WO2013108869A1 - Therapeutic or prophylactic agent for cancer - Google Patents

Therapeutic or prophylactic agent for cancer Download PDF

Info

Publication number
WO2013108869A1
WO2013108869A1 PCT/JP2013/050907 JP2013050907W WO2013108869A1 WO 2013108869 A1 WO2013108869 A1 WO 2013108869A1 JP 2013050907 W JP2013050907 W JP 2013050907W WO 2013108869 A1 WO2013108869 A1 WO 2013108869A1
Authority
WO
WIPO (PCT)
Prior art keywords
ccn2
erbb2
cancer
therapeutic
polypeptide
Prior art date
Application number
PCT/JP2013/050907
Other languages
French (fr)
Japanese (ja)
Inventor
正春 滝川
高子 服部
吉 皆川
泰裕 瀬戸
美香 綱
義孝 原田
学 高久
秀世 安田
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Publication of WO2013108869A1 publication Critical patent/WO2013108869A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates to a cancer treatment or prevention agent, a cancer detection reagent, a screening method for a cancer treatment or prevention agent, and a cancer treatment or prevention agent used in combination with an apoptosis-inducing agent.
  • ErbB2 (also referred to as HER2) is a surface protein that penetrates the cell membrane of the epidermal growth factor receptor (EGFR) family member and is known to be highly expressed in approximately one fifth of the human breast cancer patient population. Yes. ErbB2 has been studied as a target for cancer treatment, and anti-ErbB2 antibodies as cancer therapeutic agents and various peptide sequences that bind to the extracellular region of ErbB2 are known (Patent Documents 1 to 5, etc.) .
  • Herceptin (trade name, generic name: trastuzumab), which has been put to practical use as a therapeutic agent for primary and metastatic breast cancers in which overexpression of ErbB2 has been confirmed, is an epitope in the extracellular region of ErbB2 molecule (No. 529- It is an anti-ErbB2 humanized monoclonal antibody drug that specifically binds to the 625th amino acid region (Non-patent Document 1).
  • ErbB2 is being studied in this way, ErbB2 is an orphan receptor (also referred to as an orphan receptor) among the four members of the EGFR family, and its specific ligand has not yet been reported.
  • Patent Document 6 describes the use of a specific ligand that binds to a receptor tyrosine kinase for the treatment of cancer, but there is no disclosure regarding a specific ligand for ErbB2.
  • CCN2 is a protein also known as connective tissue growth factor (CTGF) and is a secreted growth promoting factor belonging to the CCN family.
  • CCN family Biological functions of the CCN family include stimulation of cell proliferation / differentiation / migration / adhesion and extracellular matrix formation, and involvement in angiogenesis and tumor formation (Non-patent Documents 2, IV 4, 18).
  • CCN2 can bind to cell surface aggrecan (Non-patent document 5), fibronectin (Non-patent document 6), integrin (Non-patent documents 6 to 10), and in cooperation with matrix metalloprotease (Non-patent document 13, 14) It is known that it promotes the expression of extracellular matrix proteins (Non-Patent Document 11), regulates cell adhesion activity, and also acts as an angiogenic factor (Non-Patent Document 12). CCN2 is considered to be an enhancer of endochondral ossification because strong expression of CCN2 is observed in the cartilage tissue during the process of tissue formation in ontogeny (Non-patent Document 15).
  • Non-patent Document 16 Furthermore, increased expression of CCN2 has been confirmed in breast cancer, pancreatic cancer, melanoma, chondrosarcoma, and many fibrosis (Non-patent Document 16). CCN2 shows various roles in various cancers, but it is considered that overexpression of CCN2 is related to an increase in tumor size and metastasis in breast cancer cells (Non-patent Document 16). It has also been shown that CCN2 is deeply involved in the formation of osteolytic bone metastases in breast cancer (Non-patent Document 17).
  • CCN2 consists of four domains: IGFBP (insulin-like growth factor binding protein-like) domain, VWC (von Willebrand factor type C) domain, TSP1 (thrombospondin type 1) repeat, and CT (C-terminal) domain (non-patented) Reference 2). Each of these domains has a different binding partner.
  • the CT domain of CCN2 binds to integrin ⁇ 5 ⁇ 1 and promotes pancreatic stellate cell adhesion and migration (Non-patent Document 9). The domain also directly interacts with fibronectin and promotes chondrocyte adhesion via integrin ⁇ 5 ⁇ 1 (Non-patent Document 19).
  • the domain induces hepatocyte adhesion by direct binding to integrin receptor ⁇ v ⁇ 3 and direct binding to heparan sulfate proteoglycan via the C-terminal heparin binding domain (Non-patent Document 20).
  • Taxol (trade name, generic name: paclitaxel), on the other hand, is an anticancer agent classified as a taxane, which prevents cell division by stabilizing tubulin polymerization and inhibiting microtubule formation. Suppresses proliferation of cancer cells (Non-patent Document 21). Taxol is used for the treatment and prevention of various cancers including breast cancer and ovarian cancer. At that time, the appearance of taxol-resistant cancer cells has become a problem. There is also a need for new means effective for the treatment of drug-resistant cancer.
  • An object of the present invention is to provide a novel means useful for the treatment and prevention of cancer. It is another object of the present invention to provide a novel cancer treatment / prevention means that is effective against cancer that has become resistant to anticancer agents.
  • the present inventors have developed a human chondrocyte that highly expresses CCN2 for the purpose of clarifying a cell membrane receptor that regulates the action of CCN2 on target cells and an intracellular signal transduction mechanism via the cell membrane receptor.
  • CCN2 interacts with the extracellular REC domain of ErbB2 via its VWC domain, and that it can suppress the growth of cancer cells by inhibiting the interaction between CCN2 and ErbB2. It was.
  • the present invention provides a therapeutic or preventive agent for cancer comprising as an active ingredient a substance that inhibits the interaction between CCN2 and ErbB2.
  • the present invention also provides a method for screening for a therapeutic or prophylactic agent for cancer, which comprises selecting a compound using inhibition of the interaction between CCN2 and ErbB2 as an index.
  • the present invention provides a therapeutic or prophylactic agent for cancer obtained by the screening method of the present invention.
  • the present invention provides a cancer cell detection reagent comprising any of the following polypeptides (a) to (c). (a) A polypeptide comprising the amino acid sequence shown in SEQ ID NO: 4.
  • polypeptide consisting of a partial region in the amino acid sequence shown in SEQ ID NO: 4, comprising 7 or more consecutive residues in the region of amino acids 103 to 166 and directly to the ErbB2 extracellular region Or a polypeptide that binds indirectly.
  • a polypeptide comprising an amino acid sequence having 90% or more identity with (a) or (b) and directly or indirectly binding to the ErbB2 extracellular region.
  • a polypeptide comprising the amino acid sequence of the polypeptide of any one of (a) to (c) and binding directly or indirectly to the ErbB2 extracellular region.
  • the present invention provides a cancer therapeutic or preventive agent comprising a substance that inhibits the interaction between CCN2 and ErbB2 as an active ingredient and used in combination with an anticancer agent that induces apoptosis.
  • the present invention provides an anti-cancer activity enhancer of an anti-cancer agent that induces apoptosis, comprising as an active ingredient a substance that inhibits the interaction between CCN2 and ErbB2.
  • the present invention provides a method for treating or preventing cancer, comprising administering to a subject in need thereof an effective amount of a substance that inhibits the interaction between CCN2 and ErbB2.
  • this invention provides the detection method of a cancer cell including the process of making the detection reagent of the said invention contact the object cell, and the process of detecting presence of the cell which the said polypeptide couple
  • the present invention provides a novel cancer treatment or prevention agent, a novel screening method for cancer treatment or prevention agent, and a novel reagent for detecting cancer cells.
  • ErbB2 was an orphan receptor
  • the inventors of the present application have revealed for the first time that the ligand of ErbB2 is CCN2, and that the inhibition of the interaction between CCN2 and ErbB2 is effective in the treatment and prevention of cancer. It was.
  • the combined use of a substance that inhibits the interaction between CCN2-ErbB2 and an anti-cancer agent that induces apoptosis acts synergistically to treat and prevent cancer resistant to the anti-cancer agent. It became clear that it was effective.
  • the present invention is an invention that contributes widely to the treatment and prevention of cancer.
  • (A) ErbB2 protein structure (amino acids 1-1255) and ErbB2 cDNA fragments (# 1, # 2, # 3, # 4, # 4 # rev, # 26) cloned into the pGADT7 vector are shown.
  • # 26 is a clone obtained by screening the HCS-2 / 8 human chondrosarcoma cDNA library by the yeast two-hybrid method.
  • TM is a transmembrane region.
  • IB is the IGFBP domain
  • VWC is the VWC domain
  • TSP is the TSP1 domain
  • CT is the CT domain.
  • the possible glycosylation sites of IB and TSP are also shown.
  • the right figure shows the result of examining the binding between each ErbB2 fragment shown in (A) and CCN2 by the yeast two-hybrid method.
  • the structure of ErbB2 protein (amino acids 1-1255) and the extracellular domain of ErbB2 (# 3, amino acids 23-650) are shown.
  • CCN2 (A) and CCN2 fragments (B, C, D, E, F, G, H, I) that bind to the extracellular domain of ErbB2 were examined.
  • the structure of CCN2 and eight types of CCN2 fragments used for the identification of the binding domain and the results of examining binding in yeast cells are shown.
  • the vertical axis represents the ratio of each gene transcript to the gapdh gene transcript.
  • a partial peptide of CCN2 VWC domain (upper figure) and a partial peptide of ErbB2 REC domain (lower figure) synthesized for cell growth inhibition assay are shown. It is a graph which shows the growth promotion effect
  • (A) shows the results for SkBr3 cells, and (B) shows the results for MCF7 cells.
  • (B) A graph showing that the ErbB2 extracellular region added to the liquid phase inhibits binding between the immobilized ErbB2 extracellular region and CCN2.
  • C The result of monitoring the binding of the ErbB2 extracellular region and CCN2 with an SPR sensor.
  • (D) ErbB2 membrane proximal side REC domain was fragmented, and inhibition of binding between solid-phased ErbB2 extracellular region and CCN2 was examined. It is a graph which shows that ErbB2 peptide 4 and ErbB2 peptide 5 (final concentration of 1 ⁇ g / ml), which are partial fragments of the REC domain on the membrane proximal side of ErbB2, suppress the growth of MDA-MB-231 cells.
  • sequences shown in SEQ ID NOs: 1 and 2 are the nucleotide sequence (nt) and amino acid sequence (aa) of the ErbB2 cDNA registered in GenBank as accession No. NM_004448.
  • aa1-22 (239-304nt) is the signal peptide
  • aa23-652 (305-2194nt) is the extracellular region, of which aa52-173 (392-757nt) and aa366-486 (1334-1696nt) are the REC domain It is.
  • SEQ ID NO: 9 shows the amino acid sequence of the REC domain on the membrane proximal side of ErbB2.
  • SEQ ID NOs: 3 and 4 are the base sequence and amino acid sequence of the CCN2 cDNA registered in GenBank as accession No. NM_001901. aa1-26 (207-284nt) is a signal peptide, and aa103-166 (513-704nt) is a VWC domain.
  • SEQ ID NO: 5 shows the amino acid sequence of the VWC domain.
  • the active ingredient of the agent for treating or preventing cancer according to the present invention is a substance that inhibits the interaction between CCN2 and ErbB2.
  • CCN2 interacts with the extracellular region of ErbB2 through the VWC domain, induces ErbB2 autophosphorylation, transmits a signal, and stimulates the growth of cancer cells To do.
  • the production amount of CCN2 increases downstream of this signal transduction, and this is expected to further promote the growth of cancer cells.
  • tumor growth is promoted by such a cycle of signal transduction. Therefore, by inhibiting the interaction between CCN2 which is a ligand and ErbB2 which is a receptor, the above cycle can be interrupted and the proliferation of cancer cells can be desirably suppressed.
  • the term “interaction” includes both direct binding between CCN2 and ErbB2 and indirect binding via other factors. Since the binding between CCN2 and ErbB2 increases in the presence of aggrecan, in vivo, in addition to direct binding between CCN2 and ErbB2, indirect binding via other factors such as aggrecan is also assumed. .
  • CCN2 VWC domain regions 103 to 166 of SEQ ID NO: 4
  • ErbB2 extracellular region SEQ ID NO: 2 to 23
  • the substance (1) above binds to at least one of the REC domains of ErbB2 (the region of amino acids 52 to 173 and the region of amino acids 366 to 486 in SEQ ID NO: 2).
  • a substance that binds to the REC domain on the proximal side of the membrane is included.
  • the substance that binds to the REC domain on the proximal side of ErbB2 can be, for example, a substance that binds to the region of amino acids 436 to 465 (SEQ ID NO: 14) of ErbB2.
  • the region from amino acids 436 to 465 has been confirmed to be an important region for the interaction between CCN2 and ErbB2 extracellular region (see Examples below).
  • Specific examples of the substance included in (1) above include an ErbB2 antagonist, an antibody against the REC domain of ErbB2 (anti-ErbB2-REC domain antibody), and an antigen-binding fragment thereof.
  • ErbB2 antagonists are involved in the interaction between ErbB2 and CCN2 and do not substantially activate the ErbB2 downstream signaling pathway that competes with CCN2 and stimulates cancer cell growth, in other words, ErbB2 autophosphorylation. Any substance that does not irritate may be used.
  • An ErbB2 antagonist can be produced, for example, by modifying the CCN2 protein.
  • CCN2 protein variants include CCN2 variants that have been modified so that ErbB2 downstream signaling pathways are not activated by introducing mutations (substitutions or insertions) into part of the CCN2 protein amino acid sequence, or ErbB2 downstream signaling pathways.
  • CCN2 protein partial fragments lacking a region important for activation for example, a CCN2 partial fragment containing the full length of VWC domain or a part thereof) and the like are included.
  • Examples of preferred CCN2 protein variants include polypeptides comprising 7 or more consecutive residues, for example, 10 or more, 15 or more, or 18 or more residues in the amino acid sequence of CCN2 VWC domain shown in SEQ ID NO: 5.
  • the polypeptide consists of 7 or more consecutive residues in the amino acid sequence shown in SEQ ID NO: 8 (VWC peptide # 4 synthesized in the example), for example, 10 residues or more, 15 residues or more, or 18 residues or more. It can be a polypeptide.
  • the polypeptide consisting of the partial region of SEQ ID NO: 8 preferably contains 7 or more consecutive residues in the region of amino acids 11 to 20 of SEQ ID NO: 8, preferably the entire length of the region.
  • the amino acid sequence of the 11th to 20th amino acid region of SEQ ID NO: 8 is shown in SEQ ID NO: 38.
  • Specific examples of preferred CCN2 protein variants include a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 5 (full length of VWC domain), a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 8 (partial fragment of VWC domain), and SEQ ID NO: A polypeptide comprising the amino acid sequence shown in 38 can be exemplified, but the present invention is not limited thereto, and any CCN2 partial fragment can be used as an active ingredient for cancer treatment or prevention as long as it has an action of suppressing the growth of cancer cells. Can be preferably used.
  • the CCN2 partial fragment only needs to be a fragment that does not activate the signal transduction pathway of cancer growth downstream of ErbB2, it may consist of the same amino acid sequence as the corresponding partial region of the original CCN2 protein, Moreover, as long as the effect
  • the identity with the original corresponding region is, for example, 90% or more, preferably 95% or more, more preferably 98% or more.
  • it may be a polypeptide consisting of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the sequence of the original corresponding region.
  • amino acid sequence identity means that both amino acid sequences are aligned so that the amino acid residues of the two amino acid sequences to be compared match as much as possible, and the number of matched amino acid residues is divided by the total number of amino acid residues. Is expressed as a percentage.
  • a gap is appropriately inserted in one or both of the two sequences to be compared as necessary.
  • sequence alignment can be performed using a known program such as BLAST, FASTA, CLUSTAL W, and the like.
  • the total number of amino acid residues is the number of residues obtained by counting one gap as one amino acid residue.
  • the identity (%) is the total number of amino acid residues in the longer sequence, and the number of amino acid residues matched. Is calculated by dividing.
  • the 20 types of amino acids that make up natural proteins are neutral amino acids with low polarity side chains (Gly, Ile, Val, Leu, Ala, Met, Pro), neutral amino acids with hydrophilic side chains (Asn, Gln) , Thr, Ser, Cys), acidic amino acids (Asp, Glu), basic amino acids (Arg, Lys, His), and aromatic amino acids (Phe, Tyr, Trp). It is known that the properties of the polypeptide often do not change if the substitution is within each of these groups.
  • a person skilled in the art can easily examine whether a CCN2 variant consisting of an arbitrary amino acid sequence has activity as an ErbB2 antagonist and can suppress the growth of cancer cells.
  • a cancer cell line may be brought into contact with a CCN2 variant to examine whether cancer cell growth is suppressed. If growth inhibition can be confirmed, it can be determined that the CCN2 variant has an ErbB2 antagonistic activity, thereby exhibiting an action of suppressing cancer cell growth.
  • the VWC region which is an example of a CCN2 variant, suppresses the growth of cancer cells induced by CCN2 added to the medium, and CCN2 is not added to the medium
  • the extracellular region of ErbB2 is immobilized on the solid phase, CCN2 and CCN2 variant are brought into contact with ErbB2-immobilized solid phase, and the amount of binding between ErbB2 and CCN2 is measured. Whether the body inhibits the binding of CCN2 and ErbB2 can be examined.
  • Measurement of the amount of CCN2 bound to ErbB2 on the solid phase is, for example, biotinylated CCN2 in advance, reacted with ErbB2 on the solid phase and washed, and then added with streptavidin labeled with an enzyme or a fluorescent substance, Furthermore, the amount of CCN2 binding can be easily measured by detecting the signal from the label after washing.
  • the surface plasmon resonance (SPR) may be used to measure the amount of CCN2 bound to the ErbB2 extracellular region immobilized on the chip in the presence of a CCN2 variant using an SPR sensor.
  • SPR surface plasmon resonance
  • there are various known methods for measuring binding inhibition between two factors such as an electrochemical measurement method using a microchannel chip and a method using the yeast two-hybrid method. Also good. As described above, the binding mode between CCN2 and ErbB2 is assumed to be both direct binding and indirect binding via other factors such as aggrecan, but whether to compete with wild-type CCN2 or not For, it is only necessary to examine whether direct binding is inhibited.
  • Whether or not the signal pathway downstream of ErbB2 is to be activated is determined by, for example, contacting cultured cells that overexpress ErbB2 (such as the breast cancer-derived cell line SKBr3 that highly expresses ErbB2) with CCN2 variants, and then making proteins from the cells. Can be examined by performing Western blotting using an anti-phosphotyrosine antibody (commercially available) and confirming whether ErbB2 autophosphorylation has occurred.
  • the CCN2 protein variant is introduced by introducing a mutation into a wild-type CCN2 cDNA by a conventional method using a mismatch primer or the like by a well-known genetic engineering technique, incorporating it into an appropriate expression vector, and introducing it into a host cell.
  • CCN2 mutants can be expressed in host cells and recovered.
  • Wild-type CCN2 cDNA can be obtained by performing RT-PCR using RNA extracted from cells expressing CCN2 such as chondrocytes as a template.
  • a desired region of CCN2 cDNA may be incorporated into an expression vector and expressed in a host cell.
  • a primer capable of amplifying a desired region can be appropriately designed with reference to the base sequence shown in SEQ ID NO: 3. As described above, positions 513 to 704 in the nucleotide sequence shown in SEQ ID NO: 3 are regions encoding the VWC domain.
  • a CCN2 protein variant consisting of the desired amino acid sequence can be prepared by conventional chemical synthesis.
  • the anti-ErbB2-REC domain antibody can interfere with the interaction between CCN2 and ErbB2, it is useful for the treatment and prevention of cancer in the same manner as the ErbB2 antagonist.
  • the antibody may be an antibody that binds to the REC domain on the membrane proximal side, for example, an antibody having an epitope in the region of amino acids 436 to 465 of ErbB2.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • the anti-ErbB2-REC domain human antibody can be easily prepared by a conventional hybridoma method or the like. Briefly, an ErbB2 protein or an ErbB2 fragment containing the REC domain of ErbB2 is prepared by a well-known genetic engineering technique, and this is used as an immunogen together with an adjuvant as appropriate to immunize animals (except humans). Induces antibodies in the body. Antibody producing cells such as spleen cells and lymphocytes are collected from the animal and fused with immortalized cells such as myeloma cells to produce hybridomas. From the hybridoma, one that produces an antibody that specifically binds to the REC domain of ErbB2 can be selected and expanded to obtain an anti-ErbB2-REC domain monoclonal antibody from the culture supernatant.
  • monoclonal antibodies include chimeric antibodies, humanized antibodies (non-human-derived antibody CDR regions transplanted to regions corresponding to human antibodies), human antibodies (non-human Also included are the same antibodies produced in the human body that are produced using animal or human cell lines. Methods for producing chimeric antibodies, humanized antibodies, and human antibodies have been established as methods well known in the art. For example, an anti-ErbB2-REC domain human antibody can be prepared by immunizing a REC domain of ErbB2 to a non-human animal such as a mouse genetically modified so that a human antibody can be produced.
  • Antigen-binding fragment means an antibody fragment that maintains the binding property (antigen-antibody reactivity) of the antibody to the corresponding antigen, such as an Fab fragment or F (ab ′) 2 fragment of an immunoglobulin, for example. To do. Antibody fragments that maintain the binding of ErbB2 to the REC domain can be used for the treatment and prevention of cancer in the same manner as complete antibodies. Fab fragments and F (ab ′) 2 fragments can be obtained by treating monoclonal antibodies with proteolytic enzymes such as papain and pepsin, as is well known.
  • the antigen-binding fragment is not limited to the Fab fragment or the F (ab ′) 2 fragment, and may be any fragment that maintains the binding property with the corresponding antigen. It may be prepared.
  • an antibody in which a single chain fragment of variable region (scFv) is expressed in Escherichia coli by genetic engineering techniques can be used.
  • the method for producing scFv is also well known.
  • the hybridoma mRNA produced as described above is extracted, single-stranded cDNA is prepared, and PCR is performed using primers specific to immunoglobulin H chain and L chain.
  • Globulin H chain gene and L chain gene are amplified, ligated with a linker, inserted with an appropriate restriction enzyme site and inserted into a plasmid vector, the vector is introduced into E. coli and transformed, and scFv is transformed from E. coli. By collecting, scFv can be prepared. Such scFv is also included in the scope of the present invention as an “antigen-binding fragment”.
  • the substance (2) above is, for example, a substance that binds to the CCW2 VWC domain (regions 103 to 166 in SEQ ID NO: 4). Since CCN2 interacts with the extracellular region of ErbB2 via its VWC domain, using a substance that binds to the VWC domain inhibits the interaction between CCN2 and ErbB2 on the cell surface, and downstream of ErbB2 Signal transduction can be inhibited.
  • substances included in (2) above include antibodies against the CCN2 VWC domain (anti-CCN2-VWC domain antibody) and antigen-binding fragments thereof, ErbB2 extracellular region (SEQ ID NO: 9) and partial fragments thereof, etc. Can be mentioned.
  • the anti-CCN2-VWC domain antibody is an antibody that specifically binds to any region in the VWC domain (SEQ ID NO: 5).
  • preferred anti-CCN2-VWC domain antibodies or antigen-binding fragments thereof include epitopes within the region of amino acids 19 to 64 in SEQ ID NO: 5 (amino acids 121 to 166 in SEQ ID NO: 4). Or an antigen-binding fragment thereof, for example, in the region of amino acids 19 to 43 in SEQ ID NO: 5 (amino acids 121 to 145 in SEQ ID NO: 4) or the sequence although it may be an antibody having an epitope in the region of No. 44 to No. 64 (No. 146 to No. 166 in SEQ ID No. 4) in No.
  • the expression “having an epitope within a predetermined region” means that the full length or partial region of the region is an epitope.
  • the anti-CCN2-VWC domain antibody may be a polyclonal antibody or a monoclonal antibody, and the monoclonal antibody includes a chimeric antibody, a humanized antibody, and a human antibody.
  • the anti-CCN2-VWC domain antibody can be prepared by a conventional method using a mature CCN2 protein excluding the signal peptide or a CCN2 fragment containing the VWC domain as an immunogen.
  • the ErbB2 extracellular region and partial fragments thereof compete with ErbB2 on the cancer cell surface to capture CCN2, thereby inhibiting the interaction between ErbB2 and CCN2 present on the cell surface.
  • the partial fragment of ErbB2 extracellular region is 7 or more consecutive amino acids in the amino acid sequence of ErbB2 extracellular region shown in SEQ ID NO: 9, for example, 10 residues or more, 15 residues or more, 18 residues or more, 25 residues or more. Or 30 residues or more and less than the full length of SEQ ID NO: 9.
  • the partial fragment include 7 or more consecutive residues in the amino acid sequence shown in SEQ ID NO: 14, for example, 10 residues or more, 15 residues or more, 18 residues or more, 25 residues or more, or SEQ ID NO: A polypeptide consisting of 14 full lengths can be mentioned, but is not limited thereto.
  • a polypeptide having a certain level of identity with any of the ErbB2 extracellular region and any of its partial fragments can also inhibit cancer cell growth by inhibiting signal transduction due to the interaction between CCN2 and ErbB2. Therefore, it can be used as the substance of (2) above.
  • Such a polypeptide has 90% or more, preferably 95% or more identity with the original ErbB2 extracellular region or a partial fragment thereof, or one or several in the ErbB2 extracellular region or a partial fragment thereof. It may be a polypeptide consisting of an amino acid sequence in which one amino acid is substituted, deleted, inserted or added.
  • any polypeptide with high identity with the ErbB2 extracellular region or a partial fragment thereof can inhibit the signal transduction due to the interaction between CCN2 and ErbB2 can suppress the growth of cancer cells, for example, This can be confirmed by contacting a cancer cell line with the polypeptide and examining whether the growth of cancer cells is suppressed.
  • ErbB2 extracellular region and partial fragments thereof can be prepared by well-known genetic engineering techniques or by chemical synthesis, as described above for CCN2 protein variants.
  • a cDNA encoding the ErbB2 extracellular region can be obtained by, for example, amplifying RT-PCR from mRNA extracted from a cancer cell that expresses ErbB2.
  • positions 305 to 2194 are regions encoding extracellular regions, of which positions 392 to 757 and 1334 to 1696 are REC. Since it is a region encoding a domain, a desired region may be amplified by appropriately setting primers.
  • a known protein known to bind to the VCN domain of CCN2 or the vicinity thereof can be used.
  • a known protein for example, CCN3 (VWC domain, CT domain binds to CCN2; 4th Japan CCN Family Study Group Program / Abstract Collection, published on August 26, 2011, p.32; And DECORIN (the core protein LRR10-12 binds to CCN2; The Journal of Biological Chemistry, 2011, 286, p. 24242-24252.), BMP (bone morphogenetic protein) (Nat Cell Biol. 2002 August; 4 (8): 599-604), and the like, but is not limited thereto.
  • Such known proteins may use only the region that binds to the CCN2 VWC domain. Proteins and fragments thereof with known amino acid sequences and cDNA base sequences can be prepared by well-known genetic engineering techniques or by chemical synthesis.
  • a polypeptide such as a protein fragment used in the present invention is a technique used for improving stability in a living body in peptide medicine, for example, glycosylation, PEG addition, or the amino acid constituting the polypeptide.
  • a technique such as at least a part of which is a D-form amino acid may be applied.
  • Such techniques include, for example, J Am Chem Soc. 2004 Nov 3; 126 (43): 14013-22, Angew Chem Int Ed Engl. 2004 Mar 12; 43 (12): 1516-20 (glycosylation), Clin Nephrol. 2006 Mar; 65 (3): 180-90. And Proc Natl Acad Sci USA. 2005 Sep 6; 102 (36): 12962-7. (PEG addition), J Pharmacol Exp Ther. 2004 Jun; 309 (3): 1190-7 and J Pharmacol Exp Ther. 2004 Jun; 309 (3): 1183-9 (utilization of D-form amino acids) and the like, and are already utilized in the field of peptide medicine.
  • polypeptide when a recombinant polypeptide is produced by genetic engineering techniques, various post-translational modifications (elimination of N-terminal methionine, N-terminal acetylation, glycosylation, limited degradation by intracellular protease, myristoyl
  • post-translationally modified form of the polypeptide can be used as an active ingredient of the therapeutic or prophylactic agent of the present invention as long as it can suppress the growth of cancer cells. And within the scope of the present invention.
  • any amino acid sequence added such as a polypeptide with a Flag tag, His tag, or GST added, or a polypeptide fused with other proteins or fragments thereof. Since the peptide also exhibits anticancer activity in the region of the polypeptide corresponding to the interaction inhibitor (1) or (2) described above, the present invention is used, and thus such fusion is performed. Proteins are also encompassed within the scope of the present invention.
  • the amino acid sequence identity is calculated by extracting only the region corresponding to the polypeptide used in the present invention. For example, in the case of a polypeptide to which a His tag is added, the identity is calculated between regions excluding the His tag.
  • the cancer to be treated / prevented in the present invention is not particularly limited, and any cancer can be treated and prevented as long as it has ErbB2 expression.
  • ErbB2 testing may be performed in breast cancer, etc., but the therapeutic or preventive agent of the present invention is not limited to ErbB2 overexpressing cancers that are judged to be ErbB2 positive by conventional methods, and ErbB2 expression can be detected. Cancers that are expressed at the level are also targeted. Examples of cancers in which ErbB2 expression has been confirmed include, but are not limited to, breast cancer, gastric cancer, pancreatic cancer, lung cancer, colon cancer, and bladder cancer.
  • the expression level of ErbB2 in cancer cells may vary from patient to patient, whether or not ErbB2 expression is detected in the target patient's cancer can be determined using real-time PCR, Northern PCR using a cancer tissue sample collected from the patient. It can be easily examined by performing conventional methods such as blotting, immunostaining, and Western blotting. For example, if a cancer tissue sample is immunostained using a fluorescently labeled antibody and the expression of ErbB2 in a cancer cell is detected, it may be determined that the cancer has ErbB2 expression.
  • the administration target of the therapeutic or prophylactic agent for cancer of the present invention is not particularly limited, but is preferably a mammal, such as a human, dog, cat, rabbit, hamster, mouse, monkey, horse, pig, cow, sheep, etc. Can be mentioned.
  • the therapeutic or prophylactic agent of the present invention may contain only one type of substance selected from (1) and (2) above, or may contain two or more types.
  • the agent of the present invention may be used alone or in combination with other anticancer agents.
  • the administration route to the living body of the therapeutic or prophylactic agent of the present invention may be oral administration or parenteral administration, but parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred.
  • parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred.
  • the dose may be an amount effective for treatment or prevention of the target cancer.
  • the effective amount is appropriately selected according to the size and symptoms of the tumor, but is usually 0.001 mg to 1000 mg per kg body weight as the effective amount per day for the target living body, for example, 0.01 mg to 100 mg.
  • the present invention also provides a substance that inhibits the interaction between CCN2 and ErbB2 (hereinafter sometimes referred to as “CCN2-ErbB2 interaction inhibitor”) and an anti-apoptosis type anti-antibody.
  • CCN2-ErbB2 interaction inhibitor CCN2-ErbB2 interaction inhibitor
  • an anti-apoptosis type anti-antibody CCN2 and ErbB2
  • a cancer treatment or prevention agent in combination with an cancer drug apoptosis inducer.
  • “In combination” means that a CCN2-ErbB2 interaction inhibitor and an apoptosis-inducing agent are administered to a patient simultaneously, sequentially or separately.
  • the cancer treatment or prevention agent described above may be referred to as “first cancer treatment or prevention agent”, and the cancer treatment or prevention agent in combination with apoptosis may be referred to as “combination agent”.
  • the substance that inhibits the interaction between CCN2 and ErbB2 is a substance as defined above, and the types thereof include the following two substances as already described. Preferred conditions for each substance are also as described above. (1) Substances that inhibit the interaction between CCN2 and ErbB2 by binding to the extracellular region of ErbB2 (2) A substance that inhibits the interaction between CCN2 and ErbB2 by binding to or near the VWC domain of CCN2.
  • the apoptosis inducer includes various known anticancer agents known to induce apoptosis in cancer cells.
  • specific examples include taxane anticancer agents, vinca alkaloids, colchicine, and the like that suppress the growth of cancer cells by inhibiting mitosis, and taxane anticancer agents are particularly preferably used in combination.
  • taxane anticancer agents include, but are not limited to, paclitaxel and various derivatives thereof such as paclitaxel and docetaxel.
  • the cancer targeted by the combination of the present invention is a cancer with ErbB2 expression, preferably an anti-cancer of the type that induces apoptosis by inhibiting mitosis or the like to suppress the growth of cancer cells Cancer resistant to drugs, particularly taxane anticancer agents.
  • a cancer resistant to an anticancer agent includes both those that become resistant during treatment with the anticancer agent and those that are less effective from the beginning of treatment.
  • the expression level of ErbB2 is not limited to overexpressed cancers, and cancers expressing ErbB2 at a detectable level are also targeted.
  • ErbB2 testing may be performed for breast cancer and the like, but it is not limited to ErbB2 overexpressing cancer that is judged to be ErbB2 positive by conventional methods. Specific examples of cancers in which the expression of ErbB2 has been confirmed, and how to check whether the expression of ErbB2 is detected in the cancer of the target patient have already been described in the explanation of the first treatment or prevention agent for cancer. As stated.
  • the target living body is the same as the first cancer treatment or prevention agent.
  • the combination agent of the present invention can desirably exhibit an anticancer action even against cancer resistant to an anticancer agent of a type that induces apoptosis.
  • the dose can be kept low, and side effects of anticancer agents can be reduced. Therefore, it can be interpreted that CCN2-ErbB2 interaction inhibitors enhance the anticancer activity of anticancer agents that induce apoptosis.
  • the mechanism by which the anticancer drug resistance is released by the combination of the present invention can be inferred as follows.
  • TAZ transcriptional co-activator with PDZ-binding motif
  • TAZ transcriptional co-activator with PDZ-binding motif
  • TAZ is a protein that functions as a coactivator of many transcription factors important for the development of various tissues, and has recently played an important role in the control of cell proliferation and apoptosis.
  • TAZ is also added as a component to the Hippo-LATS tumor suppressor pathway (Genes Dev 2007; 21: 886-97, Cancer Cell 2008; 13: 188-92, Biochem Cell Biol 2009; 87: 77-91) It was shown that LATS tumor suppressor phosphorylates TAZ and inhibits its function through the pathway (Mol Cell Biol282008; 28: 2426-36). In other words, TAZ is widely involved in the control of cell division and apoptosis.
  • CCN2 has been known to confer resistance to epithelial cells against apoptosis induced by taxol and hypoxia (Cancer Res 2000; 60: 5603-7, Cancer Res 2001; 61: 8917-23, Endocrinology 2001; 142: 2540-8, Oncogene 2002; 21: 964-73, Oncogene 2002; 21: 8178-85, J Biol Chem 2004; 279: 24015-23, Endocr Relat Cancer 2004; 11: 781-91, Oncogene 2005; 24 : 761-79, Clin Cancer Res 2005; 11: 5809-20, Int J Oncol 2008; 33: 59-67, J Cell Sci 2007; 120: 2053-65), CCN2 is located just downstream of TAZ, It has also been reported that taxol resistance is completely blocked by knockdown of TAZ and knockdown of both Cyr61 and CCN2 (Cancer Res 2011; 71: 2728-2738).
  • the present inventors have proved that the increase in the expression of TAZ is downstream of signal transduction resulting from the CCN2-ErbB2 interaction (see Examples below). That is, by inhibiting the interaction of CCN2-ErbB2, the increase in the expression of TAZ is suppressed, and the expression of CCN2 is also suppressed. Then, the resistance to apoptosis induced by CCN2 increased in expression by TAZ can be released by inhibiting the interaction of CCN2-ErbB2. From the mechanism of action presumed in this way, the combination agent of the present invention is considered to be widely effective for cancers resistant to anticancer agents of the type that induce apoptosis.
  • mitotic inhibitors especially taxane anticancer agents, act by a mechanism very similar to that of paclitaxel, so the combined effect on resistant cancer can be desirable as with paclitaxel. It can be said that.
  • the route of administration of the CCN2-ErbB2 interaction inhibitor to the living body may be oral administration or parenteral administration, but parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred.
  • parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred.
  • it can be administered to the vicinity of the tumor to be treated or to a regional lymph node near the tumor.
  • the administration route of the apoptosis-inducing agent may be the same as the administration route in which the apoptosis-inducing agent is usually used as an anticancer agent.
  • the dose of the CCN2-ErbB2 interaction inhibitor and the apoptosis inducer may be any amount that is effective for treating or preventing the target cancer.
  • the effective amount is appropriately selected according to the position, size, symptom, tumor marker, strength of drug resistance (in the case of resistant cancer), and the like.
  • the dose of the CCN2-ErbB2 interaction inhibitor is 0.001 mg to 1000 mg, for example, 0.01 mg to 100 mg per kg body weight, as the effective daily dose for the target organism. It may be comparable to the amount used for cancer treatment or prevention. Since the effect of the combination is synergistic, the apoptosis-inducing agent can be used in a smaller amount than the dose usually used alone.
  • Both can be administered in one or several divided doses, simultaneously, sequentially or separately. Preferably, it is divided into several times and administered every few days, every few weeks to every several months.
  • any of the apoptosis-inducing agent and CCN2-ErbB2 interaction inhibitor may be administered first.
  • the number of administrations may be the same, or the number of administrations may be different, for example, once per day apoptosis inducer and twice CCN2-ErbB2 interaction inhibitor. Also good. Since the onset and recurrence of cancer can be prevented if the combination of the present invention is used before the onset of cancer or after cancer treatment, the combination of the present invention can also be used for cancer prevention. .
  • the CCN2-ErbB2 interaction inhibitor used in combination with the apoptosis inducer may contain only one type of substance selected from the above (1) and (2) (CCN2-ErbB2 interaction inhibitor) In addition, it may contain two or more.
  • the CCN2-ErbB2 interaction inhibitor can also be formulated by appropriately mixing pharmacologically acceptable additives, such as pharmacologically acceptable carriers, diluents, excipients, etc., suitable for each dosage form. When the CCN2-ErbB2 interaction inhibitor and the apoptosis-inducing agent are administered simultaneously, both can take the form of a combination drug contained in the same composition.
  • Formulation methods and usable additives are well known in the field of pharmaceutical formulations, and any method and additive can be used.
  • the present invention also provides a novel screening method for a therapeutic or prophylactic agent for cancer based on the novel finding that CCN2 is a ligand for ErbB2.
  • a compound is selected using inhibition of the interaction between CCN2 and ErbB2 as an index.
  • the compound may be any compound such as a low molecular compound, a high molecular compound, a polypeptide (including proteins and oligopeptides), a nucleic acid, and a sugar chain.
  • the screening method of the present invention can be preferably carried out using inhibition of direct binding between CCN2 and ErbB2 as an index.
  • Various techniques for examining whether a compound inhibits the binding between two factors are known and can be easily carried out by those skilled in the art. For example, the extracellular region of ErbB2 is immobilized on a solid phase, the test compound is brought into contact with ErbB2 immobilized solid phase together with CCN2, and the amount of binding between ErbB2 and CCN2 is measured, so that the test compound is CCN2 and ErbB2 It is possible to examine whether or not the binding is inhibited.
  • the ErbB2 extracellular region was immobilized in the well of the plate, and a test compound (partial fragment of the ErbB2 ligand binding region) was added together with biotinylated CCN2, and after washing, enzyme-labeled streptavidin was added. In addition, after washing, an enzyme substrate was added, and the amount of CCN2 bound on the solid phase was measured based on the color development amount.
  • a test compound partial fragment of the ErbB2 ligand binding region
  • an enzyme substrate was added, and the amount of CCN2 bound on the solid phase was measured based on the color development amount.
  • the binding amount of ErbB2 and CCN2 can be easily measured.
  • SPR surface plasmon resonance
  • the binding between the ErbB2 extracellular region immobilized on the chip and CCN2 can be measured by an SPR sensor.
  • there are various known methods for measuring binding inhibition between two factors such as an electrochemical measurement method using a microchannel chip and a method using the yeast two-hybrid method.
  • the compound found by the screening method that inhibits the binding between CCN2 and ErbB2 may be useful for the treatment and prevention of cancers with ErbB2 expression, similar to the therapeutic or prophylactic agent of the present invention.
  • Candidate compounds obtained by the screening method of the present invention can be established as cancer treatment or prevention agents through growth inhibition experiments using cancer cell lines.
  • Cancer cells can be detected by using direct or indirect binding of CCN2 protein to ErbB2. That is, the present invention provides a cancer cell detection reagent comprising any of the following polypeptides.
  • a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 4.
  • a polypeptide consisting of a partial region in the amino acid sequence shown in SEQ ID NO: 4, comprising 7 or more consecutive residues in the region of amino acids 103 to 166 and directly to the ErbB2 extracellular region Or a polypeptide that binds indirectly.
  • a polypeptide comprising an amino acid sequence having 90% or more identity with (a) or (b) and directly or indirectly binding to the ErbB2 extracellular region.
  • a polypeptide comprising the amino acid sequence of the polypeptide of any one of (a) to (c) and binding directly or indirectly to the ErbB2 extracellular region.
  • the polypeptide is, for example, a recombinant CCN2 protein.
  • the following examples specifically show that ErbB2 present on the cell surface of HeLa cells overexpressed ErbB2 can be detected using recombinant CCN2 protein.
  • Proteins such as aggrecan are also contained in fixed cell samples and tissue samples. Therefore, the binding mode between recombinant CCN2 protein and cell surface ErbB2 in the sample is between CCN2 and ErbB2. Both direct binding and indirect binding via factors such as aggrecan are envisioned.
  • the polypeptide of (b) is 7 residues or more in the VWC domain of CCN2, for example, 10 residues or more, 15 residues or more, 18 residues or more, 25 residues or more, 30 residues or more, 46 residues or more, Alternatively, it is a CCN2 protein fragment containing a region of 64 residues or more (full length of VWC domain). CCN2 binds to the ErbB2 extracellular region at the VWC domain (amino acids 103 to 166), and an important part for this binding exists in the VWC domain.
  • polypeptide (b) include a CCN2 partial fragment containing the full length of the VWC domain, a polypeptide consisting of the VWC domain, and a polypeptide consisting of a partial region within the VWC domain (for example, any one of SEQ ID NOs: 6 to 8).
  • the polypeptide of (c) is composed of an amino acid sequence in which a small number of amino acids are substituted, deleted, inserted or added in the polypeptide of (a) or (b), and is directly or aggrecan with the ErbB2 extracellular region.
  • the sequence identity with the original polypeptide (a) or (b) is 90% or more, preferably 95% or more.
  • the polypeptide (c) is a polypeptide comprising an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the original polypeptide (a) or (b). Is also preferable.
  • the identity of the amino acid sequence here is the same as the definition described above in the description of the therapeutic or preventive agent for cancer. However, when used in a form in which any other amino acid sequence is added to the polypeptide (for example, when used in the form of a fusion protein with another protein, when used in a form added with a peptide tag such as Flag peptide)
  • the identity is calculated by comparing the sequences only in the region corresponding to the polypeptides (a) to (c) excluding the arbitrary amino acid sequence, not the full length of the amino acid sequence.
  • the polypeptide of (d) contains the amino acid sequence of any of the polypeptides (a) to (c) as a partial sequence (that is, other amino acids at one or both ends of the polypeptide of (a) to (c)) Or a polypeptide to which a polypeptide is added) and binds directly to the ErbB2 extracellular region directly or via a factor such as aggrecan.
  • Polypeptides (a) to (c) to which any amino acid or polypeptide has been added can also be used for detection of ErbB2 on the surface of cancer cells as long as the binding to the ErbB2 extracellular region is not impaired.
  • polypeptides (a) to (d) can be easily produced by well-known genetic engineering techniques or by conventional chemical synthesis.
  • the polypeptide contained in the detection reagent may be in a form labeled with a labeling substance such as biotin, fluorescent dye, fluorescent protein, enzyme, FLAG tag, metal (manganese, iron, etc.). Further, if desired, it can be used in a form to which a compound other than a label is added, or in the form of a fusion protein with another protein. These various forms of polypeptides are also included in the scope of the detection reagent of the present invention.
  • the detection reagent may be composed only of the above-mentioned polypeptide, or may be in a form in which the polypeptide is dissolved in a buffer or the like.
  • the reagent can be used in the same manner as the antibody in immunoassay. It is also possible to examine the expression level of ErbB2 in the cancer cells of the patient by contacting a cancer tissue sample collected from the patient with the detection reagent of the present invention and performing a detection reaction.
  • the reagent can also be used for pathological diagnosis of ErbB2-expressing cancer such as breast cancer.
  • the method for detecting cancer using the detection reagent will be specifically described below.
  • the target cell is brought into contact with the detection reagent.
  • the detection reagent is usually used in a form in which the polypeptide is labeled with a labeling substance. Specific examples of the labeling substance are as described above.
  • the subject is preferably a mammal, and specific examples include humans, dogs, cats, rabbits, hamsters, mice, monkeys, horses, pigs, cows, sheep and the like.
  • the target cell may be a sample containing the target cell separated from the target living body (in vitro diagnostic agent). When the sample is a tissue specimen, the detection reagent and the cells may be brought into contact so that the tissue specimen is immersed in a solution containing the detection reagent of the present invention at an appropriate concentration.
  • the detection reagent can be used in a form in which the polypeptide is immobilized on a support such as a plate, but the cultured cell is immobilized on a support such as a slide glass, It is preferable that the detection reagent and the cell are brought into contact so that the cultured cells are immersed in the detection reagent solution.
  • the subject cell may be a cell in the subject's body (in-vivo diagnostic). In this case, by administering the detection reagent to the target, the target cell and the detection reagent can be brought into contact with each other in the body of the target.
  • the polypeptide contained in the detection reagent binds to the ErbB2 extracellular region on the surface of the cancer cell. Therefore, the presence of cancer cells can be detected by detecting the presence of cells to which the polypeptide is bound.
  • the mode of binding between the ErbB2 extracellular region on the surface of cancer cells and the polypeptide in the detection reagent is either direct or indirect via factors such as aggrecan Can be a bond.
  • the detection reagent is an in-vitro diagnostic agent
  • an enzyme is used as the labeling substance, an appropriate substrate substance is added to the reaction system, and signals such as color development or luminescence generated by the enzyme reaction may be detected.
  • an antibody against the tag and a labeling substance that emits its own signal such as a fluorescent substance or an antibody labeled with an enzyme may be used.
  • a labeled antibody By adding such a labeled antibody to the reaction system and detecting a signal from the labeled antibody (in the case of an enzyme-labeled antibody, a substrate substance is added and a signal generated by the enzyme reaction) is detected. The presence of cells bound by can be detected.
  • the detection reagent When the detection reagent is an in-vivo diagnostic agent, the detection reagent may be administered to the subject, and a signal from the polypeptide remaining in the body may be detected after an appropriate time has elapsed.
  • the detection reagent of the present invention When the detection reagent of the present invention is administered into the body of a subject, more of the polypeptide is accumulated at a site where ErbB2 is more expressed.
  • a polypeptide labeled with a labeling substance that emits a signal that can be detected from outside the body can be detected from outside the body, the presence of cancer cells in the body that express ErbB2 can be detected. it can.
  • Specific examples of such a labeling substance include metals such as manganese and iron. The metal label can be detected from outside the body by MRI or the like.
  • ErbB2 expression of the cell lines used in the following examples is as follows.
  • HeLa Human cervical cancer-derived strain. ErbB2 expression is not detected.
  • SkBr3 ErbB2 overexpression strain derived from human breast cancer.
  • MCF7 ErbB2 non-overexpressing strain derived from human breast cancer. ErbB2 expression is detected.
  • MDA-MB-231 ErbB2 non-overexpressing strain derived from human breast cancer. ErbB2 expression is detected.
  • MCF10A Human fibrocystic mammary gland patient strain. ErbB2 expression is not detected.
  • Capan-1 ErbB2 overexpression strain derived from human pancreatic cancer.
  • FITC-labeled anti-ErbB2 antibody Becton Dickinson
  • unlabeled anti-ErbB2 antibody AbD Serotec
  • anti-PY877 ErbB2 antibody Applied Biological Materials
  • anti-PY1248 ErbB2 antibody Dakocytomation
  • anti-PY1221 / 1222 ErbB2 An antibody (Abcam) and an anti-Actin antibody (Sigma) were used.
  • the crosslinking agent used was a thiol-cleavable crosslinking agent DSP (dithiobis [succinimidylpropionate]) (Pierce).
  • Cell line Yeast cell line AH109 was purchased from Clontech. Human cell lines HeLa, MCF7, MCF10A, SkBr3 were purchased from the American Type Culture Collection (ATCC) and maintained under the conditions recommended by ATCC. Human chondrosarcoma-derived cell line HCS-2 / 8 (Cancer research. 1989, 49, 3996-4002) was maintained in DMEM containing 10% fetal calf serum (FCS). According to a conventional method, stable transformants of ErbB2 were prepared by transfecting HeLa cells with pSV2 erb B2 (RIKEN BioResource Center) (Nature. 1984, 309, 418-425) and pcDNA3.1 (Invitrogen). Two lines that stably express ErbB2 were obtained by selection (HeLa # 3 strain, HeLa # 5 strain). HeLa cells were transfected with only pcDNA3.1 and selected with G418 to obtain control mock transformants.
  • ATCC American Type Culture Collection
  • FCS fetal calf serum
  • full-length CCN2 cDNA (NCBI Reference Sequence: NM_001901.2: SEQ ID NO: 4) excluding the signal peptide region was prepared by PCR (primer was atccgaattccagaactgcagcgggccgtgccggtgcccg (SEQ ID NO: 16 ) And atacggatccctcatgccatgtctccgtacatcttcctgt (SEQ ID NO: 17)), restriction enzyme EcoRI (NEB) and BamHI (NEB) -treated fragments were used as baits and inserted into the EcoRI and BamHI sites of the pGBKT7 vector (Clontech). With this construct, full-length CCN2 excluding the signal peptide region was expressed as a fusion protein with the GAL4 DNA binding domain (BD).
  • BD GAL4 DNA binding domain
  • Two-hybrid screening was performed in yeast AH109 cells using full-length CCN2 in a selective medium lacking leucine, tryptophan, histidine and adenine. After incubation for 3 to 5 days, a plurality of positive clones were picked up, plasmid DNA was extracted, reintroduced into E. coli DH5 ⁇ strain, plasmid DNA was purified from this E. coli, and DNA sequencing was performed.
  • a pGADT7 vector containing either a truncated ErbB2 or a cDNA picked up from a library, together with a pGBKT7 vector that expresses either full-length or truncated CCN2 in yeast strain AH109. Reintroduced. CCN2 fragment was inserted into pGBKT7 vector using EcoRI, BamHI (NEB). In addition, the ErbB2 fragment, which had been end-treated with SalI and XhoI (NEB), was inserted into the pGADT7 vector at the XhoI site.
  • the DNA encoding the CCN2 fragment used was a cDNA synthesized from HCS-2 / 8 cell-derived RNA as a template and amplified by PCR using the primers shown in Table 1.
  • the DNA encoding the ErbB2 fragment was pSV2perb ⁇ ⁇ B2 (RIKEN BioResource Center) as a template and was amplified by PCR using the primers shown in Table 2.
  • a membrane fraction was prepared from HeLa cell # 5 strain overexpressing ErbB2 by transformation and mock transformant. Cells were cultured in a 150 mm diameter dish until confluent, and after collection, washed with Ca ion-free and Mg ion-free PBS. Subsequently, the cells were suspended in a suspension buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.25 M sucrose, 0.1 mM PMSF), and sonicated at high output for 1 minute ⁇ 3 times.
  • a suspension buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.25 M sucrose, 0.1 mM PMSF
  • Centrifugation was performed at 800 ⁇ g for 10 minutes to precipitate nuclei, the supernatant was collected, and further centrifuged at 12,000 ⁇ g for 20 minutes in order to remove residues at the time of cell disruption. The supernatant was further centrifuged at 105,000xg for 60 minutes to precipitate the cell membrane fraction, and the pellet was resuspended in 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.1 mM PMSF, and the membrane fraction was recovered. It was. The protein concentration of this suspension was measured using BCA reagent (Pierce).
  • aggrecan (Sigma) was added to the binding buffer at a final concentration of 20 ng / ml and incubated.
  • DSP dithiobis-succinimidyl propionate
  • a thiol-cleavable cross-linking agent was added at a final concentration of 2.5 mM, incubated at 4 ° C. for 30 minutes, and then cooled glycine was added at a final concentration of 20 mM. Stopped. The cells were collected by centrifugation at 1,000 ⁇ g for 5 minutes, washed 3 times with chilled PBS, collected, and dissolved in SDS buffer containing 2-mercaptoethanol.
  • Membrane fraction was mixed with either recombinant human His-CCN2 or recombinant human GST-CCN2 and incubated at 4 ° C. for 30 minutes. After the DSP addition, the mixture was further incubated at 4 ° C. for 10 minutes. The complex containing CCN2 was precipitated using either Ni-agarose® (Qiagen) ® or glutathione® sepharose® 4B® (GE® Healthcare) ®, and Western blot analysis was performed on the precipitated protein.
  • buffer 20 mM Tris-HCl, pH8.0, 25 mM NaCl, 10% glycerol, 2 ng / ml aggrecan, 66 ⁇ g / ml BSA, 1 mM PMSF
  • ErbB2 consists of two extracellular regions believed to be ligand binding domains, a transmembrane domain, and a C-terminal intracellular domain with tyrosine kinase activity and a putative phosphorylation site.
  • Clone # 26 contained only one of the ligand binding domains, the transmembrane domain and the intracellular kinase domain (FIG. 1 (A)).
  • a vector that expresses five types of ErbB2 fragments (Fig. 1 (A), # 1 to # 4, # 4rev) was separately prepared, and the ErbB2 fragment-GAL4 AD fusion protein and CCN2-GAL4 BD fusion protein was coexpressed in yeast AH109 cells, and the binding property between CCN2 and ErbB2 fragment was confirmed in yeast.
  • the strongest binding was confirmed in ErbB2 fragment # 3 containing two ligand binding domains and ErbB2 fragment # 2 containing one ligand binding site (FIG. 1 (B)).
  • Some binding to CCN2 was also confirmed in ErbB2 fragment # 1. No binding between the intracellular region of ErbB2 and CCN2 was observed.
  • a cell line (HeLa # 5) in which ErbB2 is ectopically expressed in HeLa cells is known to express ErbB2.
  • the binding of 125 I-labeled CCN2 was confirmed using an existing breast cancer cell line (MCF7) (Oncogene. (2010) 29, 6343-6356) and a cartilage-like cell line (HCS-2 / 8).
  • MCF7 breast cancer cell line
  • HCS-2 / 8 cartilage-like cell line
  • the cells were collected by centrifugation and lysed, and then the protein of the lysate was separated by SDS-polyacrylamide electrophoresis (SDS-PAGE), and the bound CCN2 was detected with an anti-His antibody.
  • SDS-PAGE SDS-polyacrylamide electrophoresis
  • CCN2 was detected in HeLa cell # 5 strain overexpressing ErbB2 (FIG. 7A, arrowhead).
  • the amount of CCN2 bound to HeLa cells was increased by aggrecan in a concentration-dependent manner (FIG. 7B).
  • Competitive cross-linking with untagged recombinant human CCN2 confirmed competition with recombinant human His-CCN2 (FIG. 7B).
  • the HeLa cell # 5 strain that overexpresses ErbB2 and the HeLa cell that does not express ErbB2 are homogenized and centrifuged to prepare a crude membrane fraction, which is then incubated with recombinant human His-CCN2 for affinity crosslinking assay.
  • the protein was pulled down with an ErbB2-specific antibody, and Western blotting was performed using an antibody against His.
  • His-CCN2 pulled down together with ErbB2 was detected (FIG. 7C).
  • a gene encoding recombinant human protein full-length human CCN2 (aa 1-349; Swiss-Prot P29279; SEQ ID NO: 4) is inserted into pCEP vector (Invitrogen), and the constructed expression vector is inserted into HEK293 cells. It was introduced using lipofectamine TM (Invitrogen), and stable expression strains were selected by adding Hygromycin B (Invitrogen) to the medium. CCN2 protein was obtained by culturing cells in serum-free DMEM medium and combining three purification methods from the culture supernatant.
  • heparin-binding protein was purified by heparin sepharose, and then purified by BMP2 affinity chromatography and S200 molecular sieve chromatography to obtain recombinant human CCN2 protein. (Reference: FEBS Letters 468 (2000) 215-219, Nat Cell Biol. 2002 August; 4 (8): 599-604. Molecular Vision 2011; 17: 53-62)
  • the region of amino acids 23 to 650 of ErbB2 was used.
  • a recombinant baculovirus for expression of the extracellular region was prepared using a Bac-to-Bac baculovirus expression system (Invitrogen). First, an extracellular ErbB2 domain amplified using pSV2 erbpB2 (RIKEN BioResource Center) as a template and the primers shown in Table 3 below was incorporated into the XbaI and XhoI sites of the pFASTBAC HTB vector to construct an expression vector. Recombinant baculovirus particles were prepared by preparing recombinant Bacmid in E.
  • Sf9 cultured cells were infected with this recombinant baculovirus to express recombinant ErbB2 protein, and purified using Ni-agarose (GE Healthcare).
  • the recombinant human VWC fragment was prepared by a well-known genetic engineering technique. Amplification of human CCN2 VWC domain cDNA (positions 513 to 704 of SEQ ID NO: 3) by PCR using the primers synthesized in Table 4 below, using cDNA synthesized from RNA derived from HCS-2 / 8 cells as a template After treatment with BamHI (Takara Bio) and XhoI (Takara Bio), the fragment was inserted into the BamHI and XhoI sites of pGEX-6P-1 vector (GE (Healthcare). This construct is introduced into E. coli BL21 (DE3) pLysS (Novagen), expressed in E. coli as a GST fusion protein, bound to Glutathione Sepharose 4B (GE Healthcare), LPS (lipopolysaccharide) removal treatment, PreScission Protease The GST part was cut and removed using (GE Healthcare).
  • Biotinylated CCN2 was prepared according to the reagent manual using biotinylated reagent EZ-Link® NHS-PEG4-Biotin (Thermo Fisher Scientific).
  • Table 5 shows the composition of the solvent for each peptide.
  • SkBr3 cells were seeded on a 96-well plate at 5 ⁇ 10 5 cells / well and cultured for 3 hours to allow the cells to settle. Thereafter, the serum-free medium was replaced with 200 ⁇ l, and recombinant human CCN2 was added to a final concentration of 12.5, 25, 50 ng / ml.
  • the anti-CCN2-VWC domain antibody (11H3, 1 mg / ml) prepared above was added at 2 ⁇ l / well, and after 48 hours, Tetra Color One (Seikagaku Biobusiness Co., Ltd.) was added, and the absorbance of the formed formazan salt was measured. The number of viable cells was evaluated by measuring by a conventional method.
  • MCF7 cells were seeded at 1 ⁇ 10 4 cells / well in a 96 well plate and cultured for 24 hours to allow the cells to settle. Thereafter, recombinant human CCN2 was added to a final concentration of 6.25, 12.5, 25, 50, 100 ng / ml.
  • the anti-CCN2-VWC domain antibody prepared above (11H3 or 101C10, 1 mg / ml) was added at 2 ⁇ l / well, and after 46 hours, BrdU was added and further cultured for 2 hours. Thereafter, BrdU incorporated into the cells was evaluated by absorbance at 655 nm using a BrdU cell proliferation assay kit (Roche).
  • BrdU incorporated into cell DNA was reacted with a peroxidase-labeled anti-BrdU antibody, followed by color development using a peroxidase substrate (TMB: tetramethylbenzidine), and the absorbance (wavelength 655 nm) was measured with an ELISA reader.
  • TMB peroxidase substrate
  • BrdU cell proliferation assay kit According to the manual of BrdU cell proliferation assay kit (Roche), the cells were cultured at 37 ° C. for 24 hours. BrdU was incorporated into the cells 2 hours before the end of the culture, and the incorporated BrdU was measured by absorbance at 655 nm.
  • Recombinant human CCN2 promoted proliferation of MCF7 cells (FIG. 11A). Furthermore, the addition of recombinant human VWC fragment (final concentration 1.85 ⁇ g / ml) to the culture solution strongly suppressed the growth promoting effect of recombinant human CCN2 (FIG. 11A). This suggests that the recombinant human VWC fragment acts as an ErbB2 antagonist that antagonizes CCN2 for interaction with ErbB2.
  • a 10-residue peptide was prepared from the synthetic VWC peptide # 4 region as shown in Table 6 below, and MCF7 cells were used. The experiment was conducted. Each peptide was added to MCF7 cells under the condition that CCN2 was not added to the medium, and cell proliferation was examined by BrdU incorporation as described above. For comparison, a peptide B-6 consisting of the aa121-141 region and a peptide B-7 consisting of the aa142-166 region were also prepared and the experiment was performed in the same manner.
  • binding buffer 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2% BSA, 0.05% Tween20
  • biotinylated CCN2 and each ErbB2 peptide 1-6, FIG. 9 prepared to 100 ⁇ l per well were added at respective concentrations and incubated at 37 ° C. for 6 hours.
  • the wells were washed three times with 300 ⁇ l / well of binding buffer, and then 100 ⁇ l / well of streptavidin-HRP (R & D System) diluted 200-fold with binding buffer was added and incubated at room temperature for 20 minutes.
  • the wells were washed 3 times with 300 ⁇ l / well of binding buffer, then 100 ⁇ l / well of a color reagent of TMB Peroxidase Substrate kit (Bio-Rad) was added, incubated at 37 ° C., and the absorbance at 655 nm was measured.
  • FIG. 13A shows the result of monitoring the binding between ErbB2 extracellular region and CCN2 using a BIACORE SPR sensor.
  • Each peptide was added at a different concentration in order to examine whether or not the peptide fragments 1 to 6 corresponding to the ligand binding predicted region of ErbB2 inhibit the binding between ErbB2 and CCN2.
  • the binding inhibitory action was particularly strong in ErbB2 peptide 5, and a strong binding inhibitory action comparable to that of the His-tagged ErbB2 extracellular region was confirmed (FIG. 13D). From this, the region of ErbB2 peptide 5 is important for the binding of ErbB2 and CCN2, and the use of this peptide was expected to inhibit the binding of CCN2 and ErbB2 and suppress the growth of cancer cells. .
  • the recombinant human VWC fragment does not show the effect of suppressing cell proliferation induced by CCN2 alone at a treatment concentration of 26 nM. Therefore, the combined effect of taxol and recombinant human VWC fragment is synergistic.
  • Reference data Search for binding domain of full-length CCN2 and CCN3 by yeast two-hybrid method
  • Vector encoding CCN2 expressed as a fusion with GAL4 DNA binding domain (BD) in yeast AH109 strain and GAL4 DNA activation domain A vector encoding each domain of CCN3 expressed as a fusion with (AD) was co-introduced, and the presence or absence of binding of both factors was examined from auxotrophy. As a result, it became clear that CCN2 and CCN3 show binding activity in the VWC and CT domains (FIG. 16A).
  • biotinylated CCN2 and GST-CCN3 were examined. 50 ⁇ g of GST-CCN3 or GST was immobilized on a 96-well plate, and biotinylated CCN2 was added at a concentration of 0 to 3 ⁇ g / mL. After washing, biotin-CCN2 bound to the plate was labeled with avidin-HRP and developed with TMB. As a result, as shown in FIG. 16B, CCN2 bound to CCN3 in a concentration-dependent manner.

Abstract

Disclosed are: a novel means useful for the treatment and prevention of cancer; and a novel therapeutic/prophylactic means effective even for cancer that is resistant to anti-cancer agents. As a result of extensive studies, the inventors of the present application have identified ErbB2 as a cell membrane receptor for CCN2. A first therapeutic or prophylactic agent for cancer according to the present invention comprises a substance capable of inhibiting the interaction between CCN2 and ErbB2 (i.e., a CCN2-ErbB2 interaction inhibitor) as an active ingredient. A second therapeutic or prophylactic agent for cancer according to the present invention comprises a CCN2-ErbB2 interaction inhibitor as an active ingredient and is used in combination with an anti-cancer agent capable of inducing apoptosis.

Description

がんの治療又は予防剤Cancer treatment or prevention agent
 本発明は、がんの治療又は予防剤、がんの検出試薬、がんの治療又は予防剤のスクリーニング方法、及びアポトーシス誘導剤と組み合わせて用いられるがんの治療又は予防剤に関する。 The present invention relates to a cancer treatment or prevention agent, a cancer detection reagent, a screening method for a cancer treatment or prevention agent, and a cancer treatment or prevention agent used in combination with an apoptosis-inducing agent.
 ErbB2(HER2とも言う。)は、上皮増殖因子受容体(EGFR)ファミリーメンバーの細胞膜を貫通する表面タンパク質であり、ヒト乳がん患者集団のおよそ5分の1で高発現していることが知られている。ErbB2はがん治療の標的として研究が進んでおり、がんの治療剤としての抗ErbB2抗体や、ErbB2の細胞外領域に結合する各種ペプチド配列が知られている(特許文献1~5など)。例えば、ErbB2の過剰発現が確認された原発性及び転移性乳がんの治療薬として実用化されているハーセプチン(商品名、一般名はトラスツズマブ)は、ErbB2分子の細胞外領域のエピトープ(第529番~第625番アミノ酸の領域)と特異的に結合する抗ErbB2ヒト化モノクローナル抗体医薬である(非特許文献1)。 ErbB2 (also referred to as HER2) is a surface protein that penetrates the cell membrane of the epidermal growth factor receptor (EGFR) family member and is known to be highly expressed in approximately one fifth of the human breast cancer patient population. Yes. ErbB2 has been studied as a target for cancer treatment, and anti-ErbB2 antibodies as cancer therapeutic agents and various peptide sequences that bind to the extracellular region of ErbB2 are known (Patent Documents 1 to 5, etc.) . For example, Herceptin (trade name, generic name: trastuzumab), which has been put to practical use as a therapeutic agent for primary and metastatic breast cancers in which overexpression of ErbB2 has been confirmed, is an epitope in the extracellular region of ErbB2 molecule (No. 529- It is an anti-ErbB2 humanized monoclonal antibody drug that specifically binds to the 625th amino acid region (Non-patent Document 1).
 このように研究が進んでいるErbB2であるが、EGFRファミリーの4つのメンバーのうちErbB2はオーファンレセプター(オーファン受容体とも言う。)であり、その特異的リガンドは未だ報告されていない。特許文献6には、レセプターチロシンキナーゼに結合する特異的リガンドをがんの治療に用いることが記載されているが、ErbB2の特異的リガンドに関する開示は一切ない。 Although ErbB2 is being studied in this way, ErbB2 is an orphan receptor (also referred to as an orphan receptor) among the four members of the EGFR family, and its specific ligand has not yet been reported. Patent Document 6 describes the use of a specific ligand that binds to a receptor tyrosine kinase for the treatment of cancer, but there is no disclosure regarding a specific ligand for ErbB2.
 CCN2は、結合組織増殖因子(connective tissue growth factor; CTGF)としても知られているタンパク質で、CCNファミリーに属する分泌性の増殖促進因子である。CCNファミリーの生物学的機能として、細胞の増殖・分化・遊走・接着及び細胞外マトリックス形成の刺激や、血管形成及び腫瘍形成への関与が挙げられる(非特許文献2, 4, 18)。CCN2は細胞表面のアグリカン(非特許文献5), フィブロネクチン(非特許文献6), インテグリン(非特許文献6~10)と結合可能であり、マトリックスメタロプロテアーゼと協働して(非特許文献13, 14)、細胞外マトリックスタンパク質の発現を促進し(非特許文献11)、細胞接着活性を調節するほか、血管新生因子としても働いていることが知られている(非特許文献12)。個体発生における組織形成の過程で軟骨組織にCCN2の強い発現が見られることから、CCN2は軟骨内骨化のエンハンサーだと考えられている(非特許文献15)。さらに、乳がん、膵臓がん、メラノーマ、軟骨肉腫、及び多くの線維症においてCCN2の発現上昇が確認されている(非特許文献16)。CCN2は各種のがんにおいて多様な役割をみせるが、乳がん細胞においてはCCN2の過剰発現が腫瘍サイズの増加と転移に関係していると考えられている(非特許文献16)。また、CCN2が乳がんにおける溶骨性骨転移の形成に深く関与していることが示されている(非特許文献17)。 CCN2 is a protein also known as connective tissue growth factor (CTGF) and is a secreted growth promoting factor belonging to the CCN family. Biological functions of the CCN family include stimulation of cell proliferation / differentiation / migration / adhesion and extracellular matrix formation, and involvement in angiogenesis and tumor formation (Non-patent Documents 2, IV 4, 18). CCN2 can bind to cell surface aggrecan (Non-patent document 5), fibronectin (Non-patent document 6), integrin (Non-patent documents 6 to 10), and in cooperation with matrix metalloprotease (Non-patent document 13, 14) It is known that it promotes the expression of extracellular matrix proteins (Non-Patent Document 11), regulates cell adhesion activity, and also acts as an angiogenic factor (Non-Patent Document 12). CCN2 is considered to be an enhancer of endochondral ossification because strong expression of CCN2 is observed in the cartilage tissue during the process of tissue formation in ontogeny (Non-patent Document 15). Furthermore, increased expression of CCN2 has been confirmed in breast cancer, pancreatic cancer, melanoma, chondrosarcoma, and many fibrosis (Non-patent Document 16). CCN2 shows various roles in various cancers, but it is considered that overexpression of CCN2 is related to an increase in tumor size and metastasis in breast cancer cells (Non-patent Document 16). It has also been shown that CCN2 is deeply involved in the formation of osteolytic bone metastases in breast cancer (Non-patent Document 17).
 CCN2は、IGFBP(インスリン様成長因子結合タンパク質様)ドメイン、VWC(von Willebrand因子タイプC)ドメイン、TSP1(トロンボスポンジンタイプ1)リピート、CT(C末端)ドメインの4つのドメインからなる(非特許文献2)。これらドメインはそれぞれ結合パートナーが異なっている。CCN2のCTドメインはインテグリンα5β1と結合し、膵星細胞の接着と遊走を促進する(非特許文献9)。また、該ドメインはフィブロネクチンとも直接相互作用し、インテグリンα5β1を介して軟骨細胞の接着を促進する(非特許文献19)。さらに、該ドメインはインテグリンレセプターαvβ3との直接的結合及びC末端ヘパリン結合ドメインを介したヘパラン硫酸プロテオグリカンとの直接的結合により、肝細胞の接着を誘導する(非特許文献20)。 CCN2 consists of four domains: IGFBP (insulin-like growth factor binding protein-like) domain, VWC (von Willebrand factor type C) domain, TSP1 (thrombospondin type 1) repeat, and CT (C-terminal) domain (non-patented) Reference 2). Each of these domains has a different binding partner. The CT domain of CCN2 binds to integrin α5β1 and promotes pancreatic stellate cell adhesion and migration (Non-patent Document 9). The domain also directly interacts with fibronectin and promotes chondrocyte adhesion via integrin α5β1 (Non-patent Document 19). Furthermore, the domain induces hepatocyte adhesion by direct binding to integrin receptor αvβ3 and direct binding to heparan sulfate proteoglycan via the C-terminal heparin binding domain (Non-patent Document 20).
 しかしながら、ErbB2とCCN2の関係性については全く報告されていない。 However, the relationship between ErbB2 and CCN2 has never been reported.
 一方、タキソール(商品名、一般名はパクリタキセル)は、タキサン系に分類される抗がん剤であり、チュ-ブリンの重合を安定化して微小管形成を阻害することにより細胞分裂を妨げ、がん細胞の増殖を抑制する(非特許文献21)。タキソールは乳がんや卵巣がんをはじめ各種のがんの治療及び予防に用いられているが、その際にタキソール耐性のがん細胞の出現が問題となってきている。薬剤耐性化したがんの治療に有効な新規な手段も求められている。 Taxol (trade name, generic name: paclitaxel), on the other hand, is an anticancer agent classified as a taxane, which prevents cell division by stabilizing tubulin polymerization and inhibiting microtubule formation. Suppresses proliferation of cancer cells (Non-patent Document 21). Taxol is used for the treatment and prevention of various cancers including breast cancer and ovarian cancer. At that time, the appearance of taxol-resistant cancer cells has become a problem. There is also a need for new means effective for the treatment of drug-resistant cancer.
WO 01/01748WO 01/01748 WO 2004/005320WO 2004/005320 WO 03/061559WO 03/061559 WO 2009/080810WO 2009/080810 特開2010-006705号公報JP 2010-006705 A 特開2011-084580号公報JP 2011-084580 A
 本発明は、がんの治療及び予防に有用な新規な手段を提供することを目的とする。また、本発明は、抗がん剤に耐性化したがんに対しても有効な新規ながんの治療・予防手段を提供することを目的とする。 An object of the present invention is to provide a novel means useful for the treatment and prevention of cancer. It is another object of the present invention to provide a novel cancer treatment / prevention means that is effective against cancer that has become resistant to anticancer agents.
 本願発明者らは、CCN2の標的細胞に対する作用を調節している細胞膜受容体及び、細胞膜受容体を介した細胞内シグナル伝達機構を明らかにすることを目的として、CCN2を高発現するヒト軟骨細胞株HCS-2/8由来のcDNAライブラリーを用いて酵母two-hybrid法によるスクリーニングを鋭意におこなった結果、CCN2の細胞膜受容体としてErbB2を同定した。さらなる鋭意研究の結果、CCN2がそのVWCドメインを介してErbB2の細胞外RECドメインと相互作用すること、CCN2とErbB2との間の相互作用を阻害することでがん細胞の増殖を抑制できることを見出した。さらに、CCN2とErbB2との間の相互作用を阻害する物質とパクリタキセルとを併用することで、それぞれ単独ではがん細胞の増殖を抑制できない濃度であっても、がん細胞の増殖を抑制できること、ひいては抗がん剤に耐性のがんに対しても相乗的に作用して効果的にがんを治療及び予防し得ることを見出した。さらにまた、CCN2とErbB2との間の相互作用の阻害を指標として新規抗がん剤のスクリーニングが可能であることを見出し、本願発明を完成した。 The present inventors have developed a human chondrocyte that highly expresses CCN2 for the purpose of clarifying a cell membrane receptor that regulates the action of CCN2 on target cells and an intracellular signal transduction mechanism via the cell membrane receptor. As a result of earnest screening by the yeast two-hybrid method using a cDNA library derived from the strain HCS-2 / 8, ErbB2 was identified as a cell membrane receptor for CCN2. As a result of further intensive research, we found that CCN2 interacts with the extracellular REC domain of ErbB2 via its VWC domain, and that it can suppress the growth of cancer cells by inhibiting the interaction between CCN2 and ErbB2. It was. Furthermore, by using paclitaxel together with a substance that inhibits the interaction between CCN2 and ErbB2, it is possible to suppress the growth of cancer cells even at concentrations that cannot suppress the growth of cancer cells by themselves, As a result, it has been found that the cancer can be effectively treated and prevented by synergistically acting on the cancer resistant to the anticancer agent. Furthermore, it has been found that screening of novel anticancer agents is possible using inhibition of the interaction between CCN2 and ErbB2 as an indicator, and the present invention has been completed.
 すなわち、本発明は、CCN2とErbB2との間の相互作用を阻害する物質を有効成分とするがんの治療又は予防剤を提供する。また、本発明は、CCN2とErbB2との間の相互作用の阻害を指標として化合物を選択することを含む、がんの治療又は予防剤のスクリーニング方法を提供する。さらに、本発明は、上記本発明のスクリーニング方法で取得されたがんの治療又は予防剤を提供する。さらに、本発明は、下記(a)~(c)のいずれかのポリペプチドを含む、がん細胞の検出試薬を提供する。
(a) 配列番号4に示すアミノ酸配列からなるポリペプチド。
(b) 配列番号4に示すアミノ酸配列中の部分領域からなるポリペプチドであって、第103番~第166番アミノ酸の領域内の連続する7残基以上を含み、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
(c) (a)又は(b)と90%以上の同一性を有するアミノ酸配列からなり、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
(d) (a)~(c)のいずれかのポリペプチドのアミノ酸配列を含み、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
That is, the present invention provides a therapeutic or preventive agent for cancer comprising as an active ingredient a substance that inhibits the interaction between CCN2 and ErbB2. The present invention also provides a method for screening for a therapeutic or prophylactic agent for cancer, which comprises selecting a compound using inhibition of the interaction between CCN2 and ErbB2 as an index. Furthermore, the present invention provides a therapeutic or prophylactic agent for cancer obtained by the screening method of the present invention. Furthermore, the present invention provides a cancer cell detection reagent comprising any of the following polypeptides (a) to (c).
(a) A polypeptide comprising the amino acid sequence shown in SEQ ID NO: 4.
(b) a polypeptide consisting of a partial region in the amino acid sequence shown in SEQ ID NO: 4, comprising 7 or more consecutive residues in the region of amino acids 103 to 166 and directly to the ErbB2 extracellular region Or a polypeptide that binds indirectly.
(c) A polypeptide comprising an amino acid sequence having 90% or more identity with (a) or (b) and directly or indirectly binding to the ErbB2 extracellular region.
(d) A polypeptide comprising the amino acid sequence of the polypeptide of any one of (a) to (c) and binding directly or indirectly to the ErbB2 extracellular region.
 さらに、本発明は、CCN2とErbB2との間の相互作用を阻害する物質を有効成分とし、アポトーシスを誘導する抗がん剤と組み合わせて用いられる、がんの治療又は予防剤を提供する。さらに、本発明は、CCN2とErbB2との間の相互作用を阻害する物質を有効成分とする、アポトーシスを誘導する抗がん剤の抗がん活性の増強剤を提供する。さらに、本発明は、それを必要とする対象に対し、CCN2とErbB2との間の相互作用を阻害する物質の有効量を投与することを含む、がんの治療又は予防方法を提供する。さらに、本発明は、上記本発明の検出試薬を対象の細胞と接触させる工程、及び前記ポリペプチドが結合した細胞の存在を検出する工程を含む、がん細胞の検出方法を提供する。さらに、本発明は、それを必要とする対象に対し、CCN2とErbB2との間の相互作用を阻害する物質の有効量及びアポトーシスを誘導する抗がん剤の有効量を組み合わせて投与することを含む、がんの治療又は予防方法を提供する。さらに、本発明は、それを必要とする対象に対し、CCN2とErbB2との間の相互作用を阻害する物質の有効量を投与することを含む、前記抗がん剤の抗がん活性の増強方法を提供する。 Furthermore, the present invention provides a cancer therapeutic or preventive agent comprising a substance that inhibits the interaction between CCN2 and ErbB2 as an active ingredient and used in combination with an anticancer agent that induces apoptosis. Furthermore, the present invention provides an anti-cancer activity enhancer of an anti-cancer agent that induces apoptosis, comprising as an active ingredient a substance that inhibits the interaction between CCN2 and ErbB2. Furthermore, the present invention provides a method for treating or preventing cancer, comprising administering to a subject in need thereof an effective amount of a substance that inhibits the interaction between CCN2 and ErbB2. Furthermore, this invention provides the detection method of a cancer cell including the process of making the detection reagent of the said invention contact the object cell, and the process of detecting presence of the cell which the said polypeptide couple | bonded. Furthermore, the present invention provides administration of a combination of an effective amount of a substance that inhibits the interaction between CCN2 and ErbB2 and an effective amount of an anticancer agent that induces apoptosis to a subject in need thereof. A method for treating or preventing cancer is provided. Furthermore, the present invention relates to the enhancement of anticancer activity of the anticancer agent, comprising administering to a subject in need thereof an effective amount of a substance that inhibits the interaction between CCN2 and ErbB2. Provide a method.
 本発明により、がんの新規な治療又は予防剤、がんの治療又は予防剤の新規スクリーニング方法、及びがん細胞を検出するための新規な試薬が提供される。ErbB2はオーファンレセプターであったが、本願発明者らにより、ErbB2のリガンドがCCN2であること、CCN2とErbB2の相互作用の阻害ががんの治療及び予防に有効であることが初めて明らかとなった。さらに、CCN2-ErbB2間の相互作用を阻害する物質とパクリタキセル等のアポトーシスを誘導する抗がん剤との併用が相乗的に作用し、抗がん剤に耐性のがんの治療及び予防にも有効であることが明らかとなった。本発明は、がんの治療と予防に広く貢献する発明である。 The present invention provides a novel cancer treatment or prevention agent, a novel screening method for cancer treatment or prevention agent, and a novel reagent for detecting cancer cells. Although ErbB2 was an orphan receptor, the inventors of the present application have revealed for the first time that the ligand of ErbB2 is CCN2, and that the inhibition of the interaction between CCN2 and ErbB2 is effective in the treatment and prevention of cancer. It was. Furthermore, the combined use of a substance that inhibits the interaction between CCN2-ErbB2 and an anti-cancer agent that induces apoptosis such as paclitaxel acts synergistically to treat and prevent cancer resistant to the anti-cancer agent. It became clear that it was effective. The present invention is an invention that contributes widely to the treatment and prevention of cancer.
(A) ErbB2タンパク質の構造(アミノ酸1~1255)と、pGADT7ベクターにクローニングしたErbB2のcDNA断片(#1、#2、#3、#4、#4 rev、#26)を示す。#26は、HCS-2/8ヒト軟骨肉腫cDNAライブラリーを酵母two-hybrid法でスクリーニングして得られたクローンである。TMは膜貫通領域である。(B) 左図はCCN2タンパク質の構造を示す。N末端領域のシグナルペプチドは黒太線である。IBはIGFBPドメイン、VWCはVWCドメイン、TSPはTSP1ドメイン、CTはCTドメインである。またIBとTSPの想定される糖鎖付加部位を示した。右図は、(A)で示した各ErbB2断片とCCN2との結合を酵母two-hybrid法で調べた結果である。(A) ErbB2 protein structure (amino acids 1-1255) and ErbB2 cDNA fragments (# 1, # 2, # 3, # 4, # 4 # rev, # 26) cloned into the pGADT7 vector are shown. # 26 is a clone obtained by screening the HCS-2 / 8 human chondrosarcoma cDNA library by the yeast two-hybrid method. TM is a transmembrane region. (B) The left figure shows the structure of CCN2 protein. The signal peptide in the N-terminal region is a thick black line. IB is the IGFBP domain, VWC is the VWC domain, TSP is the TSP1 domain, and CT is the CT domain. The possible glycosylation sites of IB and TSP are also shown. The right figure shows the result of examining the binding between each ErbB2 fragment shown in (A) and CCN2 by the yeast two-hybrid method. ErbB2タンパク質の構造(アミノ酸1~1255)とErbB2の細胞外ドメイン(#3、アミノ酸23~650)を示した。ErbB2の細胞外ドメインに対して結合するCCN2(A)とCCN2断片(B、C、D、E、F、G、H、I)を調べた。結合ドメインの同定に用いたCCN2および8種類のCCN2断片の構成と、酵母細胞内で結合を調べた結果を示す。The structure of ErbB2 protein (amino acids 1-1255) and the extracellular domain of ErbB2 (# 3, amino acids 23-650) are shown. CCN2 (A) and CCN2 fragments (B, C, D, E, F, G, H, I) that bind to the extracellular domain of ErbB2 were examined. The structure of CCN2 and eight types of CCN2 fragments used for the identification of the binding domain and the results of examining binding in yeast cells are shown. 上段は、HeLa細胞#5株内で過剰発現させたErbB2にFlagタグとHisタグ付きの組換えヒトCCN2を添加し、次に抗Flag抗体と抗ErbB2抗体を添加しそれぞれの結合を免疫染色し共焦点顕微鏡で観察した像である。mergeはこれら2つの染色像を重ねた像である。下段は、HeLa細胞について同様のタンパク質、抗体の順に添加した同様の染色像である。Phase contrastは位相差顕微鏡で観察した像である。In the upper row, recombinant human CCN2 with Flag tag and His tag is added to ErbB2 overexpressed in HeLa cell # 5 strain, and then anti-Flag antibody and anti-ErbB2 antibody are added to immunostain each binding. It is the image observed with the confocal microscope. merge is an image obtained by superimposing these two stained images. The lower row is a similar stained image in which the same protein and antibody are added in order of HeLa cells. Phase-contrast is an image observed with a phase-contrast microscope. 各段の左は、125IラベルしたCCN2の細胞表面への結合を調べた結果を示し、各段の右は、非標識のCCN2を125I-CCN2と競合させた結果を示す。(A)はErbB2過剰発現HeLa細胞#5株及びコントロールのHeLa細胞での結果、(B)はErbB2を発現する乳がん由来細胞株MCF7及びErbB2が検出されないヒト線維嚢胞性乳腺患者由来細胞株MCF10Aでの結果、(C)は軟骨由来HCS-2/8細胞株での結果である。各点は重複実験の平均値を示す。The left of each row shows the results of examining the binding of 125 I-labeled CCN2 to the cell surface, and the right of each row shows the results of competition of unlabeled CCN2 with 125 I-CCN2. (A) ErbB2-overexpressing HeLa cell # 5 and control HeLa cell results, (B) breast cancer-derived cell line MCF7 expressing ErbB2 and human fibrocystic mammary gland patient cell line MCF10A in which ErbB2 is not detected As a result, (C) shows the results for the cartilage-derived HCS-2 / 8 cell line. Each point represents the average of duplicate experiments. HeLa細胞#5株において、CCN2添加によるErbB2の自己リン酸化を調べた。CCN2添加から図中に示した所定の時間経過後に細胞を回収した。リン酸化ErbB2の検出には残基特異的抗ホスホチロシン抗体を用いた。total ErbB2は、抗ErbB2抗体による検出である。In HeLa cell # 5 strain, ErbB2 autophosphorylation by addition of CCN2 was examined. Cells were collected after a predetermined time shown in the figure from the addition of CCN2. Residue-specific anti-phosphotyrosine antibody was used to detect phosphorylated ErbB2. Total ErbB2 is detection by anti-ErbB2 antibody. (A) ErbB2を高発現する乳がん由来細胞株SKBr3において、CCN2添加によるErbB2の自己リン酸化を調べた結果である。(B) SKBr3細胞においてCCN2により誘導されるErbB2の自己リン酸化に対し、アグリカンが及ぼす影響を検討した結果である。total ErbB2は、抗ErbB2抗体による検出である。actinは、抗actin抗体による検出である。(A) The results of examining ErbB2 autophosphorylation by addition of CCN2 in a breast cancer-derived cell line SKBr3 that highly expresses ErbB2. (B) It is the result of examining the effect of aggrecan on the autophosphorylation of ErbB2 induced by CCN2 in SKBr3 cells. Total ErbB2 is detection by anti-ErbB2 antibody. Actin is detected by an anti-actin antibody. 架橋剤DSPを用いてCCN2とErbB2との結合を検出した結果である。(A) HeLa細胞#5株の表面に存在するErbB2と組換えヒトHis-CCN2タンパクとの複合体を架橋させ、抗His抗体で検出した。(B) アグリカンの添加により、HeLa細胞#5株表面のErbB2へのCCN2の結合量は増大した。また、組換えヒトCCN2と組換えHis-CCN2とを競合させて結合、架橋させ、抗His抗体で検出した結果、競合が確認された。(C) 膜画分及び組換えヒトCCN2を用いた液相架橋結合アッセイの結果である。架橋後、ErbB2結合タンパク質をErbB2特異的抗体でプルダウンし、抗His抗体を用いたウエスタンブロットによりCCN2を検出した。It is the result of detecting the binding between CCN2 and ErbB2 using the crosslinking agent DSP. (A) A complex of ErbB2 and recombinant human His-CCN2 protein present on the surface of HeLa cell # 5 strain was crosslinked and detected with an anti-His antibody. (B) The amount of CCN2 bound to ErbB2 on the surface of HeLa cell # 5 was increased by the addition of aggrecan. In addition, the recombinant human CCN2 and the recombinant His-CCN2 were allowed to compete, bind and crosslink, and were detected with an anti-His antibody. As a result, competition was confirmed. (C) Results of liquid phase cross-linking assay using capsular fraction and recombinant human CCN2. After crosslinking, ErbB2 binding protein was pulled down with an ErbB2 specific antibody, and CCN2 was detected by Western blot using an anti-His antibody. MCF7細胞(A)及びMCF10A細胞(B)における遺伝子発現解析の結果である。縦軸は、gapdh遺伝子の転写産物に対する各遺伝子の転写産物の比である。It is the result of the gene expression analysis in MCF7 cell (A) and MCF10A cell (B). The vertical axis represents the ratio of each gene transcript to the gapdh gene transcript. 細胞増殖阻害アッセイのために合成した、CCN2のVWCドメインの部分ペプチド(上図)とErbB2のRECドメインの部分ペプチド(下図)を示す。A partial peptide of CCN2 VWC domain (upper figure) and a partial peptide of ErbB2 REC domain (lower figure) synthesized for cell growth inhibition assay are shown. CCN2による乳がん由来細胞の増殖促進作用と、抗CCN2 VWCドメイン抗体(11H3、101C10)による増殖促進の阻害作用を示すグラフである。(A)はSkBr3細胞、(B)はMCF7細胞についての結果である。It is a graph which shows the growth promotion effect | action of a breast cancer origin cell by CCN2, and the inhibitory effect of the growth promotion by an anti- CCN2 * VWC domain antibody (11H3, 101C10). (A) shows the results for SkBr3 cells, and (B) shows the results for MCF7 cells. VWCドメイン全長からなる組換えヒトVWCフラグメント(終濃度 0.18μg/ml又は1.85μg/ml)が、MCF7細胞においてCCN2により誘導される細胞増殖を抑制することを示すグラフである。It is a graph which shows that the recombinant human VWC fragment (final concentration 0.18 μg / ml or 1.85 μg / ml) consisting of the full length of the VWC domain suppresses cell growth induced by CCN2 in MCF7 cells. VWCドメインの部分断片であるVWCペプチド#4(終濃度 1μg/ml)がMDA-MB-231細胞の増殖を抑制することを示すグラフである。It is a graph which shows that VWC peptide # 4 (final concentration 1 μg / ml), which is a partial fragment of the VWC domain, suppresses the growth of MDA-MB-231 cells. 組換えヒトVWCフラグメント(終濃度0.928μg/ml)がMCF7細胞の増殖を抑制することを示すグラフである。It is a graph which shows that a recombinant human VWC fragment (final concentration 0.928 microgram / ml) suppresses the proliferation of MCF7 cell. 組換えヒトVWCフラグメント(終濃度0.928μg/ml)がSkBr3細胞の増殖を抑制することを示すグラフである。It is a graph which shows that a recombinant human VWC fragment (final concentration 0.928 microgram / ml) suppresses the proliferation of SkBr3 cell. 組換えヒトVWCフラグメント(終濃度1.35μg/ml)がCapan-1細胞の増殖を抑制することを示すグラフである。It is a graph which shows that a recombinant human VWC fragment (final concentration 1.35 microgram / ml) suppresses the proliferation of Capan-1 cell. MCF7細胞を用いてVWCドメインの各種部分断片ペプチドの細胞増殖抑制効果を検討した結果を示すグラフである。(A) VWCペプチドV-1, V-2, V-4及びB-7(それぞれ終濃度1μg/ml)の結果、(B) VWCペプチドB-6(終濃度1μg/ml)の結果、(C) VWCペプチドV-3(終濃度20μg/ml)の結果。It is a graph which shows the result of having examined the cell growth inhibitory effect of various partial fragment peptides of a VWC domain using MCF7 cell. (A) As a result of VWC peptide V-1, V-2, V-4 and B-7 (each final concentration 1 μg / ml), (B) As a result of VWC peptide B-6 (final concentration 1 μg / ml), ( C) Results for VWC peptide V-3 (final concentration 20 μg / ml). 固相化したErbB2細胞外領域とビオチン化CCN2との結合を調べた結果である。(A) ErbB2細胞外領域とCCN2がCCN2の濃度依存的に結合することを示すグラフである。(B) 液相に添加したErbB2細胞外領域が固相化されたErbB2細胞外領域とCCN2との結合を阻害することを示すグラフである。(C) ErbB2細胞外領域とCCN2との結合をSPRセンサーでモニターした結果である。(D) ErbB2の膜近位側のRECドメインを断片化し、固相化ErbB2細胞外領域とCCN2との結合の阻害を調べた結果である。It is the result of investigating the binding between the immobilized ErbB2 extracellular region and biotinylated CCN2. (A) A graph showing that ErbB2 extracellular region and CCN2 bind to CCN2 in a concentration-dependent manner. (B) A graph showing that the ErbB2 extracellular region added to the liquid phase inhibits binding between the immobilized ErbB2 extracellular region and CCN2. (C) The result of monitoring the binding of the ErbB2 extracellular region and CCN2 with an SPR sensor. (D) ErbB2 membrane proximal side REC domain was fragmented, and inhibition of binding between solid-phased ErbB2 extracellular region and CCN2 was examined. ErbB2の膜近位側のRECドメインの部分断片であるErbB2ペプチド4及びErbB2ペプチド5(終濃度1μg/ml)がMDA-MB-231細胞の増殖を抑制することを示すグラフである。It is a graph which shows that ErbB2 peptide 4 and ErbB2 peptide 5 (final concentration of 1 μg / ml), which are partial fragments of the REC domain on the membrane proximal side of ErbB2, suppress the growth of MDA-MB-231 cells. MCF7細胞に対するタキソールと組換えVWCフラグメントの併用の効果を示す図である。It is a figure which shows the effect of combined use of a taxol and a recombinant VWC fragment with respect to MCF7 cell. CCN2とCCN3が結合することを示すデータである。(A) 酵母two-hybrid法により、CCN2と結合するCCN3のドメインを検索した結果である。(B) 固相化したCCN3とビオチン化CCN2との結合を調べた結果である。mockでは、CCN2を発現させていない。This data indicates that CCN2 and CCN3 are combined. (A) CCN3 domain binding to CCN2 by the yeast two-hybrid method. (B) The results of examining the binding between CCN3 immobilized on solid phase and biotinylated CCN2. In mock, CCN2 is not expressed.
 配列番号1、2に示す配列は、GenBankにaccession No. NM_004448で登録されているErbB2のcDNAの塩基配列(nt)及びアミノ酸配列(aa)である。aa1-22(239-304nt)がシグナルペプチド、aa23-652(305-2194nt)が細胞外領域であり、このうちのaa52-173(392-757nt)とaa366-486(1334-1696nt)がRECドメインである。配列番号9にはErbB2の膜近位側のRECドメインのアミノ酸配列を取り出して示す。 The sequences shown in SEQ ID NOs: 1 and 2 are the nucleotide sequence (nt) and amino acid sequence (aa) of the ErbB2 cDNA registered in GenBank as accession No. NM_004448. aa1-22 (239-304nt) is the signal peptide, aa23-652 (305-2194nt) is the extracellular region, of which aa52-173 (392-757nt) and aa366-486 (1334-1696nt) are the REC domain It is. SEQ ID NO: 9 shows the amino acid sequence of the REC domain on the membrane proximal side of ErbB2.
 配列番号3、4に示す配列は、GenBankにaccession No. NM_001901で登録されているCCN2のcDNAの塩基配列及びアミノ酸配列である。aa1-26(207-284nt)がシグナルペプチド、aa103-166(513-704nt)がVWCドメインである。配列番号5にはVWCドメインのアミノ酸配列を取り出して示す。 The sequences shown in SEQ ID NOs: 3 and 4 are the base sequence and amino acid sequence of the CCN2 cDNA registered in GenBank as accession No. NM_001901. aa1-26 (207-284nt) is a signal peptide, and aa103-166 (513-704nt) is a VWC domain. SEQ ID NO: 5 shows the amino acid sequence of the VWC domain.
 本発明のがんの治療又は予防剤の有効成分は、CCN2とErbB2との間の相互作用を阻害する物質である。下記実施例において明らかにされている通り、CCN2は、VWCドメインを介してErbB2の細胞外領域と相互作用し、ErbB2の自己リン酸化を誘導してシグナルを伝達し、がん細胞の増殖を刺激する。そして、このシグナル伝達の下流でCCN2の産生量が増大し、これによりがん細胞の増殖がさらに促進すると予想される。生体内では、このようなシグナル伝達のサイクルにより、腫瘍の増殖が促進するものと推察される。従って、リガンドであるCCN2とレセプターであるErbB2との間の相互作用を阻害することで、上記のサイクルを断ち切り、がん細胞の増殖を望ましく抑制することができる。 The active ingredient of the agent for treating or preventing cancer according to the present invention is a substance that inhibits the interaction between CCN2 and ErbB2. As demonstrated in the examples below, CCN2 interacts with the extracellular region of ErbB2 through the VWC domain, induces ErbB2 autophosphorylation, transmits a signal, and stimulates the growth of cancer cells To do. And the production amount of CCN2 increases downstream of this signal transduction, and this is expected to further promote the growth of cancer cells. In vivo, it is presumed that tumor growth is promoted by such a cycle of signal transduction. Therefore, by inhibiting the interaction between CCN2 which is a ligand and ErbB2 which is a receptor, the above cycle can be interrupted and the proliferation of cancer cells can be desirably suppressed.
 本発明において、「相互作用」という語には、CCN2とErbB2との間の直接的な結合及び他の因子を介した間接的な結合の両者が包含される。CCN2とErbB2の結合はアグリカン存在下で増大するため、生体内では、CCN2とErbB2との間の直接的な結合の他、アグリカン等の他の因子を介した間接的な結合様態も想定される。CCN2とErbB2との間の相互作用は、上記の通り、CCN2のVWCドメイン(配列番号4の第103番~第166番アミノ酸の領域)とErbB2の細胞外領域(配列番号2の第23番~第652番アミノ酸の領域)との間で生じるが、下記実施例記載のデータから、CCN2側では第121番~第145番アミノ酸の領域が相互作用領域として想定され、ErbB2側ではRECドメイン、特には膜近位側のRECドメイン、中でもErbB2の第436番~第465番アミノ酸の領域が相互作用領域として想定される。 In the present invention, the term “interaction” includes both direct binding between CCN2 and ErbB2 and indirect binding via other factors. Since the binding between CCN2 and ErbB2 increases in the presence of aggrecan, in vivo, in addition to direct binding between CCN2 and ErbB2, indirect binding via other factors such as aggrecan is also assumed. . As described above, the interaction between CCN2 and ErbB2 is as follows: CCN2 VWC domain (regions 103 to 166 of SEQ ID NO: 4) and ErbB2 extracellular region (SEQ ID NO: 2 to 23) From the data described in the following Examples, the region of amino acids 121 to 145 is assumed as the interaction region on the CCN2 side, and the REC domain on the ErbB2 side, Is assumed to be the interaction region of the REC domain on the proximal side of the membrane, particularly the region of amino acids 436 to 465 of ErbB2.
 CCN2とErbB2との間の相互作用を阻害する物質の類型としては、次の2通りの物質を挙げることができる。
(1) ErbB2の細胞外領域に結合することでCCN2とErbB2との間の相互作用を阻害する物質
(2) CCN2のVWCドメイン又はその近傍に結合することでCCN2とErbB2との間の相互作用を阻害する物質
The following two types of substances can be cited as the types of substances that inhibit the interaction between CCN2 and ErbB2.
(1) Substances that inhibit the interaction between CCN2 and ErbB2 by binding to the extracellular region of ErbB2
(2) A substance that inhibits the interaction between CCN2 and ErbB2 by binding to or near the VWC domain of CCN2.
 上記(1)の物質には、ErbB2のRECドメイン(配列番号2中の第52番~第173番アミノ酸の領域、及び第366番~第486番アミノ酸の領域)の少なくともいずれかに結合する物質、例えば膜近位側のRECドメイン(配列番号2の第366番~第486番アミノ酸の領域)に結合する物質が包含される。ErbB2の膜近位側のRECドメインに結合する物質は、例えば、ErbB2の第436番~第465番アミノ酸の領域(配列番号14)に結合する物質であり得る。第436番~第465番アミノ酸の領域は、CCN2とErbB2細胞外領域との間の相互作用に重要な領域であることが確認されている(下記実施例参照)。 The substance (1) above binds to at least one of the REC domains of ErbB2 (the region of amino acids 52 to 173 and the region of amino acids 366 to 486 in SEQ ID NO: 2). For example, a substance that binds to the REC domain on the proximal side of the membrane (region of amino acids 366 to 486 of SEQ ID NO: 2) is included. The substance that binds to the REC domain on the proximal side of ErbB2 can be, for example, a substance that binds to the region of amino acids 436 to 465 (SEQ ID NO: 14) of ErbB2. The region from amino acids 436 to 465 has been confirmed to be an important region for the interaction between CCN2 and ErbB2 extracellular region (see Examples below).
 上記(1)に包含される物質の具体例としては、ErbB2のアンタゴニスト、並びにErbB2のRECドメインに対する抗体(抗ErbB2-RECドメイン抗体)及びその抗原結合性断片を挙げることができる。 Specific examples of the substance included in (1) above include an ErbB2 antagonist, an antibody against the REC domain of ErbB2 (anti-ErbB2-REC domain antibody), and an antigen-binding fragment thereof.
 ErbB2のアンタゴニストは、ErbB2とCCN2との相互作用に関し、CCN2と競合し、かつ、がん細胞の増殖を刺激するErbB2下流のシグナル経路を実質的に作動させない物質、言い換えるとErbB2の自己リン酸化を刺激しない物質であればいかなるものであってもよい。ErbB2のアンタゴニストは、例えば、CCN2タンパク質を改変して作製することができる。CCN2タンパク質の改変体には、CCN2タンパク質のアミノ酸配列の一部に変異(置換や挿入)を導入してErbB2下流のシグナル経路を作動させないように改変したCCN2変異体や、ErbB2下流のシグナル経路を作動させるのに重要な領域を欠いたCCN2タンパク質の部分断片(例えば、VWCドメインの全長又はその一部を含むCCN2部分断片)等が包含される。 ErbB2 antagonists are involved in the interaction between ErbB2 and CCN2 and do not substantially activate the ErbB2 downstream signaling pathway that competes with CCN2 and stimulates cancer cell growth, in other words, ErbB2 autophosphorylation. Any substance that does not irritate may be used. An ErbB2 antagonist can be produced, for example, by modifying the CCN2 protein. CCN2 protein variants include CCN2 variants that have been modified so that ErbB2 downstream signaling pathways are not activated by introducing mutations (substitutions or insertions) into part of the CCN2 protein amino acid sequence, or ErbB2 downstream signaling pathways. CCN2 protein partial fragments lacking a region important for activation (for example, a CCN2 partial fragment containing the full length of VWC domain or a part thereof) and the like are included.
 好ましいCCN2タンパク質改変体の例としては、配列番号5に示すCCN2 VWCドメインのアミノ酸配列中の連続する7残基以上、例えば10残基以上、15残基以上、又は18残基以上からなるポリペプチドを挙げることができる。該ポリペプチドは、配列番号8(実施例で合成したVWCペプチド#4)に示すアミノ酸配列中の連続する7残基以上、例えば10残基以上、15残基以上、又は18残基以上からなるポリペプチドであり得る。配列番号8の部分領域からなるポリペプチドは、配列番号8の第11番~第20番アミノ酸の領域中の連続する7残基以上、好ましくは該領域の全長を含むことが好ましい。配列番号8の第11番~第20番アミノ酸の領域のアミノ酸配列を配列番号38に示す。好ましいCCN2タンパク質改変体の具体例としては、配列番号5に示すアミノ酸配列からなるポリペプチド(VWCドメイン全長)、配列番号8に示すアミノ酸配列からなるポリペプチド(VWCドメインの部分断片)、及び配列番号38に示すアミノ酸配列からなるポリペプチドを挙げることができるが、これらに限定されず、がん細胞の増殖を抑制する作用を有する限り、いかなるCCN2部分断片でもがんの治療又は予防剤の有効成分として好ましく使用可能である。 Examples of preferred CCN2 protein variants include polypeptides comprising 7 or more consecutive residues, for example, 10 or more, 15 or more, or 18 or more residues in the amino acid sequence of CCN2 VWC domain shown in SEQ ID NO: 5. Can be mentioned. The polypeptide consists of 7 or more consecutive residues in the amino acid sequence shown in SEQ ID NO: 8 (VWC peptide # 4 synthesized in the example), for example, 10 residues or more, 15 residues or more, or 18 residues or more. It can be a polypeptide. The polypeptide consisting of the partial region of SEQ ID NO: 8 preferably contains 7 or more consecutive residues in the region of amino acids 11 to 20 of SEQ ID NO: 8, preferably the entire length of the region. The amino acid sequence of the 11th to 20th amino acid region of SEQ ID NO: 8 is shown in SEQ ID NO: 38. Specific examples of preferred CCN2 protein variants include a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 5 (full length of VWC domain), a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 8 (partial fragment of VWC domain), and SEQ ID NO: A polypeptide comprising the amino acid sequence shown in 38 can be exemplified, but the present invention is not limited thereto, and any CCN2 partial fragment can be used as an active ingredient for cancer treatment or prevention as long as it has an action of suppressing the growth of cancer cells. Can be preferably used.
 CCN2部分断片は、ErbB2下流のがん増殖のシグナル伝達経路を作動させない断片であればよいので、もとのCCN2タンパク質の対応する部分領域と同一のアミノ酸配列からなるものであってもよいし、また、アンタゴニストとしての作用が損なわれず、がん細胞の増殖を抑制する作用を維持している限り、配列番号4の対応する部分領域と一部相違があってもよい。例えば、配列番号5に示すVWCドメイン配列と一部相違するアミノ酸配列からなるポリペプチドであってもよい。もとの対応する部分領域との配列の同一性が十分に高ければ、アンタゴニストとしての活性を維持している蓋然性が高く、ひいてはがん細胞の増殖抑制作用を発揮できるといえるため、配列番号4に示す野生型CCN2タンパク質の断片と同様にErbB2のアンタゴニストとして有用であり、本発明の範囲に包含される。もとの対応領域との同一性は、例えば90%以上、好ましくは95%以上、より好ましくは98%以上である。あるいは、もとの対応領域の配列において、1個又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなるポリペプチドであってもよい。 Since the CCN2 partial fragment only needs to be a fragment that does not activate the signal transduction pathway of cancer growth downstream of ErbB2, it may consist of the same amino acid sequence as the corresponding partial region of the original CCN2 protein, Moreover, as long as the effect | action as an antagonist is not impaired and the effect | action which suppresses the proliferation of a cancer cell is maintained, there may be some differences from the corresponding partial region of SEQ ID NO: 4. For example, it may be a polypeptide comprising an amino acid sequence partially different from the VWC domain sequence shown in SEQ ID NO: 5. If the sequence identity with the original corresponding partial region is sufficiently high, it is highly likely that the activity as an antagonist is maintained, and thus it can be said that the cancer cell proliferation inhibitory action can be exhibited. It is useful as an ErbB2 antagonist in the same manner as the fragment of the wild-type CCN2 protein shown in FIG. 2, and is included in the scope of the present invention. The identity with the original corresponding region is, for example, 90% or more, preferably 95% or more, more preferably 98% or more. Alternatively, it may be a polypeptide consisting of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the sequence of the original corresponding region.
 ここで、アミノ酸配列の同一性とは、比較すべき2つのアミノ酸配列のアミノ酸残基ができるだけ多く一致するように両アミノ酸配列を整列させ、一致したアミノ酸残基数を全アミノ酸残基数で除したものを百分率で表したものである。上記整列の際には、必要に応じ、比較する2つの配列の一方又は双方に適宜ギャップを挿入する。このような配列の整列化は、例えばBLAST、FASTA、CLUSTAL W等の周知のプログラムを用いて行なうことができる。ギャップが挿入される場合、上記全アミノ酸残基数は、1つのギャップを1つのアミノ酸残基として数えた残基数となる。このようにして数えた全アミノ酸残基数が、比較する2つの配列間で異なる場合には、同一性(%)は、長い方の配列の全アミノ酸残基数で、一致したアミノ酸残基数を除して算出される。 Here, the amino acid sequence identity means that both amino acid sequences are aligned so that the amino acid residues of the two amino acid sequences to be compared match as much as possible, and the number of matched amino acid residues is divided by the total number of amino acid residues. Is expressed as a percentage. In the above alignment, a gap is appropriately inserted in one or both of the two sequences to be compared as necessary. Such sequence alignment can be performed using a known program such as BLAST, FASTA, CLUSTAL W, and the like. When gaps are inserted, the total number of amino acid residues is the number of residues obtained by counting one gap as one amino acid residue. When the total number of amino acid residues counted in this way is different between the two sequences to be compared, the identity (%) is the total number of amino acid residues in the longer sequence, and the number of amino acid residues matched. Is calculated by dividing.
 天然のタンパク質を構成する20種類のアミノ酸は、低極性側鎖を有する中性アミノ酸(Gly, Ile, Val, Leu, Ala, Met, Pro)、親水性側鎖を有する中性アミノ酸(Asn, Gln, Thr, Ser, Cys)、酸性アミノ酸(Asp, Glu)、塩基性アミノ酸(Arg, Lys, His)、芳香族アミノ酸(Phe, Tyr, Trp)のように類似の性質を有するものにグループ分けでき、これら各グループ内での置換であればポリペプチドの性質が変化しないことが多いことが知られている。従って、野生型CCN2タンパク質断片とは異なるアミノ酸配列からなるポリペプチドをErbB2のアンタゴニストとして用いる場合、これらの各アミノ酸グループ内でアミノ酸が置換されていれば、ErbB2のアンタゴニストとしての作用が維持される可能性が高くなる。 The 20 types of amino acids that make up natural proteins are neutral amino acids with low polarity side chains (Gly, Ile, Val, Leu, Ala, Met, Pro), neutral amino acids with hydrophilic side chains (Asn, Gln) , Thr, Ser, Cys), acidic amino acids (Asp, Glu), basic amino acids (Arg, Lys, His), and aromatic amino acids (Phe, Tyr, Trp). It is known that the properties of the polypeptide often do not change if the substitution is within each of these groups. Therefore, when a polypeptide having an amino acid sequence different from that of the wild-type CCN2 protein fragment is used as an ErbB2 antagonist, the action of ErbB2 as an antagonist can be maintained if an amino acid is substituted in each of these amino acid groups. Increases nature.
 ある任意のアミノ酸配列からなるCCN2改変体がErbB2のアンタゴニストとしての活性を有し、がん細胞の増殖を抑制できるかどうかは、当業者であれば容易に調べることができる。例えば、がん細胞株をCCN2改変体と接触させ、がん細胞の増殖が抑制されるかどうかを調べればよい。増殖抑制が確認できれば、そのCCN2改変体はErbB2のアンタゴニスト活性を有し、それによりがん細胞の増殖を抑制する作用を示したと判断することができる。下記実施例では、CCN2改変体の一例であるVWC領域(組換えヒトVWCフラグメント)が、培地に添加されたCCN2により誘導されるがん細胞の増殖を抑制すること、CCN2が培地に添加されない場合でも、がん細胞の増殖を抑制することが具体的に示されている。 A person skilled in the art can easily examine whether a CCN2 variant consisting of an arbitrary amino acid sequence has activity as an ErbB2 antagonist and can suppress the growth of cancer cells. For example, a cancer cell line may be brought into contact with a CCN2 variant to examine whether cancer cell growth is suppressed. If growth inhibition can be confirmed, it can be determined that the CCN2 variant has an ErbB2 antagonistic activity, thereby exhibiting an action of suppressing cancer cell growth. In the following examples, the VWC region (recombinant human VWC fragment), which is an example of a CCN2 variant, suppresses the growth of cancer cells induced by CCN2 added to the medium, and CCN2 is not added to the medium However, it has been specifically shown to suppress the growth of cancer cells.
 あるいは、アンタゴニストとしての活性を有するかどうか、すなわち、野生型CCN2と競合するかどうか、及びErbB2下流のシグナル経路を作動させないかどうかをそれぞれ調べてもよい。 Alternatively, it may be examined whether it has activity as an antagonist, that is, whether it competes with wild-type CCN2 and does not activate the signal pathway downstream of ErbB2.
 CCN2との競合については、ErbB2の細胞外領域を固相上に固定化し、CCN2と共にCCN2改変体をErbB2固定化固相に接触させ、ErbB2とCCN2との結合量を測定することで、該改変体がCCN2とErbB2の結合を阻害するか否かを調べることができる。固相上のErbB2に結合したCCN2量の測定は、例えば、CCN2を予めビオチン化しておき、固相上のErbB2と反応させて洗浄した後、酵素や蛍光物質等で標識したストレプトアビジンを加え、さらに洗浄後、標識からのシグナルの検出を行なうことで、容易にCCN2結合量を測定できる。また、表面プラズモン共鳴(SPR)を用いて、チップ上に固定化したErbB2細胞外領域にCCN2改変体共存下で結合したCCN2の量をSPRセンサーにより測定してもよい。その他、マイクロ流路チップを用いた電気化学的測定方法や、酵母two-hybrid法を用いた方法など、2因子間の結合阻害を測定する方法は種々知られており、いずれの方法を用いてもよい。上述の通り、CCN2とErbB2との間の結合様態としては、直接的な結合及びアグリカン等の他の因子を介した間接的な結合の両者が想定されるが、野生型CCN2と競合するかどうかについては、直接的な結合を阻害するかどうかを調べるだけでもよい。 For competition with CCN2, the extracellular region of ErbB2 is immobilized on the solid phase, CCN2 and CCN2 variant are brought into contact with ErbB2-immobilized solid phase, and the amount of binding between ErbB2 and CCN2 is measured. Whether the body inhibits the binding of CCN2 and ErbB2 can be examined. Measurement of the amount of CCN2 bound to ErbB2 on the solid phase is, for example, biotinylated CCN2 in advance, reacted with ErbB2 on the solid phase and washed, and then added with streptavidin labeled with an enzyme or a fluorescent substance, Furthermore, the amount of CCN2 binding can be easily measured by detecting the signal from the label after washing. Alternatively, the surface plasmon resonance (SPR) may be used to measure the amount of CCN2 bound to the ErbB2 extracellular region immobilized on the chip in the presence of a CCN2 variant using an SPR sensor. In addition, there are various known methods for measuring binding inhibition between two factors, such as an electrochemical measurement method using a microchannel chip and a method using the yeast two-hybrid method. Also good. As described above, the binding mode between CCN2 and ErbB2 is assumed to be both direct binding and indirect binding via other factors such as aggrecan, but whether to compete with wild-type CCN2 or not For, it is only necessary to examine whether direct binding is inhibited.
 また、ErbB2下流のシグナル経路を作動させないかどうかは、例えば、ErbB2を過剰発現する培養細胞(ErbB2を高発現する乳がん由来細胞株SKBr3などを利用可能)とCCN2改変体を接触させ、細胞からタンパク質を抽出し、抗リン酸化チロシン抗体(市販品を利用可能)を用いたウエスタンブロットを行ない、ErbB2の自己リン酸化が生じているかどうかを確認することで調べることができる。 Whether or not the signal pathway downstream of ErbB2 is to be activated is determined by, for example, contacting cultured cells that overexpress ErbB2 (such as the breast cancer-derived cell line SKBr3 that highly expresses ErbB2) with CCN2 variants, and then making proteins from the cells. Can be examined by performing Western blotting using an anti-phosphotyrosine antibody (commercially available) and confirming whether ErbB2 autophosphorylation has occurred.
 CCN2タンパク質改変体は、周知の遺伝子工学的手法により、野生型CCN2 cDNAにミスマッチプライマー等を用いた常法により変異を導入し、これを適当な発現ベクターに組み込んで宿主細胞に導入し、所望のCCN2変異体を宿主細胞内で発現させ、これを回収して得ることができる。野生型CCN2 cDNAは、軟骨細胞等のCCN2を発現する細胞から抽出したRNAを鋳型としてRT-PCRを行なうことで得ることができる。CCN2の部分断片の場合は、CCN2 cDNAのうちの所望の領域を発現ベクターに組み込んで宿主細胞内で発現させればよい。所望の領域を増幅できるプライマーは、配列番号3に示す塩基配列を参照して適宜設計することができる。なお、上記した通り、配列番号3に示す塩基配列中、第513位~第704位がVWCドメインをコードする領域である。あるいはまた、所望のアミノ酸配列からなるCCN2タンパク質改変体は、常法の化学合成により調製することもできる。 The CCN2 protein variant is introduced by introducing a mutation into a wild-type CCN2 cDNA by a conventional method using a mismatch primer or the like by a well-known genetic engineering technique, incorporating it into an appropriate expression vector, and introducing it into a host cell. CCN2 mutants can be expressed in host cells and recovered. Wild-type CCN2 cDNA can be obtained by performing RT-PCR using RNA extracted from cells expressing CCN2 such as chondrocytes as a template. In the case of a partial fragment of CCN2, a desired region of CCN2 cDNA may be incorporated into an expression vector and expressed in a host cell. A primer capable of amplifying a desired region can be appropriately designed with reference to the base sequence shown in SEQ ID NO: 3. As described above, positions 513 to 704 in the nucleotide sequence shown in SEQ ID NO: 3 are regions encoding the VWC domain. Alternatively, a CCN2 protein variant consisting of the desired amino acid sequence can be prepared by conventional chemical synthesis.
 抗ErbB2-RECドメイン抗体は、CCN2とErbB2との間の相互作用を妨害することができるので、ErbB2のアンタゴニストと同様にがんの治療及び予防に有用である。該抗体は、膜近位側のRECドメインに結合する抗体、例えばErbB2の第436番~第465番アミノ酸の領域内にエピトープを有する抗体であり得る。 Since the anti-ErbB2-REC domain antibody can interfere with the interaction between CCN2 and ErbB2, it is useful for the treatment and prevention of cancer in the same manner as the ErbB2 antagonist. The antibody may be an antibody that binds to the REC domain on the membrane proximal side, for example, an antibody having an epitope in the region of amino acids 436 to 465 of ErbB2.
 抗体は、ポリクローナル抗体でもモノクローナル抗体でもよい。抗ErbB2-RECドメインヒト抗体は、常法のハイブリドーマ法等により容易に作製することができる。簡単に説明すると、ErbB2タンパク質又はErbB2のRECドメインを含むErbB2断片を周知の遺伝子工学的手法により調製し、これを免疫原として適宜アジュバントと共に用いて動物(ヒトを除く)を免疫して、該動物体内で抗体を誘起する。該動物から脾細胞やリンパ球のような抗体産生細胞を回収し、これをミエローマ細胞等の不死化細胞と融合させることにより、ハイブリドーマを作製する。該ハイブリドーマから、ErbB2のRECドメインと特異的に結合する抗体を産生するものを選択し、これを増殖させて、その培養上清から抗ErbB2-RECドメインモノクローナル抗体を得ることができる。 The antibody may be a polyclonal antibody or a monoclonal antibody. The anti-ErbB2-REC domain human antibody can be easily prepared by a conventional hybridoma method or the like. Briefly, an ErbB2 protein or an ErbB2 fragment containing the REC domain of ErbB2 is prepared by a well-known genetic engineering technique, and this is used as an immunogen together with an adjuvant as appropriate to immunize animals (except humans). Induces antibodies in the body. Antibody producing cells such as spleen cells and lymphocytes are collected from the animal and fused with immortalized cells such as myeloma cells to produce hybridomas. From the hybridoma, one that produces an antibody that specifically binds to the REC domain of ErbB2 can be selected and expanded to obtain an anti-ErbB2-REC domain monoclonal antibody from the culture supernatant.
 モノクローナル抗体には、齧歯動物等の非ヒト由来の抗体の他、キメラ抗体、ヒト化抗体(非ヒト由来抗体のCDR領域をヒト抗体の相当する領域に移植したもの)、ヒト抗体(非ヒト動物又はヒト細胞株を用いて製造される、ヒトの体内で産生されるものと同じ抗体)も包含される。キメラ抗体、ヒト化抗体及びヒト抗体の作製方法は、この分野で周知の方法として確立している。例えば、抗ErbB2-RECドメインヒト抗体は、ヒト抗体を産生できるように遺伝的に改変されたマウス等の非ヒト動物にErbB2のRECドメインを免疫して調製可能である。 In addition to antibodies derived from non-humans such as rodents, monoclonal antibodies include chimeric antibodies, humanized antibodies (non-human-derived antibody CDR regions transplanted to regions corresponding to human antibodies), human antibodies (non-human Also included are the same antibodies produced in the human body that are produced using animal or human cell lines. Methods for producing chimeric antibodies, humanized antibodies, and human antibodies have been established as methods well known in the art. For example, an anti-ErbB2-REC domain human antibody can be prepared by immunizing a REC domain of ErbB2 to a non-human animal such as a mouse genetically modified so that a human antibody can be produced.
 抗ErbB2-RECドメイン抗体から抗原結合性断片を調製することも可能である。「抗原結合性断片」とは、例えば免疫グロブリンのFab断片やF(ab')2断片のような、当該抗体の対応抗原に対する結合性(抗原抗体反応性)を維持している抗体断片を意味する。ErbB2のRECドメインへの結合性を維持した抗体断片は、完全抗体と同様にがんの治療及び予防に利用することができる。Fab断片やF(ab')2断片は、周知の通り、モノクローナル抗体をパパインやペプシンのようなタンパク分解酵素で処理することにより得ることができる。なお、抗原結合性断片は、Fab断片やF(ab')2断片に限定されるものではなく、対応抗原との結合性を維持しているいかなる断片であってもよく、遺伝子工学的手法により調製されたものであってもよい。また、例えば、遺伝子工学的手法により、一本鎖可変領域 (scFv: single chain fragment of variable region) を大腸菌内で発現させた抗体を用いることもできる。scFvの作製方法も周知であり、上記の通りに作製したハイブリドーマのmRNAを抽出し、一本鎖cDNAを調製し、免疫グロブリンH鎖及びL鎖に特異的なプライマーを用いてPCRを行なって免疫グロブリンH鎖遺伝子及びL鎖遺伝子を増幅し、これらをリンカーで連結し、適切な制限酵素部位を付与してプラスミドベクターに挿入し、該ベクターを大腸菌に導入して形質転換し、大腸菌からscFvを回収することによりscFvを作製することができる。このようなscFvも「抗原結合性断片」として本発明の範囲に包含される。 It is also possible to prepare an antigen-binding fragment from an anti-ErbB2-REC domain antibody. “Antigen-binding fragment” means an antibody fragment that maintains the binding property (antigen-antibody reactivity) of the antibody to the corresponding antigen, such as an Fab fragment or F (ab ′) 2 fragment of an immunoglobulin, for example. To do. Antibody fragments that maintain the binding of ErbB2 to the REC domain can be used for the treatment and prevention of cancer in the same manner as complete antibodies. Fab fragments and F (ab ′) 2 fragments can be obtained by treating monoclonal antibodies with proteolytic enzymes such as papain and pepsin, as is well known. The antigen-binding fragment is not limited to the Fab fragment or the F (ab ′) 2 fragment, and may be any fragment that maintains the binding property with the corresponding antigen. It may be prepared. In addition, for example, an antibody in which a single chain fragment of variable region (scFv) is expressed in Escherichia coli by genetic engineering techniques can be used. The method for producing scFv is also well known. The hybridoma mRNA produced as described above is extracted, single-stranded cDNA is prepared, and PCR is performed using primers specific to immunoglobulin H chain and L chain. Globulin H chain gene and L chain gene are amplified, ligated with a linker, inserted with an appropriate restriction enzyme site and inserted into a plasmid vector, the vector is introduced into E. coli and transformed, and scFv is transformed from E. coli. By collecting, scFv can be prepared. Such scFv is also included in the scope of the present invention as an “antigen-binding fragment”.
 上記(2)の物質は、例えば、CCN2のVWCドメイン(配列番号4中の第103番~第166番アミノ酸の領域)に結合する物質である。CCN2はそのVWCドメインを介してErbB2の細胞外領域と相互作用するため、VWCドメインに結合する物質を用いることで、CCN2と細胞表面のErbB2との間の相互作用を阻害し、ErbB2の下流へのシグナル伝達を阻害することができる。 The substance (2) above is, for example, a substance that binds to the CCW2 VWC domain (regions 103 to 166 in SEQ ID NO: 4). Since CCN2 interacts with the extracellular region of ErbB2 via its VWC domain, using a substance that binds to the VWC domain inhibits the interaction between CCN2 and ErbB2 on the cell surface, and downstream of ErbB2 Signal transduction can be inhibited.
 上記(2)に包含される物質の具体例としては、CCN2のVWCドメインに対する抗体(抗CCN2-VWCドメイン抗体)及びその抗原結合性断片、ErbB2細胞外領域(配列番号9)及びその部分断片等を挙げることができる。 Specific examples of substances included in (2) above include antibodies against the CCN2 VWC domain (anti-CCN2-VWC domain antibody) and antigen-binding fragments thereof, ErbB2 extracellular region (SEQ ID NO: 9) and partial fragments thereof, etc. Can be mentioned.
 抗CCN2-VWCドメイン抗体は、VWCドメイン(配列番号5)内のいずれかの領域に特異的に結合する抗体である。好ましい抗CCN2-VWCドメイン抗体又はその抗原結合性断片の例としては、配列番号5中の第19番~第64番アミノ酸(配列番号4では第121番~第166番アミノ酸)の領域内にエピトープを有する抗体又はその抗原結合性断片を挙げることができ、例えば、配列番号5中の第19番~第43番アミノ酸(配列番号4では第121番~第145番アミノ酸)の領域内、又は配列番号5中の第44番~第64番(配列番号4では第146番~第166番アミノ酸)の領域内にエピトープを有する抗体又はその抗原結合性断片であり得るが、これらに限定されない。ここでいう、所定の領域内にエピトープを有するという表現は、該領域の全長又は部分領域がエピトープであることを意味する。抗CCN2-VWCドメイン抗体もまた、抗ErbB2-RECドメイン抗体と同様に、ポリクローナル抗体でもモノクローナル抗体でもよく、モノクローナル抗体にはキメラ抗体、ヒト化抗体、ヒト抗体が包含される。抗CCN2-VWCドメイン抗体は、シグナルペプチドを除いた成熟型のCCN2タンパク質又はそのVWCドメインを含むCCN2断片を免疫原として用いて常法により作製することができる。 The anti-CCN2-VWC domain antibody is an antibody that specifically binds to any region in the VWC domain (SEQ ID NO: 5). Examples of preferred anti-CCN2-VWC domain antibodies or antigen-binding fragments thereof include epitopes within the region of amino acids 19 to 64 in SEQ ID NO: 5 (amino acids 121 to 166 in SEQ ID NO: 4). Or an antigen-binding fragment thereof, for example, in the region of amino acids 19 to 43 in SEQ ID NO: 5 (amino acids 121 to 145 in SEQ ID NO: 4) or the sequence Although it may be an antibody having an epitope in the region of No. 44 to No. 64 (No. 146 to No. 166 in SEQ ID No. 4) in No. 5, or an antigen-binding fragment thereof, it is not limited thereto. As used herein, the expression “having an epitope within a predetermined region” means that the full length or partial region of the region is an epitope. Similarly to the anti-ErbB2-REC domain antibody, the anti-CCN2-VWC domain antibody may be a polyclonal antibody or a monoclonal antibody, and the monoclonal antibody includes a chimeric antibody, a humanized antibody, and a human antibody. The anti-CCN2-VWC domain antibody can be prepared by a conventional method using a mature CCN2 protein excluding the signal peptide or a CCN2 fragment containing the VWC domain as an immunogen.
 ErbB2細胞外領域及びその部分断片は、がん細胞表面のErbB2と競合してCCN2を捕捉し、これにより、細胞表面に存在するErbB2とCCN2との間の相互作用を阻害することができる。ErbB2細胞外領域の部分断片は、配列番号9に示すErbB2細胞外領域のアミノ酸配列中の連続する7残基以上、例えば10残基以上、15残基以上、18残基以上、25残基以上、又は30残基以上で、配列番号9の全長未満からなる。該部分断片の好ましい具体例としては、配列番号14に示すアミノ酸配列中の連続する7残基以上、例えば10残基以上、15残基以上、18残基以上、25残基以上、又は配列番号14の全長からなるポリペプチドを挙げることができるが、これに限定されない。 The ErbB2 extracellular region and partial fragments thereof compete with ErbB2 on the cancer cell surface to capture CCN2, thereby inhibiting the interaction between ErbB2 and CCN2 present on the cell surface. The partial fragment of ErbB2 extracellular region is 7 or more consecutive amino acids in the amino acid sequence of ErbB2 extracellular region shown in SEQ ID NO: 9, for example, 10 residues or more, 15 residues or more, 18 residues or more, 25 residues or more. Or 30 residues or more and less than the full length of SEQ ID NO: 9. Preferable specific examples of the partial fragment include 7 or more consecutive residues in the amino acid sequence shown in SEQ ID NO: 14, for example, 10 residues or more, 15 residues or more, 18 residues or more, 25 residues or more, or SEQ ID NO: A polypeptide consisting of 14 full lengths can be mentioned, but is not limited thereto.
 また、ErbB2細胞外領域及びその部分断片のいずれかと一定以上の高い同一性を有するポリペプチドも、CCN2とErbB2との間の相互作用によるシグナル伝達を阻害してがん細胞の増殖を抑制し得るため、上記(2)の物質として利用可能である。そのようなポリペプチドは、もとのErbB2細胞外領域又はその部分断片と90%以上、好ましくは95%以上の同一性を有するか、あるいは、ErbB2細胞外領域又はその部分断片において1個又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなるポリペプチドであり得る。ErbB2細胞外領域又はその部分断片との同一性が高い任意のポリペプチドがCCN2とErbB2との間の相互作用によるシグナル伝達を阻害してがん細胞の増殖を抑制できるかどうかは、例えば、がん細胞株を該ポリペプチドと接触させ、がん細胞の増殖が抑制されるかどうかを調べることにより確認することができる。 In addition, a polypeptide having a certain level of identity with any of the ErbB2 extracellular region and any of its partial fragments can also inhibit cancer cell growth by inhibiting signal transduction due to the interaction between CCN2 and ErbB2. Therefore, it can be used as the substance of (2) above. Such a polypeptide has 90% or more, preferably 95% or more identity with the original ErbB2 extracellular region or a partial fragment thereof, or one or several in the ErbB2 extracellular region or a partial fragment thereof. It may be a polypeptide consisting of an amino acid sequence in which one amino acid is substituted, deleted, inserted or added. Whether any polypeptide with high identity with the ErbB2 extracellular region or a partial fragment thereof can inhibit the signal transduction due to the interaction between CCN2 and ErbB2 can suppress the growth of cancer cells, for example, This can be confirmed by contacting a cancer cell line with the polypeptide and examining whether the growth of cancer cells is suppressed.
 ErbB2細胞外領域及びその部分断片は、CCN2タンパク質改変体について上述したのと同様に、周知の遺伝子工学的手法により、又は化学合成により調製することができる。遺伝子工学的手法により調製する場合、ErbB2細胞外領域をコードするcDNAは、例えば、ErbB2を発現するがん細胞から抽出したmRNAからRT-PCRにより増幅して得ることができる。上記した通り、配列番号1に示す塩基配列中、第305位~第2194位が細胞外領域をコードする領域であり、このうち第392位~第757位及び第1334位~第1696位がRECドメインをコードする領域であるので、プライマーを適宜設定して所望の領域を増幅させればよい。 ErbB2 extracellular region and partial fragments thereof can be prepared by well-known genetic engineering techniques or by chemical synthesis, as described above for CCN2 protein variants. When prepared by a genetic engineering technique, a cDNA encoding the ErbB2 extracellular region can be obtained by, for example, amplifying RT-PCR from mRNA extracted from a cancer cell that expresses ErbB2. As described above, in the nucleotide sequence shown in SEQ ID NO: 1, positions 305 to 2194 are regions encoding extracellular regions, of which positions 392 to 757 and 1334 to 1696 are REC. Since it is a region encoding a domain, a desired region may be amplified by appropriately setting primers.
 また、上記(2)の物質として、CCN2のVWCドメイン又はその近傍に結合することが知られている公知のタンパク質を利用することも可能である。そのような公知のタンパク質としては、例えば、CCN3(VWCドメイン、CTドメインでCCN2と結合する。第4回日本CCNファミリー研究会 プログラム・抄録集、平成23年8月26日発行、p.32;及び下記参考例参照)、DECORIN(コアタンパク質のLRR10-12でCCN2と結合する。The Journal of Biological Chemistry, 2011, 286, p.24242-24252.)、BMP(骨形成タンパク質)(Nat Cell Biol. 2002 August; 4(8): 599-604)等を挙げることができるが、これらに限定されない。こうした公知のタンパク質は、CCN2のVWCドメインに結合する領域のみを用いてもよい。アミノ酸配列及びcDNAの塩基配列が公知のタンパク質及びその断片は、周知の遺伝子工学的手法により又は化学合成により調製できる。 In addition, as the substance (2), a known protein known to bind to the VCN domain of CCN2 or the vicinity thereof can be used. As such a known protein, for example, CCN3 (VWC domain, CT domain binds to CCN2; 4th Japan CCN Family Study Group Program / Abstract Collection, published on August 26, 2011, p.32; And DECORIN (the core protein LRR10-12 binds to CCN2; The Journal of Biological Chemistry, 2011, 286, p. 24242-24252.), BMP (bone morphogenetic protein) (Nat Cell Biol. 2002 August; 4 (8): 599-604), and the like, but is not limited thereto. Such known proteins may use only the region that binds to the CCN2 VWC domain. Proteins and fragments thereof with known amino acid sequences and cDNA base sequences can be prepared by well-known genetic engineering techniques or by chemical synthesis.
 本発明で用いられるタンパク質断片等のポリペプチドは、ペプチド医薬において生体内での安定性の向上等のために行なわれている技術、例えば糖鎖付加、PEG付加、あるいはポリペプチドを構成するアミノ酸の少なくとも一部をD体アミノ酸とする等の技術を適用したものであってよい。こうした技術は、例えばJ Am Chem Soc. 2004 Nov 3;126(43):14013-22やAngew Chem Int Ed Engl. 2004 Mar 12;43(12):1516-20(糖鎖付加)、Clin Nephrol. 2006 Mar;65(3):180-90.やProc Natl Acad Sci USA. 2005 Sep 6;102(36):12962-7.(PEG付加)、J Pharmacol Exp Ther. 2004 Jun;309(3):1190-7やJ Pharmacol Exp Ther. 2004 Jun;309(3):1183-9.(D体アミノ酸の利用)等に記載されるように周知であり、ペプチド医薬の分野で既に利用されている。 A polypeptide such as a protein fragment used in the present invention is a technique used for improving stability in a living body in peptide medicine, for example, glycosylation, PEG addition, or the amino acid constituting the polypeptide. A technique such as at least a part of which is a D-form amino acid may be applied. Such techniques include, for example, J Am Chem Soc. 2004 Nov 3; 126 (43): 14013-22, Angew Chem Int Ed Engl. 2004 Mar 12; 43 (12): 1516-20 (glycosylation), Clin Nephrol. 2006 Mar; 65 (3): 180-90. And Proc Natl Acad Sci USA. 2005 Sep 6; 102 (36): 12962-7. (PEG addition), J Pharmacol Exp Ther. 2004 Jun; 309 (3): 1190-7 and J Pharmacol Exp Ther. 2004 Jun; 309 (3): 1183-9 (utilization of D-form amino acids) and the like, and are already utilized in the field of peptide medicine.
 あるいは、遺伝子工学的手法により組換えポリペプチドを製造した場合、宿主細胞内において各種の翻訳後修飾(N末端メチオニンの脱離、N末端アセチル化、糖鎖付加、細胞内プロテアーゼによる限定分解、ミリストイル化、イソプレニル化、リン酸化など)を受け得るが、そのような翻訳後修飾された形態のポリペプチドも、がん細胞の増殖を抑制できる限り、本発明の治療又は予防剤の有効成分として使用でき、本発明の範囲に包含される。 Alternatively, when a recombinant polypeptide is produced by genetic engineering techniques, various post-translational modifications (elimination of N-terminal methionine, N-terminal acetylation, glycosylation, limited degradation by intracellular protease, myristoyl Such post-translationally modified form of the polypeptide can be used as an active ingredient of the therapeutic or prophylactic agent of the present invention as long as it can suppress the growth of cancer cells. And within the scope of the present invention.
 また、ポリペプチド製造の便宜その他のために任意のアミノ酸配列を付加したもの、例えばFlagタグやHisタグ、GSTを付加した形態のポリペプチドや、他のタンパク質ないしはその断片と融合させた形態のポリペプチドも、抗がん作用を発揮する領域は上記した相互作用阻害物質(1)又は(2)に該当するポリペプチドの領域であるから、本発明を利用するものであり、従ってそのような融合タンパク質も本発明の範囲に包含される。他のタンパク質等と融合したアミノ酸配列からなる場合、アミノ酸配列の同一性は、本発明で用いられるポリペプチドに対応する領域のみを取り出して算出されるものとする。例えば、Hisタグを付加したポリペプチドであれば、Hisタグを除いた領域間で同一性が算出される。 In addition, for the convenience of polypeptide production, etc., any amino acid sequence added, such as a polypeptide with a Flag tag, His tag, or GST added, or a polypeptide fused with other proteins or fragments thereof. Since the peptide also exhibits anticancer activity in the region of the polypeptide corresponding to the interaction inhibitor (1) or (2) described above, the present invention is used, and thus such fusion is performed. Proteins are also encompassed within the scope of the present invention. In the case of an amino acid sequence fused with another protein or the like, the amino acid sequence identity is calculated by extracting only the region corresponding to the polypeptide used in the present invention. For example, in the case of a polypeptide to which a His tag is added, the identity is calculated between regions excluding the His tag.
 本発明で治療・予防対象となるがんは特に限定されず、ErbB2の発現があるがんであればいかなるがんでも治療及び予防が可能である。乳がんなどではErbB2検査が行なわれることがあるが、本発明の治療又は予防剤では、従来法でErbB2陽性と判断されるようなErbB2過剰発現がんに限定されず、ErbB2の発現が検出可能なレベルで発現しているがんも対象となる。ErbB2の発現が確認されているがんとしては、乳がんの他、例えば胃がん、膵臓がん、肺がん、大腸がん、膀胱がんを挙げることができるが、これらに限定されるものではない。がん細胞におけるErbB2の発現量は患者ごとに異なり得るが、対象患者のがんにErbB2の発現が検出されるか否かは、患者から採取したがん組織試料を用いて、リアルタイムPCR、ノザンブロッティング、免疫染色、ウエスタンブロッティング等の常法を行なうことにより、容易に調べることができる。例えば、蛍光標識した抗体を用いてがん組織試料を免疫染色し、がん細胞におけるErbB2の発現が検出されれば、ErbB2の発現があるがんと判断してよい。 The cancer to be treated / prevented in the present invention is not particularly limited, and any cancer can be treated and prevented as long as it has ErbB2 expression. ErbB2 testing may be performed in breast cancer, etc., but the therapeutic or preventive agent of the present invention is not limited to ErbB2 overexpressing cancers that are judged to be ErbB2 positive by conventional methods, and ErbB2 expression can be detected. Cancers that are expressed at the level are also targeted. Examples of cancers in which ErbB2 expression has been confirmed include, but are not limited to, breast cancer, gastric cancer, pancreatic cancer, lung cancer, colon cancer, and bladder cancer. Although the expression level of ErbB2 in cancer cells may vary from patient to patient, whether or not ErbB2 expression is detected in the target patient's cancer can be determined using real-time PCR, Northern PCR using a cancer tissue sample collected from the patient. It can be easily examined by performing conventional methods such as blotting, immunostaining, and Western blotting. For example, if a cancer tissue sample is immunostained using a fluorescently labeled antibody and the expression of ErbB2 in a cancer cell is detected, it may be determined that the cancer has ErbB2 expression.
 本発明のがんの治療又は予防剤の投与対象は、特に限定されないが、好ましくは哺乳動物であり、例えばヒト、イヌ、ネコ、ウサギ、ハムスター、マウス、サル、ウマ、ブタ、ウシ、ヒツジ等を挙げることができる。 The administration target of the therapeutic or prophylactic agent for cancer of the present invention is not particularly limited, but is preferably a mammal, such as a human, dog, cat, rabbit, hamster, mouse, monkey, horse, pig, cow, sheep, etc. Can be mentioned.
 本発明の治療又は予防剤は、上記(1)及び(2)から選択される物質の1種のみを含むものであってもよく、また、2種以上を含むものであってもよい。本発明の剤は、単独で使用してもよいし、他の抗がん剤と併用してもよい。 The therapeutic or prophylactic agent of the present invention may contain only one type of substance selected from (1) and (2) above, or may contain two or more types. The agent of the present invention may be used alone or in combination with other anticancer agents.
 本発明の治療又は予防剤の生体への投与経路は、経口投与でも非経口投与でもよいが、筋肉内投与、皮下投与、静脈内投与、動脈内投与等の非経口投与が好ましい。がんの治療目的で用いる場合には、抗がん作用を高めるため、治療対象となる腫瘍そのものの近傍又は腫瘍近傍の所属リンパ節に投与することもできる。投与量は、対象となるがんの治療又は予防に有効な量であればよい。有効量は、腫瘍の大きさや症状等に応じて適宜選択されるが、通常、対象生体に対し1日当りの有効量として体重1kg当たり0.001mg~1000mg、例えば0.01mg~100mgであり、1回又は数回に分けて、好ましくは数回に分け、数日ないし数月おきに投与する。がんの発症前やがんの治療後に本発明の剤を用いれば、がんの発症や再発を防止することができるので、本発明はがんの予防にも利用可能である。 The administration route to the living body of the therapeutic or prophylactic agent of the present invention may be oral administration or parenteral administration, but parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred. When used for the purpose of cancer treatment, in order to enhance the anticancer effect, it can be administered to the vicinity of the tumor to be treated or to a regional lymph node near the tumor. The dose may be an amount effective for treatment or prevention of the target cancer. The effective amount is appropriately selected according to the size and symptoms of the tumor, but is usually 0.001 mg to 1000 mg per kg body weight as the effective amount per day for the target living body, for example, 0.01 mg to 100 mg. Divided into several times, preferably divided into several times and administered every several days to several months. Since the onset and recurrence of cancer can be prevented by using the agent of the present invention before cancer onset or after cancer treatment, the present invention can also be used for cancer prevention.
 また、本発明は、CCN2とErbB2との間の相互作用を阻害する物質(以下、便宜的に「CCN2-ErbB2相互作用阻害剤」と呼ぶことがある)と、アポトーシスを誘導するタイプの抗がん剤(アポトーシス誘導剤)との組み合わせによるがんの治療又は予防剤を提供する。「組み合わせて」とは、CCN2-ErbB2相互作用阻害剤及びアポトーシス誘導剤を患者に対し同時に、順次に、又は別々に投与することを意味する。以下、先に述べたがんの治療又は予防剤を「第1のがんの治療又は予防剤」、アポトーシスとの組み合わせによるがんの治療又は予防剤を「組み合わせ剤」と呼ぶことがある。 The present invention also provides a substance that inhibits the interaction between CCN2 and ErbB2 (hereinafter sometimes referred to as “CCN2-ErbB2 interaction inhibitor”) and an anti-apoptosis type anti-antibody. Provided is a cancer treatment or prevention agent in combination with an cancer drug (apoptosis inducer). “In combination” means that a CCN2-ErbB2 interaction inhibitor and an apoptosis-inducing agent are administered to a patient simultaneously, sequentially or separately. Hereinafter, the cancer treatment or prevention agent described above may be referred to as “first cancer treatment or prevention agent”, and the cancer treatment or prevention agent in combination with apoptosis may be referred to as “combination agent”.
 CCN2とErbB2との間の相互作用を阻害する物質とは、上記に定義した通りの物質であり、その類型としては既に述べた通り次の2通りの物質を挙げることができる。各物質の好ましい条件等も上述の通りである。
(1) ErbB2の細胞外領域に結合することでCCN2とErbB2との間の相互作用を阻害する物質
(2) CCN2のVWCドメイン又はその近傍に結合することでCCN2とErbB2との間の相互作用を阻害する物質
The substance that inhibits the interaction between CCN2 and ErbB2 is a substance as defined above, and the types thereof include the following two substances as already described. Preferred conditions for each substance are also as described above.
(1) Substances that inhibit the interaction between CCN2 and ErbB2 by binding to the extracellular region of ErbB2
(2) A substance that inhibits the interaction between CCN2 and ErbB2 by binding to or near the VWC domain of CCN2.
 アポトーシス誘導剤には、がん細胞に対しアポトーシスを誘導することが知られている公知の各種抗がん剤が包含される。具体例を挙げると、有糸分裂の阻害によりがん細胞の増殖を抑制するタキサン系抗がん剤、ビンアルカロイド系、コルヒチン等が包含され、特にタキサン系抗がん剤が好ましく併用される。タキサン系抗がん剤の具体例としては、特に限定されないが、パクリタキセル、ドセタキセルなどの、パクリタキセル及びその各種誘導体が挙げられる。 The apoptosis inducer includes various known anticancer agents known to induce apoptosis in cancer cells. Specific examples include taxane anticancer agents, vinca alkaloids, colchicine, and the like that suppress the growth of cancer cells by inhibiting mitosis, and taxane anticancer agents are particularly preferably used in combination. Specific examples of taxane anticancer agents include, but are not limited to, paclitaxel and various derivatives thereof such as paclitaxel and docetaxel.
 本発明の組み合わせ剤が対象とするがんは、ErbB2の発現があるがんであり、好ましくは、有糸分裂の阻害等によりアポトーシスを誘導してがん細胞の増殖を抑制するタイプの抗がん剤、特にはタキサン系抗がん剤に耐性のがんである。「抗がん剤に耐性のがん」には、該抗がん剤での治療中に耐性化したもの、治療の始めから該抗がん剤の効果が低いものの両者が包含される。ErbB2の発現量に関しては、過剰発現がんに限定されず、ErbB2が検出可能なレベルで発現しているがんも対象となる。例えば、乳がんなどではErbB2検査が行なわれることがあるが、従来法でErbB2陽性と判断されるようなErbB2過剰発現がんには限定されない。ErbB2の発現が確認されているがんの具体例、及び対象患者のがんにErbB2の発現が検出されるか否かの調べ方は、第1のがんの治療又は予防剤に関する説明において既に述べた通りである。 The cancer targeted by the combination of the present invention is a cancer with ErbB2 expression, preferably an anti-cancer of the type that induces apoptosis by inhibiting mitosis or the like to suppress the growth of cancer cells Cancer resistant to drugs, particularly taxane anticancer agents. “A cancer resistant to an anticancer agent” includes both those that become resistant during treatment with the anticancer agent and those that are less effective from the beginning of treatment. The expression level of ErbB2 is not limited to overexpressed cancers, and cancers expressing ErbB2 at a detectable level are also targeted. For example, ErbB2 testing may be performed for breast cancer and the like, but it is not limited to ErbB2 overexpressing cancer that is judged to be ErbB2 positive by conventional methods. Specific examples of cancers in which the expression of ErbB2 has been confirmed, and how to check whether the expression of ErbB2 is detected in the cancer of the target patient have already been described in the explanation of the first treatment or prevention agent for cancer. As stated.
 対象となる生体は、第1のがんの治療又は予防剤と同様である。 The target living body is the same as the first cancer treatment or prevention agent.
 CCN2-ErbB2相互作用阻害剤とアポトーシス誘導剤を併用すると、それぞれ単独ではがん細胞の増殖を抑制できない濃度であっても、がん細胞の増殖を抑制することができる。従って、本発明の組み合わせ剤は、アポトーシスを誘導するタイプの抗がん剤に耐性のあるがんに対しても望ましく抗がん作用を発揮できる。また、抗がん剤に感受性のがんに対しては、その投与量を低く抑えることが可能であり、抗がん剤による副作用の軽減も期待される。こうしたことから、CCN2-ErbB2相互作用阻害剤は、アポトーシスを誘導する抗がん剤の抗がん活性を増強すると解釈することもできる。 When a CCN2-ErbB2 interaction inhibitor and an apoptosis inducer are used in combination, the growth of cancer cells can be suppressed even at a concentration that cannot suppress the growth of cancer cells alone. Therefore, the combination agent of the present invention can desirably exhibit an anticancer action even against cancer resistant to an anticancer agent of a type that induces apoptosis. In addition, for cancers that are sensitive to anticancer agents, the dose can be kept low, and side effects of anticancer agents can be reduced. Therefore, it can be interpreted that CCN2-ErbB2 interaction inhibitors enhance the anticancer activity of anticancer agents that induce apoptosis.
 本発明の組み合わせ剤により抗がん剤の耐性が解除される機構は、下記のように推察することができる。 The mechanism by which the anticancer drug resistance is released by the combination of the present invention can be inferred as follows.
 TAZ(transcriptional co-activator with PDZ-binding motif)は、様々な組織の発達に重要な多くの転写因子のコアクチベーターとして機能するタンパク質であり、近年、細胞増殖とアポトーシスの制御に重要な役割を担うHippo-LATS腫瘍抑制経路にTAZも構成因子として加わっていること(Genes Dev 2007;21:886-97、Cancer Cell 2008;13:188-92、Biochem Cell Biol 2009;87:77-91)、該経路でLATS腫瘍抑制因子がTAZをリン酸化しその機能を阻害することが示された(Mol Cell Biol 2008;28:2426-36)。つまりTAZは細胞分裂やアポトーシスの制御に広く関わっている。CCN2はタキソールや低酸素によって誘導されるアポトーシスに対する耐性を上皮細胞に付与することが知られていたが(Cancer Res 2000;60:5603-7、Cancer Res 2001;61:8917-23、Endocrinology 2001;142:2540-8、Oncogene 2002;21:964-73、Oncogene 2002;21:8178-85、J Biol Chem 2004;279:24015-23、Endocr Relat Cancer 2004;11:781-91、Oncogene 2005;24:761-79、Clin Cancer Res 2005;11:5809-20、Int J Oncol 2008;33:59-67、J Cell Sci 2007;120:2053-65)、TAZのすぐ下流にCCN2が位置すること、TAZのノックダウンやCyr61及びCCN2の両者のノックダウンによりタキソール耐性が完全にブロックされることも報告されている(Cancer Res 2011;71:2728-2738)。そして今般、本願発明者らにより、TAZの発現上昇がCCN2-ErbB2相互作用から生じるシグナル伝達の下流にあることが証明された(下記実施例参照)。つまり、CCN2-ErbB2の相互作用を阻害することで、TAZの発現上昇が抑制され、CCN2の発現も抑制されることになる。そうすると、TAZによって発現増大したCCN2が誘導するアポトーシス耐性は、CCN2-ErbB2の相互作用阻害により解除することができる。このように推察される作用機序から、本発明の組み合わせ剤は、アポトーシスを誘導するタイプの抗がん剤に耐性のがんに広く有効であると考えられる。アポトーシス誘導剤の中でも、有糸分裂阻害剤、とりわけタキサン系抗がん剤であれば、パクリタキセルと非常に類似した機序で作用するため、パクリタキセルと同様に耐性がんに対する併用の効果が望ましく得られるといえる。 TAZ (transcriptional co-activator with PDZ-binding motif) is a protein that functions as a coactivator of many transcription factors important for the development of various tissues, and has recently played an important role in the control of cell proliferation and apoptosis. TAZ is also added as a component to the Hippo-LATS tumor suppressor pathway (Genes Dev 2007; 21: 886-97, Cancer Cell 2008; 13: 188-92, Biochem Cell Biol 2009; 87: 77-91) It was shown that LATS tumor suppressor phosphorylates TAZ and inhibits its function through the pathway (Mol Cell Biol282008; 28: 2426-36). In other words, TAZ is widely involved in the control of cell division and apoptosis. CCN2 has been known to confer resistance to epithelial cells against apoptosis induced by taxol and hypoxia (Cancer Res 2000; 60: 5603-7, Cancer Res 2001; 61: 8917-23, Endocrinology 2001; 142: 2540-8, Oncogene 2002; 21: 964-73, Oncogene 2002; 21: 8178-85, J Biol Chem 2004; 279: 24015-23, Endocr Relat Cancer 2004; 11: 781-91, Oncogene 2005; 24 : 761-79, Clin Cancer Res 2005; 11: 5809-20, Int J Oncol 2008; 33: 59-67, J Cell Sci 2007; 120: 2053-65), CCN2 is located just downstream of TAZ, It has also been reported that taxol resistance is completely blocked by knockdown of TAZ and knockdown of both Cyr61 and CCN2 (Cancer Res 2011; 71: 2728-2738). And now, the present inventors have proved that the increase in the expression of TAZ is downstream of signal transduction resulting from the CCN2-ErbB2 interaction (see Examples below). That is, by inhibiting the interaction of CCN2-ErbB2, the increase in the expression of TAZ is suppressed, and the expression of CCN2 is also suppressed. Then, the resistance to apoptosis induced by CCN2 increased in expression by TAZ can be released by inhibiting the interaction of CCN2-ErbB2. From the mechanism of action presumed in this way, the combination agent of the present invention is considered to be widely effective for cancers resistant to anticancer agents of the type that induce apoptosis. Among apoptosis inducers, mitotic inhibitors, especially taxane anticancer agents, act by a mechanism very similar to that of paclitaxel, so the combined effect on resistant cancer can be desirable as with paclitaxel. It can be said that.
 CCN2-ErbB2相互作用阻害剤の生体への投与経路は、経口投与でも非経口投与でもよいが、筋肉内投与、皮下投与、静脈内投与、動脈内投与等の非経口投与が好ましい。がんの治療目的で用いる場合には、抗がん作用を高めるため、治療対象となる腫瘍そのものの近傍又は腫瘍近傍の所属リンパ節に投与することもできる。アポトーシス誘導剤の投与経路は、該アポトーシス誘導剤が抗がん剤として通常用いられる投与経路と同じであってよい。 The route of administration of the CCN2-ErbB2 interaction inhibitor to the living body may be oral administration or parenteral administration, but parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred. When used for the purpose of cancer treatment, in order to enhance the anticancer effect, it can be administered to the vicinity of the tumor to be treated or to a regional lymph node near the tumor. The administration route of the apoptosis-inducing agent may be the same as the administration route in which the apoptosis-inducing agent is usually used as an anticancer agent.
 CCN2-ErbB2相互作用阻害剤及びアポトーシス誘導剤の投与量は、対象となるがんの治療又は予防に有効な量であればよい。有効量は、腫瘍の位置、大きさ、症状、腫瘍マーカー、薬剤耐性の強さ(耐性がんの場合)等に応じて適宜選択される。通常、CCN2-ErbB2相互作用阻害剤の投与量は、対象生体に対し1日当りの有効量として体重1kg当たり0.001mg~1000mg、例えば0.01mg~100mgであり、アポトーシス誘導剤の投与量は、単独でがんの治療又は予防に用いる場合の量と同等程度であってよい。併用の効果は相乗的であるため、アポトーシス誘導剤は通常単独使用する投与量よりも少量で使用することもできる。両者は、1回又は数回に分けて、同時に、順次に、又は別々に投与することができる。好ましくは、数回に分け、数日、数週ないし数月おきに投与する。順次に又は別々に投与される場合、アポトーシス誘導剤とCCN2-ErbB2相互作用阻害剤はいずれが先に投与されてもよい。別々に投与される場合の投与回数は、両者同じであってもよいし、あるいは、例えば1日当たりアポトーシス誘導剤を1回、CCN2-ErbB2相互作用阻害剤を2回とする等、回数が異なってもよい。がんの発症前やがんの治療後に本発明の組み合わせ剤を用いれば、がんの発症や再発を防止することができるので、本発明の組み合わせ剤はがんの予防にも利用可能である。 The dose of the CCN2-ErbB2 interaction inhibitor and the apoptosis inducer may be any amount that is effective for treating or preventing the target cancer. The effective amount is appropriately selected according to the position, size, symptom, tumor marker, strength of drug resistance (in the case of resistant cancer), and the like. Usually, the dose of the CCN2-ErbB2 interaction inhibitor is 0.001 mg to 1000 mg, for example, 0.01 mg to 100 mg per kg body weight, as the effective daily dose for the target organism. It may be comparable to the amount used for cancer treatment or prevention. Since the effect of the combination is synergistic, the apoptosis-inducing agent can be used in a smaller amount than the dose usually used alone. Both can be administered in one or several divided doses, simultaneously, sequentially or separately. Preferably, it is divided into several times and administered every few days, every few weeks to every several months. When administered sequentially or separately, any of the apoptosis-inducing agent and CCN2-ErbB2 interaction inhibitor may be administered first. When administered separately, the number of administrations may be the same, or the number of administrations may be different, for example, once per day apoptosis inducer and twice CCN2-ErbB2 interaction inhibitor. Also good. Since the onset and recurrence of cancer can be prevented if the combination of the present invention is used before the onset of cancer or after cancer treatment, the combination of the present invention can also be used for cancer prevention. .
 アポトーシス誘導剤と組み合わせて用いるCCN2-ErbB2相互作用阻害剤は、上記(1)及び(2)から選択される物質(CCN2-ErbB2相互作用阻害剤)の1種のみを含むものであってもよく、また、2種以上を含むものであってもよい。また、CCN2-ErbB2相互作用阻害剤は、各投与形態に適した、薬理学的に許容される担体、希釈剤、賦形剤等の添加剤を適宜混合させて製剤することもできる。CCN2-ErbB2相互作用阻害剤とアポトーシス誘導剤が同時に投与される場合、両者は同一の組成物中に含有させた配合剤の形態をとることができる。製剤方法及び使用可能な添加剤は、医薬製剤の分野において周知であり、いずれの方法及び添加剤をも用いることができる。 The CCN2-ErbB2 interaction inhibitor used in combination with the apoptosis inducer may contain only one type of substance selected from the above (1) and (2) (CCN2-ErbB2 interaction inhibitor) In addition, it may contain two or more. The CCN2-ErbB2 interaction inhibitor can also be formulated by appropriately mixing pharmacologically acceptable additives, such as pharmacologically acceptable carriers, diluents, excipients, etc., suitable for each dosage form. When the CCN2-ErbB2 interaction inhibitor and the apoptosis-inducing agent are administered simultaneously, both can take the form of a combination drug contained in the same composition. Formulation methods and usable additives are well known in the field of pharmaceutical formulations, and any method and additive can be used.
 また、本発明は、CCN2がErbB2のリガンドであるという新規知見に基づき、がんの治療又は予防剤の新規スクリーニング方法を提供する。本発明のスクリーニング方法では、CCN2とErbB2との間の相互作用の阻害を指標として化合物を選択する。化合物は、低分子化合物、高分子化合物、ポリペプチド(タンパク質やオリゴペプチドを包含する)、核酸、糖鎖など、いかなる化合物であってもよい。 The present invention also provides a novel screening method for a therapeutic or prophylactic agent for cancer based on the novel finding that CCN2 is a ligand for ErbB2. In the screening method of the present invention, a compound is selected using inhibition of the interaction between CCN2 and ErbB2 as an index. The compound may be any compound such as a low molecular compound, a high molecular compound, a polypeptide (including proteins and oligopeptides), a nucleic acid, and a sugar chain.
 本発明のスクリーニング方法は、好ましくは、CCN2とErbB2との間の直接的な結合の阻害を指標として実施することができる。ある化合物が2つの因子間の結合を阻害するか否かを調べる手法は種々のものが知られており、当業者であれば容易に実施できる。例えば、ErbB2の細胞外領域を固相上に固定化し、CCN2と共に被検化合物をErbB2固定化固相に接触させ、ErbB2とCCN2との結合量を測定することで、被検化合物がCCN2とErbB2の結合を阻害するか否かを調べることができる。下記実施例では、プレートのウェル内にErbB2細胞外領域を固定化し、ここにビオチン化したCCN2と共に被検化合物(ErbB2リガンド結合領域の部分断片)を添加し、洗浄後、酵素標識したストレプトアビジンを加え、さらに洗浄後、酵素の基質を加え、発色量に基づいて固相上に結合したCCN2量を測定している。このように、CCN2を直接又は間接的に酵素や蛍光物質等で標識することで、ErbB2とCCN2の結合量を容易に測定することができる。また、表面プラズモン共鳴(SPR)を用いて、チップ上に固定化したErbB2細胞外領域とCCN2との間の結合をSPRセンサーにより測定することもできる。その他、マイクロ流路チップを用いた電気化学的測定方法や、酵母two-hybrid法を用いた方法など、2因子間の結合阻害を測定する方法は種々知られており、いずれの方法を用いてもよい。 The screening method of the present invention can be preferably carried out using inhibition of direct binding between CCN2 and ErbB2 as an index. Various techniques for examining whether a compound inhibits the binding between two factors are known and can be easily carried out by those skilled in the art. For example, the extracellular region of ErbB2 is immobilized on a solid phase, the test compound is brought into contact with ErbB2 immobilized solid phase together with CCN2, and the amount of binding between ErbB2 and CCN2 is measured, so that the test compound is CCN2 and ErbB2 It is possible to examine whether or not the binding is inhibited. In the following example, the ErbB2 extracellular region was immobilized in the well of the plate, and a test compound (partial fragment of the ErbB2 ligand binding region) was added together with biotinylated CCN2, and after washing, enzyme-labeled streptavidin was added. In addition, after washing, an enzyme substrate was added, and the amount of CCN2 bound on the solid phase was measured based on the color development amount. Thus, by directly or indirectly labeling CCN2 with an enzyme, a fluorescent substance or the like, the binding amount of ErbB2 and CCN2 can be easily measured. Further, by using surface plasmon resonance (SPR), the binding between the ErbB2 extracellular region immobilized on the chip and CCN2 can be measured by an SPR sensor. In addition, there are various known methods for measuring binding inhibition between two factors, such as an electrochemical measurement method using a microchannel chip and a method using the yeast two-hybrid method. Also good.
 該スクリーニング方法で見出された、CCN2とErbB2との間の結合を阻害する化合物は、本発明の治療又は予防剤と同様に、ErbB2の発現があるがんの治療及び予防に有用であり得る。本発明のスクリーニング方法で得られた候補化合物は、がん細胞株を用いた増殖阻害実験等を経て、がんの治療又は予防剤として確立し得る。 The compound found by the screening method that inhibits the binding between CCN2 and ErbB2 may be useful for the treatment and prevention of cancers with ErbB2 expression, similar to the therapeutic or prophylactic agent of the present invention. . Candidate compounds obtained by the screening method of the present invention can be established as cancer treatment or prevention agents through growth inhibition experiments using cancer cell lines.
 CCN2タンパク質のErbB2への直接的又は間接的な結合性を利用すれば、がん細胞の検出が可能である。すなわち、本発明は、下記のいずれかのポリペプチドを含む、がん細胞の検出試薬を提供する。
(a) 配列番号4に示すアミノ酸配列からなるポリペプチド。
(b) 配列番号4に示すアミノ酸配列中の部分領域からなるポリペプチドであって、第103番~第166番アミノ酸の領域内の連続する7残基以上を含み、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
(c) (a)又は(b)と90%以上の同一性を有するアミノ酸配列からなり、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
(d) (a)~(c)のいずれかのポリペプチドのアミノ酸配列を含み、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
Cancer cells can be detected by using direct or indirect binding of CCN2 protein to ErbB2. That is, the present invention provides a cancer cell detection reagent comprising any of the following polypeptides.
(a) A polypeptide comprising the amino acid sequence shown in SEQ ID NO: 4.
(b) a polypeptide consisting of a partial region in the amino acid sequence shown in SEQ ID NO: 4, comprising 7 or more consecutive residues in the region of amino acids 103 to 166 and directly to the ErbB2 extracellular region Or a polypeptide that binds indirectly.
(c) A polypeptide comprising an amino acid sequence having 90% or more identity with (a) or (b) and directly or indirectly binding to the ErbB2 extracellular region.
(d) A polypeptide comprising the amino acid sequence of the polypeptide of any one of (a) to (c) and binding directly or indirectly to the ErbB2 extracellular region.
 (a)のポリペプチドは、例えば組換えCCN2タンパク質である。下記実施例には、ErbB2を過剰発現させたHeLa細胞の細胞表面に存在するErbB2を、組換えCCN2タンパク質を用いて検出可能であることが具体的に示されている。固定した細胞試料や組織試料中にはアグリカン等のタンパク質も含まれており、従って、組換えCCN2タンパク質と試料中の細胞表面のErbB2との間の結合様態としては、CCN2とErbB2との間の直接的な結合及びアグリカン等の因子を介した間接的な結合の両者が想定される。 (A) The polypeptide is, for example, a recombinant CCN2 protein. The following examples specifically show that ErbB2 present on the cell surface of HeLa cells overexpressed ErbB2 can be detected using recombinant CCN2 protein. Proteins such as aggrecan are also contained in fixed cell samples and tissue samples. Therefore, the binding mode between recombinant CCN2 protein and cell surface ErbB2 in the sample is between CCN2 and ErbB2. Both direct binding and indirect binding via factors such as aggrecan are envisioned.
 (b)のポリペプチドは、CCN2のVWCドメイン内の7残基以上、例えば10残基以上、15残基以上、18残基以上、25残基以上、30残基以上、46残基以上、又は64残基以上(VWCドメイン全長)の領域を含むCCN2タンパク質断片である。CCN2はVWCドメイン(第103番~第166番アミノ酸の領域)でErbB2細胞外領域と結合するが、この結合に重要な部分はVWCドメイン内に存在する。従って、VWCドメイン内の部分領域からなるポリペプチドであっても、ErbB2細胞外領域と直接的に又はアグリカン等の因子を介して間接的に結合できる限り、がん細胞の検出に利用可能である。結合性を調べる方法は、アンタゴニスト活性のうちの競合性を調べる方法(上述)と同様である。(b)のポリペプチドの具体例としては、VWCドメインの全長を含むCCN2部分断片、VWCドメインからなるポリペプチド、VWCドメイン内の部分領域からなるポリペプチド(例えば、配列番号6~8のいずれかに示すアミノ酸配列からなるポリペプチド、あるいは7残基以上からなるその断片)を挙げることができるが、これらに限定されない。 The polypeptide of (b) is 7 residues or more in the VWC domain of CCN2, for example, 10 residues or more, 15 residues or more, 18 residues or more, 25 residues or more, 30 residues or more, 46 residues or more, Alternatively, it is a CCN2 protein fragment containing a region of 64 residues or more (full length of VWC domain). CCN2 binds to the ErbB2 extracellular region at the VWC domain (amino acids 103 to 166), and an important part for this binding exists in the VWC domain. Therefore, even a polypeptide consisting of a partial region within the VWC domain can be used for detection of cancer cells as long as it can bind directly to the ErbB2 extracellular region or indirectly through factors such as aggrecan. . The method for examining binding is the same as the method for examining competition among antagonist activities (described above). Specific examples of the polypeptide (b) include a CCN2 partial fragment containing the full length of the VWC domain, a polypeptide consisting of the VWC domain, and a polypeptide consisting of a partial region within the VWC domain (for example, any one of SEQ ID NOs: 6 to 8). A polypeptide consisting of the amino acid sequence shown in the following, or a fragment thereof consisting of 7 residues or more), but is not limited thereto.
 (c)のポリペプチドは、(a)又は(b)のポリペプチドにおいて少数のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなり、かつ、ErbB2細胞外領域と直接的に又はアグリカン等の因子を介して間接的に結合するポリペプチドである。もとの(a)又は(b)のポリペプチドとの配列の同一性は90%以上、好ましくは95%以上である。あるいは、(c)のポリペプチドとしては、もとの(a)又は(b)のポリペプチドにおいて、1個又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなるポリペプチドも好ましい。 The polypeptide of (c) is composed of an amino acid sequence in which a small number of amino acids are substituted, deleted, inserted or added in the polypeptide of (a) or (b), and is directly or aggrecan with the ErbB2 extracellular region. A polypeptide that binds indirectly via factors such as. The sequence identity with the original polypeptide (a) or (b) is 90% or more, preferably 95% or more. Alternatively, the polypeptide (c) is a polypeptide comprising an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the original polypeptide (a) or (b). Is also preferable.
 ここでいうアミノ酸配列の同一性は、がんの治療又は予防剤の説明において上述した定義と同じである。ただし、ポリペプチドに他の任意のアミノ酸配列を付加した形態で用いる場合(例えば、他のタンパク質との融合タンパク質の形態で用いる場合、Flagペプチド等のペプチドタグを付加した形態で用いる場合など)、同一性は、そのアミノ酸配列の全長ではなく、該任意のアミノ酸配列を除いた(a)~(c)のポリペプチドに相当する領域のみで配列を対比して算出する。 The identity of the amino acid sequence here is the same as the definition described above in the description of the therapeutic or preventive agent for cancer. However, when used in a form in which any other amino acid sequence is added to the polypeptide (for example, when used in the form of a fusion protein with another protein, when used in a form added with a peptide tag such as Flag peptide) The identity is calculated by comparing the sequences only in the region corresponding to the polypeptides (a) to (c) excluding the arbitrary amino acid sequence, not the full length of the amino acid sequence.
 (d)のポリペプチドは、(a)~(c)のいずれかのポリペプチドのアミノ酸配列を部分配列として含み(すなわち、(a)~(c)のポリペプチドの一端又は両端に他のアミノ酸又はポリペプチドが付加されたもの)、かつ、ErbB2細胞外領域と直接的に又はアグリカン等の因子を介して間接的に結合するポリペプチドである。任意のアミノ酸又はポリペプチドが付加された(a)~(c)のポリペプチドも、ErbB2細胞外領域との結合性が損なわれない限り、がん細胞表面のErbB2の検出に用いることができる。 The polypeptide of (d) contains the amino acid sequence of any of the polypeptides (a) to (c) as a partial sequence (that is, other amino acids at one or both ends of the polypeptide of (a) to (c)) Or a polypeptide to which a polypeptide is added) and binds directly to the ErbB2 extracellular region directly or via a factor such as aggrecan. Polypeptides (a) to (c) to which any amino acid or polypeptide has been added can also be used for detection of ErbB2 on the surface of cancer cells as long as the binding to the ErbB2 extracellular region is not impaired.
 (a)~(d)のポリペプチドは、周知の遺伝子工学的手法により、又は常法の化学合成により、容易に製造することができる。 The polypeptides (a) to (d) can be easily produced by well-known genetic engineering techniques or by conventional chemical synthesis.
 検出試薬に含まれるポリペプチドは、ビオチン、蛍光色素、蛍光タンパク質、酵素、FLAGタグ、金属(マンガン、鉄等)等の標識物質で標識された形態であってよい。また、所望により、標識以外の他の化合物を付加した形態、あるいは他のタンパク質との融合タンパク質の形態で用いることも可能である。これらの各種形態のポリペプチドも本発明の検出試薬の範囲に包含される。 The polypeptide contained in the detection reagent may be in a form labeled with a labeling substance such as biotin, fluorescent dye, fluorescent protein, enzyme, FLAG tag, metal (manganese, iron, etc.). Further, if desired, it can be used in a form to which a compound other than a label is added, or in the form of a fusion protein with another protein. These various forms of polypeptides are also included in the scope of the detection reagent of the present invention.
 検出試薬は、上記のポリペプチドのみからなるものであってもよいし、また、ポリペプチドがバッファー等に溶解された形態であってもよい。該試薬は、免疫測定における抗体と同様の方法で使用することができる。患者から採取したがん組織試料を本発明の検出試薬と接触させて検出反応を行なうことで、該患者のがん細胞におけるErbB2の発現量を調べることも可能である。また、該試薬は、乳がん等のErbB2発現がんの病理診断に使用することもできる。 The detection reagent may be composed only of the above-mentioned polypeptide, or may be in a form in which the polypeptide is dissolved in a buffer or the like. The reagent can be used in the same manner as the antibody in immunoassay. It is also possible to examine the expression level of ErbB2 in the cancer cells of the patient by contacting a cancer tissue sample collected from the patient with the detection reagent of the present invention and performing a detection reaction. The reagent can also be used for pathological diagnosis of ErbB2-expressing cancer such as breast cancer.
 上記検出試薬を用いてがんの検出を行なう方法を以下に具体的に説明する。 The method for detecting cancer using the detection reagent will be specifically described below.
 まず、対象の細胞を検出試薬と接触させる。検出試薬は、通常、標識物質で上記ポリペプチドを標識した形態のものを用いる。標識物質の具体例は上記の通りである。対象は好ましくは哺乳動物であり、具体例としてはヒト、イヌ、ネコ、ウサギ、ハムスター、マウス、サル、ウマ、ブタ、ウシ、ヒツジ等を挙げることができる。対象の細胞は、対象生体から分離された、対象の細胞を含む試料であり得る(体外診断薬)。試料が組織標本である場合、本発明の検出試薬を適当な濃度で含む溶液中に該組織標本が浸漬するようにして検出試薬と細胞を接触させればよい。試料が培養細胞である場合、検出試薬は、プレート等の支持体に上記ポリペプチドを固定化した形態で使用することもできるが、培養細胞をスライドグラス等の支持体に固定し、支持体上の培養細胞が検出試薬溶液に浸漬するようにして検出試薬と細胞を接触させることが好ましい。あるいは、対象の細胞は、対象の体内の細胞であり得る(体内診断薬)。この場合、検出試薬を対象に投与することにより、対象の体内で対象の細胞と検出試薬とを接触させることができる。 First, the target cell is brought into contact with the detection reagent. The detection reagent is usually used in a form in which the polypeptide is labeled with a labeling substance. Specific examples of the labeling substance are as described above. The subject is preferably a mammal, and specific examples include humans, dogs, cats, rabbits, hamsters, mice, monkeys, horses, pigs, cows, sheep and the like. The target cell may be a sample containing the target cell separated from the target living body (in vitro diagnostic agent). When the sample is a tissue specimen, the detection reagent and the cells may be brought into contact so that the tissue specimen is immersed in a solution containing the detection reagent of the present invention at an appropriate concentration. When the sample is a cultured cell, the detection reagent can be used in a form in which the polypeptide is immobilized on a support such as a plate, but the cultured cell is immobilized on a support such as a slide glass, It is preferable that the detection reagent and the cell are brought into contact so that the cultured cells are immersed in the detection reagent solution. Alternatively, the subject cell may be a cell in the subject's body (in-vivo diagnostic). In this case, by administering the detection reagent to the target, the target cell and the detection reagent can be brought into contact with each other in the body of the target.
 検出試薬と接触させた対象の細胞の中にErbB2を発現するがん細胞が存在すれば、検出試薬に含まれる上記ポリペプチドがそのがん細胞表面にあるErbB2細胞外領域に結合する。従って、上記ポリペプチドが結合した細胞の存在を検出することで、がん細胞の存在を検出することができる。なお、体内診断薬の場合、がん細胞表面のErbB2細胞外領域と検出試薬中の上記ポリペプチドとの間の結合の態様は、直接的であるか又はアグリカン等の因子を介した間接的な結合であり得る。 If cancer cells expressing ErbB2 are present in the target cells brought into contact with the detection reagent, the polypeptide contained in the detection reagent binds to the ErbB2 extracellular region on the surface of the cancer cell. Therefore, the presence of cancer cells can be detected by detecting the presence of cells to which the polypeptide is bound. In the case of an in-vivo diagnostic, the mode of binding between the ErbB2 extracellular region on the surface of cancer cells and the polypeptide in the detection reagent is either direct or indirect via factors such as aggrecan Can be a bond.
 検出試薬が体外診断薬である場合、試料と検出試薬とを接触させた後、適当な時間インキュベートして細胞表面のErbB2細胞外領域とポリペプチドを十分に結合させた後、洗浄工程を行なって未結合のポリペプチドを除去し、その後にポリペプチドに結合させた標識物質からのシグナルを検出すればよい。標識物質として酵素が用いられる場合、適当な基質物質を反応系に添加し、酵素反応により生じる発色や発光等のシグナルを検出すればよい。標識物質としてビオチンやFLAGタグ等のタグを用いる場合は、タグに対する抗体であって、蛍光物質等の自らシグナルを発する標識物質又は酵素にて標識した抗体を用いればよい。そのような標識抗体を反応系に添加し、標識抗体からのシグナル(酵素標識抗体の場合は、さらに基質物質を添加し、酵素反応により生じるシグナル)を検出することで、タグ付加されたポリペプチドが結合した細胞の存在を検出することができる。 When the detection reagent is an in-vitro diagnostic agent, after contacting the sample and the detection reagent, incubating for an appropriate time to fully bind the ErbB2 extracellular region on the cell surface to the polypeptide, and then perform a washing step What is necessary is just to detect the signal from the labeling substance couple | bonded with polypeptide after removing unbound polypeptide. When an enzyme is used as the labeling substance, an appropriate substrate substance is added to the reaction system, and signals such as color development or luminescence generated by the enzyme reaction may be detected. When a tag such as biotin or a FLAG tag is used as the labeling substance, an antibody against the tag and a labeling substance that emits its own signal such as a fluorescent substance or an antibody labeled with an enzyme may be used. By adding such a labeled antibody to the reaction system and detecting a signal from the labeled antibody (in the case of an enzyme-labeled antibody, a substrate substance is added and a signal generated by the enzyme reaction) is detected. The presence of cells bound by can be detected.
 検出試薬が体内診断薬である場合、検出試薬を対象に投与し、適当な時間経過後、体内に残存するポリペプチドからのシグナルを検出すればよい。本発明の検出試薬を対象の体内に投与すると、ErbB2がより多く発現する部位に上記ポリペプチドがより多く集積する。体外から検出可能なシグナルを発する標識物質でポリペプチドを標識したものを用いれば、ポリペプチドの集積を体外から検出可能になるので、ErbB2を発現する体内のがん細胞の存在を検出することができる。そのような標識物質の具体例としては、マンガンや鉄等の金属を挙げることができる。金属標識は、MRI等によって体外から検出することができる。 When the detection reagent is an in-vivo diagnostic agent, the detection reagent may be administered to the subject, and a signal from the polypeptide remaining in the body may be detected after an appropriate time has elapsed. When the detection reagent of the present invention is administered into the body of a subject, more of the polypeptide is accumulated at a site where ErbB2 is more expressed. If a polypeptide labeled with a labeling substance that emits a signal that can be detected from outside the body can be detected from outside the body, the presence of cancer cells in the body that express ErbB2 can be detected. it can. Specific examples of such a labeling substance include metals such as manganese and iron. The metal label can be detected from outside the body by MRI or the like.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。なお、下記実施例で用いた細胞株のErbB2発現は次の通りである。
HeLa:ヒト子宮頚がん由来株。ErbB2発現は検出されない。
SkBr3:ヒト乳がん由来のErbB2過剰発現株。
MCF7:ヒト乳がん由来のErbB2非過剰発現株。ErbB2発現は検出される。
MDA-MB-231:ヒト乳がん由来のErbB2非過剰発現株。ErbB2発現は検出される。
MCF10A:ヒト線維嚢胞性乳腺患者由来株。ErbB2発現は検出されない。
Capan-1:ヒト膵臓がん由来のErbB2過剰発現株。
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples. In addition, ErbB2 expression of the cell lines used in the following examples is as follows.
HeLa: Human cervical cancer-derived strain. ErbB2 expression is not detected.
SkBr3: ErbB2 overexpression strain derived from human breast cancer.
MCF7: ErbB2 non-overexpressing strain derived from human breast cancer. ErbB2 expression is detected.
MDA-MB-231: ErbB2 non-overexpressing strain derived from human breast cancer. ErbB2 expression is detected.
MCF10A: Human fibrocystic mammary gland patient strain. ErbB2 expression is not detected.
Capan-1: ErbB2 overexpression strain derived from human pancreatic cancer.
I. CCN2細胞膜受容体の探索とその受容体を介したCCN2のシグナル伝達機構の解析
1. 材料と方法
(1) 試薬類等
 Hisタグ付き組換えヒトCCN2(His-CCN2)及び組換えGST融合ヒトCCN2(GST-CCN2)の調製にはバキュロウイルス発現系Bac-to-Bac (Invitrogen社) を用いた。抗体として、FITC標識抗ErbB2抗体 (Becton Dickinson社), 非標識抗ErbB2抗体 (AbD Serotec社), 抗PY877 ErbB2 抗体(Applied Biological Materials社), 抗PY1248 ErbB2抗体 (Dakocytomation社), 抗PY1221/1222 ErbB2抗体 (Abcam社), 抗Actin抗体 (Sigma社)を用いた。架橋剤は、チオール切断性の架橋剤DSP (ジチオビス[スクシンイミジルプロピオネート]) (Pierce社) を用いた。
I. Search for CCN2 cell membrane receptor and analysis of CCN2 signal transduction mechanism through the receptor
1. Materials and methods
(1) Reagents, etc. Baculovirus expression system Bac-to-Bac (Invitrogen) was used to prepare His-tagged recombinant human CCN2 (His-CCN2) and recombinant GST-fused human CCN2 (GST-CCN2). . FITC-labeled anti-ErbB2 antibody (Becton Dickinson), unlabeled anti-ErbB2 antibody (AbD Serotec), anti-PY877 ErbB2 antibody (Applied Biological Materials), anti-PY1248 ErbB2 antibody (Dakocytomation), anti-PY1221 / 1222 ErbB2 An antibody (Abcam) and an anti-Actin antibody (Sigma) were used. The crosslinking agent used was a thiol-cleavable crosslinking agent DSP (dithiobis [succinimidylpropionate]) (Pierce).
(2) 細胞株
 酵母細胞株AH109はClontech社より購入した。ヒト細胞株HeLa, MCF7, MCF10A, SkBr3はAmerican Type Culture Collection (ATCC)から購入し、ATCC推奨の条件下で維持した。ヒト軟骨肉腫由来細胞株HCS-2/8(Cancer research. 1989, 49, 3996-4002)は10% 牛胎児血清(FCS)含有DMEMで維持した。ErbB2の安定な形質転換体は、常法に従い、HeLa細胞をpSV2 erb B2 (理研バイオリソースセンター)(Nature. 1984, 309, 418-425)とpcDNA3.1(Invitrogen社)でトランスフェクトし、G418で選抜することにより調製し、ErbB2を安定に発現する2ラインを得た(HeLa#3株、HeLa#5株)。また、HeLa細胞にpcDNA3.1のみをトランスフェクトし、G418で選択してコントロールのmock形質転換体とした。
(2) Cell line Yeast cell line AH109 was purchased from Clontech. Human cell lines HeLa, MCF7, MCF10A, SkBr3 were purchased from the American Type Culture Collection (ATCC) and maintained under the conditions recommended by ATCC. Human chondrosarcoma-derived cell line HCS-2 / 8 (Cancer research. 1989, 49, 3996-4002) was maintained in DMEM containing 10% fetal calf serum (FCS). According to a conventional method, stable transformants of ErbB2 were prepared by transfecting HeLa cells with pSV2 erb B2 (RIKEN BioResource Center) (Nature. 1984, 309, 418-425) and pcDNA3.1 (Invitrogen). Two lines that stably express ErbB2 were obtained by selection (HeLa # 3 strain, HeLa # 5 strain). HeLa cells were transfected with only pcDNA3.1 and selected with G418 to obtain control mock transformants.
(3) 酵母two-hybrid法によるcDNAライブラリーのスクリーニング
 酵母two-hybrid法のスクリーニングは既報(The Biochemical journal.(2009) 420, 413-420; FEBS letters.(2006) 580, 1376-1382; Nucleic acids research. (2008) 36, 3011-3024; The Journal of biological chemistry.(2006) 281, 14417-14428)に従って実施した。HCS-2/8細胞由来RNAから合成したcDNAを鋳型として、シグナルペプチド領域を除く全長CCN2 cDNA (NCBI Reference Sequence: NM_001901.2: 配列番号4)をPCRにより調製し(プライマーはatccgaattccagaactgcagcgggccgtgccggtgcccg(配列番号16)及びatacggatccctcatgccatgtctccgtacatcttcctgt(配列番号17)を使用)、制限酵素EcoRI(NEB社)およびBamHI(NEB社)処理後の断片をベイトとして、pGBKT7ベクター(Clontech社)のEcoRI, BamHIサイトに挿入した。この構築物により、シグナルペプチド領域を除く全長CCN2を、GAL4 DNA結合ドメイン(BD)との融合タンパク質として発現させた。
(3) Screening of cDNA library by yeast two-hybrid method Screening of yeast two-hybrid method has been reported (The Biochemical journal. (2009) 420, 413-420; FEBS letters. (2006) 580, 1376-1382; Nucleic (2008) 36, 3011-3024; The Journal of biological chemistry. (2006) 281, 14417-14428). Using cDNA synthesized from RNA derived from HCS-2 / 8 cells as a template, full-length CCN2 cDNA (NCBI Reference Sequence: NM_001901.2: SEQ ID NO: 4) excluding the signal peptide region was prepared by PCR (primer was atccgaattccagaactgcagcgggccgtgccggtgcccg (SEQ ID NO: 16 ) And atacggatccctcatgccatgtctccgtacatcttcctgt (SEQ ID NO: 17)), restriction enzyme EcoRI (NEB) and BamHI (NEB) -treated fragments were used as baits and inserted into the EcoRI and BamHI sites of the pGBKT7 vector (Clontech). With this construct, full-length CCN2 excluding the signal peptide region was expressed as a fusion protein with the GAL4 DNA binding domain (BD).
 ロイシン、トリプトファン、ヒスチジン及びアデニンを欠乏した選択培地中、全長CCN2を用いて酵母AH109細胞内でtwo-hybridスクリーニングを行なった。3~5日間インキュベート後、複数の陽性クローンを拾い上げ、プラスミドDNAを抽出し、これを大腸菌DH5α系統に再導入し、この大腸菌からプラスミドDNAを精製してDNAシークエンシングを行なった。 Two-hybrid screening was performed in yeast AH109 cells using full-length CCN2 in a selective medium lacking leucine, tryptophan, histidine and adenine. After incubation for 3 to 5 days, a plurality of positive clones were picked up, plasmid DNA was extracted, reintroduced into E. coli DH5α strain, plasmid DNA was purified from this E. coli, and DNA sequencing was performed.
 ErbB2のCCN2結合ドメインを同定するため、切断型のErbB2又はライブラリーから拾い上げたcDNAのいずれかを含むpGADT7ベクターを、全長又は切断型CCN2のいずれかを発現するpGBKT7ベクターと共に、酵母系統AH109内に再導入した。pGBKT7ベクターには、EcoRI, BamHI (NEB社)を用いてCCN2断片を挿入した。また、pGADT7ベクターには、XhoIサイトにSalI, XhoI(NEB社)で末端処理したErbB2断片を挿入した。なお、CCN2断片をコードするDNAは、HCS-2/8細胞由来RNAから合成したcDNAを鋳型とし、表1に示すプライマーを使用してPCRにより増幅したものを用いた。ErbB2断片をコードするDNAは、pSV2 erb B2 (理研バイオリソースセンター)を鋳型とし、表2に示すプライマーを使用してPCRにより増幅したものを用いた。 To identify the CCN2-binding domain of ErbB2, a pGADT7 vector containing either a truncated ErbB2 or a cDNA picked up from a library, together with a pGBKT7 vector that expresses either full-length or truncated CCN2 in yeast strain AH109. Reintroduced. CCN2 fragment was inserted into pGBKT7 vector using EcoRI, BamHI (NEB). In addition, the ErbB2 fragment, which had been end-treated with SalI and XhoI (NEB), was inserted into the pGADT7 vector at the XhoI site. The DNA encoding the CCN2 fragment used was a cDNA synthesized from HCS-2 / 8 cell-derived RNA as a template and amplified by PCR using the primers shown in Table 1. The DNA encoding the ErbB2 fragment was pSV2perb し て B2 (RIKEN BioResource Center) as a template and was amplified by PCR using the primers shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(4) 単層培養細胞へのCCN2の結合
 Iodo-Gen (Pierce社) を製造者の指示書に従って使用し、組換えヒトCCN2(rhCCN2)を125Iでヨウ素化した。結合解析のため、結合実験の24時間前に細胞を1 x 105 cells / wellの密度で24ウェルプレートに播種した。結合バッファー (0.2% ウシ血清アルブミン及び0.2% アジ化ナトリウムを含むDMEM) にて4℃で細胞を2回洗浄した。種々の濃度の125I-rhCCN2を含む結合バッファー中で穏やかに振とうしながら単層細胞を4℃、4時間インキュベートした。非特異結合を調べるため、重複ウェルを少なくとも100倍量の過剰の非標識rhCCN2と共にインキュベートした。細胞をリン酸緩衝生理食塩水(PBS)で2回洗浄し、0.3 M NaOHで溶解させた。溶解画分をBeckman Gamma 5500B counterでカウントした。
(4) Binding of CCN2 to monolayer cultured cells Recombinant human CCN2 (rhCCN2) was iodinated with 125 I using Iodo-Gen (Pierce) according to the manufacturer's instructions. For binding analysis, cells were seeded in 24-well plates at a density of 1 × 10 5 cells / well 24 hours prior to binding experiments. Cells were washed twice at 4 ° C. with binding buffer (DMEM containing 0.2% bovine serum albumin and 0.2% sodium azide). Monolayer cells were incubated for 4 hours at 4 ° C. with gentle shaking in binding buffer containing various concentrations of 125 I-rhCCN2. To examine nonspecific binding, duplicate wells were incubated with at least 100-fold excess of unlabeled rhCCN2. Cells were washed twice with phosphate buffered saline (PBS) and lysed with 0.3 M NaOH. Lysed fractions were counted with a Beckman Gamma 5500B counter.
(5) 粗製膜画分の調製
 形質転換によりErbB2を過剰発現するHeLa細胞#5株及びmock形質転換体から膜画分を調製した。直径150 mmディッシュでコンフルエントになるまで細胞を培養し、回収後、Caイオンフリー、MgイオンフリーのPBSで洗浄した。次いで懸濁バッファー (10 mM Tris-HCl, pH 7.4, 1mM EDTA, 0.25 M sucrose, 0.1 mM PMSF) 中に細胞を懸濁し、高出力で1分間×3回超音波破砕した。800 x g で10分間遠心して核を沈殿させ、上清を回収し、さらに、細胞破壊時の残渣を取り除くために12,000xgで20分間遠心した。この上清をさらに105,000xgで60分間の超遠心することで細胞膜画分を沈殿させ、ペレットを10 mM Tris-HCl, pH7.4, 1 mM EDTA, 0.1 mM PMSFにて再懸濁し膜画分とした。この縣濁液について、BCA reagent (Pierce社)を用いてタンパク質濃度を測定した。
(5) Preparation of crude membrane fraction A membrane fraction was prepared from HeLa cell # 5 strain overexpressing ErbB2 by transformation and mock transformant. Cells were cultured in a 150 mm diameter dish until confluent, and after collection, washed with Ca ion-free and Mg ion-free PBS. Subsequently, the cells were suspended in a suspension buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.25 M sucrose, 0.1 mM PMSF), and sonicated at high output for 1 minute × 3 times. Centrifugation was performed at 800 × g for 10 minutes to precipitate nuclei, the supernatant was collected, and further centrifuged at 12,000 × g for 20 minutes in order to remove residues at the time of cell disruption. The supernatant was further centrifuged at 105,000xg for 60 minutes to precipitate the cell membrane fraction, and the pellet was resuspended in 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.1 mM PMSF, and the membrane fraction was recovered. It was. The protein concentration of this suspension was measured using BCA reagent (Pierce).
(6) 単層培養細胞と膜画分のアフィニティー標識及びクロスリンキング
 アフィニティー標識する細胞は、PBSで2回洗浄し、3 mM EDTA含有PBSにて37℃で10分間インキュベート後、DMEMで2回洗浄してカウントした。1 x 106 /tube の細胞を、20 mM MOPS, pH7.5, 2 mM MgCl2, 140 mM NaCl, 0.2% gelatinを含む結合バッファー中、組換えヒトCCN2の存在下又は非存在下で組換えヒトHis-CCN2と共に(Biochemical and biophysical research communications.(1998) 251, 748-752)室温で30分間インキュベートした。一部の実験では、結合バッファー中にアグリカン(Sigma社)を終濃度20 ng/mlで添加してインキュベートした。チオール切断性架橋剤であるDSP(ジチオビス-スクシンイミジルプロピオネート)を終濃度2.5 mMで添加し、4℃で30分間インキュベート後、冷却したグリシンを終濃度20 mMで添加して反応を停止させた。1,000xgで5分間遠心して細胞を回収し、冷却したPBSで3回洗浄後、回収して2-メルカプトエタノールを含むSDSバッファー中に溶解させた。
(6) Affinity labeling and cross-linking of monolayer cultured cells and membrane fractions Cells to be affinity labeled are washed twice with PBS, incubated with PBS containing 3 mM EDTA at 37 ° C for 10 minutes, and then washed twice with DMEM. And counted. Recombination of 1 x 10 6 / tube cells in a binding buffer containing 20 mM MOPS, pH 7.5, 2 mM MgCl 2 , 140 mM NaCl, 0.2% gelatin in the presence or absence of recombinant human CCN2 Incubated with human His-CCN2 (Biochemical and biophysical research communications. (1998) 251, 748-752) for 30 minutes at room temperature. In some experiments, aggrecan (Sigma) was added to the binding buffer at a final concentration of 20 ng / ml and incubated. DSP (dithiobis-succinimidyl propionate), a thiol-cleavable cross-linking agent, was added at a final concentration of 2.5 mM, incubated at 4 ° C. for 30 minutes, and then cooled glycine was added at a final concentration of 20 mM. Stopped. The cells were collected by centrifugation at 1,000 × g for 5 minutes, washed 3 times with chilled PBS, collected, and dissolved in SDS buffer containing 2-mercaptoethanol.
 膜画分を用いたアフィニティー結合実験のため、バッファー(20 mM Tris-HCl, pH8.0, 25 mM NaCl, 10% glycerol, 2 ng/ml アグリカン, 66μg/ml BSA, 1 mM PMSF)中で組換えヒトHis-CCN2又は組換えヒトGST-CCN2のいずれかと膜画分を混合し、4℃で30分間インキュベートした。DSP添加後、混合物をさらに4℃、10分間インキュベートした。CCN2を含む複合体は、Ni-agarose (Qiagen社) 又はglutathione sepharose 4B (GE Healthcare社) のいずれかを用いて沈殿させ、沈殿したタンパク質についてウエスタンブロット解析を行なった。 For affinity binding experiments using membrane fractions, assembled in buffer (20 mM Tris-HCl, pH8.0, 25 mM NaCl, 10% glycerol, 2 ng / ml aggrecan, 66μg / ml BSA, 1 mM PMSF) Membrane fraction was mixed with either recombinant human His-CCN2 or recombinant human GST-CCN2 and incubated at 4 ° C. for 30 minutes. After the DSP addition, the mixture was further incubated at 4 ° C. for 10 minutes. The complex containing CCN2 was precipitated using either Ni-agarose® (Qiagen) ® or glutathione® sepharose® 4B® (GE® Healthcare) ®, and Western blot analysis was performed on the precipitated protein.
(7) 細胞外タンパク質の免疫蛍光染色
 細胞の固定は4% ホルムアルデヒドを用いて行なった。細胞の免疫蛍光染色は、既報(J Cell Physiol.(2005) 202, 191-204; J Cell Physiol.(2003) 197, 94-102)に従い、ErbB2の細胞外領域を認識するFITC標識抗ErbB2抗体(Beckman社)と抗Flag抗体(Sigma社)とを使用し、次いでAlexa Fluor 488 ヤギ抗マウスIgG Ab (Molecular Probes社)と共にインキュベートすることにより行なった。マウント後、共焦点レーザー走査顕微鏡(Bio-Rad社)を用いてタンパク質の局在を観察した。
(7) Immunofluorescent staining of extracellular protein The cells were fixed using 4% formaldehyde. The immunofluorescent staining of cells was performed in accordance with a previous report (J Cell Physiol. (2005) 202, 191-204; J Cell Physiol. (2003) 197, 94-102). The FITC-labeled anti-ErbB2 antibody recognizes the extracellular region of ErbB2. (Beckman) and anti-Flag antibody (Sigma) were used, followed by incubation with Alexa Fluor 488 goat anti-mouse IgG Ab (Molecular Probes). After mounting, protein localization was observed using a confocal laser scanning microscope (Bio-Rad).
2. 結果
(1) CCN2細胞膜受容体の単離及び結合ドメインの特定
 CCN2細胞膜受容体を探索する目的で酵母two-hybrid法を行なった。CCN2タンパク質全長を発現するベクターとヒト軟骨肉腫由来細胞株であるHCS-2/8細胞由来のcDNAライブラリーを酵母内で共発現させ、CCN2タンパク質と相互作用を示すクローンを選択培地中の増殖性で選別した。その結果、EGFレセプターファミリーの一つであるErbB2をコードするクローン#26を単離した。ErbB2は、リガンド結合ドメインと考えられている2つの細胞外領域と、膜貫通ドメインと、チロシンキナーゼ活性及び推定リン酸化部位を有するC末端細胞内ドメインとからなる。クローン#26は、リガンド結合ドメインの一方のみと、膜貫通ドメイン及び細胞内キナーゼドメインとを含んでいた(図1(A))。
2. Results
(1) Isolation of CCN2 cell membrane receptor and identification of binding domain Yeast two-hybrid method was performed for the purpose of searching for CCN2 cell membrane receptor. Co-expression of CCN2 protein full-length vector and cDNA library derived from human chondrosarcoma-derived cell line HCS-2 / 8 cells in yeast, allowing clones that interact with CCN2 protein to grow in selective media Sorted by As a result, clone # 26 encoding ErbB2, one of the EGF receptor families, was isolated. ErbB2 consists of two extracellular regions believed to be ligand binding domains, a transmembrane domain, and a C-terminal intracellular domain with tyrosine kinase activity and a putative phosphorylation site. Clone # 26 contained only one of the ligand binding domains, the transmembrane domain and the intracellular kinase domain (FIG. 1 (A)).
 ErbB2内のCCN2結合領域を同定する目的で、5種類のErbB2断片(図1(A)、#1~#4, #4rev)を発現するベクターを別途作製し、ErbB2断片-GAL4 AD融合タンパク質及びCCN2-GAL4 BD融合タンパク質を酵母AH109細胞内で共発現させ、CCN2とErbB2断片との結合性を酵母内で確認した。その結果、2つのリガンド結合ドメインを含むErbB2断片#3及び一方のリガンド結合部位を含むErbB2断片#2で最も強い結合が確認された(図1(B))。ErbB2断片#1においてもCCN2との若干の結合が確認された。ErbB2の細胞内領域とCCN2の結合は見られなかった。 In order to identify the CCN2 binding region in ErbB2, a vector that expresses five types of ErbB2 fragments (Fig. 1 (A), # 1 to # 4, # 4rev) was separately prepared, and the ErbB2 fragment-GAL4 AD fusion protein and CCN2-GAL4 BD fusion protein was coexpressed in yeast AH109 cells, and the binding property between CCN2 and ErbB2 fragment was confirmed in yeast. As a result, the strongest binding was confirmed in ErbB2 fragment # 3 containing two ligand binding domains and ErbB2 fragment # 2 containing one ligand binding site (FIG. 1 (B)). Some binding to CCN2 was also confirmed in ErbB2 fragment # 1. No binding between the intracellular region of ErbB2 and CCN2 was observed.
 CCN2のどのドメインがErbB2と結合するかを調べるため、CCN2の全長及び断片A~I(図2)を、ErbB2の細胞外リガンド結合ドメインを含むErbB2断片#3と共に酵母細胞内で共発現させ調べた。その結果、2つのリガンド結合部位を含むErbB2断片#3に、CCN2のVWCドメインを含む断片が強く結合することが明らかとなった(図2)。CCN2のC末端CTドメインも微弱ながら結合活性を有していたが、IGFBPドメインとTSPドメインはいずれもErbB2との結合活性を示さなかった(図2)。 To examine which domain of CCN2 binds to ErbB2, the full length of CCN2 and fragments A to I (Figure 2) were co-expressed in yeast cells together with ErbB2 fragment # 3 containing the extracellular ligand binding domain of ErbB2. It was. As a result, it was revealed that a fragment containing the VWC domain of CCN2 was strongly bound to ErbB2 fragment # 3 containing two ligand binding sites (FIG. 2). The C-terminal CT domain of CCN2 was also weak but had binding activity, but neither IGFBP domain nor TSP domain showed binding activity to ErbB2 (FIG. 2).
(2) CCN2とErbB2発現細胞との結合性解析
 ErbB2の発現が検出されないHeLa細胞にErbB2を発現させる遺伝子構築物を導入し、ErbB2タンパク質を高発現する2ラインを得た(HeLa#3株及びHeLa#5株)。
(2) Binding analysis between CCN2 and ErbB2-expressing cells A gene construct that expresses ErbB2 was introduced into HeLa cells in which ErbB2 expression was not detected, and two lines that highly express ErbB2 protein were obtained (HeLa # 3 strain and HeLa # 3 strain) # 5 shares).
 HeLa細胞#5株を固定したサンプルに、FlagタグとHisタグを付加した組換えヒトCCN2(Flag-CCN2-His)を100ng/mlの濃度で添加して37℃、20分間インキュベート後、抗Flag抗体と抗ErbB2抗体で免疫染色を行なった。その結果、図3に示す通り、ErbB2の局在部位でFlag-CCN2-Hisが検出され、細胞膜に局在しているErbB2にCCN2が結合することが示唆された。 Recombinant human CCN2 (Flag-CCN2-His) with a Flag tag and His tag added to a sample in which HeLa cell # 5 strain is fixed at a concentration of 100 ng / ml and incubated at 37 ° C. for 20 minutes, then anti-Flag Immunostaining was performed with antibody and anti-ErbB2 antibody. As a result, as shown in FIG. 3, Flag-CCN2-His was detected at the ErbB2 localization site, suggesting that CCN2 binds to ErbB2 localized in the cell membrane.
 細胞表面に発現したErbB2とCCN2との結合性をより詳細に調べるため、HeLa細胞にErbB2を異所的に発現させた細胞株(HeLa#5)、ErbB2を発現していることが知られている乳がん由来細胞株(MCF7)(Oncogene.(2010) 29, 6343-6356)、及び軟骨様細胞株(HCS-2/8)を用いて、125IラベルしたCCN2の結合を確認した。また、非標識のCCN2を用いた競合結合アッセイにより結合親和性を調べた。コントロールのHeLa細胞への結合は検出されなかったが、HeLa#5へのCCN2の結合は濃度依存的に大きく上昇し、競合アッセイにより調べたKd値は0.8 x 10-9 Mと、親和性が高いことが確認された(図4A)。同様に、ErbB2を発現している乳がん細胞MCF7では、ErbB2を発現していない線維嚢胞性乳腺患者由来細胞株MCF10Aとは対照的に、細胞表面へのCCN2の強い結合が確認された(図4B, Kd= 2.19 x 10-9 M)。軟骨細胞株HCS-2/8でも細胞表面へのCCN2の結合が確認された(図4C, Kd=0.19 x 10-9 M)。 In order to investigate in more detail the binding between ErbB2 expressed on the cell surface and CCN2, a cell line (HeLa # 5) in which ErbB2 is ectopically expressed in HeLa cells is known to express ErbB2. The binding of 125 I-labeled CCN2 was confirmed using an existing breast cancer cell line (MCF7) (Oncogene. (2010) 29, 6343-6356) and a cartilage-like cell line (HCS-2 / 8). In addition, binding affinity was examined by competitive binding assay using unlabeled CCN2. Although binding to the control HeLa cells was not detected, the binding of CCN2 to HeLa # 5 increased greatly in a concentration-dependent manner, and the Kd value determined by the competitive assay was 0.8 x 10 -9 M, indicating an affinity. It was confirmed to be high (FIG. 4A). Similarly, in the breast cancer cell MCF7 expressing ErbB2, strong binding of CCN2 to the cell surface was confirmed in contrast to the cell line MCF10A derived from a fibrocystic mammary gland patient not expressing ErbB2 (FIG. 4B). , Kd = 2.19 x 10 -9 M). CCN2 binding to the cell surface was also confirmed in the chondrocyte cell line HCS-2 / 8 (FIG. 4C, Kd = 0.19 × 10 −9 M).
(3) CCN2によるErbB2自己リン酸化の誘導及びアグリカン存在下の自己リン酸化の促進
 CCN2がErbB2の特異的なリガンドとして機能していることを確認するために、抗リン酸化チロシン抗体を用いてCCN2添加後のErbB2自己リン酸化誘導能を調べた。まず、HeLa細胞#5株において調べたところ、ErbB2の1248番目のY(Y1248)において強いリン酸化が確認され、Y1221/1222及びY877においてもリン酸化が確認された(図5)。ErbB2を高発現する乳がん由来細胞株SKBr3(Oncogene.(2010) 29, 6343-6356)においてもErbB2自己リン酸化誘導能を調べたところ、Y1248, Y877, Y1221/1222のチロシン自己リン酸化がCCN2添加後10分から確認され、この効果は観察を行なったCCN2添加後160分まで持続していた(図6A)。さらに、軟骨細胞でCCN2の発現を促進することが知られているアグリカンをCCN2添加前に培養液に添加しておくと、CCN2によるErbB2の自己リン酸化促進能はさらに増強されることが明らかとなり(図6B)、アグリカンの存在がCCN2の有効細胞表面濃度を増大し得ることが示唆された。これらのデータは、腫瘍細胞におけるErbB2媒介性のシグナル経路をCCN2が活性化することを示唆している。
(3) Induction of ErbB2 autophosphorylation by CCN2 and promotion of autophosphorylation in the presence of aggrecan In order to confirm that CCN2 functions as a specific ligand for ErbB2, CCN2 was used using an anti-phosphotyrosine antibody. The ability to induce ErbB2 autophosphorylation after addition was examined. First, when examined in the HeLa cell # 5 strain, strong phosphorylation was confirmed in the 1248th Y (Y1248) of ErbB2, and phosphorylation was also confirmed in Y1221 / 1222 and Y877 (FIG. 5). The ability to induce ErbB2 autophosphorylation was also investigated in the breast cancer cell line SKBr3 (Oncogene. (2010) 29, 6343-6356) that highly expresses ErbB2. 10 minutes later, this effect was confirmed until 160 minutes after the observed addition of CCN2 (FIG. 6A). Furthermore, it was revealed that the ability of CCN2 to promote ErbB2 autophosphorylation is further enhanced by adding aggrecan, which is known to promote CCN2 expression in chondrocytes, to the culture medium before CCN2. (FIG. 6B), suggesting that the presence of aggrecan can increase the effective cell surface concentration of CCN2. These data suggest that CCN2 activates an ErbB2-mediated signaling pathway in tumor cells.
(4) クロスリンク法及びアフィニティー共免疫沈降によるCCN2-ErbB2複合体の検出
 CCN2とErbB2の結合は一過性であると予想されたため、CCN2とErbB2の複合体の検出には架橋剤を利用した。ErbB2発現HeLa細胞#5株及びErbB2非発現HeLa細胞の細胞懸濁液を組換えヒトHis-CCN2と共にインキュベートし、これにチオール切断性架橋剤DSPを加えることで、複合体化したCCN2-ErbB2間を架橋させた。細胞を遠心して回収、溶解後、溶解物のタンパク質をSDS-ポリアクリルアミド電気泳動(SDS-PAGE)で分離し、結合しているCCN2を抗His抗体で検出した。その結果、mock細胞では検出されなかったが、ErbB2を過剰発現させたHeLa細胞#5株ではCCN2が検出された (図7A、矢頭)。HeLa細胞に結合するCCN2の量は、アグリカンにより濃度依存的に増大した(図7B)。タグ付加しない組換えヒトCCN2による競合的クロスリンキングでは、組換えヒトHis-CCN2との競合が確認された(図7B)。また、ErbB2を過剰発現するHeLa細胞#5株及びErbB2を発現しないHeLa細胞を均質化・分画遠心して粗製膜画分を調製し、これを組換えヒトHis-CCN2とインキュベートしてアフィニティー架橋アッセイを行なった。架橋反応後、ErbB2特異的抗体でタンパク質をプルダウンし、Hisに対する抗体を用いてウエスタンブロット行なった。その結果、ErbB2と共にプルダウンされたHis-CCN2が検出された(図7C)。以上により、CCN2が細胞表面でErbB2と結合し、ErbB2レセプターのチロシンリン酸化によりErbB2シグナリングをトリガーすることが示された。
(4) Detection of CCN2-ErbB2 complex by cross-linking method and affinity co-immunoprecipitation Since the binding of CCN2 and ErbB2 was expected to be transient, a cross-linking agent was used to detect the complex of CCN2 and ErbB2. . Incubate cell suspension of ErbB2-expressing HeLa cell # 5 and ErbB2 non-expressing HeLa cell with recombinant human His-CCN2, and add thiol-cleavable cross-linker DSP to this to combine complexed CCN2-ErbB2 Were crosslinked. The cells were collected by centrifugation and lysed, and then the protein of the lysate was separated by SDS-polyacrylamide electrophoresis (SDS-PAGE), and the bound CCN2 was detected with an anti-His antibody. As a result, although not detected in mock cells, CCN2 was detected in HeLa cell # 5 strain overexpressing ErbB2 (FIG. 7A, arrowhead). The amount of CCN2 bound to HeLa cells was increased by aggrecan in a concentration-dependent manner (FIG. 7B). Competitive cross-linking with untagged recombinant human CCN2 confirmed competition with recombinant human His-CCN2 (FIG. 7B). In addition, the HeLa cell # 5 strain that overexpresses ErbB2 and the HeLa cell that does not express ErbB2 are homogenized and centrifuged to prepare a crude membrane fraction, which is then incubated with recombinant human His-CCN2 for affinity crosslinking assay. Was done. After the cross-linking reaction, the protein was pulled down with an ErbB2-specific antibody, and Western blotting was performed using an antibody against His. As a result, His-CCN2 pulled down together with ErbB2 was detected (FIG. 7C). These results indicate that CCN2 binds to ErbB2 on the cell surface and triggers ErbB2 signaling by tyrosine phosphorylation of the ErbB2 receptor.
(5) CCN2添加による乳がん細胞内での遺伝子発現の変化
 ErbB2を発現するMCF7細胞及びErbB2発現が検出されないMCF10A細胞を組換えヒトCCN2(rhCCN2、50ng/ml)と共に37℃、72時間インキュベートし、CCN2遺伝子、taz(transcriptional coactivator with PDZ-binding motif)遺伝子、tead4(TAE domain family member 4)遺伝子の発現量をリアルタイムPCRにより調べた。gapdh(グリセルアルデヒド-3-リン酸デヒドロゲナーゼ)遺伝子の発現量を内部標準とし、発現量を相対評価した。結果を図8に示す。MCF7細胞では、培地へのCCN2の添加によりCCN2遺伝子及びtaz遺伝子の発現増大が確認された。ErbB2リン酸化阻害剤であるGW2974(Sigma社)と共にrhCCN2を培地へ添加すると、rhCCN2によるCCN2遺伝子及びtaz遺伝子の発現増大が消失した。tead4は、tazタンパク質と相互作用する転写因子をコードし、Hippo-LATSシグナル経路に関与している遺伝子であるが、CCN2処理による発現量の変化は確認されなかった。ErbB2が検出されないMCF10A細胞では、CCN2処理しても上記3遺伝子の発現量に変化は認められなかった(図8B)。
(5) Changes in gene expression in breast cancer cells by addition of CCN2 MCF7 cells expressing ErbB2 and MCF10A cells in which ErbB2 expression is not detected were incubated with recombinant human CCN2 (rhCCN2, 50 ng / ml) at 37 ° C. for 72 hours, The expression levels of CCN2 gene, taz (transcriptional coactivator with PDZ-binding motif) gene, and tead4 (TAE domain family member 4) gene were examined by real-time PCR. Using the expression level of the gapdh (glyceraldehyde-3-phosphate dehydrogenase) gene as an internal standard, the expression level was relatively evaluated. The results are shown in FIG. In MCF7 cells, increased expression of CCN2 gene and taz gene was confirmed by addition of CCN2 to the medium. When rhCCN2 was added to the medium together with ER2B phosphorylation inhibitor GW2974 (Sigma), the increased expression of CCN2 gene and taz gene by rhCCN2 disappeared. tead4 encodes a transcription factor that interacts with the taz protein and is involved in the Hippo-LATS signal pathway, but no change in the expression level due to CCN2 treatment was confirmed. In MCF10A cells in which ErbB2 was not detected, no change was observed in the expression levels of the three genes even after CCN2 treatment (FIG. 8B).
II. がん細胞の増殖抑制
1. 材料
(1) がん細胞株
 ヒト乳がん由来細胞株SkBr3、MCF7及びMDA-MB-231、並びにヒト膵臓がん由来細胞株Capan-1はATCC(American Type Culture Collection)より分譲を受けた。ATCC推奨の条件下で維持した。
II. Suppression of cancer cell growth
1. Material
(1) Cancer cell line Human breast cancer-derived cell lines SkBr3, MCF7 and MDA-MB-231, and human pancreatic cancer-derived cell line Capan-1 were purchased from ATCC (American Type Culture Collection). Maintained under ATCC recommended conditions.
(2) 組換えヒトタンパク質
 full-length ヒトCCN2 (aa 1-349; Swiss-Prot P29279; 配列番号4) をコードする遺伝子をpCEPベクター(Invitrogen社)に挿入し、構築した発現ベクターをHEK293細胞にlipofectamineTM (Invitrogen社)を用いて導入し、安定発現株を培地中へのHygromycin B (Invitrogen社)の添加により選別した。CCN2タンパク質は、無血清DMEM培地中で細胞を培養し、培養上清から3種類の精製法を組み合わせることにより得た。まず、ヘパリンセファロースによりヘパリン結合蛋白を精製し、次にBMP2アフィニティクロマトグラフィー、S200分子篩クロマトグラフィーによって精製を行ない組換えヒトCCN2タンパク質を得た。(文献:FEBS Letters 468 (2000) 215-219,Nat Cell Biol. 2002 August ; 4(8): 599-604. Molecular Vision 2011; 17:53-62)
(2) A gene encoding recombinant human protein full-length human CCN2 (aa 1-349; Swiss-Prot P29279; SEQ ID NO: 4) is inserted into pCEP vector (Invitrogen), and the constructed expression vector is inserted into HEK293 cells. It was introduced using lipofectamine ™ (Invitrogen), and stable expression strains were selected by adding Hygromycin B (Invitrogen) to the medium. CCN2 protein was obtained by culturing cells in serum-free DMEM medium and combining three purification methods from the culture supernatant. First, heparin-binding protein was purified by heparin sepharose, and then purified by BMP2 affinity chromatography and S200 molecular sieve chromatography to obtain recombinant human CCN2 protein. (Reference: FEBS Letters 468 (2000) 215-219, Nat Cell Biol. 2002 August; 4 (8): 599-604. Molecular Vision 2011; 17: 53-62)
 Hisタグ付きErbB2細胞外領域には、ErbB2(配列番号2)の第23番~第650番アミノ酸の領域を用いた。Bac-to-Bacバキュロウイルス発現システム(Invitrogen社)により該細胞外領域の発現用組換えバキュロウイルスを作製した。まず、pFASTBAC HTBベクターのXbaI, XhoIサイトに、pSV2 erb B2 (理研バイオリソースセンター)を鋳型とし、下記表3のプライマーを用いて増幅した細胞外ErbB2ドメインを組み込み、発現ベクターを構築した。大腸菌DH10Bac内で組換えBacmidを作製し、sf9昆虫細胞にトランスフェクションすることにより組換えバキュロウィルス粒子を作製した。Sf9培養細胞にこの組換えバキュロウイルスを感染し組換えErbB2タンパク質を発現させ、Ni-agarose(GE Healthcare社)を用いて精製を行った。 As the His-tagged ErbB2 extracellular region, the region of amino acids 23 to 650 of ErbB2 (SEQ ID NO: 2) was used. A recombinant baculovirus for expression of the extracellular region was prepared using a Bac-to-Bac baculovirus expression system (Invitrogen). First, an extracellular ErbB2 domain amplified using pSV2 erbpB2 (RIKEN BioResource Center) as a template and the primers shown in Table 3 below was incorporated into the XbaI and XhoI sites of the pFASTBAC HTB vector to construct an expression vector. Recombinant baculovirus particles were prepared by preparing recombinant Bacmid in E. coli DH10Bac and transfecting sf9 insect cells. Sf9 cultured cells were infected with this recombinant baculovirus to express recombinant ErbB2 protein, and purified using Ni-agarose (GE Healthcare).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 組換えヒトVWCフラグメントは、周知の遺伝子工学的手法により調製した。HCS-2/8細胞由来RNAから合成したcDNAを鋳型として、ヒトCCN2のVWCドメインcDNA(配列番号3の第513位~第704位)を下記表4のプライマーを用いてPCRにより増幅させたものをBamHI(タカラバイオ社)およびXhoI(タカラバイオ社)処理後、断片をpGEX-6P-1ベクター(GE Healthcare社)のBamHI、XhoIサイトに挿入した。この構築物を大腸菌BL21(DE3)pLysS(Novagen社)に導入し、GST融合タンパク質として大腸菌内で発現させ、Glutathione Sepharose 4B(GE Healthcare社)に結合後、LPS(リポ多糖)除去処理し、PreScission Protease(GE Healthcare社)を用いてGST部分を切断除去した。 The recombinant human VWC fragment was prepared by a well-known genetic engineering technique. Amplification of human CCN2 VWC domain cDNA (positions 513 to 704 of SEQ ID NO: 3) by PCR using the primers synthesized in Table 4 below, using cDNA synthesized from RNA derived from HCS-2 / 8 cells as a template After treatment with BamHI (Takara Bio) and XhoI (Takara Bio), the fragment was inserted into the BamHI and XhoI sites of pGEX-6P-1 vector (GE (Healthcare). This construct is introduced into E. coli BL21 (DE3) pLysS (Novagen), expressed in E. coli as a GST fusion protein, bound to Glutathione Sepharose 4B (GE Healthcare), LPS (lipopolysaccharide) removal treatment, PreScission Protease The GST part was cut and removed using (GE Healthcare).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ビオチン化CCN2は、ビオチン化試薬EZ-Link NHS-PEG4-Biotin(サーモフィッシャーサイエンティフィック社)を用い、試薬マニュアルに従い作製した。 Biotinylated CCN2 was prepared according to the reagent manual using biotinylated reagent EZ-Link® NHS-PEG4-Biotin (Thermo Fisher Scientific).
(3) 合成ペプチド
 ErbB2とCCN2の結合を阻害するVWCペプチドを探索するために、CCN2のVWCドメインを断片化したペプチドを化学的に合成した(図9及び表5、VWCペプチド#2~4)。
(3) Synthetic peptides In order to search for VWC peptides that inhibit the binding of ErbB2 and CCN2, peptides synthesized by fragmenting the VWC domain of CCN2 were chemically synthesized (Fig. 9 and Table 5, VWC peptides # 2-4). .
 同様に、ErbB2とCCN2の結合を阻害するErbB2ペプチドを探索するために、CCN2がより強力に結合する事が確認されたErbB2細胞外領域のうち、リガンド結合予測部位をさらに断片化したペプチドを化学的に合成した(図9及び表5、ErbB2ペプチド1~6)。 Similarly, in order to search for ErbB2 peptides that inhibit the binding between ErbB2 and CCN2, a peptide that was further fragmented in the ligand binding predicted site in the extracellular region of ErbB2 that was confirmed to bind CCN2 more strongly was chemically (Figure 9 and Table 5, ErbB2 peptides 1-6).
 各ペプチドの溶媒の組成を表5に併せて示す。 Table 5 shows the composition of the solvent for each peptide.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
2. 方法及び結果
(1) CCN2のがん細胞増殖促進作用と抗CCN2-VWCドメイン抗体によるがん細胞増殖阻害作用
[方法]
 CCN2活性を抑える抗体を探索する目的で、CCN2のモノクローナル抗体を作製した。シグナルペプチドを除く組換えヒトCCN2タンパク質を免疫原としてマウスに免疫し、常法のハイブリドーマ法によりモノクローナル抗体を産生するハイブリドーマを作製し、CCN2との結合性に基づいてCCN2特異的に結合する抗体を産生するクローンを選抜した。その結果、VWCドメインを認識する2クローン(11H3及び101C10)を得た。表5に示すVWCペプチドを用いたエピトープ解析の結果、11H3はVWCペプチド#2と、101C10はVWCペプチド#4と結合することが確認され、各抗体はそれぞれこれらペプチド領域内にエピトープを有することが確認された。
2. Methods and results
(1) Cancer cell growth promoting action of CCN2 and cancer cell growth inhibitory action by anti-CCN2-VWC domain antibody [Method]
In order to search for an antibody that suppresses CCN2 activity, a monoclonal antibody of CCN2 was prepared. Using a recombinant human CCN2 protein excluding the signal peptide as an immunogen, mice are immunized, and a hybridoma that produces monoclonal antibodies is prepared by a conventional hybridoma method.An antibody that specifically binds CCN2 based on its binding properties to CCN2 Producing clones were selected. As a result, two clones (11H3 and 101C10) that recognize the VWC domain were obtained. As a result of epitope analysis using the VWC peptide shown in Table 5, it was confirmed that 11H3 binds to VWC peptide # 2, and 101C10 binds to VWC peptide # 4, and each antibody has an epitope in each of these peptide regions. confirmed.
 SkBr3細胞は96 well plateに5×105cells/wellで播種し、3時間培養し細胞定着させた。その後、無血清培地200μlに交換し、組換えヒトCCN2を最終濃度が12.5, 25, 50ng/mlになるよう添加した。上記で作製した抗CCN2-VWCドメイン抗体(11H3, 1mg/ml)は、2μl/well添加し、48時間後にテトラカラーワン(生化学バイオビジネス株式会社)を加え、形成されたホルマザン塩の吸光度を定法により測定する事により生細胞数を評価した。 SkBr3 cells were seeded on a 96-well plate at 5 × 10 5 cells / well and cultured for 3 hours to allow the cells to settle. Thereafter, the serum-free medium was replaced with 200 μl, and recombinant human CCN2 was added to a final concentration of 12.5, 25, 50 ng / ml. The anti-CCN2-VWC domain antibody (11H3, 1 mg / ml) prepared above was added at 2 μl / well, and after 48 hours, Tetra Color One (Seikagaku Biobusiness Co., Ltd.) was added, and the absorbance of the formed formazan salt was measured. The number of viable cells was evaluated by measuring by a conventional method.
 また、MCF7細胞を96 well plateに1×104cells/wellで播種し、24時間培養し細胞定着させた。その後、組換えヒトCCN2を最終濃度が6.25, 12.5, 25, 50, 100ng/mlになるよう添加した。上記で作製した抗CCN2-VWCドメイン抗体(11H3又は101C10, 1mg/ml)は、2μl/well添加し、46時間後にBrdUを加え、さらに2時間培養した。その後、BrdU細胞増殖アッセイキット(Roche社)を用いて、細胞に取り込まれたBrdUを655 nmの吸光度により評価した。すなわち、細胞のDNA中に取り込まれたBrdUとペルオキシダーゼ標識抗BrdU抗体を反応させ、次いでペルオキシダーゼの基質(TMB:tetramethylbenzidine)を用いて発色させ、ELISAリーダーで吸光度(波長655nm)を測定した。 In addition, MCF7 cells were seeded at 1 × 10 4 cells / well in a 96 well plate and cultured for 24 hours to allow the cells to settle. Thereafter, recombinant human CCN2 was added to a final concentration of 6.25, 12.5, 25, 50, 100 ng / ml. The anti-CCN2-VWC domain antibody prepared above (11H3 or 101C10, 1 mg / ml) was added at 2 μl / well, and after 46 hours, BrdU was added and further cultured for 2 hours. Thereafter, BrdU incorporated into the cells was evaluated by absorbance at 655 nm using a BrdU cell proliferation assay kit (Roche). Specifically, BrdU incorporated into cell DNA was reacted with a peroxidase-labeled anti-BrdU antibody, followed by color development using a peroxidase substrate (TMB: tetramethylbenzidine), and the absorbance (wavelength 655 nm) was measured with an ELISA reader.
[結果]
 SkBr3細胞における結果を図10Aに、MCF7細胞における結果を図10Bに示す。ErbB2を発現しているSkBr3細胞、MCF7細胞の培養液に組換えCCN2を添加することにより、濃度依存的に細胞増殖が促進された。さらに、VWCドメインをエピトープとする抗CCN2-VWCドメイン抗体を添加することにより、細胞増殖が抑制された。
[result]
The results in SkBr3 cells are shown in FIG. 10A, and the results in MCF7 cells are shown in FIG. 10B. By adding recombinant CCN2 to the culture medium of SkBr3 cells and MCF7 cells expressing ErbB2, cell growth was promoted in a concentration-dependent manner. Furthermore, cell proliferation was suppressed by adding an anti-CCN2-VWC domain antibody having a VWC domain as an epitope.
(2) 組換えヒトVWCフラグメントと合成VWCペプチドによるがん細胞の増殖抑制作用(アンタゴニスト)
[方法]
細胞増殖アッセイ
 がん細胞として、ヒト乳がん由来細胞株MCF7、MDA-MB-231及びSkBr3、並びにヒト膵臓がん由来細胞株Capan-1を用いた。細胞を1×104 cells/wellになるよう、培地(10%ウシ胎児血清入)100μlに懸濁し、96 well plateに播種した。3時間後に細胞の底着を確認し、さらに100μlの血清非添加培地に最終濃度の2倍濃度の増殖因子(組換えヒトCCN2)溶液又は増殖抑制因子(組換えヒトVWCフラグメント、合成VWCペプチド)溶液を添加した。BrdU細胞増殖アッセイキット(Roche社)のマニュアルに従って、37℃, 24時間培養し、培養終了2時間前に、BrdUを細胞に取り込ませ、取り込んだBrdUを655 nmの吸光度により測定した。
(2) Cancer cell growth inhibitory effect (antagonist) of recombinant human VWC fragment and synthetic VWC peptide
[Method]
Cell Proliferation Assay As cancer cells, human breast cancer-derived cell lines MCF7, MDA-MB-231 and SkBr3, and human pancreatic cancer-derived cell line Capan-1 were used. The cells were suspended in 100 μl of medium (with 10% fetal bovine serum) at 1 × 10 4 cells / well and seeded in a 96 well plate. After 3 hours, confirm cell bottoming, and add 100 μl serum-free medium to growth factor (recombinant human CCN2) solution or growth inhibitory factor (recombinant human VWC fragment, synthetic VWC peptide) twice the final concentration. The solution was added. According to the manual of BrdU cell proliferation assay kit (Roche), the cells were cultured at 37 ° C. for 24 hours. BrdU was incorporated into the cells 2 hours before the end of the culture, and the incorporated BrdU was measured by absorbance at 655 nm.
[結果]
 組換えヒトCCN2は、MCF7細胞の増殖を促進した(図11A)。さらに組換えヒトVWCフラグメント(終濃度1.85μg/ml)の培養液への添加は、組換えヒトCCN2の増殖促進効果を強く抑制した(図11A)。この事から、組換えヒトVWCフラグメントは、ErbB2との相互作用に関しCCN2と拮抗するErbB2のアンタゴニストとして作用していることが示唆された。
[result]
Recombinant human CCN2 promoted proliferation of MCF7 cells (FIG. 11A). Furthermore, the addition of recombinant human VWC fragment (final concentration 1.85 μg / ml) to the culture solution strongly suppressed the growth promoting effect of recombinant human CCN2 (FIG. 11A). This suggests that the recombinant human VWC fragment acts as an ErbB2 antagonist that antagonizes CCN2 for interaction with ErbB2.
 合成VWCペプチドが乳がん細胞の増殖に及ぼす影響を測定するために、MDA-MB-231細胞において合成VWCペプチド#2, 3, 4が細胞増殖に及ぼす作用を調べた。CCN2を培地に添加しない条件下でMDA-MB-231細胞に合成ペプチドを添加し、上記と同様にBrdUの取り込みにより細胞増殖を調べた。その結果、合成VWCペプチド#4は、ペプチドの代わりにその溶媒を添加したコントロールと比較してMDA-MB-231細胞の増殖を抑制していた(図11B)。合成VWCペプチド#4は、ErbB2との相互作用に関しCCN2と拮抗するErbB2のアンタゴニストとして作用していることが示唆された。 In order to measure the effect of synthetic VWC peptide on the proliferation of breast cancer cells, the effect of synthetic VWC peptide # 2, 3, 4 on cell proliferation was examined in MDA-MB-231 cells. A synthetic peptide was added to MDA-MB-231 cells under the condition that CCN2 was not added to the medium, and cell proliferation was examined by BrdU incorporation as described above. As a result, the synthetic VWC peptide # 4 suppressed the growth of MDA-MB-231 cells compared to the control in which the solvent was added instead of the peptide (FIG. 11B). It was suggested that the synthetic VWC peptide # 4 acts as an ErbB2 antagonist that antagonizes CCN2 for interaction with ErbB2.
 組換えヒトVWCフラグメントが乳がん細胞の増殖に及ぼす影響を測定するために、MCF7細胞及びSkBr3細胞を用いて実験を行なった。CCN2を培地に添加しない条件下で細胞に組換えヒトVWCフラグメントを添加し、上記と同様にBrdUの取り込みにより細胞増殖を調べた。その結果、組換えヒトVWCフラグメントは、コントロールである溶媒に比べMCF7細胞及びSkBr3細胞の増殖を抑制した(図11C, D)。組換えヒトVWCフラグメントは、ErbB2との相互作用に関しCCN2と拮抗するErbB2のアンタゴニストとして作用していることが示唆された。 In order to measure the effect of recombinant human VWC fragment on the proliferation of breast cancer cells, experiments were performed using MCF7 cells and SkBr3 cells. Recombinant human VWC fragment was added to the cells under conditions where CCN2 was not added to the medium, and cell proliferation was examined by BrdU incorporation as described above. As a result, the recombinant human VWC fragment suppressed the growth of MCF7 cells and SkBr3 cells as compared to the control solvent (FIG. 11C, D). It was suggested that the recombinant human VWC fragment acts as an antagonist of ErbB2 that antagonizes CCN2 for interaction with ErbB2.
 組換えヒトVWCフラグメントが乳がん以外のがん細胞の増殖に及ぼす影響を測定するために、膵臓がん由来のCapan-1細胞を用いて実験を行なった。CCN2を培地に添加しない条件下で細胞に組換えヒトVWCフラグメントを添加し、上記と同様にBrdUの取り込みにより細胞増殖を調べた。その結果、膵臓がん細胞Capan-1においても、組換えヒトVWCフラグメントによる細胞増殖の抑制が確認された(図11E)。 In order to measure the influence of the recombinant human VWC fragment on the growth of cancer cells other than breast cancer, experiments were performed using Capan-1 cells derived from pancreatic cancer. Recombinant human VWC fragment was added to the cells under conditions where CCN2 was not added to the medium, and cell proliferation was examined by BrdU incorporation as described above. As a result, suppression of cell proliferation by the recombinant human VWC fragment was also confirmed in pancreatic cancer cell Capan-1 (FIG. 11E).
 CCN2 VWC領域のうちでがん細胞増殖抑制に重要な領域をさらに絞り込むため、合成VWCペプチド#4の領域から下記表6に示す通りに10残基のサイズのペプチドを調製し、MCF7細胞を用いて実験を行なった。CCN2を培地に添加しない条件下でMCF7細胞に各ペプチドを添加し、上記と同様にBrdUの取り込みにより細胞増殖を調べた。比較のため、aa121-141の領域からなるペプチドB-6及びaa142-166の領域からなるペプチドB-7も調製して同様に実験を行なった。 In order to further narrow down the region of the CCN2 VWC region that is important for cancer cell growth inhibition, a 10-residue peptide was prepared from the synthetic VWC peptide # 4 region as shown in Table 6 below, and MCF7 cells were used. The experiment was conducted. Each peptide was added to MCF7 cells under the condition that CCN2 was not added to the medium, and cell proliferation was examined by BrdU incorporation as described above. For comparison, a peptide B-6 consisting of the aa121-141 region and a peptide B-7 consisting of the aa142-166 region were also prepared and the experiment was performed in the same manner.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 その結果を図12A~Cに示す。ペプチドV-3に増殖抑制効果があることが確認された。 The results are shown in FIGS. It was confirmed that peptide V-3 has a growth inhibitory effect.
(3) ErbB2細胞外領域とCCN2との特異的結合
[方法]
 組換えヒトCCN2とHisタグ付きErbB2細胞外領域との結合を、ErbB2細胞外領域内のリガンド結合部位に該当するペプチド断片(ErbB2ペプチド1~6, 図9)が阻害するか調べるために、96 well plateに0.05 M 炭酸ナトリウムバッファー(pH9.6)で調製したHisタグ付きErbB2細胞外領域(0.1μg/ml)を100μl/well添加し,4℃で16時間コーティングした。このコーティング液を除去した後に、ウェルを200μl/wellの結合バッファー(50 mM Tris-HCl (pH7.4), 150 mM NaCl, 2%BSA, 0.05% Tween20)中、37℃で3時間ブロッキングした。結合バッファーで1回洗浄した後、ウェルあたり100μlになるように調製したビオチン化CCN2および各ErbB2ペプチド(1~6, 図9)をそれぞれの濃度で添加し,37℃で6時間インキュベートした。その後、ウェルを300μl/wellの結合バッファーで3回洗浄した後、結合バッファーで200倍希釈したストレプトアビジン-HRP(R&D System社)を100μl/wellずつ加え、室温で20分間インキュベートした。ウェルを300μl/wellの結合バッファーで3回洗浄した後、TMB Peroxidase Substrate kit(Bio-Rad社)の発色試薬を100μl/wellずつ加え、37℃でインキュベートし655 nmの吸光度を測定した。
(3) Specific binding between ErbB2 extracellular region and CCN2 [Method]
In order to examine whether the peptide fragment corresponding to the ligand binding site in ErbB2 extracellular region (ErbB2 peptide 1-6, FIG. 9) inhibits the binding between recombinant human CCN2 and His-tagged ErbB2 extracellular region, 96 100 μl / well of His-tagged ErbB2 extracellular region (0.1 μg / ml) prepared in 0.05 M sodium carbonate buffer (pH 9.6) was added to a well plate and coated at 4 ° C. for 16 hours. After removing the coating solution, the wells were blocked in 200 μl / well of binding buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2% BSA, 0.05% Tween20) at 37 ° C. for 3 hours. After washing once with binding buffer, biotinylated CCN2 and each ErbB2 peptide (1-6, FIG. 9) prepared to 100 μl per well were added at respective concentrations and incubated at 37 ° C. for 6 hours. Thereafter, the wells were washed three times with 300 μl / well of binding buffer, and then 100 μl / well of streptavidin-HRP (R & D System) diluted 200-fold with binding buffer was added and incubated at room temperature for 20 minutes. The wells were washed 3 times with 300 μl / well of binding buffer, then 100 μl / well of a color reagent of TMB Peroxidase Substrate kit (Bio-Rad) was added, incubated at 37 ° C., and the absorbance at 655 nm was measured.
 また、表面プラズモン共鳴(SPR)BiacoreXシステム(GE Healthcare社)を用いて、組換えヒトCCN2と組換えErbB2細胞外領域との結合をモニタリングした。組換えErbB2蛋白1.8μgをセンサーチップC1にアミノカップリングによりリガンドとしてresonance unit(RU)で5000-7000になるように固相化し、それぞれの濃度のCCN2溶液をアナライトとして添加した。結合実験には0.15 M NaCl, 0.01 M HEPES, 0.005% Surfactant P20(GE Healthcare社)を溶媒として用い、チップは0.01 M HClで再生した。Kd値はBIA evaluation software version 3.0を用いて計算した。 Also, the binding between recombinant human CCN2 and recombinant ErbB2 extracellular region was monitored using a surface plasmon resonance (SPR) BiacoreX system (GE Healthcare). 1.8 μg of the recombinant ErbB2 protein was immobilized on the sensor chip C1 by amino coupling as a ligand so that the resonance unit (RU) was 5000-7000, and each concentration of CCN2 solution was added as an analyte. In the binding experiment, 0.15 M NaCl, 0.01 M HEPES, 0.005% Surfactant P20 (GE Healthcare) was used as a solvent, and the chip was regenerated with 0.01 M HCl. Kd value was calculated using BIA evaluation software version 3.0.
[結果]
 ビオチン化CCN2は、プレート上にコートしたHisタグ付きErbB2細胞外領域にビオチン化CCN2の濃度依存的に結合した(図13A)。さらに、ビオチン化CCN2の濃度を一定にし、Hisタグ付きErbB2細胞外領域を添加すると、Hisタグ付きErbB2細胞外領域の濃度依存的にビオチン化CCN2の結合は阻害された(図13B)ことから、両者の結合は特異的である事が明らかとなった。図13Cは、ErbB2細胞外領域とCCN2の結合をBIACORE社のSPRセンサーを用いてモニタリングした結果である。
[result]
Biotinylated CCN2 bound to the His-tagged ErbB2 extracellular region coated on the plate in a concentration-dependent manner with biotinylated CCN2 (FIG. 13A). Furthermore, when the concentration of biotinylated CCN2 was kept constant and the His-tagged ErbB2 extracellular region was added, binding of biotinylated CCN2 was inhibited in a concentration-dependent manner in the His-tagged ErbB2 extracellular region (FIG. 13B). It was revealed that the binding between them was specific. FIG. 13C shows the result of monitoring the binding between ErbB2 extracellular region and CCN2 using a BIACORE SPR sensor.
 ErbB2とCCN2との結合を、ErbB2のリガンド結合予測領域に該当するペプチド断片1~6が阻害するか否かを調べる目的で、それぞれのペプチドを異なる濃度で添加した。その結果、ErbB2ペプチド5において特に結合阻害作用が強く、Hisタグ付きErbB2細胞外領域と同程度の強い結合阻害作用が確認された(図13D)。このことから、ErbB2ペプチド5の領域は、ErbB2とCCN2との結合に重要で、このペプチドを用いることで、CCN2とErbB2の結合が阻害され、がん細胞の増殖を抑制することが期待された。 Each peptide was added at a different concentration in order to examine whether or not the peptide fragments 1 to 6 corresponding to the ligand binding predicted region of ErbB2 inhibit the binding between ErbB2 and CCN2. As a result, the binding inhibitory action was particularly strong in ErbB2 peptide 5, and a strong binding inhibitory action comparable to that of the His-tagged ErbB2 extracellular region was confirmed (FIG. 13D). From this, the region of ErbB2 peptide 5 is important for the binding of ErbB2 and CCN2, and the use of this peptide was expected to inhibit the binding of CCN2 and ErbB2 and suppress the growth of cancer cells. .
(4) ErbB2リガンド結合領域ペプチドによりErbB2細胞外領域とCCN2との結合を阻害することによるMDA-MB-231細胞の増殖抑制作用
[方法]
 合成したErbB2ペプチド1~6(図9)ががん細胞の増殖を抑制するかどうかを調べるため、MDA-MB-231細胞を用いて上記II 2 (2)と同様の細胞増殖アッセイを行なった。96 well plateで培養した細胞にErbB2ペプチドを添加し、BrdU細胞増殖アッセイキット(Roche社)を用いて細胞増殖を測定した。
(4) Growth inhibition of MDA-MB-231 cells by inhibiting binding of ErbB2 extracellular domain and CCN2 by ErbB2 ligand binding domain peptide [Method]
In order to examine whether the synthesized ErbB2 peptides 1 to 6 (FIG. 9) inhibit the growth of cancer cells, a cell proliferation assay similar to that of II 2 (2) was performed using MDA-MB-231 cells. . ErbB2 peptide was added to cells cultured in a 96-well plate, and cell proliferation was measured using a BrdU cell proliferation assay kit (Roche).
[結果]
 ErbB2ペプチド4および5が、その溶媒のコントロール群と比較して細胞の増殖を抑制する事が明らかとなった(図14)。この事から、ErbB2ペプチド4および5はがん細胞の増殖を抑制することが示された。
[result]
It was revealed that ErbB2 peptides 4 and 5 inhibit cell growth compared to the solvent control group (FIG. 14). This indicates that ErbB2 peptides 4 and 5 inhibit the growth of cancer cells.
(5) 組換えヒトVWCフラグメントとタキソールの同時添加によるMCF7細胞の細胞死誘導効果 (5) Cell death induction effect of MCF7 cells by simultaneous addition of recombinant human VWC fragment and taxol
[方法]
トリパンブルー色素排除試験法(Dye-exclusion test)
 MCF7細胞を24 well plateに1×105 cells/wellになるように400μlの培地に懸濁して播種し、16時間後に組換えヒトVWCフラグメント(終濃度0.18μg/ml, 26nM)および抗がん剤であるタキソール(CellSignaling社)(終濃度85pg/ml, 0.1nM)を、600μlの培地に希釈して添加した。なお、タキソールは、CellSignaling社のプロトコールに従い、1.15mlのDMSOに1mgを溶解し、1mMとしたものを培地に添加した。48時間培養後、培養上清から浮遊した細胞を回収および付着した細胞はトリプシン処理後に回収し、回収したそれぞれの細胞についてトリパンブルー染色により生細胞および死細胞数を測定した。
[結果]
 組換えヒトVWCフラグメントおよびタキソールとの複合添加が乳がん細胞死誘導に及ぼす効果を調べた。その結果、低濃度タキソール(0.1nM)添加時に組換えヒトVWCフラグメント(26nM)を複合添加することにより、タキソール単独添加に比べて、細胞死のより高い誘導効果が観察された(図15)。組換えヒトVWCフラグメントは、図11Aに示す通り、26nMの処理濃度では単独でCCN2により誘導される細胞増殖を抑制する効果を示さない。従って、タキソールと組換えヒトVWCフラグメントの併用の効果は相乗的であるといえる。
[Method]
Trypan blue dye exclusion test (Dye-exclusion test)
MCF7 cells are seeded in a 24-well plate suspended in 400 μl medium at 1 × 10 5 cells / well, and 16 hours later, recombinant human VWC fragment (final concentration 0.18 μg / ml, 26 nM) and anti-cancer Taxol (CellSignaling) (final concentration: 85 pg / ml, 0.1 nM), an agent, was diluted in 600 μl medium and added. Taxol was added to the medium after dissolving 1 mg in 1.15 ml DMSO and adding 1 mM according to CellSignaling protocol. After culturing for 48 hours, the cells floating from the culture supernatant were collected and the adhered cells were collected after trypsin treatment, and the number of live and dead cells was measured by trypan blue staining for each collected cell.
[result]
The effects of combined addition of recombinant human VWC fragment and taxol on the induction of breast cancer cell death were investigated. As a result, by adding the recombinant human VWC fragment (26 nM) in combination with the addition of low-concentration taxol (0.1 nM), a higher induction effect of cell death was observed compared with the addition of taxol alone (FIG. 15). As shown in FIG. 11A, the recombinant human VWC fragment does not show the effect of suppressing cell proliferation induced by CCN2 alone at a treatment concentration of 26 nM. Therefore, the combined effect of taxol and recombinant human VWC fragment is synergistic.
参考データ:酵母two-hybrid法による全長CCN2とCCN3との結合ドメインの検索
 酵母AH109株中にGAL4 DNA結合ドメイン(BD)との融合体として発現するCCN2をコードしたベクターと、GAL4 DNA活性化ドメイン(AD)との融合体として発現するCCN3の各ドメインをコードしたベクターとを共導入し、栄養要求性から両因子の結合の有無を調べた。その結果,CCN2とCCN3とは、VWC, CTドメインで結合活性を示す事が明らかとなった(図16A)。
Reference data: Search for binding domain of full-length CCN2 and CCN3 by yeast two-hybrid method Vector encoding CCN2 expressed as a fusion with GAL4 DNA binding domain (BD) in yeast AH109 strain and GAL4 DNA activation domain A vector encoding each domain of CCN3 expressed as a fusion with (AD) was co-introduced, and the presence or absence of binding of both factors was examined from auxotrophy. As a result, it became clear that CCN2 and CCN3 show binding activity in the VWC and CT domains (FIG. 16A).
 ビオチン化CCN2とGST-CCN3との結合を調べた。96 well plateにGST-CCN3又はGSTを50μg固相化し,ビオチン化したCCN2を0~3μg/mLの濃度で添加した。洗浄後、プレートに結合したビオチン-CCN2をアビジン-HRPでラベル後、TMBで発色した。その結果、図16Bに示す通り、CCN2はCCN3と濃度依存的に結合した。 The binding between biotinylated CCN2 and GST-CCN3 was examined. 50 μg of GST-CCN3 or GST was immobilized on a 96-well plate, and biotinylated CCN2 was added at a concentration of 0 to 3 μg / mL. After washing, biotin-CCN2 bound to the plate was labeled with avidin-HRP and developed with TMB. As a result, as shown in FIG. 16B, CCN2 bound to CCN3 in a concentration-dependent manner.

Claims (50)

  1.  CCN2とErbB2との間の相互作用を阻害する物質を有効成分とするがんの治療又は予防剤。 An agent for treating or preventing cancer comprising a substance that inhibits the interaction between CCN2 and ErbB2 as an active ingredient.
  2.  前記相互作用が、CCN2のVWCドメインとErbB2のRECドメインとの間の相互作用である請求項1記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 1, wherein the interaction is an interaction between the VWC domain of CCN2 and the REC domain of ErbB2.
  3.  前記相互作用が、CCN2のVWCドメインとErbB2の膜近位側のRECドメインとの間の相互作用である請求項2記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 2, wherein the interaction is an interaction between the VWC domain of CCN2 and the REC domain on the membrane proximal side of ErbB2.
  4.  前記相互作用が、CCN2の第121番~第145番アミノ酸の領域とErbB2の第436番~第465番アミノ酸の領域との間の相互作用である請求項3記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 3, wherein the interaction is an interaction between the region of amino acids 121 to 145 of CCN2 and the region of amino acids 436 to 465 of ErbB2.
  5.  前記物質が、
    (1) ErbB2の細胞外領域に結合することでCCN2とErbB2との間の相互作用を阻害する物質、及び
    (2) CCN2のVWCドメイン又はその近傍に結合することでCCN2とErbB2との間の相互作用を阻害する物質
    から選択される少なくとも1種である請求項1ないし4のいずれか1項に記載の治療又は予防剤。
    The substance is
    (1) a substance that inhibits the interaction between CCN2 and ErbB2 by binding to the extracellular region of ErbB2, and
    (2) The substance according to any one of claims 1 to 4, which is at least one selected from substances that inhibit the interaction between CCN2 and ErbB2 by binding to or near the VWC domain of CCN2. Treatment or prevention agent.
  6.  前記(1)の物質が、ErbB2のRECドメイン(配列番号2中の第52番~第173番アミノ酸の領域、及び第366番~第486番アミノ酸の領域)の少なくともいずれかに結合する物質である請求項5記載の治療又は予防剤。 The substance (1) is a substance that binds to at least one of the ErbB2 REC domain (regions 52 to 173 amino acids and regions 366 to 486 amino acids in SEQ ID NO: 2). The therapeutic or prophylactic agent according to claim 5.
  7.  前記(1)の物質が、ErbB2の膜近位側のRECドメイン(配列番号2の第366番~第486番アミノ酸の領域)に結合する物質である請求項6記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 6, wherein the substance (1) is a substance that binds to the REC domain on the membrane proximal side of ErbB2 (region of amino acids 366 to 486 of SEQ ID NO: 2).
  8.  前記(1)の物質が、ErbB2のアンタゴニスト、並びに抗ErbB2-RECドメイン抗体及びその抗原結合性断片から選択される少なくとも1種である請求項6記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 6, wherein the substance (1) is at least one selected from an ErbB2 antagonist, an anti-ErbB2-REC domain antibody and an antigen-binding fragment thereof.
  9.  ErbB2のアンタゴニストがCCN2タンパク質の改変体である請求項8記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 8, wherein the ErbB2 antagonist is a variant of CCN2 protein.
  10.  CCN2タンパク質の改変体が、配列番号5に示すCCN2 VWCドメインのアミノ酸配列中の連続する7残基以上からなるポリペプチド、又は該ポリペプチドと90%以上の同一性を有するアミノ酸配列からなるポリペプチドであって、かつ、がん細胞の増殖を抑制する作用を有するポリペプチドである請求項9記載の治療又は予防剤。 A CCN2 protein variant is a polypeptide comprising 7 or more consecutive residues in the amino acid sequence of CCN2 VWC domain shown in SEQ ID NO: 5, or a polypeptide comprising an amino acid sequence having 90% or more identity to the polypeptide The therapeutic or prophylactic agent according to claim 9, which is a polypeptide having an action of suppressing the growth of cancer cells.
  11.  CCN2タンパク質の改変体が、配列番号5に示すCCN2 VWCドメインのアミノ酸配列中の連続する7残基以上からなるポリペプチドである請求項10記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 10, wherein the variant of CCN2 protein is a polypeptide consisting of 7 or more consecutive residues in the amino acid sequence of CCN2 VWC domain shown in SEQ ID NO: 5.
  12.  CCN2タンパク質の改変体が、配列番号5に示すアミノ酸配列からなるポリペプチドである請求項11記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 11, wherein the modified CCN2 protein is a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 5.
  13.  CCN2タンパク質の改変体が、配列番号8に示すアミノ酸配列中の連続する7残基以上からなるポリペプチドである請求項11記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 11, wherein the variant of CCN2 protein is a polypeptide consisting of 7 or more consecutive residues in the amino acid sequence shown in SEQ ID NO: 8.
  14.  前記ポリペプチドが、配列番号8に示すアミノ酸配列中の第11番~第20番アミノ酸の領域内の連続する7残基以上を含む、請求項13記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 13, wherein the polypeptide comprises 7 or more consecutive residues in the region of amino acids 11 to 20 in the amino acid sequence shown in SEQ ID NO: 8.
  15.  CCN2タンパク質の改変体が、配列番号8に示すアミノ酸配列からなるポリペプチドである請求項13記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 13, wherein the variant of CCN2 protein is a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 8.
  16.  CCN2タンパク質の改変体が、配列番号38に示すアミノ酸配列からなるポリペプチドである請求項13記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 13, wherein the variant of CCN2 protein is a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 38.
  17.  前記(2)の物質が、CCN2のVWCドメインに結合する物質である請求項5記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 5, wherein the substance (2) is a substance that binds to the VWC domain of CCN2.
  18.  前記(2)の物質が、抗CCN2-VWCドメイン抗体及びその抗原結合性断片;ErbB2細胞外領域(配列番号9)、7残基以上からなるその部分断片、及びこれらのいずれかと90%以上の同一性を有し、がん細胞の増殖を抑制する作用を有するポリペプチド;並びにCCN3、DECORIN、BMP(骨形成タンパク質)、及びCCN2のVWCドメインに結合可能なこれらの断片からなる群より選択される少なくとも1種である請求項5記載の治療又は予防剤。 The substance (2) is an anti-CCN2-VWC domain antibody and an antigen-binding fragment thereof; ErbB2 extracellular region (SEQ ID NO: 9), a partial fragment comprising 7 residues or more, and any of these and 90% or more A polypeptide having identity and inhibiting cancer cell growth; and selected from the group consisting of CCN3, DECORIN, BMP (bone morphogenetic protein), and these fragments capable of binding to the CCW2 VWC domain 6. The therapeutic or prophylactic agent according to claim 5, which is at least one kind.
  19.  ErbB2細胞外領域の部分断片が、配列番号14に示すアミノ酸配列中の連続する7残基以上からなるポリペプチドである請求項18記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 18, wherein the partial fragment of the ErbB2 extracellular region is a polypeptide consisting of 7 or more consecutive residues in the amino acid sequence shown in SEQ ID NO: 14.
  20.  ErbB2細胞外領域の部分断片が、配列番号14に示すアミノ酸配列からなるポリペプチドである請求項19記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 19, wherein the partial fragment of the ErbB2 extracellular region is a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 14.
  21.  抗CCN2-VWCドメイン抗体及びその抗原結合性断片が、CCN2(配列番号4)の第121番~第166番アミノ酸の領域内にエピトープを有する抗体又はその抗原結合性断片である、請求項18記載の治療又は予防剤。 19. The anti-CCN2-VWC domain antibody and an antigen-binding fragment thereof are an antibody having an epitope in the region of amino acids 121 to 166 of CCN2 (SEQ ID NO: 4) or an antigen-binding fragment thereof. Treatment or prevention agent.
  22.  抗CCN2-VWCドメイン抗体及びその抗原結合性断片が、CCN2(配列番号4)の第121番~第145番アミノ酸の領域内、又は第146番~第166番アミノ酸の領域内にエピトープを有する抗体又はその抗原結合性断片である、請求項21記載の治療又は予防剤。 An antibody in which an anti-CCN2-VWC domain antibody and an antigen-binding fragment thereof have an epitope in the region of amino acids 121 to 145 of CCN2 (SEQ ID NO: 4) or in the region of amino acids 146 to 166 Or the therapeutic or prophylactic agent of Claim 21 which is an antigen binding fragment.
  23.  ErbB2を発現するがんの治療又は予防剤である請求項1ないし22のいずれか1項に記載の治療又は予防剤。 The therapeutic or prophylactic agent according to any one of claims 1 to 22, which is a therapeutic or prophylactic agent for cancer that expresses ErbB2.
  24.  前記がんが乳がん、胃がん、膵臓がん、肺がん、大腸がん、又は膀胱がんである請求項23記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 23, wherein the cancer is breast cancer, stomach cancer, pancreatic cancer, lung cancer, colon cancer, or bladder cancer.
  25.  前記がんが乳がん又は膵臓がんである請求項24記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 24, wherein the cancer is breast cancer or pancreatic cancer.
  26.  CCN2とErbB2との間の相互作用の阻害を指標として化合物を選択することを含む、がんの治療又は予防剤のスクリーニング方法。 A screening method for a therapeutic or prophylactic agent for cancer, comprising selecting a compound using inhibition of interaction between CCN2 and ErbB2 as an index.
  27.  CCN2とErbB2との間の直接的な結合の阻害を指標とする請求項26記載の方法。 The method according to claim 26, wherein inhibition of direct binding between CCN2 and ErbB2 is used as an index.
  28.  前記がんがErbB2を発現するがんである請求項26又は27記載の方法。 28. The method according to claim 26 or 27, wherein the cancer expresses ErbB2.
  29.  前記がんが乳がん、胃がん、膵臓がん、肺がん、大腸がん、又は膀胱がんである請求項28記載の方法。 The method according to claim 28, wherein the cancer is breast cancer, stomach cancer, pancreatic cancer, lung cancer, colon cancer, or bladder cancer.
  30.  前記がんが乳がん又は膵臓がんである請求項29記載の方法。 30. The method of claim 29, wherein the cancer is breast cancer or pancreatic cancer.
  31.  請求項26ないし30のいずれか1項に記載のスクリーニング方法で取得されたがんの治療又は予防剤。 A cancer therapeutic or prophylactic agent obtained by the screening method according to any one of claims 26 to 30.
  32.  下記のいずれかのポリペプチドを含む、がん細胞の検出試薬。
    (a) 配列番号4に示すアミノ酸配列からなるポリペプチド。
    (b) 配列番号4に示すアミノ酸配列中の部分領域からなるポリペプチドであって、第103番~第166番アミノ酸の領域内の連続する7残基以上を含み、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
    (c) (a)又は(b)と90%以上の同一性を有するアミノ酸配列からなり、ErbB2細胞外領域と直接的又は間接的に結合するポリペプチド。
    (d) (a)~(c)のポリペプチドのアミノ酸配列を含むポリペプチド。
    A cancer cell detection reagent comprising any of the following polypeptides:
    (a) A polypeptide comprising the amino acid sequence shown in SEQ ID NO: 4.
    (b) a polypeptide consisting of a partial region in the amino acid sequence shown in SEQ ID NO: 4, comprising 7 or more consecutive residues in the region of amino acids 103 to 166 and directly to the ErbB2 extracellular region Or a polypeptide that binds indirectly.
    (c) A polypeptide comprising an amino acid sequence having 90% or more identity with (a) or (b) and directly or indirectly binding to the ErbB2 extracellular region.
    (d) A polypeptide comprising the amino acid sequence of the polypeptides (a) to (c).
  33.  前記(c)のポリペプチドが、前記(a)又は(b)のポリペプチドにおいて1個又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなる請求項32記載の試薬。 The reagent according to claim 32, wherein the polypeptide (c) comprises an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the polypeptide (a) or (b).
  34.  配列番号4に示すアミノ酸配列からなるポリペプチド、又は配列番号4に示すアミノ酸配列中の部分領域からなるポリペプチドであって、第103番~第166番アミノ酸の領域内の連続する7残基以上を含むポリペプチドを含む、請求項32記載の試薬。 A polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 4, or a polypeptide consisting of a partial region in the amino acid sequence shown in SEQ ID NO: 4, wherein 7 or more consecutive residues in the region of amino acids 103 to 166 33. The reagent of claim 32, comprising a polypeptide comprising
  35.  配列番号4に示すアミノ酸配列からなるポリペプチド、又は配列番号4に示すアミノ酸配列中の部分領域からなるポリペプチドであって、第103番~第166番アミノ酸の領域を含むポリペプチドを含む、請求項34記載の試薬。 A polypeptide comprising the amino acid sequence shown in SEQ ID NO: 4, or a polypeptide consisting of a partial region in the amino acid sequence shown in SEQ ID NO: 4, comprising a polypeptide comprising the region of the 103rd to 166th amino acids Item 34. The reagent according to Item 34.
  36.  前記ポリペプチドが標識された形態にある請求項32ないし35のいずれか1項に記載の試薬。 36. The reagent according to any one of claims 32 to 35, wherein the polypeptide is in a labeled form.
  37.  ErbB2発現がん細胞の検出試薬である請求項32ないし36のいずれか1項に記載の試薬。 37. The reagent according to any one of claims 32 to 36, which is a detection reagent for ErbB2-expressing cancer cells.
  38.  CCN2とErbB2との間の相互作用を阻害する物質を有効成分とし、アポトーシスを誘導する抗がん剤と組み合わせて用いられる、がんの治療又は予防剤。 An agent for treating or preventing cancer, comprising as an active ingredient a substance that inhibits the interaction between CCN2 and ErbB2, and used in combination with an anticancer agent that induces apoptosis.
  39.  アポトーシスを誘導する抗がん剤が有糸分裂を阻害する抗がん剤である請求項38記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 38, wherein the anticancer agent that induces apoptosis is an anticancer agent that inhibits mitosis.
  40.  有糸分裂を阻害する抗がん剤がタキサン系抗がん剤である請求項39記載の治療又は予防剤。 40. The therapeutic or prophylactic agent according to claim 39, wherein the anticancer agent that inhibits mitosis is a taxane anticancer agent.
  41.  タキサン系抗がん剤が、パクリタキセル及びドセタキセルからなる群より選択される少なくとも1種である請求項40記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 40, wherein the taxane anticancer agent is at least one selected from the group consisting of paclitaxel and docetaxel.
  42.  タキサン系抗がん剤がパクリタキセルである請求項41記載の治療又は予防剤。 The therapeutic or prophylactic agent according to claim 41, wherein the taxane anticancer agent is paclitaxel.
  43.  前記抗がん剤が前記治療又は予防剤と同時に、順次に、又は別々に投与される請求項38ないし42のいずれか1項に記載の治療又は予防剤。 43. The therapeutic or prophylactic agent according to any one of claims 38 to 42, wherein the anticancer agent is administered simultaneously, sequentially or separately with the therapeutic or prophylactic agent.
  44.  前記抗がん剤に耐性のがんの治療又は予防剤である請求項38ないし43のいずれか1項に記載の治療又は予防剤。 44. The therapeutic or prophylactic agent according to any one of claims 38 to 43, which is a therapeutic or prophylactic agent for cancer resistant to the anticancer agent.
  45.  CCN2とErbB2との間の相互作用を阻害する物質を有効成分とする、アポトーシスを誘導する抗がん剤の抗がん活性の増強剤。 Enhancer of anticancer activity of an anticancer agent that induces apoptosis, comprising as an active ingredient a substance that inhibits the interaction between CCN2 and ErbB2.
  46.  それを必要とする対象に対し、CCN2とErbB2との間の相互作用を阻害する物質の有効量を投与することを含む、がんの治療又は予防方法。 A method for treating or preventing cancer, comprising administering to a subject in need thereof an effective amount of a substance that inhibits the interaction between CCN2 and ErbB2.
  47.  請求項32~37のいずれか1項に記載の検出試薬を対象の細胞と接触させる工程、及び前記ポリペプチドが結合した細胞の存在を検出する工程を含む、がん細胞の検出方法。 A method for detecting cancer cells, comprising a step of bringing the detection reagent according to any one of claims 32 to 37 into contact with a target cell, and a step of detecting the presence of a cell to which the polypeptide is bound.
  48.  対象の細胞が、対象から分離された細胞を含む試料である請求項47記載の検出方法。 48. The detection method according to claim 47, wherein the target cell is a sample containing cells separated from the target.
  49.  それを必要とする対象に対し、CCN2とErbB2との間の相互作用を阻害する物質の有効量及びアポトーシスを誘導する抗がん剤の有効量を組み合わせて投与することを含む、がんの治療又は予防方法。 Treatment of cancer comprising administering to a subject in need thereof an effective amount of a substance that inhibits the interaction between CCN2 and ErbB2 and an effective amount of an anticancer agent that induces apoptosis Or prevention method.
  50.  それを必要とする対象に対し、CCN2とErbB2との間の相互作用を阻害する物質の有効量を投与することを含む、前記抗がん剤の抗がん活性の増強方法。 A method for enhancing the anticancer activity of the anticancer agent, comprising administering an effective amount of a substance that inhibits the interaction between CCN2 and ErbB2 to a subject in need thereof.
PCT/JP2013/050907 2012-01-20 2013-01-18 Therapeutic or prophylactic agent for cancer WO2013108869A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012009688 2012-01-20
JP2012-009665 2012-01-20
JP2012-009688 2012-01-20
JP2012009665 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013108869A1 true WO2013108869A1 (en) 2013-07-25

Family

ID=48799291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050907 WO2013108869A1 (en) 2012-01-20 2013-01-18 Therapeutic or prophylactic agent for cancer

Country Status (2)

Country Link
JP (1) JP6187960B2 (en)
WO (1) WO2013108869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741389A1 (en) 2019-05-23 2020-11-25 Fibrogen, Inc. A connective tissue growth factor (ctgf) inhibitor for use in the treatment of muscular dystrophies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012541A (en) * 2001-06-07 2003-01-15 Daiichi Fine Chemical Co Ltd Neovascularization inhibitor
WO2007066823A1 (en) * 2005-12-07 2007-06-14 Nosan Corporation Antibody against connective tissue growth factor or composition containing the same
WO2007095038A2 (en) * 2006-02-09 2007-08-23 Novartis Ag Mutations and polymorphisms of erbb2
US20110091468A1 (en) * 2003-06-04 2011-04-21 Fibrogen, Inc. Connective tissue growth factor antibodies
WO2011146568A1 (en) * 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SV2006002143A (en) * 2004-06-16 2006-01-26 Genentech Inc USE OF AN ANTIBODY FOR THE TREATMENT OF CANCER RESISTANT TO PLATINUM
WO2006081418A2 (en) * 2005-01-27 2006-08-03 The Burnham Institute Ephb receptor-binding peptides
WO2009049184A2 (en) * 2007-10-12 2009-04-16 Transmolecular, Inc. Systemic administration of chlorotoxin agents for the diagnosis and treatment of tumors
JP5493714B2 (en) * 2009-10-30 2014-05-14 国立大学法人信州大学 Clathrin-binding peptide derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012541A (en) * 2001-06-07 2003-01-15 Daiichi Fine Chemical Co Ltd Neovascularization inhibitor
US20110091468A1 (en) * 2003-06-04 2011-04-21 Fibrogen, Inc. Connective tissue growth factor antibodies
WO2007066823A1 (en) * 2005-12-07 2007-06-14 Nosan Corporation Antibody against connective tissue growth factor or composition containing the same
WO2007095038A2 (en) * 2006-02-09 2007-08-23 Novartis Ag Mutations and polymorphisms of erbb2
WO2011146568A1 (en) * 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L.WEI ET AL., J. CELL COMMUN. SIGNAL., vol. 3, 2009, pages 65 - 77 *
P.CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, no. 10, 1992, pages 4285 - 4289 *
P.HUBER, RADIOTHERAPY AND ONCOLOGY, vol. 103, no. 1, May 2012 (2012-05-01), pages S172 - S173 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741389A1 (en) 2019-05-23 2020-11-25 Fibrogen, Inc. A connective tissue growth factor (ctgf) inhibitor for use in the treatment of muscular dystrophies

Also Published As

Publication number Publication date
JP2013166751A (en) 2013-08-29
JP6187960B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6410724B2 (en) Binding protein comprising at least two anti-HER2 repeat domains
RU2596392C2 (en) Antibodies against sigleka-15 for treating disease associated with loss of bone mass
JP2024023445A (en) Binding molecules that inhibit cancer growth
DK2293819T3 (en) Method for Diagnosing Cancer Expressing a Truncated HER2 Receptor Variation
US8741586B2 (en) Antibodies against HER2 truncated variant CTF-611
AU2013331763B2 (en) Bispecific HER2 ligands for cancer therapy
CA2347294A1 (en) Novel g protein coupled receptor protein, dna and its ligand
KR20120101050A (en) Treating basal-like genotype cancers
US8323987B2 (en) Modulation of epidermal growth factor heterodimer activity
JP2018536657A (en) Reagent for reducing the activity of GDF15
KR20150082278A (en) Ly75 as cancer therapeutic and diagnostic target
CA2868575C (en) Sh2 domain variants
JP2007534297A (en) Compositions and methods comprising a ligand of ChemerinR
CN107249636B (en) Antitumor agent containing CKAP4 as target molecule
JP6187960B2 (en) Cancer treatment or prevention agent
KR20140014062A (en) Anti-ephrin b2 antibody and use thereof
CN111378040A (en) Antibody for detecting multiple malignant tumor cells and application thereof
CA2911933A1 (en) Pappalysin regulator
WO2001057524A1 (en) Screening method
TW201639879A (en) Insulin-like growth factor 2 (IGF2) signaling and modulation
WO2020234698A1 (en) Gpcr heteromer inhibitors and uses thereof
WO2007060899A1 (en) Application of actin-binding protein to disease associated with cell motility
JP4637378B2 (en) Screening method
JP4472534B2 (en) Functional control of intracellular Ca ions
JP4843595B2 (en) Promoter and inhibitor for removal of apoptotic cells in vivo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738369

Country of ref document: EP

Kind code of ref document: A1