having a tube diameter of 1 to 2000 ⁇ m, for example, by processing with a high-pressure dispersion apparatus. More preferably, the maximum pressure condition inside the apparatus is 1960 N / cm 2 or more. Further, at that time, those having a maximum reaching speed of 100 m / sec or more and those having a heat transfer speed of 100 kcal / hr or more are preferable.
  • high-pressure dispersing device examples include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing devices such as Izumi Food Machinery Co., Ltd. A homogenizer etc. are mentioned.
  • ultra-high pressure homogenizer trade name: Microfluidizer
  • nanomizer manufactured by Nanomizer
  • other manton gorin type high-pressure dispersing devices such as Izumi Food Machinery Co., Ltd.
  • a homogenizer etc. are mentioned.
  • the method for producing an optical film according to the present embodiment includes a dope preparation step (dissolution step), a casting step, a drying step, a film width cutting step, and a winding step.
  • the dissolution of the cellulose ester is first performed by stirring and dissolving in a dissolution vessel, heating and dissolving, ultrasonic
  • a method such as a dissolution method is usually used, and a method in which the solution is heated at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil and dissolved while stirring is a lump called gel or maco
  • a cooling dissolution method described in JP-A-9-95538, or a dissolution method under high pressure described in JP-A-11-21379 may also be used.
  • a method in which the cellulose ester is mixed with a poor solvent and wetted or swollen, and then mixed with a good solvent and dissolved is also preferably used.
  • an apparatus for mixing or dissolving cellulose ester with a poor solvent and an apparatus for mixing and dissolving with a good solvent may be separately provided.
  • the type of the pressure vessel used for dissolving the cellulose ester is not particularly limited as long as it can withstand a predetermined pressure and can be heated and stirred under pressure.
  • instruments such as a pressure gauge and a thermometer are appropriately disposed in the pressurized container.
  • the pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature after adding the solvent is higher than the boiling point of the solvent to be used. In the case of two or more mixed solvents, the heating temperature is higher than the boiling point of the lower boiling solvent and the solvent does not boil. Is preferred. If the heating temperature is too high, the required pressure increases and productivity decreases.
  • a preferable heating temperature range is 20 to 120 ° C., more preferably 30 to 100 ° C., and still more preferably 40 to 80 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
  • additives such as necessary plasticizers and UV absorbers can be mixed with the solvent in advance, dissolved or dispersed, and then added to the solvent before dissolving the cellulose ester. It may be put into the dope.
  • the cellulose ester After dissolving the cellulose ester, it is taken out from the container while cooling, or it is taken out from the container with a pump or the like and cooled with a heat exchanger or the like, and the resulting polymer dope is used for film formation. May be cooled to room temperature.
  • the particle size d of the cellulose ester as a raw material is such that particles having a size of 0.1 mm ⁇ d ⁇ 20 mm are constituted at a ratio of 60% by weight or more, so that good solubility can be obtained without generating an aggregate of cellulose ester. Desirable to get.
  • the mixture of the raw material cellulose ester and the solvent is dissolved in a dissolving kettle having a stirrer, and at this time, the peripheral speed of the stirring blade is preferably at least 0.5 m / second or more and stirred and dissolved for 30 minutes or more.
  • the cellulose ester dope dissolved in the dissolution vessel is sent to a filter by a pump and filtered in the filter.
  • This filtration can be performed by a normal method, but the method of filtering while heating under pressure at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil is the differential pressure before and after the filter medium (hereinafter referred to as the pressure difference).
  • the increase in the pressure may be small, which is preferable.
  • the cellulose ester dope is filtered to remove foreign substances, particularly foreign substances that are mistakenly recognized as images in the liquid crystal image display device. It may be said that the quality of the protective film for polarizing plates is determined by this filtration.
  • Filter media used for filtration preferably have a low absolute filtration accuracy. However, if the absolute filtration accuracy is too low, the filter media is likely to be clogged, and the filter media must be frequently replaced, resulting in increased productivity. There is a problem of lowering.
  • the filter medium used for the cellulose ester dope preferably has an absolute filtration accuracy of 0.020 mm or less.
  • the filter paper for example, No. of Azumi Filter Paper Co., Ltd., a commercially available product. 244, 277, etc. can be mentioned and used preferably.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and normal filter media can be used. However, plastic fiber filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel fibers are used to remove fibers. It is preferable because there is no
  • the preferred temperature range for the dope filtration is 45 to 120 ° C., more preferably 45 to 70 ° C., and even more preferably 45 to 55 ° C.
  • the filtration pressure is preferably 3500 kPa or less, more preferably 3000 kPa or less, and even more preferably 2500 kPa or less.
  • the filtration pressure can be controlled by appropriately selecting the filtration flow rate and the filtration area.
  • the dope thus obtained is stored in a stock tank, defoamed and then used for casting.
  • a dope is prepared by previously mixing a domain forming material, a cellulose ester, and a solvent in a melting pot, it is usually unnecessary to add the domain forming material in-line. However, if necessary, all or part of the domain forming material can be mixed in-line.
  • an amorphous particle dispersion mixed or dispersed in a suitable solvent in a dissolution vessel is sent to a filter by a pump and filtered in the filter.
  • the obtained dope is stored in the second stock tank and defoamed.
  • Cellulose ester solution (or may be referred to as dope stock solution) transferred from the first stock tank through the conduit by the pump, and domain-forming material solution transferred from the second stock tank by the pump (the amorphous particle dispersion). Is merged with a merge pipe.
  • a filter is arranged immediately before the junction tube, and for example, lump and large foreign matter generated from the path due to exchange of filter media etc. can be removed from the amorphous particle dispersion or dope stock solution being fed.
  • a metal filter having solvent resistance is preferably used.
  • the filter medium is preferably a metal, particularly stainless steel, from the viewpoint of durability. From the viewpoint of clogging, a porosity of 60 to 80% is preferable. Most preferably, the filtration is performed with a metal filter medium having an absolute filtration accuracy of 30 to 60 ⁇ m and a porosity of 60 to 80%, so that coarse foreign substances can be reliably removed over a long period of time. preferable.
  • metal filter media having an absolute filtration accuracy of 30 to 60 ⁇ m and a porosity of 60 to 80% include NF-10, NF-12, and NF-13 of Finepore NF series manufactured by Nippon Seisen Co., Ltd. be able to.
  • the two liquids that have joined together as described above migrate in a layered manner in the conduit and are difficult to mix as they are. Therefore, after the two liquids are merged, they are transferred to the next step while being sufficiently mixed by a mixer such as an in-line mixer.
  • in-line mixer for example, a static mixer SWJ (Toray static type in-pipe mixer, Hi-Mixer, manufactured by Toray Engineering) is preferable.
  • SWJ Toray static type in-pipe mixer, Hi-Mixer, manufactured by Toray Engineering
  • a resin such as cellulose ester is dissolved in a mixed solvent of a good solvent and a poor solvent in a dissolving pot (not shown) and plasticized.
  • a resin solution (dope) is prepared by adding additives such as an agent and an ultraviolet absorber.
  • the dope adjusted to have a dope viscosity of 1 to 200 poise in a melting pot is fed to the casting die (2) through a conduit, for example, through a pressurized metering gear pump (not shown), and transferred indefinitely.
  • a dope is cast from a casting die (2) at a casting position on a support (1) made of a rotationally driven stainless steel endless belt, and a web (10) formed thereby is passed through an endless belt support ( 1) Touch the top.
  • the endless belt support (1) is held by a pair of front and rear drums and a plurality of intermediate rolls (not shown), and is attached to one or both of the drums at both ends of the endless belt support (1).
  • the endless belt support (1) is provided with a driving device for applying tension (not shown), whereby the endless belt support (1) is used in a tensioned state.
  • the dope casting by the casting die (2) includes a doctor blade method in which the film thickness of the cast web (10) is adjusted with a blade, or a reverse roll coater method in which the film is adjusted with a reverse rotating roll.
  • a pressure die that can adjust the slit shape of the die part and easily make the film thickness uniform. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • a pressure die that can adjust the slit shape of the die part and easily make the film thickness uniform is preferable.
  • a dope fed to the casting die (2) through, for example, a pressurized metering gear pump is rotated by a stainless steel having a surface mirror-treated by hard chrome plating from the casting die (2). It may be cast on a cooling drum.
  • the casting die (2) is cast so as to have a substantially uniform film thickness on the support (1).
  • the residual solvent amount in the web is 200% or more by weight of the solid content
  • the web When the temperature is below the boiling point of the solvent and the residual solvent amount is in the range of 100 to 200% by weight of the solid content, the boiling point of the solvent is + 10 ° C. or less, and the residual solvent amount is 100% or less to the peeling until the solvent boiling point is + 20 ° C. It is preferable to dry the web (10) with drying air so as to be in the range.
  • the residual solvent amount in the web (10) is 150% by weight. It is preferably dried to the following, more preferably 80 to 120% by weight.
  • the temperature of the web (10) when peeling the web (10) from the support (1) is preferably 0 to 30 ° C. Further, immediately after the web (10) is peeled off from the support (1), the temperature is once lowered rapidly by the solvent catalyst from the contact surface side of the support (1), and volatile components such as water vapor and solvent vapor in the atmosphere are removed.
  • the web temperature at the time of peeling is more preferably 5 to 30 ° C. for easy condensation.
  • the residual solvent amount can be expressed by the following equation.
  • Residual solvent amount (% by weight) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the weight of the web at an arbitrary time point
  • N is the weight when the weight M is dried at 110 ° C. for 3 hours.
  • the peeling tension is usually 20 to 25 kg / m when peeling the support (1) and the web (10), but it is preferable to peel with a minimum tension of 17 kg / m. More preferably, peeling is performed at a minimum tension of -14 kg / m.
  • the web (10) after peeling from the endless belt support (1) is introduced into the first drying zone (4).
  • the web (10) is meandered by a plurality of conveying rolls arranged in a staggered manner as viewed from the side, while the web (10) is at the bottom of the first drying zone (4). It is blown from the front portion and dried by the warm air discharged from the rear portion of the ceiling of the first drying zone (4).
  • the residual solvent amount of the web (10) when the web (10) is peeled from the belt support (1) is 80 to 170% by weight, and the tenter (5 It is preferable that the amount of residual solvent of the web (10) when entering is set to 2 to 20% by weight and the drying temperature of the first drying zone (4) between them is 60 to 110 ° C.
  • the stretching ratio when producing a cellulose ester film is 1.01 to 3 times, preferably 1.5 to 3 times with respect to the film forming direction or the width direction. Is double.
  • the side to be stretched at a high magnification is 1.01 to 3 times, preferably 1.5 to 3 times, and the stretching ratio in the other direction is 0.8 to 1.5.
  • the film can be stretched by a factor of preferably 0.9 to 1.2.
  • the width maintenance or lateral stretching in the film forming step is preferably performed by a tenter (5), and may be a pin tenter or a clip tenter.
  • a web (10 abbreviate
  • the second drying zone (6) after the stretching step by the tenter (5).
  • the web (10) is meandered by a plurality of transport rolls (8) arranged in a staggered manner as viewed from the side, and the web (10) is dried during that time.
  • the film transport tension in the second drying zone (6) is affected by the properties of the dope, the amount of residual solvent at the time of peeling and in the film transport process, the temperature in the second drying zone (6), etc. Is preferably 250 N / m, and more preferably 60 to 150 N / m. 80 to 120 N / m is most preferable.
  • the means for drying the web (or film) (10) is not particularly limited, and is generally performed by hot air, infrared rays, a heating roll, a microwave, or the like. It is preferable to dry with hot air from the viewpoint of simplicity, for example, hot air blown from the front portion of the bottom of the second drying zone (6) and discharged from the rear portion of the ceiling of the second drying zone (6). Dried by.
  • the drying temperature is preferably 40 to 160 ° C., more preferably 50 to 160 ° C. in order to improve the flatness and dimensional stability.
  • These steps from casting to post-drying may be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen gas.
  • an inert gas atmosphere such as nitrogen gas.
  • the web conveyance tension during drying is 30 to 300 N / width m, and more preferably 40 to 270 N / width m.
  • a pair of slitting devices (11) and (12) are provided respectively on the upper side of the transport film (F), and the first slitting device (11) and the second slitting device (12) are arranged in the longitudinal direction of the film. It is characterized by being arranged in a staggered manner with an interval (D) of 1 to 20 m in the direction.
  • the film edge cutting part (20) of the width direction both ends of the conveyance film (F) slit by the pair of slitting apparatuses (11) and (12) is a pair of take-up rolls (13) and (14). Are taken down and removed by each of them and reused as a raw material for producing a cellulose ester film.
  • the first slitting device (11) and the second slitting device (12) are alternately arranged with a predetermined interval (D) in the film longitudinal direction.
  • D the stress applied to the film (F) at the time of slitting at both ends in the width direction of the transport film (F) can escape to the opposite sides of the slitting devices (11) and (12). Therefore, since generation
  • the distance (D) between the first slitting device (11) and the second slitting device (12) in the longitudinal direction of the film is preferably 1 to 20 m. It will occur.
  • liquid crystal display panels are also used in mobile phone smartphones and tablet terminals (slate PCs) of personal computers, and cellulose ester films corresponding to various widths are required as thin members.
  • tablet terminals are often viewed with their screens closer to the eyes, and the liquid crystal display panel has noticeable light unevenness that has not been noticeable until now. Therefore, a high-quality cellulose ester film is required.
  • the present inventor investigated the cause of the occurrence of the light unevenness. As a result, when the conveying film (F) was slit, the film (F) had small wrinkles. Due to the wrinkles, the film (F) was minute. I found out that there were scratches. Even if the film (F) does not break, if wrinkles occur even once, the wrinkles remain weakly even after the width change, causing scratches due to conveyance, and light unevenness that has not been noticeable until now. It was found that this was the cause of
  • a pair of slitting devices positioned on the upper side of the transport film (F) at both ends in the width direction of the transport film (F) on the film transport line before the film winding process.
  • (11) and (12) are provided, and the first slitting device (11) and the second slitting device (12) are spaced from each other with a distance (D) of 1 to 20 m in the film longitudinal direction.
  • the slit positions at both ends in the width direction of the transport film (F) are staggered with an interval (D) of 1 to 20 m in the film longitudinal direction, not at positions facing the width direction.
  • the stress applied at the time of slitting at both ends in the width direction of the transport film (F) can escape to the opposite side, so that small wrinkles are generated. No longer found that rubbing scratches is not generated, in which the present invention has been completed.
  • both slitting devices (11) and (12) arranged in a staggered manner are movable in the width direction of the film.
  • the slit widths at both ends in the width direction of the transport film (F) are changed by the movement of the devices (11) and (12).
  • the first slitting device (11) and the second slitting device (12) are alternately arranged at predetermined intervals in the film longitudinal direction as described above. Since the stress applied to the film (F) at the time of slitting at both ends in the width direction of (F) can escape to the opposite sides of the slitting devices (11) and (12), the film (F) is scratched. It will not break due to the occurrence of. This tendency was found to be a particularly remarkable phenomenon in the thin film, and the film (F) was broken even when the width of the thin film (web) was changed or the width of the film (F) having low breaking strength was changed. Therefore, it is possible to produce a high-quality cellulose ester film (F) that is free from light unevenness.
  • slitting devices located at both ends in the width direction of the transport film (F) move inward or outward.
  • the slitting device moves inward, and accordingly, stress in the inner direction is generated in the transport film (F), and the transport film (
  • the transport film (F) There was a problem that wrinkles were generated at the center of F) and the film (F) was broken when the wrinkles were strong.
  • a pair of positioned slitting devices (11) and (12) are arranged in a staggered manner with an interval (D) of 1 to 20 m in the longitudinal direction of the film, and both ends in the width direction of the transport film (F) If the slit positions are not opposed to each other in the width direction, but are arranged in staggered positions with an interval (D) of 1 to 20 m in the film longitudinal direction, both ends of the transport film (F) in the width direction It has been found that the stress applied to the film (F) at the time of slitting of the portion can escape to the opposite side, so that it will not break, and the present invention has been completed. Such a tendency has been found to be a particularly prominent phenomenon in a thin film having a thickness of 10 to 50 ⁇ m, for example.
  • the slit width at both ends in the width direction of the transport film (F) is changed by the movement of both slitting devices (11) and (12) arranged alternately.
  • the width change amount of the film edge cut portion (20) to be slit is preferably 30 to 300 mm on one side of both ends in the width direction of the transport film (F).
  • the amount of change in the slit width at both ends in the width direction of the transport film (F) in other words, the amount of change in the width of the film edge cut portion (20) to be slit is the width of the transport film (F).
  • the stress applied to the film at the time of slitting will be on the opposite sides of the slitting devices (11) and (12) arranged alternately in the longitudinal direction of the film. Since it is possible to escape, there is no generation of small wrinkles, and thus no generation of rubbing scratches. Therefore, there is an advantage that a high-quality optical film free from light unevenness can be produced.
  • the slit width change speed of the width direction both ends of the conveyance film (F) by the movement of both slitting apparatus (11) (12) is slitting apparatus ( 11) It is preferably 10 to 100 mm / min on one side of (12).
  • the slit width changing speed at both ends in the width direction of the transport film (F) is in the range of 10 to 100 mm / min on one side of the slitting device (11) (12)
  • the film is applied at the time of slitting.
  • the transport film (F) slit at both ends in the width direction by the pair of slitting devices (11) and (12) is then wound up by the winder (15).
  • the winder (15) relating to the production of the cellulose ester film (F) may be a commonly used one, and is a constant tension method, a constant torque method, a taper tension method, a program of constant internal stress. It can be wound by a winding method such as a tension control method.
  • the width of the transport film (F) is preferably 1500 to 2500 mm.
  • the traveling speed of the transport film (F) is preferably 80 to 200 m / min.
  • the film thickness of the cellulose ester film (F) varies depending on the purpose of use, the film thickness range used in the present embodiment as a finished film is preferably in the range of 10 to 50 ⁇ m.
  • the average film thickness of the film (F) is controlled by controlling the extrusion flow rate, the gap of the casting die (2), the speed of the endless belt support (1), etc. so that the desired thickness is obtained. Can be adjusted.
  • the cellulose ester film (F) produced by the method of this embodiment preferably has an in-plane retardation value (Ro) of 60 nm or less.
  • the retardation value of the film was measured by three-dimensional refractive index at a wavelength of 590 nm using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.), and the obtained refractive indexes Nx, Ny, It can be calculated from Nz.
  • In-plane retardation (Ro) (Nx ⁇ Ny) ⁇ d
  • Thickness direction retardation (Rt) [(Nx + Ny) / 2 ⁇ Nz] ⁇ d
  • Nx, Ny, and Nz represent the refractive indexes in the principal axes x, y, and z directions of the refractive index ellipsoid, respectively
  • Nx, Ny represent the refractive index in the film in-plane direction
  • Nz represents the film thickness direction.
  • Nx ⁇ Ny, and d represents the thickness ( ⁇ m) of the film.
  • the method for producing an optical film according to the present embodiment is performed by the solution casting film forming method as described above, but can also be performed by the melt casting film forming method.
  • the melt casting film forming method a method using a T-die that can reduce film thickness unevenness and retardation unevenness is preferable.
  • the polymer is melted at a temperature at which the polymer can be melted, and a film-like (sheet-like) molten resin is extruded from the T die onto a cooling drum (support).
  • the film-like (sheet-like) molten resin is cooled and solidified by a cooling drum, the resin film is peeled off from the cooling drum, and further stretched as necessary to form a film, which is wound up.
  • the manufacturing method of the optical film by this embodiment when performing the manufacturing method of the optical film by this embodiment by such a melt casting film forming method, it is located in the film conveyance line before a film winding process, and the both ends of the width direction of a conveyance film.
  • a pair of slitting devices is provided, and the first slitting device provided at one end and the second slitting device provided at the other end are spaced from each other by 1 to 20 m in the film longitudinal direction. It is characterized by being arranged in a staggered manner.
  • the cellulose ester film produced by the method of this embodiment is preferably used for a liquid crystal display member, specifically, a protective film for a polarizing plate.
  • a protective film for a polarizing plate that has strict requirements on moisture permeability and dimensional stability
  • the cellulose ester film produced by the method of this embodiment is preferably used.
  • the polarizing film is a film which has been conventionally stretched by treating with a dichroic dye such as iodine a film that can be stretched and oriented, such as a polyvinyl alcohol film. Since the polarizing film itself does not have sufficient strength and durability, a polarizing plate is generally obtained by adhering a cellulose ester film having no anisotropy as a protective film to both surfaces thereof.
  • the polarizing plate may be prepared by laminating a cellulose ester film produced by the method of this embodiment as a retardation film, and the cellulose ester film produced by the method of this embodiment may be produced by retardation.
  • a film and a protective film may be combined to be directly bonded to a polarizing film.
  • the method of bonding is not particularly limited, but can be performed with an adhesive composed of an aqueous solution of a water-soluble polymer.
  • the water-soluble polymer adhesive is preferably a completely saponified polyvinyl alcohol aqueous solution.
  • a long polarizing film is obtained by laminating a long polarizing film that has been stretched in the longitudinal direction and treated with a dichroic dye and a long retardation film manufactured by the method of this embodiment. Can do.
  • a polarizing plate is a sticking type in which a peelable sheet is laminated on one or both sides thereof via a pressure sensitive adhesive layer (for example, an acrylic pressure sensitive adhesive layer). Or the like can be easily attached
  • the polarizing plate thus obtained can be used for various display devices.
  • a liquid crystal display device using a VA mode liquid crystal molecule in which liquid crystal molecules are substantially vertically aligned when no voltage is applied, or a TN mode liquid crystal cell in which liquid crystal molecules are substantially horizontal and twisted when no voltage is applied. is preferred.
  • the polarizing plate can be produced by a general method.
  • a cellulose ester film is subjected to alkali saponification treatment, and a polyvinyl alcohol film is immersed and stretched in an iodine solution, and bonded to both surfaces using a completely saponified polyvinyl alcohol aqueous solution.
  • the alkali saponification treatment refers to a treatment of immersing the cellulose ester film in a high-temperature strong alkaline solution in order to improve the wetness of the water-based adhesive and improve the adhesiveness.
  • Various functional layers can be provided. These functional layers can be provided by a method such as coating or vapor deposition, sputtering, plasma CVD, or atmospheric pressure plasma treatment.
  • the polarizing plate thus obtained is provided on one side or both sides of the liquid crystal cell, and a liquid crystal display device is obtained using this.
  • a protective film for a polarizing plate made of a cellulose ester film produced by the method of the present embodiment it is possible to provide a polarizing plate excellent in durability, dimensional stability, and optical isotropy as well as in a thin film. it can. Furthermore, a liquid crystal display device using this polarizing plate or retardation film can maintain stable display performance over a long period of time.
  • the cellulose ester film produced by the method of this embodiment can also be used as a base material for an antireflection film or an optical compensation film.
  • One aspect of the present invention is a method of manufacturing an optical film having a film thickness of 10 to 50 ⁇ m, and a pair of slitting positioned on both ends of the transport film in the width direction on the film transport line before the film winding process.
  • the first slitting device provided at one end and the second slitting device provided at the other end are arranged in a staggered manner with an interval of 1 to 20 m in the film longitudinal direction. It is characterized by having.
  • the left slitting device and the right slitting device are arranged in a staggered manner with a predetermined interval therebetween in the film longitudinal direction, so that the slits at both ends in the width direction of the transport film can be obtained. Since the stress applied to the film can escape to the opposite side of each slitting device, there is no generation of small wrinkles, thereby eliminating the occurrence of scratches and scratches. There exists an effect that an optical film can be manufactured.
  • both the left and right slitting devices arranged in a staggered manner can be moved in the width direction of the film, respectively, and both ends of the transport film in the width direction can be moved by moving the left and right slitting devices. It is preferable that the slit width of the part is changed.
  • the left slitting device and the right slitting device are arranged in a staggered manner with a predetermined interval between them in the longitudinal direction of the film. Since the stress can escape to the opposite side of each slitting device, the film will not break due to scratches, and this tendency was found to be a particularly prominent phenomenon in thin film. Even when changing the width of a thin film or changing the width of a film having a low breaking strength, there is almost no risk of the film breaking, and it is possible to produce a high-quality optical film free from light unevenness.
  • the amount of change in the slit width at both ends in the width direction of the transport film due to the movement of the left and right slitting devices arranged alternately is changed on one side of both ends in the width direction of the transport film. 30 to 300 mm is more preferable.
  • the width change amount of the slit width at both ends in the width direction of the transport film to be slit is in the range of 30 to 300 mm on one side of both ends in the width direction of the transport film, the stress applied to the film at the time of slitting can escape to the opposite sides of the slitting devices arranged in a staggered manner in the longitudinal direction of the film, thereby eliminating the occurrence of small wrinkles and thereby eliminating the occurrence of scratches. Therefore, there is an effect that it is possible to manufacture a high-quality optical film without occurrence of light unevenness.
  • the changing speed of the slit width at both ends in the width direction of the transport film due to the movement of both the left and right slitting devices is 10 to 100 mm / min on one side of the slitting device. Accordingly, if the slit width speed at both ends in the width direction of the transport film is in the range of 10 to 100 mm / min on one side of the slitting apparatus, the stress applied to the film when slitting at both ends in the width direction of the transport film is reduced.
  • the width of the transport film is 1500 to 2500 mm.
  • the traveling speed of the transport film is 80 to 200 m / min, it is possible to cope with an increase in the film forming speed of the optical film.
  • the material having the above dope composition was put into a closed container (dissolution kettle) of a solution casting film forming apparatus and completely dissolved while heating and stirring. Thereafter, stirring was stopped and filtration was performed to prepare a dope.
  • the dope adjusted in the melting pot is fed to the casting die (2) by a conduit through a pump, and continuously runs at 100 m / mm with a width of 2400 mm and a surface temperature of 30 ° C.
  • a dope (30 ° C.) is cast from a casting die (2) to a casting position on a support (1) made of a rotationally driven stainless steel endless belt, and the casting die (2) and an endless belt support ( 1) and a web (10) were formed, and a web (10) having a width of 2000 mm was formed on the support (1).
  • the surface temperature of the stainless steel endless belt support (1) after casting is controlled at 25 ° C., and the drying air at a temperature of 45 ° C. is supplied from a dryer (not shown) above the web (10) at a wind speed of 10 m / sec.
  • the web (10) was dried from a dryer (not shown) on the endless belt support (1) side at a temperature of 40 ° C. at a wind speed of 10 m / sec (solvent evaporation step).
  • the dried web (10) was peeled off by the peeling roll (3) (peeling step).
  • the amount of residual solvent in the web (10) immediately before the peeling step was 80% by weight.
  • the peeled web (10) was introduced into the first drying zone (4).
  • the web (10) is meandered by a large number of conveying rolls (7) arranged in a staggered manner as viewed from the side, while the web (10) is heated by hot air at a temperature of 80 ° C. It was dried for 1 minute (first drying step).
  • the stretched web (10) was introduced into the second drying zone (6).
  • the web (10) is meandered by a large number of conveying rolls arranged in a staggered manner as viewed from the side, and the web (10) is dried by warm air at a temperature of 125 ° C. for 20 minutes. (Second drying step).
  • Embossing is applied to both ends in the width direction of the film (F) after slitting to give an embossed portion having a width of 10 mm to each end of the film, and then the final product width 2200 mm comprising the embossed portion.
  • the cellulose triacetate film (F) having a film thickness of 50 ⁇ m was finally cooled to 20 ° C. and wound up by a winding device (17) (winding step).
  • Examples 2 and 3 A cellulose triacetate film is produced in the same manner as in Example 1 above.
  • the first slitting device (11) and the second slitting device (12) are 10 m long in the film longitudinal direction.
  • the first slitting device (11) and the second slitting device (12) are separated from each other by a distance of 20 m in the film longitudinal direction (D). It was carried out by arranging them in a staggered pattern with a gap.
  • Comparative Examples 1 and 2 For comparison, a cellulose triacetate film is prepared in the same manner as in Example 1. The difference from Example 1 is that Comparative Example 1 has both ends in the width direction of the transport film (F). In this section, a pair of slitting devices are installed so as to face each other as in the conventional case. Further, in Comparative Example 2, the first slitting device and the second slitting device are separated from each other at both ends in the width direction of the transport film (F) by a distance of 25 m in the film longitudinal direction which is outside the scope of the present invention (D ) And are arranged in a staggered manner.
  • Examples 4 and 5 A cellulose triacetate film is produced in the same manner as in Example 1 above, but the difference from Example 1 is that in Examples 4 and 5, the film thickness of the film (F) is determined by the extrusion flow rate of the dope.
  • the gap of the casting port of the casting die (2) and the speed of the endless belt support (1) they are adjusted to 30 ⁇ m and 40 ⁇ m, respectively.
  • Comparative Example 3 For comparison, a cellulose triacetate film is produced in the same manner as in Example 1, except that a difference between the cellulose triacetate film and Example 1 is that a pair of slips are formed at both ends in the width direction of the transport film (F).
  • the dating device is installed so as to face each other, and the film thickness of the film (F) is adjusted to 30 ⁇ m.
  • Table 1 the film longitudinal direction between the slitting devices at both ends installed in both ends in the width direction of the transport film (F) in Examples 1 to 5 and Comparative Examples 1 to 3 is shown.
  • the interval (D) (m) and the film thickness ( ⁇ m) of the cellulose triacetate film are described.
  • Examples 6-8 A cellulose triacetate film is produced in the same manner as in Example 1 described above.
  • both slitting devices (11) and (12) arranged in a staggered manner are used in the width direction.
  • the slit width of both ends in the width direction of the transport film (F) is changed by the movement of both slitting devices (11) and (12).
  • Example 6 the amount of change in the slit width at both ends in the width direction of the transport film (F) due to the movement of the slitting devices (11) and (12) arranged alternately is changed to the transport film ( F) 50 mm on one side of both ends in the width direction, and the slit width changing speed of the slit width change at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) (11)
  • One side of (12) was 10 mm / min.
  • Example 7 the change amount of the slit width at both ends in the width direction of the transport film (F) was set to 30 mm, and in Example 8, the change amount of the width was set to 300 mm.
  • Example 7 and 8 the slit width changing speed at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) is the same as in Example 6. It was set to 10 mm / min on one side of the dipping device (11) (12).
  • Examples 9 and 10 A cellulose triacetate film is produced in the same manner as in Example 6 above, but in Example 9, the transport film (F) by the movement of both slitting devices (11) and (12) arranged in a staggered manner.
  • the slit width changing speed at both ends in the width direction is set to 20 mm / min on one side of the slitting devices (11) and (12).
  • the slitting devices (11) and (12) are moved by moving the slitting devices (11) and (12).
  • the slit width changing speed at both ends in the width direction of the film (F) was set to 100 mm / min on one side of the slitting apparatuses (11) and (12).
  • Comparative Examples 4 and 5 For comparison, a cellulose triacetate film is prepared in the same manner as in Example 6. The difference from Example 6 is that Comparative Example 4 has both ends in the width direction of the transport film (F). In this section, a pair of slitting devices are installed so as to face each other as in the conventional case. In Comparative Example 5, similarly, a pair of slitting devices are installed so as to face each other, and the slit width changing speeds at both ends in the width direction of the transport film (F) due to the movement of both slitting devices are set. The slitting apparatus is at 100 mm / min on one side.
  • a polarizing film was first produced. That is, a polyvinyl alcohol film having a thickness of 120 ⁇ m was uniaxially stretched at a temperature of 110 ° C. and a stretch ratio of 5 times. This was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizing film.
  • Step 1 to Step 5 the cellulose triacetate films (polarizing plate protective films) prepared in Examples 1 to 10 and Comparative Examples 1 to 5 were bonded to both surfaces of the polarizing film to form a polarizing plate. Produced.
  • Step 1 The polarizing plate protective film obtained by immersing the polarizing plate protective film in a 1 mol / L sodium hydroxide solution at a temperature of 50 ° C. for 60 seconds, then washing with water and drying, and saponifying the side to be bonded to the polarizing film.
  • Step 2 The polarizing film was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by weight for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizing film in Step 2 was gently wiped off, and a polarizing plate protective film saponified in Step 1 was laminated and disposed on both sides of the polarizing film.
  • Step 4 The polarizing film laminated in Step 3 and the polarizing plate protective film were bonded at a pressure of 20 to 30 N / cm 2 and a conveying speed of about 2 m / min.
  • Process 5 The sample which bonded the polarizing film produced at the process 4 and the polarizing plate protective film was dried for 2 minutes in the 80 degreeC drying machine, and the polarizing plate was produced.
  • the direction of bonding of the polarizing plate was such that the absorption axis was in the same direction as the polarizing plate bonded in advance.
  • the first slitting device (11) and the second slitting device (12) are in the longitudinal direction of the film. Are arranged in a staggered manner with an interval (D) of 1 to 20 m, so that the stress applied to the film (F) when slitting at both ends in the width direction of the transport film (F) 11) Since it is possible to escape to the opposite side of (12), there is no generation of small wrinkles, and thus no generation of rubbing scratches, so that a high-quality cellulose triacetate film without light unevenness is produced. The visibility of the liquid crystal display device was good.
  • the two slitting devices (11) and (12) moved in a staggered manner.
  • the amount of change in the slit width at both ends in the width direction of the transport film (F) and various slit width changing speeds at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) Even if it is changed, the film (F) does not wrinkle when slitting at both ends in the width direction of the transport film (F), light unevenness does not occur, and the visibility of the liquid crystal display device is good. It was.
  • the present invention has wide industrial applicability in the technical field of optical films and manufacturing methods thereof.

Abstract

The present invention relates to a method for manufacturing optical films having a film thickness of 10 - 50 µm. The method is characterized in that a pair of slitting devices (11, 12), which are respectively located above the two edges in the width direction of a conveyed film (F), is provided in the film conveyance line prior to the film winding process, and the first slitting device (11) and the second slitting device (12) are offset from each other with an interval (D) of 1 - 20 m in the longitudinal direction of the film.

Description

光学フィルムの製造方法Manufacturing method of optical film
 本発明は、例えば液晶表示装置(LCD)に用いられる偏光板用保護フィルム、位相差フィルム、視野角拡大フィルム、プラズマディスプレイに用いられる反射防止フィルムなどの各種機能フィルム等にも利用することができる光学フィルムの製造方法に関するものである。 The present invention can also be used for various functional films such as a protective film for a polarizing plate used for a liquid crystal display (LCD), a retardation film, a viewing angle widening film, an antireflection film used for a plasma display, and the like. The present invention relates to a method for producing an optical film.
 近年の液晶表示パネルの薄型化に伴い、その部材である光学フィルムの薄膜化も求められている。これに伴い、薄膜フィルムの安定搬送技術の開発が進められてきた。 With the recent thinning of liquid crystal display panels, it is also required to reduce the thickness of the optical film that is a member thereof. In connection with this, development of the stable conveyance technique of a thin film has been advanced.
 また近年では、液晶表示パネルを用いた液晶テレビのサイズの多角化に伴い、光学フィルムも様々な幅の光学フィルムが求められている。一般に、光学フィルムの製造においては、搬送フィルムの巻取り工程前のフィルム搬送ラインに、搬送フィルムの幅手方向の両端部に位置する一対のスリッティング装置が備えられていて、一対のスリッティング装置により搬送フィルムの両端部がそれぞれ切断除去されることにより、所定幅を有する光学フィルムが製造される。 In recent years, with the diversification of the size of liquid crystal televisions using liquid crystal display panels, optical films having various widths have been demanded. In general, in the production of an optical film, a pair of slitting devices are provided in a film transport line before the winding process of the transport film, and are provided with a pair of slitting devices positioned at both ends in the width direction of the transport film. By cutting and removing both end portions of the transport film, an optical film having a predetermined width is manufactured.
 さらに近年では、携帯電話のスマートフォンやパソコンのタブレット端末(スレートPC)にも液晶表示パネルが使われており、その部材として薄膜で様々な幅に対応した光学フィルムが求められている。 In recent years, liquid crystal display panels have also been used for mobile phone smartphones and personal computer tablet terminals (slate PCs), and optical films corresponding to various widths are required as thin films.
 特に、タブレット端末(スレートPC)などは、これまでの液晶テレビとは違い、画面を目に近づけて見ることが多く、その液晶表示パネルには、これまで目立たなかったような光ムラが目立つようになってきており、高品質な光学フィルムが必要となっている。 In particular, unlike conventional LCD TVs, tablet terminals (slate PCs) are often viewed with their screens closer to the eyes, and the liquid crystal display panel has noticeable light unevenness that has not been noticeable until now. Therefore, a high-quality optical film is required.
 この光ムラの発生の原因を調査したところ、搬送フィルムのスリッティング時にフィルムに小さなシワが入っており、このシワが原因でフィルムに微小なキズが発生していることが分かった。そして、フィルムの破断には至らない場合でも、シワが一度でも発生すると、幅変更後にもシワが弱く残留して、搬送によるスリキズが発生し、これまでは目立たなかったような光ムラの発生の原因となっていることが分かった。 Investigating the cause of this light unevenness, it was found that there was a small wrinkle in the film during slitting of the transport film, and that this wrinkle caused a minute scratch on the film. And even if the film does not break, once wrinkles occur, the wrinkles remain weakly even after the width change, causing scratches due to conveyance, and the occurrence of light unevenness that was not noticeable until now I found out that it was the cause.
 一方で、液晶表示パネルのサイズの多様化に伴い、その部材としての光学フィルムも狭幅フィルムから広幅フィルムまでを一つの工場で生産することが求められており、また薄膜フィルムの安定搬送技術とともに、薄膜フィルムの切断の際の幅変更を安定に行う技術の開発も求められてきている。 On the other hand, with the diversification of the size of liquid crystal display panels, it is required to produce optical films as members from narrow films to wide films in one factory, along with stable transport technology for thin film films. Development of a technique for stably changing the width when cutting a thin film has also been demanded.
 特に、薄膜フィルムの切断の際の幅変更においては、フィルムの端部幅調整を行うスリッター装置の安定化が重要となっている。 In particular, in changing the width at the time of cutting a thin film, it is important to stabilize the slitter device for adjusting the end width of the film.
 光学フィルムの製造において、いわゆるオンラインで製品幅を変更する際、スリッターが内側方向、もしくは外側方向に移動する。広幅フィルムから、狭幅フィルムに切り替える際には、スリッターが内側方向へ移動し、それに伴い、内側方向に応力が発生し、搬送フィルム中央部でシワが発生し、シワが強くなると折れ返ってフィルムが破断してしまうという問題があった。 In the production of optical films, when changing the product width online, the slitter moves inward or outward. When switching from a wide film to a narrow film, the slitter moves inward, and as a result, stress is generated in the inner direction, wrinkles are generated in the center of the transport film, and the film is folded back when wrinkles become strong. Has a problem of breaking.
 下記の特許文献1には、セルロースエステルフィルム、およびその製造装置が開示され、互いに対向する一対のスリッティング装置により搬送フィルム(搬送ウェブ)の幅手方向の両端部が同時に切断することが記載されている。また、下記の特許文献2には、フィルム、紙、金属箔等の可撓性を有する広幅の帯状物(ウェブ)を走行させながら、この広幅ウェブを複数個の幅の狭いウェブに裁断する裁断機において発生する耳を自動的に処理する裁断耳自動処理装置が開示され、ウェブのスリット幅の変更に関しては、ウェブの幅手方向に1列に配置された多数のスリッティング刃を、ウェブの搬送方向に対し直交方向に移動させる方法が開示されている。 Patent Document 1 below discloses a cellulose ester film and a manufacturing apparatus thereof, and describes that both ends in the width direction of a transport film (transport web) are simultaneously cut by a pair of slitting devices facing each other. ing. Further, in Patent Document 2 below, cutting is performed by cutting a wide web such as a film, paper, metal foil or the like while the flexible web is running into a plurality of narrow webs. An automatic cutting ear processing apparatus for automatically processing an ear generated in a machine is disclosed. Regarding the change of the slit width of the web, a plurality of slitting blades arranged in a line in the width direction of the web are used. A method of moving in a direction orthogonal to the transport direction is disclosed.
 しかしながら、上記特許文献1および2に記載の方法では、薄膜のフィルム(ウェブ)の幅変更、破断強度の低いフィルムの幅変更時には、スリッターの移動により発生する内側方向への応力によって、フィルムが破断する危険性が依然として残っているという問題があった。 However, in the methods described in Patent Documents 1 and 2, when changing the width of a thin film (web) or changing the width of a film having low breaking strength, the film breaks due to the inward stress generated by the movement of the slitter. There was still a problem that the danger to do was still left.
特開2007-276185号公報JP 2007-276185 A 特開平8-257990号公報JP-A-8-257990
 本発明の目的は、上記の従来技術の問題を解決し、近年の光学フィルムの光のムラの発生原因を究明し、光ムラの発生がない高品質な光学フィルムの製造方法を提供すること、および薄膜のフィルム(ウェブ)の幅変更、破断強度の低いフィルムの幅変更時にもフィルムの破断の危険性がほとんどなく、光ムラの発生がない高品質な光学フィルムの製造方法を提供することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, to investigate the cause of light unevenness in optical films in recent years, and to provide a method for producing a high-quality optical film without light unevenness, And to provide a method for producing a high-quality optical film with little risk of film breakage even when changing the width of a thin film (web) or changing the width of a film with low breaking strength and without causing light unevenness. is there.
 本発明の一局面は、膜厚10~50μmを有する光学フィルムの製造方法であって、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルムの幅手方向の両端部に位置する一対のスリッティング装置が備えられ、一方の端部に設けられる第1スリッティング装置および他方の端部に設けられる第2スリッティング装置同士が、フィルム長手方向に1~20mの間隔をあけて互い違い状に配置されていることを特徴としている。 One aspect of the present invention is a method of manufacturing an optical film having a film thickness of 10 to 50 μm, and a pair of slitting positioned on both ends of the transport film in the width direction on the film transport line before the film winding process. The first slitting device provided at one end and the second slitting device provided at the other end are arranged in a staggered manner with an interval of 1 to 20 m in the film longitudinal direction. It is characterized by having.
 上記構成によれば、第1スリッティング装置および第2スリッティング装置同士が、フィルム長手方向に所定間隔をあけて互い違い状に配置されることにより、搬送フィルムの幅手方向両端部のスリット時にフィルムにかかる応力が、それぞれのスリッティング装置の反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという効果を奏する。 According to the above configuration, the first slitting device and the second slitting device are arranged in a staggered manner with a predetermined interval in the film longitudinal direction, so that the film at the time of slitting at both ends in the width direction of the transport film Since the stress applied to each side can escape to the opposite side of each slitting device, there is no generation of small wrinkles, thereby eliminating the occurrence of scratches and scratches. There exists an effect that a film can be manufactured.
図1は、本発明の光学フィルムの製造方法を実施する溶液流延製膜装置の実施形態を示す概略フローシートである。FIG. 1 is a schematic flow sheet showing an embodiment of a solution casting film forming apparatus for carrying out the method for producing an optical film of the present invention. 図2は、図1の装置におけるスリッティング装置部分の要部拡大斜視図である。FIG. 2 is an enlarged perspective view of a main part of a slitting device portion in the apparatus of FIG.
 つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。 Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
 この明細書において、前方とはフィルムの搬送方向の下流方向をいう。 In this specification, the front means the downstream direction of the film transport direction.
 図1は、本実施形態の光学フィルムの製造方法を実施する溶液流延製膜装置の実施形態を示す概略フローシートである。図2は、図1の装置におけるスリッティング装置部分の要部拡大斜視図である。なお、図中において、各符号は、1:ステンレス鋼製の回転駆動エンドレスベルト支持体、2:流延ダイ、3:剥離ロール、4:第1乾燥ゾーン、5:テンター、6:第2乾燥ゾーン、10:ウェブ、11:第1スリッティング装置、12:第2スリッティング装置、13:第1引取りロール、14:第2引取りロール、17:巻取り機、F:セルローストリアセテートフィルム(光学フィルム)を示す。 FIG. 1 is a schematic flow sheet showing an embodiment of a solution casting film forming apparatus for carrying out the optical film manufacturing method of the present embodiment. FIG. 2 is an enlarged perspective view of a main part of a slitting device portion in the apparatus of FIG. In the drawing, each reference numeral is 1: a rotational drive endless belt support made of stainless steel, 2: a casting die, 3: a peeling roll, 4: a first drying zone, 5: a tenter, and 6: a second drying. Zone: 10: Web, 11: First slitting device, 12: Second slitting device, 13: First take-up roll, 14: Second take-up roll, 17: Winder, F: Cellulose triacetate film ( Optical film).
 溶液流延製膜法による光学フィルムの製造方法は、ドープ調製工程(溶解工程)、ドープ流延工程、ウェブ剥離工程、ウェブ第1乾燥工程、ウェブ延伸工程、ウェブ第2乾燥工程、フィルム幅手方向両端部の切断工程、およびフィルム巻取り工程を具備するものである。 The optical film manufacturing method by the solution casting film forming method includes a dope preparation step (dissolution step), a dope casting step, a web peeling step, a web first drying step, a web stretching step, a web second drying step, and a film width. It comprises a cutting process at both ends in the direction and a film winding process.
 図1を参照すると、図示しない溶解釜で例えばセルロースエステル等の樹脂を、良溶媒及び貧溶媒の混合溶媒に溶解し、これに可塑剤や紫外線吸収剤等の添加剤を添加して樹脂溶液(ドープ)を調製する(ドープ調製工程)。ついで、ドープを流延ダイ(2)に送液し、無限に移送する例えば回転駆動ステンレス鋼製エンドレスベルトよりなる支持体(1)上の流延位置に、流延ダイ(2)からドープを流延し、これにより形成されたウェブ(10)を、エンドレスベルト支持体(1)上に接触させる(ドープ流延工程)。 Referring to FIG. 1, a resin such as cellulose ester is dissolved in a mixed solvent of a good solvent and a poor solvent in a dissolution pot (not shown), and an additive such as a plasticizer or an ultraviolet absorber is added to the resin solution ( (Dope) is prepared (dope preparation step). Next, the dope is fed from the casting die (2) to the casting position on the support (1) made of, for example, a rotationally driven stainless steel endless belt, which sends the dope to the casting die (2) and transfers it infinitely. The web (10) formed by casting is brought into contact with the endless belt support (1) (dope casting step).
 エンドレスベルト支持体(1)上でウェブ(10)が剥離可能な膜強度となるまで乾燥固化させた後に、ウェブ(10)を剥離ロール(3)によって剥離する(ウェブ剥離工程)。 After drying and solidifying the endless belt support (1) until the web (10) has a peelable film strength, the web (10) is peeled off by the peeling roll (3) (web peeling step).
 ついで、剥離後のウェブ(10)を第1乾燥ゾーン(4)に導入する。第1乾燥ゾーン(4)内では、側面から見て千鳥配置せられた複数の搬送ロール(7)によってウェブ(10)が蛇行せられ、その間にウェブ(10)は温風によって乾燥される(ウェブ第1乾燥工程)。乾燥後のウェブを、延伸工程のテンター(5)に導入して、所定幅に延伸するとともに、乾燥する(ウェブ延伸工程)。延伸後のフィルム(ウェブ)(10)は、さらに第2乾燥ゾーン(6)に導入し、第2乾燥ゾーン(6)内では、側面から見て千鳥配置せられた複数の搬送ロール(8)によってウェブ(10)が蛇行せられ、その間にウェブ(10)は温風によって乾燥される(ウェブ第2乾燥工程)。 Next, the peeled web (10) is introduced into the first drying zone (4). In the first drying zone (4), the web (10) is meandered by a plurality of conveying rolls (7) arranged in a staggered manner when viewed from the side, and the web (10) is dried by warm air during that time ( Web first drying step). The web after drying is introduced into a tenter (5) in a stretching process, stretched to a predetermined width, and dried (web stretching process). The stretched film (web) (10) is further introduced into the second drying zone (6), and a plurality of transport rolls (8) arranged in a staggered manner as viewed from the side in the second drying zone (6). The web (10) is meandered by this, and the web (10) is dried with warm air during that time (web second drying step).
 第2乾燥ゾーン(6)による乾燥後に、搬送フィルム(F)の幅手方向の両端部を、フィルム幅手方向の両端部に位置する一対のスリッティング装置(11)(12)により、例えば10~50mmの幅でスリットして、断裁切除し、製品幅となるようにベースフィルムを形成する(フィルム幅手方向両端部の切断工程)。その後、ベースフィルムの幅手方向の端部に、上下一対のエンボスロール(15)(16)によりナーリング加工を施してエンボス部を形成し、ロール状の光学フィルム(F)を巻取り機(17)によって巻き取る(フィルム巻取り工程)。 After drying by the second drying zone (6), for example, the both ends in the width direction of the transport film (F) are, for example, 10 by a pair of slitting devices (11) and (12) positioned at both ends in the film width direction. A base film is formed so as to have a product width by slitting with a width of ˜50 mm and cutting and cutting (cutting process at both ends in the film width direction). Thereafter, the end of the base film in the width direction is knurled by a pair of upper and lower embossing rolls (15) and (16) to form an embossed part, and a roll-shaped optical film (F) is wound on a winder (17 ) (Film winding process).
 図2に示すように、本実施形態による光学フィルムの製造方法は、膜厚10~50μmを有する光学フィルムの製造方法であって、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルム(F)の幅手方向の両端部で、それぞれフィルムの上側に位置する一対のスリッティング装置(11)(12)が備えられ、第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に1~20mの間隔(D)をあけて互い違い状に配置されていることを特徴とするものである。 As shown in FIG. 2, the manufacturing method of the optical film according to the present embodiment is a manufacturing method of an optical film having a film thickness of 10 to 50 μm, and is provided on the film transport line before the film winding process. Are provided with a pair of slitting devices (11) and (12) positioned on the upper side of the film at both ends in the width direction of the first slitting device (11) and the second slitting device (12), respectively. The film is arranged in a staggered manner with an interval (D) of 1 to 20 m in the longitudinal direction of the film.
 なお、一対のスリッティング装置(11)(12)によりスリットされた搬送フィルム(F)の幅手方向両端部のフィルム耳切り部(20)は、一対ずつの引取りロール(13)(14)によってそれぞれ下方に引き取られて除去され、光学フィルムの製造原料として再使用される。 In addition, the film edge cutting part (20) of the width direction both ends of the conveyance film (F) slit by the pair of slitting apparatuses (11) and (12) is a pair of take-up rolls (13) and (14). Are taken down and removed, respectively, and reused as a raw material for producing optical films.
 本実施形態の光学フィルムの製造方法によれば、第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に所定間隔(D)をあけて互い違い状に配置されることにより、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にかかる応力が、それぞれのスリッティング装置(11)(12)の反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルム(F)を製造することができるものである。 According to the optical film manufacturing method of the present embodiment, the first slitting device (11) and the second slitting device (12) are arranged in a staggered manner with a predetermined interval (D) in the film longitudinal direction. By doing so, the stress applied to the film (F) when slitting at both ends in the width direction of the transport film (F) can escape to the opposite sides of the slitting devices (11) and (12). Since the generation of small wrinkles is eliminated, thereby eliminating the occurrence of scratches and scratches, it is possible to produce a high-quality optical film (F) with no occurrence of light unevenness.
 そして、本実施形態による光学フィルムの製造方法では、相互に互い違い状に配置された両スリッティング装置(11)(12)が、それぞれフィルム幅手方向に移動可能となされており、両スリッティング装置(11)(12)の移動により搬送フィルム(F)の幅手方向両端部のスリット幅が変更されるようになされている。なお、本実施形態の製造方法に用いられる製造装置としては、前記スリッティング装置が配置されたものであれば、その他の構成は特に限定はされない。 And in the manufacturing method of the optical film by this embodiment, both slitting apparatus (11) (12) arrange | positioned mutually staggered is enabled to each move in a film width direction, and both slitting apparatus (11) The slit widths at both ends in the width direction of the transport film (F) are changed by the movement of (12). In addition, as a manufacturing apparatus used for the manufacturing method of this embodiment, if the said slitting apparatus is arrange | positioned, another structure will not be specifically limited.
 本実施形態によれば、このように第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に所定間隔をあけて互い違い状に配置されることにより、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にかかる応力が、それぞれのスリッティング装置(11)(12)の反対サイドに逃げることが可能となるので、フィルム(F)がキズの発生により破断することがなくなるものである。そして、この傾向は、薄膜フィルムで特に顕著に表れる現象であることが判明し、薄膜のフィルム(ウェブ)の幅変更、破断強度の低いフィルム(F)の幅変更時にもフィルム(F)の破断の危険性がほとんどなく、光ムラの発生がない高品質な光学フィルム(F)を製造することができるものである。 According to this embodiment, the first slitting device (11) and the second slitting device (12) are alternately arranged at predetermined intervals in the film longitudinal direction as described above. Since the stress applied to the film (F) at the time of slitting at both ends in the width direction of (F) can escape to the opposite sides of the slitting devices (11) and (12), the film (F) is scratched. It will not break due to the occurrence of. This tendency was found to be a particularly remarkable phenomenon in the thin film, and the film (F) was broken even when the width of the thin film (web) was changed or the width of the film (F) having low breaking strength was changed. Therefore, it is possible to produce a high-quality optical film (F) that is free from the occurrence of light unevenness.
 本実施形態による光学フィルムの製造方法においては、相互に互い違い状に配置された両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅の変更量、換言すれば、スリットされるフィルム耳切り部(20)の幅変更量が、搬送フィルム(F)の幅手方向両端部の片側で、30~300mmとなされていることが好ましい。 In the manufacturing method of the optical film according to the present embodiment, the amount of change in the slit width at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) arranged alternately. In other words, it is preferable that the width change amount of the film edge cut portion (20) to be slit is 30 to 300 mm on one side of both ends in the width direction of the transport film (F).
 このように、搬送フィルム(F)の幅手方向両端部のスリット幅の変更量、換言すれば、スリットされるフィルム耳切り部(20)の幅変更量が、搬送フィルム(F)の幅手方向両端部の片側で、30~300mmの範囲であれば、スリット時にフィルムにかかる応力が、フィルムの長手方向に互い違い状に配置されたスリッティング装置(11)(12)のそれぞれの反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという利点がある。 Thus, the amount of change in the slit width at both ends in the width direction of the transport film (F), in other words, the amount of change in the width of the film edge cut portion (20) to be slit is the width of the transport film (F). If it is in the range of 30 to 300 mm on one side of both ends in the direction, the stress applied to the film at the time of slitting will be on the opposite sides of the slitting devices (11) and (12) arranged alternately in the longitudinal direction of the film. Since it is possible to escape, there is no generation of small wrinkles, and thus no generation of rubbing scratches. Therefore, there is an advantage that a high-quality optical film free from light unevenness can be produced.
 本実施形態による光学フィルムの製造方法においては、両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度が、スリッティング装置(11)(12)の片側で10~100mm/minとなされていることが好ましい。 In the manufacturing method of the optical film according to the present embodiment, the slit width changing speed at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) is the slitting device (11) ( 12) is preferably 10 to 100 mm / min on one side.
 このように、搬送フィルム(F)の幅手方向両端部のスリット幅変更速度が、スリッティング装置(11)(12)の片側で10~100mm/minの範囲であれば、搬送フィルム(F)の幅手方向両端部のスリット時にフィルムにかかる応力が、フィルムの長手方向に互い違い状に配置されたスリッティング装置(11)(12)のそれぞれの反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという利点がある。 Thus, if the slit width changing speed at both ends in the width direction of the transport film (F) is in the range of 10 to 100 mm / min on one side of the slitting devices (11) and (12), the transport film (F) Since the stress applied to the film at the time of slitting at both ends in the width direction can escape to the opposite sides of the slitting devices (11) and (12) arranged alternately in the longitudinal direction of the film. Since the generation of wrinkles is eliminated and the generation of rubbing scratches is eliminated, there is an advantage that a high-quality optical film free from light unevenness can be produced.
 本実施形態による光学フィルムの製造方法においては、搬送フィルム(F)の幅が、1500~2500mmであることが好ましい。これにより、光学フィルム(F)の広幅化の要求にも対応することができるという利点がある。 In the method for producing an optical film according to the present embodiment, the width of the transport film (F) is preferably 1500 to 2500 mm. Thereby, there exists an advantage that it can respond also to the request | requirement of widening of an optical film (F).
 本実施形態による光学フィルムの製造方法においては、搬送フィルム(F)の走行速度が、80~200m/minであることが好ましい。これにより、光学フィルム(F)の製膜速度の高速化にも対応することができるという利点がある。 In the method for producing an optical film according to the present embodiment, the traveling speed of the transport film (F) is preferably 80 to 200 m / min. Thereby, there exists an advantage that it can respond also to high-speed film-forming speed of an optical film (F).
 本実施形態による光学フィルムの製造方法は、例えば溶液流延製膜法により実施されるものであるが、以下、これをさらに詳しく説明する。 The method for producing an optical film according to the present embodiment is performed by, for example, a solution casting film forming method, which will be described in more detail below.
 本実施形態による光学フィルムの製造方法においては、フィルム材料として、種々の樹脂を用いることができる。 In the optical film manufacturing method according to the present embodiment, various resins can be used as the film material.
 本実施形態の方法において、好ましく用いられる樹脂としては、例えばセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のアシル基の置換度が1.8~2.8のセルロースエステル系樹脂、またセルロースメチルエーテル、セルロースエチルエーテル、セルロースプロピルエーテル等のアルキル基置換度2.0~2.8のセルロースエーテル樹脂、シクロオレフィン樹脂、ノルボルネン系樹脂、ポリカーボネート樹脂、またアルキレンジカルボン酸とジアミンとの重合物のポリアミド樹脂、またアルキレンジカルボン酸とジオールとの重合物、アルキレンジオールとジカルボン酸との重合物、シクロヘキサンジカルボン酸とジオールとの重合物、シクロヘキサンジオールとジカルボン酸との重合物、芳香族ジカルボン酸とジオールとの重合物等のポリエステル樹脂、またポリ酢酸ビニル、酢酸ビニル共重合体等の酢酸ビニル樹脂、またポリビニルアセタール、ポリビニルブチラール等のポリビニルアセタール樹脂、エポキシ樹脂、ケトン樹脂、アルキレンジイソシアナートとアルキレンジオールの線状重合物等のポリウレタン樹脂等を挙げることができ、これらから選ばれる少なくとも一つを含有することが好ましい。 Examples of the resin preferably used in the method of this embodiment include cellulose ester resins having an acyl group substitution degree of 1.8 to 2.8, such as cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate. Cellulose ether resins having a degree of alkyl group substitution of 2.0 to 2.8, such as cellulose methyl ether, cellulose ethyl ether, and cellulose propyl ether, cycloolefin resins, norbornene resins, polycarbonate resins, and polymers of alkylene dicarboxylic acids and diamines Polyamide resins, alkylene dicarboxylic acid and diol polymer, alkylene diol and dicarboxylic acid polymer, cyclohexane dicarboxylic acid and diol polymer, cyclohexane diol and dicarboxylic acid Polymers, polyester resins such as polymers of aromatic dicarboxylic acids and diols, vinyl acetate resins such as polyvinyl acetate and vinyl acetate copolymers, polyvinyl acetal resins such as polyvinyl acetal and polyvinyl butyral, epoxy resins, ketones Examples thereof include polyurethane resins such as resins, linear polymers of alkylene diisocyanates and alkylene diols, and preferably contain at least one selected from these.
 中でも、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースエステル系樹脂、シクロオレフィン樹脂、ノルボルネン系樹脂、ポリカーボネート樹脂が特に好ましい。また、相溶性のあるポリマーを2種類以上ブレンドして後で述べるドープ溶解を行なっても良いが、本実施形態はこれらに限定されるものではない。 Of these, cellulose ester resins such as cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate, cycloolefin resins, norbornene resins, and polycarbonate resins are particularly preferable. Further, two or more types of compatible polymers may be blended and dope dissolution described later may be performed, but this embodiment is not limited to these.
 本実施形態において好ましく用いられるその他の樹脂としては、エチレン性不飽和単量体単位を有する単独重合体または共重合体を挙げることができる。より好ましくは、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸プロピル、ポリアクリル酸シクロヘキシル、アクリル酸アルキルの共重合体、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸シクロヘキシル、メタクリル酸アルキルエステル共重合体等のアクリル酸またはメタクリル酸エステルの単独重合体または共重合体が挙げられる。さらにアクリル酸またはメタクリル酸のエステルは、透明性、相溶性に優れるので、アクリル酸エステルまたはメタクリル酸エステル単位を有する単独重合体または共重合体、特に、アクリル酸またはメタクリル酸メチル単位を有する単独重合体または共重合体が好ましい。具体的にはポリメタクリル酸メチルが好ましい。ポリアクリル酸またはポリメタクリル酸シクロヘキサンのようなアクリル酸またはメタクリル酸の脂環式アルキルエステルは、耐熱性が高く、吸湿性が低い、複屈折が低い等の利点を有しているものが、好ましい。 Other resins preferably used in the present embodiment include homopolymers or copolymers having an ethylenically unsaturated monomer unit. More preferably, poly (methyl acrylate), poly (ethyl acrylate), poly (propyl acrylate), poly (cyclohexyl acrylate), copolymers of alkyl acrylate, poly (methyl methacrylate), poly (ethyl methacrylate), poly (cyclohexyl methacrylate), alkyl methacrylate (s). Examples include homopolymers or copolymers of acrylic acid or methacrylic acid esters such as ester copolymers. Furthermore, since acrylic acid or methacrylic acid esters are excellent in transparency and compatibility, homopolymers or copolymers having acrylic acid ester or methacrylic acid ester units, particularly homopolymers having acrylic acid or methyl methacrylate units. Polymers or copolymers are preferred. Specifically, polymethyl methacrylate is preferable. Preferred are alicyclic alkyl esters of acrylic acid or methacrylic acid such as polyacrylic acid or polymethacrylic acid cyclohexane, which have advantages such as high heat resistance, low hygroscopicity, and low birefringence. .
 以下、セルロースエステルを例に挙げて、本実施形態を説明する。 Hereinafter, the present embodiment will be described by taking cellulose ester as an example.
 本実施形態において、セルロースエステル及び有機溶剤を含有するセルロースエステル溶液をドープといい、これをもって溶液流延製膜し、セルロースエステルフィルムを形成せしめるものである。 In this embodiment, a cellulose ester solution containing a cellulose ester and an organic solvent is referred to as a dope, and this is used to form a cellulose ester film by solution casting.
 セルロースエステルは、セルロース由来の水酸基がアシル基などで置換されたセルロースエステルである。例えば、セルロースアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートなどのセルロースアシレートや、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートなどが挙げられる。中でも、セルロースアセテート、セルロースアセテートプロピオネート、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートが好ましい。本発明の効果を阻害しない範囲であれば、その他の置換基が含まれていてもよい。 Cellulose ester is a cellulose ester in which a hydroxyl group derived from cellulose is substituted with an acyl group or the like. Examples thereof include cellulose acylates such as cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate and cellulose acetate propionate butyrate, and cellulose acetate having an aliphatic polyester graft side chain. Among these, cellulose acetate, cellulose acetate propionate, and cellulose acetate having an aliphatic polyester graft side chain are preferable. Other substituents may be included as long as the effects of the present invention are not impaired.
 セルローストリアセテートの例としては、アセチル基の置換度が2.0以上3.0以下であることが好ましい。置換度をこの範囲にすることで、良好な成形性が得られ、かつ所望の面内リタデーション(Ro)、及び厚み方向のリタデーション(Rt)を得ることができるのである。アセチル基の置換度が、この範囲より低いと、位相差フィルムとしての耐湿熱性、特に湿熱下での寸法安定性に劣る場合があり、置換度が大きすぎると、必要なリタデーション特性が発現しなくなる場合がある。 As an example of cellulose triacetate, the substitution degree of acetyl group is preferably 2.0 or more and 3.0 or less. By making the degree of substitution within this range, good moldability can be obtained, and desired in-plane retardation (Ro) and thickness direction retardation (Rt) can be obtained. If the substitution degree of the acetyl group is lower than this range, the heat resistance as a retardation film, particularly the dimensional stability under wet heat may be inferior, and if the substitution degree is too large, the necessary retardation characteristics will not be exhibited. There is a case.
 本実施形態に用いられるセルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。また、それらから得られたセルロースエステルは、それぞれ任意の割合で混合使用することができる。 The cellulose used as the raw material for the cellulose ester used in the present embodiment is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
 本実施形態において、セルロースエステルの数平均分子量は、60000~300000の範囲が、得られるフィルムの機械的強度が強く好ましい。さらに70000~200000が好ましい。 In this embodiment, the number average molecular weight of the cellulose ester is preferably in the range of 60,000 to 300,000, since the mechanical strength of the resulting film is strong. Furthermore, 70,000 to 200,000 are preferable.
 セルロースエステルの溶媒としては、セルロースエステルを溶解できる溶媒であれば特に限定はされないが、また単独で溶解できない溶媒であっても他の溶媒と混合することにより、溶解できるものであれば使用することができる。一般的には、良溶媒であるメチレンクロライドとセルロースエステルの貧溶媒からなる混合溶媒を用い、かつ混合溶媒中には貧溶媒を4~30重量%含有するものが好ましく用いられる。 The solvent of the cellulose ester is not particularly limited as long as it is a solvent that can dissolve the cellulose ester, but even a solvent that cannot be dissolved alone can be used if it can be dissolved by mixing with other solvents. Can do. In general, a mixed solvent consisting of a good solvent, methylene chloride and a poor solvent of cellulose ester, is used, and the mixed solvent preferably contains 4 to 30% by weight of the poor solvent.
 この他、使用できる良溶媒としては、例えばメチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができるが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン等が好ましい有機溶媒(すなわち、良溶媒)として挙げられる。酢酸メチルを用いると、得られるフィルムのカールが少なくなるため特に好ましい。 Other good solvents that can be used include, for example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like, such as methylene chloride. Preferred organic solvents (so-called organic solvents such as dioxolane derivatives, methyl acetate, ethyl acetate, acetone) Given as the good solvent). The use of methyl acetate is particularly preferred because the resulting film has less curl.
 セルロースエステルの貧溶媒としては、例えばメタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等の炭素原子数1~8のアルコール、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、モノクロルベンゼン、ベンゼン、シクロヘキサン、テトラヒドロフラン、メチルセロソルブ、エチレングリコールモノメチルエーテル等を挙げることができ、これらの貧溶媒は、単独もしくは2種以上を適宜組み合わせて用いることができる。 Examples of the poor solvent for cellulose ester include alcohols having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, methyl ethyl ketone, methyl isobutyl ketone, and acetic acid. Examples thereof include ethyl, propyl acetate, monochlorobenzene, benzene, cyclohexane, tetrahydrofuran, methyl cellosolve, and ethylene glycol monomethyl ether. These poor solvents can be used alone or in combination of two or more.
 本実施形態において、セルロースエステルには、種々の添加剤を配合することができる。 In this embodiment, various additives can be added to the cellulose ester.
 本実施形態では、湿熱下での寸法安定性向上のために、いわゆる可塑剤を配合することが好ましい。可塑剤に湿熱下での寸法安定性改良効果があることは、これまで知られていなかった。可塑剤としては、従来公知のセルロースエステル用の可塑剤が好ましく使用できる。特に相溶性に優れたものが好ましく、例えばリン酸エステルやカルボン酸エステルが好ましい。リン酸エステルとしては、例えばトリフェニルホスフェート、トリクレジルホスフェート、フェニルジフェニルホスフェート等を挙げることができる。カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステル等、フタル酸エステルとしては、例えばジメチルフタレート、ジエチルフタレート、ジオクチルフタレート及びジエチルヘキシルフタレート等、またクエン酸エステルとしてはクエン酸アセチルトリエチル及びクエン酸アセチルトリブチルを挙げることができる。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバチン酸ジブチル、トリアセチン、等も挙げられる。アルキルフタリルアルキルグリコレートもこの目的で好ましく用いられる。アルキルフタリルアルキルグリコレートのアルキルは炭素原子数1~8のアルキル基である。アルキルフタリルアルキルグリコレートとしてはメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、プロピルフタリルエチルグリコレート、メチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等を挙げることができ、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレートが好ましく、特にエチルフタリルエチルグリコレートが好ましく用いられる。分子量の大きい可塑剤は、押し出し成形の際の揮発が抑制でき好ましい。これらの例としては、ポリエチレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネートなどのグリコールと二塩基酸とからなる脂肪族ポリエステル類、ポリ乳酸、ポリグリコール酸などのオキシカルボン酸からなる脂肪族ポリエステル類、ポリカプロラクトン、ポリプロピオラクトン、ポリバレロラクトンなどのラクトンからなる脂肪族ポリエステル類、ポリビニルピロリドンなどのビニルポリマー類などが挙げられる。上記可塑剤は、これらを単独もしくは併用して使用することができる。 In this embodiment, it is preferable to add a so-called plasticizer in order to improve dimensional stability under wet heat. It has not been known so far that a plasticizer has an effect of improving dimensional stability under wet heat. As the plasticizer, conventionally known plasticizers for cellulose esters can be preferably used. In particular, those having excellent compatibility are preferred, and for example, phosphate esters and carboxylic acid esters are preferred. Examples of phosphate esters include triphenyl phosphate, tricresyl phosphate, phenyl diphenyl phosphate, and the like. Examples of the carboxylic acid ester include phthalic acid ester and citric acid ester. Examples of the phthalic acid ester include dimethyl phthalate, diethyl phthalate, dioctyl phthalate, and diethyl hexyl phthalate. Examples of the citrate ester include acetyl triethyl citrate and acetyl citrate. Mention may be made of tributyl. In addition, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, triacetin, and the like are also included. Alkylphthalylalkyl glycolates are also preferably used for this purpose. The alkyl in the alkylphthalylalkyl glycolate is an alkyl group having 1 to 8 carbon atoms. Examples of alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl glycolate, Ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, propyl phthalyl ethyl glycolate, methyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl Phthalyl ethyl glycolate, propyl phthalyl butyl glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl Collate, octyl phthalyl methyl glycolate, octyl phthalyl ethyl glycolate and the like can be mentioned, such as methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, Octyl phthalyl octyl glycolate is preferable, and ethyl phthalyl ethyl glycolate is particularly preferably used. A plasticizer having a large molecular weight is preferable because it can suppress volatilization during extrusion. Examples of these include aliphatic polyesters composed of glycol and dibasic acids such as polyethylene adipate, polybutylene adipate, polyethylene succinate and polybutylene succinate, and fats composed of oxycarboxylic acids such as polylactic acid and polyglycolic acid. Aliphatic polyesters composed of lactones such as aromatic polyesters, polycaprolactone, polypropiolactone and polyvalerolactone, and vinyl polymers such as polyvinylpyrrolidone. These plasticizers can be used alone or in combination.
 上述した可塑剤の含有量は、セルロースエステルに対して1~30重量%含有させることが好ましい。可塑剤をこの範囲含有させることで、セルロースエステルフィルムの湿熱下での寸法安定性を向上することができる。 The content of the plasticizer described above is preferably 1 to 30% by weight based on the cellulose ester. By containing the plasticizer in this range, the dimensional stability of the cellulose ester film under wet heat can be improved.
 本実施形態において、使用し得る紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10-182621号公報、特開平8-337574号公報記載の紫外線吸収剤、特開平6-148430号公報記載の高分子紫外線吸収剤も好ましく用いられる。紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。 In this embodiment, examples of the ultraviolet absorber that can be used include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, a benzotriazole-based compound with little coloring is preferable. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used. As an ultraviolet absorber, from the viewpoint of preventing the deterioration of polarizers and liquid crystals, it is excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, the absorption of visible light having a wavelength of 400 nm or more is small. Is preferred.
 本実施形態に有用な紫外線吸収剤の具体例として、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(何れもチバ・スペシャリティ・ケミカルズ社製)を好ましく使用できる。 Specific examples of ultraviolet absorbers useful in this embodiment include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl) Phenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy- '-Tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -6- (straight and side chain dodecyl) -4-methylphenol, octyl- 3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5 A mixture of (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate can be mentioned, but is not limited thereto. As commercially available products, TINUVIN 109, TINUVIN 171 and TINUVIN 326 (all manufactured by Ciba Specialty Chemicals) can be preferably used.
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。 Specific examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
 これらの紫外線吸収剤の配合量は、セルロースエステルに対して、0.01~10重量%の範囲が好ましく、さらに0.1~5重量%が好ましい。使用量が少なすぎると、紫外線吸収効果が不十分の場合があり、多すぎると、フィルムの透明性が劣化する場合がある。紫外線吸収剤は熱安定性の高いものが好ましい。 The blending amount of these ultraviolet absorbers is preferably in the range of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the cellulose ester. If the amount used is too small, the UV absorption effect may be insufficient, and if it is too large, the transparency of the film may be deteriorated. The ultraviolet absorber is preferably one having high heat stability.
 なお、本実施形態において、上述の可塑剤、及び紫外線吸収剤が、厚み方向リタデーション(Rt)を低減する添加剤としての役割をあわせ有していても良い。 In the present embodiment, the plasticizer and the ultraviolet absorber described above may also have a role as an additive for reducing the thickness direction retardation (Rt).
 セルロースエステルのアセチル基の置換度が低いと、耐熱性が低下する場合がある。この場合、酸化防止剤を配合することが有効である。 If the substitution degree of the acetyl group of the cellulose ester is low, the heat resistance may decrease. In this case, it is effective to add an antioxidant.
 酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等が挙げられる。特に2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファート等のリン系加工安定剤を併用してもよい。 As the antioxidant, a hindered phenol compound is preferably used, and 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5 -Triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5- Trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, etc. Is mentioned. In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di-t Phosphorus processing stabilizers such as -butylphenyl phosphate may be used in combination.
 本実施形態におけるセルロース誘導体には、滑り性を付与するために、マット剤等の微粒子を添加するのが好ましい。微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。 In the present embodiment, it is preferable to add fine particles such as a matting agent to the cellulose derivative in order to impart slipperiness. Examples of the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
 無機化合物の微粒子の例としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化錫等の微粒子が挙げられる。この中では、ケイ素原子を含有する化合物の微粒子であることが好ましく、特に二酸化ケイ素微粒子が好ましい。二酸化ケイ素微粒子としては、例えばアエロジル株式会社製のAEROSIL 200、200V、300、R972、R972V、R974、R202、R812,R805、OX50、TT600などが挙げられる。 Examples of inorganic compound fine particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, tin oxide, and the like. Of these, fine particles of a compound containing a silicon atom are preferred, and fine silicon dioxide particles are particularly preferred. Examples of the silicon dioxide fine particles include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
 有機化合物の微粒子の例としては、アクリル樹脂、シリコーン樹脂、フッ素化合物樹脂、ウレタン樹脂等の微粒子が挙げられる。 Examples of organic compound fine particles include fine particles of acrylic resin, silicone resin, fluorine compound resin, urethane resin, and the like.
 微粒子の1次粒径は、特に限定されないが、最終的にフィルム中での平均粒径は、0.05~5.0μm程度が好ましい。さらに好ましくは、0.1~1.0μmである。 The primary particle size of the fine particles is not particularly limited, but the average particle size in the film is preferably about 0.05 to 5.0 μm. More preferably, it is 0.1 to 1.0 μm.
 微粒子の平均粒径は、セルロースエステルフィルムを電子顕微鏡や光学顕微鏡で観察した際に、フィルムの観察場所における、粒子の長軸方向の長さの平均値を指す。フィルム中で観察される粒子であれば、1次粒子であっても、1次粒子が凝集した2次粒子であってもよいが、通常観察される多くは2次粒子である。 The average particle diameter of the fine particles refers to the average value of the lengths of the particles in the major axis direction when the cellulose ester film is observed with an electron microscope or an optical microscope. As long as the particles are observed in the film, they may be primary particles or secondary particles in which the primary particles are aggregated, but most of the particles that are usually observed are secondary particles.
 測定方法の一例としては、1つのフィルムにつき、ランダムに10箇所の垂直断面写真を撮影し、各断面写真について、長軸長さが、0.05~5μmの範囲にある100μm中の粒子個数をカウントする。このときカウントした粒子の長軸長さの平均値を求め、10箇所の平均値を平均した値を平均粒径とする。 As an example of the measurement method, 10 vertical cross-sectional photographs are taken at random for each film, and the number of particles in 100 μm 2 whose major axis length is in the range of 0.05 to 5 μm for each cross-sectional photograph. Count. The average value of the major axis lengths of the particles counted at this time is obtained, and a value obtained by averaging the average values of 10 locations is defined as the average particle size.
 微粒子の場合は、1次粒径、溶媒に分散した後の粒径、フィルムに添加された後の粒径が変化する場合が多く、重要なのは、最終的にフィルム中で微粒子がセルロースエステルと複合し凝集して形成される粒径をコントロールすることである。 In the case of fine particles, the primary particle size, the particle size after being dispersed in a solvent, and the particle size after being added to the film often change, and what is important is that the fine particles are finally combined with the cellulose ester in the film. And controlling the particle size formed by aggregation.
 上記微粒子の平均粒径が、5μmを超えた場合は、ヘイズの劣化等が見られたり、異物として巻状態での故障を発生する原因にもなる。また、微粒子の平均粒径が、0.05μm未満の場合は、フィルムに滑り性を付与するのが難しくなる。 When the average particle diameter of the fine particles exceeds 5 μm, haze deterioration or the like may be observed, or a failure may occur in a wound state as a foreign matter. Moreover, when the average particle diameter of fine particles is less than 0.05 μm, it becomes difficult to impart slipperiness to the film.
 上記の微粒子は、セルロースエステルに対して、0.04~1.0重量%添加して使用される。微粒子の添加量が0.04重量%以下では、フィルム表面粗さが平滑になりすぎて、摩擦係数の上昇によりブロッキングを発生する。微粒子の添加量が0.5重量%を超えると、フィルム表面の摩擦係数が下がりすぎて、巻き取り時に巻きズレが発生したり、フィルムの透明度が低く、ヘイズが高くなったりするため、液晶表示装置用フィルムとしての価値を持たなくなるので、上記の範囲が必須である。 The above fine particles are used by adding 0.04 to 1.0% by weight to the cellulose ester. When the amount of fine particles added is 0.04% by weight or less, the film surface roughness becomes too smooth and blocking occurs due to an increase in the friction coefficient. If the amount of fine particles added exceeds 0.5% by weight, the coefficient of friction on the film surface will be too low, causing winding misalignment during winding, and the transparency of the film will be low and haze will be high. The above range is indispensable because it has no value as a film for an apparatus.
 微粒子の分散は、微粒子と溶剤を混合した組成物を高圧分散装置で処理することが好ましい。本実施形態で用いる高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。 For dispersion of fine particles, it is preferable to treat a composition in which fine particles and a solvent are mixed with a high-pressure dispersion apparatus. The high-pressure dispersion apparatus used in the present embodiment is an apparatus that creates special conditions such as high shear and high-pressure conditions by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
 高圧分散装置で処理することにより、例えば、管径1~2000μmの細管中で装置内部の最大圧力条件が980N/cm以上であることが好ましい。さらに好ましくは、装置内部の最大圧力条件が1960N/cm以上である。またその際、最高到達速度が100m/sec以上に達するもの、伝熱速度が100kcal/hr以上に達するものが、好ましい。 It is preferable that the maximum pressure condition inside the apparatus is 980 N / cm 2 or more in a thin tube having a tube diameter of 1 to 2000 μm, for example, by processing with a high-pressure dispersion apparatus. More preferably, the maximum pressure condition inside the apparatus is 1960 N / cm 2 or more. Further, at that time, those having a maximum reaching speed of 100 m / sec or more and those having a heat transfer speed of 100 kcal / hr or more are preferable.
 上記のような高圧分散装置としては、例えばMicrofluidics Corporation社製の超高圧ホモジナイザー(商品名マイクロフルイダイザー)あるいはナノマイザー社製ナノマイザーが挙げられ、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモゲナイザーなどが挙げられる。 Examples of the high-pressure dispersing device as described above include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing devices such as Izumi Food Machinery Co., Ltd. A homogenizer etc. are mentioned.
 本実施形態による光学フィルムの製造方法は、ドープ調製工程(溶解工程)、流延工程、乾燥工程、フィルムの幅切断工程、および巻取り工程を具備するものである。 The method for producing an optical film according to the present embodiment includes a dope preparation step (dissolution step), a casting step, a drying step, a film width cutting step, and a winding step.
 本実施形態による光学フィルムの製造方法において、光学フィルムが、セルロースエステルフィルムである場合を例にとると、まず、セルロースエステルの溶解は、溶解釜中での撹拌溶解方法、加熱溶解方法、超音波溶解方法等の手段が、通常用いられ、加圧下で、溶剤の常圧での沸点以上でかつ溶剤が沸騰しない範囲の温度で加熱し、攪拌しながら溶解する方法が、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため、より好ましい。また、特開平9-95538号公報記載の冷却溶解方法、あるいはまた特開平11-21379号公報記載の高圧下で溶解する方法なども用いてもよい。 In the method for producing an optical film according to the present embodiment, taking the case where the optical film is a cellulose ester film as an example, the dissolution of the cellulose ester is first performed by stirring and dissolving in a dissolution vessel, heating and dissolving, ultrasonic A method such as a dissolution method is usually used, and a method in which the solution is heated at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil and dissolved while stirring is a lump called gel or mamaco In order to prevent generation | occurence | production of an undissolved substance, it is more preferable. Further, a cooling dissolution method described in JP-A-9-95538, or a dissolution method under high pressure described in JP-A-11-21379 may also be used.
 セルロースエステルを貧溶剤と混合して湿潤、あるいは膨潤させた後、さらに良溶剤と混合して溶解する方法も好ましく用いられる。このとき、セルロースエステルを貧溶媒と混合して湿潤あるいは膨潤させる装置と、良溶剤と混合して溶解する装置を別々に分けても良い。 A method in which the cellulose ester is mixed with a poor solvent and wetted or swollen, and then mixed with a good solvent and dissolved is also preferably used. At this time, an apparatus for mixing or dissolving cellulose ester with a poor solvent and an apparatus for mixing and dissolving with a good solvent may be separately provided.
 セルロースエステルの溶解に用いる加圧容器の種類は、特に問うところではなく、所定の圧力に耐えることができ、加圧下で加熱、攪拌ができればよい。加圧容器には、その他、圧力計、温度計などの計器類を適宜配設する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行なってもよい。加熱は外部から行なうことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。 The type of the pressure vessel used for dissolving the cellulose ester is not particularly limited as long as it can withstand a predetermined pressure and can be heated and stirred under pressure. In addition, instruments such as a pressure gauge and a thermometer are appropriately disposed in the pressurized container. The pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
 溶剤を添加しての加熱温度は、使用する溶剤の沸点以上で、2種類以上の混合溶剤の場合は、沸点が低い方の溶剤の沸点以上の温度に加温しかつ該溶剤が沸騰しない範囲の温度が好ましい。加熱温度が高すぎると、必要とされる圧力が大きくなり、生産性が悪くなる。好ましい加熱温度の範囲は20~120℃であり、30~100℃が、より好ましく、40~80℃の範囲がさらに好ましい。また圧力は、設定温度で、溶剤が沸騰しないように調整される。 The heating temperature after adding the solvent is higher than the boiling point of the solvent to be used. In the case of two or more mixed solvents, the heating temperature is higher than the boiling point of the lower boiling solvent and the solvent does not boil. Is preferred. If the heating temperature is too high, the required pressure increases and productivity decreases. A preferable heating temperature range is 20 to 120 ° C., more preferably 30 to 100 ° C., and still more preferably 40 to 80 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
 セルロースエステルと溶剤の他に、必要な可塑剤、紫外線吸収剤等の添加剤は、予め溶剤と混合し、溶解または分散してからセルロースエステル溶解前の溶剤に投入しても、セルロースエステル溶解後のドープへ投入しても良い。 In addition to cellulose ester and solvent, additives such as necessary plasticizers and UV absorbers can be mixed with the solvent in advance, dissolved or dispersed, and then added to the solvent before dissolving the cellulose ester. It may be put into the dope.
 セルロースエステルの溶解後は、冷却しながら容器から取り出すか、または容器からポンプ等で抜き出して、熱交換器などで冷却し、得られたポリマーのドープを製膜に供するが、このときの冷却温度は、常温まで冷却してもよい。 After dissolving the cellulose ester, it is taken out from the container while cooling, or it is taken out from the container with a pump or the like and cooled with a heat exchanger or the like, and the resulting polymer dope is used for film formation. May be cooled to room temperature.
 原料としてのセルロースエステルの粒径dは、0.1mm≦d≦20mmの粒子が60重量%以上の比率で構成されることが、セルロースエステルの凝集塊を発生させることなく、良好な溶解性を得るために、望ましい。 The particle size d of the cellulose ester as a raw material is such that particles having a size of 0.1 mm ≦ d ≦ 20 mm are constituted at a ratio of 60% by weight or more, so that good solubility can be obtained without generating an aggregate of cellulose ester. Desirable to get.
 原料セルロースエステルと溶媒の混合物は、撹拌機を有する溶解釜で溶解し、このとき、撹拌翼の周速は少なくとも0.5m/秒以上で、かつ30分以上撹拌して溶解することが好ましい。 The mixture of the raw material cellulose ester and the solvent is dissolved in a dissolving kettle having a stirrer, and at this time, the peripheral speed of the stirring blade is preferably at least 0.5 m / second or more and stirred and dissolved for 30 minutes or more.
 本実施形態の方法において、溶解釜で溶解したセルロースエステルのドープを、ポンプにより濾過機に送り、濾過機において濾過する。この濾過は、通常の方法で行なうことができるが、溶剤の常圧での沸点以上でかつ溶剤が沸騰しない範囲の温度で加圧下加熱しながら濾過する方法が、濾過材前後の差圧(以下、濾圧というることがある)の上昇が小さく、好ましい。 In the method of the present embodiment, the cellulose ester dope dissolved in the dissolution vessel is sent to a filter by a pump and filtered in the filter. This filtration can be performed by a normal method, but the method of filtering while heating under pressure at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil is the differential pressure before and after the filter medium (hereinafter referred to as the pressure difference). The increase in the pressure may be small, which is preferable.
 本実施形態の方法において、セルロースエステルドープは、これを濾過することによって、異物、特に液晶画像表示装置において、画像と認識し間違う異物は、これを除去しなければならない。偏光板用保護フィルムの品質は、この濾過によって決まるといってもよい。 In the method of this embodiment, the cellulose ester dope is filtered to remove foreign substances, particularly foreign substances that are mistakenly recognized as images in the liquid crystal image display device. It may be said that the quality of the protective film for polarizing plates is determined by this filtration.
 濾過に使用する濾材は、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると、濾過材の目詰まりが発生しやすく、濾材の交換を頻繁に行なわなければならず、生産性を低下させるという問題点ある。 Filter media used for filtration preferably have a low absolute filtration accuracy. However, if the absolute filtration accuracy is too low, the filter media is likely to be clogged, and the filter media must be frequently replaced, resulting in increased productivity. There is a problem of lowering.
 このため、本実施形態の方法において、セルロースエステルドープに使用する濾材は、絶対濾過精度0.020mm以下のものが好ましい。濾紙としては、例えば市販品の安積濾紙株式会社のNo.244や277等を挙げることができ、好ましく用いられる。 For this reason, in the method of this embodiment, the filter medium used for the cellulose ester dope preferably has an absolute filtration accuracy of 0.020 mm or less. As the filter paper, for example, No. of Azumi Filter Paper Co., Ltd., a commercially available product. 244, 277, etc. can be mentioned and used preferably.
 濾材の材質には、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がなく好ましい。 There are no particular restrictions on the material of the filter medium, and normal filter media can be used. However, plastic fiber filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel fibers are used to remove fibers. It is preferable because there is no
 ドープ濾過の好ましい温度範囲は、45~120℃であり、45~70℃が、より好ましく、45~55℃の範囲であることがさらに好ましい。 The preferred temperature range for the dope filtration is 45 to 120 ° C., more preferably 45 to 70 ° C., and even more preferably 45 to 55 ° C.
 濾圧は、3500kPa以下であることが好ましく、3000kPa以下が、より好ましく、2500kPa以下であることがさらに好ましい。なお、濾圧は、濾過流量と濾過面積を適宜選択することで、コントロールできる。こうして得られたドープは、ストックタンクに保管され、脱泡された後、流延に用いられる。 The filtration pressure is preferably 3500 kPa or less, more preferably 3000 kPa or less, and even more preferably 2500 kPa or less. The filtration pressure can be controlled by appropriately selecting the filtration flow rate and the filtration area. The dope thus obtained is stored in a stock tank, defoamed and then used for casting.
 このように、溶解釜中で、あらかじめドメイン形成材料とセルロースエステルと溶媒とを混合してドープを調製する場合は、通常、ドメイン形成材料をインライン添加する必要はない。しかしながら、必要に応じて、ドメイン形成材料の全部もしくは一部をインラインで混合することができる。 Thus, in the case where a dope is prepared by previously mixing a domain forming material, a cellulose ester, and a solvent in a melting pot, it is usually unnecessary to add the domain forming material in-line. However, if necessary, all or part of the domain forming material can be mixed in-line.
 例えば、溶解釜中で適当な溶媒に混合または分散された不定形粒子分散液は、ポンプにより濾過機に送り、濾過機において濾過する。得られたドープは、第2ストックタンクに保管され、脱泡される。 For example, an amorphous particle dispersion mixed or dispersed in a suitable solvent in a dissolution vessel is sent to a filter by a pump and filtered in the filter. The obtained dope is stored in the second stock tank and defoamed.
 第1ストックタンクからポンプによって導管中を移行したセルロースエステル溶液(もしくはドープ原液と称する場合がある)と、第2ストックタンクからポンプによって導管中を移行したドメイン形成材料溶液(不定形粒子分散液)とは、合流管で合流させる。 Cellulose ester solution (or may be referred to as dope stock solution) transferred from the first stock tank through the conduit by the pump, and domain-forming material solution transferred from the second stock tank by the pump (the amorphous particle dispersion). Is merged with a merge pipe.
 合流管の直前には、濾過器が配置されており、例えば濾材交換等に伴い経路から発生する、塊や大きな異物を、送液中の不定形粒子分散液あるいはドープ原液から除去することができる。ここでは、耐溶剤性を有する金属製の濾過器が好ましく用いられる。 A filter is arranged immediately before the junction tube, and for example, lump and large foreign matter generated from the path due to exchange of filter media etc. can be removed from the amorphous particle dispersion or dope stock solution being fed. . Here, a metal filter having solvent resistance is preferably used.
 濾材としては、耐久性の観点から金属、特にステンレス鋼が好ましい。目詰まりの観点から60~80%の空孔率を有していることが好ましい。最も好ましくは、絶対濾過精度30~60μmであって、かつ空孔率60~80%の金属製濾材で濾過することであり、これにより、長期に亘り、確実に粗大な異物を除くことができ好ましい。絶対濾過精度30~60μmでかつ空孔率60~80%の金属製濾材としては、例えば日本精線株式会社製ファインポアNFシリーズのNF-10、同NF-12、同NF-13等を挙げることができる。 The filter medium is preferably a metal, particularly stainless steel, from the viewpoint of durability. From the viewpoint of clogging, a porosity of 60 to 80% is preferable. Most preferably, the filtration is performed with a metal filter medium having an absolute filtration accuracy of 30 to 60 μm and a porosity of 60 to 80%, so that coarse foreign substances can be reliably removed over a long period of time. preferable. Examples of metal filter media having an absolute filtration accuracy of 30 to 60 μm and a porosity of 60 to 80% include NF-10, NF-12, and NF-13 of Finepore NF series manufactured by Nippon Seisen Co., Ltd. be able to.
 上記のようにして合流した両液は、導管内を層状で移行するためそのままでは混合しにくい。そこで、両液を合流後、インラインミキサーのような混合機で十分に混合しながら次工程に移送する。 The two liquids that have joined together as described above migrate in a layered manner in the conduit and are difficult to mix as they are. Therefore, after the two liquids are merged, they are transferred to the next step while being sufficiently mixed by a mixer such as an in-line mixer.
 本実施形態で使用できるインラインミキサーとしては、例えば、スタチックミキサーSWJ(東レ静止型管内混合器、Hi-Mixer、東レエンジニアリング製)が好ましい。 As the in-line mixer that can be used in this embodiment, for example, a static mixer SWJ (Toray static type in-pipe mixer, Hi-Mixer, manufactured by Toray Engineering) is preferable.
 図1を参照すると、本実施形態のセルロースエステルフィルムの製造方法では、まず溶解釜(図示略)で、例えばセルロースエステル等の樹脂を、良溶媒及び貧溶媒の混合溶媒に溶解し、これに可塑剤や紫外線吸収剤等の添加剤を添加して樹脂溶液(ドープ)を調製する。 Referring to FIG. 1, in the method for producing a cellulose ester film of the present embodiment, first, a resin such as cellulose ester is dissolved in a mixed solvent of a good solvent and a poor solvent in a dissolving pot (not shown) and plasticized. A resin solution (dope) is prepared by adding additives such as an agent and an ultraviolet absorber.
 ついで、溶解釜でドープ粘度が1~200ポイズになるように調整されたドープを、例えば加圧型定量ギヤポンプ(図示略)を通して、導管によって流延ダイ(2)に送液し、無限に移送する回転駆動ステンレス鋼製エンドレスベルトよりなる支持体(1)上の流延位置に、流延ダイ(2)からドープを流延し、これにより形成されたウェブ(10)を、エンドレスベルト支持体(1)上に接触させる。エンドレスベルト支持体(1)は、前後一対のドラムおよび中間の複数のロール(図示略)より保持されており、エンドレスベルト支持体(1)の両端巻回部のドラムの一方、もしくは両方に、エンドレスベルト支持体(1)には図示しない張力を付与する駆動装置が設けられ、これによってエンドレスベルト支持体(1)は張力が掛けられて張った状態で使用される。 Next, the dope adjusted to have a dope viscosity of 1 to 200 poise in a melting pot is fed to the casting die (2) through a conduit, for example, through a pressurized metering gear pump (not shown), and transferred indefinitely. A dope is cast from a casting die (2) at a casting position on a support (1) made of a rotationally driven stainless steel endless belt, and a web (10) formed thereby is passed through an endless belt support ( 1) Touch the top. The endless belt support (1) is held by a pair of front and rear drums and a plurality of intermediate rolls (not shown), and is attached to one or both of the drums at both ends of the endless belt support (1). The endless belt support (1) is provided with a driving device for applying tension (not shown), whereby the endless belt support (1) is used in a tensioned state.
 流延ダイ(2)によるドープの流延には、流延されたウェブ(10)をブレードで膜厚を調節するドクターブレード法、あるいは逆回転するロールで調節するリバースロールコーターによる方法等があるが、口金部分のスリット形状を調製でき、膜厚を均一にしやすい加圧ダイを用いる方法が好ましい。加圧ダイには、コートハンガーダイやTダイ等があるが、何れも好ましく用いられる。 The dope casting by the casting die (2) includes a doctor blade method in which the film thickness of the cast web (10) is adjusted with a blade, or a reverse roll coater method in which the film is adjusted with a reverse rotating roll. However, it is preferable to use a pressure die that can adjust the slit shape of the die part and easily make the film thickness uniform. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used.
 なお、流延ダイ(2)としては、口金部分のスリット形状を調製でき、膜厚を均一にしやすい加圧ダイが好ましい。 In addition, as the casting die (2), a pressure die that can adjust the slit shape of the die part and easily make the film thickness uniform is preferable.
 そして、回転駆動エンドレスベルト支持体(1)上にウェブ(10)を形成する際、ウェブ(10)が支持体(1)上に密着して形成されるように流延上流側から減圧する手段としての下方に開口した減圧チャンバ(図示略)を備えている。 When the web (10) is formed on the rotary drive endless belt support (1), the pressure is reduced from the upstream side of the casting so that the web (10) is formed in close contact with the support (1). A decompression chamber (not shown) opened downward is provided.
 なお、図示は省略したが、例えば加圧型定量ギヤポンプを通して流延ダイ(2)に送液されたドープを、流延ダイ(2)からハードクロム鍍金により鏡面処理された表面を有するステンレス鋼製回転の冷却ドラム上に流延しても、良い。 Although not shown in the drawings, for example, a dope fed to the casting die (2) through, for example, a pressurized metering gear pump is rotated by a stainless steel having a surface mirror-treated by hard chrome plating from the casting die (2). It may be cast on a cooling drum.
 流延ダイ(2)から支持体(1)上にほぼ均一な膜厚になるように流延し、一般的には、ウェブ中の残留溶媒量が、対固形分重量200%以上では、ウェブ温度が溶剤沸点以下に、また、残留溶媒量が、対固形分重量100~200%の範囲では、溶剤沸点+10℃以下に、残留溶媒量100%以下~剥離までは、溶剤沸点+20℃以下の範囲になるように、乾燥風によりウェブ(10)を乾燥させるのが好ましい。 The casting die (2) is cast so as to have a substantially uniform film thickness on the support (1). Generally, when the residual solvent amount in the web is 200% or more by weight of the solid content, the web When the temperature is below the boiling point of the solvent and the residual solvent amount is in the range of 100 to 200% by weight of the solid content, the boiling point of the solvent is + 10 ° C. or less, and the residual solvent amount is 100% or less to the peeling until the solvent boiling point is + 20 ° C. It is preferable to dry the web (10) with drying air so as to be in the range.
 エンドレスベルト支持体(1)上で乾燥されたウェブ(10)が支持体(1)の回転によってほぼ3/4周移動したところで、剥離ロール(3)により剥離する。 When the web (10) dried on the endless belt support (1) moves approximately 3/4 rounds by the rotation of the support (1), it is peeled off by the peeling roll (3).
 支持体(1)上は、ウェブ(10)が支持体(1)から剥離可能な膜強度となるまで乾燥固化させるため、一般的には、ウェブ(10)中の残留溶媒量が150重量%以下まで乾燥させるのが好ましく、80~120重量%がより好ましい。 Since the web (10) is dried and solidified on the support (1) until the web (10) has a peelable film strength, generally the residual solvent amount in the web (10) is 150% by weight. It is preferably dried to the following, more preferably 80 to 120% by weight.
 また、一般的に、支持体(1)からウェブ(10)を剥離するときのウェブ(10)の温度は、0~30℃が好ましい。また、ウェブ(10)は、支持体(1)から剥離直後に、支持体(1)密着面側からの溶媒触媒で温度が一旦急速に下がり、雰囲気中の水蒸気や溶剤蒸気などの揮発成分がコンデンスしやすいため、剥離時のウェブ温度は5~30℃がさらに好ましい。 In general, the temperature of the web (10) when peeling the web (10) from the support (1) is preferably 0 to 30 ° C. Further, immediately after the web (10) is peeled off from the support (1), the temperature is once lowered rapidly by the solvent catalyst from the contact surface side of the support (1), and volatile components such as water vapor and solvent vapor in the atmosphere are removed. The web temperature at the time of peeling is more preferably 5 to 30 ° C. for easy condensation.
 ここで、残留溶媒量は、下記の式で表わせる。 Here, the residual solvent amount can be expressed by the following equation.
   残留溶媒量(重量%)={(M-N)/N}×100
 式中、Mはウェブの任意時点での重量、Nは重量Mのものを110℃で3時間乾燥させたときの重量である。
Residual solvent amount (% by weight) = {(MN) / N} × 100
In the formula, M is the weight of the web at an arbitrary time point, and N is the weight when the weight M is dried at 110 ° C. for 3 hours.
 支持体(1)とウェブ(10)を剥離する際の剥離張力は、通常20~25kg/mで剥離が行なわれるが、剥離できる最低張力~17kg/mで剥離することが好ましい。さらに好ましくは、最低張力~14kg/mで剥離することである。 The peeling tension is usually 20 to 25 kg / m when peeling the support (1) and the web (10), but it is preferable to peel with a minimum tension of 17 kg / m. More preferably, peeling is performed at a minimum tension of -14 kg / m.
 ついで、エンドレスベルト支持体(1)から剥離後のウェブ(10)は第1乾燥ゾーン(4)に導入する。第1乾燥ゾーン(4)内では、側面から見て千鳥配置せられた複数の搬送ロールによってウェブ(10)が蛇行せられ、その間にウェブ(10)は第1乾燥ゾーン(4)の底の前寄り部分から吹込まれ、第1乾燥ゾーン(4)の天井の後寄り部分から排出せられる温風によって乾燥される。 Next, the web (10) after peeling from the endless belt support (1) is introduced into the first drying zone (4). In the first drying zone (4), the web (10) is meandered by a plurality of conveying rolls arranged in a staggered manner as viewed from the side, while the web (10) is at the bottom of the first drying zone (4). It is blown from the front portion and dried by the warm air discharged from the rear portion of the ceiling of the first drying zone (4).
 溶液流延製膜法によるセルロースエステルフィルムの製造方法においては、ベルト支持体(1)からウェブ(10)を剥離する時のウェブ(10)の残留溶媒量を80~170重量%、テンター(5)に入る時のウェブ(10)の残留溶媒量を2~20重量%とし、これらの間の第1乾燥ゾーン(4)の乾燥温度を60~110℃とするのが、好ましい。 In the method for producing a cellulose ester film by the solution casting film forming method, the residual solvent amount of the web (10) when the web (10) is peeled from the belt support (1) is 80 to 170% by weight, and the tenter (5 It is preferable that the amount of residual solvent of the web (10) when entering is set to 2 to 20% by weight and the drying temperature of the first drying zone (4) between them is 60 to 110 ° C.
 テンター(5)による延伸工程においては、例えばセルロースエステルフィルムを製造する際の延伸倍率は、製膜方向もしくは幅手方向に対して、1.01~3倍であり、好ましくは1.5~3倍である。2軸方向に延伸する場合、高倍率で延伸する側が、1.01~3倍であり、好ましくは1.5~3倍であり、もう一方の方向の延伸倍率は0.8~1.5倍、好ましくは0.9~1.2倍に延伸することができる。 In the stretching step using the tenter (5), for example, the stretching ratio when producing a cellulose ester film is 1.01 to 3 times, preferably 1.5 to 3 times with respect to the film forming direction or the width direction. Is double. When stretching in the biaxial direction, the side to be stretched at a high magnification is 1.01 to 3 times, preferably 1.5 to 3 times, and the stretching ratio in the other direction is 0.8 to 1.5. The film can be stretched by a factor of preferably 0.9 to 1.2.
 製膜工程のこれらの幅保持あるいは横方向の延伸は、テンター(5)によって行なうことが好ましく、ピンテンターでもクリップテンターでもよい。 The width maintenance or lateral stretching in the film forming step is preferably performed by a tenter (5), and may be a pin tenter or a clip tenter.
 なお、テンター(5)による延伸工程においては、テンター(5)の底の前寄り部分から吹込まれ、テンター(5)の天井の後寄り部分から排出せられる温風(図示略)によってウェブ(10)が、延伸と共に乾燥されている。 In addition, in the extending | stretching process by a tenter (5), a web (10 abbreviate | omits illustration) is blown in from the front part of the bottom of a tenter (5), and is discharged | emitted from the rear part of the ceiling of a tenter (5). ) Is dried with stretching.
 テンター(5)による延伸工程の後に、第2乾燥ゾーン(6)を設けることが好ましい。第2乾燥ゾーン(6)内では、側面から見て千鳥配置せられた複数の搬送ロール(8)によってウェブ(10)が蛇行せられ、その間にウェブ(10)が乾燥せられるものである。また、第2乾燥ゾーン(6)でのフィルム搬送張力は、ドープの物性、剥離時及びフィルム搬送工程での残留溶媒量、第2乾燥ゾーン(6)での温度等に影響を受けるが、30~250N/mが好ましく、60~150N/mがさらに好ましい。80~120N/mが最も好ましい。 It is preferable to provide the second drying zone (6) after the stretching step by the tenter (5). In the second drying zone (6), the web (10) is meandered by a plurality of transport rolls (8) arranged in a staggered manner as viewed from the side, and the web (10) is dried during that time. The film transport tension in the second drying zone (6) is affected by the properties of the dope, the amount of residual solvent at the time of peeling and in the film transport process, the temperature in the second drying zone (6), etc. Is preferably 250 N / m, and more preferably 60 to 150 N / m. 80 to 120 N / m is most preferable.
 なお、ウェブ(またはフィルム)(10)を乾燥させる手段は、特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行なう。簡便さの点から熱風で乾燥するのが好ましく、例えば第2乾燥ゾーン(6)の底の前寄り部分から吹込まれ、第2乾燥ゾーン(6)の天井の後寄り部分から排出せられる温風によって乾燥される。乾燥温度は40~160℃が好ましく、50~160℃が平面性、寸法安定性を良くするためさらに好ましい。 The means for drying the web (or film) (10) is not particularly limited, and is generally performed by hot air, infrared rays, a heating roll, a microwave, or the like. It is preferable to dry with hot air from the viewpoint of simplicity, for example, hot air blown from the front portion of the bottom of the second drying zone (6) and discharged from the rear portion of the ceiling of the second drying zone (6). Dried by. The drying temperature is preferably 40 to 160 ° C., more preferably 50 to 160 ° C. in order to improve the flatness and dimensional stability.
 これら流延から後乾燥までの工程は、空気雰囲気下でもよいし、窒素ガスなどの不活性ガス雰囲気下でもよい。この場合、乾燥雰囲気を溶媒の爆発限界濃度を考慮して実施することは勿論のことである。 These steps from casting to post-drying may be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen gas. In this case, it goes without saying that the dry atmosphere is carried out in consideration of the explosion limit concentration of the solvent.
 乾燥時のウェブ搬送張力は、30~300N/幅mであり、40~270N/幅mが、より好ましい。 The web conveyance tension during drying is 30 to 300 N / width m, and more preferably 40 to 270 N / width m.
 本実施形態によるセルロースエステルフィルムの製造方法においては、第2乾燥ゾーン(6)の後で、かつフィルム巻取り工程前のフィルム搬送ラインに、搬送フィルム(F)の幅手方向の両端部で、それぞれ搬送フィルム(F)の上側に位置する一対のスリッティング装置(11)(12)が備えられており、第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に1~20mの間隔(D)をあけて互い違い状に配置されていることを特徴とするものである。 In the method for producing a cellulose ester film according to the present embodiment, after the second drying zone (6) and before the film winding step, on both ends in the width direction of the transport film (F), A pair of slitting devices (11) and (12) are provided respectively on the upper side of the transport film (F), and the first slitting device (11) and the second slitting device (12) are arranged in the longitudinal direction of the film. It is characterized by being arranged in a staggered manner with an interval (D) of 1 to 20 m in the direction.
 なお、一対のスリッティング装置(11)(12)によりスリットされた搬送フィルム(F)の幅手方向両端部のフィルム耳切り部(20)は、一対ずつの引取りロール(13)(14)によってそれぞれ下方に引き取られて除去され、セルロースエステルフィルムの製造原料として再使用される。 In addition, the film edge cutting part (20) of the width direction both ends of the conveyance film (F) slit by the pair of slitting apparatuses (11) and (12) is a pair of take-up rolls (13) and (14). Are taken down and removed by each of them and reused as a raw material for producing a cellulose ester film.
 本実施形態のセルロースエステルフィルムの製造方法によれば、第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に所定間隔(D)をあけて互い違い状に配置されていることにより、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にかかる応力が、それぞれのスリッティング装置(11)(12)の反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質のセルロースエステルフィルム(F)を製造することができるものである。 According to the method for producing a cellulose ester film of the present embodiment, the first slitting device (11) and the second slitting device (12) are alternately arranged with a predetermined interval (D) in the film longitudinal direction. As a result, the stress applied to the film (F) at the time of slitting at both ends in the width direction of the transport film (F) can escape to the opposite sides of the slitting devices (11) and (12). Therefore, since generation | occurrence | production of a small wrinkle is eliminated and the generation | occurrence | production of an abrasion is also eliminated, the high quality cellulose-ester film (F) without generation | occurrence | production of an optical nonuniformity can be manufactured.
 ここで、第1スリッティング装置(11)および第2スリッティング装置(12)同士の間のフィルム長手方向の間隔(D)は、1~20mであることが好ましく、これによって上記の作用効果を生じるものである。 Here, the distance (D) between the first slitting device (11) and the second slitting device (12) in the longitudinal direction of the film is preferably 1 to 20 m. It will occur.
 すなわち、近年の液晶テレビのサイズの多角化に伴い、セルロースエステルフィルムも様々な幅のセルロースエステルフィルムが求められている。さらには、携帯電話のスマートフォンやパソコンのタブレット端末(スレートPC)にも液晶表示パネルが使われており、その部材として薄膜で様々な幅に対応したセルロースエステルフィルムが求められている。 That is, with the diversification of the size of liquid crystal televisions in recent years, cellulose ester films having various widths are also required. Furthermore, liquid crystal display panels are also used in mobile phone smartphones and tablet terminals (slate PCs) of personal computers, and cellulose ester films corresponding to various widths are required as thin members.
 特に、タブレット端末(スレートPC)などは、これまでの液晶テレビとは違い、画面を目に近づけて見ることが多く、その液晶表示パネルには、これまで目立たなかったような光ムラが目立つようになってきており、高品質なセルロースエステルフィルムが必要となっている。 In particular, unlike conventional LCD TVs, tablet terminals (slate PCs) are often viewed with their screens closer to the eyes, and the liquid crystal display panel has noticeable light unevenness that has not been noticeable until now. Therefore, a high-quality cellulose ester film is required.
 本発明者は、この光ムラの発生の原因を調査したところ、搬送フィルム(F)のスリッティング時にフィルム(F)に小さなシワが入っており、このシワが原因でフィルム(F)に微小なキズが発生していることが分かった。そして、フィルム(F)の破断には至らない場合でも、シワが一度でも発生すると、幅変更後にもシワが弱く残留して、搬送によるスリキズが発生し、これまでは目立たなかったような光ムラの発生の原因となっていることが分かった。 The present inventor investigated the cause of the occurrence of the light unevenness. As a result, when the conveying film (F) was slit, the film (F) had small wrinkles. Due to the wrinkles, the film (F) was minute. I found out that there were scratches. Even if the film (F) does not break, if wrinkles occur even once, the wrinkles remain weakly even after the width change, causing scratches due to conveyance, and light unevenness that has not been noticeable until now. It was found that this was the cause of
 これに対し、本発明のように、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルム(F)の幅手方向の両端部で、それぞれ搬送フィルム(F)上側に位置する一対のスリッティング装置(11)(12)が備えられており、第1スリッティング装置(11)および第2スリッティング装置(12)同士が、両者間にフィルム長手方向に1~20mの間隔(D)をあけて互い違い状に配置されていて、搬送フィルム(F)の幅手方向両端部のスリット位置を、幅手方向に対向する位置ではなく、フィルム長手方向に1~20mの間隔(D)をあけて互い違い状にずれた位置に配置すると、搬送フィルム(F)の幅手方向両端部のスリット時にかかる応力が、それぞれ反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、擦りキズが発生しなくなることを見出し、本発明を完成するに至ったものである。 On the other hand, as in the present invention, a pair of slitting devices positioned on the upper side of the transport film (F) at both ends in the width direction of the transport film (F) on the film transport line before the film winding process. (11) and (12) are provided, and the first slitting device (11) and the second slitting device (12) are spaced from each other with a distance (D) of 1 to 20 m in the film longitudinal direction. Arranged in a staggered manner, the slit positions at both ends in the width direction of the transport film (F) are staggered with an interval (D) of 1 to 20 m in the film longitudinal direction, not at positions facing the width direction. If it is arranged at a position shifted in the shape, the stress applied at the time of slitting at both ends in the width direction of the transport film (F) can escape to the opposite side, so that small wrinkles are generated. No longer found that rubbing scratches is not generated, in which the present invention has been completed.
 また、本実施形態によるセルロースエステルフィルムの製造方法では、相互に互い違い状に配置された両スリッティング装置(11)(12)が、それぞれフィルム幅手方向に移動可能となされており、両スリッティング装置(11)(12)の移動により搬送フィルム(F)の幅手方向両端部のスリット幅が変更されるようになされている。 In the method for producing a cellulose ester film according to the present embodiment, both slitting devices (11) and (12) arranged in a staggered manner are movable in the width direction of the film. The slit widths at both ends in the width direction of the transport film (F) are changed by the movement of the devices (11) and (12).
 本実施形態によれば、このように第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に所定間隔をあけて互い違い状に配置されることにより、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にかかる応力が、それぞれのスリッティング装置(11)(12)の反対サイドに逃げることが可能となるので、フィルム(F)がキズの発生により破断することがなくなるものである。そして、この傾向は、薄膜フィルムで特に顕著に表れる現象であることが判明し、薄膜のフィルム(ウェブ)の幅変更、破断強度の低いフィルム(F)の幅変更時にもフィルム(F)の破断の危険性がほとんどなく、光ムラの発生がない高品質なセルロースエステルフィルム(F)を製造することができるものである。 According to this embodiment, the first slitting device (11) and the second slitting device (12) are alternately arranged at predetermined intervals in the film longitudinal direction as described above. Since the stress applied to the film (F) at the time of slitting at both ends in the width direction of (F) can escape to the opposite sides of the slitting devices (11) and (12), the film (F) is scratched. It will not break due to the occurrence of. This tendency was found to be a particularly remarkable phenomenon in the thin film, and the film (F) was broken even when the width of the thin film (web) was changed or the width of the film (F) having low breaking strength was changed. Therefore, it is possible to produce a high-quality cellulose ester film (F) that is free from light unevenness.
 すなわち、近年は、狭幅フィルムから広幅フィルムまでを一つの工場で生産することが求められており、薄膜フィルムの安定搬送技術と共に、例えば膜厚10~50μmを有する薄膜フィルムの幅変更を安定に行う技術の開発も求められてきている。特に、薄膜フィルムの幅変更においては、フィルム(F)の端部幅調整を行う搬送フィルム幅手方向両端部に位置する左右一対のスリッティング装置の安定化が重要となっている。 That is, in recent years, it has been demanded to produce from a narrow film to a wide film in one factory, and stable width change of a thin film having a film thickness of, for example, 10 to 50 μm can be performed together with a stable conveyance technique of the thin film. There is also a need for the development of technologies to be performed. In particular, in changing the width of the thin film, it is important to stabilize a pair of left and right slitting devices located at both ends in the width direction of the transport film for adjusting the end width of the film (F).
 セルロースエステルフィルムの製造方法において、いわゆるオンラインで製品幅を変更する際、搬送フィルム(F)の幅手方向両端部に位置するスリッティング装置が内側方向、もしくは外側方向に移動する。例えばフィルムの幅変更で、広幅フィルムから、狭幅フィルムに切り替える際には、スリッティング装置が内側方向へ移動し、それに伴い、搬送フィルム(F)に内側方向の応力が発生し、搬送フィルム(F)の中央部でシワが発生し、シワが強くなると折れ返って、フィルム(F)が破断してしまうという問題があった。 In the cellulose ester film manufacturing method, when the product width is changed online, so-called slitting devices located at both ends in the width direction of the transport film (F) move inward or outward. For example, when switching from a wide film to a narrow film by changing the width of the film, the slitting device moves inward, and accordingly, stress in the inner direction is generated in the transport film (F), and the transport film ( There was a problem that wrinkles were generated at the center of F) and the film (F) was broken when the wrinkles were strong.
 本発明者は、このような従来の問題に対して、本実施形態のように、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルム(F)の幅手方向の両端部で、それぞれ上側に位置する一対のスリッティング装置(11)(12)同士が、フィルム長手方向に1~20mの間隔(D)をあけて互い違い状に配置されていて、搬送フィルム(F)の幅手方向両端部のスリット位置を、幅手方向に対向する位置ではなく、フィルム長手方向に1~20mの間隔(D)をあけて互い違い状にずれた位置に配置すると、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にかかる応力がそれぞれ反対サイドに逃げることが可能となるので、破断することがなくなることを見出し、本発明を完成するに至ったものである。そして、このような傾向は、例えば膜厚10~50μmを有する薄膜フィルムで、特に顕著に表れる現象であることが判明している。 The present inventor, for such a conventional problem, on the film transport line before the film winding process, on both ends in the width direction of the transport film (F), respectively, on the upper side as in this embodiment. A pair of positioned slitting devices (11) and (12) are arranged in a staggered manner with an interval (D) of 1 to 20 m in the longitudinal direction of the film, and both ends in the width direction of the transport film (F) If the slit positions are not opposed to each other in the width direction, but are arranged in staggered positions with an interval (D) of 1 to 20 m in the film longitudinal direction, both ends of the transport film (F) in the width direction It has been found that the stress applied to the film (F) at the time of slitting of the portion can escape to the opposite side, so that it will not break, and the present invention has been completed. Such a tendency has been found to be a particularly prominent phenomenon in a thin film having a thickness of 10 to 50 μm, for example.
 本実施形態によるセルロースエステルフィルムの製造方法においては、相互に互い違い状に配置された両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅の変更量、換言すれば、スリットされるフィルム耳切り部(20)の幅変更量が、搬送フィルム(F)の幅手方向両端部の片側で、30~300mmとなされていることが好ましい。このように、搬送フィルム(F)の幅手方向両端部のスリット幅の変更量、換言すれば、スリットされるフィルム耳切り部(20)の幅変更量が、搬送フィルム(F)の幅手方向両端部の片側で、30~300mmの範囲であれば、スリット時にフィルムにかかる応力が、フィルムの長手方向に互い違い状に配置されたスリッティング装置(11)(12)のそれぞれの反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという利点がある。 In the method for producing a cellulose ester film according to the present embodiment, the slit width at both ends in the width direction of the transport film (F) is changed by the movement of both slitting devices (11) and (12) arranged alternately. In other words, the width change amount of the film edge cut portion (20) to be slit is preferably 30 to 300 mm on one side of both ends in the width direction of the transport film (F). Thus, the amount of change in the slit width at both ends in the width direction of the transport film (F), in other words, the amount of change in the width of the film edge cut portion (20) to be slit is the width of the transport film (F). If it is in the range of 30 to 300 mm on one side of both ends in the direction, the stress applied to the film at the time of slitting will be on the opposite sides of the slitting devices (11) and (12) arranged alternately in the longitudinal direction of the film. Since it is possible to escape, there is no generation of small wrinkles, and thus no generation of rubbing scratches. Therefore, there is an advantage that a high-quality optical film free from light unevenness can be produced.
 また、本実施形態によるセルロースエステルフィルムの製造方法においては、両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度が、スリッティング装置(11)(12)の片側で10~100mm/minとなされていることが好ましい。このように、搬送フィルム(F)の幅手方向両端部のスリット幅変更速度が、スリッティング装置(11)(12)の片側で10~100mm/minの範囲であれば、スリット時にフィルムにかかる応力が、フィルムの長手方向に互い違い状に配置されたスリッティング装置(11)(12)のそれぞれの反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという利点がある。 Moreover, in the manufacturing method of the cellulose-ester film by this embodiment, the slit width change speed of the width direction both ends of the conveyance film (F) by the movement of both slitting apparatus (11) (12) is slitting apparatus ( 11) It is preferably 10 to 100 mm / min on one side of (12). Thus, if the slit width changing speed at both ends in the width direction of the transport film (F) is in the range of 10 to 100 mm / min on one side of the slitting device (11) (12), the film is applied at the time of slitting. Since the stress can escape to the opposite sides of the slitting devices (11) and (12) arranged in a staggered manner in the longitudinal direction of the film, the generation of small wrinkles is eliminated, thereby generating scratches. Therefore, there is an advantage that it is possible to manufacture a high-quality optical film free from light unevenness.
 一対のスリッティング装置(11)(12)により幅手方向両端部がスリットされた搬送フィルム(F)は、ついで、巻取り機(15)によって巻き取る。ここで、例えばセルロースエステルフィルム(F)の製造に係わる巻取り機(15)は、一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法などの巻き取り方法で巻き取ることができる。 The transport film (F) slit at both ends in the width direction by the pair of slitting devices (11) and (12) is then wound up by the winder (15). Here, for example, the winder (15) relating to the production of the cellulose ester film (F) may be a commonly used one, and is a constant tension method, a constant torque method, a taper tension method, a program of constant internal stress. It can be wound by a winding method such as a tension control method.
 本実施形態によるセルロースエステルフィルムの製造方法においては、搬送フィルム(F)の幅が、1500~2500mmであることが好ましい。これにより、セルロースエステルフィルム(F)の広幅化の要求にも対応することができるという利点がある。 In the method for producing a cellulose ester film according to the present embodiment, the width of the transport film (F) is preferably 1500 to 2500 mm. Thereby, there exists an advantage that it can respond also to the request | requirement of the widening of a cellulose-ester film (F).
 本実施形態によるセルロースエステルフィルムの製造方法においては、搬送フィルム(F)の走行速度が、80~200m/minであることが好ましい。これにより、セルロースエステルフィルム(F)の製膜速度の高速化にも対応することができるという利点がある。 In the method for producing a cellulose ester film according to the present embodiment, the traveling speed of the transport film (F) is preferably 80 to 200 m / min. Thereby, there exists an advantage that it can respond also to the increase in the film forming speed of a cellulose-ester film (F).
 セルロースエステルフィルム(F)の膜厚は、使用目的によって異なるが、仕上がりのフィルムとして、本実施形態において使用される膜厚範囲は10~50μmの範囲が好ましい。フィルム(F)の平均膜厚は、所望の厚さになるように、押し出し流量、流延ダイ(2)の流延口の間隙、エンドレスベルト支持体(1)の速度等をコントロールすることで調整できる。 Although the film thickness of the cellulose ester film (F) varies depending on the purpose of use, the film thickness range used in the present embodiment as a finished film is preferably in the range of 10 to 50 μm. The average film thickness of the film (F) is controlled by controlling the extrusion flow rate, the gap of the casting die (2), the speed of the endless belt support (1), etc. so that the desired thickness is obtained. Can be adjusted.
 本実施形態の方法によって製造されたセルロースエステルフィルム(F)は、面内リタデーション値(Ro)が、60nm以下であることが好ましい。 The cellulose ester film (F) produced by the method of this embodiment preferably has an in-plane retardation value (Ro) of 60 nm or less.
 ここで、フィルムのリタデーション値は自動複屈折率計KOBRA-21ADH(王子計測機器株式会社製)を用いて、590nmの波長において、三次元屈折率測定を行ない、得られた屈折率Nx、Ny、Nzから算出することができる。 Here, the retardation value of the film was measured by three-dimensional refractive index at a wavelength of 590 nm using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.), and the obtained refractive indexes Nx, Ny, It can be calculated from Nz.
 面内リタデーション(Ro)=(Nx-Ny)×d
 厚み方向のリタデーション(Rt)=[(Nx+Ny)/2-Nz]×d
式中、Nx、Ny、Nzはそれぞれ屈折率楕円体の主軸x、y、z方向の屈折率を表わし、かつ、Nx、Nyはフィルム面内方向の屈折率を、Nzはフィルムの厚み方向の屈折率を表わす。また、Nx≧Nyであり、dはフィルムの厚み(μm)を表わす。
In-plane retardation (Ro) = (Nx−Ny) × d
Thickness direction retardation (Rt) = [(Nx + Ny) / 2−Nz] × d
In the formula, Nx, Ny, and Nz represent the refractive indexes in the principal axes x, y, and z directions of the refractive index ellipsoid, respectively, Nx, Ny represent the refractive index in the film in-plane direction, and Nz represents the film thickness direction. Refractive index. Nx ≧ Ny, and d represents the thickness (μm) of the film.
 本実施形態による光学フィルムの製造方法は、上記のように、溶液流延製膜法により実施されるものであるが、その他、溶融流延製膜法により実施することもできる。 The method for producing an optical film according to the present embodiment is performed by the solution casting film forming method as described above, but can also be performed by the melt casting film forming method.
 ここで、溶融流延製膜法としては、膜厚ムラやリタデーションのムラを小さくできるTダイを用いた方法が好ましい。Tダイを用いた押出し方法による溶融流延製膜法では、ポリマーを溶融可能な温度で溶融し、Tダイからフィルム状(シート状)の溶融樹脂を冷却ドラム(支持体)上に押し出す。引き続いて、冷却ドラムによってフィルム状(シート状)の溶融樹脂を冷却固化して、冷却ドラムから樹脂フィルムを剥離し、さらに必要により延伸してフィルムとし、これを巻き取るものである。そして、本実施形態による光学フィルムの製造方法をこのような溶融流延製膜法によって行なう場合には、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルムの幅手方向の両端部に位置する一対のスリッティング装置が備えられ、一方の端部に設けられた第1スリッティング装置および他方の端部に設けられた第2スリッティング装置同士が、フィルム長手方向に1~20mの間隔をあけて互い違い状に配置されていることを特徴とするものである。 Here, as the melt casting film forming method, a method using a T-die that can reduce film thickness unevenness and retardation unevenness is preferable. In the melt casting film forming method using an extrusion method using a T die, the polymer is melted at a temperature at which the polymer can be melted, and a film-like (sheet-like) molten resin is extruded from the T die onto a cooling drum (support). Subsequently, the film-like (sheet-like) molten resin is cooled and solidified by a cooling drum, the resin film is peeled off from the cooling drum, and further stretched as necessary to form a film, which is wound up. And when performing the manufacturing method of the optical film by this embodiment by such a melt casting film forming method, it is located in the film conveyance line before a film winding process, and the both ends of the width direction of a conveyance film. A pair of slitting devices is provided, and the first slitting device provided at one end and the second slitting device provided at the other end are spaced from each other by 1 to 20 m in the film longitudinal direction. It is characterized by being arranged in a staggered manner.
 本実施形態の方法により製造されたセルロースエステルフィルムは、液晶表示用部材、詳しくは偏光板用保護フィルムに用いられるのが好ましい。特に、透湿度と寸法安定性に対して共に厳しい要求のある偏光板用保護フィルムにおいて、本実施形態の方法により製造されたセルロースエステルフィルムは好ましく用いられる。 The cellulose ester film produced by the method of this embodiment is preferably used for a liquid crystal display member, specifically, a protective film for a polarizing plate. In particular, in a protective film for a polarizing plate that has strict requirements on moisture permeability and dimensional stability, the cellulose ester film produced by the method of this embodiment is preferably used.
 ところで、偏光フィルムは、従来から使用されている、例えば、ポリビニルアルコールフィルムのような延伸配向可能なフィルムを、ヨウ素のような二色性染料で処理して縦延伸したものである。偏光フィルム自身では、十分な強度、耐久性がないので、一般的にはその両面に保護フィルムとしての異方性のないセルロースエステルフィルムを接着して偏光板としている。 By the way, the polarizing film is a film which has been conventionally stretched by treating with a dichroic dye such as iodine a film that can be stretched and oriented, such as a polyvinyl alcohol film. Since the polarizing film itself does not have sufficient strength and durability, a polarizing plate is generally obtained by adhering a cellulose ester film having no anisotropy as a protective film to both surfaces thereof.
 上記偏光板には、本実施形態の方法により製造されたセルロースエステルフィルムを位相差フィルムして貼り合わせて作製してもよいし、また本実施形態の方法により製造されたセルロースエステルフィルムを位相差フィルムと保護フィルムとを兼ねて、直接偏光フィルムと貼り合わせて作製してもよい。貼り合わせる方法は、特に限定はないが、水溶性ポリマーの水溶液からなる接着剤により行なうことができる。この水溶性ポリマー接着剤は完全鹸化型のポリビニルアルコール水溶液が好ましく用いられる。さらに、長手方向に延伸し、二色性染料処理した長尺の偏光フィルムと、本実施形態の方法により製造された長尺の位相差フィルムとを貼り合わせることによって長尺の偏光板を得ることができる。偏光板はその片面または両面に感圧性接着剤層(例えば、アクリル系感圧性接着剤層など)を介して剥離性シートを積層した貼着型のもの(剥離性シートを剥すことにより、液晶セルなどに容易に貼着することができる)としてもよい。 The polarizing plate may be prepared by laminating a cellulose ester film produced by the method of this embodiment as a retardation film, and the cellulose ester film produced by the method of this embodiment may be produced by retardation. A film and a protective film may be combined to be directly bonded to a polarizing film. The method of bonding is not particularly limited, but can be performed with an adhesive composed of an aqueous solution of a water-soluble polymer. The water-soluble polymer adhesive is preferably a completely saponified polyvinyl alcohol aqueous solution. Furthermore, a long polarizing film is obtained by laminating a long polarizing film that has been stretched in the longitudinal direction and treated with a dichroic dye and a long retardation film manufactured by the method of this embodiment. Can do. A polarizing plate is a sticking type in which a peelable sheet is laminated on one or both sides thereof via a pressure sensitive adhesive layer (for example, an acrylic pressure sensitive adhesive layer). Or the like can be easily attached).
 このようにして得られた偏光板は、種々の表示装置に使用できる。特に電圧無印加時に液晶性分子が実質的に垂直配向しているVAモードや、電圧無印加時に液晶性分子が実質的に水平かつねじれ配向しているTNモードの液晶セルを用いた液晶表示装置が好ましい。 The polarizing plate thus obtained can be used for various display devices. In particular, a liquid crystal display device using a VA mode liquid crystal molecule in which liquid crystal molecules are substantially vertically aligned when no voltage is applied, or a TN mode liquid crystal cell in which liquid crystal molecules are substantially horizontal and twisted when no voltage is applied. Is preferred.
 ところで、偏光板は、一般的な方法で作製することができる。例えば、セルロースエステルフィルムをアルカリケン化処理し、ポリビニルアルコールフィルムをヨウ素溶液中に浸漬、延伸して作製した偏光膜の両面に、完全ケン化型ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリケン化処理とは、水系接着剤の濡れを良くし、接着性を向上させるために、セルロースエステルフィルムを高温の強アルカリ液中に漬ける処理のことをいう。 Incidentally, the polarizing plate can be produced by a general method. For example, there is a method in which a cellulose ester film is subjected to alkali saponification treatment, and a polyvinyl alcohol film is immersed and stretched in an iodine solution, and bonded to both surfaces using a completely saponified polyvinyl alcohol aqueous solution. The alkali saponification treatment refers to a treatment of immersing the cellulose ester film in a high-temperature strong alkaline solution in order to improve the wetness of the water-based adhesive and improve the adhesiveness.
 セルロースエステルフィルムには、ハードコート層、防眩層、反射防止層、防汚層、帯電防止層、導電層、光学異方層、液晶層、配向層、粘着層、接着層、下引き層等の各種機能層を付与することができる。これらの機能層は塗布あるいは蒸着、スパッタ、プラズマCVD、大気圧プラズマ処理等の方法で設けることができる。 For cellulose ester film, hard coat layer, antiglare layer, antireflection layer, antifouling layer, antistatic layer, conductive layer, optically anisotropic layer, liquid crystal layer, alignment layer, adhesive layer, adhesive layer, subbing layer, etc. Various functional layers can be provided. These functional layers can be provided by a method such as coating or vapor deposition, sputtering, plasma CVD, or atmospheric pressure plasma treatment.
 このようにして得られた偏光板が、液晶セルの片面または両面に設けられ、これを用いて、液晶表示装置が得られる。 The polarizing plate thus obtained is provided on one side or both sides of the liquid crystal cell, and a liquid crystal display device is obtained using this.
 本実施形態の方法により製造されたセルロースエステルフィルムからなる偏光板用保護フィルムを用いることにより、薄膜化とともに、耐久性及び寸法安定性、光学的等方性に優れた偏光板を提供することができる。さらに、この偏光板あるいは位相差フィルムを用いた液晶表示装置は、長期間に亘って安定した表示性能を維持することができる。 By using a protective film for a polarizing plate made of a cellulose ester film produced by the method of the present embodiment, it is possible to provide a polarizing plate excellent in durability, dimensional stability, and optical isotropy as well as in a thin film. it can. Furthermore, a liquid crystal display device using this polarizing plate or retardation film can maintain stable display performance over a long period of time.
 本実施形態の方法により製造されたセルロースエステルフィルムは、反射防止用フィルムあるいは光学補償フィルムの基材としても使用できる。 The cellulose ester film produced by the method of this embodiment can also be used as a base material for an antireflection film or an optical compensation film.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、膜厚10~50μmを有する光学フィルムの製造方法であって、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルムの幅手方向の両端部に位置する一対のスリッティング装置が備えられ、一方の端部に設けられる第1スリッティング装置および他方の端部に設けられる第2スリッティング装置同士が、フィルム長手方向に1~20mの間隔をあけて互い違い状に配置されていることを特徴としている。 One aspect of the present invention is a method of manufacturing an optical film having a film thickness of 10 to 50 μm, and a pair of slitting positioned on both ends of the transport film in the width direction on the film transport line before the film winding process. The first slitting device provided at one end and the second slitting device provided at the other end are arranged in a staggered manner with an interval of 1 to 20 m in the film longitudinal direction. It is characterized by having.
 上記構成によれば、左側スリッティング装置および右側スリッティング装置同士が、両者間にフィルム長手方向に所定間隔をあけて互い違い状に配置されることにより、搬送フィルムの幅手方向両端部のスリット時にフィルムにかかる応力が、それぞれのスリッティング装置の反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという効果を奏する。 According to the above configuration, the left slitting device and the right slitting device are arranged in a staggered manner with a predetermined interval therebetween in the film longitudinal direction, so that the slits at both ends in the width direction of the transport film can be obtained. Since the stress applied to the film can escape to the opposite side of each slitting device, there is no generation of small wrinkles, thereby eliminating the occurrence of scratches and scratches. There exists an effect that an optical film can be manufactured.
 また、上記製造方法において、相互に互い違い状に配置された左右両スリッティング装置が、それぞれフィルム幅手方向に移動可能となされており、左右両スリッティング装置の移動により搬送フィルムの幅手方向両端部のスリット幅が変更されるようになされていることが好ましい。それにより、左側スリッティング装置および右側スリッティング装置同士が、両者間にフィルム長手方向に所定間隔をあけて互い違い状に配置されることにより、搬送フィルムの幅手方向両端部のスリット時にフィルムにかかる応力が、それぞれのスリッティング装置の反対サイドに逃げることが可能となるので、フィルムがキズの発生により破断することがなくなり、この傾向は、薄膜フィルムで特に顕著に表れる現象であることが判明し、薄膜のフィルムの幅変更、破断強度の低いフィルムの幅変更時にもフィルムの破断の危険性がほとんどなく、光ムラの発生がない高品質な光学フィルムを製造することができるという効果を奏する。 Further, in the above manufacturing method, both the left and right slitting devices arranged in a staggered manner can be moved in the width direction of the film, respectively, and both ends of the transport film in the width direction can be moved by moving the left and right slitting devices. It is preferable that the slit width of the part is changed. As a result, the left slitting device and the right slitting device are arranged in a staggered manner with a predetermined interval between them in the longitudinal direction of the film. Since the stress can escape to the opposite side of each slitting device, the film will not break due to scratches, and this tendency was found to be a particularly prominent phenomenon in thin film. Even when changing the width of a thin film or changing the width of a film having a low breaking strength, there is almost no risk of the film breaking, and it is possible to produce a high-quality optical film free from light unevenness.
 さらに、上記製造方法において、相互に互い違い状に配置された左右両スリッティング装置の移動による搬送フィルムの幅手方向両端部のスリット幅の変更量が、搬送フィルムの幅手方向両端部の片側で、30~300mmとなされていることがより好ましい。そのような構成を有することにより、スリットされる搬送フィルムの幅手方向両端部のスリット幅の幅変更量が、搬送フィルムの幅手方向両端部の片側で、30~300mmの範囲であれば、スリット時にフィルムにかかる応力が、フィルム長手方向に互い違い状に配置されたスリッティング装置のそれぞれの反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという効果を奏する。 Further, in the above manufacturing method, the amount of change in the slit width at both ends in the width direction of the transport film due to the movement of the left and right slitting devices arranged alternately is changed on one side of both ends in the width direction of the transport film. 30 to 300 mm is more preferable. By having such a configuration, if the width change amount of the slit width at both ends in the width direction of the transport film to be slit is in the range of 30 to 300 mm on one side of both ends in the width direction of the transport film, The stress applied to the film at the time of slitting can escape to the opposite sides of the slitting devices arranged in a staggered manner in the longitudinal direction of the film, thereby eliminating the occurrence of small wrinkles and thereby eliminating the occurrence of scratches. Therefore, there is an effect that it is possible to manufacture a high-quality optical film without occurrence of light unevenness.
 また上記製造方法において、左右両スリッティング装置の移動による搬送フィルムの幅手方向両端部のスリット幅の変更速度が、スリッティング装置の片側で10~100mm/minとなされていることがより好ましい。それにより、搬送フィルムの幅手方向両端部のスリット幅速度が、スリッティング装置の片側で10~100mm/minの範囲であれば、搬送フィルムの幅手方向両端部のスリット時にフィルムにかかる応力が、フィルム長手方向に互い違い状に配置されたスリッティング装置のそれぞれの反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質の光学フィルムを製造することができるという効果を奏する。 In the above manufacturing method, it is more preferable that the changing speed of the slit width at both ends in the width direction of the transport film due to the movement of both the left and right slitting devices is 10 to 100 mm / min on one side of the slitting device. Accordingly, if the slit width speed at both ends in the width direction of the transport film is in the range of 10 to 100 mm / min on one side of the slitting apparatus, the stress applied to the film when slitting at both ends in the width direction of the transport film is reduced. Since it is possible to escape to the opposite sides of the slitting devices arranged in a staggered manner in the longitudinal direction of the film, there is no generation of small wrinkles, thereby eliminating the occurrence of scratches and scratches, resulting in generation of light unevenness There is an effect that it is possible to produce a high-quality optical film without any defects.
 さらに、上記製造方法において、搬送フィルムの幅が、1500~2500mmであることが望ましく、そのような構成により、光学フィルムの広幅化の要求にも対応することができるという効果を奏する。 Furthermore, in the above manufacturing method, it is desirable that the width of the transport film is 1500 to 2500 mm. With such a configuration, there is an effect that it is possible to meet the demand for widening the optical film.
 また、上記製造方法において、搬送フィルムの走行速度が、80~200m/minであれば、光学フィルムの製膜速度の高速化にも対応することができるという効果を奏する。 Further, in the above manufacturing method, if the traveling speed of the transport film is 80 to 200 m / min, it is possible to cope with an increase in the film forming speed of the optical film.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は、これらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
 実施例1
(ドープの調製)
セルローストリアセテート                100重量部
  (Mn=148000、Mw=310000、Mw/Mn=2.1)
  トリフェニルホスフェート                8重量部
  エチルフタリルエチルグリコレート            2重量部
  メチレンクロライド                 440重量部
  エタノール                      40重量部
  チヌビン109(BASFジャパン社製)       0.5重量部
  チヌビン171(BASFジャパン社製)       0.5重量部
  アエロジル972V(日本アエロジル株式会社製)   0.2重量部
 上記のドープ組成の材料を、溶液流延製膜装置の密閉容器(溶解釜)に投入し、加熱、攪拌しながら完全に溶解した。その後、攪拌を停止し、濾過を行なって、ドープを調製した。
Example 1
(Preparation of dope)
100 parts by weight of cellulose triacetate (Mn = 148000, Mw = 310000, Mw / Mn = 2.1)
Triphenyl phosphate 8 parts by weight Ethylphthalyl ethyl glycolate 2 parts by weight Methylene chloride 440 parts by weight Ethanol 40 parts by weight Tinuvin 109 (manufactured by BASF Japan) 0.5 part by weight Tinuvin 171 (manufactured by BASF Japan) 0.5 part by weight Aerosil 972V (manufactured by Nippon Aerosil Co., Ltd.) 0.2 parts by weight The material having the above dope composition was put into a closed container (dissolution kettle) of a solution casting film forming apparatus and completely dissolved while heating and stirring. Thereafter, stirring was stopped and filtration was performed to prepare a dope.
 ついで、図1に示すように、溶解釜で調整されたドープを、ポンプを通して導管によって流延ダイ(2)に送液し、100m/mmで連続的に走行する幅2400mmおよび表面温度30℃の回転駆動ステンレス鋼製エンドレスベルトよりなる支持体(1)上の流延位置に、流延ダイ(2)からドープ(30℃)を流延し、流延ダイ(2)とエンドレスベルト支持体(1)との間にウェブ(10)を形成するとともに、支持体(1)上に幅2000mmのウェブ(10)を形成した。 Next, as shown in FIG. 1, the dope adjusted in the melting pot is fed to the casting die (2) by a conduit through a pump, and continuously runs at 100 m / mm with a width of 2400 mm and a surface temperature of 30 ° C. A dope (30 ° C.) is cast from a casting die (2) to a casting position on a support (1) made of a rotationally driven stainless steel endless belt, and the casting die (2) and an endless belt support ( 1) and a web (10) were formed, and a web (10) having a width of 2000 mm was formed on the support (1).
 流延後のステンレス鋼製エンドレスベルト支持体(1)の表面温度を25℃に制御し、ウェブ(10)上方の乾燥機(図示略)からは温度45℃の乾燥風を10m/秒の風速で送り、エンドレスベルト支持体(1)側の乾燥機(図示略)からは温度40℃の乾燥風を10m/秒の風速で送り、ウェブ(10)を乾燥した(溶媒蒸発工程)。乾燥したウェブ(10)を剥離ロール(3)により剥離した(剥離工程)。剥離工程直前におけるウェブ(10)中の残留溶媒量は80重量%であった。 The surface temperature of the stainless steel endless belt support (1) after casting is controlled at 25 ° C., and the drying air at a temperature of 45 ° C. is supplied from a dryer (not shown) above the web (10) at a wind speed of 10 m / sec. The web (10) was dried from a dryer (not shown) on the endless belt support (1) side at a temperature of 40 ° C. at a wind speed of 10 m / sec (solvent evaporation step). The dried web (10) was peeled off by the peeling roll (3) (peeling step). The amount of residual solvent in the web (10) immediately before the peeling step was 80% by weight.
 ついで、剥離後のウェブ(10)を第1乾燥ゾーン(4)に導入した。第1乾燥ゾーン(4)内では、側面から見て千鳥配置せられた多数の搬送ロール(7)によってウェブ(10)が蛇行せられ、その間にウェブ(10)を温度80℃の温風によって1分間乾燥した(第1乾燥工程)。 Next, the peeled web (10) was introduced into the first drying zone (4). In the first drying zone (4), the web (10) is meandered by a large number of conveying rolls (7) arranged in a staggered manner as viewed from the side, while the web (10) is heated by hot air at a temperature of 80 ° C. It was dried for 1 minute (first drying step).
 乾燥後のウェブ(10)をテンター(5)に導入し、残留溶媒量が3~10重量%であるときに、ウェブ(10)の幅手方向(TD方向)の両端部を把持して、100℃の雰囲気下でウェブ(10)をその幅手方向に延伸率1.25倍に延伸した(延伸工程)。 When the web (10) after drying is introduced into the tenter (5) and the residual solvent amount is 3 to 10% by weight, the both ends of the web (10) in the width direction (TD direction) are gripped, The web (10) was stretched in the width direction at a stretching ratio of 1.25 times in an atmosphere of 100 ° C. (stretching step).
 延伸後のウェブ(10)は第2乾燥ゾーン(6)に導入した。第2乾燥ゾーン(6)内では、側面から見て千鳥配置せられた多数の搬送ロールによってウェブ(10)が蛇行せられ、その間にウェブ(10)を温度125℃の温風によって20分間乾燥した(第2乾燥工程)。 The stretched web (10) was introduced into the second drying zone (6). In the second drying zone (6), the web (10) is meandered by a large number of conveying rolls arranged in a staggered manner as viewed from the side, and the web (10) is dried by warm air at a temperature of 125 ° C. for 20 minutes. (Second drying step).
 図2に示すように、第2乾燥ゾーン(6)による乾燥後、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルム(F)の幅手方向の両端部で、それぞれ上側に位置する一対のスリッティング装置(11)(12)を設置し、第1スリッティング装置(11)および第2スリッティング装置(12)同士を、フィルム長手方向に1mの間隔(D)をあけて互い違い状に配置した。そして、搬送フィルム(F)の幅手方向両端部を、これらのスリッティング装置(11)(12)により、それぞれ150mmの幅でスリットして、断裁切除し、製品幅となるようにベースフィルム(F)を形成した(フィルム幅手方向両端部の切断工程)。スリット後のフィルム(F)の幅手方向の両端部にエンボス加工(ナール加工)を施して、フィルムの各端部に10mm幅のエンボス部を付与した後、エンボス部を具備する最終製品幅2200mm、および膜厚50μmのセルローストリアセテートフィルム(F)を、最終的に20℃に冷却して、巻取り装置(17)によって巻き取った(巻取り工程)。 As shown in FIG. 2, after drying in the second drying zone (6), a pair of films positioned on the upper side at both ends in the width direction of the transport film (F) on the film transport line before the film winding step Slitting devices (11) and (12) are installed, and the first slitting device (11) and the second slitting device (12) are arranged in a staggered manner with a distance (D) of 1 m in the film longitudinal direction. did. And the width direction both ends of a conveyance film (F) are each slitted by the width | variety of 150 mm with these slitting apparatuses (11) (12), and it cuts and cuts, A base film ( F) was formed (cutting step at both ends in the film width direction). Embossing (knurling) is applied to both ends in the width direction of the film (F) after slitting to give an embossed portion having a width of 10 mm to each end of the film, and then the final product width 2200 mm comprising the embossed portion. The cellulose triacetate film (F) having a film thickness of 50 μm was finally cooled to 20 ° C. and wound up by a winding device (17) (winding step).
実施例2と3
 上記実施例1の場合と同様にしてセルローストリアセテートフィルムを製造するが、実施例2においては、第1スリッティング装置(11)および第2スリッティング装置(12)同士を、フィルム長手方向に10mの間隔(D)をあけて互い違い状に配置し、また実施例3においては、第1スリッティング装置(11)および第2スリッティング装置(12)同士を、フィルム長手方向に20mの間隔(D)をあけて互い違い状に配置して、実施した。
Examples 2 and 3
A cellulose triacetate film is produced in the same manner as in Example 1 above. In Example 2, the first slitting device (11) and the second slitting device (12) are 10 m long in the film longitudinal direction. In the third embodiment, the first slitting device (11) and the second slitting device (12) are separated from each other by a distance of 20 m in the film longitudinal direction (D). It was carried out by arranging them in a staggered pattern with a gap.
比較例1と2
 比較のために、上記実施例1の場合と同様にしてセルローストリアセテートフィルムを作製するが、上記実施例1の場合と異なる点は、比較例1では、搬送フィルム(F)の幅手方向の両端部において、一対のスリッティング装置を、従来の場合と同様に、互いに対向するように設置した点にある。また比較例2では、搬送フィルム(F)の幅手方向の両端部で、第1スリッティング装置および第2スリッティング装置同士を、本発明の範囲外であるフィルム長手方向に25mの間隔(D)をあけて互い違い状に配置した点にある。
Comparative Examples 1 and 2
For comparison, a cellulose triacetate film is prepared in the same manner as in Example 1. The difference from Example 1 is that Comparative Example 1 has both ends in the width direction of the transport film (F). In this section, a pair of slitting devices are installed so as to face each other as in the conventional case. Further, in Comparative Example 2, the first slitting device and the second slitting device are separated from each other at both ends in the width direction of the transport film (F) by a distance of 25 m in the film longitudinal direction which is outside the scope of the present invention (D ) And are arranged in a staggered manner.
実施例4と5
 上記実施例1の場合と同様にしてセルローストリアセテートフィルムを製造するが、上記実施例1の場合と異なる点は、実施例4と5においては、フィルム(F)の膜厚を、ドープの押し出し流量、流延ダイ(2)の流延口の間隙、およびエンドレスベルト支持体(1)の速度をコントロールすることによって、それぞれ30μmと40μmに調整した点にある。
Examples 4 and 5
A cellulose triacetate film is produced in the same manner as in Example 1 above, but the difference from Example 1 is that in Examples 4 and 5, the film thickness of the film (F) is determined by the extrusion flow rate of the dope. By adjusting the gap of the casting port of the casting die (2) and the speed of the endless belt support (1), they are adjusted to 30 μm and 40 μm, respectively.
比較例3
 比較のために、上記実施例1の場合と同様にしてセルローストリアセテートフィルムを作製するが、上記実施例1の場合と異なる点は、搬送フィルム(F)の幅手方向両端部において、一対のスリッティング装置を、従来の場合と同様に、互いに対向するように設置した点、およびフィルム(F)の膜厚を30μmに調整した点にある。
Comparative Example 3
For comparison, a cellulose triacetate film is produced in the same manner as in Example 1, except that a difference between the cellulose triacetate film and Example 1 is that a pair of slips are formed at both ends in the width direction of the transport film (F). In the same manner as in the conventional case, the dating device is installed so as to face each other, and the film thickness of the film (F) is adjusted to 30 μm.
 なお、下記の表1には、実施例1~5および比較例1~3において搬送フィルム(F)の幅手方向の両端部に設置した両端部のスリッティング装置同士の間のフィルム長手方向の間隔(D)(m)、およびセルローストリアセテートフィルムの膜厚(μm)を記載した。 In Table 1 below, the film longitudinal direction between the slitting devices at both ends installed in both ends in the width direction of the transport film (F) in Examples 1 to 5 and Comparative Examples 1 to 3 is shown. The interval (D) (m) and the film thickness (μm) of the cellulose triacetate film are described.
実施例6~8
 上記実施例1の場合と同様にしてセルローストリアセテートフィルムを製造するが、実施例6~8においては、相互に互い違い状に配置された両スリッティング装置(11)(12)が、それぞれフィルム幅手方向に移動可能となされており、両スリッティング装置(11)(12)の移動により搬送フィルム(F)の幅手方向両端部のスリット幅が変更されるようになされている点にある。
Examples 6-8
A cellulose triacetate film is produced in the same manner as in Example 1 described above. In Examples 6 to 8, both slitting devices (11) and (12) arranged in a staggered manner are used in the width direction. The slit width of both ends in the width direction of the transport film (F) is changed by the movement of both slitting devices (11) and (12).
 そして、実施例6では、相互に互い違い状に配置された両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅の変更量を、搬送フィルム(F)の幅手方向両端部の片側で50mmとし、また、両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度を、スリッティング装置(11)(12)の片側で10mm/minとした。 In Example 6, the amount of change in the slit width at both ends in the width direction of the transport film (F) due to the movement of the slitting devices (11) and (12) arranged alternately is changed to the transport film ( F) 50 mm on one side of both ends in the width direction, and the slit width changing speed of the slit width change at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) (11) One side of (12) was 10 mm / min.
 実施例7では、搬送フィルム(F)の幅手方向両端部のスリット幅の変更量を30mmとし、実施例8では、この幅変更量を300mmとした。なお、実施例7と8では、両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度は、実施例6の場合と同様に、スリッティング装置(11)(12)の片側で10mm/minとした。 In Example 7, the change amount of the slit width at both ends in the width direction of the transport film (F) was set to 30 mm, and in Example 8, the change amount of the width was set to 300 mm. In Examples 7 and 8, the slit width changing speed at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) is the same as in Example 6. It was set to 10 mm / min on one side of the dipping device (11) (12).
実施例9と10
 上記実施例6の場合と同様にしてセルローストリアセテートフィルムを製造するが、実施例9においては、相互に互い違い状に配置された両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度を、スリッティング装置(11)(12)の片側で20mm/minとし、実施例10においては、両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度を、スリッティング装置(11)(12)の片側で100mm/minとした。
Examples 9 and 10
A cellulose triacetate film is produced in the same manner as in Example 6 above, but in Example 9, the transport film (F) by the movement of both slitting devices (11) and (12) arranged in a staggered manner. The slit width changing speed at both ends in the width direction is set to 20 mm / min on one side of the slitting devices (11) and (12). In Example 10, the slitting devices (11) and (12) are moved by moving the slitting devices (11) and (12). The slit width changing speed at both ends in the width direction of the film (F) was set to 100 mm / min on one side of the slitting apparatuses (11) and (12).
比較例4と5
 比較のために、上記実施例6の場合と同様にしてセルローストリアセテートフィルムを作製するが、上記実施例6の場合と異なる点は、比較例4では、搬送フィルム(F)の幅手方向の両端部において、一対のスリッティング装置を、従来の場合と同様に、互いに対向するように設置した点にある。また、比較例5では、同様に、一対のスリッティング装置を、互いに対向するように設置し、かつ両スリッティング装置の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度を、スリッティング装置の片側で100mm/minとした点にある。
Comparative Examples 4 and 5
For comparison, a cellulose triacetate film is prepared in the same manner as in Example 6. The difference from Example 6 is that Comparative Example 4 has both ends in the width direction of the transport film (F). In this section, a pair of slitting devices are installed so as to face each other as in the conventional case. In Comparative Example 5, similarly, a pair of slitting devices are installed so as to face each other, and the slit width changing speeds at both ends in the width direction of the transport film (F) due to the movement of both slitting devices are set. The slitting apparatus is at 100 mm / min on one side.
 なお、下記の表2には、実施例6~10および比較例4と5において搬送フィルム(F)の幅手方向の両端部に設置したスリッティング装置同士の間のフィルム長手方向の間隔(D)(m)、セルローストリアセテートフィルムの膜厚(μm)、搬送フィルム(F)の幅手方向両端部のスリット幅の変更量(mm)、および搬送フィルム(F)の幅手方向両端部のスリット幅変更速度(mm/min)を記載した。 In Table 2 below, the distance in the longitudinal direction of the film between the slitting devices installed at both ends in the width direction of the transport film (F) in Examples 6 to 10 and Comparative Examples 4 and 5 (D ) (M), film thickness (μm) of cellulose triacetate film, amount of change in slit width (mm) at both widthwise ends of transport film (F), and slit at both widthwise ends of transport film (F) The width changing speed (mm / min) is described.
(偏光膜の作製)
 つぎに、上記実施例1~10および比較例1~5によるセルローストリアセテートフィルムを用いて液晶表示装置を作製するために、まず、偏光膜を作製した。すなわち、厚さ、120μmのポリビニルアルコールフィルムを、温度110℃、延伸倍率5倍で一軸延伸した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、ついでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し、偏光膜を得た。
(Preparation of polarizing film)
Next, in order to produce a liquid crystal display device using the cellulose triacetate films according to Examples 1 to 10 and Comparative Examples 1 to 5, a polarizing film was first produced. That is, a polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched at a temperature of 110 ° C. and a stretch ratio of 5 times. This was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizing film.
(偏光板の作製)
 ついで、下記の工程1~工程5に従って、上記の偏光膜の両面に、上記実施例1~10および比較例1~5で作製したセルローストリアセテートフィルム(偏光板保護フィルム)を貼り合わせて偏光板を作製した。
(Preparation of polarizing plate)
Next, according to the following Step 1 to Step 5, the cellulose triacetate films (polarizing plate protective films) prepared in Examples 1 to 10 and Comparative Examples 1 to 5 were bonded to both surfaces of the polarizing film to form a polarizing plate. Produced.
 工程1:上記偏光板保護フィルムを、温度50℃の1モル/Lの水酸化ナトリウム溶液に60秒間浸漬し、ついで水洗し乾燥して、偏光膜と貼合する側を鹸化した偏光板保護フィルムを得た。 Step 1: The polarizing plate protective film obtained by immersing the polarizing plate protective film in a 1 mol / L sodium hydroxide solution at a temperature of 50 ° C. for 60 seconds, then washing with water and drying, and saponifying the side to be bonded to the polarizing film. Got.
 工程2:偏光膜を固形分2重量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。 Step 2: The polarizing film was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by weight for 1 to 2 seconds.
 工程3:工程2で偏光膜に付着した過剰の接着剤を軽く拭き除き、この偏光膜の両側に、工程1で鹸化処理した偏光板保護フィルムを積層して配置した。 Step 3: Excess adhesive adhered to the polarizing film in Step 2 was gently wiped off, and a polarizing plate protective film saponified in Step 1 was laminated and disposed on both sides of the polarizing film.
 工程4:工程3で積層した偏光膜と、偏光板保護フィルムを、圧力20~30N/cm、搬送スピードは約2m/分で貼合した。 Step 4: The polarizing film laminated in Step 3 and the polarizing plate protective film were bonded at a pressure of 20 to 30 N / cm 2 and a conveying speed of about 2 m / min.
 工程5:工程4で作製した偏光膜と偏光板保護フィルムとを貼合わせた試料を、80℃の乾燥機中に2分間乾燥し、偏光板を作製した。 Process 5: The sample which bonded the polarizing film produced at the process 4 and the polarizing plate protective film was dried for 2 minutes in the 80 degreeC drying machine, and the polarizing plate was produced.
(液晶表示装置の作製)
 ついで、市販の液晶TV(シャープ社製、アクオス32AD5)の2枚の偏光板を剥離し、上記作製した偏光板をそれぞれ液晶セルのガラス面の両面に貼合して、液晶表示装置を作製した。
(Production of liquid crystal display device)
Next, two polarizing plates of a commercially available liquid crystal TV (manufactured by Sharp Corporation, Aquos 32AD5) were peeled off, and the prepared polarizing plates were bonded to both surfaces of the glass surface of the liquid crystal cell to prepare a liquid crystal display device. .
 その際、偏光板の貼合の向きは、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行なった。 At that time, the direction of bonding of the polarizing plate was such that the absorption axis was in the same direction as the polarizing plate bonded in advance.
(視認性評価)
 上記実施例1~10および比較例1~5によるセルローストリアセテートフィルムを用いて作製した各液晶表示装置について、視認性の性能を評価するために、液晶表示装置を、温度23℃、湿度55%RHの環境で、液晶表示装置の液晶TV表示装置のバックライトを点灯して30分間そのまま放置とした後、表示装置に光ムラが生じているか、どうかの視認性を、下記の基準により評価し、得られた結果を、下記の表1および表2にあわせて示した。
(Visibility evaluation)
In order to evaluate the visibility performance of each liquid crystal display device manufactured using the cellulose triacetate films according to Examples 1 to 10 and Comparative Examples 1 to 5, the liquid crystal display device was set at a temperature of 23 ° C. and a humidity of 55% RH. In this environment, after turning on the backlight of the liquid crystal TV display device of the liquid crystal display device and leaving it as it is for 30 minutes, the visibility of whether or not the display device has uneven light is evaluated according to the following criteria, The obtained results are shown in Table 1 and Table 2 below.
視認性評価基準
 ○:全く光ムラが無い
 △:弱い光ムラが数個程度あり、問題となる。
 ×:規則性のある強い光ムラがあり、問題となる。
Visibility evaluation criteria ○: No light unevenness Δ: There are several weak light unevenness, which is a problem.
X: There is regular and strong light unevenness, which causes a problem.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1の結果から明らかなように、本発明の実施例1~3で作製したセルローストリアセテートフィルムでは、第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に1~20mの間隔(D)をあけて互い違い状に配置されることにより、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にかかる応力が、それぞれのスリッティング装置(11)(12)の反対サイドに逃げることが可能となるので、小さなシワの発生がなくなり、それによって擦りキズの発生もなくなるために、光ムラの発生のない高品質のセルローストリアセテートフィルムを製造することができ、液晶表示装置の視認性は良好であった。 As is clear from the results in Table 1 above, in the cellulose triacetate films produced in Examples 1 to 3 of the present invention, the first slitting device (11) and the second slitting device (12) are in the longitudinal direction of the film. Are arranged in a staggered manner with an interval (D) of 1 to 20 m, so that the stress applied to the film (F) when slitting at both ends in the width direction of the transport film (F) 11) Since it is possible to escape to the opposite side of (12), there is no generation of small wrinkles, and thus no generation of rubbing scratches, so that a high-quality cellulose triacetate film without light unevenness is produced. The visibility of the liquid crystal display device was good.
 これに対し、比較例1の場合のように、一対のスリッティング装置を、従来の場合と同様に、互いに対向するように設置した場合には、セルロースエステルフィルム(F)のスリッティング時にフィルムに小さなシワが入り、このシワが原因でフィルム(F)に微小なキズが発生して、光ムラが生じ、液晶表示装置の視認性は良くないものであった。また、比較例2の場合のように、両端部のスリッティング装置同士の間のフィルム長手方向に所定間隔(D)が、本発明の範囲外で長すぎると、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)には小さなシワの発生はなくなるが、搬送フィルム(F)の重心と、同フィルム(F)にかけている張力の中心とが、ずれた状態で長い距離搬送されるため、シワが発生した。このシワが原因でフィルム(F)に微小なキズが発生して、光ムラが生じ、液晶表示装置の視認性は良くないものであった。これは、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルム(F)の幅手方向の両端部のうち、片側にだけスリッティング装置を設置した場合に起こる現象と同様のものであった。 On the other hand, as in the case of Comparative Example 1, when the pair of slitting devices are installed so as to face each other as in the conventional case, the cellulose ester film (F) is slit when the film is slit. Small wrinkles entered, the wrinkles caused fine scratches on the film (F), resulting in light unevenness, and the visibility of the liquid crystal display device was not good. Further, as in Comparative Example 2, if the predetermined distance (D) in the film longitudinal direction between the slitting devices at both ends is too long outside the scope of the present invention, the width of the transport film (F) Small wrinkles are not generated in the film (F) when slitting at both ends in the direction, but the center of gravity of the transport film (F) and the center of tension applied to the film (F) are transported for a long distance with a shift. Therefore, wrinkles occurred. Due to the wrinkles, the film (F) was slightly scratched to cause light unevenness, and the visibility of the liquid crystal display device was not good. This was the same as the phenomenon that occurs when the slitting device is installed only on one side of the widthwise ends of the transport film (F) in the film transport line before the film winding process.
 また比較例3の場合のように、フィルム(F)の膜厚を薄くした場合には、さらにシワが発生しやすいことが分かった。これに対し、本発明の実施例4と5で作製したセルローストリアセテートフィルムでは、フィルム(F)の膜厚を薄くした場合でも、第1スリッティング装置(11)および第2スリッティング装置(12)同士が、フィルム長手方向に10mの間隔(D)をあけて互い違い状に配置されることにより、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にシワの発生がなく、光ムラが生じることなく、液晶表示装置の視認性は良好であった。 Further, it was found that when the film thickness of the film (F) was reduced as in Comparative Example 3, wrinkles were more likely to occur. On the other hand, in the cellulose triacetate films produced in Examples 4 and 5 of the present invention, the first slitting device (11) and the second slitting device (12) even when the film (F) is thin. By arranging them in a staggered manner with an interval (D) of 10 m in the longitudinal direction of the film, there is no generation of wrinkles on the film (F) when slitting at both ends in the width direction of the transport film (F), The visibility of the liquid crystal display device was good without causing light unevenness.
 また、上記表2の結果から明らかなように、本発明の実施例6~10で作製したセルローストリアセテートフィルムでは、相互に互い違い状に配置された両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅の変更量、および両スリッティング装置(11)(12)の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度を種々変えた場合であっても、搬送フィルム(F)の幅手方向両端部のスリット時にフィルム(F)にシワの発生がなく、光ムラが生じることなく、液晶表示装置の視認性は良好であった。 Further, as apparent from the results in Table 2 above, in the cellulose triacetate films produced in Examples 6 to 10 of the present invention, the two slitting devices (11) and (12) moved in a staggered manner. The amount of change in the slit width at both ends in the width direction of the transport film (F) and various slit width changing speeds at both ends in the width direction of the transport film (F) due to the movement of both slitting devices (11) and (12) Even if it is changed, the film (F) does not wrinkle when slitting at both ends in the width direction of the transport film (F), light unevenness does not occur, and the visibility of the liquid crystal display device is good. It was.
 これに対し、比較例4と5の場合のように、一対のスリッティング装置を、従来の場合と同様に、互いに対向するように設置し、かつ互いに対向する両スリッティング装置の移動による搬送フィルム(F)の幅手方向両端部のスリット幅変更速度を種々変えた場合には、スリット時にフィルム(F)に小さなシワが入り、このシワが原因でフィルム(F)に微小なキズが発生して、光ムラが生じ、液晶表示装置の視認性は良くないものであった。 On the other hand, as in the case of Comparative Examples 4 and 5, a pair of slitting devices are installed so as to face each other as in the conventional case, and the transport film is formed by the movement of both slitting devices facing each other. When the slit width changing speed at both ends in the width direction of (F) is changed variously, small wrinkles enter the film (F) at the time of slitting, and this wrinkle causes minute scratches on the film (F). As a result, unevenness of light occurred and the visibility of the liquid crystal display device was poor.
 この出願は、2012年1月23日に出願された日本国特許出願特願2012-11044を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2012-11044 filed on January 23, 2012, the contents of which are included in the present application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、光学フィルムおよびその製造方法の技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field of optical films and manufacturing methods thereof.

Claims (6)

  1.  膜厚10~50μmを有する光学フィルムの製造方法であって、フィルム巻取り工程前のフィルム搬送ラインに、搬送フィルムの幅手方向の両端部に位置する一対のスリッティング装置が備えられ、一方の端部に設けられる第1スリッティング装置および他方の端部に設けられる第2スリッティング装置同士が、フィルム長手方向に1~20mの間隔をあけて互い違い状に配置されていることを特徴とする、光学フィルムの製造方法。 A method for producing an optical film having a film thickness of 10 to 50 μm, comprising a pair of slitting devices positioned at both ends in the width direction of the transport film in the film transport line before the film winding process, The first slitting device provided at the end portion and the second slitting devices provided at the other end portion are alternately arranged with an interval of 1 to 20 m in the film longitudinal direction. The manufacturing method of an optical film.
  2.  相互に互い違い状に配置された両スリッティング装置が、それぞれフィルム幅手方向に移動可能となされており、両スリッティング装置の移動により搬送フィルムの幅手方向両端部のスリット幅が変更されるようになされていることを特徴とする、請求項1に記載の光学フィルムの製造方法。 Both slitting devices arranged in a staggered manner can be moved in the width direction of the film, respectively, and the slit widths at both ends in the width direction of the transport film are changed by the movement of both slitting devices. The method for producing an optical film according to claim 1, wherein:
  3.  相互に互い違い状に配置された両スリッティング装置の移動による搬送フィルムの幅手方向両端部のスリット幅の変更量が、搬送フィルムの幅手方向両端部の片側で、30~300mmとなされていることを特徴とする、請求項2に記載の光学フィルムの製造方法。 The amount of change in the slit width at both ends in the width direction of the transport film due to the movement of both slitting devices arranged alternately is set to 30 to 300 mm on one side of both ends in the width direction of the transport film. The manufacturing method of the optical film of Claim 2 characterized by the above-mentioned.
  4.  両スリッティング装置の移動による搬送フィルムの幅手方向両端部のスリット幅変更速度が、スリッティング装置の片側で10~100mm/minとなされていることを特徴とする、請求項2または3に記載の光学フィルムの製造方法。 4. The slit width changing speed at both ends in the width direction of the transport film due to the movement of both slitting devices is 10 to 100 mm / min on one side of the slitting device. Manufacturing method of the optical film.
  5.  搬送フィルムの幅が、1500~2500mmであることを特徴とする、請求項1~4のうちのいずれか一項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 4, wherein the width of the transport film is 1500 to 2500 mm.
  6.  搬送フィルムの走行速度が、80~200m/minであることを特徴とする、請求項1~5のうちのいずれか一項に記載の光学フィルムの製造方法。 6. The method for producing an optical film according to claim 1, wherein the traveling speed of the transport film is 80 to 200 m / min.
PCT/JP2013/000263 2012-01-23 2013-01-21 Optical film manufacturing method WO2013111559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013555191A JP5907178B2 (en) 2012-01-23 2013-01-21 Manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012011044 2012-01-23
JP2012-011044 2012-01-23

Publications (1)

Publication Number Publication Date
WO2013111559A1 true WO2013111559A1 (en) 2013-08-01

Family

ID=48873291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000263 WO2013111559A1 (en) 2012-01-23 2013-01-21 Optical film manufacturing method

Country Status (2)

Country Link
JP (1) JP5907178B2 (en)
WO (1) WO2013111559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105592A (en) * 2015-12-10 2017-06-15 コニカミノルタ株式会社 Method for manufacturing optical film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656938B (en) * 2017-12-11 2019-04-21 住華科技股份有限公司 Cutting apparatus and cutting method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220153A (en) * 2001-01-23 2002-08-06 Toray Ind Inc Film cutter
JP2003089093A (en) * 2002-06-17 2003-03-25 Fuji Photo Film Co Ltd Film cutting method
JP2005238801A (en) * 2004-01-30 2005-09-08 Fuji Photo Film Co Ltd Method and device for pneumatic sending of selvage waste of film and method for producing cellulose acetate film
JP2011051160A (en) * 2009-08-31 2011-03-17 Fujifilm Corp Method for slitting transparent polymer film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220153A (en) * 2001-01-23 2002-08-06 Toray Ind Inc Film cutter
JP2003089093A (en) * 2002-06-17 2003-03-25 Fuji Photo Film Co Ltd Film cutting method
JP2005238801A (en) * 2004-01-30 2005-09-08 Fuji Photo Film Co Ltd Method and device for pneumatic sending of selvage waste of film and method for producing cellulose acetate film
JP2011051160A (en) * 2009-08-31 2011-03-17 Fujifilm Corp Method for slitting transparent polymer film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105592A (en) * 2015-12-10 2017-06-15 コニカミノルタ株式会社 Method for manufacturing optical film

Also Published As

Publication number Publication date
JP5907178B2 (en) 2016-04-26
JPWO2013111559A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5362068B2 (en) Cellulose acylate film, polarizing plate, retardation film, optical compensation film, antireflection film, and liquid crystal display
KR101216903B1 (en) Optical Film
JP2002071957A (en) Optical film, polarizing plate, optical film roll, display using optical film, and method of producing optical film
WO2009119328A1 (en) Process for producing optical film and optical film
JP2002249599A (en) Cellulose ester film and method of manufacturing the same
JP4892794B2 (en) Solid for preparing cellulose ester solution, cellulose ester solution, method for producing cellulose ester film, cellulose ester film, polarizing plate and display device using the same
JP5012378B2 (en) Manufacturing method of optical film
JP5120015B2 (en) Manufacturing method of optical film
JP2002363342A (en) Fine particle dispersion, method for preparing dope, cellulose ester film, protective film for polarizing plate, polarizing plate and image display
JP5907178B2 (en) Manufacturing method of optical film
JP5915655B2 (en) Manufacturing method of optical film
JP5012369B2 (en) Manufacturing method of optical film
JP5119683B2 (en) Manufacturing method of resin film
JP2017109311A (en) Method for manufacturing optical film
JP5223351B2 (en) Method for producing cellulose ester film
JP5082994B2 (en) Optical film, manufacturing method thereof, polarizing plate using optical film, and display device
JP2003240948A (en) Optical film, polarizing plate, optical film roll, display device using the optical film, and method for manufacturing the optical film
JP2005181683A (en) Method for manufacturing optical film, optical film and polarizing film using the same
JP2009217089A (en) Optical film, method for producing the same, polarizing plate using the optical film, and display device
JP5104154B2 (en) Method for producing retardation film
JP5083020B2 (en) Manufacturing method of optical film
JP5682522B2 (en) Method for producing optical film for liquid crystal display device
JP5678813B2 (en) Method for producing optical film for liquid crystal display device
JP2013067074A (en) Method for manufacturing optical film
JP2013123868A (en) Method for manufacturing optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741540

Country of ref document: EP

Kind code of ref document: A1