WO2013108904A1 - 移動通信システム、基地局、及び通信制御方法 - Google Patents

移動通信システム、基地局、及び通信制御方法 Download PDF

Info

Publication number
WO2013108904A1
WO2013108904A1 PCT/JP2013/051002 JP2013051002W WO2013108904A1 WO 2013108904 A1 WO2013108904 A1 WO 2013108904A1 JP 2013051002 W JP2013051002 W JP 2013051002W WO 2013108904 A1 WO2013108904 A1 WO 2013108904A1
Authority
WO
WIPO (PCT)
Prior art keywords
enb
comp
cooperating set
comp cooperating
base station
Prior art date
Application number
PCT/JP2013/051002
Other languages
English (en)
French (fr)
Inventor
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP13739112.4A priority Critical patent/EP2806685A4/en
Priority to JP2013554368A priority patent/JP5887363B2/ja
Priority to US14/373,307 priority patent/US9461791B2/en
Publication of WO2013108904A1 publication Critical patent/WO2013108904A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0075Allocation using proportional fairness

Definitions

  • the present invention relates to a mobile communication system, a base station, and a communication control method that support CoMP.
  • CoMP positions antenna groups arranged at the same place as one “point”, and a plurality of points cooperate to communicate with a user terminal.
  • a point group that performs cooperative communication with a user terminal using one time / frequency resource is referred to as a CoMP cooperating set (CoMP cooperating set).
  • JP Joint Processing
  • each point included in a CoMP cooperating set needs to use the same C-RNTI (Cell-Radio Network Temporary Identity) for CoMP communication with the user terminal.
  • C-RNTI Cell-Radio Network Temporary Identity
  • an object of the present invention is to provide a mobile communication system, a base station, and a communication control method that can add a base station that is already using a C-RNTI used in the CoMP cooperating set to the CoMP cooperating set. To do.
  • the mobile communication system is a mobile communication system that performs CoMP communication between a CoMP cooperating set composed of a plurality of base stations and a user terminal, and the predetermined base stations included in the CoMP cooperating set are: When the other base station not included in the CoMP cooperating set transmits an additional request for requesting to join the CoMP cooperating set, the predetermined base station transmits the additional request.
  • the C-RNTI used for CoMP communication with the user terminal is transmitted to the other base station.
  • the predetermined base station may transmit the C-RNTI included in the addition request.
  • the other base station after the other base station receives the addition request from the predetermined base station, the other base station informs the predetermined base station whether or not the C-RNTI included in the addition request is being used.
  • the predetermined base station may request the other base station to notify an unused C-RNTI when the other base station is using the C-RNTI.
  • the other base station notifies an unused C-RNTI to the predetermined base station in response to a request from the predetermined base station, and the predetermined base station receives the request from the other base station.
  • a C-RNTI to be newly used for communication with the user terminal may be determined from the unused C-RNTIs using the CoMP cooperating set.
  • the predetermined base station determines the newly used C-RNTI, and then notifies the newly used C-RNTI to other base stations included in the CoMP cooperating set. May be.
  • the other base station when the other base station receives the addition request from the predetermined base station, the other base station uses the C-RNTI included in the addition request when the other base station uses the C-RNTI.
  • the C-RNTI inside may be changed to another C-RNTI.
  • the predetermined base station may be a main base station that controls CoMP communication between the CoMP cooperating set and the user terminal.
  • a base station is a base station included in the CoMP cooperating set in a mobile communication system that performs CoMP communication between a CoMP cooperating set composed of a plurality of base stations and a user terminal. It has a transmission part which transmits the addition request
  • the C-RNTI used for CoMP communication with the user terminal is transmitted to the other base station.
  • a communication control method is a communication control method in a mobile communication system that performs CoMP communication between a CoMP cooperating set composed of a plurality of base stations and a user terminal, and is a predetermined control included in the CoMP cooperating set.
  • the base station has a step A for sending an additional request to request other base stations not included in the CoMP cooperating set to join the CoMP cooperating set, and the step A includes:
  • the method includes a step of transmitting a C-RNTI used for CoMP communication with the user terminal to the other base station.
  • FIG. 1 shows a configuration of an LTE system.
  • 2 shows a configuration of a radio frame used in the LTE system.
  • the user plane radio interface protocol is shown.
  • Fig. 3 shows the radio interface protocol of the control plane.
  • the processing of each layer is shown by taking the downlink as an example.
  • the data flow in each layer is shown. It is a figure for demonstrating a timing advance value. It is a time chart for demonstrating a timing advance value.
  • a control flow for starting / continuing / ending CoMP communication is shown.
  • the operation flow for setting a CoMP cooperating set is shown.
  • An X2 measurement message is shown.
  • An example of CoMP cooperating set information is shown.
  • An anchor eNB switching sequence is shown.
  • Pattern 1 of the eNB addition sequence is shown.
  • Pattern 2 of the eNB addition sequence is shown.
  • a downlink sub-frame structure is shown.
  • a mode that each eNB contained in a CoMP cooperating set notifies the allocation candidate band is shown.
  • An example of band allocation information is shown.
  • An example of the band allocation process in eNB is shown.
  • An example of a bandwidth allocation determination process is shown.
  • a JT type CoMP sequence is shown.
  • a JT type CoMP sequence is shown.
  • a JR CoMP sequence is shown. The sequence in JT type CoMP is shown.
  • a sequence in a case where HARQ retransmission is not completed even when the maximum number of retransmissions is reached is shown. It is a figure for demonstrating HARQ resending in a MAC layer. The sequence of JT type CoMP is shown.
  • the mobile communication system according to the present embodiment is configured based on the 3GPP standard after release 10 (that is, LTE Advanced).
  • the mobile communication system performs CoMP communication between a CoMP cooperating set composed of a plurality of eNBs and a UE.
  • the anchor eNB included in the CoMP cooperating set transmits an additional request for requesting other eNBs not included in the CoMP cooperating set to join the CoMP cooperating set.
  • the anchor eNB transmits the addition request, the anchor eNB transmits the C-RNTI used for CoMP communication with the UE to the other eNB.
  • FIG. 1 shows a configuration of the LTE system 1.
  • the LTE system 1 includes a UE (User Equipment), an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network), and an EPC (Evolved Packet Core).
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • UE is a mobile radio communication device and corresponds to a user terminal.
  • E-UTRAN consists of multiple eNBs (evolved Node-B).
  • the eNB is a fixed radio communication device that performs radio communication with the UE, and corresponds to a base station.
  • Each eNB constitutes one or a plurality of cells.
  • the eNB has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • EPC includes MME (Mobility Management Entity) and S-GW (Serving-Gateway).
  • EPC corresponds to a core network.
  • the MME is a network entity that performs various types of mobility control for the UE, and corresponds to a control station.
  • the S-GW is a network entity that performs transfer control of user data, and corresponds to a switching center.
  • ENBs are connected to each other via the X2 interface. Also, the eNB is connected to the MME and S-GW via the S1 interface.
  • FIG. 2 shows a configuration of a radio frame used in the LTE system 1.
  • the LTE system 1 employs OFDMA (Orthogonal Division Multiplexing Access) for the downlink and SC-FDMA (Single Carrier Frequency Multiple Access) for the uplink.
  • OFDMA Orthogonal Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of ten subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the section of the first few symbols (specifically up to 3 or 4 symbols) of each subframe is mainly used as a physical downlink control channel (PDCCH). It is an area.
  • the remaining section of each subframe is a data area mainly used as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • PDCCH carries a control signal.
  • the control signal is, for example, uplink SI (Scheduling Information), downlink SI, and TPC bits.
  • Uplink SI indicates allocation of uplink radio resources
  • downlink SI indicates allocation of downlink radio resources.
  • the TPC bit is a signal instructing increase / decrease in uplink transmission power.
  • DCI downlink control information
  • the PDSCH carries control signals and / or user data.
  • the downlink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • timing advance value is mentioned as a control signal transmitted via PDSCH.
  • the timing advance value is a transmission timing correction value of the UE, and is determined by the eNB based on an uplink signal transmitted from the UE. Details of the timing advance value will be described later.
  • an acknowledgment (ACK) / negative acknowledgment (NACK) is carried via the physical HARQ notification channel (PHICH).
  • ACK / NACK indicates whether or not the signal transmitted via the uplink physical channel (for example, PUSCH) has been successfully decoded.
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is a data region mainly used as a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the PUCCH carries a control signal.
  • the control signal includes, for example, CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), SR (Scheduling Request), ACK / NACK, and the like.
  • CQI indicates downlink channel quality and is used to determine a recommended modulation scheme and coding rate to be used for downlink transmission.
  • PMI indicates a precoder matrix that is preferably used for downlink transmission.
  • RI indicates the number of layers (number of streams) that can be used for downlink transmission.
  • SR is a signal for requesting allocation of uplink radio resources (resource blocks).
  • ACK / NACK indicates whether or not the signal transmitted via the downlink physical channel (for example, PDSCH) has been successfully decoded.
  • PUSCH is a physical channel that carries control signals and / or user data.
  • the uplink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • FIG. 3 shows the radio interface protocol of the user plane
  • FIG. 4 shows the radio interface protocol of the control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • FIG. 5 illustrates processing of each layer by taking a downlink as an example.
  • FIG. 6 shows the data flow in each layer.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model.
  • Layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs data encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to the upper layer using the physical channel described above.
  • Data is transmitted via a physical channel between the physical layer of the UE and the physical layer of the eNB.
  • the physical layer is connected to the MAC layer through a transport channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted through the transport channel between the MAC layer of the UE and the MAC layer of the eNB.
  • the MAC layer also performs mapping between logical channels and transport channels.
  • the MAC layer of the eNB includes a MAC scheduler that determines a transport format and resource blocks for uplink and downlink.
  • the transport format includes a transport block size, a modulation and coding scheme (MCS), and antenna mapping.
  • MCS modulation and coding scheme
  • the MAC layer is connected to the RLC layer through a logical channel.
  • the RLC layer receives data in the form of RLC SDU (Service Data Unit) from the PDCP layer. Data is transmitted via a logical channel between the RLC layer of the UE and the RLC layer of the eNB.
  • the RLC layer transmits data to the RLC layer on the receiving side using functions of the MAC layer and the physical layer.
  • the upper layer PDU corresponds to the lower layer SDU. Therefore, the RLC SDU is sometimes called a PDCP PDU (Protocol Data Unit).
  • the RLC PDU length varies depending on the conditions of transmission rate optimization and dynamic scheduling. For this reason, the payload length (transport block size) transmitted in the subframe is variable. Therefore, the RLC layer divides and combines RLC SDUs (PDCP PDUs) according to the RLC PDU length.
  • the RLC layer operates in one of a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (AM) according to a request from an application.
  • TM mode the RLC layer is bypassed.
  • UM mode data division / combination is performed, but ARQ retransmission is not performed.
  • the AM mode not only performs data division / assembly, but also performs ARQ retransmission when RLC PDU transmission fails. Higher reliability can be obtained by performing double retransmission with HARQ in the MAC layer and ARQ in the RLC layer.
  • the RLC layer is connected to the PDCP layer via a radio bearer.
  • the PDCP layer performs header compression / decompression and encryption / decryption. Header compression reduces the size of IP packet headers that contain unnecessary control information. Data is transmitted via the radio bearer between the PDCP layer of the UE and the PDCP layer of the eNB.
  • the RRC layer is defined only in the control plane.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC Connection RRC Connection
  • RRC Connected RRC connection
  • RRC idle RRC Idle
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • Timing Advance In the uplink, the UE located far from the eNB needs to advance the data transmission timing so as to match the reception timing of the eNB. Therefore, the eNB generates a timing advance value for adjusting (correcting) the data transmission timing of the UE by measuring the timing of the uplink signal received from the UE. Then, the eNB notifies the UE of the timing advance value as TA MCE (Timing Advance Command Mac Control Element).
  • TA MCE Timing Advance Command Mac Control Element
  • the timing advance value is an offset value of the timing at which the UE starts transmission based on the current transmission timing of the UE. Since the UE may move, the eNB sends a timing advance value to the UE with periodic updates.
  • both the eNB and the UE have a timer (referred to as “Time Alignment Timer”) that determines the validity period of the timing advance value, and the UE is synchronized in the uplink. Determine if you have fallen.
  • 7 and 8 are diagrams for explaining the timing advance value. 7 and 8 show a situation where the UE moves.
  • the eNB in a situation where the UE approaches the eNB, the eNB generates a negative offset value as a timing advance value with respect to the current transmission timing of the UE so as to delay the transmission timing of the UE. Then, the eNB notifies the UE of the timing advance value (TA MCE). Upon receiving the timing advance value (TA MCE), the UE delays the transmission timing according to the timing advance value (TA MCE).
  • TA MCE timing advance value
  • the eNB in a situation where the UE moves away from the eNB, the eNB generates a positive offset value as a timing advance value with respect to the current transmission timing of the UE so as to advance the transmission timing of the UE. Then, the eNB notifies the UE of the timing advance value (TA MCE). When receiving the timing advance value (TA MCE), the UE advances the transmission timing according to the timing advance value (TA MCE).
  • FIG. 9 is a block diagram of the UE.
  • the UE includes an antenna 110, a radio transceiver 120, and a control unit 130.
  • the UE may further include a user interface and a battery.
  • the antenna 110 and the wireless transceiver 120 are used for transmitting and receiving wireless signals.
  • the control unit 130 performs processing in each layer described above.
  • the control unit 130 includes a processor 131 and a memory 132.
  • the processor 131 performs the processing in each layer described above by executing a program stored in the memory 132.
  • the processor 131 performs control (details will be described later) at the UE regarding CoMP communication.
  • the memory 132 stores information used for control at the UE regarding CoMP communication.
  • FIG. 10 is a block diagram of the eNB.
  • the eNB includes an antenna 210, a radio transceiver 220, a network communication unit 230, and a control unit 240.
  • the antenna 210 and the radio transceiver 220 are used for radio signal transmission / reception.
  • the network communication unit 230 performs communication on the X2 interface and the S1 interface.
  • the control unit 240 performs processing in each layer described above.
  • the control unit 240 includes a processor 241 and a memory 242.
  • the processor 241 performs the processing in each layer described above by executing a program stored in the memory 242.
  • the processor 241 performs control (details will be described later) at the eNB regarding CoMP communication.
  • the memory 242 stores information used for control at the eNB regarding CoMP communication.
  • Outline of CoMP CoMP positions antenna groups arranged in the same place as one “point”, and a plurality of points cooperate to communicate with the UE.
  • the point group that performs cooperative communication with the UE is referred to as a CoMP cooperating set.
  • JP Joint Processing
  • JT Joint Transmission
  • JR Joint Reception
  • DCS Dynamic Cell Selection
  • CS Coordinated Scheduling
  • CB Coordinated Beamforming
  • FIG. 11 is a diagram for explaining the JT type CoMP.
  • UE100 is located in the coverage area edge part (namely, boundary region) of each eNB.
  • the CoMP cooperating set includes eNB 200 to eNB 204.
  • the eNB 200 is an anchor eNB that receives data addressed to the UE 100 from the S-GW on behalf of the eNB 200 to the eNB 204.
  • the anchor eNB 200 corresponds to a main base station that controls downlink CoMP communication.
  • the anchor eNB 200 corresponds to a CoMP management apparatus that manages a CoMP cooperating set.
  • the other eNBs (eNB 201 to eNB 204) correspond to slave base stations.
  • the anchor eNB 200 receives data from the S-GW and transfers the data to the eNB 201 to eNB 204 over the X2 interface.
  • each of the eNB 200 to the eNB 204 transmits data to the UE 100 on the radio interface using the same communication resource (the same time / frequency resource and the same MCS).
  • the UE 100 receives data transmitted from the eNB 200 to the eNB 204.
  • the UE100 is located in the coverage area edge part, since a synthetic
  • FIG. 12 is a diagram for explaining JR-type CoMP.
  • UE100 is located in the coverage area edge part (namely, boundary region) of each eNB.
  • the eNB 200 among the eNBs 200 to 204 included in the CoMP cooperating set is an anchor eNB that performs data transmission to the EPC (specifically, S-GW) on behalf of the eNB 200 to eNB 204.
  • the anchor eNB 200 corresponds to a main base station that controls uplink CoMP communication.
  • the other eNBs (eNB 201 to eNB 204) correspond to slave base stations.
  • the UE 100 transmits data on the radio interface using a predetermined communication resource.
  • each of the eNB 200 to the eNB 204 performs reception using the predetermined communication resource.
  • Each of the eNB 201 to eNB 204 transfers the data from the UE 100 to the anchor eNB 200 on the X2 interface in the state of the baseband signal without decoding the received data (specifically, decoding in the physical layer).
  • the anchor eNB 200 receives data from the eNB 201 to the eNB 204.
  • the anchor eNB 200 combines the data received from the UE 100 and the data received from the eNB 201 to eNB 204 and decodes the synthesized data. Then, the anchor eNB 200 transfers the decrypted data to the S-GW over the S1 interface.
  • the communication quality is improved.
  • a frequency resource (resource block), a time resource (subframe), and a modulation scheme (MCS) used for CoMP communication are collectively referred to as “band”.
  • FIG. 13 shows an overall control flow, specifically, a control flow for starting / continuing / ending CoMP communication. This flow is periodically executed by the eNB 200 operating as the anchor eNB. However, before starting CoMP communication, this flow is periodically executed by the eNB 200 configuring the UE's serving cell.
  • the eNB 200 receives a measurement report (Measurement Report) from the UE 100.
  • the measurement report includes information on the signal level (specifically, the power level) of the reference signal received by the UE from each eNB (or each cell).
  • step S101 the eNB 200 calculates a difference between a signal level corresponding to the eNB 200 and a signal level corresponding to another eNB based on the measurement report received in step S100.
  • step S103 the eNB 200 has a higher signal level corresponding to another eNB, and whether or not the signal level difference calculated in step S101 is larger than the threshold Pth0. Confirm. If the signal level corresponding to another eNB is higher and the signal level difference calculated in step S101 is larger than the threshold value Pth0 (step S103; Yes), the process proceeds to step S109, and if not (step S103) No), the process proceeds to step S104.
  • step S109 the eNB 200 starts a handover sequence to the other eNB.
  • UE200 performs the hand-over to the said other eNB.
  • a sequence according to the current specification can be applied as the handover sequence.
  • step S104 the eNB 200 confirms whether or not the signal level difference calculated in step S101 is within the range of the threshold value Pth1.
  • Pth1 is a smaller value than Pth0. If the signal level difference calculated in step S101 is within the range of the threshold value Pth1 (step S104; Yes), the process proceeds to step S106; otherwise (step S104; No), the process proceeds to step S105.
  • step S105 the eNB 200 updates the boundary region residence time to zero. This is because when Step S104 is No, the signal level difference is relatively large and the UE 100 cannot be considered to be located in the boundary region.
  • step S106 the eNB 200 adds 1 to the residence time of the boundary region. Thereafter, the process proceeds to step S107.
  • step S107 the eNB 200 confirms whether or not the boundary region residence time exceeds the threshold value Tth0. If the boundary region residence time exceeds the threshold value Tth0 (step S107; Yes), the process proceeds to step S108. When the boundary region residence time exceeds the threshold value Tth0, the UE 100 is considered to remain in the boundary region.
  • step S108 the eNB 200 determines to start CoMP communication.
  • the eNB 200 performs a CoMP cooperating set setting process (details will be described later).
  • step S110 the eNB 200 confirms whether or not the signal level difference calculated in step S101 is within the range of the threshold value Pth3. If the signal level difference calculated in step S101 is within the threshold Pth3 (step S110; Yes), the process proceeds to step S114; otherwise (step S110; No), the process proceeds to step S111.
  • step S114 the eNB 200 determines to continue the CoMP communication.
  • the eNB 200 may newly add an eNB to the CoMP cooperating set based on the measurement report from the UE 100 during CoMP communication. Details of the eNB addition sequence will be described later.
  • step S111 the eNB 200 confirms whether or not the signal level difference calculated in step S101 is within the range of the threshold value Pth2.
  • Pth2 is a value larger than Pth3. If the signal level difference calculated in step S101 is within the threshold Pth2 (step S111; Yes), the process proceeds to step S113; otherwise (step S111; No), the process proceeds to step S112.
  • step S113 the eNB 200 starts an anchor switching sequence for switching the anchor eNB from the eNB 200 to the other eNB. Details of the anchor switching sequence will be described later.
  • step S112 the eNB 200 determines to end the CoMP communication and performs a process to end the CoMP communication.
  • CoMP cooperating set will be described in the order of (6.1) CoMP cooperating set setting operation, (6.2) anchor eNB switching sequence, and (6.3) eNB adding sequence. .
  • the eNB includes an acquisition unit (a network communication unit 230 and a processor 241) that acquires a transmission delay with a neighboring eNB, and the transmission delay acquired by the acquisition unit is less than a threshold.
  • registration means for registering the eNB as an eNB to be included in the CoMP cooperating set.
  • the registration unit excludes the neighboring eNB from eNBs to be included in the CoMP cooperating set when the transmission delay acquired by the acquisition unit is equal to or greater than the threshold.
  • each eNB when configuring a CoMP cooperating set with different eNBs, each eNB does not necessarily support all CoMP types. On the other hand, the type of CoMP used by each eNB in the CoMP cooperating set needs to be unified. Therefore, in this embodiment, the following configuration is adopted in order to easily configure a CoMP cooperating set in which the supported CoMP types are unified.
  • the eNB is an eNB that supports CoMP, and includes a receiving unit (network communication unit 230) that receives a notification of a CoMP type supported by a neighboring eNB from the neighboring eNB, and a notification received by the receiving unit. And storage means (processor 241 and memory 242) for storing information on neighboring eNBs in association with CoMP types supported by the neighboring eNBs.
  • FIG. 14 shows a setting operation flow of the CoMP cooperating set. This flow is executed at the start of CoMP communication by the eNB 200 operating as the anchor eNB. However, this flow may be executed periodically after the start of CoMP communication.
  • FIG. 15 shows an X2 measurement message used in this flow.
  • the eNB 200 starts a processing loop for each of the other neighboring eNBs (neighboring eNBs).
  • the neighboring eNB may be an eNB whose identifier is included in a neighbor list set in the eNB 200 (that is, an adjacent eNB), or an eNB in which an X2 interface is established with the eNB 200.
  • the initial value of “i” is 0, and 1 is added for each loop.
  • the loop is exited.
  • the X2 measurement message 1 includes time information (hereinafter referred to as “time stamp T0”) when the X2 measurement message 1 is transmitted.
  • the neighboring eNBi that has received the X2 measurement message 1 transmits the X2 measurement message 2 including various types of information described later to the eNB 200 on the X2 interface.
  • step S202 the eNB 200 receives the X2 measurement message 2 transmitted from the neighboring eNBi.
  • the eNB 200 acquires time information (hereinafter referred to as “time stamp T3”) when the X2 measurement message 2 is received from the neighboring eNBi.
  • the X2 measurement message 2 includes a time stamp T0 included in the X2 measurement message 1 received by the neighboring eNBi and time information when the neighboring eNBi receives the X2 measurement message 1 (hereinafter, “Time stamp T2”), time information when the neighboring eNBi transmits the X2 measurement message 2 (hereinafter referred to as "time stamp T1"), and a type of downlink CoMP supported by the neighboring eNBi (hereinafter referred to as "time stamp T2").
  • a DL eNBi-supported uplink CoMP type hereinafter referred to as a “UL-compatible CoMP type”.
  • JT, DCS, CS, and CB are illustrated as types of DL CoMP supported by neighboring eNBi.
  • JR and CS are illustrated as the types of UL CoMP supported by neighboring eNBi.
  • the eNB 200 transmits the transmission delay Tsnd in the direction (transmission method) from the eNB 200 to the neighboring eNBi and the transmission delay Trec in the direction (reception method) from the neighboring eNBi to the eNB 200 based on the time stamps T0 to T3 described above. And are calculated. Specifically, the eNB 200 calculates a difference between the time stamp T0 included in the X2 measurement message 2 and the time stamp T2 included in the X2 measurement message 2 as a transmission delay Tsnd. Also, the eNB 200 calculates the difference between the time stamp T1 included in the X2 measurement message 2 and the time stamp T3 acquired by itself as the transmission delay Trec.
  • the eNB 200 sets the threshold Th according to the CoMP type that the eNB 200 plans to use (that is, the CoMP type supported by the eNB 200).
  • the CoMP type that is, the CoMP type supported by the eNB 200.
  • JT, JR, and DCS belonging to the JP type require a high-speed communication between the eNBs included in the CoMP cooperating set, and thus set a threshold value Th with strict conditions.
  • a threshold value Th that relaxes the condition (that is, a value larger than the threshold value in the JP type) is set.
  • step S205 the eNB 200 compares each of the transmission delay Tsnd and the transmission delay Trec calculated in step S203 with the threshold Th set in step S204. If both the transmission delay Tsnd and the transmission delay Trec are smaller than the threshold Th (step S205; Yes), the process proceeds to step S209, and if not, the process proceeds to step S206.
  • step S209 the eNB 200 determines whether or not the DL compatible CoMP type included in the X2 measurement message 2 indicates the DL compatible CoMP type “present” (that is, whether or not the neighboring eNBi supports downlink CoMP). Check. When the neighboring eNBi supports downlink CoMP (step S209; Yes), in step S210, the eNB 200 registers the neighboring eNBi as an eNB to be included in the CoMP cooperating set of the downlink CoMP.
  • step S211 the eNB 200 determines whether or not the UL compatible CoMP type included in the X2 measurement message 2 indicates the UL compatible CoMP type “present” (that is, whether the neighboring eNBi supports uplink CoMP). Confirm).
  • step S211 the eNB 200 registers the neighboring eNBi as an eNB to be included in the CoMP cooperating set of the uplink CoMP.
  • step S206 If it is determined in step S206 that the processing for all neighboring eNBs has been completed, the process exits the loop.
  • step S207 the eNB 200 transmits CoMP cooperating set information related to the CoMP cooperating set to each eNB to be included in the CoMP cooperating set on the X2 interface.
  • the eNB that has received the CoMP cooperating set information stores the received CoMP cooperating set information.
  • step S208 the eNB 200 transmits CoMP cooperating set information to the UE 100.
  • the anchor eNB changes the CoMP cooperating set information and transmits the changed CoMP cooperating set information on the X2 interface.
  • the eNB that has received the changed CoMP cooperating set information updates the changed CoMP cooperating set information.
  • FIG. 16 shows an example of CoMP cooperating set information.
  • Each eNB and UE performing CoMP communication stores CoMP cooperating set information related to the CoMP communication.
  • FIG. 16 shows CoMP cooperating set information regarding a CoMP cooperating set that performs only uplink CoMP communication, CoMP cooperating set information regarding a CoMP cooperating set that performs only downlink CoMP communication, and both uplink and downlink CoMP. CoMP cooperating set information regarding the CoMP cooperating set performing communication is shown.
  • the eNB performs only uplink CoMP communication with UE1, performs only downlink CoMP communication with UE2, and performs both uplink and downlink CoMP communication with UE3.
  • CoMP cooperating set information includes C-RNTI (Cell-Radio Network Temporary Identity) of UE.
  • C-RNTI Cell-Radio Network Temporary Identity
  • C-RNTI is a temporary UE identifier called a cell-specific radio network temporary identifier.
  • the C-RNTI may be changed when an eNB is added to the CoMP cooperating set.
  • the CoMP cooperating set information includes the C-RNTI before and after the change.
  • CoMP cooperating set information includes the eNB identifier (or cell identifier) of each eNB included in the CoMP cooperating set, and the eNB identifier (or cell identifier) of the anchor eNB included in the CoMP cooperating set.
  • CoMP cooperating set information includes a HARQ initial transmission allocation period for the downlink and a HARQ initial transmission allocation period for the uplink. Details of the HARQ initial transmission allocation cycle will be described later.
  • CoMP cooperating set information includes resource block information (for example, resource block number) of E-PDCCH (Evolved-PDCCH). Details of the E-PDCCH will be described later.
  • the CoMP cooperating set information includes information indicating the allocation timing to the UE.
  • the eNB 200 acquires a transmission delay with the neighboring eNB, and registers the neighboring eNB as an eNB to be included in the CoMP cooperating set when the acquired transmission delay is less than the threshold.
  • the neighboring eNB is excluded from eNBs to be included in the CoMP cooperating set.
  • dynamic band allocation can be realized.
  • the eNB 200 acquires the transmission delay Tsnd in the direction (transmission direction) from the eNB to the neighboring eNB and the transmission delay Trec in the direction (reception direction) from the neighboring eNB to the eNB.
  • the neighboring eNB is registered as an eNB to be included in the CoMP cooperating set.
  • CoMP communication can be started after confirming that the delay is small in both the transmission direction and the reception direction.
  • the eNB 200 sets a threshold to be compared with the transmission delay Tsnd and the transmission delay Trec according to the type of CoMP used in the CoMP cooperating set.
  • the required transmission delay condition can be satisfied for each type of CoMP.
  • the eNB 200 receives a notification of the CoMP type supported by the neighboring eNB, and stores information on the neighboring eNB in association with the CoMP type supported by the neighboring eNB based on the received notification. Specifically, information on neighboring eNBs that support the same CoMP type is grouped and stored. As a result, the eNB 200 can manage the neighboring eNBs by grouping them for each supported CoMP type, so that a CoMP cooperating set in which the supported CoMP types are unified can be easily configured.
  • a CoMP cooperating set that performs only downlink CoMP, a CoMP cooperating set that performs only uplink CoMP, and a CoMP cooperating set that performs CoMP on both upper and lower links can be managed individually.
  • One eNB can perform a plurality of types of CoMP communications.
  • the UE can differentiate between a CoMP cooperating set that performs only downlink CoMP, a CoMP cooperating set that performs only uplink CoMP, and a CoMP cooperating set that performs CoMP on both upper and lower links.
  • the anchor eNB switching sequence will be described.
  • the anchor eNB sends an anchor switch request for requesting other eNBs included in the CoMP cooperating set to become a new anchor eNB in the CoMP cooperating set based on the measurement report from the UE. Send.
  • the other eNB accepts an anchor switching request from the anchor eNB, the other eNB transmits an acknowledgment to the anchor switching request to the anchor eNB and then switches to the new anchor eNB. Then, after switching to the new anchor eNB, the other eNB notifies the other eNBs included in the CoMP cooperating set that the own eNB has become a new anchor eNB.
  • FIG. 17 shows an anchor eNB switching sequence.
  • the anchor eNB is switched from the eNB 200 to the eNB 201 while the CoMP cooperating set configured by the eNB 200 to the eNB 203 and the UE 100 are executing the JT type CoMP will be described.
  • step S1001 the eNB 200 receives packet data from the S-GW. Although details will be described later, the eNB 200 converts the packet data into PDCP PDU in the PDCP layer and adds a sequence number to the PDCP PDU.
  • step S1002 the eNB 200 transfers the PDCP PDU to which the sequence number is added to the eNB 201 to the eNB 203 over the X2 interface.
  • each of the eNB 200 to the eNB 203 transmits / receives band allocation information related to the allocation candidate band to / from other eNBs included in the CoMP cooperating set on the X2 interface, and determines a band to be allocated to the UE 100. Details of the bandwidth allocation information will be described later.
  • step S1004 each of the eNB 200 to the eNB 203 allocates the band determined in step S1003 to the UE 100 and transmits the same data to the UE 100.
  • step S1005 the UE 100 transmits a measurement report.
  • Each of the eNB 200 to the eNB 203 receives the measurement report.
  • step S1006 the eNB 200 determines to switch the anchor eNB to the eNB 201 based on the measurement report.
  • step S1007 the eNB 200 transmits an anchor switching request for requesting to become a new anchor eNB to the eNB 201 on the X2 interface.
  • step S1008 the eNB 201 determines that the anchor switching request from the eNB 200 is allowed, and transmits an anchor switching response to that effect to the eNB 200 over the X2 interface.
  • step S1009 the eNB 200 transmits an SN Status transfer message indicating the status of transmission / reception with the UE 100 to the eNB 201 on the X2 interface in order to forward untransmitted data to the UE 100.
  • step S1010 the eNB 200 transfers (forwards) untransmitted data to the UE 100 to the eNB 201 over the X2 interface.
  • step S1011 the eNB 201 transmits a path switching request for switching the data path (path) to the eNB 201 to the MME on the S1 interface.
  • step S1012 the MME transmits a bearer change request to the S-GW in response to the path switching request from the eNB 201.
  • the S-GW starts a process of switching the data path (path) from the eNB 200 to the eNB 201 in response to the bearer change request from the MME.
  • step S1013 the S-GW transmits an End Marker indicating the end of data transfer to the eNB 200 to the eNB 200 over the S1 interface.
  • step S1014 the S-GW transmits packet data to the eNB 201 over the S1 interface.
  • step S1015 the eNB 200 transmits an End Marker indicating that the data transfer (forwarding) to the eNB 201 is ended to the eNB 201 on the X2 interface.
  • step S1016 the S-GW transmits a bearer change response that is a response to the bearer change request received in step S1012 to the MME.
  • step S1017 the MME transmits a path switching response that is an affirmative response to the path switching request received in step S1011 to the eNB 201 over the S1 interface.
  • step S1018 the eNB 201 notifies the eNB 200 of completion of switching of the anchor eNB on the X2 interface. Thereafter, the eNB 201 operates as a new anchor eNB. The eNB 201 switched to the new anchor eNB updates the CoMP cooperating set information stored in the own eNB so that the own eNB becomes the anchor eNB.
  • the eNB 201 transmits the updated CoMP cooperating set information to the eNB 200, the eNB 202, and the eNB 203 over the X2 interface. Further, the eNB 201 may notify the UE of updated CoMP cooperating set information. When receiving the updated CoMP cooperating set information, the eNB 200, the eNB 202, and the eNB 203 store the updated CoMP cooperating set information.
  • step S1020 the eNB 201 transfers the PDCP PDU obtained by converting the packet data received from the S-GW in step S1014 to the eNB 200, the eNB 202, and the eNB 203 on the X2 interface.
  • the eNB 200 requests the other eNB 201 included in the CoMP cooperating set to make an anchor switch request for becoming a new anchor eNB in the CoMP cooperating set. Send.
  • the eNB 201 transmits an anchor switching response that is an affirmative response to the anchor switching request to the eNB 200, and then switches to the new anchor eNB. Thereby, an anchor eNB can be switched without stopping CoMP communication.
  • the eNB 201 after switching to a new anchor eNB, notifies the eNB 200, the eNB 202, and the eNB 203 included in the CoMP cooperating set that the own eNB has become a new anchor eNB. Thereby, even if the anchor eNB is switched during CoMP communication, each eNB included in the CoMP cooperating set can grasp a new anchor eNB.
  • the anchor eNB requests other eNBs not included in the CoMP cooperating set to join the CoMP cooperating set in order to add a new eNB to the CoMP cooperating set.
  • a CoMP addition request is transmitted. Further, when transmitting the CoMP addition request, the C-RNTI used for communication with the UE is transmitted to the other eNB.
  • FIG. 18 shows pattern 1 of the eNB addition sequence.
  • the eMP 203 is added to the CoMP cooperating set while the CoMP cooperating set configured by the eNBs 200 to 202 and the UE 100 are executing JT type CoMP will be described. Further, the eNB 203 assigns the same C-RNTI as the C-RNTI assigned to the UE 100 to the UE connected to the eNB 203.
  • the eNB 200 operating as the anchor eNB receives packet data from the S-GW.
  • the eNB 200 converts the packet data into PDCP PDU at the PDCP layer, and adds a sequence number to the PDCP PDU.
  • step S2002 the eNB 200 transfers the PDCP PDU to which the sequence number is added to the eNB 201 and the eNB 202 over the X2 interface.
  • each of the eNB 200 to the eNB 202 transmits / receives band allocation information related to the allocation candidate band to / from other eNBs included in the CoMP cooperating set on the X2 interface, and determines a band to be allocated to the UE 100.
  • step S2004 each of the eNB 200 to the eNB 202 allocates the band determined in step S2003 to the UE 100, and transmits the same data to the UE 100.
  • step S2005 the UE 100 transmits a measurement report.
  • Each of the eNB 200 to the eNB 202 receives the measurement report.
  • the eNB 200 determines to add the eNB 203 to the CoMP cooperating set based on the measurement report.
  • the eNB 200 includes a signal level for an eNB (cell) that was not included in the previous measurement report in the measurement report received this time, and the signal level is suitable for CoMP communication. If it is a value, the eNB is determined to be added to the CoMP cooperating set.
  • step S2007 the eNB 200 transmits a CoMP addition request for requesting to join the CoMP cooperating set to the eNB 203 over the X2 interface.
  • the eNB 200 transmits the C-RNTI used for the CoMP communication with the UE 100 in the CoMP addition request.
  • step S2008 based on the CoMP addition request received from the eNB 200, the eNB 203 determines whether or not the same C-RNTI as the C-RNTI being used in the CoMP cooperating set to which the eNB 200 belongs is used. Specifically, the eNB 203 determines whether or not the C-RNTI included in the received CoMP addition request matches any of the C-RNTIs that are being used (allocated) by the eNB 203. Here, the eNB 203 determines that the same C-RNTI is used.
  • step S2009 the eNB 203 transmits a CoMP addition response, which is a response to the CoMP addition request, to the eNB 200 over the X2 interface.
  • the eNB 203 transmits information indicating that the same C-RNTI is being used in a CoMP addition response.
  • step S2010 the eNB 200 requests to notify an unused (unallocated) C-RNTI in response to the fact that information indicating that the same C-RNTI is being used is included in the CoMP addition response.
  • An unused C-RNTI request is transmitted to the eNB 201 to eNB 203 over the X2 interface.
  • each of the eNB 201 to eNB 203 extracts an unused C-RNTI in its own eNB in response to an unused C-RNTI request, and includes an unused C-RNTI including an unused C-RNTI in its own eNB.
  • a response is transmitted to the eNB 200 over the X2 interface.
  • step S2012 the eNB 200 sets the unused C-RNTI in the own eNB and the unused C-RNTI included in the unused C-RNTI response (the unused C-RNTI in each of the eNB 201 to the eNB 203). Among them, a common C-RNTI is selected, and the selected C-RNTI is determined as a new C-RNTI used for CoMP communication with the UE 100.
  • the eNB 200 selects an eNB to be excluded from the CoMP cooperating set based on the measurement report from the UE 100, and an unused C-RNTI in each of the remaining eNBs.
  • a common C-RNTI may be selected from the list.
  • the eNB 200 that has determined the new C-RNTI updates the CoMP cooperating set information stored in its own eNB so that the new C-RNTI is included, and the eNB 203 is added to the CoMP cooperating set. Update as follows.
  • step S2013 the eNB 200 transmits the updated CoMP cooperating set information to the eNB 201 to the eNB 203 over the X2 interface.
  • the eNB 201 to the eNB 203 store the updated CoMP cooperating set information.
  • step S2014 the eNB 200 to the eNB 203 transmit the updated CoMP cooperating set information to the UE 100.
  • the UE 100 recognizes that the changed C-RNTI included in the updated CoMP cooperating set information is allocated, and thereafter uses the changed C-RNTI.
  • step S2015 the eNB 200 receives packet data from the S-GW.
  • step S2016 the eNB 200 transfers the PDCP PDU to the eNB 201 to the eNB 203 over the X2 interface.
  • each of the eNB 200 to the eNB 203 transmits / receives band allocation information related to the allocation candidate band to / from other eNBs included in the CoMP cooperating set on the X2 interface, and determines a band to be allocated to the UE 100.
  • step S2018 each of the eNB 200 to the eNB 202 allocates the band determined in step S2017 to the UE 100 and transmits the same data to the UE 100.
  • the eNB 200 transmits the C-RNTI used for CoMP communication with the UE 100 to the eNB 203 that is not included in the CoMP cooperating set, in the CoMP addition request.
  • the eNB 203 After receiving the CoMP addition request from the eNB 200, the eNB 203 notifies the eNB 200 whether or not the C-RNTI included in the CoMP addition request is being used.
  • the eNB 200 requests the eNB 201 to the eNB 203 to notify an unused C-RNTI.
  • the eNB 201 to the eNB 203 notify the eNB 200 of an unused C-RNTI in its own eNB.
  • the eNB 200 determines a new C-RNTI that uses a common C-RNTI for CoMP communication among unused C-RNTIs in the eNB 200 to eNB 203. Thereby, the eNB 203 that is already using the C-RNTI used in the CoMP cooperating set can be added to the CoMP cooperating set.
  • ENB 200 after determining the C-RNTI to be newly used, notifies the newly used C-RNTI to other eNBs included in the CoMP cooperating set. Thereby, even if the C-RNTI is changed during CoMP communication, each eNB included in the CoMP cooperating set can grasp the new C-RNTI.
  • FIG. 19 shows pattern 2 of the eNB addition sequence.
  • the initial state of this pattern is the same as the operation pattern 1 described above.
  • Steps S2101 to S2105 in FIG. 19 are the same as Steps S2001 to S2005 described above, and thus description thereof will be omitted.
  • step S2106 the eNB 200 determines to add the eNB 203 to the CoMP cooperating set based on the measurement report.
  • step S2107 the eNB 200 transmits a CoMP addition request for requesting to join the CoMP cooperating set to the eNB 203 over the X2 interface.
  • the eNB 200 transmits the C-RNTI used for the CoMP communication with the UE 100 in the CoMP addition request.
  • step S2108 based on the CoMP addition request received from the eNB 200, the eNB 203 determines whether or not the same C-RNTI as the C-RNTI being used in the CoMP cooperating set to which the eNB 200 belongs is used. When the eNB 203 determines that the same C-RNTI is used, the eNB 203 changes the same C-RNTI to another C-RNTI.
  • step S2109 the eNB 203 transmits a CoMP addition response, which is a response to the CoMP addition request, to the eNB 200 over the X2 interface.
  • the eNB 200 that has received the CoMP addition response updates the CoMP cooperating set information stored in its own eNB so that the eNB 203 is added to the CoMP cooperating set.
  • step S2110 the eNB 200 transmits the updated CoMP cooperating set information to the eNB 201 to the eNB 203 on the X2 interface.
  • the eNB 201 to the eNB 203 store the updated CoMP cooperating set information.
  • step S2111 the eNB 200 to the eNB 203 transmit the updated CoMP cooperating set information to the UE 100.
  • the subsequent sequence is the same as pattern 1 described above.
  • the eNB 200 transmits the C-RNTI used for CoMP communication with the UE 100 to the eNB 203 that is not included in the CoMP cooperating set, in the CoMP addition request.
  • the eNB 203 receives the CoMP addition request from the eNB 200 and uses the same C-RNTI as the C-RNTI included in the CoMP addition request, the eNB 203 uses the same C-RNTI as another C-RNTI. Change to As a result, the C-RNTI used in the CoMP cooperating set can be added to the CoMP cooperating set even if the eNB 203 is already in use.
  • CoMP communication control will be described in the order of (7.1) E-PDCCH, (7.2) Bandwidth allocation control and timing advance control, and (7.3) Data synchronization and retransmission control. .
  • E-PDCCH The UE normally receives downlink control information (DCI) transmitted from the eNB on the PDCCH, and performs communication with the eNB based on SI (Scheduling Information) that is resource allocation information included in the DCI.
  • DCI downlink control information
  • SI Service
  • the time / frequency resource (PDCCH resource) used as the PDCCH varies depending on the communication state between the eNB and the UE.
  • each eNB included in the CoMP cooperating set individually assigns PDCCH resources to the UE, so it is difficult to assign the same PDCCH resource to the UE. It is difficult to apply JT type CoMP to the PDCCH region (control region). Moreover, if each eNB included in the CoMP cooperating set allocates PDCCH resources to UEs, the consumption of PDCCH resources increases. Therefore, in the present embodiment, the following configuration is adopted to appropriately transmit DCI even when performing CoMP communication.
  • the LTE system 1 performs communication using a downlink frame configuration including a control area for transmitting DCI and a data area for transmitting downlink user data.
  • Each of the plurality of eNBs that perform CoMP communication with the UE includes transmission means (a processor 241 and a radio transceiver 220) that transmits DCI in the data area instead of the control area when performing CoMP communication with the UE. .
  • the DCI includes uplink SI (Scheduling Information) and downlink SI. Further, the DCI may include additional information for CoMP.
  • the uplink SI indicates an uplink allocated resource block and an allocated MCS.
  • the downlink SI indicates a downlink allocated resource block and an allocated MCS.
  • FIG. 20 shows a downlink subframe configuration
  • the downlink subframe includes two consecutive downlink slots.
  • the maximum 3 (or 4) OFDM symbol section from the beginning of the first half slot in the downlink subframe is a control region mainly composed of time / frequency resources used as PDCCH.
  • the remaining OFDM symbol section of the downlink subframe is a data area mainly composed of time / frequency resources used as PDSCH.
  • the eNB transmits DCI in the data area instead of the control area when performing CoMP communication with the UE. Further, when the eNB transmits DCI in the data area, the eNB transmits DCI using a specific resource block (RB) in the data area. As described above, a specific resource block in the data area is used for DCI transmission in the same manner as the PDCCH.
  • RB resource block
  • E-PDCCH Evolved-PDCCH
  • each eNB included in the CoMP cooperating set uses the same resource block as the E-PDCCH.
  • the resource block used as E-PDCCH is determined by the anchor eNB.
  • DCI is originally information for notifying the UE of the resource block assigned to the data area
  • the resource block assigned to the data area cannot be notified to the UE.
  • the eNB broadcasts information indicating a resource block used as the E-PDCCH.
  • information indicating a resource block used as an E-PDCCH can be included in a system information block (SIB) mapped to 6 resource blocks in the center of the downlink bandwidth.
  • SIB system information block
  • the eNB may notify the UE by including information indicating a resource block (fixed) used as the E-PDCCH in the CoMP cooperating set information.
  • the eNB allocates one resource block to a plurality of UEs for E-PDCCH, and performs code division multiplexing by encoding a plurality of DCIs corresponding to the plurality of UEs with different spreading codes. Thereby, resource utilization efficiency can be improved.
  • the UE After receiving the SIB or CoMP cooperating set information, the UE specifies the E-PDCCH resource block allocated to the UE, and then receives the DCI transmitted by the E-PDCCH.
  • DCI is encoded with a spreading code for UE.
  • the UE spreading code can be notified to the UE by SIB or CoMP cooperating set information.
  • the UE has receiving means (wireless transceiver 120) for receiving the encoded DCI, and decoding means (processor 131) for decoding the DCI received by the receiving means with the spreading code for the own UE, When the decoding is successful, the decoding means recognizes the decoded DCI as the DCI addressed to its own terminal.
  • each of a plurality of eNBs that perform CoMP communication with a UE performs CoMP communication by transmitting DCI in the data area instead of the control area when performing CoMP communication with the UE.
  • DCI can be transmitted appropriately.
  • the band to be allocated to the UE is negotiated between eNBs. It is necessary to decide.
  • the band means a frequency resource (resource block), a time resource (subframe), and a modulation scheme (MCS).
  • the band is not a band for DCI described above (E-PDCCH band) but a band for transmitting user data (PDSCH band and / or PUSCH band).
  • the present embodiment adopts the following configuration in order to reduce the time required to determine the band to be allocated to the UE in CoMP.
  • each of the plurality of eNBs included in the CoMP cooperating set notifies the other eNBs included in the CoMP cooperating set of the candidate band allocated to the UE in the own eNB (network communication unit 230).
  • a selection unit that selects a band to be allocated to the UE from among the allocation candidate bands in each of the plurality of eNBs based on the notification.
  • the selection means selects a band to be allocated to the UE from among allocation candidate bands in each of the plurality of eNBs according to a selection rule common to the plurality of eNBs.
  • each eNB included in the CoMP cooperating set notifies the allocation candidate bands, and selects a band to be allocated to the UE from these allocation candidate bands according to a predetermined selection rule.
  • the bandwidth can be determined by only one-way notification, so that the time required for bandwidth determination can be shortened.
  • Either of the following selection rules 1 and 2 can be used as a common selection rule.
  • Selection rule 1 The notification means generates a timing advance value for adjusting the transmission timing of the UE, and notifies the generated timing advance value to other eNBs included in the CoMP cooperating set.
  • the receiving unit receives a timing advance value generated in another eNB from another eNB included in the CoMP cooperating set.
  • the common selection rule is an allocation candidate in an eNB that has generated a timing advance value (that is, a timing advance value having the smallest value) with the greatest degree of delaying the UE transmission timing among a plurality of eNBs. This is a rule for selecting a band as a band to be allocated to the UE.
  • the timing advance value with the greatest degree of delaying the UE transmission timing is selected as a timing advance value to be notified to the UE, as will be described later. Therefore, the selection rule 1 is a selection rule based on the timing advance value.
  • Selection rule 2 The notification means selects the MCS that the own eNB should apply to the UE and notifies the selected MCS to other eNBs included in the CoMP cooperating set.
  • the receiving unit receives the MCS between the other eNB and the UE from another eNB included in the CoMP cooperating set.
  • the common selection rule is to select the band of the allocation candidate in the eNB that has selected the MCS with the highest transmission rate (that is, the MCS with the lowest error tolerance) among the plurality of eNBs as the band to be allocated to the UE. It is a rule to do. Since the communication quality of the UE is expected to improve by performing CoMP communication, the throughput of the UE can be increased by selecting an MCS with a high transmission rate.
  • a selection rule may be adopted in which, among a plurality of eNBs, an allocation candidate band in an eNB having the smallest number of allocation candidate resource blocks is selected as a band to be allocated to the UE.
  • FIG. 21 shows how the eNBs included in the CoMP cooperating set notify the allocation candidate bands.
  • each of the eNBs 200 to 204 included in the CoMP cooperating set transmits band allocation information indicating allocation candidate bands to all eNBs other than the self eNB in the CoMP cooperating set on the X2 interface. To do.
  • Each of the eNB 200 to the eNB 204 receives band allocation information from all eNBs other than its own eNB in the CoMP cooperating set.
  • Each of the eNBs 200 to 204 selects a band to be allocated to the UE from the allocation candidate bands in the own eNB and the allocation candidate bands in the other eNBs according to the selection rule described above.
  • FIG. 22 shows an example of bandwidth allocation information.
  • the band allocation information includes an identifier of a target UE, an identifier of a transmission source eNB, an allocation candidate time (scheduled transmission time), an allocation candidate resource block, and an allocation candidate modulation scheme. (MCS), an identifier of transmission target data, and a timing advance value.
  • MCS allocation candidate modulation scheme
  • the target UE identifier is the above-mentioned C-RNTI.
  • the identifier of the transmission source eNB is the identifier of the eNB that has transmitted the band allocation information.
  • the allocation candidate time (timing) indicates a subframe of the allocation candidate in the transmission source eNB, and is expressed by, for example, a subframe number. Alternatively, the allocation candidate time (timing) is represented by SFN + subframe number.
  • An allocation candidate resource block indicates an allocation candidate resource block in the transmission source eNB, and is represented by, for example, a resource block number.
  • the identifier of the transmission target data is for ensuring the identity of the transmission data between eNBs (synchronization), and in this embodiment is the sequence number of the PDCD PDU.
  • the sequence number of the PDCD PDU is added by the anchor eNB. Details of the process of adding a sequence number to the PDCD PDU will be described later.
  • the timing advance value is a timing advance value generated in the transmission source eNB.
  • FIG. 23 shows an example of band allocation processing in the eNB included in the CoMP cooperating set.
  • step S300 the eNB confirms whether or not the UE is a CoMP target. If the UE is a CoMP target (step S300; Yes), the process proceeds to step S303; otherwise (step S300; No), the process proceeds to step S301.
  • step S301 the eNB performs calculation for determining a band to be allocated to the UE.
  • the allocated bandwidth is determined based on the CQI and / or SRS transmitted from the UE, for example, according to a normal scheduling algorithm such as proportional fairness (PF).
  • PF proportional fairness
  • step S302 the eNB transmits DCI indicating the band determined in step S301 to the UE on the PDCCH.
  • step S303 the eNB secures a reserved bandwidth (assignment candidate bandwidth) of the UE for CoMP in order to prioritize bandwidth allocation to the CoMP target UE.
  • step S304 the eNB stores the result of step S303.
  • step S305 the eNB sets the band allocation information (see FIG. 22) indicating the band reserved for the UE in step S302 (that is, the allocation candidate band) to the CoMP cooperating set that performs CoMP communication with the UE. Transmit to other included eNBs on the X2 interface.
  • step S306 the eNB starts a timer for measuring the time until the timing of the band allocation determination process.
  • FIG. 24 shows an example of the bandwidth allocation determination process.
  • step S400 the eNB confirms whether or not the timer activated in step S306 has expired. If the timer has expired (step S400; Yes), the process proceeds to step S401.
  • step S401 the eNB confirms whether or not the band allocation information has been received from all other eNBs included in the CoMP cooperating set that performs CoMP communication with the UE. If the band allocation information from all the other eNBs has been received (step S401; Yes), the process proceeds to step S404, and if not (step S401; No), the process proceeds to step S402.
  • step S404 the eNB determines the allocation band to the UE according to the selection rule described above, among the allocation candidate bands stored in step S304 and the allocation candidate bands of each of the other eNBs included in the CoMP cooperating set. decide.
  • step S405 the eNB transmits DCI indicating the allocated band determined in step S404 to the UE on the E-PDCCH, and transmits (or receives) user data to the UE using the allocated band.
  • the eNB has timed out without receiving band allocation information from at least one eNB among other eNBs included in the CoMP cooperating set.
  • the eNB determines a band according to the selection rule described above, among the allocation candidate bands stored in step S304 and the allocation candidate bands indicated by the received band allocation information.
  • band allocation information is not received from at least one eNB among other eNBs included in the CoMP cooperating set, a band different from the band to be unified in the CoMP cooperating set may be selected. There is.
  • step S403 the eNB reserves the band determined in step S404 as prohibition of allocation, and stops transmission (or reception) of user data using the band. Thereby, it is possible to prevent an adverse effect caused by the eNB performing data transmission (or reception) in a band different from the band to be unified in the CoMP cooperating set.
  • FIG. 25 shows a JT type CoMP sequence.
  • the CoMP cooperating set configured by the eNB 200 to the eNB 204 and the UE 100 are executing JT type CoMP, and the eNB 204 is operating as an anchor eNB.
  • step S3001 the eNB 204 operating as an anchor eNB receives packet data (user data) from the S-GW.
  • step S3002 the eNB 204 converts the packet data into a PDCP PDU with a sequence number in the PDCP layer, and transfers the PDCP PDU to the eNB 200 to the eNB 203 over the X2 interface.
  • step S3003 the eNB 204 generates band allocation information 1 and transfers the generated band allocation information 1 to the eNB 200 to the eNB 203 over the X2 interface.
  • step S3004 the eNB 203 generates band allocation information 2 and transfers the generated band allocation information 2 to the eNB 200, eNB 201, eNB 202, and eNB 204 over the X2 interface.
  • step S3005 the eNB 202 generates band allocation information 3, and transfers the generated band allocation information 3 to the eNB 200, eNB 201, eNB 203, and eNB 204 over the X2 interface.
  • step S3006 the eNB 201 generates band allocation information 4 and transfers the generated band allocation information 4 to the eNB 200, eNB 202, eNB 203, and eNB 204 over the X2 interface.
  • step S3007 the eNB 200 generates the band allocation information 5 and transfers the generated band allocation information 5 to the eNB 201 to the eNB 204 over the X2 interface.
  • each of the eNB 200 to the eNB 204 determines an allocation band to the UE 100 based on the band allocation information of the own eNB and the band allocation information from each other eNB.
  • each of the eNB 200 to the eNB 204 transmits user data to the UE 100 in the allocated band determined in step S3008.
  • each eNB included in the CoMP cooperating set notifies the allocation candidate bands, and selects a band to be allocated to the UE according to a predetermined selection rule from these allocation candidate bands.
  • the bandwidth can be determined by only one-way notification, so that the time required for bandwidth determination can be shortened.
  • each of the plurality of eNBs notifies the other eNBs included in the CoMP cooperating set of the candidate band to be allocated to the UE in its own eNB (network communication unit 230 and processor 241). And from other eNBs included in the CoMP cooperating set, according to the receiving means (network communication unit 230) for receiving notification of the band of the allocation candidate to the UE in the other eNB, according to the reception status of the receiving means, Prohibiting means (processor 241) for setting the allocation candidate bandwidth to the allocation prohibition.
  • the prohibiting unit is an allocation that is recognized by the own eNB out of allocation candidate bands in each of the plurality of eNBs when the receiving unit does not receive a notification from at least some other eNBs included in the CoMP cooperating set. Set the candidate bandwidth to prohibit allocation.
  • Each of the plurality of eNBs further includes selection means (processor 241) for selecting a band to be allocated to the UE from among allocation candidate bands in each of the plurality of eNBs according to a selection rule common to the plurality of eNBs.
  • the prohibiting unit sets the allocation candidate bandwidth selected according to the selection rule to prohibit allocation.
  • the CoMP cooperation can prevent that some eNB performs wrong allocation with respect to UE in a working set.
  • each of the plurality of eNBs included in the CoMP cooperating set generates a timing advance value for adjusting the data transmission timing of the UE
  • the other eNBs included in the CoMP cooperating set Transmission means for transmitting the generated timing advance value (processor 241 and network communication unit 230) and receiving means for receiving the timing advance value generated in the other eNB from other eNBs included in the CoMP cooperating set
  • the notification unit (the processor 241 and the radio transceiver 220) notifies the UE of the timing advance value selected from the timing advance values in each of the plurality of eNBs.
  • the timing advance value with the greatest degree of delaying the data transmission timing is selected from the timing advance values in each of the plurality of eNBs.
  • each symbol is provided with a CP so as to cope with a delayed wave. Therefore, even if it is an uplink signal (uplink data) that arrives later than the reception timing of the eNB, the CP is provided. Demodulation is possible within the long range. On the other hand, it is difficult to demodulate an uplink signal that arrives before the eNB reception timing. For this reason, the timing advance value can be appropriately set by selecting the timing advance value with the greatest degree of delaying the data transmission timing.
  • band allocation information (see FIG. 22) transmitted and received by each eNB includes a timing advance value. Therefore, the timing advance value can also be selected in the band allocation determination process described above.
  • the eNB follows the timing advance value selection rule among the timing advance value generated by the own eNB and the timing advance value of each of the other eNBs included in the CoMP cooperating set.
  • the timing advance value to be notified to the UE is determined.
  • the timing advance value can be determined by only one-way notification, and therefore the time required for determining the timing advance value can be shortened.
  • step S405 the eNB transmits the timing advance value determined in step S404 to the UE on the PDSCH.
  • the eNB when there is a vacant PDSCH resource to be allocated to the UE, the eNB notifies the UE of the timing advance value (TA MCE) using the vacant PDSCH resource.
  • TA MCE timing advance value
  • the case where there is a vacant PDSCH resource means that the bandwidth when transmission is performed using the selected resource block and the selected MCS is larger than the data to be transmitted.
  • each eNB included in the CoMP cooperating set cannot always obtain the timing advance value from all of the other eNBs included in the CoMP cooperating set, it holds the timing advance value for each other eNB. This is updated each time a new timing advance value is received.
  • each eNB included in the CoMP cooperating set stores storage means (memory 242) for storing the timing advance value received by the receiving means (network communication unit 230), and the receiving means receives the timing advance value.
  • the update means updates the timing advance value stored in the storage means with the received timing advance value
  • the notification means processes the timing advance value to be notified to the UE.
  • the timing advance value needs to be notified to the UE before the UE's Time Alignment Timer (first timer) expires.
  • Each eNB also has a Time Alignment Timer corresponding to the UE Time Alignment Timer.
  • TA MCE may be transmitted on the X2 interface, and may be cooperatively transmitted by all eNBs that cooperate in the same manner as other downlink data.
  • each of the plurality of eNBs included in the CoMP cooperating set receives reception means (network communication) that receives information related to resource allocation to UEs in the other eNBs from other eNBs included in the CoMP cooperating set.
  • Unit 230 a CoMP management apparatus that manages the CoMP cooperating set (information on other specific eNBs) when the receiving unit does not normally receive notifications from other specific eNBs included in the CoMP cooperating set.
  • Reporting means (processor 241 and network communication unit 230) for reporting to the anchor eNB).
  • the CoMP management apparatus excludes the other specific eNB and / or the eNB that performed the report from the CoMP cooperating set.
  • the CoMP management apparatus acquires the power level of the signal received by the UE from the other specific eNB and the power level of the signal received from the eNB reported by the UE, and acquires the other specific eNB. And among the eNBs that have reported, the eNB with the corresponding lower power level is excluded from the CoMP cooperating set.
  • FIG. 26 shows a JT type CoMP sequence.
  • the CoMP cooperating set configured by the eNB 200 to the eNB 204 and the UE 100 are executing JT type CoMP, and the eNB 204 is operating as an anchor eNB.
  • step S3101 the eNB 204 operating as the anchor eNB receives packet data (user data) from the S-GW.
  • step S3102 the eNB 204 converts packet data into a PDCP PDU with a sequence number in the PDCP layer, and transfers the PDCP PDU to the eNB 200 to the eNB 203 over the X2 interface.
  • step S3103 the eNB 204 generates band allocation information 1 and transfers the generated band allocation information 1 to the eNB 200 to the eNB 203 over the X2 interface.
  • step S3104 the eNB 203 generates band allocation information 2 and transfers the generated band allocation information 2 to the eNB 200, eNB 201, eNB 202, and eNB 204 over the X2 interface.
  • the band allocation information 2 from the eNB 203 to the eNB 201 has not reached within the specified time.
  • step S3105 the eNB 202 generates band allocation information 3, and transfers the generated band allocation information 3 to the eNB 200, eNB 201, eNB 203, and eNB 204 over the X2 interface.
  • step S3106 the eNB 201 generates band allocation information 4 and transfers the generated band allocation information 4 to the eNB 200, eNB 202, eNB 203, and eNB 204 over the X2 interface.
  • step S3107 the eNB 200 generates band allocation information 5 and transfers the generated band allocation information 5 to the eNB 201 to the eNB 204 over the X2 interface.
  • each of the eNB 200 to the eNB 204 determines the allocation band to the UE 100 based on the band allocation information of the own eNB and the band allocation information from each other eNB. However, since the band allocation information 2 from the eNB 203 has not reached within the specified time, the eNB 201 determines the allocation prohibited band as described above.
  • the eNB 201 transmits band allocation reception information indicating that the band allocation information from the eNB 203 has not been received to the eNB 204 over the X2 interface.
  • the band allocation reception information includes the identifier (or cell identifier) of the eNB 201 and the identifier (or cell identifier) of the eNB 203.
  • each of the eNB 200, the eNB 202, the eNB 203, and the eNB 204 transmits user data to the UE 100 in the allocated band determined in step S3108.
  • the eNB 204 determines eNBs to be excluded from the CoMP cooperating set based on the band allocation information received in step S3109. For example, the eNB 204 acquires the power level of the signal received by the UE 100 from the eNB 201 and the power level of the signal received by the UE 100 from the eNB 203 based on the measurement report from the UE 100, and corresponds to the eNB 201 or the eNB 203. The eNB with the lower power level is excluded from the CoMP cooperating set. Since the eNB excluded from the CoMP cooperating set can be an interference source for CoMP communication thereafter, the eNB that is expected to have a low interference level to the UE 100 is excluded.
  • the eNB 204 determines to exclude the eNB 201.
  • the eNB 204 updates the CoMP cooperating set information described above to reflect the exclusion of the eNB 201.
  • step S3112 the eNB 204 transmits the updated CoMP cooperating set information to the eNB 200 to the eNB 203 (and the UE 100).
  • the eNB 201 that has received the updated CoMP cooperating set information recognizes that it has been excluded from the CoMP cooperating set, and does not participate in CoMP communication thereafter.
  • JT type CoMP has been described as an example, but the present invention can also be applied to other CoMP types such as JR type CoMP.
  • the following configuration is adopted to appropriately cope with a case where some eNBs do not receive data from the UE in JR CoMP.
  • each of the plurality of eNBs included in the CoMP cooperating set receives band allocation information indicating communication resources of allocation candidates to UEs in the other eNBs from other eNBs included in the CoMP cooperating set.
  • Band allocation information receiving means network communication unit 230 to perform and reception success / failure of the band allocation information to other eNBs (anchor eNBs) included in the CoMP cooperating set based on the reception status in the band allocation information receiving means.
  • Transmission means (processor 241 and network communication unit 230) for transmitting information related to.
  • the transmitting unit transmits the other eNB (anchor eNB) included in the CoMP cooperating set. To send error information.
  • the band allocation information receiving unit receives the band allocation information from another eNB included in the CoMP cooperating set
  • the transmission unit transmits acknowledgment information to the other eNB (anchor eNB). To do.
  • Each of the plurality of eNBs further includes data receiving means (radio transceiver 220 and processor 241) for receiving data from the UE based on the band assignment information received by the band assignment information receiving means.
  • data receiving means radio transceiver 220 and processor 241 for receiving data from the UE based on the band assignment information received by the band assignment information receiving means.
  • the data receiving unit stops receiving data from the UE.
  • FIG. 27 shows a JR CoMP sequence.
  • the CoMP cooperating set configured by the eNB 200 to the eNB 203 and the UE 100 are executing JR CoMP, and the eNB 200 is operating as an anchor eNB.
  • step S3201 the eNB 203 generates band allocation information 1 and transfers the generated band allocation information 1 to the eNB 200 to the eNB 202 over the X2 interface.
  • step S3202 the eNB 202 generates band allocation information 2 and transfers the generated band allocation information 2 to the eNB 200, the eNB 201, and the eNB 203 over the X2 interface.
  • the band allocation information 2 from the eNB 202 to the eNB 201 has not reached within the specified time.
  • step S3203 the eNB 201 generates the band allocation information 3, and transfers the generated band allocation information 3 to the eNB 200, the eNB 202, and the eNB 203 over the X2 interface.
  • step S3204 the eNB 200 generates the band allocation information 4 and transfers the generated band allocation information 4 to the eNB 202 to the eNB 203 over the X2 interface.
  • step S3205 the eNB 203 transmits band allocation reception information (ACK) indicating that all band allocation information has been received within the specified time to the eNB 200 over the X2 interface.
  • the band allocation reception information includes the identifier (or cell identifier) of the transmission source eNB.
  • step S3206 the eNB 202 transmits band allocation reception information (ACK) indicating that all band allocation information has been received within the specified time to the eNB 200 over the X2 interface.
  • ACK band allocation reception information
  • step S3207 the eNB 201 transmits band allocation reception information (NACK) indicating that at least a part of the band allocation information has not been received within the specified time (and / or the reception of uplink data is stopped) to the X2 interface. It transmits to eNB200 above.
  • NACK band allocation reception information
  • each of the eNB 200 to the eNB 203 determines an allocation band to the UE 100 based on the band allocation information of the own eNB and the band allocation information from each other eNB. However, since the band allocation information 2 from the eNB 202 has not arrived within the specified time, the eNB 201 determines the allocation prohibited band as described above. The allocated bandwidth determined in step S3208 is notified to UE 100 on the E-PDCCH.
  • step S3209 the UE 100 transmits uplink data using the allocated bandwidth.
  • Each of the eNB 200, the eNB 202, and the eNB 203 receives the uplink data.
  • the eNB 201 does not receive the uplink data (step S3210).
  • step S3211 the eNB 203 transfers the uplink data received from the UE 100 to the eNB 200 over the X2 interface in the state of the baseband signal (the state before decoding).
  • step S3212 the eNB 202 transfers the uplink data received from the UE 100 to the eNB 200 on the X2 interface in the state of the baseband signal (the state before decoding).
  • the eNB 200 knows that there is no data transfer from the eNB 201 based on the band allocation reception information (NACK) received in step S3207.
  • NACK band allocation reception information
  • step S3213 the eNB 200 combines the uplink data received by the eNB from the UE 100, the uplink data transferred from the eNB 202, and the uplink data transferred from the eNB 201 before decoding.
  • step S3214 the eNB 200 transfers the decrypted data to the S-GW on the S1 interface in the state of the IP packet.
  • the anchor eNB can prevent waiting for data transfer from the specific eNB even though the specific eNB does not receive the uplink data. It can avoid becoming large.
  • this embodiment has the following configuration so that each eNB can transmit the same data to the UE at the same time.
  • the anchor eNB is provided with a receiving means (network communication unit 230) for receiving user data addressed to the UE from the S-GW, and the user data received by the receiving means is assigned a sequence number in the PDCP layer.
  • Conversion means (processor 241) for converting to a PDCP PDU
  • transmission means (network communication unit 230 and processor) for transmitting the PDCP PDU obtained by the conversion means to other eNBs (subordinate eNBs) included in the CoMP cooperating set 241).
  • the other eNB subordinate eNB
  • receives the PDCP PDU it performs processing in the MAC layer without applying ARQ retransmission in the RLC layer to the PDCP PDU.
  • the UM mode is applied to the RLC layer of another eNB (secondary eNB).
  • the processing at the MAC layer includes HARQ (see FIG. 5).
  • the slave eNB notifies the anchor eNB of the transmission means (the radio transceiver 220 and the processor 241) that performs HARQ data transmission to the UE and when the HARQ data transmission fails.
  • Means network communication unit 230 and processor 241).
  • the anchor eNB receives from the slave eNB a management means (processor 241 and memory 242) that centrally manages ARQ retransmission data (PDCP PDU) from the CoMP cooperating set to the UE, and notification that HARQ data transmission has failed.
  • PDCP PDU ARQ retransmission data
  • Network communication unit 230 Means (network communication unit 230) and transfer means (network communication unit 230 and memory 242) for transferring ARQ retransmission data managed by the management unit to the slave eNB in response to the notification received by the reception unit .
  • the transmission means of the slave eNB transmits the ARQ retransmission data transferred from the anchor eNB to the UE using HARQ.
  • FIG. 28 shows a sequence in JT CoMP.
  • the CoMP cooperating set configured by the eNB 200 to the eNB 204 and the UE 100 are executing JT type CoMP, and the eNB 200 is operating as an anchor eNB.
  • step S4001 the S-GW transmits user data addressed to the UE 100 to the eNB 200 over the S1 interface.
  • the PDCP layer of the eNB 200 performs header compression / encryption on the user data addressed to the UE 100 and converts it into PDCP PDU (see FIGS. 5 and 6). Further, the PDCP layer of the eNB 200 adds a sequence number for identifying the PDCP PDU to the PDCP PDU. Furthermore, the PDCP PDU with the sequence number is saved for retransmission.
  • step S4002 the eNB 200 transfers the PDCP PDU with a sequence number to the eNB 201 to the eNB 204 over the X2 interface.
  • the RLC layer converts the PDCP PDU (RLC SDU) with a sequence number into an RLC PDU without applying ARQ, and the MAC layer performs HARQ on the RLC PDU (MAC SDU). Is converted into a transport block, and the physical layer transmits the transport block.
  • the same band (resource block, subframe, MCS) is used in eNB 200 to eNB 204 for transmission in the physical layer.
  • each MAC layer of the eNB 200 to the eNB 204 performs retransmission according to ACK / NACK (HARQ ACK / NACK) from the UE 100.
  • FIG. 29 shows a sequence in a case where HARQ retransmission is not completed even when the maximum number of retransmissions is reached.
  • the eNB 201 to the eNB 204 indicate that the data transmission has failed in step S4011.
  • the eNB 200 is notified above.
  • the notification includes the sequence number of the PDCP PDU that failed to transmit data.
  • step S4012 the eNB 200 transfers the PDCP PDU (with sequence number) to be ARQ retransmitted to the eNB 201 to eNB 204 over the X2 interface in response to the notification from the eNB 201 to eNB 204.
  • the RLC layer converts the PDCP PDU (RLC SDU) with a sequence number into an RLC PDU without applying ARQ, and the MAC layer performs HARQ on the RLC PDU (MAC SDU). Is converted into a transport block, and the physical layer transmits the transport block.
  • the same band (resource block, subframe, MCS) is used in eNB 200 to eNB 204 for transmission in the physical layer.
  • the anchor eNB centrally manages the ARQ retransmission, so that in JT CoMP, each eNB included in the CoMP cooperating set can simultaneously transmit the same data to the UE.
  • HARQ initial transmission allocation period The eNB repeatedly performs data retransmission using HARQ in the MAC layer until an ACK (HARQ ACK) from the UE is obtained.
  • HARQ processes the transmission process of the initial transmission data and the retransmission process corresponding to the initial transmission data are referred to as “HARQ processes”, and a plurality of HARQ processes are executed in parallel.
  • JT-type CoMP when a CoMP cooperating set is configured with different eNBs, it is considered that negotiation between eNBs is required to allocate the same band to UEs for HARQ retransmission. However, if such negotiation is performed every time retransmission is performed, the processing delay for retransmission becomes long, so HARQ retransmission cannot be performed appropriately.
  • this embodiment takes the following configuration in order to appropriately perform HARQ retransmission in downlink CoMP.
  • each of the plurality of eNBs included in the CoMP cooperating set transmits initial transmission data (radio transceiver 220 and processor 241) for each of a plurality of HARQ processes, and each of the plurality of HARQ processes.
  • Retransmission means (radio transceiver 220, processor 241, memory 242) for transmitting retransmission data corresponding to the initial transmission data, and the transmission cycle of the initial transmission data by the initial transmission means is greater than the HARQ maximum number of retransmissions Set to the lowest odd number.
  • the retransmission period of the retransmission data by the retransmission means is limited to 8 [TTI (Transmission Time Interval)]. In other words, shifting to the next TTI is prohibited when allocation is not possible. Furthermore, the retransmission means transmits the retransmission data by applying the same resource block and the same MCS as the initial transmission data.
  • FIG. 30 is a diagram for explaining HARQ retransmission in the MAC layer.
  • each HARQ process retransmits at 8 [TTI] in response to the HARQ NACK from the UE.
  • the transmission cycle of the initial transmission data is 9 [TTI]. That is, the initial transmission cycle (9 [TTI]) is a value obtained by adding “1” to the retransmission cycle (8 [TTI]). Therefore, the initial transmission timing and the retransmission timing do not overlap until the number of retransmissions is 8, but when the number of retransmissions is 9, the initial transmission timing and the retransmission timing overlap. However, the maximum number of HARQ retransmissions is 8, and the initial transmission timing and the retransmission timing do not overlap. In the present embodiment, the initial transmission period is set to “9” [TTI], which is the smallest odd number larger than the maximum number of HARQ retransmissions 8.
  • each HARQ process retransmission is performed using the same resource block as the resource block used at the time of initial transmission, and retransmission is performed using the same MCS as the MCS used at the time of initial transmission. If such a rule is introduced into the CoMP cooperating set, negotiation between eNBs is unnecessary for HARQ retransmission, and it is possible to prevent a processing delay for retransmission from becoming long.
  • HARQ ACK The eNB repeatedly performs retransmission using HARQ in the MAC layer until an ACK from the UE is obtained.
  • JT-type CoMP when a CoMP cooperating set is configured with different eNBs, even if the UE transmits an ACK, some eNBs included in the CoMP cooperating set may not receive the ACK. . Since the eNB that cannot receive the ACK from the UE continues retransmission to the UE, there is a problem in that resources are wasted due to the retransmission.
  • this embodiment takes the following configuration in order to appropriately perform HARQ retransmission in downlink CoMP.
  • ACK information related to the received HARQ ACK is transmitted to other eNBs included in the CoMP cooperating set. Send.
  • the ACK information includes identification information of data corresponding to the HARQ ACK.
  • Each of the plurality of eNBs receives the ACK information from other eNBs included in the CoMP cooperating set when the HARQ maximum number of retransmissions has not expired and the HARQ ACK from the UE has not been received. If not, perform HARQ retransmission to the UE.
  • FIG. 31 shows a JT CoMP sequence.
  • the CoMP cooperating set configured by the eNB 200 to the eNB 203 and the UE 100 are executing JT type CoMP, and the eNB 200 is operating as an anchor eNB.
  • step S4001 the eNB 200 operating as the anchor eNB receives packet data (user data) from the S-GW.
  • step S4002 the eNB 200 converts packet data into a PDCP PDU with a sequence number in the PDCP layer, and transfers the PDCP PDU to the eNB 200 to the eNB 203 over the X2 interface.
  • each of the eNB 200 to the eNB 203 generates band allocation information, and transfers the generated band allocation information to other eNBs included in the CoMP cooperating set on the X2 interface.
  • step S4004 each of the eNB 200 to the eNB 203 transmits the same user data to the UE 100 in the same band.
  • the UE 100 succeeds in decoding the received user data.
  • step S4005 the UE 100 transmits HARQ ACK indicating successful decoding.
  • the eNB 200 and the eNB 201 receive the HARQ ACK, and the eNB 202 and the eNB 203 fail to receive the HARQ ACK.
  • step S4006 the eNB 200 and the eNB 201 generate ACK information related to HARQ ACK from the UE 100, and transfer the generated ACK information to other eNBs included in the CoMP cooperating set on the X2 interface.
  • the ACK information includes a user data identifier (for example, a PDCP PDU sequence number) and a HARQ ACK.
  • FIG. 31 shows an example in which the transmission delay of the X2 interface is longer than the HARQ retransmission period, and HARQ retransmission is started before reception of ACK information.
  • step S4007 since the eNB 200 and the eNB 201 have not received the HARQ ACK, the eNB 200 and the eNB 201 transmit retransmission data corresponding to the user data transmitted in step S4004 to the UE 100. Thereafter, when the eNB 200 and the eNB 201 receive ACK information on the X2 interface, the retransmission process is stopped. Each eNB is not receiving the HARQ ACK from the UE when the HARQ maximum number of retransmissions has not expired, and has received ACK information from other eNBs included in the CoMP cooperating set. If not, perform HARQ retransmission to the UE.
  • the eNB when each of the plurality of eNBs included in the CoMP cooperating set receives the HARQ ACK from the UE, the eNB receives the HARQ ACK from other eNBs included in the CoMP cooperating set. ACK information related to HARQ ACK is transmitted. Accordingly, even if the eNB cannot receive ACK from the UE, retransmission to the UE can be stopped, so that it is possible to prevent unnecessary resources from being consumed by the retransmission. In addition, while an eNB that has received ACK is assigned to another UE, retransmitting by an eNB that is not recognized as ACK can cause interference. Can do.
  • anchor eNB in the above description is replaced with “MME” or “S-GW”, and at least part of the control performed by the anchor eNB is performed on the EPC side (MME or S- GW).
  • MME or S-GW corresponds to a CoMP management apparatus that manages the CoMP cooperating set.
  • a relay node may be included in the CoMP cooperating set.
  • the RN is a relay station that forms a backhaul by radio, and is recognized as a cell from the UE in the same manner as the eNB.
  • the CoMP cooperating set may include RRH (Remote Radio Head).
  • the RRH is a radio unit that is installed apart from the baseband unit and connected to the baseband unit via an optical fiber or the like.
  • the mobile communication system, the base station, and the communication control method according to the present invention can add a base station that is already using C-RNTI used in the CoMP cooperating set to the CoMP cooperating set. Useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の基地局により構成されるCoMP協働セットとユーザ端末とのCoMP通信を行う移動通信システムにおいて、前記CoMP協働セットに含まれる所定基地局は、前記CoMP協働セットに含まれていない他の基地局に対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信する。前記所定基地局は、前記追加要求を送信する際に、前記他の基地局に対して、前記ユーザ端末とのCoMP通信に使用しているC-RNTIを送信する。

Description

移動通信システム、基地局、及び通信制御方法
 本発明は、CoMPをサポートする移動通信システム、基地局、及び通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース11以降において、CoMP(Coordinated Multi-Point)の標準化が進められる予定である(非特許文献1参照)。
 CoMPは、同一の場所に配置されたアンテナ群を1つの「ポイント」と位置付け、複数のポイントが協調してユーザ端末との通信を行うものである。1つの時間・周波数リソースを用いてユーザ端末との協調通信を行うポイント群は、CoMP協働セット(CoMP cooperating set)と称される。
 CoMPの一カテゴリとして、ユーザ端末に対して通信すべきデータをCoMP協調セットにおける複数のポイントで利用可能な方式であるJP(Joint Processing)がある。
 JP型のCoMPにおいては、CoMP協働セットに含まれる各ポイントは、同一のC-RNTI(Cell-Radio Network Temporary Identity)を当該ユーザ端末とのCoMP通信に使用する必要がある。
3GPP TR 36.819 V11.0.0 (2011-09)
 ところで、CoMP協働セットを異なる基地局で構成する場合、ユーザ端末の移動に対応するために、CoMP協働セットに適宜新たな基地局を追加することが望ましい。
 しかしながら、当該新たな基地局が、当該CoMP協働セットで使用するC-RNTIを既に使用中である場合には、当該新たな基地局を当該CoMP協働セットに追加することが困難である。
 そこで、本発明は、CoMP協働セットで使用するC-RNTIを既に使用中の基地局を当該CoMP協働セットに追加できる移動通信システム、基地局、及び通信制御方法を提供することを目的とする。
 本発明に係る移動通信システムは、複数の基地局により構成されるCoMP協働セットとユーザ端末とのCoMP通信を行う移動通信システムであって、前記CoMP協働セットに含まれる所定基地局は、前記CoMP協働セットに含まれていない他の基地局に対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信し、前記所定基地局は、前記追加要求を送信する際に、前記他の基地局に対して、前記ユーザ端末とのCoMP通信に使用しているC-RNTIを送信することを特徴とする。
 上述した特徴において、前記所定基地局は、前記C-RNTIを前記追加要求に含めて送信してもよい。
 上述した特徴において、前記他の基地局は、前記所定基地局からの前記追加要求を受信した後、前記追加要求に含まれる前記C-RNTIを使用中であるか否かを前記所定基地局に通知し、前記所定基地局は、前記他の基地局が前記C-RNTIを使用中である場合に、未使用のC-RNTIを通知するよう前記他の基地局に要求してもよい。
 上述した特徴において、前記他の基地局は、前記所定基地局からの要求に応じて、未使用のC-RNTIを前記所定基地局に通知し、前記所定基地局は、前記他の基地局からの通知に応じて、前記未使用のC-RNTIの中から前記CoMP協働セットで前記ユーザ端末との通信に新たに使用するC-RNTIを決定してもよい。
 上述した特徴において、前記所定基地局は、前記新たに使用するC-RNTIを決定した後、前記CoMP協働セットに含まれる他の基地局に対して、前記新たに使用するC-RNTIを通知してもよい。
 上述した特徴において、前記他の基地局は、前記所定基地局からの前記追加要求を受信した際に、前記追加要求に含まれる前記C-RNTIを使用中である場合に、自基地局で使用中の前記C-RNTIを他のC-RNTIに変更してもよい。
 上述した特徴において、前記所定基地局とは、前記CoMP協働セットと前記ユーザ端末とのCoMP通信を制御する主基地局であってもよい。
 本発明に係る基地局は、複数の基地局により構成されるCoMP協働セットとユーザ端末とのCoMP通信を行う移動通信システムにおいて、前記CoMP協働セットに含まれる基地局であって、前記CoMP協働セットに含まれていない他の基地局に対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信する送信部を有し、前記送信部は、前記追加要求を送信する際に、前記他の基地局に対して、前記ユーザ端末とのCoMP通信に使用しているC-RNTIを送信することを特徴とする。
 本発明に係る通信制御方法は、複数の基地局により構成されるCoMP協働セットとユーザ端末とのCoMP通信を行う移動通信システムにおける通信制御方法であって、前記CoMP協働セットに含まれる所定基地局が、前記CoMP協働セットに含まれていない他の基地局に対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信するステップAを有し、前記ステップAは、前記追加要求を送信する際に、前記他の基地局に対して、前記ユーザ端末とのCoMP通信に使用しているC-RNTIを送信するステップを含むことを特徴とする。
LTEシステムの構成を示す。 LTEシステムで使用される無線フレームの構成を示す。 ユーザプレーンの無線インターフェイスプロトコルを示す。 制御プレーンの無線インターフェイスプロトコルを示す。 各レイヤの処理を下りリンクを例に示す。 各レイヤでのデータフローを示す。 タイミングアドバンス値を説明するための図である。 タイミングアドバンス値を説明するためのタイムチャートである。 UEのブロック図である。 eNBのブロック図である。 JT型CoMPを説明するための図である。 JR型CoMPを説明するための図である。 CoMP通信の開始・継続・終了の制御フローを示す。 CoMP協働セットの設定動作フローを示す。 X2計測メッセージを示す。 CoMP協働セット情報の一例を示す。 アンカeNB切替えシーケンスを示す。 eNB追加シーケンスのパターン1を示す。 eNB追加シーケンスのパターン2を示す。 下りリンクのサブフレーム構成を示す。 CoMP協働セットに含まれる各eNBが割当て候補の帯域を通知し合う様子を示す。 帯域割当情報の一例を示す。 eNBにおける帯域割当処理の一例を示す。 帯域割当判定処理の一例を示す。 JT型CoMPシーケンスを示す。 JT型CoMPシーケンスを示す。 JR型CoMPシーケンスを示す。 JT型CoMPにおけるシーケンスを示す。 最大再送回数に達してもHARQ再送が完了しないケースでのシーケンスを示す。 MACレイヤでのHARQ再送を説明するための図である。 JT型CoMPのシーケンスを示す。
 図面を参照して、本発明の実施形態を説明する。本実施形態に係る移動通信システムは、リリース10以降の3GPP規格(すなわち、LTE Advanced)に基づいて構成される。
 以下、(1)実施形態の概要、(2)LTEシステムの概要、(3)UE及びeNBの構成、(4)CoMPの概要、(5)全体制御フロー、(6)CoMP協働セット、(7)CoMP通信制御、(8)その他の実施形態の順に説明する。
 (1)実施形態の概要
 本実施形態に係る移動通信システムは、複数のeNBにより構成されるCoMP協働セットとUEとのCoMP通信を行う。前記CoMP協働セットに含まれるアンカeNBは、前記CoMP協働セットに含まれていない他のeNBに対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信する。前記アンカeNBは、前記追加要求を送信する際に、前記他のeNBに対して、前記UEとのCoMP通信に使用しているC-RNTIを送信する。
 (2)LTEシステムの概要
 LTEシステムの概要について、(2.1)LTEシステムの全体構成、(2.2)フレーム構成及び物理チャネル構成、(2.3)プロトコルスタック、(2.4)タイミングアドバンスの順に説明する。
 (2.1)LTEシステムの全体構成
 図1は、LTEシステム1の構成を示す。
 図1に示すように、LTEシステム1は、UE(User Equipment)と、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)と、EPC(Evolved Packet Core)と、を有する。
 UEは、移動型の無線通信装置であり、ユーザ端末に相当する。
 E-UTRANは、複数のeNB(evolved Node-B)からなる。eNBは、UEとの無線通信を行う固定型の無線通信装置であり、基地局に相当する。eNBのそれぞれは、1又は複数のセルを構成する。eNBは、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPCは、MME(Mobility Management Entity)及びS-GW(Serving-Gateway)を含む。EPCは、コアネットワークに相当する。MMEは、UEに対する各種モビリティ制御等を行うネットワークエンティティであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークエンティティであり、交換局に相当する。
 eNBは、X2インターフェイスを介して相互に連結される。また、eNBは、S1インターフェイスを介してMME及びS-GWと連結される。
 (2.2)フレーム構成及び物理チャネル構成
 図2は、LTEシステム1で使用される無線フレームの構成を示す。LTEシステム1は、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)を採用する。
 図2に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。
 (2.2.1)下りリンク
 下りリンクにおいて、各サブフレームの先頭数シンボル(詳細には、3又は4シンボルまで)の区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用されるデータ領域である。
 PDCCHは、制御信号を搬送する。制御信号は、例えば、上りリンクSI(Scheduling Information)、下りリンクSI、TPCビットである。上りリンクSIは上りリンク無線リソースの割当てを示し、下りリンクSIは、下りリンク無線リソースの割当てを示す。TPCビットは、上りリンクの送信電力の増減を指示する信号である。これらの制御信号は、下りリンク制御情報(DCI)と称される。
 PDSCHは、制御信号及び/又はユーザデータを搬送する。例えば、下りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割当てられてもよい。
 なお、PDSCHを介して送信される制御信号としては、タイミングアドバンス値が挙げられる。タイミングアドバンス値は、UEの送信タイミング補正値であり、UEから送信される上りリンク信号に基づいてeNBによって決定される。タイミングアドバンス値の詳細については後述する。
 また、物理HARQ通知チャネル(PHICH)を介して、確認応答(ACK)/否定確認応答(NACK)が搬送される。ACK/NACKは、上りリンクの物理チャネル(例えば、PUSCH)を介して送信される信号の復号に成功したか否かを示す。
 (2.2.2)上りリンク
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用されるデータ領域である。
 PUCCHは、制御信号を搬送する。制御信号は、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、SR(Scheduling Request)、ACK/NACKなどである。
 CQIは、下りリンクのチャネル品質を示し、下りリンク伝送に使用すべき推奨変調方式及び符号化速度の決定等に使用される。PMIは、下りリンクの伝送の為に使用することが望ましいプリコーダマトリックスを示す。RIは、下りリンクの伝送に使用可能なレイヤ数(ストリーム数)を示す。SRは、上りリンク無線リソース(リソースブロック)の割当てを要求する信号である。ACK/NACKは、下りリンクの物理チャネル(例えば、PDSCH)を介して送信される信号の復号に成功したか否かを示す。
 PUSCHは、制御信号及び/又はユーザデータを搬送する物理チャネルである。例えば、上りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割当てられてもよい。
 (2.3)プロトコルスタック
 図3は、ユーザプレーンの無線インターフェイスプロトコルを示し、図4は、制御プレーンの無線インターフェイスプロトコルを示す。ユーザプレーンは、ユーザデータ伝送のためのプロトコルスタックであり、制御プレーンは、制御信号伝送のためのプロトコルスタックである。図5は、各レイヤの処理を下りリンクを例に示す。図6は、各レイヤでのデータフローを示す。
 無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1~レイヤ3に区分される。レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、データ符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、上述した物理チャネルを用いて上位レイヤに伝送サービスを提供する。UEの物理レイヤとeNBの物理レイヤとの間では、物理チャネルを介してデータが伝送される。物理レイヤは、トランスポートチャネルを介してMACレイヤと連結される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UEのMACレイヤとeNBのMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。また、MACレイヤは、論理チャネルとトランスポートチャネルと間のマッピングを行う。eNBのMACレイヤは、上下リンクのトランスポートフォーマット及びリソースブロックを決定するMACスケジューラを含む。トランスポートフォーマットは、トランスポートブロックサイズ、変調・符号化方式(MCS)、及びアンテナマッピングを含む。MACレイヤは、論理チャネルを介してRLCレイヤと連結される。
 RLCレイヤは、PDCPレイヤからRLC SDU(Service Data Unit)の形式でデータを受け取る。UEのRLCレイヤとeNBのRLCレイヤとの間では、論理チャネルを介してデータが伝送される。RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。なお、上位レイヤのPDUはその下位レイヤのSDUに対応する。よって、RLC SDUは、PDCP PDU(Protocol Data Unit)と呼ばれることもある。RLC PDU長は、伝送レート最適化及び動的スケジューリングの状況に応じて変化する。このため、サブフレームで送られるペイロード長(トランスポートブロックサイズ)は可変である。よって、RLCレイヤは、RLC PDU長に応じてRLC SDU(PDCP PDU)を分割及び結合する。
 RLCレイヤには3つのモードがある。詳細には、RLCレイヤは、アプリケーションからの要求に応じて、透過モード(TM)、非確認応答モード(UM)、及び確認応答モード(AM)の何れかで動作する。TMモードでは、RLCレイヤはバイパスされる。UMモードは、データ分割・結合は行うが、ARQ再送は行わない。AMモードは、データ分割・組み立てを行うだけでなく、RLC PDUの伝送失敗時のARQ再送も行う。MACレイヤでのHARQとRLCレイヤでのARQとで二重に再送を行うことで、より高い信頼性を得ることができる。
 RLCレイヤは、無線ベアラを介してPDCPレイヤと連結される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。ヘッダ圧縮は、不必要な制御情報を含んでいるIPパケットヘッダサイズを減らす。UEのPDCPレイヤとeNBのPDCPレイヤとの間では、無線ベアラを介してデータが伝送される。
 RRCレイヤは、制御プレーンでのみ定義される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UEのRRCとeNBのRRCとの間にRRC接続(RRC Connection)がある場合、UEはRRC接続(RRC Connected)状態であり、そうでない場合、UEはRRCアイドル(RRC Idle)状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 (2.4)タイミングアドバンス
 上りリンクにおいて、eNBから遠くに位置するUEは、eNBの受信タイミングに合うように、データ送信タイミングを早める必要がある。このため、eNBは、UEから受信する上りリンク信号のタイミングを測定することにより、UEのデータ送信タイミングを調整(補正)するためのタイミングアドバンス値を生成する。そして、eNBは、当該タイミングアドバンス値をTA MCE(Timing Advance Command Mac Control Element)としてUEに通知する。
 タイミングアドバンス値は、UEの現在の送信タイミングを基準として、UEが送信を開始するタイミングのオフセット値である。UEが移動する可能性があるため、eNBは定期的な更新とともにUEにタイミングアドバンス値を送信する。
 また、UEがある期間、何も送信しないのであれば、UEに対するタイミングアドバンス値は不確実になる。従って、調整されていないUE送信を回避するために、eNBおよびUEの両方に、タイミングアドバンス値の有効期間を定めるタイマ(「Time Alignment Timer」と称される)があり、UEが上りリンクで同期外れに陥ったかを判定する。
 図7及び図8は、タイミングアドバンス値を説明するための図である。図7及び図8は、UEが移動する状況を示す。
 図7に示すように、UEがeNBに近づく状況においては、eNBは、UEの送信タイミングを遅らせるように、UEの現在の送信タイミングに対して負のオフセット値をタイミングアドバンス値として生成する。そして、eNBは、当該タイミングアドバンス値(TA MCE)をUEに通知する。UEは、当該タイミングアドバンス値(TA MCE)を受信すると、当該タイミングアドバンス値(TA MCE)に従って送信タイミングを遅らせる。
 図8に示すように、UEがeNBから遠ざかる状況においては、eNBは、UEの送信タイミングを早めるように、UEの現在の送信タイミングに対して正のオフセット値をタイミングアドバンス値として生成する。そして、eNBは、当該タイミングアドバンス値(TA MCE)をUEに通知する。UEは、当該タイミングアドバンス値(TA MCE)を受信すると、当該タイミングアドバンス値(TA MCE)に従って送信タイミングを早める。
 (3)UE及びeNBの構成
 次に、(3.1)UEの構成、(3.2)eNBの構成を説明する。
 (3.1)UEの構成
 図9は、UEのブロック図である。
 図9に示すように、UEは、アンテナ110と、無線送受信機120と、制御部130と、を有する。UEは、ユーザインターフェイス及びバッテリをさらに有していてもよい。
 アンテナ110及び無線送受信機120は、無線信号の送受信に用いられる。
 制御部130は、上述した各レイヤでの処理を行う。制御部130は、プロセッサ131及びメモリ132を含む。プロセッサ131は、メモリ132に記憶されているプログラムを実行することで、上述した各レイヤでの処理を行う。
 また、プロセッサ131は、CoMP通信に関するUEでの制御(詳細については後述)を行う。メモリ132は、CoMP通信に関するUEでの制御に使用される情報を記憶する。
 (3.2)eNBの構成
 図10は、eNBのブロック図である。
 図10に示すように、eNBは、アンテナ210と、無線送受信機220と、ネットワーク通信部230と、制御部240と、を有する。
 アンテナ210及び無線送受信機220は、無線信号の送受信に用いられる。ネットワーク通信部230は、X2インターフェイス上及びS1インターフェイス上で通信を行う。
 制御部240は、上述した各レイヤでの処理を行う。制御部240は、プロセッサ241及びメモリ242を含む。プロセッサ241は、メモリ242に記憶されているプログラムを実行することで、上述した各レイヤでの処理を行う。
 また、プロセッサ241は、CoMP通信に関するeNBでの制御(詳細については後述)を行う。メモリ242は、CoMP通信に関するeNBでの制御に使用される情報を記憶する。
 (4)CoMPの概要
 CoMPは、同一の場所に配置されたアンテナ群を1つの「ポイント」と位置付け、複数のポイントが協調してUEとの通信を行うものである。UEとの協調通信を行うポイント群は、CoMP協働セットと称される。
 CoMPの一種として、UEに対して通信すべきデータをCoMP協働セットにおける複数のポイントで利用可能な方式であるJP(Joint Processing)がある。下りリンクでのJPの一種として、CoMP協働セットにおける複数のポイントがUEへ同時にデータを送信するJT(Joint Transmission)がある。上りリンクでのJPの一種として、CoMP協働セットにおける複数のポイントがUEから同一のデータを受信するJR(Joint Reception)がある。
 その他、下りリンクでのJPの一種であって、無線状態の最も良好なポイントのみが送信を行うDCS(Dynamic Cell Selection)がある。また、上りリンク及び下りリンクのそれぞれについて、一つのポイントのみがデータを保有し、複数ポイント間で協調してスケジューリング・リソース割当てを行うCS(Coordinated Scheduling)がある。さらに、主に下りリンクについて、一つのポイントのみがデータを保有し、複数ポイント間で協調してビームフォーミングを行うCB(Coordinated Beamforming)がある。
 以下においては、CoMP協働セットにおけるポイントをeNBで構成し、主にJP型(JT、JR)CoMPを行うケースを説明する。
 図11は、JT型CoMPを説明するための図である。図11において、UE100は、各eNBのカバレッジエリア端部(すなわち、境界領域)に位置している。
 図11に示すように、CoMP協働セットはeNB200~eNB204からなる。eNB200は、eNB200~eNB204を代表してS-GWからのUE100宛てのデータを受信するアンカeNBである。アンカeNB200は、下りリンクCoMP通信の制御を行う主基地局に相当する。また、アンカeNB200は、CoMP協働セットを管理するCoMP管理装置に相当する。その他のeNB(eNB201~eNB204)は、従基地局に相当する。
 第1に、アンカeNB200は、S-GWからのデータを受信し、eNB201~eNB204に対し、X2インターフェイス上でデータを転送する。
 第2に、eNB200~eNB204のそれぞれは、UE100に対し、同一の通信リソース(同一の時間・周波数リソース及び同一のMCS)を用いて無線インターフェイス上でデータを送信する。
 第3に、UE100は、eNB200~eNB204から送信されたデータを受信する。このように、UE100がカバレッジエリア端部に位置する場合、複数のeNBからのデータを同一の通信リソースで受信することによって合成利得が得られるため、通信品質が改善する。
 図12は、JR型CoMPを説明するための図である。図12において、UE100は、各eNBのカバレッジエリア端部(すなわち、境界領域)に位置している。
 図12に示すように、CoMP協働セットに含まれるeNB200~eNB204のうちのeNB200は、eNB200~eNB204を代表してEPC(詳細には、S-GW)へのデータ送信を行うアンカeNBである。アンカeNB200は、上りリンクCoMP通信の制御を行う主基地局に相当する。その他のeNB(eNB201~eNB204)は、従基地局に相当する。
 第1に、UE100は、所定の通信リソースを用いて無線インターフェイス上でデータを送信する。
 第2に、eNB200~eNB204のそれぞれは、当該所定の通信リソースで受信を行う。eNB201~eNB204のそれぞれは、受信したデータの復号(詳細には、物理レイヤでの復号)を行うことなく、ベースバンド信号の状態でUE100からのデータをX2インターフェイス上でアンカeNB200に転送する。なお、ベースバンド信号の状態で転送する方式以外に、復号後のデータを転送する方式もある。
 第3に、アンカeNB200は、eNB201~eNB204からのデータを受信する。アンカeNB200は、自身がUE100から受信したデータ及びeNB201~eNB204から受信したデータを合成した上で復号する。そして、アンカeNB200は、復号後のデータをS1インターフェイス上でS-GWに転送する。
 このように、複数のeNBが受信したデータを合成することで、合成利得が得られるため、通信品質が改善する。
 なお、以下においては、CoMP通信に使用される周波数リソース(リソースブロック)、時間リソース(サブフレーム)、及び変調方式(MCS)を併せて「帯域」と称する。
 (5)全体制御フロー
 図13は、全体制御フロー、詳細には、CoMP通信の開始・継続・終了の制御フローを示す。本フローは、アンカeNBとして動作するeNB200によって定期的に実行される。ただし、CoMP通信を開始する前においては、本フローは、UEのサービングセルを構成するeNB200によって定期的に実行される。
 図13に示すように、ステップS100において、eNB200は、UE100からの測定報告(Measurement Report)を受信する。測定報告は、UEが各eNB(あるいは各セル)から受信した参照信号の信号レベル(詳細には、電力レベル)の情報を含む。
 ステップS101において、eNB200は、ステップS100で受信した測定報告に基づいて、eNB200に対応する信号レベルと他のeNBに対応する信号レベルとの差を算出する。
 CoMP通信中でない場合(ステップS102;No)、ステップS103において、eNB200は、他のeNBに対応する信号レベルの方が高く、且つステップS101で算出した信号レベル差が閾値Pth0よりも大きいか否かを確認する。他のeNBに対応する信号レベルの方が高く、且つステップS101で算出した信号レベル差が閾値Pth0よりも大きい場合(ステップS103;Yes)、処理をステップS109に進め、そうでなければ(ステップS103;No)、処理をステップS104に進める。
 ステップS109において、eNB200は、当該他のeNBへのハンドオーバシーケンスを開始する。これにより、UE200は、当該他のeNBへのハンドオーバを行う。なお、ハンドオーバシーケンスは、現行仕様通りのシーケンスを適用できる。
 これに対し、ステップS104において、eNB200は、ステップS101で算出した信号レベル差が閾値Pth1の範囲内であるか否かを確認する。ここで、Pth1はPth0よりも小さい値である。ステップS101で算出した信号レベル差が閾値Pth1の範囲内である場合(ステップS104;Yes)、処理をステップS106に進め、そうでなければ(ステップS104;No)、処理をステップS105に進める。
 ステップS105において、eNB200は、境界領域の滞留時間を0に更新する。これは、ステップS104がNoの場合、信号レベル差が比較的大きく、UE100が境界領域に位置すると見なせないからである。
 これに対し、ステップS106において、eNB200は、境界領域の滞留時間に1を加算する。その後、処理をステップS107に進める。
 ステップS107において、eNB200は、境界領域の滞留時間が閾値Tth0を超えたか否かを確認する。境界領域の滞留時間が閾値Tth0を超えている場合(ステップS107;Yes)、処理をステップS108に進める。境界領域の滞留時間が閾値Tth0を超えている場合には、UE100が境界領域に留まっていると見なされる。
 ステップS108において、eNB200は、CoMP通信を開始すると判断する。CoMP通信を開始する際には、eNB200は、CoMP協働セットの設定処理(詳細については後述)を行う。
 一方、CoMP通信中である場合(ステップS102;Yes)、ステップS110において、eNB200は、ステップS101で算出した信号レベル差が閾値Pth3の範囲内であるか否かを確認する。ステップS101で算出した信号レベル差が閾値Pth3の範囲内である場合(ステップS110;Yes)、処理をステップS114に進め、そうでなければ(ステップS110;No)、処理をステップS111に進める。
 ステップS114においては、eNB200は、CoMP通信を継続すると判断する。
 なお、eNB200は、CoMP通信を実行中に、UE100からの測定報告に基づいて、CoMP協働セットに新たにeNBを追加してもよい。eNB追加シーケンスの詳細については後述する。
 ステップS111において、eNB200は、ステップS101で算出した信号レベル差が閾値Pth2の範囲内であるか否かを確認する。ここで、Pth2はPth3よりも大きい値である。ステップS101で算出した信号レベル差が閾値Pth2の範囲内である場合(ステップS111;Yes)、処理をステップS113に進め、そうでなければ(ステップS111;No)、処理をステップS112に進める。
 ステップS113において、eNB200は、アンカeNBをeNB200から当該他のeNBへ切替えるためのアンカ切替えシーケンスを開始する。アンカ切替えシーケンスの詳細については後述する。
 これに対し、ステップS112において、eNB200は、CoMP通信を終了すると判断し、CoMP通信を終了する処理を行う。
 (6)CoMP協働セット
 次に、CoMP協働セットについて、(6.1)CoMP協働セット設定動作、(6.2)アンカeNB切替えシーケンス、(6.3)eNB追加シーケンスの順に説明する。
 (6.1)CoMP協働セット設定動作
 CoMP協働セットを異なるeNBで構成する場合、UEに割当てるべき帯域を、eNB間のネゴシエーションで決定する必要がある。ここで、eNB間の伝送遅延(すなわち、X2インターフェイスでの伝送遅延)に起因して当該ネゴシエーションに長時間を要すると、動的な帯域割当てが実現できなくなる。そこで、本実施形態では、動的な帯域割当てを実現すべく、以下のような構成をとる。
 本実施形態に係るeNBは、周辺eNBとの間の伝送遅延を取得する取得手段(ネットワーク通信部230及びプロセッサ241)と、取得手段により取得された伝送遅延が閾値未満である場合に、当該周辺eNBをCoMP協働セットに含めるべきeNBとして登録する登録手段(プロセッサ241及びメモリ242)と、を有する。また、登録手段は、取得手段により取得された伝送遅延が閾値以上である場合に、当該周辺eNBをCoMP協働セットに含めるべきeNBから除外する。
 また、CoMP協働セットを異なるeNBで構成する場合、各eNBが全てのCoMP種別をサポートしているとは限らない。一方で、CoMP協働セットにおいて各eNBが使用するCoMPの種別は統一されている必要がある。そこで、本実施形態では、サポートするCoMP種別が統一されたCoMP協働セットを容易に構成すべく、以下のような構成をとる。
 本実施形態に係るeNBは、CoMPをサポートするeNBであって、周辺eNBがサポートするCoMP種別の通知を当該周辺eNBから受信する受信手段(ネットワーク通信部230)と、受信手段が受信した通知に基づいて、周辺eNBの情報を当該周辺eNBがサポートするCoMP種別と関連付けて記憶する記憶手段(プロセッサ241及びメモリ242)と、を有する。
 図14は、CoMP協働セットの設定動作フローを示す。本フローは、アンカeNBとして動作するeNB200によってCoMP通信開始時に実行される。ただし、CoMP通信開始後、定期的に本フローを実行してもよい。図15は、本フローにおいて使用されるX2計測メッセージを示す。
 図14に示すように、ステップS200において、eNB200は、周辺の他のeNB(周辺eNB)それぞれに対する処理ループを開始する。周辺eNBとは、eNB200に設定されているネイバーリストに識別子が含まれるeNB(すなわち、隣接eNB)であってもよく、eNB200との間にX2インターフェイスが確立されているeNBであってもよい。
 ステップS201において、eNB200は、周辺eNBi(i=0~n)に対し、X2インターフェイス上でX2計測メッセージ1を送信する。ここで“i”の初期値は0であり、ループ毎に1が加算される。なお、“i”が“n”に達すると、当該ループを抜ける。
 図15に示すように、X2計測メッセージ1は、当該X2計測メッセージ1を送信した際の時間情報(以下、「タイムスタンプT0」と称する)を含む。
 X2計測メッセージ1を受信した周辺eNBiは、後述する各種の情報を含んだX2計測メッセージ2を、X2インターフェイス上でeNB200に送信する。
 ステップS202において、eNB200は、周辺eNBiから送信されたX2計測メッセージ2を受信する。eNB200は、周辺eNBiからX2計測メッセージ2を受信した際の時間情報(以下、「タイムスタンプT3」と称する)を取得する。
 図15に示すように、X2計測メッセージ2は、周辺eNBiが受信したX2計測メッセージ1に含まれていたタイムスタンプT0と、周辺eNBiがX2計測メッセージ1を受信した際の時間情報(以下、「タイムスタンプT2」と称する)と、周辺eNBiがX2計測メッセージ2を送信した際の時間情報(以下、「タイムスタンプT1」と称する)と、周辺eNBiがサポートする下りリンクCoMPの種別(以下、「DL対応CoMP種別」と称する)と、周辺eNBiがサポートする上りリンクCoMPの種別(以下、「UL対応CoMP種別」と称する)と、を含む。図15では、周辺eNBiがサポートするDL CoMPの種別として、JT、DCS、CS、CBを例示している。また、周辺eNBiがサポートするUL CoMPの種別として、JR、CSを例示している。
 ステップS203において、eNB200は、上述したタイムスタンプT0~T3に基づいて、eNB200から周辺eNBiに向かう方向(送信方法)の伝送遅延Tsndと、周辺eNBiからeNB200に向かう方向(受信方法)の伝送遅延Trecと、を算出する。詳細には、eNB200は、X2計測メッセージ2に含まれるタイムスタンプT0と、X2計測メッセージ2に含まれるタイムスタンプT2と、の差分を伝送遅延Tsndとして算出する。また、eNB200は、X2計測メッセージ2に含まれるタイムスタンプT1と、自ら取得したタイムスタンプT3と、の差分を伝送遅延Trecとして算出する。
 ステップS204において、eNB200は、eNB200が使用を予定しているCoMP種別(すなわち、eNB200がサポートするCoMP種別)に応じて、閾値Thを設定する。例えば、JP型に属するJT、JR、DCSは、CoMP協働セットに含まれる各eNB間で高速な通信が要求されるため、条件を厳しくした閾値Thを設定する。これに対し、CS、CBは、複数のeNBが同時に送信又は受信を行うものではなく、JP型に比べてeNB間で高速な通信が要求されないため、CoMP協働セットに含められるeNBを増やすべく、条件を緩くした閾値Th(すなわち、JP型での閾値よりも大きい値)を設定する。
 ステップS205において、eNB200は、ステップS203で算出した伝送遅延Tsnd及び伝送遅延Trecのそれぞれを、ステップS204で設定した閾値Thと比較する。伝送遅延Tsnd及び伝送遅延Trecの両方が閾値Thよりも小さい場合(ステップS205;Yes)、処理をステップS209に進め、そうでなければ、処理をステップS206に進める。
 ステップS209において、eNB200は、X2計測メッセージ2に含まれるDL対応CoMP種別が、DL対応CoMP種別「有り」を示すか否か(すなわち、周辺eNBiが下りリンクCoMPをサポートしているか否か)を確認する。周辺eNBiが下りリンクCoMPをサポートしている場合(ステップS209;Yes)、ステップS210において、eNB200は、周辺eNBiを下りリンクCoMPのCoMP協働セットに含めるべきeNBとして登録する。
 次に、ステップS211において、eNB200は、X2計測メッセージ2に含まれるUL対応CoMP種別が、UL対応CoMP種別「有り」を示すか否か(すなわち、周辺eNBiが上りリンクCoMPをサポートしているか否か)を確認する。周辺eNBiが上りリンクCoMPをサポートしている場合(ステップS211;Yes)、ステップS212において、eNB200は、周辺eNBiを上りリンクCoMPのCoMP協働セットに含めるべきeNBとして登録する。
 ステップS206において、全ての周辺eNBに対する処理が終了したと判断すると、ループを抜ける。
 ステップS207において、eNB200は、CoMP協働セットに含めるべき各eNBに対し、当該CoMP協働セットに関するCoMP協働セット情報をX2インターフェイス上で送信する。CoMP協働セット情報を受信したeNBは、受信したCoMP協働セット情報を記憶する。
 ステップS208において、eNB200は、CoMP協働セット情報をUE100に送信する。
 なお、詳細については後述するが、CoMP通信中において、CoMP協働セットに含まれるeNBを変更(追加・除外、又はアンカeNB変更)する場合や、CoMP協働セットに適用される通信設定を変更する場合、アンカeNBは、CoMP協働セット情報を変更し、変更後のCoMP協働セット情報をX2インターフェイス上で送信する。変更後のCoMP協働セット情報を受信したeNBは、変更後のCoMP協働セット情報に更新する。
 図16は、CoMP協働セット情報の一例を示す。CoMP通信を行う各eNB及びUEは、当該CoMP通信に関するCoMP協働セット情報を記憶する。
 図16の例は、上りリンクCoMP通信のみを行うCoMP協働セットに関するCoMP協働セット情報と、下りリンクCoMP通信のみを行うCoMP協働セットに関するCoMP協働セット情報と、上り・下り両方のCoMP通信を行うCoMP協働セットに関するCoMP協働セット情報と、を示す。
 ここでは、eNBが、UE1と上りリンクCoMP通信のみを行い、UE2と下りリンクCoMP通信のみを行い、UE3と上り・下り両方のCoMP通信を行うようなケースを想定している。
 CoMP協働セット情報は、UEのC-RNTI(Cell-Radio Network Temporary Identity)を含む。C-RNTIは、セル固有無線ネットワーク一時識別子と称される一時的なUE識別子である。詳細については後述するが、CoMP協働セットへのeNB追加時にC-RNTIが変更されることがある。この場合、CoMP協働セット情報は、変更前及び変更後のそれぞれのC-RNTIを含む。
 CoMP協働セット情報は、CoMP協働セットに含まれる各eNBのeNB識別子(あるいはセル識別子)と、CoMP協働セットに含まれるアンカeNBのeNB識別子(あるいはセル識別子)と、を含む。
 CoMP協働セット情報は、下りリンクについてのHARQ初送割当て周期と、上りリンクについてのHARQ初送割当て周期と、を含む。HARQ初送割当て周期の詳細については後述する。
 CoMP協働セット情報は、E-PDCCH(Evolved-PDCCH)のリソースブロックの情報(例えば、リソースブロック番号)を含む。E-PDCCHの詳細については後述する。
 CoMP協働セット情報は、UEへの割当てタイミングを示す情報を含む。図16における「オフセット(SFN,subframe)」の表記は、「Current Time(= SFN×10+subframe ) modulo 割当周期」 = 「オフセット(=SFN×10+subframe) modulo 割当周期」を満たす場合に割り当てることを意味する。 以上説明したように、eNB200は、周辺eNBとの間の伝送遅延を取得し、取得した伝送遅延が閾値未満である場合に、当該周辺eNBをCoMP協働セットに含めるべきeNBとして登録する。また、取得した伝送遅延が閾値以上である場合に、当該周辺eNBをCoMP協働セットに含めるべきeNBから除外する。これにより、X2インターフェイスでの伝送遅延が大きい周辺eNBをCoMP協働セットに含めるべきeNBから除外できるため、動的な帯域割当てが実現できる。
 本実施形態では、eNB200は、自eNBから周辺eNBに向かう方向(送信方向)の伝送遅延Tsndと、当該周辺eNBから自eNBに向かう方向(受信方向)の伝送遅延Trecと、を取得し、伝送遅延Tsnd及び伝送遅延Trecの両方が閾値未満である場合に、当該周辺eNBをCoMP協働セットに含めるべきeNBとして登録する。これにより、送信方向及び受信方向の両方向で遅延が小さいことを確認した上でCoMP通信を開始できる。
 本実施形態では、eNB200は、CoMP協働セットで使用するCoMPの種別に応じて、伝送遅延Tsnd及び伝送遅延Trecと比較すべき閾値を設定する。CoMPの種別毎に、要求される伝送遅延条件を満たすことができる。
 本実施形態では、eNB200は、周辺eNBがサポートするCoMP種別の通知を受信し、受信した通知に基づいて周辺eNBの情報を当該周辺eNBがサポートするCoMP種別と関連付けて記憶する。詳細には、同一のCoMP種別をサポートする周辺eNBの情報をグループ化して記憶する。これにより、eNB200は、周辺eNBそれぞれについて、サポートするCoMP種別毎にグループ化して管理できるため、サポートするCoMP種別が統一されたCoMP協働セットを容易に構成できる。
 本実施形態では、下りリンクCoMPのみを行うCoMP協働セットと、上りリンクCoMPのみを行うCoMP協働セットと、上下両リンクでCoMPを行うCoMP協働セットと、を個別に管理できるため、1つのeNBが複数種類のCoMP通信を行うことができる。また、UEは、下りリンクCoMPのみを行うCoMP協働セットと、上りリンクCoMPのみを行うCoMP協働セットと、上下両リンクでCoMPを行うCoMP協働セットと、を異ならせることができる。
 (6.2)アンカeNB切替えシーケンス
 次に、アンカeNB切替えシーケンスを説明する。UEの移動に追従するためには、CoMP協働セットに含まれるeNB間でアンカeNBを適宜切替えることが望ましい。本実施形態では、アンカeNBは、UEからの測定報告に基づいて、CoMP協働セットに含まれる他のeNBに対して、CoMP協働セットにおける新たなアンカeNBになるよう要求するアンカ切替え要求を送信する。当該他のeNBは、アンカeNBからのアンカ切替え要求を許容する場合に、アンカ切替え要求に対する肯定応答をアンカeNBに送信した後、新たなアンカeNBに切替わる。そして、当該他のeNBは、新たなアンカeNBに切替わった後、CoMP協働セットに含まれる他のeNBに対して、自eNBが新たなアンカeNBとなったことを通知する。
 図17は、アンカeNB切替えシーケンスを示す。ここでは、eNB200~eNB203で構成されたCoMP協働セットとUE100とがJT型CoMPを実行中に、アンカeNBをeNB200からeNB201に切替える一例を説明する。
 図17に示すように、ステップS1001において、eNB200は、S-GWからのパケットデータを受信する。詳細については後述するが、eNB200は、PDCPレイヤにてパケットデータをPDCP PDUに変換するとともに、PDCP PDUにシーケンス番号を付加する。
 ステップS1002において、eNB200は、シーケンス番号が付加されたPDCP PDUをX2インターフェイス上でeNB201~eNB203に転送する。
 ステップS1003において、eNB200~eNB203のそれぞれは、割当て候補の帯域に関する帯域割当情報を、CoMP協働セットに含まれる他のeNBとX2インターフェイス上で送受信し、UE100に割当てる帯域を決定する。帯域割当情報の詳細については後述する。
 ステップS1004において、eNB200~eNB203のそれぞれは、ステップS1003で決定した帯域をUE100に割当てて、同一のデータをUE100に送信する。
 ステップS1005において、UE100は、測定報告を送信する。eNB200~eNB203のそれぞれは、測定報告を受信する。
 ステップS1006において、eNB200は、測定報告に基づいて、アンカeNBをeNB201に切替えることを決定する。
 ステップS1007において、eNB200は、新たなアンカeNBになるよう要求するアンカ切替え要求をX2インターフェイス上でeNB201に送信する。
 ステップS1008において、eNB201は、eNB200からのアンカ切替え要求を許容すると判断し、その旨のアンカ切替え応答をX2インターフェイス上でeNB200に送信する。
 ステップS1009において、eNB200は、UE100に対して未送信のデータをフォワーディングするために、UE100との送受信の状況を示すSN Status転送メッセージをX2インターフェイス上でeNB201に送信する。
 ステップS1010において、eNB200は、UE100に対して未送信のデータをX2インターフェイス上でeNB201に転送(フォワーディング)する。
 ステップS1011において、eNB201は、データ経路(パス)をeNB201に切替えるためのパス切替え要求をS1インターフェイス上でMMEに送信する。
 ステップS1012において、MMEは、eNB201からのパス切替え要求に応じて、ベアラ変更要求をS-GWに送信する。S-GWは、MMEからのベアラ変更要求に応じて、データ経路(パス)をeNB200からeNB201に切替える処理を開始する。
 ステップS1013において、S-GWは、eNB200へのデータ転送を終了することを示すEnd MarkerをS1インターフェイス上でeNB200に送信する。
 ステップS1014において、S-GWは、パケットデータをS1インターフェイス上でeNB201に送信する。
 ステップS1015において、eNB200は、eNB201へのデータ転送(フォワーディング)を終了することを示すEnd MarkerをX2インターフェイス上でeNB201に送信する。
 ステップS1016において、S-GWは、ステップS1012で受信したベアラ変更要求に対する応答であるベアラ変更応答をMMEに送信する。
 ステップS1017において、MMEは、ステップS1011で受信したパス切替え要求に対する肯定応答であるパス切替え応答をS1インターフェイス上でeNB201に送信する。
 ステップS1018において、eNB201は、アンカeNBの切替え完了をX2インターフェイス上でeNB200に通知する。これ以降、eNB201は新たなアンカeNBとして動作する。新たなアンカeNBに切替わったeNB201は、自eNBで記憶しているCoMP協働セット情報に対し、自eNBをアンカeNBとするように更新を行う。
 ステップS1019において、eNB201は、更新後のCoMP協働セット情報をX2インターフェイス上でeNB200、eNB202、及びeNB203に送信する。さらに、eNB201は、更新後のCoMP協働セット情報をUEに通知してもよい。eNB200、eNB202、及びeNB203は、更新後のCoMP協働セット情報を受信すると、当該更新後のCoMP協働セット情報を記憶する。
 ステップS1020において、eNB201は、ステップS1014でS-GWから受信したパケットデータを変換して得られたPDCP PDUを、X2インターフェイス上でeNB200、eNB202、及びeNB203に転送する。
 以上説明したように、eNB200は、UEからの測定報告に基づいて、CoMP協働セットに含まれる他のeNB201に対して、CoMP協働セットにおける新たなアンカeNBになるよう要求するアンカ切替え要求を送信する。eNB201は、eNB200からのアンカ切替え要求を許容する場合に、アンカ切替え要求に対する肯定応答であるアンカ切替え応答をeNB200に送信した後、新たなアンカeNBに切替わる。これにより、CoMP通信を中止することなく、アンカeNBを切替えることができる。
 本実施形態では、eNB201は、新たなアンカeNBに切替わった後、自eNBが新たなアンカeNBとなった旨を、CoMP協働セットに含まれるeNB200、eNB202、及びeNB203に通知する。これにより、CoMP通信中にアンカeNBを切替えても、CoMP協働セットに含まれる各eNBが新たなアンカeNBを把握できる。
 (6.3)eNB追加シーケンス
 CoMP協働セットを異なるeNBで構成する場合、UEの移動に対応するために、CoMP協働セットに適宜新たなeNBを追加することが望ましい。しかしながら、当該新たなeNBが、当該CoMP協働セットで使用するC-RNTIを既に使用中である場合が想定される。C-RNTIはUEとの無線通信の制御に必要であり、同一eNB(同一セル)で同一のC-RNTIを複数のUEに割当てることはできないため、当該新たなeNBを当該CoMP協働セットに追加することが困難である。
 そこで、本実施形態では、アンカeNBは、CoMP協働セットに新たなeNBを追加するために、CoMP協働セットに含まれていない他のeNBに対して、CoMP協働セットに加わるよう要求するためのCoMP追加要求を送信する。また、CoMP追加要求を送信する際に、UEとの通信に使用しているC-RNTIを当該他のeNBに送信する。
 なお、eNBを追加するにあたり、(6.1)で説明したCoMP協働セット設定動作を行うことが好ましいが、以下のシーケンスでは当該動作の説明は省略する。
 (6.3.1)eNB追加パターン1
 図18は、eNB追加シーケンスのパターン1を示す。ここでは、eNB200~eNB202で構成されたCoMP協働セットとUE100とがJT型CoMPを実行中に、eNB203を当該CoMP協働セットに追加する一例を説明する。また、eNB203は、UE100に割当てられたC-RNTIと同一のC-RNTIを、eNB203に接続するUEに割当てている。
 図18に示すように、ステップS2001において、アンカeNBとして動作しているeNB200は、S-GWからのパケットデータを受信する。eNB200は、PDCPレイヤにてパケットデータをPDCP PDUに変換するとともに、PDCP PDUにシーケンス番号を付加する。
 ステップS2002において、eNB200は、シーケンス番号が付加されたPDCP PDUをX2インターフェイス上でeNB201及びeNB202に転送する。
 ステップS2003において、eNB200~eNB202のそれぞれは、割当て候補の帯域に関する帯域割当情報を、CoMP協働セットに含まれる他のeNBとX2インターフェイス上で送受信し、UE100に割当てる帯域を決定する。
 ステップS2004において、eNB200~eNB202のそれぞれは、ステップS2003で決定した帯域をUE100に割当てて、同一のデータをUE100に送信する。
 ステップS2005において、UE100は、測定報告を送信する。eNB200~eNB202のそれぞれは、測定報告を受信する。
 ステップS2006において、eNB200は、測定報告に基づいて、eNB203をCoMP協働セットに追加することを決定する。例えば、eNB200は、今回受信した測定報告に、前回までの測定報告には含まれていなかったeNB(セル)についての信号レベルが含まれており、且つ、当該信号レベルがCoMP通信に適している値であれば、当該eNBをCoMP協働セットに追加すると決定する。
 ステップS2007において、eNB200は、CoMP協働セットに加わるよう要求するためのCoMP追加要求をX2インターフェイス上でeNB203に送信する。eNB200は、UE100とのCoMP通信に使用しているC-RNTIをCoMP追加要求に含めて送信する。
 ステップS2008において、eNB203は、eNB200から受信したCoMP追加要求に基づいて、eNB200が属するCoMP協働セットで使用中のC-RNTIと同一のC-RNTIを使用しているか否かを判定する。詳細には、eNB203は、受信したCoMP追加要求に含まれるC-RNTIが、eNB203で使用中(割当て済み)のC-RNTIの何れかと一致するか否かを判定する。ここでは、eNB203は、同一のC-RNTIを使用していると判定する。
 ステップS2009において、eNB203は、CoMP追加要求に対する応答であるCoMP追加応答をX2インターフェイス上でeNB200に送信する。eNB203は、同一のC-RNTIを使用中である旨の情報をCoMP追加応答に含めて送信する。
 ステップS2010において、eNB200は、同一のC-RNTIを使用中である旨の情報がCoMP追加応答に含まれていることに応じて、未使用(未割当て)のC-RNTIを通知するよう要求するための未使用C-RNTI要求を、X2インターフェイス上でeNB201~eNB203に送信する。
 ステップS2011において、eNB201~eNB203のそれぞれは、未使用C-RNTI要求に応じて、自eNBで未使用のC-RNTIを抽出し、自eNBで未使用のC-RNTIを含む未使用C-RNTI応答をX2インターフェイス上でeNB200に送信する。
 ステップS2012において、eNB200は、自eNBで未使用のC-RNTIと、未使用C-RNTI応答に含まれる未使用のC-RNTI(eNB201~eNB203のそれぞれで未使用のC-RNTI)と、のうち、共通するC-RNTIを選択し、選択したC-RNTIを、UE100とのCoMP通信に使用する新たなC-RNTIとして決定する。
 ここで、共通するC-RNTIが存在しない場合には、eNB200は、UE100からの測定報告に基づいて、CoMP協働セットから除外するeNBを選択し、残るeNBのそれぞれで未使用のC-RNTIの中から共通するC-RNTIを選択すればよい。
 新たなC-RNTIを決定したeNB200は、自eNBで記憶しているCoMP協働セット情報に対し、新たなC-RNTIが含まれるように更新を行うとともに、CoMP協働セットにeNB203が追加されるように更新を行う。
 ステップS2013において、eNB200は、更新後のCoMP協働セット情報をX2インターフェイス上でeNB201~eNB203に送信する。eNB201~eNB203は、更新後のCoMP協働セット情報を受信すると、当該更新後のCoMP協働セット情報を記憶する。
 ステップS2014において、eNB200~eNB203は、更新後のCoMP協働セット情報をUE100に送信する。UE100は、更新後のCoMP協働セット情報に含まれる変更後C-RNTIが割当てられたことを認識し、以降は変更後C-RNTIを使用する。
 ステップS2015において、eNB200は、S-GWからのパケットデータを受信する。
 ステップS2016において、eNB200は、PDCP PDUをX2インターフェイス上でeNB201~eNB203に転送する。
 ステップS2017において、eNB200~eNB203のそれぞれは、割当て候補の帯域に関する帯域割当情報を、CoMP協働セットに含まれる他のeNBとX2インターフェイス上で送受信し、UE100に割当てる帯域を決定する。
 ステップS2018において、eNB200~eNB202のそれぞれは、ステップS2017で決定した帯域をUE100に割当てて、同一のデータをUE100に送信する。
 また、本シーケンスでは、eNB203が同一のC-RNTIを使用中(割当て済み)である一例を説明したが、eNB203が同一のC-RNTIを使用中でない場合は、ステップS2010~ステップS2012は行われない。
 このように、eNB200は、CoMP協働セットに含まれていないeNB203に対して、UE100とのCoMP通信に使用しているC-RNTIをCoMP追加要求に含めて送信する。eNB203は、eNB200からのCoMP追加要求を受信した後、CoMP追加要求に含まれるC-RNTIを使用中であるか否かをeNB200に通知する。eNB200は、eNB203が同一のC-RNTIを使用中である場合に、未使用のC-RNTIを通知するようeNB201~eNB203に要求する。eNB201~eNB203は、eNB200からの要求に応じて、自eNBで未使用のC-RNTIをeNB200に通知する。eNB200は、eNB201~eNB203からの通知に応じて、eNB200~eNB203で未使用のC-RNTIの中から共通のC-RNTIをCoMP通信に使用する新たなC-RNTIを決定する。これにより、CoMP協働セットで使用するC-RNTIを既に使用中のeNB203を当該CoMP協働セットに追加できる。
 eNB200は、新たに使用するC-RNTIを決定した後、CoMP協働セットに含まれる他のeNBに対して、当該新たに使用するC-RNTIを通知する。これにより、CoMP通信中にC-RNTIを変更しても、CoMP協働セットに含まれる各eNBが新たなC-RNTIを把握できる。
 (6.3.2)eNB追加パターン2
 図19は、eNB追加シーケンスのパターン2を示す。本パターンの初期状態は、上述した動作パターン1と同じである。また、図19におけるステップS2101~ステップS2105は、上述したステップS2001~ステップS2005と同じであるため、説明を省略する。
 図19に示すように、ステップS2106において、eNB200は、測定報告に基づいて、eNB203をCoMP協働セットに追加することを決定する。
 ステップS2107において、eNB200は、CoMP協働セットに加わるよう要求するためのCoMP追加要求をX2インターフェイス上でeNB203に送信する。eNB200は、UE100とのCoMP通信に使用しているC-RNTIをCoMP追加要求に含めて送信する。
 ステップS2108において、eNB203は、eNB200から受信したCoMP追加要求に基づいて、eNB200が属するCoMP協働セットで使用中のC-RNTIと同一のC-RNTIを使用しているか否かを判定する。そして、eNB203は、同一のC-RNTIを使用していると判定した場合に、当該同一のC-RNTIを他のC-RNTIに変更する。
 ステップS2109において、eNB203は、CoMP追加要求に対する応答であるCoMP追加応答をX2インターフェイス上でeNB200に送信する。
 CoMP追加応答を受信したeNB200は、自eNBで記憶しているCoMP協働セット情報に対し、CoMP協働セットにeNB203が追加されるように更新を行う。
 ステップS2110において、eNB200は、更新後のCoMP協働セット情報をX2インターフェイス上でeNB201~eNB203に送信する。eNB201~eNB203は、更新後のCoMP協働セット情報を受信すると、当該更新後のCoMP協働セット情報を記憶する。
 ステップS2111において、eNB200~eNB203は、更新後のCoMP協働セット情報をUE100に送信する。
 以降のシーケンスは、上述したパターン1と同じである。
 このように、eNB200は、CoMP協働セットに含まれていないeNB203に対して、UE100とのCoMP通信に使用しているC-RNTIをCoMP追加要求に含めて送信する。eNB203は、eNB200からのCoMP追加要求を受信した際に、CoMP追加要求に含まれるC-RNTIと同一のC-RNTIを使用中である場合に、当該同一のC-RNTIを他のC-RNTIに変更する。これにより、CoMP協働セットで使用するC-RNTIを既に使用中のeNB203であっても当該CoMP協働セットに追加できる。
 (7)CoMP通信制御
 次に、CoMP通信制御について、(7.1)E-PDCCH、(7.2)帯域割当制御及びタイミングアドバンス制御、(7.3)データ同期及び再送制御の順に説明する。
 (7.1)E-PDCCH
 UEは、通常、eNBからPDCCH上で送信される下りリンク制御情報(DCI)を受信し、当該DCIに含まれるリソース割当て情報であるSI(Scheduling Information)などに基づいてeNBとの通信を行う。ここで、PDCCHとして使用される時間・周波数リソース(PDCCHリソース)は、eNBとUEとの間の通信状態などに応じて変化する。
 しかしながら、CoMP協働セットを異なるeNBで構成する場合、CoMP協働セットに含まれる各eNBは、UEに対するPDCCHリソースの割当てを個別に行うため、同一のPDCCHリソースをUEに割当てることが困難であり、PDCCH領域(制御領域)に対してJT型のCoMPを適用することが困難である。また、CoMP協働セットに含まれる各eNBがPDCCHリソースをUEに割当てると、PDCCHリソースの消費量が大きくなる。そこで、本実施形態では、CoMP通信を行う場合でもDCIを適切に伝送すべく、以下の構成をとる。
 本実施形態に係るLTEシステム1は、DCIを送信するための制御領域と下りリンクユーザデータを送信するためのデータ領域とを含む下りリンクフレーム構成を用いて通信を行う。UEとのCoMP通信を行う複数のeNBのそれぞれは、UEとのCoMP通信を行う場合に、DCIを、制御領域に代えてデータ領域で送信する送信手段(プロセッサ241及び無線送受信機220)を含む。
 なお、DCIは、上りリンクSI(Scheduling Information)及び下りリンクSIを含む。さらに、DCIは、CoMP用の付加情報を含んでもよい。送上りリンクSIは、上りリンクの割当てリソースブロック及び割当てMCSを示す。下りリンクSIは、下りリンクの割当てリソースブロック及び割当てMCSを示す。
 図20は、下りリンクのサブフレーム構成を示す。
 図20に示すように、下りリンクサブフレームは2個の連続的な下りスロットを含む。下りリンクサブフレーム内の前半スロットの先頭から最大3(又は4)OFDMシンボルの区間は、主にPDCCHとして使用される時間・周波数リソースからなる制御領域である。下りサブフレームの残りOFDMシンボル区間は、主にPDSCHとして使用される時間・周波数リソースからなるデータ領域である。
 本実施形態では、eNBは、UEとのCoMP通信を行う場合に、DCIを、制御領域に代えてデータ領域で送信する。また、eNBは、DCIをデータ領域で送信する際に、当該データ領域における特定のリソースブロック(RB)を用いてDCIを送信する。このように、データ領域における特定のリソースブロックは、PDCCHと同様にDCIの伝送に使用される。
 このような新たなPDCCHを「E-PDCCH(Evolved-PDCCH)」と称する。上述したように、CoMP協働セットに含まれる各eNBは、E-PDCCHとして同一のリソースブロックを使用する。本実施形態では、E-PDCCHとして使用されるリソースブロックは、アンカeNBによって決定される。
 ただし、DCIは、本来、データ領域に割当てたリソースブロックをUEに通知する情報であるため、DCIをデータ領域で伝送すると、データ領域に割当てたリソースブロックをUEに通知できない。
 このため、eNBは、E-PDCCHとして使用するリソースブロックを示す情報をブロードキャストで送信する。例えば、下りリンク帯域幅の中央の6リソースブロックにマッピングされるシステム情報ブロック(SIB)に対し、E-PDCCHとして使用するリソースブロックを示す情報を含めることができる。
 あるいは、eNBは、UEに対してCoMP協働セット情報を通知する際に、E-PDCCHとして使用するリソースブロック(固定)を示す情報をCoMP協働セット情報に含めることで通知してもよい。
 さらに、DCIのデータ量はユーザデータに比べて少ないため、1つのリソースブロックで1UE分のみのDCIを伝送するとリソースの無駄になり得る。このため、eNBは、E-PDCCH用に、複数のUEに1つのリソースブロックを割当て、複数のUEに対応する複数のDCIを異なる拡散符号で符号化することで符号分割多重する。これにより、リソース利用効率を改善できる。
 一方、UEは、SIB又はCoMP協働セット情報を受信することにより、自UEに割当てられたE-PDCCH用のリソースブロックを特定した後、E-PDCCHにより伝送されるDCIを受信する。ここで、DCIは、UE用の拡散符号で符号化されている。UE用の拡散符号についても、E-PDCCHの割当情報と同様に、SIB又はCoMP協働セット情報によりUEに通知できる。
 UEは、符号化されたDCIを受信する受信手段(無線送受信機120)と、受信手段が受信したDCIを、自UE用の拡散符号で復号する復号手段(プロセッサ131)と、を有し、復号手段は、復号に成功した場合に、当該復号されたDCIを自端末宛てのDCIとして認識する。
 以上説明したように、UEとのCoMP通信を行う複数のeNBのそれぞれは、UEとのCoMP通信を行う場合に、DCIを制御領域に代えてデータ領域で送信することで、CoMP通信を行う場合でもDCIを適切に伝送できる。
 (7.2)帯域割当制御及びタイミングアドバンス制御
 (7.2.1)帯域割当制御
 上述したように、CoMP協働セットを異なるeNBで構成する場合、UEに割当てるべき帯域をeNB間のネゴシエーションで決定する必要がある。ここで帯域とは、周波数リソース(リソースブロック)、時間リソース(サブフレーム)、及び変調方式(MCS)を意味する。また、帯域とは、上述したDCIのための帯域(E-PDCCHの帯域)ではなく、ユーザデータを伝送するための帯域(PDSCHの帯域及び/又はPUSCHの帯域)である。
 eNB間の伝送遅延に起因してeNB間のネゴシエーションに長時間を要すると、適切な帯域割当てができなくなる。そこで、本実施形態は、CoMPにおいてUEに割当てるべき帯域を決定するために要する時間を短縮すべく、以下の構成をとる。
 本実施形態では、CoMP協働セットに含まれる複数のeNBそれぞれは、自eNBにおけるUEへの割当て候補の帯域を、CoMP協働セットに含まれる他のeNBへ通知する通知手段(ネットワーク通信部230及びプロセッサ241)と、CoMP協働セットに含まれる他のeNBから、当該他のeNBにおけるUEへの割当て候補の帯域の通知を受信する受信手段(ネットワーク通信部230)と、受信手段で受信した通知に基づいて、複数のeNBのそれぞれにおける割当て候補の帯域の中から、UEに割当てる帯域を選択する選択手段(プロセッサ241)と、を有する。
 選択手段は、複数のeNBで共通の選択規則に従って、複数のeNBのそれぞれにおける割当て候補の帯域の中から、UEに割当てる帯域を選択する。このように、CoMP協働セットに含まれる各eNBが、割当て候補の帯域を通知し合い、これら割当て候補の帯域の中から、予め定められた選択規則に従ってUEに割当てる帯域を選択する。これにより、片方向の通知のみで帯域を決定できるため、帯域決定に要する時間を短縮できる。
 共通の選択規則としては、以下の選択規則1、2の何れかが使用できる。
 選択規則1:通知手段は、UEの送信タイミングを調整するためのタイミングアドバンス値を生成し、当該生成したタイミングアドバンス値をCoMP協働セットに含まれる他のeNBへ通知する。受信手段は、CoMP協働セットに含まれる他のeNBから、当該他のeNBで生成されたタイミングアドバンス値を受信する。選択規則1において、共通の選択規則とは、複数のeNBのうち、UEの送信タイミングを遅らせる度合いが最も大きいタイミングアドバンス値(すなわち、値が最も小さいタイミングアドバンス値)を生成したeNBにおける割当て候補の帯域を、UEに割当てる帯域として選択する規則である。UEの送信タイミングを遅らせる度合いが最も大きいタイミングアドバンス値は、後述するように、UEに通知すべきタイミングアドバンス値として選択される。よって、選択規則1では、タイミングアドバンス値に基づく選択規則としている。
 選択規則2:通知手段は、自eNBがUEに対して適用すべきMCSを選択し、当該選択したMCSをCoMP協働セットに含まれる他のeNBへ通知する。受信手段は、CoMP協働セットに含まれる他のeNBから、当該他のeNBとUEとの間のMCSを受信する。選択規則2において、共通の選択規則とは、複数のeNBのうち、最も伝送レートの高いMCS(すなわち、エラー耐性の低いMCS)を選択したeNBにおける割当て候補の帯域を、UEに割当てる帯域として選択する規則である。CoMP通信を行うことによって、UEの通信品質の改善が見込まれることから、伝送レートの高いMCSを選択することで、UEのスループットを高めることができる。
 さらに、複数のeNBのうち、割当て候補のリソースブロック数が最も少ないeNBにおける割当て候補の帯域を、UEに割当てる帯域として選択するという選択規則としてもよい。
 図21は、CoMP協働セットに含まれる各eNBが割当て候補の帯域を通知し合う様子を示す。
 図21に示すように、CoMP協働セットに含まれるeNB200~eNB204のそれぞれは、CoMP協働セットにおける自eNB以外の全eNBに対し、割当て候補の帯域を示す帯域割当情報をX2インターフェイス上で送信する。eNB200~eNB204のそれぞれは、CoMP協働セットにおける自eNB以外の全eNBからの帯域割当情報を受信する。そして、eNB200~eNB204のそれぞれは、自eNBにおける割当て候補の帯域と、他の各eNBにおける割当て候補の帯域と、の中から、上述した選択規則に従って、UEに割当てる帯域を選択する。
 図22は、帯域割当情報の一例を示す。
 図22に示すように、帯域割当情報は、対象となるUEの識別子と、送信元eNBの識別子と、割当て候補の時間(送信予定時間)と、割当て候補のリソースブロックと、割当て候補の変調方式(MCS)と、送信対象データの識別子と、タイミングアドバンス値と、を含む。
 対象となるUEの識別子は、上述したC-RNTIである。送信元eNBの識別子は、当該帯域割当情報を送信したeNBの識別子である。割当て候補の時間(タイミング)は、当該送信元eNBにおける割当て候補のサブフレームを示し、例えばサブフレーム番号で表現される。あるいは、割当て候補の時間(タイミング)は、SFN+サブフレーム番号で表現される。割当て候補のリソースブロックは、当該送信元eNBにおける割当て候補のリソースブロックを示し、例えばリソースブロック番号で表現される。
 送信対象データの識別子は、eNB間で送信データの同一性を担保する(同期を取る)ためのものであり、本実施形態ではPDCD PDUのシーケンス番号である。PDCD PDUのシーケンス番号は、アンカeNBによって付加される。PDCD PDUにシーケンス番号を付加する処理の詳細については後述する。
 タイミングアドバンス値は、当該送信元eNBにおいて生成されたタイミングアドバンス値である。
 図23は、CoMP協働セットに含まれるeNBにおける帯域割当処理の一例を示す。
 図23に示すように、ステップS300において、eNBは、UEがCoMP対象であるか否かを確認する。UEがCoMP対象である場合(ステップS300;Yes)、処理をステップS303に進め、そうでなければ(ステップS300;No)、処理をステップS301に進める。
 ステップS301において、eNBは、UEに割当てる帯域を決定するための計算を行う。CoMP非対象UEに対しては、当該UEから送信されるCQI及び/又はSRSなどに基づき、例えばプロポーショナルフェアネス(PF)などの通常のスケジューリングアルゴリズムに従って、割当て帯域が決定される。
 ステップS302において、eNBは、ステップS301で決定した帯域を示すDCIをPDCCH上でUEに送信する。
 一方、ステップS303において、eNBは、CoMP対象UEへの帯域割当を優先すべく、CoMP用に当該UEの予約帯域(割当て候補の帯域)を確保する。
 ステップS304において、eNBは、ステップS303の結果を保存する。
 ステップS305において、eNBは、ステップS302でUEのために確保した帯域(すなわち、割当て候補の帯域)を示す帯域割当情報(図22参照)を、当該UEとのCoMP通信を行うCoMP協働セットに含まれる他のeNBに対してX2インターフェイス上で送信する。
 ステップS306において、eNBは、帯域割当判定処理のタイミングまでの時間を計時するためのタイマを起動する。
 図24は、帯域割当判定処理の一例を示す。
 図24に示すように、ステップS400において、eNBは、ステップS306で起動したタイマが満了したか否かを確認する。当該タイマが満了した場合(ステップS400;Yes)、処理をステップS401に進める。
 ステップS401において、eNBは、当該UEとのCoMP通信を行うCoMP協働セットに含まれる他の全てのeNBからの帯域割当情報を受信したか否かを確認する。当該他の全てのeNBからの帯域割当情報を受信した場合(ステップS401;Yes)、処理をステップS404に進め、そうでなければ(ステップS401;No)、処理をステップS402に進める。
 ステップS404において、eNBは、ステップS304で保存した割当て候補の帯域と、CoMP協働セットに含まれる他のeNBそれぞれの割当て候補の帯域と、のうち、上述した選択規則に従ってUEへの割当て帯域を決定する。
 ステップS405において、eNBは、ステップS404で決定した割当て帯域を示すDCIをE-PDCCH上でUEに送信するとともに、当該割当て帯域を用いてユーザデータをUEに送信(又は受信)する。
 一方、ステップS402において、eNBは、CoMP協働セットに含まれる他のeNBのうち少なくとも1つのeNBから帯域割当情報を受信せずにタイムアウトしたことになる。eNBは、ステップS304で保存した割当て候補の帯域と、受信した帯域割当情報によって示される割当て候補の帯域と、のうち、上述した選択規則に従って帯域を決定する。ここでは、CoMP協働セットに含まれる他のeNBのうち少なくとも1つのeNBから帯域割当情報を受信していないため、CoMP協働セットで統一すべき帯域とは異なる帯域が選択されている可能性がある。
 ステップS403において、eNBは、ステップS404で決定した帯域を割当禁止として予約し、当該帯域を用いたユーザデータの送信(又は受信)を中止する。これにより、CoMP協働セットで統一すべき帯域とは異なる帯域でeNBがデータ送信(又は受信)を行うことによる悪影響の発生を防止できる。
 図25は、JT型CoMPシーケンスを示す。ここでは、eNB200~eNB204で構成されたCoMP協働セットとUE100とがJT型CoMPを実行しており、eNB204がアンカeNBとして動作している一例を説明する。
 図25に示すように、ステップS3001において、アンカeNBとして動作しているeNB204は、S-GWからのパケットデータ(ユーザデータ)を受信する。
 ステップS3002において、eNB204は、PDCPレイヤにてパケットデータをシーケンス番号付きのPDCP PDUに変換し、PDCP PDUをX2インターフェイス上でeNB200~eNB203に転送する。
 ステップS3003において、eNB204は、帯域割当情報1を生成し、生成した帯域割当情報1をX2インターフェイス上でeNB200~eNB203に転送する。
 ステップS3004において、eNB203は、帯域割当情報2を生成し、生成した帯域割当情報2をX2インターフェイス上でeNB200、eNB201、eNB202、及びeNB204に転送する。
 ステップS3005において、eNB202は、帯域割当情報3を生成し、生成した帯域割当情報3をX2インターフェイス上でeNB200、eNB201、eNB203、及びeNB204に転送する。
 ステップS3006において、eNB201は、帯域割当情報4を生成し、生成した帯域割当情報4をX2インターフェイス上でeNB200、eNB202、eNB203、及びeNB204に転送する。
 ステップS3007において、eNB200は、帯域割当情報5を生成し、生成した帯域割当情報5をX2インターフェイス上でeNB201~eNB204に転送する。
 ステップS3008において、eNB200~eNB204のそれぞれは、自eNBの帯域割当情報と他の各eNBからの帯域割当情報とに基づいて、UE100への割当て帯域を決定する。
 ステップS3009において、eNB200~eNB204のそれぞれは、ステップS3008で決定した割当て帯域でユーザデータをUE100に送信する。
 以上説明したように、CoMP協働セットに含まれる各eNBが、割当て候補の帯域を通知し合い、これらの割当て候補の帯域の中から、予め定められた選択規則に従ってUEに割当てる帯域を選択することで、片方向の通知のみで帯域を決定できるため、帯域決定に要する時間を短縮できる。
 また、本実施形態では、複数のeNBのそれぞれは、自eNBにおけるUEへの割当て候補の帯域を、CoMP協働セットに含まれる他のeNBへ通知する通知手段(ネットワーク通信部230及びプロセッサ241)と、CoMP協働セットに含まれる他のeNBから、当該他のeNBにおけるUEへの割当て候補の帯域の通知を受信する受信手段(ネットワーク通信部230)と、受信手段の受信状況に応じて、割当て候補の帯域を割当て禁止に設定する禁止手段(プロセッサ241)と、を有する。禁止手段は、受信手段がCoMP協働セットに含まれる少なくとも一部の他のeNBから通知を受信しない場合に、複数のeNBのそれぞれにおける割当て候補の帯域のうち、自eNBで把握している割当て候補の帯域を割当て禁止に設定する。複数のeNBのそれぞれは、複数のeNBで共通の選択規則に従って、複数のeNBのそれぞれにおける割当て候補の帯域の中から、UEに割当てる帯域を選択する選択手段(プロセッサ241)をさらに有する。禁止手段は、選択規則に従って選択される割当て候補の帯域を、割当て禁止に設定する。
 これにより、CoMP協働セットに含まれる基地局間で帯域割当情報を送受信する際に、eNB間通信路の輻輳などに起因して帯域割当情報が正常に送受信されない場合であっても、CoMP協働セットにおいて一部のeNBがUEに対して誤った割当てを行ってしまうことを防止できる。
 (7.2.2)タイミングアドバンス制御
 JR型CoMPにおいて、UEから同一のデータを複数のeNBが受信する場合、適切なタイミングアドバンス値がeNB毎に異なる。このため、タイミングアドバンス値を適切に設定することは困難である。そこで、本実施形態では、タイミングアドバンス値を適切に設定すべく、以下の構成をとる。
 本実施形態では、CoMP協働セットに含まれる複数のeNBそれぞれは、UEのデータ送信タイミングを調整するためのタイミングアドバンス値を生成し、CoMP協働セットに含まれる他のeNBに対して、当該生成したタイミングアドバンス値を送信する送信手段(プロセッサ241及びネットワーク通信部230)と、CoMP協働セットに含まれる他のeNBから、当該他のeNBにおいて生成されたタイミングアドバンス値を受信する受信手段(ネットワーク通信部230)と、受信手段で受信した通知に基づいて、複数のeNBのそれぞれにおけるタイミングアドバンス値の中から選択したタイミングアドバンス値を、UEに通知する通知手段(プロセッサ241及び無線送受信機220)と、を有する。本実施形態では、複数のeNBのそれぞれにおけるタイミングアドバンス値のうち、データ送信タイミングを遅らせる度合いが最も大きいタイミングアドバンス値を選択する。
 上述したように、LTEシステム1では、遅延波に対処できるよう各シンボルにCPが設けられているため、eNBの受信タイミングよりも遅れて到来した上りリンク信号(上りリンクデータ)であってもCP長の範囲内であれば復調が可能である。これに対し、eNBの受信タイミングよりも先に到来した上りリンク信号は復調困難である。このため、データ送信タイミングを遅らせる度合いが最も大きいタイミングアドバンス値を選択することで、タイミングアドバンス値を適切に設定できる。
 本実施形態では、各eNBが送受信する帯域割当情報(図22参照)は、タイミングアドバンス値を含む。よって、上述した帯域割当判定処理において、タイミングアドバンス値の選択も行うことができる。
 例えば、図24に示すステップS404において、eNBは、自eNBで生成したタイミングアドバンス値と、CoMP協働セットに含まれる他のeNBそれぞれのタイミングアドバンス値と、のうち、タイミングアドバンス値の選択規則に従って、UEに通知するタイミングアドバンス値を決定する。これにより、片方向の通知のみでタイミングアドバンス値を決定できるため、タイミングアドバンス値決定に要する時間を短縮できる。
 そして、ステップS405において、eNBは、ステップS404で決定したタイミングアドバンス値をPDSCH上でUEに送信する。ここで、eNBは、UEに割当てるPDSCHリソースに空きがある場合に、当該空きPDSCHリソースを用いて、タイミングアドバンス値(TA MCE)をUEに通知する。をUEに通知する。PDSCHリソースに空きがある場合とは、選択されたリソースブロック且つ選択されたMCSで送信を行う場合の帯域幅が、送信すべきデータに比べて大きいことを意味する。
 なお、JT型CoMPを行う場合、CoMP協働セットに含まれる全NBが同じ下りリンクデータを同一の帯域で送信する必要があるが、協調送信する下りリンクデータがないタイミングにおいては、CoMP協働セットに含まれる全NBが協調してタイミングアドバンス値(TA MCE)を送信してもよく、アンカeNBが単独でタイミングアドバンス値(TA MCE)を送信してもよい。
 ただし、CoMP協働セットに含まれる各eNBは、CoMP協働セットに含まれる他のeNBの全てから常にタイミングアドバンス値を得られるとは限らないため、他のeNB毎にタイミングアドバンス値を保持し、新たにタイミングアドバンス値を受信する度に更新する。詳細には、CoMP協働セットに含まれる各eNBは、受信手段(ネットワーク通信部230)が受信したタイミングアドバンス値を記憶するための記憶手段(メモリ242)と、受信手段がタイミングアドバンス値を受信する度に、当該受信したタイミングアドバンス値によって、記憶手段に記憶されているタイミングアドバンス値を更新する更新手段(プロセッサ241)と、をさらに有し、通知手段(プロセッサ241及び無線送受信機220)は、記憶手段に記憶されているタイミングアドバンス値の中から、UEに通知するタイミングアドバンス値を選択し、当該選択したタイミングアドバンス値をUEに通知する。
 また、タイミングアドバンス値は、UEのTime Alignment Timer(第1のタイマ)が満了する前に当該UEに通知する必要がある。また、各eNBは、UEのTime Alignment Timerに対応するTime Alignment Timerを有している。JT型CoMPを行う場合、アンカeNBは、UEのTime Alignment Timerが満了間近であることを検出すると、CoMP協働セットに含まれる他のeNBに対して、他の下りリンクデータと同様にユーザデータとしてタイミングアドバンス値(TA MCE)をX2インターフェイス上で送信し、他の下りリンクデータと同様に協調する全eNBにて協調送信しても良い。
 (7.2.3)異常時シーケンス
 (7.2.3.1)パターン1
 特定のeNB間において帯域割当情報の送受信タイムアウトが頻発(あるいは連続)する場合、当該特定のeNB間の通信経路上で輻輳が生じているといった虞がある。本実施形態では、このような場合に適切に対処するために、以下のような構成をとる。
 本実施形態では、CoMP協働セットに含まれる複数のeNBそれぞれは、CoMP協働セットに含まれる他のeNBから、当該他のeNBにおけるUEへのリソース割当てに関する情報を受信する受信手段(ネットワーク通信部230)と、受信手段がCoMP協働セットに含まれる他の特定のeNBから通知を正常に受信しない場合に、他の特定のeNBに関する情報を、CoMP協働セットを管理するCoMP管理装置(アンカeNB)に報告する報告手段(プロセッサ241及びネットワーク通信部230)と、を有する。CoMP管理装置は、当該他の特定のeNB及び/又は報告を行ったeNBをCoMP協働セットから除外する。例えば、CoMP管理装置は、UEが当該他の特定のeNBから受信する信号の電力レベルと、UEが報告を行ったeNBから受信する信号の電力レベルと、を取得し、当該他の特定のeNB及び報告を行ったeNBのうち、対応する電力レベルが相対的に低い方のeNBをCoMP協働セットから除外する。
 図26は、JT型CoMPシーケンスを示す。ここでは、eNB200~eNB204で構成されたCoMP協働セットとUE100とがJT型CoMPを実行しており、eNB204がアンカeNBとして動作している一例を説明する。
 図26に示すように、ステップS3101において、アンカeNBとして動作しているeNB204は、S-GWからのパケットデータ(ユーザデータ)を受信する。
 ステップS3102において、eNB204は、PDCPレイヤにてパケットデータをシーケンス番号付きのPDCP PDUに変換し、PDCP PDUをX2インターフェイス上でeNB200~eNB203に転送する。
 ステップS3103において、eNB204は、帯域割当情報1を生成し、生成した帯域割当情報1をX2インターフェイス上でeNB200~eNB203に転送する。
 ステップS3104において、eNB203は、帯域割当情報2を生成し、生成した帯域割当情報2をX2インターフェイス上でeNB200、eNB201、eNB202、及びeNB204に転送する。ここで、eNB203からeNB201への帯域割当情報2は、規定時間内に到達しなかったとする。
 ステップS3105において、eNB202は、帯域割当情報3を生成し、生成した帯域割当情報3をX2インターフェイス上でeNB200、eNB201、eNB203、及びeNB204に転送する。
 ステップS3106において、eNB201は、帯域割当情報4を生成し、生成した帯域割当情報4をX2インターフェイス上でeNB200、eNB202、eNB203、及びeNB204に転送する。
 ステップS3107において、eNB200は、帯域割当情報5を生成し、生成した帯域割当情報5をX2インターフェイス上でeNB201~eNB204に転送する。
 ステップS3108において、eNB200~eNB204のそれぞれは、自eNBの帯域割当情報と他の各eNBからの帯域割当情報とに基づいて、UE100への割当て帯域を決定する。ただし、eNB201は、eNB203からの帯域割当情報2が規定時間内に到達しなかったことから、上述したように割当て禁止帯域を決定する。
 ステップS3109において、eNB201は、eNB203からの帯域割当情報を受信しなかったことを示す帯域割当受信情報をX2インターフェイス上でeNB204に送信する。帯域割当受信情報は、eNB201の識別子(あるいはセル識別子)及びeNB203の識別子(あるいはセル識別子)を含む。
 ステップS3110において、eNB200、eNB202、eNB203、及びeNB204のそれぞれは、ステップS3108で決定した割当て帯域でユーザデータをUE100に送信する。
 ステップS3111において、eNB204は、ステップS3109で受信した帯域割当情報に基づいて、CoMP協働セットから除外するeNBを決定する。例えば、eNB204は、UE100からの測定報告に基づいて、UE100がeNB201から受信する信号の電力レベルと、UE100がeNB203から受信する信号の電力レベルと、を取得し、eNB201及びeNB203のうち、対応する電力レベルが相対的に低い方のeNBをCoMP協働セットから除外する。CoMP協働セットから除外されたeNBは、その後はCoMP通信に対する干渉源となり得るため、UE100へ与える干渉レベルが低くなると見込まれるeNBを除外することとしている。ここでは、eNB204は、eNB201を除外すると決定したとする。eNB204は、eNB201を除外すると決定すると、eNB201の除外を反映させるように、上述したCoMP協働セット情報を更新する。
 ステップS3112において、eNB204は、更新後のCoMP協働セット情報をeNB200~eNB203(及びUE100)に送信する。更新後のCoMP協働セット情報を受信したeNB201は、自身がCoMP協働セットから除外されたことを認識し、以降はCoMP通信には参加しない。
 以上説明したように、本実施形態によれば、特定のeNB間において帯域割当情報の送受信タイムアウトが頻発(あるいは連続)する場合にも、適切な対処をおこなうことができる。なお、本シーケンスでは、JT型CoMPを例に説明したが、JR型CoMP等の他のCoMP種別にも適用できる。
 (7.2.3.2)パターン2
 JR型CoMPにおいて、他のeNBからの帯域割当情報を受信しない特定のeNBは、上述したように、割当て禁止帯域を決定し、UE100からの上りリンクデータを受信しない。この場合、アンカeNBは、当該特定のeNBが上りリンクデータを受信しないにもかかわらず当該特定のeNBからのデータ転送を待つことになり、通信遅延が大きくなってしまう。
 そこで、本実施形態では、JR型CoMPにおいて一部のeNBがUEからのデータを受信しない場合に適切に対処すべく、以下の構成をとる。
 本実施形態では、CoMP協働セットに含まれる複数のeNBそれぞれは、CoMP協働セットに含まれる他のeNBから、当該他のeNBにおけるUEへの割当て候補の通信リソースを示す帯域割当情報を受信する帯域割当情報受信手段(ネットワーク通信部230)と、帯域割当情報受信手段における受信状況に基づいて、CoMP協働セットに含まれる他のeNB(アンカeNB)に対して、帯域割当情報の受信成否に関する情報を送信する送信手段(プロセッサ241及びネットワーク通信部230)と、を有する。送信手段は、帯域割当情報受信手段がCoMP協働セットに含まれる少なくとも一部の他のeNBから帯域割当情報を受信しない場合に、CoMP協働セットに含まれる他のeNB(アンカeNB)に対してエラー情報を送信する。これに対し、送信手段は、帯域割当情報受信手段がCoMP協働セットに含まれる他のeNBから帯域割当情報を受信した場合に、当該他のeNB(アンカeNB)に対して肯定応答情報を送信する。
 また、複数のeNBのそれぞれは、帯域割当情報受信手段が受信した帯域割当情報に基づいて、UEからのデータを受信するデータ受信手段(無線送受信機220及びプロセッサ241)をさらに有し、帯域割当情報受信手段がCoMP協働セットに含まれる一部の他のeNBから帯域割当情報を受信しない場合、データ受信手段は、当該UEからのデータ受信を中止する。
 図27は、JR型CoMPシーケンスを示す。ここでは、eNB200~eNB203で構成されたCoMP協働セットとUE100とがJR型CoMPを実行しており、eNB200がアンカeNBとして動作している一例を説明する。
 図27に示すように、ステップS3201において、eNB203は、帯域割当情報1を生成し、生成した帯域割当情報1をX2インターフェイス上でeNB200~eNB202に転送する。
 ステップS3202において、eNB202は、帯域割当情報2を生成し、生成した帯域割当情報2をX2インターフェイス上でeNB200、eNB201、及びeNB203に転送する。ここで、eNB202からeNB201への帯域割当情報2は、規定時間内に到達しなかったとする。
 ステップS3203において、eNB201は、帯域割当情報3を生成し、生成した帯域割当情報3をX2インターフェイス上でeNB200、eNB202、及びeNB203に転送する。
 ステップS3204において、eNB200は、帯域割当情報4を生成し、生成した帯域割当情報4をX2インターフェイス上でeNB202~eNB203に転送する。
 ステップS3205において、eNB203は、全ての帯域割当情報を規定時間内に受信したことを示す帯域割当受信情報(ACK)をX2インターフェイス上でeNB200に送信する。帯域割当受信情報は、送信元eNBの識別子(あるいはセル識別子)を含む。
 ステップS3206において、eNB202は、全ての帯域割当情報を規定時間内に受信したことを示す帯域割当受信情報(ACK)をX2インターフェイス上でeNB200に送信する。
 ステップS3207において、eNB201は、少なくとも一部の帯域割当情報を規定時間内に受信しなかったこと(及び/又は上りリンクデータの受信を中止すること)を示す帯域割当受信情報(NACK)をX2インターフェイス上でeNB200に送信する。
 ステップS3208において、eNB200~eNB203のそれぞれは、自eNBの帯域割当情報と他の各eNBからの帯域割当情報とに基づいて、UE100への割当て帯域を決定する。ただし、eNB201は、eNB202からの帯域割当情報2が規定時間内に到達しなかったことから、上述したように割当て禁止帯域を決定する。ステップS3208で決定された割当て帯域は、E-PDCCH上でUE100に通知される。
 ステップS3209において、UE100は、割当て帯域を用いて上りリンクデータを送信する。eNB200、eNB202、及びeNB203のそれぞれは、当該上りリンクデータを受信する。これに対し、eNB201は、当該上りリンクデータを受信しない(ステップS3210)。
 ステップS3211において、eNB203は、UE100から受信した上りリンクデータを、ベースバンド信号の状態(復号前の状態)で、X2インターフェイス上でeNB200に転送する。
 ステップS3212において、eNB202は、UE100から受信した上りリンクデータを、ベースバンド信号の状態(復号前の状態)で、X2インターフェイス上でeNB200に転送する。
 なお、eNB200は、ステップS3207で受信した帯域割当受信情報(NACK)に基づいて、eNB201からのデータ転送が無いことを把握している。
 ステップS3213において、eNB200は、自eNBがUE100から受信した上りリンクデータと、eNB202から転送された上りリンクデータと、eNB201から転送された上りリンクデータと、を合成した上で復号する。
 ステップS3214において、eNB200は、IPパケットの状態で復号後のデータをS1インターフェイス上でS-GWに転送する。
 以上説明したように、本実施形態によれば、アンカeNBは、特定のeNBが上りリンクデータを受信しないにもかかわらず当該特定のeNBからのデータ転送を待つことを防止できるため、通信遅延が大きくなることを回避できる。
 (7.3)データ同期及び再送制御
 次に、JT型CoMPにおけるデータ同期及び再送制御を説明する。
 (7.3.1)データ同期及びARQ再送
 JT型CoMPにおいて、CoMP協働セットを異なるeNBで構成する場合、次のような問題がある。CoMP協働セットに含まれる各eNBのレイヤ2において、ユーザデータをPDCPレイヤでPDCP PDUへの変換後に、RLCレイヤでAMモードでのARQを実行する場合、上述したように、RLCレイヤでeNB毎に異なるデータ分割が行われることになる(図5及び図6参照)。その結果、各eNBがUEへ同一のデータを同時に送信することが困難になる。
 そこで、本実施形態は、CoMP協働セットを異なるeNBで構成する場合でも、各eNBが同時にUEへ同時に同一のデータを送信できるようにすべく、以下の構成をとる。
 本実施形態では、アンカeNBは、S-GWからのUE宛てのユーザデータを受信する受信手段(ネットワーク通信部230)と、受信手段で受信したユーザデータを、PDCPレイヤにおいて、シーケンス番号が付されたPDCP PDUに変換する変換手段(プロセッサ241)と、変換手段により得られたPDCP PDUを、CoMP協働セットに含まれる他のeNB(従eNB)に送信する送信手段(ネットワーク通信部230及びプロセッサ241)と、を有する。他のeNB(従eNB)は、PDCP PDUを受信すると、PDCP PDUに対して、RLCレイヤでのARQ再送を適用することなく、MACレイヤでの処理を行う。例えば、他のeNB(従eNB)のRLCレイヤにはUMモードが適用される。MACレイヤでの処理は、HARQを含む(図5参照)。
 また、本実施形態では、従eNBは、UEへのHARQデータ送信を行う送信手段(無線送受信機220及びプロセッサ241)と、HARQデータ送信に失敗した場合に、その旨をアンカeNBに通知する通知手段(ネットワーク通信部230及びプロセッサ241)と、を有する。アンカeNBは、CoMP協働セットからUEへのARQ再送データ(PDCP PDU)を一元管理する管理手段(プロセッサ241及びメモリ242)と、HARQデータ送信に失敗した旨の通知を従eNBから受信する受信手段(ネットワーク通信部230)と、受信手段が受信した通知に応じて、管理手段が管理しているARQ再送データを従eNBに転送する転送手段(ネットワーク通信部230及びメモリ242)と、を有する。従eNBの送信手段は、アンカeNBから転送されたARQ再送データを、HARQを用いてUEに送信する。
 図28は、JT型CoMPにおけるシーケンスを示す。ここでは、eNB200~eNB204で構成されたCoMP協働セットとUE100とがJT型CoMPを実行しており、eNB200がアンカeNBとして動作している一例を説明する。
 図28に示すように、ステップS4001おいて、S-GWは、UE100宛てのユーザデータをS1インターフェイス上でeNB200に送信する。
 eNB200のPDCPレイヤは、UE100宛てのユーザデータに対してヘッダ圧縮・暗号化を行い、PDCP PDUに変換する(図5及び図6参照)。また、eNB200のPDCPレイヤは、PDCP PDUを識別するためのシーケンス番号を当該PDCP PDUに付加する。さらに、シーケンス番号付きのPDCP PDUを再送のために保存する。
 ステップS4002において、eNB200は、シーケンス番号付きのPDCP PDUをX2インターフェイス上でeNB201~eNB204に転送する。
 そして、eNB200~eNB204では、RLCレイヤは、シーケンス番号付きのPDCP PDU(RLC SDU)に対してARQを適用すること無くRLC PDUに変換し、MACレイヤは、RLC PDU(MAC SDU)に対してHARQを適用してトランスポートブロックに変換し、物理レイヤは、トランスポートブロックを送信する。ここで、物理レイヤでの送信には、eNB200~eNB204で同一の帯域(リソースブロック、サブフレーム、MCS)が使用される。
 また、eNB200~eNB204それぞれのMACレイヤは、UE100からのACK/NACK(HARQ ACK/NACK)に応じて再送を行う。
 図29は、最大再送回数に達してもHARQ再送が完了しないケースでのシーケンスを示す。
 図29に示すように、eNB201~eNB204は、最大再送回数に達してもHARQ再送が完了しない場合(すなわち、HARQ ACKが得られない場合)、ステップS4011において、データ送信に失敗した旨をX2インターフェイス上でeNB200に通知する。当該通知は、データ送信に失敗したPDCP PDUのシーケンス番号を含む。
 ステップS4012において、eNB200は、eNB201~eNB204からの通知に応じて、ARQ再送すべきPDCP PDU(シーケンス番号付き)をX2インターフェイス上でeNB201~eNB204に転送する。
 そして、eNB200~eNB204では、RLCレイヤは、シーケンス番号付きのPDCP PDU(RLC SDU)に対してARQを適用すること無くRLC PDUに変換し、MACレイヤは、RLC PDU(MAC SDU)に対してHARQを適用してトランスポートブロックに変換し、物理レイヤは、トランスポートブロックを送信する。ここで、物理レイヤでの送信には、eNB200~eNB204で同一の帯域(リソースブロック、サブフレーム、MCS)が使用される。
 以上説明したように、ARQ再送をアンカeNBが一元管理することで、JT型CoMPにおいて、CoMP協働セットに含まれる各eNBが同時にUEへ同一のデータを送信することが可能になる。
 (7.3.2.1)HARQ初送割当て周期
 eNBは、MACレイヤでのHARQを用いて、UEからのACK(HARQ ACK)が得られるまでデータ再送を繰り返し行う。ここで、初送データの送信処理及び当該初送データに対応する再送処理は「HARQプロセス」と称され、複数のHARQプロセスが並列して実行される。
 JT型のCoMPにおいて、CoMP協働セットを異なるeNBで構成する場合、HARQ再送のために同一の帯域をUEに割当てるためには、eNB間のネゴシエーションが必要になると考えられる。しかしながら、再送の度にそのようなネゴシエーションを行うと、再送のための処理遅延が長くなってしまうため、HARQ再送を適切に行うことができない。
 そこで、本実施形態は、下りリンクCoMPにおいてHARQ再送を適切に行うべく、以下の構成をとる。
 本実施形態では、CoMP協働セットに含まれる複数のeNBそれぞれは、複数のHARQプロセス毎に初送データを送信する初送手段(無線送受信機220及びプロセッサ241)と、複数のHARQプロセス毎に初送データに対応する再送データを送信する再送手段(無線送受信機220、プロセッサ241、メモリ242)と、を有し、初送手段による初送データの送信周期は、HARQ最大再送回数よりも大きい最小の奇数に設定される。
 また、再送手段による再送データの再送周期を8[TTI(Transmission Time Interval)]に限定する。つまり、割当てられない場合に、次のTTIにシフトすることを禁止する。さらに、再送手段は、初送データと同一のリソースブロック及び同一のMCSを適用して再送データを送信する。
 図30は、MACレイヤでのHARQ再送を説明するための図である。
 図30に示すように、各HARQプロセスは、UEからのHARQ NACKに応じて、8[TTI]で再送を行う。
 これに対し、初送データの送信周期は、9[TTI]である。すなわち、初送周期(9[TTI])は、再送周期(8[TTI])に“1”を加えた値である。よって、再送回数が8回までは初送タイミングと再送タイミングとは重複しないが、再送回数が9回になると、初送タイミングと再送タイミングとは重複することになる。しかし、HARQ最大再送回数は8回であり、初送タイミングと再送タイミングとが重複することはない。本実施形態では、初送周期は、HARQ最大再送回数8よりも大きい最小の奇数である“9”[TTI]に設定されている。
 このように設定することで、各HARQプロセスの初送タイミングと再送タイミングとが重複しない。
 また、各HARQプロセスでは、初送時に使用されたリソースブロックと同一のリソースブロックで再送を行い、且つ初送時に使用されたMCSと同一のMCSで再送を行う。このような規則をCoMP協働セットに導入すれば、HARQ再送のためにeNB間のネゴシエーションは不要であり、再送のための処理遅延が長くなることを防止できる。
 (7.3.2.2)HARQ ACK
 eNBは、MACレイヤでのHARQを用いて、UEからのACKが得られるまで再送を繰り返し行う。しかしながら、JT型のCoMPにおいて、CoMP協働セットを異なるeNBで構成する場合、UEがACKを送信しても、CoMP協働セットに含まれる一部のeNBが当該ACKを受信できない可能性がある。UEからのACKを受信できないeNBは、UEへの再送を継続してしまうため、当該再送によって無駄にリソースが消費される問題がある。
 そこで、本実施形態は、下りリンクCoMPにおいてHARQ再送を適切に行うべく、以下の構成をとる。
 本実施形態では、CoMP協働セットに含まれる複数のeNBそれぞれは、UEからのHARQ ACKを受信すると、CoMP協働セットに含まれる他のeNBに対して、当該受信したHARQ ACKに関するACK情報を送信する。ACK情報は、HARQ ACKに対応するデータの識別情報を含む。複数のeNBのそれぞれは、HARQ最大再送回数が満了していない場合で、UEからのHARQ ACKを受信していない場合で、且つCoMP協働セットに含まれる他のeNBからのACK情報を受信していない場合に、UEへのHARQ再送を行う。
 図31は、JT型CoMPのシーケンスを示す。ここでは、eNB200~eNB203で構成されたCoMP協働セットとUE100とがJT型CoMPを実行しており、eNB200がアンカeNBとして動作している一例を説明する。
 図31に示すように、ステップS4001において、アンカeNBとして動作しているeNB200は、S-GWからのパケットデータ(ユーザデータ)を受信する。
 ステップS4002において、eNB200は、PDCPレイヤにてパケットデータをシーケンス番号付きのPDCP PDUに変換し、PDCP PDUをX2インターフェイス上でeNB200~eNB203に転送する。
 ステップS4003において、eNB200~eNB203それぞれは、帯域割当情報を生成し、生成した帯域割当情報をX2インターフェイス上でCoMP協働セットに含まれる他のeNBに転送する。
 ステップS4004において、eNB200~eNB203それぞれは、同一の帯域で同一のユーザデータをUE100に送信する。ここで、UE100は、受信したユーザデータの復号に成功したとする。
 ステップS4005において、UE100は、復号成功を示すHARQ ACKを送信する。eNB200及びeNB201は当該HARQ ACKを受信し、eNB202及びeNB203は当該HARQ ACKの受信に失敗する。
 ステップS4006において、eNB200及びeNB201は、UE100からのHARQ ACKに関するACK情報を生成し、生成したACK情報をX2インターフェイス上でCoMP協働セットに含まれる他のeNBに転送する。ACK情報は、ユーザデータの識別子(例えば、PDCP PDUシーケンス番号)とHARQ ACKとを含む。図31では、X2インターフェイスの伝送遅延はHARQ再送周期よりも長く、ACK情報の受信前にHARQ再送が開始される一例を示している。
 ステップS4007において、eNB200及びeNB201は、HARQ ACKを受信していないため、ステップS4004で送信したユーザデータに対応する再送データをUE100に送信する。その後、eNB200及びeNB201は、X2インターフェイス上でACK情報を受信すると、再送処理を中止する。なお、各eNBは、HARQ最大再送回数が満了していない場合で、UEからのHARQ ACKを受信していない場合で、且つCoMP協働セットに含まれる他のeNBからのACK情報を受信していない場合に、UEへのHARQ再送を行う。
 以上説明したように、本実施形態では、CoMP協働セットに含まれる複数のeNBそれぞれは、UEからのHARQ ACKを受信すると、CoMP協働セットに含まれる他のeNBに対して、当該受信したHARQ ACKに関するACK情報を送信する。これにより、UEからのACKを受信できないeNBであってもUEへの再送を中止することができるため、当該再送によって無駄にリソースが消費されることを防止できる。また、ACKを受信しているeNBが他UEに割当てている一方、ACKと認識していないeNBが再送することは、干渉となり得るため、再送を中止可能とすることで当該干渉を抑制することができる。
 (8)その他の実施形態
 上記のように、本実施形態は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述したCoMPに係る制御に関し、上述した説明における「アンカeNB」を「MME」又は「S-GW」と読み替えて、アンカeNBが実行していた制御の少なくとも一部をEPC側(MME又はS-GW)で実行してもよい。この場合、MME又はS-GWは、CoMP協働セットを管理するCoMP管理装置に相当する。
 また、上述した実施形態では、CoMP協働セットを複数のeNBで構成する一例を説明したが、CoMP協働セットにリレーノード(RN)が含まれていてもよい。RNは、無線によりバックホールを構成する中継局であり、UEからはeNBと同様にセルとして認識される。また、CoMP協働セットにRRH(Remote Radio Head)が含まれていてもよい。RRHは、ベースバンド部から離間して設置され、ベースバンド部と光ファイバ等を介して接続される無線部である。
 なお、米国仮出願第61/588481号(2012年1月19日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る移動通信システム、基地局、及び通信制御方法は、CoMP協働セットで使用するC-RNTIを既に使用中の基地局を当該CoMP協働セットに追加できるため、移動通信分野において有用である。

Claims (9)

  1.  複数の基地局により構成されるCoMP協働セットとユーザ端末とのCoMP通信を行う移動通信システムであって、
     前記CoMP協働セットに含まれる所定基地局は、前記CoMP協働セットに含まれていない他の基地局に対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信し、
     前記所定基地局は、前記追加要求を送信する際に、前記他の基地局に対して、前記ユーザ端末とのCoMP通信に使用しているC-RNTIを送信することを特徴とする移動通信システム。
  2.  前記所定基地局は、前記C-RNTIを前記追加要求に含めて送信することを特徴とする請求項1に記載の移動通信システム。
  3.  前記他の基地局は、前記所定基地局からの前記追加要求を受信した後、前記追加要求に含まれる前記C-RNTIを使用中であるか否かを前記所定基地局に通知し、
     前記所定基地局は、前記他の基地局が前記C-RNTIを使用中である場合に、未使用のC-RNTIを通知するよう前記他の基地局に要求することを特徴とする請求項2に記載の移動通信システム。
  4.  前記他の基地局は、前記所定基地局からの要求に応じて、未使用のC-RNTIを前記所定基地局に通知し、
     前記所定基地局は、前記他の基地局からの通知に応じて、前記未使用のC-RNTIの中から前記CoMP協働セットで前記ユーザ端末との通信に新たに使用するC-RNTIを決定することを特徴とする請求項3に記載の移動通信システム。
  5.  前記所定基地局は、前記新たに使用するC-RNTIを決定した後、前記CoMP協働セットに含まれる他の基地局に対して、前記新たに使用するC-RNTIを通知することを特徴とする請求項4に記載の移動通信システム。
  6.  前記他の基地局は、前記所定基地局からの前記追加要求を受信した際に、前記追加要求に含まれる前記C-RNTIを使用中である場合に、自基地局で使用中の前記C-RNTIを他のC-RNTIに変更することを特徴とする請求項2に記載の移動通信システム。
  7.  前記所定基地局とは、前記CoMP協働セットと前記ユーザ端末とのCoMP通信を制御する主基地局であることを特徴とする請求項1に記載の移動通信システム。
  8.  複数の基地局により構成されるCoMP協働セットとユーザ端末とのCoMP通信を行う移動通信システムにおいて、前記CoMP協働セットに含まれる基地局であって、
     前記CoMP協働セットに含まれていない他の基地局に対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信する送信部を有し、
     前記送信部は、前記追加要求を送信する際に、前記他の基地局に対して、前記ユーザ端末とのCoMP通信に使用しているC-RNTIを送信することを特徴とする基地局。
  9.  複数の基地局により構成されるCoMP協働セットとユーザ端末とのCoMP通信を行う移動通信システムにおける通信制御方法であって、
     前記CoMP協働セットに含まれる所定基地局が、前記CoMP協働セットに含まれていない他の基地局に対して、前記CoMP協働セットに加わるよう要求するための追加要求を送信するステップAを有し、
     前記ステップAは、前記追加要求を送信する際に、前記他の基地局に対して、前記ユーザ端末とのCoMP通信に使用しているC-RNTIを送信するステップを含むことを特徴とする通信制御方法。
PCT/JP2013/051002 2012-01-19 2013-01-18 移動通信システム、基地局、及び通信制御方法 WO2013108904A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13739112.4A EP2806685A4 (en) 2012-01-19 2013-01-18 MOBILE COMMUNICATION SYSTEM, BASE STATION AND COMMUNICATION CONTROL METHOD
JP2013554368A JP5887363B2 (ja) 2012-01-19 2013-01-18 移動通信システム、基地局、及び通信制御方法
US14/373,307 US9461791B2 (en) 2012-01-19 2013-01-18 Mobile communication system, base station and communication control method for adding base station to CoMP cooperating set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261588481P 2012-01-19 2012-01-19
US61/588,481 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013108904A1 true WO2013108904A1 (ja) 2013-07-25

Family

ID=48799325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051002 WO2013108904A1 (ja) 2012-01-19 2013-01-18 移動通信システム、基地局、及び通信制御方法

Country Status (4)

Country Link
US (1) US9461791B2 (ja)
EP (1) EP2806685A4 (ja)
JP (1) JP5887363B2 (ja)
WO (1) WO2013108904A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806742B2 (ja) * 2012-01-19 2015-11-10 京セラ株式会社 移動通信システム、基地局、CoMP制御装置、及び通信制御方法
TW201414346A (zh) * 2012-09-19 2014-04-01 Innovative Sonic Corp 在無線通訊系統中改善進化b節點間載波聚合的方法和通訊設備
US10849085B2 (en) 2017-10-09 2020-11-24 Qualcomm Incorporated Timing and frame structure in an integrated access backhaul (IAB) network
US11224081B2 (en) 2018-12-05 2022-01-11 Google Llc Disengaged-mode active coordination set management
US12114394B2 (en) 2019-01-02 2024-10-08 Google Llc Multiple active-coordination-set aggregation for mobility management
WO2020172022A1 (en) 2019-02-21 2020-08-27 Google Llc User-equipment-coordination set for a wireless network using an unlicensed frequency band
US11889322B2 (en) 2019-03-12 2024-01-30 Google Llc User-equipment coordination set beam sweeping
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
WO2021054963A1 (en) 2019-09-19 2021-03-25 Google Llc Enhanced beam searching for active coordination sets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032791A1 (ja) * 2008-09-22 2010-03-25 シャープ株式会社 基地局装置、端末装置、それらを備えた無線通信システムおよびその基地局に実行させるプログラム
WO2010125738A1 (ja) * 2009-04-28 2010-11-04 三菱電機株式会社 移動体通信システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068011A2 (en) * 2008-12-08 2010-06-17 Lg Electronics Inc. Method of transmitting and receiving physical downlink shared channel in wireless communication system
CN101772028A (zh) * 2009-01-05 2010-07-07 华为技术有限公司 一种资源管理的方法、网络设备、用户设备及系统
TW201101895A (en) * 2009-06-24 2011-01-01 Htc Corp Method and related communication device for enhancing power control mechanism
KR101710204B1 (ko) * 2009-07-28 2017-03-08 엘지전자 주식회사 다중 입출력 통신 시스템에서 채널측정을 위한 기준신호의 전송 방법 및 그 장치
US20110170422A1 (en) * 2010-01-08 2011-07-14 Rose Qingyang Hu System and method for coordinated multi-point network operation to reduce radio link failure
US8605684B2 (en) * 2010-01-08 2013-12-10 Blackberry Limited System and method for coordinated multi-point network operation to reduce radio link failure
US20120213108A1 (en) * 2011-02-22 2012-08-23 Qualcomm Incorporated Radio resource monitoring (rrm) and radio link monitoring (rlm) procedures for remote radio head (rrh) deployments
US9763226B2 (en) * 2012-01-11 2017-09-12 Nokia Solutions And Networks Oy Secondary cell preparation for inter-site carrier aggregation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032791A1 (ja) * 2008-09-22 2010-03-25 シャープ株式会社 基地局装置、端末装置、それらを備えた無線通信システムおよびその基地局に実行させるプログラム
WO2010125738A1 (ja) * 2009-04-28 2010-11-04 三菱電機株式会社 移動体通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2806685A4 *

Also Published As

Publication number Publication date
EP2806685A1 (en) 2014-11-26
US20140348104A1 (en) 2014-11-27
JP5887363B2 (ja) 2016-03-16
JPWO2013108904A1 (ja) 2015-05-11
US9461791B2 (en) 2016-10-04
EP2806685A4 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6106318B2 (ja) 基地局及び通信制御方法
JP5997183B2 (ja) 基地局
JP5972916B2 (ja) 移動通信システム、基地局、及び通信制御方法
JP5863831B2 (ja) 基地局及び通信制御方法
JP5887363B2 (ja) 移動通信システム、基地局、及び通信制御方法
JP5806742B2 (ja) 移動通信システム、基地局、CoMP制御装置、及び通信制御方法
JP5770866B2 (ja) 移動通信システム、基地局、及び通信制御方法
JP5775942B2 (ja) 移動通信システム、基地局、及び通信制御方法
WO2013122161A1 (ja) 移動通信システム、基地局、ユーザ端末、及び通信制御方法
JP5789309B2 (ja) 移動通信システム、基地局、及び通信制御方法
WO2013108905A1 (ja) 移動通信システム、基地局、及び通信制御方法
JP5756870B2 (ja) 移動通信システム、基地局、及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13739112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554368

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14373307

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013739112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013739112

Country of ref document: EP