WO2013110375A2 - Dispositif et procédé de production d'énergie électrique - Google Patents

Dispositif et procédé de production d'énergie électrique Download PDF

Info

Publication number
WO2013110375A2
WO2013110375A2 PCT/EP2012/073798 EP2012073798W WO2013110375A2 WO 2013110375 A2 WO2013110375 A2 WO 2013110375A2 EP 2012073798 W EP2012073798 W EP 2012073798W WO 2013110375 A2 WO2013110375 A2 WO 2013110375A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
process medium
cooled
turbine
Prior art date
Application number
PCT/EP2012/073798
Other languages
German (de)
English (en)
Other versions
WO2013110375A3 (fr
Inventor
Vladimir Danov
Jochen SCHÄFER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013110375A2 publication Critical patent/WO2013110375A2/fr
Publication of WO2013110375A3 publication Critical patent/WO2013110375A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for generating electrical energy from a heat source according to the preamble of patent claim 1 and to a method for recovering mechanical energy from a heat source according to the preamble of patent claim 7.
  • Boiling point exhibit.
  • the organic working medium is supplied in an evaporator isobar energy in the form of heat, in particular, the process heat or waste heat upstream machines is used as a heat source application.
  • the resulting saturated steam is then ideally isentropically expanded via a turbine, whereby the desired mechanical work is done.
  • a condenser the working fluid is again completely condensed and returned to the evaporator by means of a compressor, in particular a pump.
  • a disadvantage of this process is that a large number of working materials used, such as butane or pentane, are flammable. Fluorinated and / or chlorinated hydrocarbons are also used as an alternative to the abovementioned combustible hydrocarbons, but because of their ozone-damaging and greenhouse-active effect, they are often of environmental concern.
  • An alternative to this is the use of carbon dioxide as a working medium in the context of an organic Rankine cycle. C0 2 has the advantage that it is non-flammable and non-toxic. However, a problem in the use of carbon dioxide is its relatively low critical point of 31 ° C.
  • the present invention is therefore an object of the invention to provide a device according to the preamble of claim 1 and a method according to the preamble of claim 7, which allow a particularly versatile use of an organic Rankine cycle on carbon dioxide.
  • Such a device for generating electrical energy from a heat source comprises a first heat exchanger in which a process medium, in particular C0 2 , can be heated in the device by means of the heat source.
  • the heated process medium can be supplied as a result of a turbine, in which the absorbed heat energy is finally converted into electrical energy by relaxation of the process medium in mechanical energy and by coupling with a generator.
  • the process medium is cooled to a predetermined temperature by means of a second heat exchanger whose output is coupled via a compressor with an input of the first heat exchange, so as to close the circuit.
  • the second heat exchanger is air-cooled.
  • the air cooling allows the use of the device even under conditions in which insufficient fresh water for liquid cooling is available and is at the same time to make aparativ particularly simple, so that such a device is particularly inexpensive and easy to manufacture and in operation.
  • the third heat exchanger can be cooled by means of an absorption and / or adsorption refrigeration machine.
  • a refrigerator may conveniently use the heat source of the device itself as an energy source.
  • the hot time of the absorption and / or adsorption chiller is thermally coupled thereto, so that only minimal amounts of external energy, for example in the form of electricity, must be supplied.
  • the absorption refrigeration system itself can be recooled by means of air.
  • a pump or a compressor coupled to the turbine may also be used, the latter being particularly suitable when the device is to be operated without a phase transition in the manner of a Brayton cycle.
  • the second heat exchanger can also be coupled to the heat source of the device, so that the cooling air of the air-cooled second heat exchanger is preheated so far that a liquefaction of the carbon dioxide can be avoided.
  • the invention further relates to a method for recovering mechanical energy from a heat source, in particular from a waste heat stream of a plant, in which a process medium, in particular C0 2 , heated by a first heat exchanger through the heat source and passed to obtain the mechanical energy through a turbine , After passage through the turbine, the process medium is cooled by a second heat exchanger, then compressed and then returned to the first heat exchanger.
  • the second heat exchanger is air-cooled.
  • the process medium can be further cooled by means of a third heat exchanger in order to ensure that, for example when using CO 2 as the process medium, the critical point is undershot and the process medium is liquefied.
  • This third heat exchanger is preferably cooled by means of an absorption and / or Adsorptionskarltemaschine whose hot side is coupled to the heat source, so as to achieve the desired cooling effect with minimal To provide supply of external electrical power.
  • Fig. 2 is a schematic representation of an apparatus for
  • Figure 3 is a schematic representation of an embodiment of an apparatus according to the invention for carrying out a C0 2 -based organic Rankine cycle and. Residual heat utilization by means of a Brayton cycle according to the prior art a schematic representation of amittedsbe game of a device according to the invention for carrying out a Brayton cycle without phase transition.
  • a device 10 for residual heat utilization comprises, as shown in FIG. 1, a first heat exchanger 12, to which a hot medium is supplied via a line 14.
  • the line 14 may be, for example, an exhaust pipe of a combined heat and power plant or the like.
  • an organic process medium for example C0 2
  • a turbine 18 in which the process medium can relax and thereby perform mechanical work, which in turn is utilized to drive a generator 20.
  • a further heat exchanger 24 is fed into the process medium via a line 22, in which it is cooled again.
  • the process medium is conveyed by a pump 26 via a line 28 back to the first heat exchanger 12.
  • the device 10 is operated in the manner of a Rankine cycle, d. H. In the evaporator 12 and in the heat exchanger 24 takes place in each case a phase transition from liquid to gaseous or vice versa.
  • a cooling of the process medium is again achieved via the line 22 and the second heat exchanger 24, which in the sequence by the turbine 18 mechanically coupled compressor 30 is again conveyed to the first heat exchanger 12.
  • the device 10 for performing a Brayton cycle is to ensure that the cooling in the second heat exchanger 24 does not lead below the critical point of the process medium, since a liquefaction is not desirable here yes.
  • hot medium for example an exhaust gas
  • a first heat exchanger 12 in which it heats the process medium of the device 32.
  • the process medium flows from the first heat exchanger 12 via a line 16 to the turbine 18, which in turn drives a generator 20, and then via a line 22 to a second heat exchanger 34.
  • the second heat exchanger 34 is air-cooled the cooling air is supplied through a line 36 and discharged through a line 38 again.
  • the process medium emerging from the second heat exchanger 34 is further cooled in the sequence by a third heat exchanger 40.
  • the third heat exchanger 40 is water-cooled, but the cooling water is guided in a closed circuit, so that no fresh water is needed.
  • From the third heat exchanger 40 exiting fresh water is passed via a line 42 to an absorption refrigeration system 44, which draws its energy from the heat of the medium flowing through the conduit 14.
  • a partial flow of the medium is diverted through a line 46 to the absorption chiller 44.
  • Re-cooling of the absorption chiller 44 is carried out by air supply lines 48 and Heilabstructure Gustaven 50.
  • the cooled in the absorption chiller 44 cooling water is then returned by means of a pump 52 via the line 54 to the third heat exchanger 40.
  • the process medium of the device 32 is reliably cooled below its critical point.
  • the liquefied process medium is then conveyed by means of the pump 26 with line 28 back to the first heat exchanger 12.
  • hot medium 14 is passed through the first heat exchanger 12 to heat the process medium, which is then fed via a line 16 to the turbine 18, which drives the generator 20.
  • the process medium flows to the air-cooled heat exchanger 34, in which it is cooled and then guided around compressor 28 coupled to the turbine 18 via line 28 back to the first heat exchanger 12.
  • the second heat exchanger 34 When performing a Brayton cycle just should not take place phase transition. It should therefore be noted that in the second heat exchanger 34 no cooling may take place below the critical point of the process medium. For particularly low outside temperatures, it is therefore expedient to preheat the second heat exchanger 34 via the line 36 supplied cooling air. For this purpose, a part of the medium from the line 14th branched off via a line 56 and passed through a further heat exchanger 58, which preheats the cooling air for the second heat exchanger 34. Through a conduit 60, the medium can then be either returned to the first heat exchanger 12 or discharged into the environment. By suitable control, the amount of medium supplied in the heat exchanger 58, depending on the medium temperature and the temperature of the ambient air, the temperature of the process medium after passing through the second heat exchanger 34 can be set exactly, so that falls below the critical point is reliably avoided ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Dispositif de production d'énergie électrique à partir d'une source de chaleur, en particulier à partir de la chaleur perdue d'une installation, qui comporte un premier échangeur de chaleur dans lequel un milieu de travail, en particulier du CO2, du dispositif peut être réchauffé au moyen de la source de chaleur, le milieu de travail réchauffé pouvant être acheminé vers une turbine et, après son passage dans la turbine, être refroidi à une température prédéfinie au moyen d'un second échangeur de chaleur dont la sortie est couplée par l'intermédiaire d'un compresseur avec l'entrée du premier échangeur de chaleur, le second échangeur de chaleur étant refroidi par air.
PCT/EP2012/073798 2012-01-23 2012-11-28 Dispositif et procédé de production d'énergie électrique WO2013110375A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012200892.6 2012-01-23
DE102012200892A DE102012200892A1 (de) 2012-01-23 2012-01-23 Vorrichtung und Verfahren zum Erzeugen elektrischer Energie

Publications (2)

Publication Number Publication Date
WO2013110375A2 true WO2013110375A2 (fr) 2013-08-01
WO2013110375A3 WO2013110375A3 (fr) 2014-03-20

Family

ID=47522473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073798 WO2013110375A2 (fr) 2012-01-23 2012-11-28 Dispositif et procédé de production d'énergie électrique

Country Status (2)

Country Link
DE (1) DE102012200892A1 (fr)
WO (1) WO2013110375A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135981A3 (fr) * 2017-01-20 2018-10-18 New Energy Transfer Spółka Z Ograniczoną Odpowiedzialnością Système combiné pour la production d'électricité, de chaleur, de froid et d'eau pour une distribution urbaine de froid à l'aide d'un refroidisseur à adsorption à trois lits
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028885B1 (fr) * 2014-11-25 2021-04-30 Valeo Systemes Thermiques Dispositif de recuperation d'energie a cycle rankine ayant une source froide regulee et vehicule equipe d'un tel dispositif, procede de recuperation d'energie correspondant
GB201513936D0 (en) * 2015-08-06 2015-09-23 Tree Associates Ltd Engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3327752A1 (de) * 1983-08-01 1985-02-14 Interatom Internationale Atomreaktorbau Gmbh, 5060 Bergisch Gladbach Verfahren und vorrichtung zur erhoehung des wirkungsgrades von turbinenprozessen
US5704209A (en) * 1994-02-28 1998-01-06 Ormat Industries Ltd Externally fired combined cycle gas turbine system
DE19907512A1 (de) * 1999-02-22 2000-08-31 Frank Eckert Vorrichtung zur Energieumwandlung auf der Basis von thermischen ORC-Kreisprozessen
DE10231265A1 (de) * 2002-07-10 2004-01-22 Enginion Ag Absorptionswärmepumpe
US8387355B2 (en) * 2009-07-15 2013-03-05 Ormat Technologies Inc. Gas turbine exhaust gas cooling system
WO2011011831A1 (fr) * 2009-07-31 2011-02-03 The University Of Queensland Centrales thermiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135981A3 (fr) * 2017-01-20 2018-10-18 New Energy Transfer Spółka Z Ograniczoną Odpowiedzialnością Système combiné pour la production d'électricité, de chaleur, de froid et d'eau pour une distribution urbaine de froid à l'aide d'un refroidisseur à adsorption à trois lits
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature

Also Published As

Publication number Publication date
WO2013110375A3 (fr) 2014-03-20
DE102012200892A1 (de) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2013110375A2 (fr) Dispositif et procédé de production d'énergie électrique
DE102014105237B3 (de) Verfahren und Vorrichtung zum Speichern und Rückgewinnen von Energie
EP3362739B1 (fr) Production de vapeur industrielle au moyen d'une pompe à chaleur haute température
EP2785985B1 (fr) Dispositif et procédé permettant de récupérer la chaleur dégagée par un moteur à combustion interne, en particulier de récupérer la chaleur dégagée par le moteur d'un véhicule
DE102008005978A1 (de) Niedertemperaturkraftwerk und Verfahren zum Betreiben eines thermodynamischen Zyklus
EP3240945B1 (fr) Centrale d'accumulation d'air comprimé et procédé pour faire fonctionner une centrale d'accumulation d'air comprimé
DE102012217929A1 (de) Kraft-Wärme-Kraftwerk und Verfahren zum Betrieb eines Kraft-Wärme-Kraftwerks
DE102011108970A1 (de) Niedertemperaturkraftwerk, sowie Verfahrenzum Betrieb desselben
DE102010004457A1 (de) Verfahren und Vorrichtung zur Erzeugung technischer Arbeit
WO2009010023A2 (fr) Dispositif et procédé de production de force et de chaleur
DE3420293A1 (de) Rankine-cyclus-kraftwerk mit einem verbesserten organischen arbeitsfluid bzw. -fluessigkeit
EP4251859A1 (fr) Système et procédé de stockage d'énergie électrique sous forme d'énergie thermique et de libération de celle-ci
DE102004041108B3 (de) Vorrichtung und Verfahren zum Ausführen eines verbesserten ORC-Prozesses
EP3232023B1 (fr) Procédé et installation de conversion d'énergie de pression en énergie électrique
DE102005049215A1 (de) Verfahren und Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus Wärme
DE202004013299U1 (de) Vorrichtung zum Ausführen eines verbesserten ORC-Prozesses
EP3559564A1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
DE102016220634A1 (de) Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr
DE102016114906A1 (de) Vorrichtung und Verfahren zum Speichern und Rückgewinnen von Energie
EP3293475A1 (fr) Procédé et appareil de stockage et de récupération d'énergie
WO2008031613A2 (fr) Production d'électricité dans la plage de charge de base avec de l'énergie géothermique
DE102012100645B4 (de) ORC - Organischer Rankine Zyklus
AT507700B1 (de) Vorrichtung zur gewinnung von elektrischem strom
DE102020004152A1 (de) Verfahren und Vorrichtung zur Expansion unter Druck stehender Gase mittels Expansionsmaschine unter Nutzung von Wärmequellen niedrigen Temperaturniveaus
WO2024068197A1 (fr) Système de combinaison et procédé de fonctionnement d'un système de combinaison

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 12812877

Country of ref document: EP

Kind code of ref document: A2