WO2013107091A1 - 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜 - Google Patents

镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜 Download PDF

Info

Publication number
WO2013107091A1
WO2013107091A1 PCT/CN2012/073049 CN2012073049W WO2013107091A1 WO 2013107091 A1 WO2013107091 A1 WO 2013107091A1 CN 2012073049 W CN2012073049 W CN 2012073049W WO 2013107091 A1 WO2013107091 A1 WO 2013107091A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
dual
function
frame
eyeglass
Prior art date
Application number
PCT/CN2012/073049
Other languages
English (en)
French (fr)
Inventor
周永业
钟斌
Original Assignee
深圳市时代华影科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012200690817U external-priority patent/CN202453594U/zh
Application filed by 深圳市时代华影科技开发有限公司 filed Critical 深圳市时代华影科技开发有限公司
Priority to EP12865892.9A priority Critical patent/EP2806303B1/en
Priority to ES12865892.9T priority patent/ES2671239T3/es
Publication of WO2013107091A1 publication Critical patent/WO2013107091A1/zh
Priority to US14/334,668 priority patent/US10295836B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C5/00Constructions of non-optical parts
    • G02C5/001Constructions of non-optical parts specially adapted for particular purposes, not otherwise provided for or not fully classifiable according to technical characteristics, e.g. therapeutic glasses

Definitions

  • the invention belongs to the technical field of glasses, and in particular relates to a lens structure and dual-purpose glasses which have the functions of sunglasses and 3D glasses.
  • the 3D image information technology is an inevitable trend of information technology development and a key technology for industrial development competitiveness. While ensuring product quality and reducing costs, the product functions are diversified and enhanced. Sex will increase the competitiveness of enterprises to a certain extent.
  • the current 3D glasses have a single function. After watching 3D images, they are basically idle, and the utility is very low, resulting in waste of resources. If you can add 3D glasses to some of the more used features, it is bound to be more popular with consumers.
  • the first technical problem to be solved by the present invention is to provide a lens structure by which dual-purpose glasses having both the function of sunglasses and the function of 3D stereo glasses can be produced.
  • the present invention is achieved by a lens structure comprising a quarter-wave plate layer and a linear polarizing film layer, wherein the line polarizer layer is located outside the eye away from the eye, the line The optical axis of the polarizer layer is in the vertical direction.
  • the invention also provides a dual-purpose eyeglass having both a sunglasses function and a 3D glasses function, comprising a frame and a lens and a second lens mounted on the frame, the lens comprising a quarter wave layer and a line
  • the polarizer layer, the lens and the two temples may be oppositely turned, and any one of the quarter wave plate layer and the linear polarizer layer may be located outside the lens away from the eye.
  • the lens is rotatably mounted on the frame, and the rotating shaft is pivotally connected to the frame vertically or horizontally or at an angle to the horizontal direction.
  • the glasses further include a lens frame, the lens is fixedly mounted on the lens frame, and the rotating shaft protrudes from the lens frame.
  • the rotating shaft is pivotally connected to the frame vertically or horizontally
  • the glasses have one of the lens frames
  • the lens is fixedly mounted on the lens frame and can be in a vertical direction Or rotate in the horizontal direction.
  • the glasses have two of the lens frames, and each of the lens frames is fixedly mounted with one of the lenses, and the two lenses may be in a vertical direction, or a horizontal direction, or an oblique direction of the rotation axis thereof. Rotate independently.
  • the inner edge of the frame is provided with a dimple or a protrusion
  • the lens frame is provided with a protrusion or a recess corresponding thereto at a position corresponding to the dimple or the protrusion.
  • a push block for facilitating pushing the lens is protruded from the lens frame.
  • the rotation axis of the lens is at an angle of 45 degrees with respect to the horizontal direction, and when the lens is turned over to the side of the linear polarizer layer near the eye, the polarization axis thereof is in the horizontal direction.
  • the two temples are rotatably mounted on the frame.
  • one end of the temple has a connecting member, and the connecting member is rotatably pivotally connected to the frame in a horizontal direction.
  • the connecting member comprises a main body and two pivoting shafts, wherein the two pivoting shafts respectively protrude from two sides of the main body, and the frame frame has a matching with the two pivoting shafts respectively.
  • a pivoting hole wherein one of the pivoting shafts has a protruding tooth extending toward the two sides, and the pivoting hole that cooperates with the protruding shaft of the protruding tooth is a stepped hole, and the shape thereof corresponds to the pivoting shaft .
  • the temple is rotatably pivotally connected to the connecting member.
  • a horizontal pivot post is protruded from the frame, and the temple is rotatably sleeved on the pivot post in a vertical direction.
  • a positioning sleeve is disposed on the pivoting portion of the temple and the connecting member, and the positioning sleeve has a protrusion or a recess therein, and the position of the connecting member corresponding to the protrusion or the pit is There are pits or bulges that match it.
  • the invention also provides a dual-purpose glasses having both a sunglasses function and a 3D glasses function, comprising a lens and a positioning clip; the lens comprises a quarter-wave plate layer and a linear polarizing layer, the linear polarizing layer The optical axis is in a vertical direction; the positioning clip includes a first clamping portion for clamping the lens and a second clamping portion for clamping another lens.
  • the lens structure provided by the invention can have dual-purpose glasses which have the functions of sunglasses and 3D stereo glasses at the same time, and adjust the lens direction provided by the invention to make any one of the quarter wave layer and the line polarizer layer. It can be located on the outer side of the lens away from the eye, and when the linear polarizer layer is located away from the outer side of the eye, the optical axis of the linear polarizer layer is in the vertical direction, and the dual-purpose glasses having both the function of sunglasses and the function of 3D glasses can be produced. The user can adjust the lens direction according to the need, and choose to use the corresponding function. Compared with the existing single function 3D glasses or sunglasses, the mirror is dual-purpose and practical.
  • 1A is a schematic view showing polarization characteristics of sunglasses provided by the prior art
  • FIG. 1B is a schematic diagram of polarization characteristics of 3D glasses provided by the prior art
  • 2A is a schematic view showing the use of the dual-purpose glasses provided by the present invention as 3D glasses;
  • FIG. 2B is a schematic view showing the use of the dual-purpose glasses provided by the present invention as sunglasses;
  • Figure 3 is a perspective view showing the first embodiment of the dual-purpose glasses of the present invention.
  • Figure 4 is a front elevational view of the dual-purpose glasses shown in Figure 3;
  • Figure 5 is a cross-sectional view taken along line C-C of Figure 4.
  • Figure 6 is a cross-sectional view taken along line D-D of Figure 4.
  • Figure 7 is a schematic view showing the state of rotation of the lens of the dual-purpose glasses shown in Figure 4;
  • Figure 8 is a perspective view showing a second embodiment of the dual-purpose glasses of the present invention.
  • Figure 9 is a front elevational view of the dual-purpose glasses shown in Figure 8.
  • Figure 10 is a cross-sectional view taken along line C-C of Figure 9;
  • Figure 11 is a cross-sectional view taken along line B-B of Figure 9;
  • Figure 12 is a schematic view showing the state of rotation of the lens of the dual-purpose glasses shown in Figure 8;
  • Figure 13 is a perspective view showing a third embodiment of the dual-purpose glasses of the present invention.
  • Figure 14 is a front elevational view of the dual-purpose glasses shown in Figure 13;
  • Figure 15 is a cross-sectional view taken along line A-A of Figure 14;
  • Figure 16 is a cross-sectional view taken along line D-D of Figure 14;
  • Figure 17 is a schematic view showing the state of rotation of the lens of the dual-purpose glasses shown in Figure 13;
  • Figure 18 is a perspective view showing a fourth embodiment of the dual-purpose glasses of the present invention.
  • Figure 19 is a front elevational view of the dual-purpose glasses shown in Figure 18;
  • Figure 20 is a cross-sectional view taken along line C-C of Figure 19;
  • Figure 21 is a schematic view showing the state of rotation of the lens of the dual-purpose glasses shown in Figure 18;
  • Figure 22 is a perspective view showing a fifth embodiment of the dual-purpose glasses of the present invention.
  • Figure 23 is a perspective view of the connector of Figure 22;
  • Figure 24 is a side elevational view of the dual-purpose glasses shown in Figure 22;
  • Figure 25 is a cross-sectional view taken along line B-B of Figure 24;
  • Figure 26 is a top plan view of the dual-purpose glasses shown in Figure 22;
  • Figure 27 is a cross-sectional view taken along line A-A of Figure 26;
  • Figure 28 is a schematic view showing the mirror leg rotation state of the dual-purpose glasses shown in Figure 22;
  • Figure 29 is a perspective view showing a sixth embodiment of the dual-purpose glasses of the present invention.
  • Figure 30 is a top plan view of the dual-purpose glasses shown in Figure 29;
  • Figure 31 is a cross-sectional view taken along line A-A of Figure 30;
  • Figure 32 is a cross-sectional view taken along line B-B of Figure 30;
  • Figure 33 is a perspective view showing a seventh embodiment of the dual-purpose glasses of the present invention.
  • Figure 34 is a side elevational view of the dual-purpose glasses shown in Figure 33;
  • Figure 35A is a schematic view showing the eighth embodiment of the dual-purpose glasses of the present invention used as 3D glasses;
  • Figure 35B is a schematic view showing the eighth embodiment of the dual-purpose glasses of the present invention used as a pair of sunglasses;
  • Figure 36 is a perspective view showing the eighth embodiment of the dual-purpose glasses of the present invention.
  • Figure 37 is a front elevational view showing the dual-purpose glasses shown in Figure 36;
  • Figure 38 is a cross-sectional view taken along line C-C of Figure 37;
  • Figure 39 is a cross-sectional view taken along line D-D of Figure 37;
  • Figure 40 is a schematic view showing the state of rotation of the lens of the dual-purpose glasses shown in Figure 37;
  • FIG. 1A and 1B are polarization characteristics of conventional sunglasses and 3D glasses, respectively, wherein I in Fig. 1A indicates the optical axis of the linear polarizer layer, and the direction thereof is in the vertical direction, and II' and II" in Fig. 1B, respectively.
  • the invention discloses a polarization direction of the left eye and the right eye.
  • the present invention combines the two based on the polarization characteristics of the two, that is, the lens structure provided by the present invention comprises a quarter wave plate layer and a linear polarizing film layer.
  • the glasses at this time can be used as 3D glasses
  • the line polarizer layer 100 is located on the inner side, that is, on the side close to the eyes
  • the quarter-wave plate layer 200 is located on the outer side away from the eyes
  • the linear polarizer layer The direction of the polarization axis of 100 is the vertical direction.
  • the most commonly used 3D images from the outside world are circular polarized light to distinguish left and right eye images, and finally form a 3D stereoscopic effect. Whether it is reflected by the cinema projection screen, or the video image light that is directly sent from the home stereo TV screen, the left and right images will use a clockwise circularly polarized light to deliver an image of the eye while using counterclockwise circularly polarized light.
  • an image of another eye is played, and the pair of left and right images cooperate to represent a pair of images with parallax of the same scene from two different viewpoints.
  • the two lenses form a circularly polarized light effect, one lens only passes a clockwise circularly polarized light image, and the other lens Only the anti-clockwise circularly polarized light image is passed, so that the left and right eyes only see the corresponding image, and no left and right crosstalk is generated.
  • the user's brain receives a pair of images with correct parallax, and then the human brain synthesizes a stereoscopic effect. image.
  • the lens shown in FIG. 2A can be used as a sunglasses after being turned 180 degrees in the vertical direction or the horizontal direction.
  • the quarter-wave plate layer 200 is located inside, that is, one close to the eye.
  • the linear polarizer layer 100 is located away from the outside of the eye, and the direction of the polarization axis of the linear polarizer layer 100 is still in the vertical direction.
  • the most influential of the sun's rays from the outside world is the reflection of the human vision and the uncomfortable feeling, whether it is the reflection of the windshield of the car, the reflection of the road surface, the reflection on the sea or the water, or the reflection on the beach and the snow.
  • Polarized sunglasses are polarizers with vertical polarizing axes that filter out the reflected light by a high percentage, allowing the observer to see the scene more clearly.
  • the lens structure of the present invention can produce the same function when the linear polarizer layer 100 faces outward. First, the linear polarizer layer 100 filters out the horizontal reflection, and then passes through the quarter-wave layer. 200 reaches the human eye, at which point the quarter wave plate layer 200 does not optically act on the light.
  • the direction of the polarization axis of the linear polarizer layer 100 is vertical.
  • the direction of the polarization axis of the linear polarizer layer 100 is not limited to the vertical direction, and may be other directions as long as the linear polarizer layer 100 is ensured when the linear polarizer layer 100 is located outside the lens from the outside of the eye.
  • the direction of the optical axis is just in the vertical direction.
  • the main difference from the embodiment shown in FIG. 2A is that the direction of the polarization axis of the line light-strip layer 100' is different.
  • the direction of the polarization axis of the linear polarizer layer 100' is horizontal.
  • the glasses in this state can also be used as 3D glasses, and the optical principle thereof is the same as that of FIG. 2A described above, and will not be described herein.
  • the lens shown in FIG. 35A is rotated 180 degrees along the axis of rotation at an angle to the horizontal direction to obtain another lens mode, as shown in FIG. 35B.
  • the glasses can also be used as sunglasses, and the quarter wave plate is used.
  • the layer 200' is located on the inner side, that is, on the side close to the eye, and the linear polarizer layer 100' is located away from the outer side of the eye, and the polarization axis of the linear polarizer layer 100' is rotated from the horizontal direction to the vertical direction, in the practice of the present invention.
  • the lens rotates along a rotational axis that is 45 degrees from the horizontal.
  • the optical principle of the glasses in the state shown in Fig. 35B is the same as that of Fig. 2B described above, and will not be described again.
  • the lens structure can be used to fabricate the dual-purpose lens with the lens reversible, so that the user can selectively place the linear polarizing layer 100 or the quarter-wave layer 200 on the outer side during use, thereby making the glasses Features sunglasses and 3D glasses.
  • the lens structure can be used to fabricate the dual-purpose lens with the lens reversible, so that the user can selectively place the linear polarizing layer 100 or the quarter-wave layer 200 on the outer side during use, thereby making the glasses Features sunglasses and 3D glasses.
  • the dual-purpose glasses include a frame 11 , the aforementioned lens 12 and two legs 13 , and the lens 12 and the two-legged 13 are mounted on the frame 11 . Upper, and the lens 12 and the temple 13 can be reversed relative to each other.
  • the lens 12 is rotatably mounted on the frame 11, and the rotating shaft 14 is horizontally pivotally connected to the frame 11.
  • the glasses further include a lens frame 15 fixedly mounted on the lens frame 15, and the rotating shaft 14 protrudes from the lens frame 15.
  • the glasses have two lens frames 15, and the two lenses 12 are fixedly mounted on the two lens frames 15, respectively, and can be independently rotated in the vertical direction.
  • the inner edge of the frame 11 is provided with a dimple or a protrusion (in the present embodiment, a dimple 111), and the lens frame 15 is provided at a position corresponding to the pit or the protrusion.
  • Cooperating projections or dimples in this embodiment, projections 151).
  • the protrusion 151 is locked in the pocket 111 to position the lens 12; when the lens 12 needs to be rotated, the lens 12 is pushed hard to slightly deform the protrusion 151, and the positioning can be released.
  • a push block 152 is protruded from the lens frame 15 to facilitate pushing the lens 12 by hand.
  • FIG. 8 to FIG. 12 is a second embodiment of the dual-purpose spectacles of the present invention.
  • the difference between the embodiment and the first embodiment is mainly that the glasses in the embodiment have a lens frame 15 and a lens. 12 is fixedly mounted on the lens frame 15 and can be rotated synchronously in the vertical direction.
  • FIG. 13 is a third embodiment of the dual-purpose spectacles of the present invention.
  • the difference between the embodiment and the first embodiment is mainly the rotation direction of the lens 12, and the lens 12 in this embodiment.
  • the rotating shaft 14 is vertically pivotally connected to the frame 11, and the lens 12 is rotatable in the horizontal direction.
  • FIG. 18 to FIG. 21 it is a fourth embodiment of the dual-purpose glasses of the present invention.
  • the difference between this embodiment and the third embodiment is mainly that the glasses in this embodiment have a lens frame 15 and a lens. 12 is fixedly mounted on the lens frame 15 and can be rotated synchronously in the horizontal direction.
  • the lens 12 can be rotated relative to the frame 11.
  • the temple 13 can be rotated relative to the frame 11, and the lens 12 can be moved.
  • a fifth embodiment of the dual-purpose glasses of the present invention is rotatably mounted on the lens frame 11 in the present embodiment.
  • One end of the temple 13 has a connecting member 16, and the connecting member 16 is rotatably pivotally connected to the frame 11 in the horizontal direction.
  • the connecting member 16 includes a main body 161 and two pivoting shafts 162.
  • the two pivoting shafts 162 respectively protrude from the two sides of the main body 161.
  • the frame 11 has pivoting holes 112 respectively engaged with the two pivoting shafts 162.
  • One of the pivoting shafts 162 has a protruding tooth 1621 extending to both sides, and the pivoting hole 112 that cooperates with the pivoting shaft 162 having the protruding tooth 1621 is a stepped hole and has a shape corresponding to the pivoting shaft 162.
  • the temple 13 is rotated to slightly deform the protruding teeth 1621 on the pivot shaft 162 to disengage the buckle from the stepped hole.
  • the pivot shaft 162 is pivoted.
  • the upper teeth 1621 are re-locked in the stepped holes to reposition the temples 13.
  • the temple 13 is rotatably pivotally connected to the connecting member 16.
  • a positioning sleeve 17 is sleeved on the pivoting portion of the temple 13 and the connecting member 16.
  • the positioning sleeve 17 is slidable on the temple 13 and has a protrusion or a recess (in this embodiment, a protrusion 171).
  • a pit or projection for example, the recess 163 in this embodiment.
  • FIG. 29 to FIG. 32 it is a sixth embodiment of the present invention.
  • the difference between the embodiment and the fifth embodiment is that the rotation direction of the temple 13 is different.
  • the frame 11 is horizontally protruded.
  • the pivot post 113 has a temple 13 that is rotatably sleeved on the pivot post 113 in a vertical direction.
  • the mirror 13 is rotated 180 degrees in the vertical direction, and the glasses are turned upside down to change the function of the glasses.
  • a sixth embodiment of the dual-purpose eyeglass of the present invention includes the lens 12 and the positioning clip 18 described above.
  • the positioning clip 18 includes a first clamping portion 181 for clamping the lens 12 and a second clamping portion 182 for clamping another lens (not shown in the drawing) ).
  • the second clamping portion 182 can be used to clamp the glasses of the present invention; when the function of the glasses needs to be changed, only the lens 12 needs to be clamped from the first clamping. The direction of the front and back surfaces of the portion 181 is removed, and then the first holding portion 181 is re-clamped.
  • FIG. 36 to FIG. 40 is an eighth embodiment of the dual-purpose glasses of the present invention.
  • the difference between this embodiment and the above embodiments is mainly in this embodiment.
  • the rotating shaft 14 of the lens 12 is pivotally attached to the frame 11 at an angle of 45 degrees to the horizontal direction.
  • the glasses further include a lens frame 15 fixedly mounted on the lens frame 15, and the rotating shaft 14 protrudes from the lens frame 15.
  • the glasses have two lens frames 15, and the two lenses 12 are fixedly mounted on the two lens frames 15, respectively, and can be independently rotated along the rotating shaft 14, respectively.
  • the lens provided by the present invention comprises a quarter-wave plate layer and a linear polarizing film layer, and adjusts the direction of the lens in the invention to make any one of the quarter wave plate layer and the linear polarizing film layer.
  • One can be located on the outer side of the lens away from the eye, and when the linear polarizer layer is located away from the outer side of the eye, the optical axis of the linear polarizer layer is in the vertical direction, so that the dual function of the function of the sunglasses and the function of the 3D glasses can be made. glasses.
  • adjusting the direction of the lens such as setting the rotating shaft in the vertical direction, or setting the rotating shaft in the horizontal direction, or setting the rotating shaft in an oblique direction at an angle to the horizontal direction, etc.
  • the conversion operation is simple and convenient.
  • the user can adjust the lens direction according to the need, and choose to use the corresponding function.
  • the mirror is dual-purpose and practical.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种镜片结构及兼具太阳镜功能和3D眼镜功能的两用眼镜。镜片(12)包括四分之一波片层(200)和线偏光片层(100),当线偏光片层(100)位于镜片远离眼睛的外侧时,线偏光片层(100)的光轴沿竖直方向。该镜片结构可用于兼具太阳镜功能和3D眼镜功能的两用眼镜。四分之一波片层(200)和线偏光片层(100)中的任意一个均可位于镜片远离眼睛的外侧,用户可根据需要调整镜片方向,选择使用相应的功能。与现有的功能单一的3D眼镜或太阳眼镜相比,该两用眼镜实用性更强。

Description

镜片结构及兼具太阳镜功能和3D眼镜功能的两用眼镜 技术领域
本发明属于眼镜技术领域,尤其涉及一种镜片结构及兼具太阳镜功能和3D眼镜功能的两用眼镜。
背景技术
现在3D产业逐渐形成规模,其中的3D影像信息技术是信息技术发展的必然趋势,是产业发展竞争力的关键技术,而在保证产品质量、降低成本的同时,使产品的功能多样化,增强实用性,将会在一定程度上提高企业竞争力。
以3D眼镜为例,目前的3D眼镜功能单一,在观看完3D影像之后基本就会闲置,实用性很低,造成资源浪费。若能使3D眼镜增加一些使用率更高的功能,势必会更受消费者的青睐。
技术问题
本发明所要解决的第一个技术问题在于提供一种镜片结构,通过该镜片结构可制作兼具太阳镜功能和3D立体眼镜功能的两用眼镜。
技术解决方案
本发明是这样实现的,一种镜片结构,所述镜片包括一四分之一波片层和一线偏光片层,当所述线偏光片层位于所述镜片远离眼睛的外侧时,所述线偏光片层的光轴沿竖直方向。
本发明还提供了一种兼具太阳镜功能和3D眼镜功能的两用眼镜,包括镜框及安装于所述镜框上的镜片与二镜腿,所述镜片包括一四分之一波片层和一线偏光片层,所述镜片与所述二镜腿可相对翻转,所述四分之一波片层和所述线偏光片层中的任意一个均可位于镜片远离眼睛的外侧。
进一步地,所述镜片转动地安装于所述镜框上,其转轴竖直地、或水平地、或与水平方向呈一角度倾斜地枢接于所述镜框上。
进一步地,所述眼镜还包括镜片框,所述镜片固定安装于所述镜片框上,所述转轴从所述镜片框上突伸而出。
进一步地,所述转轴竖直地或水平地枢接于所述镜框上,所述眼镜具有一个所述的镜片框,所述的镜片固定安装于所述镜片框上,并可在竖直方向或水平方向上同步转动。
进一步地,所述眼镜具有两个所述的镜片框,每一镜片框内固定安装有一块所述的镜片,所述二镜片可在竖直方向、或水平方向、或其转轴的倾斜方向上独立转动。
进一步地,所述镜框的内侧缘设有凹坑或凸起,所述镜片框上对应所述凹坑或凸起的位置处设有与之相配合的凸起或凹坑。
进一步地,所述镜片框上凸设有便于推动所述镜片的推动块。
进一步地,所述镜片的转轴与水平方向呈45度角,所述镜片翻转到所述线偏光片层处于靠近眼睛一侧时,其偏光轴沿水平方向。
进一步地,所述二镜腿可转动地安装于所述镜框上。
进一步地,所述镜腿的一端具有一连接件,所述连接件在水平方向上可转动地枢接于所述镜框上。
进一步地,所述连接件包括主体及二枢接轴,所述二枢接轴分别从所述主体的两侧突伸而出,所述镜框上具有分别与所述二枢接轴相配合的枢接孔,其中一个枢接轴上具有向两侧延伸的突齿,与所述具有突齿的枢接轴相配合的枢接孔为台阶孔,且其形状与所述枢接轴相对应。
进一步地,所述镜腿可转动地枢接于所述连接件上。
进一步地,所述镜框上突设有水平的枢接柱,所述镜腿在竖直方向上可转动地套设于所述枢接柱上。
进一步地,所述镜腿与所述连接件的枢接部位套设有一定位套,所述定位套内具有凸起或凹坑,所述连接件上对应所述凸起或凹坑的位置处设有与之相配合的凹坑或凸起。
本发明还提供一种兼具太阳镜功能和3D眼镜功能的两用眼镜,包括镜片及定位夹;所述镜片包括一四分之一波片层和一线偏光片层,所述线偏光片层的光轴沿竖直方向;所述定位夹包括用于夹持所述镜片的第一夹持部及用于夹持另一眼镜的第二夹持部。
有益效果
本发明所提供的镜片结构可拥有制作同时具有太阳镜功能和3D立体眼镜功能的两用眼镜,调整本发明所提供的镜片方向,使四分之一波片层和线偏光片层中的任意一个均可位于镜片远离眼睛的外侧,并且当线偏光片层位于镜片远离眼睛的外侧时,线偏光片层的光轴沿竖直方向,即可制作兼具太阳镜功能和3D眼镜功能的两用眼镜,用户可跟根据需要自行调整镜片方向,选择使用相应的功能,与现有的功能单一的3D眼镜或太阳眼镜相比,一镜两用,实用性更强。
附图说明
图1A是现有技术提供的太阳镜的偏光特性示意图;
图1B是现有技术提供的3D眼镜的偏光特性示意图;
图2A是本发明提供的两用眼镜作为3D眼镜使用的示意图;
图2B是本发明提供的两用眼镜作为太阳眼镜使用的示意图;
图3是本发明中两用眼镜第一实施例的立体示意图;
图4是图3所示的两用眼镜的主视示意图;
图5是沿图4中C-C线的剖视示意图;
图6是沿图4中D-D线的剖视示意图;
图7是图4所示两用眼镜的镜片旋转状态示意图;
图8是本发明中两用眼镜第二实施例的立体示意图;
图9是图8所示的两用眼镜的主视示意图;
图10是沿图9中C-C线的剖视示意图;
图11是沿图9中B-B线的剖视示意图;
图12是图8所示两用眼镜的镜片旋转状态示意图;
图13是本发明中两用眼镜第三实施例的立体示意图;
图14是图13所示的两用眼镜的主视示意图;
图15是沿图14中A-A线的剖视示意图;
图16是沿图14中D-D线的剖视示意图;
图17是图13所示两用眼镜的镜片旋转状态示意图;
图18是本发明中两用眼镜第四实施例的立体示意图;
图19是图18所示的两用眼镜的主视示意图;
图20是沿图19中C-C线的剖视示意图;
图21是图18所示的两用眼镜的镜片旋转状态示意图;
图22是本发明中两用眼镜第五实施例的立体示意图;
图23是图22中连接件的立体示意图;
图24是图22所示的两用眼镜的侧视示意图;
图25是沿图24中B-B线的剖视示意图;
图26是图22所示的两用眼镜的俯视示意图;
图27是沿图26中A-A线的剖视示意图;
图28是图22所示的两用眼镜的镜腿旋转状态示意图;
图29是本发明中两用眼镜第六实施例的立体示意图;
图30是图29所示的两用眼镜的俯视示意图;
图31是沿图30中A-A线的剖视示意图;
图32是沿图30中B-B线的剖视示意图;
图33是本发明中两用眼镜第七实施例的立体示意图;
图34是图33所示的两用眼镜的侧视示意图;
图35A是本发明中两用眼镜第八实施例作为3D眼镜使用的示意图;
图35B是本发明中两用眼镜第八实施例作为太阳眼镜使用的示意图;
图36是本发明中两用眼镜第八实施例的立体示意图;
图37是图36所示的两用眼镜的主视示意图;
图38是沿图37中C-C线的剖视示意图;
图39是沿图37中D-D线的剖视示意图;
图40是图37所示两用眼镜的镜片旋转状态示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1A和图1B分别为传统的太阳眼镜和3D眼镜的偏光特性,其中图1A中的I表示线偏光片层的光轴,其方向沿竖直方向,图1B中的II’和II”分别表示左眼、右眼的偏光方向。本发明基于两者的偏光特性,将二者予以组合,即本发明提供的镜片结构包括一四分之一波片层和一线偏光片层。
如图2A所示,此时的眼镜可作为3D眼镜使用,线偏光片层100位于内侧,即靠近眼睛的一侧,而四分之一波片层200位于远离眼睛的外侧,线偏光片层100的偏光轴方向为竖直方向。来自外界的3D影像最常用的是以圆偏振光方式来区隔左右眼图像,最终形成3D立体效果。不管是由电影院投影银幕反射过来的,或是由家庭立体电视屏幕直接放送出来的视频图像光线,左右图像都会用顺时针圆偏振光来放送一个眼睛的图像,同时用逆时针的圆偏振光来放送另外一个眼睛的图像,这一对左右图像互相配合,从两个不同的视点表达同一个场景带有视差的一对图像。具体到本发明所述的镜片结构,当四分之一波片层200朝外侧的时候,两个镜片形成圆偏振光的效用,一个镜片仅让顺时针的圆偏振光图像通过,另外一个镜片仅让逆时针的圆偏振光图像通过,让左右眼睛只看到相应的图像,不会产生左右串扰,使用者的脑部接收到有正确视差的一对图像,然后由人脑合成立体感的图像。
如图2B所示,将图2A所示的镜片沿竖直方向或水平方向翻转180度后即可作为太阳眼镜使用,此时,四分之一波片层200位于内侧,即靠近眼睛的一侧,而线偏光片层100位于远离眼睛的外侧,线偏光片层100的偏光轴方向仍为竖直方向。来自外界的太阳光线中最影响人视觉而且产生不舒服感觉的就是反光,无论是汽车挡风玻璃的反光、路面的反光、海上或水面上的反光,或者是沙滩上与及雪地上的反光,都会影响人的视觉不舒服,或是看不清楚眼前的景物。这些反光有一个共同的特点,就是有水平偏光的特性,这是因为经过镜面的固体或液体反光的时候,会使得反射出来的光产生偏光性,而且偏光轴都是以水平方向的为主。偏光式太阳眼镜就是用偏光轴竖直的偏光片,把这些反射出来的光过滤掉很高的百分比,让观察人可以更清晰的看到要看的景物。具体本发明所述的镜片结构,当线偏光片层100朝外的时候,就可产生同样的功能,首先线偏光片层100把水平方向的反光过滤掉,再通过四分之一波片层200到达人眼,此时四分之一波片层200对光线不进行光学作用。
上述图2A所示的实施方式中,当线偏光片层100位于靠近眼睛的内侧,而四分之一波片层200位于远离眼睛的外侧时,线偏光片层100的偏光轴方向是为竖直方向的,当然,线偏光片层100的偏光轴方向并不限于竖直方向,也可以是其他方向,只要能保证当线偏光片层100位于镜片远离眼睛的外侧时,线偏光片层100的光轴方向是沿竖直方向的即可。
例如,如图35A所示的另一种实施方式,其与图2A所示实施方式的主要区别在于线编光片层100’的偏光轴方向不同,图35A所示的实施方式中,当线偏光片层100’位于靠近眼睛的内侧,四分之一波片层200’位于远离眼睛的外侧时,线偏光片层100’的偏光轴方向为水平方向。这种状态下的眼镜也可以作为3D眼镜使用,其光学原理与上述图2A相同,在此不赘述。
将图35A所示的镜片沿与水平方向呈一角度的转轴旋转180度后得到另一种镜片方式,如图35B所示,此时的眼镜同样可作为太阳眼镜使用,四分之一波片层200’位于内侧,即靠近眼睛的一侧,而线偏光片层100’位于远离眼睛的外侧,线偏光片层100’的偏光轴旋转后由水平方向转成垂直方向,在本发明的实施例中,镜片沿与水平方向呈45度的转轴旋转。图35B所示状态下的眼镜的光学原理与上述图2B相同,在此不再赘述。
具体应用时,可采用上述镜片结构制作出镜片可翻转的两用眼镜,使用户在使用时可选择地将线偏光片层100或四分之一波片层200位于外侧,从而使该眼镜兼具太阳镜功能和3D眼镜功能。实现上述镜片翻转的方式可以有多种,以下结合附图举例说明本发明中两用眼镜的各种实施方式。
请参阅图3至图7,是本发明中两用眼镜的第一实施例,该两用眼镜包括镜框11、前述的镜片12及二镜腿13,镜片12与二镜腿13安装于镜框11上,并且镜片12与镜腿13可相对翻转。本实施例中,镜片12转动地安装于镜框11上,其转轴14水平地枢接于镜框11上。具体地,眼镜还包括镜片框15,镜片12固定安装于镜片框15上,转轴14从镜片框15上突伸而出。本实施例中,眼镜具有两个镜片框15,两个镜片12分别固定安装于两个镜片框15上,并可在竖直方向上独立转动。
作为上述实施方式的进一步改进,上述镜框11的内侧缘设有凹坑或凸起(本实施例中是凹坑111),镜片框15上对应凹坑或凸起的位置处设有与之相配合的凸起或凹坑(本实施例中是凸起151)。当镜片12旋转到位时,凸起151卡设于凹坑111内,从而使镜片12定位;需要转动镜片12时,用力推动镜片12,使凸起151受力发生轻微变形,即可解除定位。此外,镜片框15上凸设有推动块152,以便于用手推动镜片12。
请参阅图8至图12,是本发明中两用眼镜的第二实施例,本实施例与上述第一实施例的不同之处主要在于,本实施例中的眼镜具有一个镜片框15,镜片12固定安装于镜片框15上,并可在竖直方向上同步转动。
请参阅图13至图17,是本发明中两用眼镜的第三实施例,本实施例与上述第一实施例的不同之处主要在于镜片12的旋转方向,本实施例中的镜片12的转轴14竖直地枢接于镜框11上,镜片12可在水平方向上转动。
请参阅图18至图21,是本发明中两用眼镜的第四实施例,本实施例与上述第三实施例的不同之处主要在于,本实施例中的眼镜具有一个镜片框15,镜片12固定安装于镜片框15上,并可在水平方向上同步转动。
上述四个实施例中皆为镜片12可相对镜框11转动,当然,也可以是镜腿13相对镜框11转动,而镜片12可以不动。请参阅图22至图28,是本发明中两用眼镜的第五实施例,本实施例中的二镜腿13可转动地安装于镜框11上。镜腿13的一端具有一连接件16,连接件16在水平方向上可转动地枢接于镜框11上。连接件16包括主体161及二枢接轴162,二枢接轴162分别从主体161的两侧突伸而出,镜框11上具有分别与二枢接轴162相配合的枢接孔112。其中一个枢接轴162上具有向两侧延伸的突齿1621,与具有突齿1621的枢接轴162相配合的枢接孔112为台阶孔,且其形状与枢接轴162相对应。需要改变镜腿13的方向时,转动镜腿13,使枢接轴162上的突齿1621发生轻微变形,从而脱离与台阶孔的卡扣,当镜腿13旋转180度时,枢接轴162上的突齿1621重新卡设于台阶孔中,即可重新定位镜腿13。
进一步地,镜腿13可转动地枢接于连接件16上。镜腿13与连接件16的枢接部位套设有一定位套17,定位套17可在镜腿13上滑动,其内具有凸起或凹坑(本实施例中是凸起171),连接件16上对应凸起或凹坑的位置处设有与之相配合的凹坑或凸起(本实施例中是凹坑163)。凸起171与凹坑163相卡扣时,镜腿13在定位套17的限位作用下不能翻折;需要折叠镜腿13时,拨动定位套17,使凸起171发生轻微变形后与凹坑163脱离,当定位套17滑动到镜腿13上,并完全离开镜腿13与连接件16的枢接部位后,即可翻折镜腿13。
请参阅图29至图32,是本发明的第六实施例,本实施例与上述第五实施例的区别在于镜腿13的旋转方向不同,本实施例中,镜框11上突设有水平的枢接柱113,镜腿13在竖直方向上可转动地套设于枢接柱113上。需要改变镜腿13的方向时,在竖直方向上180度转动镜腿13后,上下颠倒眼镜,即可改变眼镜的功能。
作为本发明的又一应用方式,还可将上述镜片结构夹设于其他类型的眼镜外侧,如近视眼镜等。请参阅图33及图34,是本发明中两用眼镜的第六实施例,其包括前述的镜片12及定位夹18。定位夹18包括第一夹持部181及第二夹持部182,第一夹持部181用于夹持镜片12,第二夹持部182用于夹持另一眼镜(图中未示出)。本身佩戴有眼镜的人士佩戴本发明中的两用眼镜时,用第二夹持部182夹持住其自己的眼镜即可;需要改变眼镜的功能时,仅需将镜片12从第一夹持部181上取下变换正反面的方向后,重新夹持到第一夹持部181上即可。
作为本发明的再一实施方式,请参阅图36至图40,是本发明中两用眼镜的第八实施例,本实施例与上述各实施例的不同之处主要在于,本实施例中,镜片12的转轴14与水平方向呈45度角地倾斜枢接于镜框11上。具体地,眼镜还包括镜片框15,镜片12固定安装于镜片框15上,转轴14从镜片框15上突伸而出。本实施例中,眼镜具有两个镜片框15,两个镜片12分别固定安装于两个镜片框15上,并可分别沿转轴14独立转动。
综上所述,本发明所提供的镜片包括一四分之一波片层和一线偏光片层,调整本发明中镜片的方向,使四分之一波片层和线偏光片层中的任意一个均可位于镜片远离眼睛的外侧,并且当线偏光片层位于镜片远离眼睛的外侧时,线偏光片层的光轴沿竖直方向,即可制作兼具太阳镜功能和3D眼镜功能的两用眼镜。调整镜片的方向可以有多种实施方式,例如在竖直方向上设置转轴、或者在水平方向上设置转轴、或者在与水平方向呈一角度的倾斜方向上设置转轴等等,其转化操作简单方便,用户可跟根据需要自行调整镜片方向,选择使用相应的功能,与现有的功能单一的3D眼镜或太阳眼镜相比,一镜两用,实用性更强。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种镜片结构,其特征在于,所述镜片包括一四分之一波片层和一线偏光片层,当所述线偏光片层位于所述镜片远离眼睛的外侧时,所述线偏光片层的光轴沿竖直方向。
  2. 一种兼具太阳镜功能和3D眼镜功能的两用眼镜,包括镜框及安装于所述镜框上的镜片与二镜腿,其特征在于,所述镜片包括一四分之一波片层和一线偏光片层,所述镜片与所述二镜腿可相对翻转,所述四分之一波片层和所述线偏光片层中的任意一个均可位于镜片远离眼睛的外侧。
  3. 如权利要求2所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜片转动地安装于所述镜框上,其转轴竖直地、或水平地、或与水平方向呈一角度倾斜地枢接于所述镜框上。
  4. 如权利要求3所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述眼镜还包括镜片框,所述镜片固定安装于所述镜片框上,所述转轴从所述镜片框上突伸而出。
  5. 如权利要求4所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述转轴竖直地或水平地枢接于所述镜框上,所述眼镜具有一个所述的镜片框,所述的镜片固定安装于所述镜片框上,并可在竖直方向或水平方向上同步转动。
  6. 如权利要求4所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述眼镜具有两个所述的镜片框,每一镜片框内固定安装有一块所述的镜片,所述二镜片可在竖起方向、或水平方向、或其转轴的倾斜方向上独立转动。
  7. 如权利要求4至6中任意一项所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜框的内侧缘设有凹坑或凸起,所述镜片框上对应所述凹坑或凸起的位置处设有与之相配合的凸起或凹坑。
  8. 如权利要求4至6中任意一项所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜片框上凸设有便于推动所述镜片的推动块。
  9. 如权利要求3所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜片的转轴与水平方向呈45度角,所述镜片翻转到所述线偏光片层处于靠近眼睛一侧时,其偏光轴沿水平方向。
  10. 如权利要求2所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述二镜腿可转动地安装于所述镜框上。
  11. 如权利要求10所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜腿的一端具有一连接件,所述连接件在水平方向上可转动地枢接于所述镜框上。
  12. 如权利要求11所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述连接件包括主体及二枢接轴,所述二枢接轴分别从所述主体的两侧突伸而出,所述镜框上具有分别与所述二枢接轴相配合的枢接孔,其中一个枢接轴上具有向两侧延伸的突齿,与所述具有突齿的枢接轴相配合的枢接孔为台阶孔,且其形状与所述枢接轴相对应。
  13. 如权利要求11所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜腿可转动地枢接于所述连接件上。
  14. 如权利要求13所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜腿与所述连接件的枢接部位套设有一定位套,所述定位套内具有凸起或凹坑,所述连接件上对应所述凸起或凹坑的位置处设有与之相配合的凹坑或凸起。
  15. 如权利要求10所述的兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,所述镜框上突设有水平的枢接柱,所述镜腿在竖直方向上可转动地套设于所述枢接柱上。
  16. 一种兼具太阳镜功能和3D眼镜功能的两用眼镜,其特征在于,包括镜片及定位夹;所述镜片包括一四分之一波片层和一线偏光片层,所述线偏光片层的光轴沿竖直方向;所述定位夹包括用于夹持所述镜片的第一夹持部及用于夹持另一眼镜的第二夹持部。
PCT/CN2012/073049 2012-01-18 2012-03-26 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜 WO2013107091A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12865892.9A EP2806303B1 (en) 2012-01-18 2012-03-26 Lens structure and dual-purpose glasses with functions of sunglasses and 3d glasses
ES12865892.9T ES2671239T3 (es) 2012-01-18 2012-03-26 Estructura de lente y gafas de doble finalidad con funciones de gafas de sol y gafas 3D
US14/334,668 US10295836B2 (en) 2012-01-18 2014-07-18 Lens structure and dual-purpose eyeglasses with sunglasses and 3D glasses functions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210015425 2012-01-18
CN201210015425.0 2012-01-18
CN2012200690817U CN202453594U (zh) 2012-02-28 2012-02-28 一种兼具太阳镜功能和3d眼镜功能的两用眼镜
CN201220069081.7 2012-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/334,668 Continuation US10295836B2 (en) 2012-01-18 2014-07-18 Lens structure and dual-purpose eyeglasses with sunglasses and 3D glasses functions

Publications (1)

Publication Number Publication Date
WO2013107091A1 true WO2013107091A1 (zh) 2013-07-25

Family

ID=48798549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073049 WO2013107091A1 (zh) 2012-01-18 2012-03-26 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜

Country Status (4)

Country Link
US (1) US10295836B2 (zh)
EP (1) EP2806303B1 (zh)
ES (1) ES2671239T3 (zh)
WO (1) WO2013107091A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930553B1 (en) * 2014-04-08 2016-11-09 Seyed Ebrahim Esmaeili Reversable adjustable eyeglasses with polarized and/or prescription lenses

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110858A1 (ja) * 2015-12-21 2017-06-29 則雄 関 遠近両用眼鏡状のフレーム
CN106214438A (zh) * 2016-06-28 2016-12-14 段亚东 一种矫正及训练两用眼镜
CN108803074A (zh) * 2018-09-20 2018-11-13 浙江通耀科技有限公司 一种影像视觉成像训练的眼镜
JP7356699B2 (ja) * 2019-06-27 2023-10-05 則雄 関 異種類レンズ用眼鏡状のフレーム
WO2021062275A1 (en) * 2019-09-26 2021-04-01 Arizona Board Of Regents On Behalf Of The University Of Arizona Adjustable full stokes polarization eyewear

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103824U (zh) * 1990-03-03 1992-05-06 江西工业大学 多功能偏光眼镜
CN201522587U (zh) * 2009-10-16 2010-07-07 赵太友 弹性夹前挂眼镜
CN101900889A (zh) * 2009-05-29 2010-12-01 乐金显示有限公司 立体图像显示装置
CN102087419A (zh) * 2009-12-04 2011-06-08 Tcl集团股份有限公司 一种三维立体显示系统及方法
US20110199680A1 (en) * 2010-01-22 2011-08-18 Oakley, Inc. Eyewear with three-dimensional viewing capability
WO2011111267A1 (ja) * 2010-03-08 2011-09-15 シャープ株式会社 アクティブシャッターメガネ、パッシブメガネ及び立体映像認識システム
CN201993534U (zh) * 2010-10-18 2011-09-28 东莞市睿立宝来光电科技有限公司 兼容偏光太阳眼镜模式的主动立体眼镜
CN202306015U (zh) * 2011-10-11 2012-07-04 明基材料有限公司 复合功能3d眼镜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667834A (en) * 1971-03-22 1972-06-06 Mine Safety Appliances Co Adjustable length temple for spectacles
US4844606A (en) * 1987-05-29 1989-07-04 Smith Franklin G Temple fastener for eyeglass frames
US7762661B2 (en) * 2008-08-26 2010-07-27 Gary Beasley Glasses with two position lenses
US8547635B2 (en) * 2010-01-22 2013-10-01 Oakley, Inc. Lenses for 3D eyewear

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103824U (zh) * 1990-03-03 1992-05-06 江西工业大学 多功能偏光眼镜
CN101900889A (zh) * 2009-05-29 2010-12-01 乐金显示有限公司 立体图像显示装置
CN201522587U (zh) * 2009-10-16 2010-07-07 赵太友 弹性夹前挂眼镜
CN102087419A (zh) * 2009-12-04 2011-06-08 Tcl集团股份有限公司 一种三维立体显示系统及方法
US20110199680A1 (en) * 2010-01-22 2011-08-18 Oakley, Inc. Eyewear with three-dimensional viewing capability
WO2011111267A1 (ja) * 2010-03-08 2011-09-15 シャープ株式会社 アクティブシャッターメガネ、パッシブメガネ及び立体映像認識システム
CN201993534U (zh) * 2010-10-18 2011-09-28 东莞市睿立宝来光电科技有限公司 兼容偏光太阳眼镜模式的主动立体眼镜
CN202306015U (zh) * 2011-10-11 2012-07-04 明基材料有限公司 复合功能3d眼镜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930553B1 (en) * 2014-04-08 2016-11-09 Seyed Ebrahim Esmaeili Reversable adjustable eyeglasses with polarized and/or prescription lenses

Also Published As

Publication number Publication date
US20140327870A1 (en) 2014-11-06
ES2671239T3 (es) 2018-06-05
US10295836B2 (en) 2019-05-21
EP2806303A1 (en) 2014-11-26
EP2806303A4 (en) 2015-05-27
EP2806303B1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2013107091A1 (zh) 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜
CN202548457U (zh) 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜
WO2012078197A1 (en) Eyewear with three-dimensional viewing capability
CN205430343U (zh) 便携式3d摄像头及可拍摄3d视频的手机
WO2023185115A1 (zh) 镜框、头戴组件及头戴式设备
CN206339796U (zh) 一种用于观看电影的新型3d眼镜
CN205986850U (zh) 可多向调节的可穿戴设备及其系统
KR20120063361A (ko) 3디 영상 시청용 편광안경 및 이를 구비한 3디 영상 구현 시스템
CN211528877U (zh) 一种调光减光的偏振镜头
CN202975516U (zh) 无框式光学套镜
WO2011132810A1 (ko) 입체(쓰리디)화상 시청용 렌즈조립체
JP4436299B2 (ja) 一眼眼鏡
CN205720910U (zh) 一种智能3d眼镜
CN215494403U (zh) 一种3d眼镜可折叠支撑结构
CN202453594U (zh) 一种兼具太阳镜功能和3d眼镜功能的两用眼镜
CN205566404U (zh) 一种带3d眼镜的手机壳
CN206096653U (zh) 一种两用眼镜
CN202948209U (zh) 一种3d眼镜
CN219676389U (zh) 一种可调式眼镜
CN217112921U (zh) 一种空心铰接的眼镜
CN212066887U (zh) 一种神经外科手术用辅助装置
CN216696914U (zh) 一种太阳能偏光镜片
CN218675547U (zh) 一种便携式眼镜
CN101907779A (zh) 一种立体显示器成像的辅助装置及其使用方法
CN113391466A (zh) 一种3d眼镜可折叠支撑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012865892

Country of ref document: EP