WO2013110842A1 - System, method, transmitter and receiver for optical communications - Google Patents

System, method, transmitter and receiver for optical communications Download PDF

Info

Publication number
WO2013110842A1
WO2013110842A1 PCT/ES2013/070027 ES2013070027W WO2013110842A1 WO 2013110842 A1 WO2013110842 A1 WO 2013110842A1 ES 2013070027 W ES2013070027 W ES 2013070027W WO 2013110842 A1 WO2013110842 A1 WO 2013110842A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
beams
light beam
sub
Prior art date
Application number
PCT/ES2013/070027
Other languages
Spanish (es)
French (fr)
Inventor
Todor Kirilov Kalkandjiev
Jordi Mompart Penina
Alejandro Turpin Aviles
Yurii Loiko
Original Assignee
Universitat Autonoma De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Autonoma De Barcelona filed Critical Universitat Autonoma De Barcelona
Publication of WO2013110842A1 publication Critical patent/WO2013110842A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • the present invention concerns, in a first aspect, an optical communications system that allows the encoding and transmission of information in a light beam, and more particularly a system that includes a series of optical elements that allow the use of sub-beams. that make up the light beam as optical channels for data transport.
  • the invention concerns a method adapted to be implemented using the system of the first aspect.
  • Third and fourth aspects of the invention concern a transmitter and a receiver adapted to perform the functions of, respectively, the transmitter and the receiver of the system of the first aspect of the invention.
  • Laser connections are currently used for FSOC ("Free-Space Optical Communications") point-to-point over long distances.
  • FSOC Free-Space Optical Communications
  • Most advantages over other communication technologies come from the great coherence achieved in laser radiation and the low beam divergence.
  • the technologies of FSOC using lasers are considered to be those with the highest efficiency and data rate (in bandwidth and capacity) for any optical channel in free space. These advantages are crucial for deep-space optical communications [1], not forgetting that laser connections can even be considered as an alternative (or an additional tool / channel) to radiofrequency and fiber optic communications for some applications terrestrial
  • the channel capacity can be arbitrarily increased, in beginning.
  • practical drawbacks that make it difficult to encode information in the OAM of light [6-8] such as the fact that high orders of OAM modes are highly divergent and, consequently, cannot be used for FSOC over long distances That is why today there is no feasible communication system based on multiplexing using OAM.
  • WO2010084317A1 where an optical system with an optical input source, such as a laser, is proposed to project an input light beam along an optical axis and an optical element that creates a conical refraction beam from the input beam, projecting a light ring on Lloyd's plane and subsequently reconstructs the input beam from the light ring.
  • the optical element comprises one or more conical refractive elements which, in some of the embodiments, are oriented inversely.
  • the objective of the system proposed in WO2010084317A1 is to generate a light beam, such as a laser beam, which has high performance in terms of power and quality, as well as high efficiency.
  • JP58202422A it is proposed to perform an optical multiplexing without using a wavelength selection element, thereby providing a small device that uses the conical refraction of a biaxial optical glass, and that allows multiplexing the light from a plurality of light sources to an optical fiber of exit arranged on an exit face of the glass, where the light of each of the light sources is transmitted through a respective fiber optic conduit with an end that strikes an input face of the glass opposite to said exit face crystal.
  • the ends of the optical fibers that contact the glass, both the input and the output, must be fixed precisely at predetermined points so that, in theory, due to the conical refraction, the light of all the input beams converge at the exit point.
  • JP58202422A produces a conical refractive ring on the exit face of the glass.
  • the CR rings on the output surface of the biaxial crystal will be displaced in the same amount. Therefore, for N light sources on the input surface, N CR rings will appear on the output surface.
  • these CR rings intersect at some points, but do not overlap each other completely. This prevents them from being properly picked up by a fiber placed on the exit surface of the biaxial crystal.
  • an optical communications system comprising, in a manner known per se:
  • Y a transmitter configured to transmit and encode information in a beam of light through a transmission medium
  • a receiver arranged to receive said beam, after having traveled through said transmission means, and configured to decode said encoded information included in the light beam.
  • the transmitter comprises:
  • a demultiplexer formed by at least a first optical element arranged and configured to receive, at a first end, a beam of light initial, demultiplexing it by changing the direction of the wave vectors of at least two of the sub-beams that make up said initial light beam, and supplying said sub-beams with wave vectors with directions changed by a second end opposite to said first end ;
  • At least one modulator arranged and configured to perform said information coding by amplitude modulating said sub-beams with wave vectors with changed directions, each constituting an optical channel;
  • the receiver comprises a demultiplexer formed by at least a third optical element arranged and configured to receive, at a first end, said multiplexed light beam, and supply, by a second opposite end at said first end, said optical channels recovered after demultiplexing to the multiplexed light beam, changing the direction of the wave vectors of the sub-beams, which are at least two, that make up the multiplexed light beam.
  • sub-beams are beams that make up the initial light beam or the multiplexed light beam, the term "sub-beam” having been used simply for clarity in the description, avoiding thus confusions between the beams here referred to as sub-beams and the beams composed of such sub-beams.
  • the first optical element is a first biaxial conical refraction crystal, arranged and configured to demultiplex said initial light beam by changing the direction of the wave vectors of the sub-beams that compose it, supplying said sub-beams with wave vectors with directions changed so that its projection in a plane takes the form of a light ring, where sub-beams with wave vectors in the same plane go to diametrically opposite sectors of the light ring;
  • the modulator or modulators are arranged and configured to perform said information coding by modulating in amplitude, in said projection plane or in another or other planes, the sub-beams corresponding to different sectors of said light ring, or optical channels;
  • the second and third optical elements are respective second and third biaxial crystals of conical refraction.
  • the optical axes of the first and second optical elements are, in general, aligned with each other.
  • the second biaxial conical refraction crystal is substantially the same size as the first.
  • the second biaxial conical refraction crystal is oriented inversely with respect to the first, that is to say at an angular distance of 180 ° around its optical axis, according to a preferred embodiment.
  • the second biaxial conical refraction crystal is oriented with respect to the first an angular distance other than 180 °.
  • the first, second and third optical elements are photonic crystals. It is known that the characteristics of photonic crystals can be modified by varying their structure and materials from which they are made.
  • the photonic crystals used in the system proposed by the first aspect of the invention have such a structure that they allow a separation of light waves in a manner analogous to the way biaxial crystals do.
  • the first, second and third optical elements are another class of optical elements designed to perform the explained functions.
  • the initial light beam is of the Gaussian type, although the system is also applicable, for other embodiments, to any beam that is part of the Laguerre-Gauss or Hermite-Gauss modes, depending on the level of divergence allowed by the application where the system is implemented and, above all, the distance between the transmitter and the receiver.
  • the multiplexed beam of light is generally similar to a Gaussian beam, at least in terms of divergence characteristics, so that the distance it can travel to reach the receiver, without divergence between the different channels that conform it, it is considerable, of the same order as the distance traveled by a Gaussian beam.
  • the transmission medium this is, for an exemplary embodiment, an isotropic medium, such as free space, thus the present system being suitable for carrying out the known FSOC communications, of the English "Free Space Optical Communication".
  • the transmission medium is a waveguide, constituted for example by optical fiber.
  • the type of modulator used in the system of the first aspect of the invention comprises at least one mask of angular amplitude arranged in said plane where the light ring is formed or in another plane or a modulator known as SLM, the acronym "Spatial Light Modulator", ie space light modulator.
  • this is a monochromatic light beam or a polychromatic light beam depending on the exemplary embodiment.
  • the modulator is configured to independently modulate part or all of the optical channels, by spatial modulation or spatial and temporal modulation.
  • the modulator is configured to modulate in a dependent manner at least part of the optical channels, by spatial modulation or spatial and temporal modulation.
  • the transmitter also comprises at least a first lens disposed in front of the first end of the first optical element to focus the initial beam of light on it, and at least a second lens disposed behind the second end of the second optical element. to collide said multiplexed beam of light.
  • the receiver also comprises, for one embodiment, at least one lens arranged in front of the first end of the third optical element, so that it receives the multiplexed beam of light after passing through the lens, and at least one photodetector device (such as a CCD device) arranged in front of the second end of the third optical element to receive the light from the optical channels and process the information contained therein.
  • the system comprises, for some embodiments, cascading two or more groups such as the one described here, aligned with each other or with their respective Optical axes forming an angle, in the latter case the beam of output of an optical group is directed towards the entrance of the consecutive optical group by means of an optical element that deflects the direction of the beam (such as a reflector or a prism).
  • the system comprises, for said embodiments, after the third optical element, at least one optical group that includes:
  • At least a second multiplexer formed by at least a fourth optical element arranged and configured to mutiplex the optical channels encoded by the second modulator
  • At least a second demultiplexer formed by at least a fifth optical element arranged and configured to demultiplex the light beam multiplexed by the second multiplexer.
  • the system comprises a photodetector device to receive the light from the optical channels and process the information contained in the themselves, as part of a last receiver arranged at the end of the line of optical groups.
  • the system combines sections that include one or more of the described optical groups with sections formed by another class of communication, optical or other devices (in the latter case implementing the necessary conversion of optical signals to the magnitude used by communication devices of another class).
  • a second aspect of the invention concerns a method of optical communications, comprising:
  • step a) comprises:
  • step b) comprises receiving and demultiplexing, by means of a third optical element, said multiplexed light beam, supplying said optical channels recovered after demultiplexing to the multiplexed light beam, changing the direction of the sub-beam wave vectors, which They are at least two, which make up the multiplexed beam of light.
  • the first, second and third optical elements are respective first, second and third conical refractive biaxial crystals, where each of said demultiplexings of steps a) and b) comprises changing the direction of the vectors of wave of the sub-beams that make up the initial light beam, as regards stage a), and the multiplexed beam, as regards stage b), supplying said sub-beams with wave vectors with directions changed so that its projection in a plane takes the form of a light ring, where sub-beams with wave vectors in the same plane go to diametrically opposite sectors of the light ring.
  • the method of the second aspect of the invention is intended to be implemented using the system of the first aspect.
  • this is a monochromatic light beam or a polychromatic light beam depending on the exemplary embodiment.
  • a third aspect of the invention concerns an optical communications transmitter, which is configured to transmit and encode information in a beam of light to through a transmission medium, where, unlike known transmitters, it comprises:
  • a demultiplexer formed by at least a first optical element arranged and configured to receive, at a first end, an initial beam of light, demultiplexing it by changing the direction of the wave vectors of at least two of the sub-beams that make up said beam of initial light, and supplying said sub-beams with wave vectors with directions changed by a second end opposite to said first end;
  • Y a modulator arranged and configured to perform said information coding by amplitude modulating said sub-beams with wave vectors with changed directions, each constituting an optical channel;
  • the transmitter of the third aspect of the invention is configured, according to different embodiments, to perform the functions of the transmitter of the system of the first aspect, that is to say that the transmitter described as included in the system of the first aspect of the invention is, for some realization examples, the one proposed by the third aspect.
  • a fourth aspect of the invention concerns an optical communications receiver that is arranged to receive a light beam that includes encoded information, having traveled through a transmission medium, and configured to decode said encoded information included in the light beam, the receiver comprising, in a characteristic way, a demultiplexer formed by at least one optical element arranged and configured to receive, at a first end, a light beam with information encoded in optical channels corresponding to multiplexed light sectors in said beam of light, and supplying, by a second end opposite said first end, said optical channels recovered after demultiplexing the multiplexed light beam by changing the direction of the wave vectors of the sub-beams that make up the multiplexed light beam.
  • the receiver of the fourth aspect of the invention is configured, according to different embodiments, to perform the functions of the receiver of the system of the first aspect, that is to say that the receiver described as included in the system of the first aspect of the invention is, for some realization examples, the one proposed by the fourth aspect.
  • Fig. 1 is a schematic perspective view of the system proposed by the first aspect of the invention, for an exemplary embodiment for which the optical elements are biaxial crystals of conical refraction;
  • Fig. 2 shows experimental images obtained for the system of Fig. 1 using masks for multiplexing with 2 (a), 4 (b), 6 (c), 8 (d), 10 (e), 12 (f ) and 36 (g) angular openings, illustrated in the first row; the second row shows the multiplexed beams produced by the transmitter, while in the third row the patterns demultiplexed by the receiver can be seen;
  • Fig. 3 shows, schematically, the system corresponding to a degenerate case of CR in 2-cascade, on which the system proposed by the present invention is based;
  • Fig. 4 shows, in relation to the system of Fig. 3, different captures made with a CCD device for a Gaussian input beam (a-c), strongly elliptical (d-f) and obtained with an 8-star amplitude mask; the first column represents the images of the input beams, the second column the intensity pattern in the focal plane and the last column shows the output beams; Y
  • Figs. 5a and 5b show, schematically, the system proposed by the invention, for an example of an embodiment different from that of Fig. 1, for which the system is bidirectional, illustrating in Fig. 5a the path of a beam entering from the left, and in Fig. 5b the path of a beam that enters from the right, according to the illustrated position of the system.
  • Fig. 5a the path of a beam entering from the left
  • Fig. 5b the path of a beam that enters from the right
  • the degenerated case of CR in 2-cascade (that is, with two crystals) with oppositely oriented CREs is the central idea of the preferred embodiment of the present invention, for coding the information of a Gaussian monochromatic beam. It consists of a cascade of two CREs with the same length (preferably ⁇ 100 nm difference) with two opposite-oriented vectors, placed between a pair of LF / LC focusing / collimating lenses, as illustrated in Fig. 3.
  • the first CRE1 crystal transforms the initial Gaussian beam Hi in the CR ring, projected in the focal plane PF, and the second CRE2 crystal transforms said ring towards the initial Gaussian beam, in the form of an output beam Ho.
  • the degenerated 2-cascade CR can be considered as a direct-inverse 2D transformation of a monochromatic beam, analogously to the two-dimensional Fourier transform.
  • the widely known TEMp modes / formed by Laguerre-Gauss functions constitute a complete basis to represent any light field whose transverse amplitude and polarization have cylindrical symmetry.
  • the intensity distribution of a CR beam produced by a circularly polarized Gaussian beam has cylindrical symmetry.
  • CR beams cannot be represented in terms of the TEMp / modes. In fact, the latter have a symmetry such that the electric field vector for each two points opposite each other relative to the axis of symmetry are either collinear or anti-collinear. In contrast, the electric field vectors of two opposite points of the CR ring are always perpendicular. Consequently, TEMp / modes cannot be used as a basis to represent the conically refracted beam.
  • CR filtered beams [17] that do not produce a CR ring when they propagate along the optical axis of a biaxial crystal.
  • These beams are divided, in general, into two beams diagonally positioned at opposite points of the CR ring which is to be expected in any other case.
  • the intensities of these divided beams change under the rotation of the CRE, similar to what happens in double refraction in calcite.
  • one of the divided beams has zero intensity and, using an analogy with the widely known phenomenon of double refraction, these filtered beams are identified as their own light modes of the effect of the CR. These proper modes are very useful for describing the propagation of any initial beam with an arbitrary intensity pattern along the degenerated 2-cascade CR configuration.
  • Fig. 4 shows the results of said investigations in the propagation of three input beams with different transverse patterns along a degenerated 2-cascade CR configuration.
  • the Gaussian beam see Fig. 4 (a)
  • produces the CR ring see Fig. 4 (b)) after passing along the first CRE, restoring the ring to the initial beam (see Fig. 4 (c)) after going through the second CRE.
  • a 25 ⁇ opening slit was used to select only the central part of a Gaussian beam.
  • this incident beam is linearly polarized, then there is a specific orientation of the first CRE for which only one beam is observed in the focal plane. It is in this sense that linearly polarized beams with a strongly elliptical profile are identified as their own modes of light for the phenomenon of CR.
  • a Gaussian beam can be represented by the Fourier transform as a superposition of plane waves with different k wave vectors.
  • the strongly elliptical beam (see Fig. 4 (d)) can be seen as composed of plane waves whose vectors - / (are confined in a plane, known as the K plane, so that the incident Gaussian beam can be considered as a infinitesimal sum of own modes, that is to say strongly elliptical beams with different K planes.
  • each beam characterized by a K plane is projected at two opposite points of what a CR ring should be (see Fig. 4 (e)) and, after the second CRE, both points are restored to the initial beam while retaining the K plane, see Fig. 4 (f) .
  • the operability of the degenerated 2-cascade can be expressed considering that a Gaussian beam is spatially demultiplexed in a CR ring such that each pair of opposite points (with orthogonal polarizations) represents a plane K of the incident Gaussian beam .
  • the CR ring will have 2n opposite points (8 in Fig. 4 (h)).
  • the members of each pair of beams of opposite points are joined again (multiplexed) after the second CRE in a single beam, causing the initial beam to be reproduced after the second CRE; compare Figs. 4 (i) and (g).
  • the second CRE2 crystal which performs the inverse transform, can be seen as a multiplexer. It should be noted that the intensity of each point of the light ring CR before the multiplexing element (second CRE) can be modulated independently, allowing an increase in the capacity of the channel carried by the Gaussian beam.
  • the transmitter T comprises two biaxial crystals C1 and C2, which provide the direct-inverse transformation, a mask of angular amplitude M1 that is used as a light modulator and a lens L1 to focus the input beam H1 and another lens L2 to collimating the output beam Ho.
  • the degenerated 2-cascade of CR is prepared with two identical biaxial crystals of KGd (W0 4 ) 2 such that they offer a ring after the first C1 crystal of 1.5 mm radius.
  • L1, L2 lenses with a focal length of 200 mm have been used.
  • the demultiplexing protocol can be divided into the following steps:
  • the first CRE, or conical refractive element, C1 demultiplexes the Gaussian beam H1 into a ring whose points are independent communication lines or channels. Each point of the ring can be separated correctly and modulated.
  • M1 amplitude masks have been used with n (up to 36) open circular sectors, each of them placed, alternatively, in the plane where the light ring is projected, to select some parts of the CR ring
  • the second CRE C2 identical and inversely oriented with respect to the first (for the experimental test described here), through whose optical axis pass the parts of the light ring selected by the mask used as modulator M1, and is responsible for of doing the inverse transformation of the beam, that is to say multiplexing the sectors modulated in an output beam HM with a divergence comparable to that of the incident beam H1.
  • the experimental images obtained using masks for multiplexing with 2 (a), 4 (b), 6 (c), 8 (d), 10 (e), 12 (f) and 36 (g) are illustrated in Fig. angular openings
  • the second row shows the multiplexed beams produced by the T transmitter, while in the third row the patterns can be seen demultiplexed by the R receiver.
  • the free space propagation was about 1.5 m. It is important to note that the mask used has an influence on the profile but not on the divergence of the HM multiplexed beam, see second row in Fig. 2, which allows the system proposed by the invention to be used over long propagation distances.
  • the R receiver this consists of an objective L3 with focal length of
  • a third CRE C3 12 mm long which demultiplexes the HM multiplexed beam
  • a CCD camera as an FD photodetection device, that captures the resulting standard beam.
  • the CRE C3 demultiplexes the beam propagated in free space HM, by the phenomenon of CR and recover the sectors modulated by the transmitter T.
  • Figs. 5a and 5b illustrates an embodiment of the system proposed by the first aspect of the invention, more developed than that illustrated by Fig. 1, allowing bidirectional use thereof, especially thanks to the inclusion of two semi-transparent optical systems E1 and E2, such as two mirrors, that allow the passage of light in one direction and that reflect it when it affects them in the opposite direction.
  • Fig. 5a the system is illustrated when a beam of light has entered from the left of it, according to the position illustrated, that is the beam H1 a, focused by the lens L1, this being demultiplexed by the first optical element C1 in corresponding sub-beams, or optical channels, changing the direction of their wave vectors, which are modulated by the modulator M1, all in a manner analogous to that described for the embodiment example of Fig. 1, and after that they pass through the semi-transparent mirror E1 and reach the second optical element C2.
  • the second optical element C2 multiplexes said optical channels, as already explained with reference to Fig. 1, and the HMa multiplexed beam, once collimated by the lens L2, passes through the transmission medium and behind it the lens or lens L3 and the third optical element C3, where the optical channels that compose it are demultiplexed, after which the light of these optical channels is reflected in the semi-transparent mirror E2 directed towards the FD2 photodetector.
  • Fig. 5b The same system as in Fig. 5a is illustrated in Fig. 5b, but when the input beam is the one indicated as H1 b, that is, the one that enters from the right of the system, being used as a lens input indicated as L4 and as a demultiplexer the fourth optical element C4, which performs the same functions as the first optical element C1.
  • the first C1, second C2, third C3 and fourth C4 optical elements are, depending on the exemplary embodiment, biaxial conical refraction crystals, photonic crystals or any optical element designed to perform the explained function.
  • Turpin, A. "Cascaded conical refraction", Master Thesis, Polytechnic University of Catalonia (UPC), Barcelona, 2011, http://upcommons.upc.edU/pfc/handle/2099.1/13007

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)

Abstract

The system comprises: a transmitter (T) formed by a demultiplexer and a multiplexer including optical elements (C1, C2) which, together with a modulator (M1) disposed therebetween, allow the sub-beams of an input light beam (H1) to be used as optical channels for the transmission of data in the form of a multiplexed light beam (HM); and a receiver (R) which is disposed to receive the aforementioned beam after it has passed through the transmission means and which comprises a demultiplexer including an optical element (C3) which recovers the optical channels of the multiplexed light beam (HM). The method is adapted to be carried out using the system of the invention. The transmitter and the receiver are adapted to perform the functions of the transmitter and the receiver of the system of the invention respectively.

Description

Sistema, método, transmisor y receptor de comunicaciones ópticas  System, method, transmitter and receiver of optical communications
Sector de la técnica Technical sector
La presente invención concierne, en un primer aspecto, a un sistema de comunicaciones ópticas que permite la codificación y transmisión de información en un haz de luz, y más particularmente a un sistema que incluye una serie de elementos ópticos que permiten utilizar los sub-haces que componen el haz de luz como canales ópticos para el transporte de datos.  The present invention concerns, in a first aspect, an optical communications system that allows the encoding and transmission of information in a light beam, and more particularly a system that includes a series of optical elements that allow the use of sub-beams. that make up the light beam as optical channels for data transport.
En un segundo aspecto, la invención concierne a un método adaptado para implementarse utilizando el sistema del primer aspecto.  In a second aspect, the invention concerns a method adapted to be implemented using the system of the first aspect.
Unos tercer y cuarto aspectos de la invención conciernen a un transmisor y un receptor adaptados para realizar las funciones de, respectivamente, el transmisor y el receptor del sistema del primer aspecto de la invención. Estado de la técnica anterior  Third and fourth aspects of the invention concern a transmitter and a receiver adapted to perform the functions of, respectively, the transmitter and the receiver of the system of the first aspect of the invention. Prior art
Las conexiones mediante láser son actualmente utilizadas para FSOC (del inglés "Free-Space Optical Communications": Comunicaciones Ópticas en el Espacio Libre) de punto a punto en grandes distancias. La mayoría de ventajas sobre otras tecnologías de comunicación provienen de la gran coherencia alcanzada en radiación láser y la baja divergencia del haz. Se considera que las tecnologías de FSOC mediante láseres son las de mayor eficiencia y ritmo de datos (en ancho de banda y capacidad) para cualquier canal óptico en espacio libre. Estas ventajas son cruciales para las comunicaciones ópticas en el espacio profundo [1], sin olvidar que las conexiones mediante láser pueden ser consideradas incluso como una alternativa (o una herramienta/canal adicional) a las comunicaciones ópticas de radiofrecuencia y con fibras para algunas aplicaciones terrestres.  Laser connections are currently used for FSOC ("Free-Space Optical Communications") point-to-point over long distances. Most advantages over other communication technologies come from the great coherence achieved in laser radiation and the low beam divergence. The technologies of FSOC using lasers are considered to be those with the highest efficiency and data rate (in bandwidth and capacity) for any optical channel in free space. These advantages are crucial for deep-space optical communications [1], not forgetting that laser connections can even be considered as an alternative (or an additional tool / channel) to radiofrequency and fiber optic communications for some applications terrestrial
Diferentes propiedades de los campos ópticos pueden ser exploradas para codificar y decodificar eficientemente la información. Hasta el momento se han desarrollado técnicas eficientes para el procesado de la señal en fuentes láseres de alta modulación en frecuencia, sensores ultrarrápidos y otros componentes ópticos y electrónicos ultrarrápidos. Además, la capacidad de un canal de comunicación puede ser notablemente incrementada si uno combina eficientemente y descompone (sin pérdida de la información) haces con características ligeramente diferentes tal como, por ejemplo, hace la técnica de multiplexado por división de longitud de onda (WDM), que ha sido desarrollada para comunicaciones con fibra óptica. Con tal de incrementar la capacidad del canal en FSOC, se ha considerado utilizar el momento angular orbital (OAM) de la luz para codificar información en un haz láser monocromático [2-5]. De esta manera, como el OAM de la luz puede ser descompuesto en un número infinito de estados ortogonales, i.e., los ampliamente conocidos modos propios TEMp/ dados por las funciones de Laguerre-Gauss, la capacidad del canal puede ser arbitrariamente incrementada, en principio. No obstante, existen inconvenientes prácticos que dificultan la codificación de información en el OAM de la luz [6-8] tales como el hecho de que órdenes elevados de modos de OAM presentan una gran divergencia y, en consecuencia, no pueden ser utilizados para FSOC en distancias largas. Es por ello que hoy en día no existe un sistema factible de comunicación basado en el multiplexado mediante OAM. Different properties of optical fields can be explored to efficiently encode and decode information. So far, efficient techniques for signal processing in high frequency modulation laser sources, ultrafast sensors and other ultrafast optical and electronic components have been developed. In addition, the capacity of a communication channel can be remarkably increased if one efficiently combines and decomposes (without loss of information) beams with slightly different characteristics such as, for example, does the wavelength division multiplexing (WDM) technique. ), which has been developed for fiber optic communications. In order to increase the capacity of the channel in FSOC, it has been considered to use the orbital angular momentum (OAM) of light to encode information in a monochromatic laser beam [2-5]. Thus, as the OAM light can be decomposed into an infinite number of orthogonal, ie states, widely known eigenmodes TEM p / given by the functions of Laguerre-Gauss, the channel capacity can be arbitrarily increased, in beginning. However, there are practical drawbacks that make it difficult to encode information in the OAM of light [6-8] such as the fact that high orders of OAM modes are highly divergent and, consequently, cannot be used for FSOC over long distances That is why today there is no feasible communication system based on multiplexing using OAM.
Por otra parte, el fenómeno de la refracción cónica, o CR (del inglés "Conical Refraction") es conocido por diversas referencias [9-17], aunque a pesar de ser un fenómeno descubierto en 1832 [10] su aprovechamiento para la implementación de sistemas ópticos con aplicaciones concretas ha sido hasta ahora escaso. On the other hand, the phenomenon of conical refraction, or CR (from English "Conical Refraction") is known by various references [9-17], although despite being a phenomenon discovered in 1832 [10] its use for implementation Optical systems with specific applications has so far been scarce.
Una de tales implementaciones se haya descrita en WO2010084317A1 , donde se propone un sistema óptico con una fuente óptica de entrada, tal como un láser, para proyectar un haz de luz de entrada a lo largo de un eje óptico y un elemento óptico que crea un haz de refracción cónica a partir del haz de entrada, proyectando en el plano de Lloyd un anillo de luz y subsiguientemente reconstruye el haz de entrada a partir del anillo de luz. El elemento óptico comprende uno o más elementos de refracción cónica que, en alguna de las realizaciones, se encuentran orientados inversamente. One such implementation has been described in WO2010084317A1, where an optical system with an optical input source, such as a laser, is proposed to project an input light beam along an optical axis and an optical element that creates a conical refraction beam from the input beam, projecting a light ring on Lloyd's plane and subsequently reconstructs the input beam from the light ring. The optical element comprises one or more conical refractive elements which, in some of the embodiments, are oriented inversely.
El objetivo del sistema propuesto en WO2010084317A1 es el de generar un haz de luz, tal como una haz láser, que tenga un alto rendimiento en términos de potencia y calidad, así como una gran eficiencia.  The objective of the system proposed in WO2010084317A1 is to generate a light beam, such as a laser beam, which has high performance in terms of power and quality, as well as high efficiency.
No se enseña ni se sugiere en WO2010084317A1 la utilización del sistema óptico allí propuesto para otros fines que no sean los indicados y relativos a la mejora de las características del haz de luz suministrado, no sugiriéndose en absoluto la utilización de tal sistema para la transmisión de datos.  It is not taught or suggested in WO2010084317A1 the use of the optical system proposed there for purposes other than those indicated and related to the improvement of the characteristics of the light beam supplied, not suggesting at all the use of such a system for the transmission of data.
En JP58202422A se propone realizar un multiplexado óptico sin utilizar un elemento de selección de longitud de onda, proporcionando para ello un pequeño dispositivo que utiliza la refracción cónica de un cristal óptico biaxial, y que permite multiplexar la luz proveniente de una pluralidad de fuentes de luz a una fibra óptica de salida dispuesta en una cara de salida del cristal, donde la luz de cada una de las fuentes de luz se transmite a través de un respectivo conducto de fibra óptica con un extremo que incide sobre una cara de entrada del cristal opuesta a dicha cara de salida cristal. Los extremos de las fibras ópticas que contactan el cristal, tanto las de entrada como la de salida, deben fijarse justamente en unos puntos predeterminados con el fin de que, en teoría, debido a la refracción cónica, la luz de todos los haces de entrada converja en el punto de salida. Pero en la práctica esto no es así, debido al inconveniente principal del que adolece la propuesta hecha en JP58202422A, que es el siguiente: Cada fuente de luz mencionada en JP58202422A produce un anillo de refracción cónica en la cara de salida del cristal. En el caso de que las fuentes de entrada estén desplazadas entre sí, los anillos de CR en la superficie de salida del cristal biaxial serán desplazados en la misma cantidad. Por lo tanto, para N fuentes de luz en la superficie de entrada, aparecerán N anillos de CR en la superficie de salida. Además, en la superficie de salida estos anillos de CR se cruzan en unos puntos, pero no se superponen totalmente entre sí. Esto impide que puedan ser recogidos adecuadamente por una fibra colocada en la superficie de salida del cristal biaxial. In JP58202422A it is proposed to perform an optical multiplexing without using a wavelength selection element, thereby providing a small device that uses the conical refraction of a biaxial optical glass, and that allows multiplexing the light from a plurality of light sources to an optical fiber of exit arranged on an exit face of the glass, where the light of each of the light sources is transmitted through a respective fiber optic conduit with an end that strikes an input face of the glass opposite to said exit face crystal. The ends of the optical fibers that contact the glass, both the input and the output, must be fixed precisely at predetermined points so that, in theory, due to the conical refraction, the light of all the input beams converge at the exit point. But in practice this is not the case, due to the main drawback of the proposal made in JP58202422A, which is the following: Each light source mentioned in JP58202422A produces a conical refractive ring on the exit face of the glass. In the event that the input sources are displaced from each other, the CR rings on the output surface of the biaxial crystal will be displaced in the same amount. Therefore, for N light sources on the input surface, N CR rings will appear on the output surface. In addition, at the exit surface these CR rings intersect at some points, but do not overlap each other completely. This prevents them from being properly picked up by a fiber placed on the exit surface of the biaxial crystal.
Explicación de la invención Explanation of the invention.
Aparece necesario ofrecer una alternativa al estado de la técnica que cubra las lagunas halladas en el mismo, en particular las existentes en los sistemas de comunicaciones basados en el multiplexado OAM, y que permita su utilización para It appears necessary to offer an alternative to the state of the art that covers the gaps found therein, in particular those existing in the communication systems based on the OAM multiplexing, and that allows its use for
FSOC en distancias largas. FSOC over long distances.
Con tal fin, la presente invención concierne, en un primer aspecto, a un sistema de comunicaciones ópticas, que comprende, de manera en sí conocida:  To this end, the present invention concerns, in a first aspect, an optical communications system, comprising, in a manner known per se:
- un transmisor configurado para transmitir y codificar información en un haz de luz a través de un medio de transmisión; y  - a transmitter configured to transmit and encode information in a beam of light through a transmission medium; Y
- un receptor dispuesto para recibir dicho haz, tras haber viajado por dicho medio de transmisión, y configurado para decodificar dicha información codificada incluida en el haz de luz.  - a receiver arranged to receive said beam, after having traveled through said transmission means, and configured to decode said encoded information included in the light beam.
A diferencia de las propuestas conocidas, en el sistema propuesto por el primer aspecto de la presente invención, de manera característica:  Unlike the known proposals, in the system proposed by the first aspect of the present invention, in a characteristic manner:
- el transmisor comprende:  - the transmitter comprises:
- un demultiplexor formado por como mínimo un primer elemento óptico dispuesto y configurado para recibir, por un primer extremo, un haz de luz inicial, demultiplexarlo cambiando la dirección de los vectores de onda de al menos dos de los sub-haces que componen dicho haz de luz inicial, y suministrar dichos sub-haces con vectores de onda con direcciones cambiadas por un segundo extremo opuesto a dicho primer extremo; - a demultiplexer formed by at least a first optical element arranged and configured to receive, at a first end, a beam of light initial, demultiplexing it by changing the direction of the wave vectors of at least two of the sub-beams that make up said initial light beam, and supplying said sub-beams with wave vectors with directions changed by a second end opposite to said first end ;
- al menos un modulador dispuesto y configurado para realizar dicha codificación de información modulando en amplitud dichos sub-haces con vectores de onda con direcciones cambiadas, cada uno de ellos constituyendo un canal óptico; y  - at least one modulator arranged and configured to perform said information coding by amplitude modulating said sub-beams with wave vectors with changed directions, each constituting an optical channel; Y
- un multiplexor formado por al menos un segundo elemento óptico dispuesto y configurado para recibir, por un primer extremo, la luz de dichos canales ópticos, y suministrar dichos canales ópticos multiplexados hacia dicho medio de transmisión en la forma de un haz de luz multiplexado, por un segundo extremo opuesto a dicho primer extremo, y el receptor comprende un demultiplexor formado por al menos un tercer elemento óptico dispuesto y configurado para recibir, por un primer extremo, a dicho haz de luz multiplexado, y suministrar, por un segundo extremo opuesto a dicho primer extremo, dichos canales ópticos recuperados tras demultiplexar al haz de luz multiplexado, cambiando la dirección de los vectores de onda de los sub-haces, que son al menos dos, que componen el haz de luz multiplexado.  - a multiplexer formed by at least a second optical element arranged and configured to receive, at a first end, the light of said optical channels, and to supply said multiplexed optical channels towards said transmission means in the form of a multiplexed light beam, by a second end opposite said first end, and the receiver comprises a demultiplexer formed by at least a third optical element arranged and configured to receive, at a first end, said multiplexed light beam, and supply, by a second opposite end at said first end, said optical channels recovered after demultiplexing to the multiplexed light beam, changing the direction of the wave vectors of the sub-beams, which are at least two, that make up the multiplexed light beam.
Lo que en la presente memoria descriptiva y reivindicaciones adjuntas se denomina como sub-haces son haces que componen el haz de luz inicial o el haz de luz multiplexado, habiéndose utilizado el término "sub-haz" simplemente para mayor claridad en la descripción, evitando así confusiones entre los haces aquí denominados como sub-haces y los haces compuestos por tales sub-haces. What is described herein as attached sub-beams are beams that make up the initial light beam or the multiplexed light beam, the term "sub-beam" having been used simply for clarity in the description, avoiding thus confusions between the beams here referred to as sub-beams and the beams composed of such sub-beams.
Para un ejemplo de realización preferido: For a preferred embodiment example:
- el primer elemento óptico es un primer cristal biaxial de refracción cónica, dispuesto y configurado para demultiplexar dicho haz de luz inicial cambiando la dirección de los vectores de onda de los sub-haces que lo componen, suministrando dichos sub-haces con vectores de onda con direcciones cambiadas de manera que su proyección en un plano adopta la forma de un anillo de luz, donde los sub-haces con vectores de onda en un mismo plano van a parar a sectores diametralmente opuestos del anillo de luz;  - the first optical element is a first biaxial conical refraction crystal, arranged and configured to demultiplex said initial light beam by changing the direction of the wave vectors of the sub-beams that compose it, supplying said sub-beams with wave vectors with directions changed so that its projection in a plane takes the form of a light ring, where sub-beams with wave vectors in the same plane go to diametrically opposite sectors of the light ring;
- el modulador o los moduladores están dispuestos y configurados para realizar dicha codificación de información modulando en amplitud, en dicho plano de proyección o en otro u otros planos, los sub-haces correspondientes a diferentes sectores de dicho anillo de luz, o canales ópticos; - the modulator or modulators are arranged and configured to perform said information coding by modulating in amplitude, in said projection plane or in another or other planes, the sub-beams corresponding to different sectors of said light ring, or optical channels;
- y los segundo y tercero elementos ópticos son unos respectivos segundo y tercero cristales biaxiales de refracción cónica.  - and the second and third optical elements are respective second and third biaxial crystals of conical refraction.
Los términos anillo de luz no deben entenderse en la presente memoria descriptiva y reivindicaciones adjuntas como restrictivos en cuanto a uniformidad radial, pudiendo cubrir tanto anillos perfectamente circulares como ovalados. The terms "ring of light" should not be understood herein and attached claims as restrictive in terms of radial uniformity, being able to cover both perfectly circular and oval rings.
Los ejes ópticos de los primero y segundo elementos ópticos se encuentran, en general, alineados entre sí.  The optical axes of the first and second optical elements are, in general, aligned with each other.
Para un ejemplo de realización, el segundo cristal biaxial de refracción cónica es substancialmente de iguales dimensiones que el primero.  For an exemplary embodiment, the second biaxial conical refraction crystal is substantially the same size as the first.
El segundo cristal biaxial de refracción cónica se encuentra orientado inversamente con respecto al primero, es decir a una distancia angular de 180° alrededor de su eje óptico, según un ejemplo de realización preferido.  The second biaxial conical refraction crystal is oriented inversely with respect to the first, that is to say at an angular distance of 180 ° around its optical axis, according to a preferred embodiment.
Para otro ejemplo de realización el segundo cristal biaxial de refracción cónica se encuentra orientado con respecto al primero una distancia angular diferente de 180°.  For another exemplary embodiment, the second biaxial conical refraction crystal is oriented with respect to the first an angular distance other than 180 °.
Para otro ejemplo de realización, los primer, segundo y tercer elementos ópticos son unos cristales fotónicos. Es conocido que las características de los cristales fotónicos pueden ser modificados mediante la variación de su estructura y materiales de que están hechas. Los cristales fotónicos usados en el sistema propuesto por el primer aspecto de la invención tienen tal estructura que permiten una separación de las ondas de la luz de manera análoga a como lo hacen los cristales biaxiales. For another embodiment, the first, second and third optical elements are photonic crystals. It is known that the characteristics of photonic crystals can be modified by varying their structure and materials from which they are made. The photonic crystals used in the system proposed by the first aspect of the invention have such a structure that they allow a separation of light waves in a manner analogous to the way biaxial crystals do.
Para otro ejemplo de realización, los primer, segundo y tercer elementos ópticos son otra clase de elementos ópticos diseñados para realizar las funciones explicadas.  For another exemplary embodiment, the first, second and third optical elements are another class of optical elements designed to perform the explained functions.
Según un ejemplo de realización, el haz de luz inicial es de tipo Gaussiano, aunque el sistema es aplicable también, para otros ejemplos de realización, a cualquier haz que forme parte de los modos Laguerre-Gauss o Hermite-Gauss, en función del nivel de divergencia permitido por la aplicación donde se implemente el sistema y de, sobre todo, la distancia existente entre el transmisor y el receptor. According to an example of embodiment, the initial light beam is of the Gaussian type, although the system is also applicable, for other embodiments, to any beam that is part of the Laguerre-Gauss or Hermite-Gauss modes, depending on the level of divergence allowed by the application where the system is implemented and, above all, the distance between the transmitter and the receiver.
Por lo que se refiere al haz de luz multiplexado, éste es en general similar a un haz Gaussiano, por lo menos por lo que se refiere a características de divergencia, por lo que la distancia que puede recorrer hasta llegar al receptor, sin divergencia entre los distintos canales que lo conforman, es considerable, del mismo orden que la distancia recorrida por un haz gaussiano. As regards the multiplexed beam of light, it is generally similar to a Gaussian beam, at least in terms of divergence characteristics, so that the distance it can travel to reach the receiver, without divergence between the different channels that conform it, it is considerable, of the same order as the distance traveled by a Gaussian beam.
En cuanto al medio de transmisión, éste es, para un ejemplo de realización un medio isotrópico, tal como el espacio libre, siendo por tanto el presente sistema adecuado para llevar a cabo las conocidas comunicaciones FSOC, del inglés "Free Space Optical Communication".  As for the transmission medium, this is, for an exemplary embodiment, an isotropic medium, such as free space, thus the present system being suitable for carrying out the known FSOC communications, of the English "Free Space Optical Communication".
Para otro ejemplo de realización, el medio de transmisión es una guía de ondas, constituida por ejemplo por fibra óptica.  For another example of embodiment, the transmission medium is a waveguide, constituted for example by optical fiber.
En cuanto al tipo de modulador utilizado en el sistema del primer aspecto de la invención, en función del ejemplo de realización éste comprende como mínimo una máscara de amplitud angular dispuesta en dicho plano donde se forma el anillo de luz o en otro plano o un modulador conocido como SLM, de las siglas "Spatial Light Modulator", es decir modulador de luz espacial.  As for the type of modulator used in the system of the first aspect of the invention, depending on the exemplary embodiment, it comprises at least one mask of angular amplitude arranged in said plane where the light ring is formed or in another plane or a modulator known as SLM, the acronym "Spatial Light Modulator", ie space light modulator.
Por lo que se refiere al haz de luz inicial, éste es en función del ejemplo de realización un haz de luz monocromático o un haz de luz policromático.  As regards the initial light beam, this is a monochromatic light beam or a polychromatic light beam depending on the exemplary embodiment.
De acuerdo con un ejemplo de realización, el modulador está configurado para modular de manera independiente a parte o a todos los canales ópticos, mediante modulación espacial o modulación espacial y temporal.  According to an embodiment, the modulator is configured to independently modulate part or all of the optical channels, by spatial modulation or spatial and temporal modulation.
Para otro ejemplo de realización, el modulador está configurado para modular de manera dependiente a como mínimo parte de los canales ópticos, mediante modulación espacial o modulación espacial y temporal.  For another embodiment, the modulator is configured to modulate in a dependent manner at least part of the optical channels, by spatial modulation or spatial and temporal modulation.
Según un ejemplo de realización, el transmisor comprende también como mínimo una primera lente dispuesta frente al primer extremo del primer elemento óptico para enfocar el haz de luz inicial sobre el mismo, y al menos una segunda lente dispuesta tras el segundo extremo del segundo elemento óptico para colimar dicho haz de luz multiplexado. According to an exemplary embodiment, the transmitter also comprises at least a first lens disposed in front of the first end of the first optical element to focus the initial beam of light on it, and at least a second lens disposed behind the second end of the second optical element. to collide said multiplexed beam of light.
El receptor comprende, asimismo, para un ejemplo de realización, al menos un objetivo dispuesto frente al primer extremo del tercer elemento óptico, para que éste reciba al haz de luz multiplexado tras atravesar el objetivo, y como mínimo un dispositivo fotodetector (tal como un dispositivo CCD) dispuesto frente al segundo extremo del tercer elemento óptico para recibir la luz de los canales ópticos y procesar la información contenida en los mismos. El sistema comprende, para unos ejemplos de realización, disponer en cascada dos o más grupos como el descrito hasta aquí, alineados entre sí o con sus respectivos ejes ópticos formando ángulo, dirigiéndose en este último caso el haz de luz de salida de un grupo óptico hacia la entrada del grupo óptico consecutivo mediante un elemento óptico que desvía la dirección del haz (tal como un reflector o un prisma). The receiver also comprises, for one embodiment, at least one lens arranged in front of the first end of the third optical element, so that it receives the multiplexed beam of light after passing through the lens, and at least one photodetector device (such as a CCD device) arranged in front of the second end of the third optical element to receive the light from the optical channels and process the information contained therein. The system comprises, for some embodiments, cascading two or more groups such as the one described here, aligned with each other or with their respective Optical axes forming an angle, in the latter case the beam of output of an optical group is directed towards the entrance of the consecutive optical group by means of an optical element that deflects the direction of the beam (such as a reflector or a prism).
Es decir que el sistema comprende, para dichos ejemplos de realización, tras el tercer elemento óptico, como mínimo un grupo óptico que incluye:  That is to say that the system comprises, for said embodiments, after the third optical element, at least one optical group that includes:
- al menos un segundo modulador dispuesto y configurado para codificar información modulando en amplitud los canales ópticos recuperados por el tercer elemento óptico,  - at least a second modulator arranged and configured to encode information by amplitude modulating the optical channels recovered by the third optical element,
- al menos un segundo multiplexor formado por como mínimo un cuarto elemento óptico dispuesto y configurado para mutiplexar los canales ópticos codificados por el segundo modulador, y  - at least a second multiplexer formed by at least a fourth optical element arranged and configured to mutiplex the optical channels encoded by the second modulator, and
- al menos un segundo demultiplexor formado por como mínimo un quinto elemento óptico dispuesto y configurado para demultiplexar al haz de luz multiplexado por el segundo multiplexor.  - at least a second demultiplexer formed by at least a fifth optical element arranged and configured to demultiplex the light beam multiplexed by the second multiplexer.
Tras dicho segundo demultiplexor, o tras el último demultiplexor para un ejemplo de realización para el que se dispongan más de dos grupos ópticos como los descritos, él sistema comprende un dispositivo fotodetector para recibir la luz de los canales ópticos y procesar la información contenida en los mismos, como parte de un último receptor dispuesto al final de la línea de grupos ópticos. After said second demultiplexer, or after the last demultiplexer for an exemplary embodiment for which more than two optical groups such as those described are arranged, the system comprises a photodetector device to receive the light from the optical channels and process the information contained in the themselves, as part of a last receiver arranged at the end of the line of optical groups.
Según otro ejemplo de realización, el sistema combina tramos que incluyen uno o más de los grupos ópticos descritos con tramos formados por otra clase de dispositivos de comunicación, óptica o de otra índole (en este último caso implementando la necesaria conversión de señales ópticas a la magnitud utilizada por los dispositivos de comunicación de otra clase).  According to another embodiment, the system combines sections that include one or more of the described optical groups with sections formed by another class of communication, optical or other devices (in the latter case implementing the necessary conversion of optical signals to the magnitude used by communication devices of another class).
Un segundo aspecto de la invención concierne a un método de comunicaciones ópticas, que comprende: A second aspect of the invention concerns a method of optical communications, comprising:
a) transmitir y codificar información en un haz de luz a través de un medio de transmisión; y  a) transmit and encode information in a beam of light through a transmission medium; Y
b) recibir dicho haz de luz, tras haber viajado por dicho medio de transmisión, y decodificar dicha información codificada incluida en el haz de luz.  b) receiving said beam of light, after having traveled through said transmission means, and decoding said encoded information included in the beam of light.
A diferencia de los métodos conocidos, en el propuesto por el segundo aspecto de la invención, la etapa a) comprende:  Unlike the known methods, in the one proposed by the second aspect of the invention, step a) comprises:
- emitir un haz de luz inicial hacia un primer elemento óptico; - recibir, mediante dicho primer elemento óptico, dicho haz de luz inicial, demultiplexarlo cambiando la dirección de los vectores de onda de al menos dos de los sub-haces que componen dicho haz de luz inicial, y suministrar dichos sub-haces con vectores de onda con direcciones cambiadas; - emit an initial beam of light towards a first optical element; - receiving, by said first optical element, said initial beam of light, demultiplexing it by changing the direction of the wave vectors of at least two of the sub-beams that make up said initial beam of light, and supplying said sub-beams with vectors of wave with changed directions;
- realizar dicha codificación de información modulando en amplitud dichos sub-haces con vectores de onda con direcciones cambiadas, cada uno de ellos constituyendo un canal óptico; y enviar la luz de dichos canales ópticos a un segundo elemento óptico; y  - carrying out said information coding by modulating in amplitude said sub-beams with wave vectors with changed directions, each constituting an optical channel; and send the light of said optical channels to a second optical element; Y
- recibir y multiplexar, mediante dicho segundo elemento óptico, la luz de dichos canales ópticos, suministrando dichos canales ópticos multiplexados hacia dicho medio de transmisión en la forma de un haz de luz multiplexado,  - receiving and multiplexing, by means of said second optical element, the light of said optical channels, supplying said multiplexed optical channels towards said transmission means in the form of a multiplexed light beam,
y la etapa b) comprende recibir y demultiplexar, mediante un tercer elemento óptico, dicho haz de luz multiplexado, suministrando dichos canales ópticos recuperados tras demultiplexar al haz de luz multiplexado, cambiando la dirección de los vectores de onda de los sub-haces, que son al menos dos, que componen el haz de luz multiplexado.  and step b) comprises receiving and demultiplexing, by means of a third optical element, said multiplexed light beam, supplying said optical channels recovered after demultiplexing to the multiplexed light beam, changing the direction of the sub-beam wave vectors, which They are at least two, which make up the multiplexed beam of light.
Para un ejemplo de realización preferido, los primer, segundo y tercer elementos ópticos son unos respectivos primer, segundo y tercer cristales biaxiales de refracción cónica, donde cada una de dichas demultiplexaciones de las etapas a) y b) comprende cambiar la dirección de los vectores de onda de los sub-haces que componen el haz de luz inicial, por lo que se refiere a la etapa a), y el haz multiplexado, por lo que se refiere a la etapa b), suministrando dichos sub-haces con vectores de onda con direcciones cambiadas de manera que su proyección en un plano adopta la forma de un anillo de luz, donde los sub-haces con vectores de onda en un mismo plano van a parar a sectores diametralmente opuestos del anillo de luz.  For a preferred embodiment, the first, second and third optical elements are respective first, second and third conical refractive biaxial crystals, where each of said demultiplexings of steps a) and b) comprises changing the direction of the vectors of wave of the sub-beams that make up the initial light beam, as regards stage a), and the multiplexed beam, as regards stage b), supplying said sub-beams with wave vectors with directions changed so that its projection in a plane takes the form of a light ring, where sub-beams with wave vectors in the same plane go to diametrically opposite sectors of the light ring.
El método del segundo aspecto de la invención está previsto para implementarse utilizando el sistema del primer aspecto.  The method of the second aspect of the invention is intended to be implemented using the system of the first aspect.
Por lo que se refiere al haz de luz inicial, éste es en función del ejemplo de realización un haz de luz monocromático o un haz de luz policromático.  As regards the initial light beam, this is a monochromatic light beam or a polychromatic light beam depending on the exemplary embodiment.
En función del ejemplo de realización, el mencionado haz de luz inicial está polarizado lineal o circularmente, o está depolarizado. Un tercer aspecto de la invención concierne a un transmisor de comunicaciones ópticas, que está configurado para transmitir y codificar información en un haz de luz a través de un medio de transmisión, donde, a diferencia de los transmisores conocidos, comprende: Depending on the exemplary embodiment, said initial light beam is linearly or circularly polarized, or depolarized. A third aspect of the invention concerns an optical communications transmitter, which is configured to transmit and encode information in a beam of light to through a transmission medium, where, unlike known transmitters, it comprises:
- un demultiplexor formado por al menos un primer elemento óptico dispuesto y configurado para recibir, por un primer extremo, un haz de luz inicial, demultiplexarlo cambiando la dirección de los vectores de onda de al menos dos de los sub-haces que componen dicho haz de luz inicial, y suministrar dichos sub-haces con vectores de onda con direcciones cambiadas por un segundo extremo opuesto a dicho primer extremo; - a demultiplexer formed by at least a first optical element arranged and configured to receive, at a first end, an initial beam of light, demultiplexing it by changing the direction of the wave vectors of at least two of the sub-beams that make up said beam of initial light, and supplying said sub-beams with wave vectors with directions changed by a second end opposite to said first end;
- un modulador dispuesto y configurado para realizar dicha codificación de información modulando en amplitud dichos sub-haces con vectores de onda con direcciones cambiadas, cada uno de ellos constituyendo un canal óptico; y  - a modulator arranged and configured to perform said information coding by amplitude modulating said sub-beams with wave vectors with changed directions, each constituting an optical channel; Y
- un multiplexor formado por al menos un segundo elemento óptico dispuesto y configurado para recibir, por un primer extremo, la luz de dichos canales ópticos, y suministrar dichos canales ópticos multiplexados hacia dicho medio de transmisión en la forma de un haz de luz multiplexado, por un segundo extremo opuesto a dicho primer extremo. El transmisor del tercer aspecto de la invención está configurado, según diferentes ejemplos de realización, para hacer las funciones del transmisor del sistema del primer aspecto, es decir que el transmisor descrito como incluido en el sistema del primer aspecto de la invención es, para unos ejemplos de realización, el propuesto por el tercer aspecto.  - a multiplexer formed by at least a second optical element arranged and configured to receive, at a first end, the light of said optical channels, and to supply said multiplexed optical channels towards said transmission means in the form of a multiplexed light beam, by a second end opposite said first end. The transmitter of the third aspect of the invention is configured, according to different embodiments, to perform the functions of the transmitter of the system of the first aspect, that is to say that the transmitter described as included in the system of the first aspect of the invention is, for some realization examples, the one proposed by the third aspect.
Un cuarto aspecto de la invención concierne a un receptor de comunicaciones ópticas que está dispuesto para recibir un haz de luz que incluye información codificada, tras haber viajado por un medio de transmisión, y configurado para decodificar dicha información codificada incluida en el haz de luz, comprendiendo el receptor, de manera característica, un demultiplexor formado por como mínimo un elemento óptico dispuesto y configurado para recibir, por un primer extremo, a un haz de luz con información codificada en unos canales ópticos correspondientes a unos sectores de luz multiplexados en dicho haz de luz, y suministrar, por un segundo extremo opuesto a dicho primer extremo, dichos canales ópticos recuperados tras demultiplexar el haz de luz multiplexado cambiando la dirección de los vectores de onda de los sub-haces que componen el haz de luz multiplexado. El receptor del cuarto aspecto de la invención está configurado, según diferentes ejemplos de realización, para hacer las funciones del receptor del sistema del primer aspecto, es decir que el receptor descrito como incluido en el sistema del primer aspecto de la invención es, para unos ejemplos de realización, el propuesto por el cuarto aspecto. A fourth aspect of the invention concerns an optical communications receiver that is arranged to receive a light beam that includes encoded information, having traveled through a transmission medium, and configured to decode said encoded information included in the light beam, the receiver comprising, in a characteristic way, a demultiplexer formed by at least one optical element arranged and configured to receive, at a first end, a light beam with information encoded in optical channels corresponding to multiplexed light sectors in said beam of light, and supplying, by a second end opposite said first end, said optical channels recovered after demultiplexing the multiplexed light beam by changing the direction of the wave vectors of the sub-beams that make up the multiplexed light beam. The receiver of the fourth aspect of the invention is configured, according to different embodiments, to perform the functions of the receiver of the system of the first aspect, that is to say that the receiver described as included in the system of the first aspect of the invention is, for some realization examples, the one proposed by the fourth aspect.
Breve descripción de los dibujos Brief description of the drawings
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:  The foregoing and other advantages and features will be more fully understood from the following detailed description of some embodiments with reference to the attached drawings, which should be taken by way of illustration and not limitation, in which:
la Fig. 1 es una vista esquemática, en perspectiva, del sistema propuesto por el primer aspecto de la invención, para un ejemplo de realización para el que los elementos ópticos son unos cristales biaxiales de refracción cónica;  Fig. 1 is a schematic perspective view of the system proposed by the first aspect of the invention, for an exemplary embodiment for which the optical elements are biaxial crystals of conical refraction;
la Fig. 2 muestra unas imágenes experimentales obtenidas para el sistema de la Fig. 1 utilizando máscaras para multiplexado con 2 (a), 4 (b), 6 (c), 8 (d), 10 (e), 12 (f) y 36 (g) aperturas angulares, ilustradas en la primera fila; la segunda fila muestra los haces multiplexados producidos por el transmisor, mientras que en la tercera fila pueden verse los patrones demultiplexados por el receptor;  Fig. 2 shows experimental images obtained for the system of Fig. 1 using masks for multiplexing with 2 (a), 4 (b), 6 (c), 8 (d), 10 (e), 12 (f ) and 36 (g) angular openings, illustrated in the first row; the second row shows the multiplexed beams produced by the transmitter, while in the third row the patterns demultiplexed by the receiver can be seen;
la Fig. 3 muestra, de manera esquemática, el sistema correspondiente a un caso degenerado de CR en 2-cascada, en el cual está basado el sistema propuesto por la presente invención;  Fig. 3 shows, schematically, the system corresponding to a degenerate case of CR in 2-cascade, on which the system proposed by the present invention is based;
la Fig. 4 muestra, con relación al sistema de la Fig. 3, diferentes capturas realizadas con un dispositivo CCD para un haz de entrada Gaussiano (a-c), fuertemente elíptico (d-f) y obtenido con una máscara de amplitud de 8-estrellas; la primera columna representa las imágenes de los haces de entrada, la segunda columna el patrón de intensidad en el plano focal y la última columna muestra los haces de salida; y  Fig. 4 shows, in relation to the system of Fig. 3, different captures made with a CCD device for a Gaussian input beam (a-c), strongly elliptical (d-f) and obtained with an 8-star amplitude mask; the first column represents the images of the input beams, the second column the intensity pattern in the focal plane and the last column shows the output beams; Y
las Figs. 5a y 5b muestran, de manera esquemática, al sistema propuesto por la invención, para un ejemplo de realización diferente al de la Fig. 1 , para el que el sistema es bidireccional, ilustrándose en la Fig. 5a el camino de un haz que entra por la izquierda, y en la Fig. 5b la trayectoria de un haz que entra por la derecha, según la posición ilustrada del sistema. Descripción detallada de unos ejemplos de realización En el presente apartado se describirán unos ejemplos de realización con referencia a las Figuras adjuntas representativos del caso preferido descrito anteriormente, es decir el que utiliza como elementos ópticos cristales biaxiales de refracción cónica. Figs. 5a and 5b show, schematically, the system proposed by the invention, for an example of an embodiment different from that of Fig. 1, for which the system is bidirectional, illustrating in Fig. 5a the path of a beam entering from the left, and in Fig. 5b the path of a beam that enters from the right, according to the illustrated position of the system. Detailed description of some embodiments In this section, some embodiments will be described with reference to the accompanying Figures representative of the preferred case described above, that is to say, which uses as optical elements biaxial crystals of conical refraction.
En primer lugar se hace una explicación de la idea central sobre la que se sustenta el sistema propuesto por la presente invención, por lo que se refiere a su ejemplo de realización preferido para el que el transmisor de éste comprende dos cristales biaxiales de refracción en una disposición que se denomina caso degenerado de CR en 2-cascada.  First, an explanation is made of the central idea on which the system proposed by the present invention is based, as regards its preferred embodiment for which the transmitter of the latter comprises two biaxial crystals of refraction in one provision that is called degenerate case of CR in 2-cascade.
El caso degenerado de CR en 2-cascada (esto es, con dos cristales) con CREs opuestamente orientados es la idea central del ejemplo de realización preferido de la presente invención, para codificación de la información de un haz monocromático Gaussiano. Consiste en una cascada de dos CREs con idéntica longitud (preferentemente <100 nm de diferencia) con sendos vectores-Λ opuestamente orientados, colocados entre una pareja de lentes focalizadora/colimadora LF/LC, tal y como se ilustra en la Fig. 3. El primer cristal CRE1 transforma el haz Gaussiano inicial Hi en el anillo de CR, proyectado en el plano focal PF, y el segundo cristal CRE2 transforma dicho anillo hacia el haz Gaussiano inicial, en la forma de un haz de salida Ho. Dicho de otra manera, la CR en 2-cascada degenerada puede ser considerada como una transformación directa-inversa 2D de un haz monocromático, de manera análoga a la transformada de Fourier bidimensional. The degenerated case of CR in 2-cascade (that is, with two crystals) with oppositely oriented CREs is the central idea of the preferred embodiment of the present invention, for coding the information of a Gaussian monochromatic beam. It consists of a cascade of two CREs with the same length (preferably <100 nm difference) with two opposite-oriented vectors, placed between a pair of LF / LC focusing / collimating lenses, as illustrated in Fig. 3. The first CRE1 crystal transforms the initial Gaussian beam Hi in the CR ring, projected in the focal plane PF, and the second CRE2 crystal transforms said ring towards the initial Gaussian beam, in the form of an output beam Ho. In other words, the degenerated 2-cascade CR can be considered as a direct-inverse 2D transformation of a monochromatic beam, analogously to the two-dimensional Fourier transform.
Los ampliamente conocidos modos TEMp/ formados por funciones de Laguerre- Gauss constituyen una base completa para representar cualquier campo de luz cuya amplitud transversal y polarización presenten simetría cilindrica. La distribución de intensidad de un haz de CR producida por un haz Gaussiano circularmente polarizado tiene simetría cilindrica. No obstante, los haces de CR no pueden ser representado en términos de los modos TEMp/. De hecho, los últimos tienen una simetría tal que el vector de campo eléctrico para cada dos puntos situados opuestamente de manera relativa al eje de simetría son o bien colineales o bien anti-colineales. En cambio, los vectores de campo eléctrico de dos puntos opuestos del anillo de CR son siempre perpendiculares. En consecuencia, los modos TEMp/ no pueden ser utilizados como una base para representar el haz refractado cónicamente. De la misma manera, se puede concluir que los modos de Hermite-Gauss, así como otros modos más exóticos tales como los de Ince-Gauss o los h i pe rgeo métricos, tampoco pueden ser utilizados como una base de representación de la CR. Por este motivo, hay que enfocar la descomposición del haz de CR desde un acercamiento alternativo. The widely known TEMp modes / formed by Laguerre-Gauss functions constitute a complete basis to represent any light field whose transverse amplitude and polarization have cylindrical symmetry. The intensity distribution of a CR beam produced by a circularly polarized Gaussian beam has cylindrical symmetry. However, CR beams cannot be represented in terms of the TEMp / modes. In fact, the latter have a symmetry such that the electric field vector for each two points opposite each other relative to the axis of symmetry are either collinear or anti-collinear. In contrast, the electric field vectors of two opposite points of the CR ring are always perpendicular. Consequently, TEMp / modes cannot be used as a basis to represent the conically refracted beam. In the same way, it can be concluded that the Hermite-Gauss modes, as well as other more exotic modes such as Ince-Gauss or the metric rivers, cannot be used either. as a representation base of the CR. For this reason, we must focus the decomposition of the CR beam from an alternative approach.
Las investigaciones llevadas a cabo por los presentes inventores ya han mostrado que existen haces, conocidos como haces filtrados de CR [17], que no producen un anillo de CR cuando se propagan a lo largo de del eje óptico de un cristal biaxial. Estos haces se dividen, en general, en dos haces diagonalmente posicionados en puntos opuestos del anillo de CR que es de esperar en cualquier otro caso. Las intensidades de dichos haces divididos cambia bajo la rotación del CRE, de manera similar a como pasa en la refracción doble en calcita. Para algunas orientaciones particulares del CRE, uno de los haces divididos tiene intensidad nula y, usando una analogía con el ampliamente conocido fenómeno de la refracción doble, se identifican estos haces filtrados como modos propios de luz del efecto de la CR. Estos modos propios son de gran utilidad para describir la propagación de cualquier haz inicial con un patrón de intensidad arbitrario a lo largo de la configuración de CR en 2-cascada degenerada.  The investigations carried out by the present inventors have already shown that there are beams, known as CR filtered beams [17], that do not produce a CR ring when they propagate along the optical axis of a biaxial crystal. These beams are divided, in general, into two beams diagonally positioned at opposite points of the CR ring which is to be expected in any other case. The intensities of these divided beams change under the rotation of the CRE, similar to what happens in double refraction in calcite. For some particular orientations of the CRE, one of the divided beams has zero intensity and, using an analogy with the widely known phenomenon of double refraction, these filtered beams are identified as their own light modes of the effect of the CR. These proper modes are very useful for describing the propagation of any initial beam with an arbitrary intensity pattern along the degenerated 2-cascade CR configuration.
La Fig. 4 muestra los resultados de dichas investigaciones en la propagación de tres haces de entrada con patrones transversales diferentes a lo largo de una configuración de CR en 2-cascada degenerada. De manera clara, sólo el haz Gaussiano (ver Fig. 4(a)) produce el anillo de CR (ver Fig. 4(b)) después de pasar a lo largo del primer CRE, restaurándose el anillo hacia el haz inicial (ver Fig. 4(c)) tras pasar por el segundo CRE.  Fig. 4 shows the results of said investigations in the propagation of three input beams with different transverse patterns along a degenerated 2-cascade CR configuration. Clearly, only the Gaussian beam (see Fig. 4 (a)) produces the CR ring (see Fig. 4 (b)) after passing along the first CRE, restoring the ring to the initial beam (see Fig. 4 (c)) after going through the second CRE.
Para generar el haz con forma fuertemente elíptica de la Fig. 4(d) se utilizó una rendija de 25μηι de apertura para seleccionar solamente la parte central de un haz Gaussiano. En este caso, de manera similar al caso de haces filtrados de CR, se obtuvieron únicamente dos haces refractados. Si, además, este haz incidente está linealmente polarizado, entonces existe una orientación específica del primer CRE para la cual sólo se observa un haz en el plano focal. Es en este sentido que los haces linealmente polarizados con un perfil fuertemente elíptico son identificados como modos propios de luz para el fenómeno de la CR.  To generate the strongly elliptical shaped beam of Fig. 4 (d), a 25μηι opening slit was used to select only the central part of a Gaussian beam. In this case, similar to the case of filtered CR beams, only two refracted beams were obtained. If, in addition, this incident beam is linearly polarized, then there is a specific orientation of the first CRE for which only one beam is observed in the focal plane. It is in this sense that linearly polarized beams with a strongly elliptical profile are identified as their own modes of light for the phenomenon of CR.
Un haz Gaussiano puede ser representado por la transformada de Fourier como una superposición de ondas planas con diferentes vectores de onda k. El haz fuertemente elíptico (ver Fig. 4(d)) puede ser visto como compuesto por ondas planas cuyos vectores-/( se encuentran confinados en un plano, conocido como plano K, de manera que el haz Gaussiano incidente puede ser considerado como una suma infinitesimal de modos propios, es decir de haces fuertemente elípticos con diferentes planos K. Después del primer CRE, cada haz caracterizado por un plano K es proyectado en dos puntos opuestos de lo que debería ser un anillo de CR (ver Fig. 4(e)) y, después del segundo CRE, ambos puntos son restaurados hacia el haz inicial conservando el plano K, ver Fig. 4(f). A Gaussian beam can be represented by the Fourier transform as a superposition of plane waves with different k wave vectors. The strongly elliptical beam (see Fig. 4 (d)) can be seen as composed of plane waves whose vectors - / (are confined in a plane, known as the K plane, so that the incident Gaussian beam can be considered as a infinitesimal sum of own modes, that is to say strongly elliptical beams with different K planes. After the first CRE, each beam characterized by a K plane is projected at two opposite points of what a CR ring should be (see Fig. 4 (e)) and, after the second CRE, both points are restored to the initial beam while retaining the K plane, see Fig. 4 (f) .
Alternativamente, se puede expresar la operatividad de la 2-cascada degenerada teniendo en cuenta que un haz Gaussiano es espacialmente demultiplexado en un anillo de CR de tal manera que cada pareja de puntos opuestos (con polarizaciones ortogonales) representan un plano K del haz Gaussiano incidente. Para el caso con n planos K (n = 4 en la Fig. 4(g)), el anillo de CR tendrá 2n puntos opuestos (8 en Fig. 4(h)). Los miembros de cada par de haces de puntos opuestos se unen de nuevo (multiplexado) después del segundo CRE en un solo haz, haciendo que el haz inicial sea reproducido después del segundo CRE; comparar Figs. 4(i) y (g). El segundo cristal CRE2, que realiza la transformada inversa, puede ser visto como un multiplexor. Hay que hacer notar que la intensidad de cada punto del anillo de luz CR antes del elemento de multiplexado (segundo CRE), puede ser modulada independientemente, permitiendo un aumento de la capacidad del canal transportado por el haz Gaussiano.  Alternatively, the operability of the degenerated 2-cascade can be expressed considering that a Gaussian beam is spatially demultiplexed in a CR ring such that each pair of opposite points (with orthogonal polarizations) represents a plane K of the incident Gaussian beam . For the case with n planes K (n = 4 in Fig. 4 (g)), the CR ring will have 2n opposite points (8 in Fig. 4 (h)). The members of each pair of beams of opposite points are joined again (multiplexed) after the second CRE in a single beam, causing the initial beam to be reproduced after the second CRE; compare Figs. 4 (i) and (g). The second CRE2 crystal, which performs the inverse transform, can be seen as a multiplexer. It should be noted that the intensity of each point of the light ring CR before the multiplexing element (second CRE) can be modulated independently, allowing an increase in the capacity of the channel carried by the Gaussian beam.
Una vez explicado el estudio realizado sobre el caso degenerado de CR en 2- cascada, que es la base del ejemplo de realización preferido del sistema propuesto por el primer aspecto de la invención, a continuación se describe éste, el cual está diseñado para codificar y decodificar información mediante CR, explicándose en lo que sigue en términos de las tres partes fundamentales de un sistema de comunicación óptica en FSOC, i.e., el transmisor T, la propagación en espacio libre propiamente dicha y el receptor R, con referencia a la Fig. 1. El transmisor T comprende dos cristales biaxiales C1 y C2, que proporcionan la transformación directa-inversa, una máscara de amplitud angular M1 que se utiliza como modulador de luz y una lente L1 para focalizar el haz de entrada H1 y otra lente L2 para colimar el haz de salida Ho. After explaining the study on the degenerate case of CR in 2-cascade, which is the basis of the preferred embodiment of the system proposed by the first aspect of the invention, this is described below, which is designed to encode and decode information by CR, explaining in the following in terms of the three fundamental parts of an optical communication system in FSOC, ie, the transmitter T, the free space propagation itself and the receiver R, with reference to Fig. 1. The transmitter T comprises two biaxial crystals C1 and C2, which provide the direct-inverse transformation, a mask of angular amplitude M1 that is used as a light modulator and a lens L1 to focus the input beam H1 and another lens L2 to collimating the output beam Ho.
Hay que indicar que si bien en la Fig. 1 se han ilustrado los cristales C1 y C2 con diferentes tamaños, los resultados ilustrados en la Fig. 2 corresponden a una implementación del sistema de la Fig. 1 donde C1 y C2 tienen un mismo tamaño, que se indicará a continuación, y se encuentran orientados inversamente. It should be noted that although the crystals C1 and C2 with different sizes have been illustrated in Fig. 1, the results illustrated in Fig. 2 correspond to an implementation of the system of Fig. 1 where C1 and C2 have the same size , which will be indicated below, and are inversely oriented.
Para el haz inicial H1 , se ha utilizado, para la prueba experimental cuyos resultados se ilustran en la Fig. 2, un haz Gaussiano polarizado circularmente y colimado con un radio de cintura sin focalizar de w0 = 1 ,5 mm obtenido de un diodo láser a 640 nm acoplado a una fibra monomodo. La 2-cascada degenerada de CR es preparada con dos cristales biaxiales idénticos de KGd(W04)2 tales que ofrecen un anillo después del primer cristal C1 de 1 ,5 mm de radio. Para focalizar y colimar el haz, se han utilizado lentes L1 , L2 con una distancia focal de 200 mm. El protocolo de demultiplexado puede ser dividido en los pasos siguientes: For the initial beam H1, for the experimental test whose results are illustrated in Fig. 2, a circularly polarized Gaussian beam and collimated with an unfocused waist radius of w 0 = 1.5 mm obtained from a 640 nm laser diode coupled to a single mode fiber. The degenerated 2-cascade of CR is prepared with two identical biaxial crystals of KGd (W0 4 ) 2 such that they offer a ring after the first C1 crystal of 1.5 mm radius. To focus and collimate the beam, L1, L2 lenses with a focal length of 200 mm have been used. The demultiplexing protocol can be divided into the following steps:
(i) El primer CRE, o elemento de refracción cónica, C1 demultiplexa el haz Gaussiano H1 en un anillo cuyos puntos son líneas o canales de comunicación independientes. Cada punto del anillo puede ser separado correctamente y modulado. (ii) Como elemento de modulación M1 se han utilizado máscaras de amplitud con n (hasta 36) sectores circulares abiertos, cada una de ellas colocada, de manera alternativa, en el plano donde se proyecta el anillo de luz, para seleccionar algunas partes del anillo de CR. (i) The first CRE, or conical refractive element, C1 demultiplexes the Gaussian beam H1 into a ring whose points are independent communication lines or channels. Each point of the ring can be separated correctly and modulated. (ii) As a modulation element M1 amplitude masks have been used with n (up to 36) open circular sectors, each of them placed, alternatively, in the plane where the light ring is projected, to select some parts of the CR ring
(iii) El segundo CRE C2, idéntico y orientado inversamente con respecto al primero (para la prueba experimental aquí descrita), a través de cuyo eje óptico pasan las partes del anillo de luz seleccionadas por la máscara utilizada como modulador M1 , y se encarga de hacer la transformación inversa del haz, es decir multiplexa los sectores modulados en un haz de salida HM con una divergencia comparable con la del haz incidente H1. En la Fig. 2 se ilustran las imágenes experimentales obtenidas utilizando máscaras para multiplexado con 2 (a), 4 (b), 6 (c), 8 (d), 10 (e), 12 (f) y 36 (g) aperturas angulares. La segunda fila muestra los haces multiplexados producidos por el transmisor T, mientras que en la tercera fila pueden verse los patrones demultiplexados por el receptor R. En el montaje experimental aquí descrito, la propagación en espacio libre fue de alrededor de 1 ,5 m. Es importante resaltar que la máscara utilizada tiene influencia en el perfil pero no en la divergencia del haz multiplexado HM, ver segunda fila en Fig. 2, cosa que permite utilizar el sistema propuesto por la invención en distancias de propagación largas. En cuanto al receptor R, éste consiste en un objetivo L3 con distancia focal de(iii) The second CRE C2, identical and inversely oriented with respect to the first (for the experimental test described here), through whose optical axis pass the parts of the light ring selected by the mask used as modulator M1, and is responsible for of doing the inverse transformation of the beam, that is to say multiplexing the sectors modulated in an output beam HM with a divergence comparable to that of the incident beam H1. The experimental images obtained using masks for multiplexing with 2 (a), 4 (b), 6 (c), 8 (d), 10 (e), 12 (f) and 36 (g) are illustrated in Fig. angular openings The second row shows the multiplexed beams produced by the T transmitter, while in the third row the patterns can be seen demultiplexed by the R receiver. In the experimental setup described here, the free space propagation was about 1.5 m. It is important to note that the mask used has an influence on the profile but not on the divergence of the HM multiplexed beam, see second row in Fig. 2, which allows the system proposed by the invention to be used over long propagation distances. As for the R receiver, this consists of an objective L3 with focal length of
50 mm, un tercer CRE C3 de 12 mm de largo, que demultiplexa el haz multiplexado HM, y una cámara CCD, como dispositivo de fotodetección FD, que captura el haz patrón resultante. El CRE C3 demultiplexa el haz propagado en espacio libre HM, mediante el fenómeno de CR y recupera los sectores modulados por el transmisor T. Como se puede observar en la tercera fila de imágenes en la Fig. 2, es posible modular de manera clara hasta 12 sectores sin interferencias los unos con los otros, es decir con unas características de divergencia comparables a las de un haz Gaussiano. En el presente apartado se han mostrado los resultados obtenidos de una investigación detallada hecha por los presentes inventores sobre la propiedad de la transformada directa e inversa de un haz de luz entrante propagado a lo largo del eje óptico de un montaje de CR en 2-cascada degenerado donde se usan dos cristales biaxiales opuestamente orientados, que ha demostrado ser una configuración a utilizar como una técnica novedosa para el multiplexado y demultiplexado de haces ópticos monocromáticos, según la presente invención. Esta técnica puede ser utilizada para incrementar la capacidad del canal en FSOC. 50 mm, a third CRE C3 12 mm long, which demultiplexes the HM multiplexed beam, and a CCD camera, as an FD photodetection device, that captures the resulting standard beam. The CRE C3 demultiplexes the beam propagated in free space HM, by the phenomenon of CR and recover the sectors modulated by the transmitter T. As can be seen in the third row of images in Fig. 2, it is possible to modulate clearly up to 12 sectors without interference with each other, that is to say with divergence characteristics comparable to those of a Gaussian beam. In this section the results obtained from a detailed investigation made by the present inventors on the property of the direct and inverse transform of an incoming beam of light propagated along the optical axis of a 2-cascade CR assembly have been shown. degenerated where two oppositely oriented biaxial crystals are used, which has proven to be a configuration to be used as a novel technique for multiplexing and demultiplexing monochromatic optical beams, according to the present invention. This technique can be used to increase the capacity of the channel in FSOC.
De hecho, mediante la implementación experimental descrita con referencia a las figuras adjuntas, se ha mostrado un aumento en un orden de magnitud de la capacidad del canal en una distancia de propagación de 1 ,5 m, de tal manera que la divergencia del haz resultante no supera a la del incidente. Esta técnica puede ser implementada tanto con luz coherente como incoherente y puede ser extendida a cualquier longitud de onda para la que el cristal biaxial sea transparente. Hay que añadir que, si se envía un haz policromático, cada longitud de onda puede ser independientemente modulada y, en consecuencia, el sistema y método propuesto puede ser utilizado para el multiplexado y demultiplexado de un rango espectral particular (alrededor de ± 100 nm para los cristales biaxiales de KGd(W04)2 utilizados en los experimentos realizados por los presentes inventores). Esta técnica de CR puede ser además combinada con otras técnicas estándar de multiplexado/demultiplexado tales como WDM. In fact, by means of the experimental implementation described with reference to the attached figures, an increase in an order of magnitude of the capacity of the channel has been shown in a propagation distance of 1.5 m, such that the divergence of the resulting beam does not exceed that of the incident. This technique can be implemented with both coherent and incoherent light and can be extended to any wavelength for which the biaxial crystal is transparent. It should be added that, if a polychromatic beam is sent, each wavelength can be independently modulated and, consequently, the proposed system and method can be used for multiplexing and demultiplexing of a particular spectral range (around ± 100 nm for the biaxial crystals of KGd (W0 4 ) 2 used in the experiments performed by the present inventors). This CR technique can also be combined with other standard multiplexing / demultiplexing techniques such as WDM.
Realizando pequeños cambios o ajustes en la implementación del sistema que se ha utilizado para la prueba experimental descrita, sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas, se espera poder incrementar aún más la capacidad del canal y extender los resultados a distancias aún mayores. Asimismo, para la mencionada prueba experimental se han considerado y utilizado fuentes de luz clásicas pero nuevas aplicaciones en comunicaciones seguras pueden surgir de la extensión de multiplexado/demultiplexado con CR hacia fuentes de luz cuánticas. Finalmente, en las Figs. 5a y 5b se ilustra un ejemplo de realización del sistema propuesto por el primer aspecto de la invención, más desarrollado que el ilustrado por la Fig. 1 , permitiendo un uso bidireccional del mismo, gracias especialmente a la inclusión de dos sistemas ópticos semitransparentes E1 y E2, tal como dos espejos, que permiten el paso de la luz en un sentido y que la reflejan cuando esta incide en los mismos en sentido contrario. Making small changes or adjustments in the implementation of the system that has been used for the experimental test described, without departing from the scope of the invention as defined in the attached claims, it is expected to be able to further increase the capacity of the channel and extend the results to even greater distances. Likewise, for the mentioned experimental test, classic light sources have been considered and used, but new applications in secure communications can arise from the extension of multiplexing / demultiplexing with CR towards quantum light sources. Finally, in Figs. 5a and 5b illustrates an embodiment of the system proposed by the first aspect of the invention, more developed than that illustrated by Fig. 1, allowing bidirectional use thereof, especially thanks to the inclusion of two semi-transparent optical systems E1 and E2, such as two mirrors, that allow the passage of light in one direction and that reflect it when it affects them in the opposite direction.
En la Fig. 5a se ilustra al sistema cuando ha entrado un haz de luz por la izquierda del mismo, según la posición ilustrada, es decir el haz H1 a, enfocado por la lente L1 , siendo éste demultiplexado por el primer elemento óptico C1 en unos correspondientes sub-haces, o canales ópticos, cambiando la dirección de sus vectores de onda, los cuales son modulados por el modulador M1 , todo ello de manera análoga a lo descrito para el ejemplo de realización de la Fig. 1 , y tras ello atraviesan al espejo semitransparente E1 y llegan al segundo elemento óptico C2.  In Fig. 5a the system is illustrated when a beam of light has entered from the left of it, according to the position illustrated, that is the beam H1 a, focused by the lens L1, this being demultiplexed by the first optical element C1 in corresponding sub-beams, or optical channels, changing the direction of their wave vectors, which are modulated by the modulator M1, all in a manner analogous to that described for the embodiment example of Fig. 1, and after that they pass through the semi-transparent mirror E1 and reach the second optical element C2.
Siguiendo con la descripción de la Fig. 5a, en ella puede apreciarse cómo el segundo elemento óptico C2 multiplexa dichos canales ópticos, como ya se ha explicado con referencia a la Fig. 1 , y el haz multiplexado HMa, una vez colimado por la lente L2, atraviesa el medio de transmisión y tras él el objetivo o lente L3 y el tercer elemento óptico C3, donde se demultiplexa recuperándose los canales ópticos que lo componen, tras lo cual la luz de estos canales ópticos se refleja en el espejo semitransparente E2 dirigiéndose hacia el fotodetector FD2.  Following the description of Fig. 5a, it can be seen how the second optical element C2 multiplexes said optical channels, as already explained with reference to Fig. 1, and the HMa multiplexed beam, once collimated by the lens L2, passes through the transmission medium and behind it the lens or lens L3 and the third optical element C3, where the optical channels that compose it are demultiplexed, after which the light of these optical channels is reflected in the semi-transparent mirror E2 directed towards the FD2 photodetector.
En la Fig. 5b se ilustra al mismo sistema que en la Fig. 5a, pero cuando el haz de luz de entrada es el indicado como H1 b, es decir el que entra por la derecha del sistema, utilizándose en este caso como lente de entrada la indicada como L4 y como demultiplexor el cuarto elemento óptico C4, que realiza las misma funciones que el primer elemento óptico C1.  The same system as in Fig. 5a is illustrated in Fig. 5b, but when the input beam is the one indicated as H1 b, that is, the one that enters from the right of the system, being used as a lens input indicated as L4 and as a demultiplexer the fourth optical element C4, which performs the same functions as the first optical element C1.
Tras las demultiplexión de Hb y modulación de sus respectivos canales ópticos mediante el modulador M2, se sigue el mismo proceso explicado con relación a la Fig. 5a, pero en este caso es el tercer elemento óptico C3 el que multiplexa los canales ópticos del haz H1 b, tras haber atravesado al espejo semitransparente E2, y el haz multiplexado HMb, una vez colimado por la lente L3, atraviesa el medio de transmisión y tras él el objetivo o lente L2 y llega al segundo elemento óptico C2, donde se demultiplexa recuperándose los canales ópticos que lo componen, tras lo cual la luz de estos canales ópticos se refleja en el espejo semitransparente E1 dirigiéndose hacia el fotodetector FD1.  After the demultiplexion of Hb and modulation of their respective optical channels by means of the M2 modulator, the same process explained in relation to Fig. 5a is followed, but in this case it is the third optical element C3 that multiplexes the optical channels of the H1 beam b, having passed through the semi-transparent mirror E2, and the multiplexed beam HMb, once collimated by the lens L3, passes through the transmission medium and behind it the lens or lens L2 and reaches the second optical element C2, where it is demultiplexed recovering the optical channels that compose it, after which the light of these optical channels is reflected in the semi-transparent mirror E1 going towards the photodetector FD1.
Es decir que, para el ejemplo de realización ilustrado por las Figs. 5a y 5b, los elementos que un sentido actúan como transmisores, T1 o T2, actúan en un sentido opuesto como receptores, R1 o R2, proporcionado la citada bidireccionalidad para la transmisión de datos. That is, for the exemplary embodiment illustrated by Figs. 5a and 5b, the elements that a sense act as transmitters, T1 or T2, act in a sense opposite as receivers, R1 or R2, provided the said bidirectionality for data transmission.
Los primer C1 , segundo C2, tercer C3 y cuarto C4 elementos ópticos son, en función del ejemplo de realización, cristales biaxiales de refracción cónica, cristales fotónicos o cualquier elemento óptico diseñado para realizar la función explicada. The first C1, second C2, third C3 and fourth C4 optical elements are, depending on the exemplary embodiment, biaxial conical refraction crystals, photonic crystals or any optical element designed to perform the explained function.
Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas, pudiendo, por ejemplo, modificarse el sistema bidireccional de las Figs. 5a y 5b, tanto en el número de elementos que lo forman como en su disposición dentro del sistema, manteniendo las citadas características de bidireccionalidad. A person skilled in the art could introduce changes and modifications in the described embodiments without departing from the scope of the invention as defined in the appended claims, being able, for example, to modify the bidirectional system of Figs. 5a and 5b, both in the number of elements that form it and in its arrangement within the system, maintaining the aforementioned bidirectional characteristics.
REFERENCIAS REFERENCES
[I] Hemmati, H. "Interplanetary láser Communications and precisión ranging," Láser Photonics Rev. 5, 697-710 (2011). [I] Hemmati, H. "Interplanetary Laser Communications and precision ranging," Laser Photonics Rev. 5, 697-710 (2011).
[2] Gibson, G., Courtial, J., Padgett, M. J., Vasnetsov, M., Pas'ko, V., Barnett, S. M., and Franke-Arnold, S., "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express 12, 5448-5456 (2004). [2] Gibson, G., Courtial, J., Padgett, MJ, Vasnetsov, M., Pas'ko, V., Barnett, SM, and Franke-Arnold, S., "Free-space information transfer using light beams angular orbital carrying momentum, "Opt. Express 12, 5448-5456 (2004).
[3] Slussarenko, S., Karimi, E., Piccirillo, B., Marrucci, L., and Santamato, E., "Efficient generation and control of different-order orbital angular momentum states for communication links," J. Opt. Soc. Am. A 28, 61-65 (2011). [4] Gatto, A., Tacca, M., Martinelli, P, Boffini, P. and Martinelli, M., "Free- space orbital angular momentum división multiplexing with Bessel beams," J. Opt. 13, 064018 (2011). [3] Slussarenko, S., Karimi, E., Piccirillo, B., Marrucci, L., and Santamato, E., "Efficient generation and control of different-order orbital angular momentum states for communication links," J. Opt . Soc. Am. A 28, 61-65 (2011). [4] Gatto, A., Tacca, M., Martinelli, P, Boffini, P. and Martinelli, M., "Free-space angular orbital momentum division multiplexing with Bessel beams," J. Opt. 13, 064018 (2011).
[5] Wang, Z., Zhang, N. and Yuan X.-C, "High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication," Opt. Express 19, 482-492 (2011). [5] Wang, Z., Zhang, N. and Yuan X.-C, "High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication," Opt. Express 19, 482-492 (2011).
[6] Jack, B., Padgett, M. J., and Franke-Arnold, S, "Angular diffraction," New J. Phys. 10, 103013 (2008). [6] Jack, B., Padgett, M. J., and Franke-Arnold, S, "Angular diffraction," New J. Phys. 10, 103013 (2008).
[7] Franke-Arnold, S., Barnett, S. M., Yao, E., Leach, J., Courtial, J., and Padgett, M., "Uncertainty principie for angular position and angular momentum," New J. Phys. 6, 103 (2004). [7] Franke-Arnold, S., Barnett, SM, Yao, E., Leach, J., Courtial, J., and Padgett, M., "Uncertainty principie for angular position and angular momentum," New J. Phys .6, 103 (2004).
[8] Jack, B., Aursand, P, Franke-Arnold, S., Ireland, D. G., Leach, J., Barnett, S. M., and Padgett, M. J., "Demonstration of the angular uncertainty principie for single photons," J. Opt. 13, 064017 (2011). [8] Jack, B., Aursand, P, Franke-Arnold, S., Ireland, DG, Leach, J., Barnett, SM, and Padgett, MJ, "Demonstration of the angular uncertainty principie for single photons," J Opt. 13, 064017 (2011).
[9] Belskii, A. M., and Khapalyuk, A. P. "Infernal conical refraction of bounded light beams in biaxial crystals," Opt. Spectrosc. (USSR) 44, 436-439 (1978). [9] Belskii, A. M., and Khapalyuk, A. P. "Infernal conical refraction of bounded light beams in biaxial crystals," Opt. Spectrosc (USSR) 44, 436-439 (1978).
[10] O'Hara, J. G., "The prediction and discovery of conical refraction by William Rowan Hamilton and Humphrey Lloyd," Proc. R. Ir. Acad. 82, 231-257 (1982). [10] O'Hara, J. G., "The prediction and discovery of conical refraction by William Rowan Hamilton and Humphrey Lloyd," Proc. R. Go. Acad. 82, 231-257 (1982).
[II] Berry, M. V. and Jeffrey, M. R., "Conical diffraction: Hamilton's diabolical point at the heart of crystal optics," Prog. Opt. 50, 13-50 (2007). [12] Kalkandjiev, T. and Bursukova, M., "The conical refraction: an experimental introduction," Proc. SPIE 6994, 69940B (2008). [II] Berry, MV and Jeffrey, MR, "Conical diffraction: Hamilton's diabolical point at the heart of crystal optics," Prog. Opt. 50, 13-50 (2007). [12] Kalkandjiev, T. and Bursukova, M., "The conical refraction: an experimental introduction," Proc. SPIE 6994, 69940B (2008).
[13] Abdolvand, A., Wilcox, K. G., Kalkandjiev, T. K., and Rafailov, E. U., "Conical refraction Nd:KGd(W04)2 láser," Opt. Express 18, 2753-2759 (2010). [14] Berry, M. V., "Conical diffraction from an N-crystal cascade," J. Opt. 12,[13] Abdolvand, A., Wilcox, KG, Kalkandjiev, TK, and Rafailov, EU, "Conical refraction Nd: KGd (W0 4 ) 2 laser," Opt. Express 18, 2753-2759 (2010). [14] Berry, MV, "Conical diffraction from an N-crystal cascade," J. Opt. 12,
075704 (2010). 075704 (2010).
[15] Abdolvand, A., "Conical diffraction from a multi-crystal cascade: experimental observations," App. Phys. B 103, 281-283 (2011). [15] Abdolvand, A., "Conical diffraction from a multi-crystal cascade: experimental observations," App. Phys. B 103, 281-283 (2011).
[16] Turpin, A., "Cascaded conical refraction", Master Thesis, Universitat Politécnica de Catalunya (UPC), Barcelona, 2011 , http://upcommons.upc.edU/pfc/handle/2099.1/13007 [16] Turpin, A., "Cascaded conical refraction", Master Thesis, Polytechnic University of Catalonia (UPC), Barcelona, 2011, http://upcommons.upc.edU/pfc/handle/2099.1/13007
[17] Loiko, Yu. V., Bursukova, M. A., Kalkandjiev, T. K., Rafailov, E. U. and Mompart, J., "Fermionic transformation rules for spatially filtered light beams in conical refraction," Proc. SPIE 7950, 12 (2011). [17] Loiko, Yu. V., Bursukova, M. A., Kalkandjiev, T. K., Rafailov, E. U. and Mompart, J., "Fermionic transformation rules for spatially filtered light beams in conical refraction," Proc. SPIE 7950, 12 (2011).

Claims

Reivindicaciones Claims
1.- Sistema de comunicaciones ópticas, del tipo que comprende: 1.- Optical communications system, of the type comprising:
- un transmisor (T) configurado para transmitir y codificar información en un haz de luz a través de un medio de transmisión; y  - a transmitter (T) configured to transmit and encode information in a beam of light through a transmission medium; Y
- un receptor (R) dispuesto para recibir dicho haz, tras haber viajado por dicho medio de transmisión, y configurado para decodificar dicha información codificada incluida en el haz de luz ;  - a receiver (R) arranged to receive said beam, after having traveled through said transmission means, and configured to decode said encoded information included in the light beam;
estando el sistema caracterizado porque: the system being characterized because:
dicho transmisor (T) comprende:  said transmitter (T) comprises:
- un demultiplexor formado por al menos un primer elemento óptico (C1) dispuesto y configurado para recibir, por un primer extremo, un haz de luz inicial (H1), demultiplexarlo cambiando la dirección de los vectores de onda de al menos dos de los sub-haces que componen dicho haz de luz inicial (H1), y suministrar dichos sub-haces con vectores de onda con direcciones cambiadas por un segundo extremo opuesto a dicho primer extremo;  - a demultiplexer formed by at least a first optical element (C1) arranged and configured to receive, at a first end, an initial light beam (H1), demultiplexing it by changing the direction of the wave vectors of at least two of the sub - Beams that make up said initial light beam (H1), and supplying said sub-beams with wave vectors with directions changed by a second end opposite to said first end;
- al menos un modulador (M1) dispuesto y configurado para realizar dicha codificación de información modulando en amplitud dichos sub-haces con vectores de onda con direcciones cambiadas, cada uno de ellos constituyendo un canal óptico; y  - at least one modulator (M1) arranged and configured to perform said information coding by amplitude modulating said sub-beams with wave vectors with changed directions, each constituting an optical channel; Y
- un multiplexor formado por al menos un segundo elemento óptico (C2) dispuesto y configurado para recibir, por un primer extremo, la luz de dichos canales ópticos, y suministrar dichos canales ópticos multiplexados hacia dicho medio de transmisión en la forma de un haz de luz multiplexado (HM), por un segundo extremo opuesto a dicho primer extremo,  - a multiplexer formed by at least a second optical element (C2) arranged and configured to receive, at a first end, the light of said optical channels, and to supply said multiplexed optical channels towards said transmission means in the form of a beam of multiplexed light (HM), by a second end opposite said first end,
y porque dicho receptor (R) comprende un demultiplexor formado por al menos un tercer elemento óptico (C3) dispuesto y configurado para recibir, por un primer extremo, a dicho haz de luz multiplexado (HM), y suministrar, por un segundo extremo opuesto a dicho primer extremo, dichos canales ópticos recuperados tras demultiplexar al haz de luz multiplexado (HM), cambiando la dirección de los vectores de onda de los sub-haces, que son al menos dos, que componen el haz de luz multiplexado (HM).  and because said receiver (R) comprises a demultiplexer formed by at least a third optical element (C3) arranged and configured to receive, at a first end, said multiplexed light beam (HM), and supply, by a second opposite end at said first end, said optical channels recovered after demultiplexing to the multiplexed light beam (HM), changing the direction of the wave vectors of the sub-beams, which are at least two, that make up the multiplexed light beam (HM) .
2.- Sistema según la reivindicación 1 , caracterizado porque: - dicho primer elemento óptico (C1) es un primer cristal biaxial de refracción cónica, dispuesto y configurado para demultiplexar dicho haz de luz inicial cambiando la dirección de los vectores de onda de los sub-haces que lo componen, suministrando dichos sub-haces con vectores de onda con direcciones cambiadas de manera que su proyección en un plano adopta la forma de un anillo de luz, donde los sub-haces con vectores de onda en un mismo plano van a parar a sectores diametralmente opuestos del anillo de luz; 2. System according to claim 1, characterized in that: - said first optical element (C1) is a first biaxial conical refraction crystal, arranged and configured to demultiplex said initial light beam by changing the direction of the wave vectors of the sub-beams that compose it, supplying said sub-beams with Wave vectors with changed directions so that their projection in a plane takes the form of a light ring, where sub-beams with wave vectors in the same plane go to diametrically opposite sectors of the light ring;
- dicho modulador (M1), que es al menos uno, está dispuesto y configurado para realizar dicha codificación de información modulando en amplitud, en dicho plano de proyección o en otro u otros planos, los sub-haces correspondientes a diferentes sectores de dicho anillo de luz, o canales ópticos;  - said modulator (M1), which is at least one, is arranged and configured to perform said information coding by modulating in amplitude, in said projection plane or in another or other planes, the sub-beams corresponding to different sectors of said ring of light, or optical channels;
- y porque dichos segundo (C2) y tercero (C3) elementos ópticos son unos respectivos segundo y tercero cristales biaxiales de refracción cónica.  - and because said second (C2) and third (C3) optical elements are respective second and third biaxial crystals of conical refraction.
3. - Sistema según la reivindicación 1 ó 2, caracterizado porque dicho haz de luz inicial (H1) es de tipo Gaussiano.  3. - System according to claim 1 or 2, characterized in that said initial light beam (H1) is of the Gaussian type.
4. - Sistema según la reivindicación 1 , 2 ó 3, caracterizado porque dicho haz de luz multiplexado (HM) es similar a un haz Gaussiano, al menos por lo que se refiere a características de divergencia.  4. - System according to claim 1, 2 or 3, characterized in that said multiplexed light beam (HM) is similar to a Gaussian beam, at least as regards divergence characteristics.
5. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicho medio de transmisión es un medio isotrópico.  5. - System according to any one of the preceding claims, characterized in that said transmission medium is an isotropic medium.
6. - Sistema según la reivindicación 5, caracterizado porque dicho medio isotrópico es el espacio libre.  6. - System according to claim 5, characterized in that said isotropic medium is the free space.
7. - Sistema según una cualquiera de las reivindicaciones 1 a 4, caracterizado porque dicho medio de transmisión es una guía de ondas.  7. - System according to any one of claims 1 to 4, characterized in that said transmission means is a waveguide.
8.- Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicho transmisor (T) comprende también al menos una primera lente (L1) dispuesta frente al primer extremo del primer elemento óptico (C1) para enfocar el haz de luz inicial (H1) sobre el mismo, y al menos una segunda lente (L2) dispuesta tras el segundo extremo del segundo elemento óptico (C2) para colimar dicho haz de luz multiplexado (HM).  8. System according to any one of the preceding claims, characterized in that said transmitter (T) also comprises at least a first lens (L1) arranged in front of the first end of the first optical element (C1) to focus the initial beam of light (H1 ) thereon, and at least one second lens (L2) arranged behind the second end of the second optical element (C2) to collide said multiplexed light beam (HM).
9.- Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicho receptor (R) comprende al menos un objetivo (L3) dispuesto frente al primer extremo del tercer elemento óptico (C3), para que éste reciba al haz de luz multiplexado (HM) tras atravesar dicho objetivo (L3), y al menos un dispositivo fotodetector (FD) dispuesto frente al segundo extremo del tercer elemento óptico (C3) para recibir la luz de los canales ópticos y procesar la información contenida en los mismos. 9. System according to any one of the preceding claims, characterized in that said receiver (R) comprises at least one objective (L3) arranged in front of the first end of the third optical element (C3), so that it receives the multiplexed light beam ( HM) after crossing said objective (L3), and at least one photodetector device (FD) arranged in front of the second end of the third optical element (C3) to receive the light from the optical channels and process the information contained therein.
10. - Sistema según una cualquiera de las reivindicaciones 1 a 8, caracterizado porque comprende, tras dicho tercer elemento óptico (C3), al menos un grupo óptico que incluye:  10. - System according to any one of claims 1 to 8, characterized in that it comprises, after said third optical element (C3), at least one optical group that includes:
- al menos un segundo modulador dispuesto y configurado para codificar información modulando en amplitud dichos canales ópticos recuperados,  - at least a second modulator arranged and configured to encode information by modulating in amplitude said recovered optical channels,
- al menos un segundo multiplexor formado por al menos un cuarto elemento óptico dispuesto y configurado para mutiplexar los canales ópticos codificados por el segundo modulador, y  - at least a second multiplexer formed by at least a fourth optical element arranged and configured to mutiplex the optical channels encoded by the second modulator, and
- al menos un segundo demultiplexor formado por al menos un quinto elemento óptico dispuesto y configurado para demultiplexar al haz de luz multiplexado por el segundo multiplexor.  - at least a second demultiplexer formed by at least a fifth optical element arranged and configured to demultiplex the light beam multiplexed by the second multiplexer.
11. - Sistema según la reivindicación 2 o una cualquiera de las reivindicaciones 3 a 10 cuando dependen de la 2, caracterizado porque dicho modulador (M1), que es al menos uno, comprende al menos una máscara de amplitud angular dispuesta en dicho plano donde se forma el anillo de luz o en otro plano.  11. - System according to claim 2 or any one of claims 3 to 10 when they depend on 2, characterized in that said modulator (M1), which is at least one, comprises at least one mask of angular amplitude disposed in said plane where the ring of light is formed or in another plane.
12. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicho modulador (M1) comprende al menos un modulador de luz espacial.  12. - System according to any one of the preceding claims, characterized in that said modulator (M1) comprises at least one spatial light modulator.
13. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicho haz de luz inicial (H1) es un haz de luz monocromático.  13. - System according to any one of the preceding claims, characterized in that said initial light beam (H1) is a monochromatic light beam.
14. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicho modulador (M1) está configurado para modular de manera independiente al menos parte de dichos canales ópticos, mediante modulación espacial o modulación espacial y temporal.  14. - System according to any one of the preceding claims, characterized in that said modulator (M1) is configured to independently modulate at least part of said optical channels, by spatial modulation or spatial and temporal modulation.
15. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dicho modulador (M1) está configurado para modular de manera dependiente al menos parte de dichos canales ópticos, mediante modulación espacial o modulación espacial y temporal.  15. - System according to any one of the preceding claims, characterized in that said modulator (M1) is configured to modulate in a dependent manner at least part of said optical channels, by spatial modulation or spatial and temporal modulation.
16. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque los ejes ópticos de dichos primero (C1) y segundo (C2) elementos ópticos se encuentra alineados entre sí.  16. - System according to any one of the preceding claims, characterized in that the optical axes of said first (C1) and second (C2) optical elements are aligned with each other.
17. - Sistema según la reivindicación 16 cuando depende de la 2, caracterizado porque dicho segundo cristal biaxial de refracción cónica es substancialmente de iguales dimensiones que el primero. 17. - System according to claim 16 when it depends on the 2, characterized in that said second conical refractive biaxial crystal is substantially of the same dimensions as the first.
18. - Sistema según la reivindicación 2 o una cualquiera de las reivindicaciones 3 a 17 cuando dependen de la 2, caracterizado porque dicho segundo cristal biaxial de refracción cónica se encuentra orientado inversamente con respecto al primero. 18. - System according to claim 2 or any one of claims 3 to 17 when they depend on 2, characterized in that said second conical refractive biaxial crystal is oriented inversely with respect to the first.
19. - Método de comunicaciones ópticas, del tipo que comprende:  19. - Method of optical communications, of the type comprising:
a) transmitir y codificar información en un haz de luz a través de un medio de transmisión; y  a) transmit and encode information in a beam of light through a transmission medium; Y
b) recibir dicho haz de luz, tras haber viajado por dicho medio de transmisión, y decodificar dicha información codificada incluida en el haz de luz;  b) receiving said beam of light, after having traveled through said transmission means, and decoding said encoded information included in the beam of light;
estando el método caracterizado porque: the method being characterized because:
dicha etapa a) comprende:  said stage a) comprises:
- emitir un haz de luz inicial hacia un primer elemento óptico; - emit an initial beam of light towards a first optical element;
- recibir, mediante dicho primer elemento óptico, dicho haz de luz inicial, demultiplexarlo cambiando la dirección de los vectores de onda de al menos dos de los sub-haces que componen dicho haz de luz inicial, y suministrar dichos sub-haces con vectores de onda con direcciones cambiadas; - receiving, by said first optical element, said initial beam of light, demultiplexing it by changing the direction of the wave vectors of at least two of the sub-beams that make up said initial beam of light, and supplying said sub-beams with vectors of wave with changed directions;
- realizar dicha codificación de información modulando en amplitud dichos sub-haces con vectores de onda con direcciones cambiadas, cada uno de ellos constituyendo un canal óptico; y enviar la luz de dichos canales ópticos a un segundo elemento óptico; y  - carrying out said information coding by modulating in amplitude said sub-beams with wave vectors with changed directions, each constituting an optical channel; and send the light of said optical channels to a second optical element; Y
- recibir y multiplexar, mediante dicho segundo elemento óptico, la luz de dichos canales ópticos, suministrando dichos canales ópticos multiplexados hacia dicho medio de transmisión en la forma de un haz de luz multiplexado,  - receiving and multiplexing, by means of said second optical element, the light of said optical channels, supplying said multiplexed optical channels towards said transmission means in the form of a multiplexed light beam,
y porque dicha etapa b) comprende recibir y demultiplexar, mediante un tercer elemento óptico, dicho haz de luz multiplexado, suministrando dichos canales ópticos recuperados tras demultiplexar al haz de luz multiplexado, cambiando la dirección de los vectores de onda de los sub-haces, que son al menos dos, que componen el haz de luz multiplexado.  and because said step b) comprises receiving and demultiplexing, by means of a third optical element, said multiplexed light beam, supplying said optical channels recovered after demultiplexing the multiplexed light beam, changing the direction of the sub-beam wave vectors, which are at least two, which make up the multiplexed beam of light.
20. - Método según la reivindicación 19, caracterizado porque dichos primer, segundo y tercer elementos ópticos son unos respectivos primer, segundo y tercer cristales biaxiales de refracción cónica, donde cada una de dichas demultiplexaciones de las etapas a) y b) comprende cambiar la dirección de los vectores de onda de los sub-haces que componen el haz de luz inicial, por lo que se refiere a la etapa a), y el haz multiplexado, por lo que se refiere a la etapa b), suministrando dichos sub-haces con vectores de onda con direcciones cambiadas de manera que su proyección en un plano adopta la forma de un anillo de luz, donde los sub-haces con vectores de onda en un mismo plano van a parar a sectores diametralmente opuestos del anillo de luz. 20. - Method according to claim 19, characterized in that said first, second and third optical elements are respective first, second and third conical refractive biaxial crystals, wherein each of said demultiplexings of steps a) and b) comprises changing the direction of the wave vectors of the sub-beams that make up the initial light beam, as regards stage a), and the multiplexed beam, as regards stage b), supplying said sub-beams with wave vectors with directions changed so that their projection in a plane takes the form of a ring of light, where sub-beams with wave vectors in the same plane go to diametrically opposite sectors of the ring of light.
21. - Método según la reivindicación 19 ó 20, caracterizado porque está previsto para implementarse utilizando el sistema según una cualquiera de las reivindicaciones 1 a 18.  21. - Method according to claim 19 or 20, characterized in that it is intended to be implemented using the system according to any one of claims 1 to 18.
22. - Método según la reivindicación 19, 20 ó 21 , caracterizado porque dicho haz de luz inicial está polarizado lineal o circularmente.  22. - Method according to claim 19, 20 or 21, characterized in that said initial light beam is linearly or circularly polarized.
23. - Método según la reivindicación 19, 20 ó 21 , caracterizado porque dicho haz de luz inicial está depolarizado.  23. - Method according to claim 19, 20 or 21, characterized in that said initial light beam is depolarized.
24.- Transmisor de comunicaciones ópticas, del tipo que está configurado para transmitir y codificar información en un haz de luz a través de un medio de transmisión, estando el transmisor caracterizado porque comprende:  24.- Optical communications transmitter, of the type that is configured to transmit and encode information in a light beam through a transmission medium, the transmitter being characterized in that it comprises:
- un demultiplexor formado por al menos un primer elemento óptico (C1) dispuesto y configurado para recibir, por un primer extremo, un haz de luz inicial (H1), demultiplexarlo cambiando la dirección de los vectores de onda de al menos dos de los sub-haces que componen dicho haz de luz inicial (H1), y suministrar dichos sub-haces con vectores de onda con direcciones cambiadas por un segundo extremo opuesto a dicho primer extremo;  - a demultiplexer formed by at least a first optical element (C1) arranged and configured to receive, at a first end, an initial light beam (H1), demultiplexing it by changing the direction of the wave vectors of at least two of the sub - Beams that make up said initial light beam (H1), and supplying said sub-beams with wave vectors with directions changed by a second end opposite to said first end;
- al menos un modulador (M1) dispuesto y configurado para realizar dicha codificación de información modulando en amplitud dichos sub-haces con vectores de onda con direcciones cambiadas, cada uno de ellos constituyendo un canal óptico; y  - at least one modulator (M1) arranged and configured to perform said information coding by amplitude modulating said sub-beams with wave vectors with changed directions, each constituting an optical channel; Y
- un multiplexor formado por al menos un segundo elemento óptico (C2) dispuesto y configurado para recibir, por un primer extremo, la luz de dichos canales ópticos, y suministrar dichos canales ópticos multiplexados hacia dicho medio de transmisión en la forma de un haz de luz multiplexado (HM), por un segundo extremo opuesto a dicho primer extremo.  - a multiplexer formed by at least a second optical element (C2) arranged and configured to receive, at a first end, the light of said optical channels, and to supply said multiplexed optical channels towards said transmission means in the form of a beam of multiplexed light (HM), by a second end opposite said first end.
25.- Transmisor según la reivindicación 24, caracterizado porque está configurado para hacer las funciones del transmisor (T) del sistema según una cualquiera de las reivindicaciones 1 a 18.  25. Transmitter according to claim 24, characterized in that it is configured to perform the functions of the transmitter (T) of the system according to any one of claims 1 to 18.
26.- Receptor de comunicaciones ópticas, del tipo que está dispuesto para recibir un haz de luz que incluye información codificada, tras haber viajado por un medio de transmisión, y configurado para decodificar dicha información codificada incluida en el haz de luz, estando el receptor caracterizado porque comprende un demultiplexor formado por al menos un elemento óptico (C3) dispuesto y configurado para recibir, por un primer extremo, a un haz de luz (HM) con información codificada en unos canales ópticos correspondientes a unos sectores de luz multiplexados en dicho haz de luz (HM), y suministrar, por un segundo extremo opuesto a dicho primer extremo, dichos canales ópticos recuperados tras demultiplexar el haz de luz multiplexado (HM) cambiando la dirección de los vectores de onda de los sub-haces, que son al menos dos, que componen el haz de luz multiplexado (HM). 26.- Optical communications receiver, of the type that is arranged to receive a light beam that includes encoded information, after having traveled through a transmission medium, and configured to decode said encoded information included in the light beam, the receiver being characterized in that it comprises a demultiplexer formed by at least one optical element (C3) arranged and configured to receive, at a first end, a beam of light (HM) with information encoded in optical channels corresponding to sectors of light multiplexed in said beam of light (HM ), and supply, by a second end opposite said first end, said optical channels recovered after demultiplexing the multiplexed light beam (HM) by changing the direction of the wave vectors of the sub-beams, which are at least two, which make up the multiplexed light beam (HM).
27.- Receptor según la reivindicación 26, caracterizado porque está configurado para hacer las funciones del receptor (R) del sistema según una cualquiera de las reivindicaciones 1 a 18.  27.- Receiver according to claim 26, characterized in that it is configured to perform the functions of the receiver (R) of the system according to any one of claims 1 to 18.
PCT/ES2013/070027 2012-01-26 2013-01-23 System, method, transmitter and receiver for optical communications WO2013110842A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230105A ES2389434B1 (en) 2012-01-26 2012-01-26 System, method, transmitter and receiver of optical communications
ESP201230105 2012-01-26

Publications (1)

Publication Number Publication Date
WO2013110842A1 true WO2013110842A1 (en) 2013-08-01

Family

ID=46983000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070027 WO2013110842A1 (en) 2012-01-26 2013-01-23 System, method, transmitter and receiver for optical communications

Country Status (2)

Country Link
ES (1) ES2389434B1 (en)
WO (1) WO2013110842A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198511A1 (en) * 2017-04-27 2018-11-01 日本板硝子株式会社 Optical receiver and optical communication device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202422A (en) * 1982-05-21 1983-11-25 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer
US5363221A (en) * 1990-03-13 1994-11-08 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Optical multiplexer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202422A (en) * 1982-05-21 1983-11-25 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer
US5363221A (en) * 1990-03-13 1994-11-08 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Optical multiplexer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN, J. ET AL.: "Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states", APPLIED OPTICS, vol. 46, no. 21, 20 July 2007 (2007-07-20), pages 4680 - 4685, XP001505509 *
LIN, J. ET AL.: "Orbital angular momentum (OAM) multiplexing in free-space optical data transfer", FREE-SPACE LASER COMMUNICATIONS VI, 15 OF AUGUST OF 2006. SAN DIEGO, USA. PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 6304, 15 August 2006 (2006-08-15), USA, pages 630411 - 1-5, XP003031280 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198511A1 (en) * 2017-04-27 2018-11-01 日本板硝子株式会社 Optical receiver and optical communication device
CN110603469A (en) * 2017-04-27 2019-12-20 日本板硝子株式会社 Optical receiver and optical communication device
JPWO2018198511A1 (en) * 2017-04-27 2020-03-05 日本板硝子株式会社 Optical receiver and optical communication device
JP7088914B2 (en) 2017-04-27 2022-06-21 日本板硝子株式会社 Optical receiver and optical communication device

Also Published As

Publication number Publication date
ES2389434A1 (en) 2012-10-26
ES2389434B1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
Anguita et al. Coherent multimode OAM superpositions for multidimensional modulation
US9632391B2 (en) Wavelength selective switch employing a LCoS device and having reduced crosstalk
Fontaine et al. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits
US7397980B2 (en) Dual-source optical wavelength processor
US11668884B2 (en) Optical coupler including a Faraday rotator layer and at least one grating coupler
US8260099B2 (en) Reconfigurable optical add/drop multiplexer
CN107407779B (en) Optical device for managing diversity and isolation between ports in a wavelength selective switch
KR20140051422A (en) Optical mode couplers for multi-mode optical fibers
ES2706950T3 (en) Optical multiplexer
KR102043870B1 (en) Launch optics with optical path compensation for a wavelength selective switch
AU2014235953A1 (en) Wavelength selective switch employing a lcos device and having reduced crosstalk
US20150078748A1 (en) Wavelength selective switch
US20150355469A1 (en) Light operation device
US9829717B1 (en) Pancharatnam-berry optical element/diffractive waveplate angular momentum sorter
TW201337365A (en) Compact wavelength-selective cross-connect device having multiple input ports and multiple output ports
JP2009168840A (en) Wavelength selection switch
Ortega et al. Experimental space-division multiplexed polarization-entanglement distribution through 12 paths of a multicore fiber
Sauer et al. Refractive-diffractive micro-optics for permutation interconnects
US20200012165A1 (en) Toroidal micro lens array for use in a wavelength selective switch
WO2013110842A1 (en) System, method, transmitter and receiver for optical communications
Miles et al. 7× 7 DMD-based diffractive fiber switch at 1550 nm
Gu et al. Compact wavelength selective switch based on high-density bragg reflector waveguide array with 120 output ports
Loiko et al. Conical refraction multiplexing for free-space optical communications
JP6784144B2 (en) Optical module
Anguita et al. Generation and detection of multiple coaxial vortex beams for free-space optical communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741161

Country of ref document: EP

Kind code of ref document: A1