WO2013105374A1 - Narrow-region bandpass filter - Google Patents

Narrow-region bandpass filter Download PDF

Info

Publication number
WO2013105374A1
WO2013105374A1 PCT/JP2012/081829 JP2012081829W WO2013105374A1 WO 2013105374 A1 WO2013105374 A1 WO 2013105374A1 JP 2012081829 W JP2012081829 W JP 2012081829W WO 2013105374 A1 WO2013105374 A1 WO 2013105374A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
acid
narrow
band
Prior art date
Application number
PCT/JP2012/081829
Other languages
French (fr)
Japanese (ja)
Inventor
苔口 典之
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013105374A1 publication Critical patent/WO2013105374A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0256Ground coverings
    • A01G13/0268Mats or sheets, e.g. nets or fabrics
    • A01G13/0275Films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix

Definitions

  • the present invention relates to a narrow band-pass filter having a dielectric multilayer film containing an organic polymer.
  • plant cultivation has an optimal light source wavelength distribution for promoting growth in plant species and plant growth processes, rather than irradiating plants with white light, It is more advantageous to irradiate a specific color. For example, red light of 640 nm to 690 nm is used to promote photosynthesis, and blue light of 420 nm to 470 nm is used to promote normal formation of leaves. It is considered optimal.
  • LEDs as artificial light sources for plant cultivation.
  • the reason for this is that small size, light weight, low power consumption, low heat radiation, and the advantages of being able to use red LED (660 nm) and blue LED (450 nm), which are currently widely used in industry, are contributing. ing.
  • red LED 660 nm
  • blue LED 450 nm
  • To promote the growth of plants, using different LED light sources is certainly a unique point of view, but it is necessary to attach a large number of LED chips to the board, and a circuit system and power supply system for LED control are required. .
  • there is a limit to the use of the LED and it is difficult to cope with a large-scale planting area or an outdoor greenhouse that does not require an artificial light source.
  • the transmission wavelength range is determined by the LED material, the degree of freedom in which the light source wavelength can be arbitrarily designed in accordance with the plant species is limited.
  • Patent Document 1 discloses a narrow-band optical filter in which an inorganic material of thallium oxide and silica is laminated.
  • the filter disclosed in Patent Document 1 is a filter manufactured using a sputtering apparatus, and it is difficult to increase the area in terms of cost, and is formed of a rigid film of an inorganic material. Durability of the film when bent or at high temperature and high humidity is difficult.
  • an object of the present invention is to obtain an optical film that is low in manufacturing cost, can be increased in area, and has excellent film durability when bent or at high temperature and high humidity.
  • the above object of the present invention is achieved by a narrow band-pass filter characterized by having a dielectric multilayer film containing an organic polymer.
  • FIG. 6 is a diagram showing a spectral transmittance curve of a narrow band-pass filter of Sample 4.
  • FIG. It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 5.
  • FIG. It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 6.
  • FIG. It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 9.
  • FIG. 2 is a diagram showing a spectral transmittance curve of a narrow band-pass filter of a sample 10.
  • FIG. It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 15.
  • FIG. 2 is a diagram showing a spectral transmittance curve of a narrow band-pass filter of a sample 10.
  • the present invention is a narrow band-pass filter having a dielectric multilayer film containing an organic polymer. That is, the filter of the present invention is characterized in that a narrow band pass band derived from a dielectric multilayer film containing an organic polymer is formed in a spectral transmittance curve.
  • the effects of the present invention by using a polymer material include the following. (1) Compared with a sputtered laminated film of inorganic material, the physical durability at the time of bending of the film itself and at high temperature and high humidity is greatly improved. (2) A production method suitable for increasing the area such as melt stretching or multilayer coating is possible. For this reason, the manufacturing cost is low and the cost can be significantly reduced. (3) Since the dielectric films containing the polymer material are laminated in multiple layers, the fluctuation of the film thickness which occurs about several percent with a relative standard deviation acts on the contrary as error diffusion, and a narrow band pass band with high robustness can be formed.
  • a dielectric multilayer film it is possible to design a sharp transmission wavelength region window having a band edge that cannot be realized by a general light adjustment material such as a coloring dye or a pigment. That is, the degree of freedom in designing the transmission wavelength is high.
  • the narrowband passband is defined as follows.
  • ⁇ 0 is an average wavelength of the wavelengths with a transmittance of 80% (that is, a transmittance of 80%).
  • a band satisfying ⁇ / ⁇ 0 ⁇ 100 ⁇ 15% is defined as a narrowband passband.
  • the value of ⁇ / ⁇ 0 ⁇ 100 is preferably as small as possible, preferably 10% or less, and more preferably 6% or less.
  • the value of ⁇ / ⁇ 0 ⁇ 100 is preferably as small as possible, but is usually 0.5% or more.
  • the number of narrowband passbands can be set according to the purpose, and the number of narrowband passbands is not limited to one, and there may be two or more.
  • the dielectric type narrow band pass band filter of the present invention belongs to the above (3), and unlike (1) and (2), a metal film having poor durability is not used in a constituent layer contributing to band formation. It is a feature.
  • the dielectric type narrow-band bandpass filter has at least one structure in which a high refractive index film and a low refractive index film are adjacent to each other.
  • the terms “high refractive index film” and “low refractive index film” mean that the refractive index film having the higher refractive index is the high refractive index film when the difference in refractive index between two adjacent layers is compared, and the low refractive index film is low. This means that the other refractive index film is a low refractive index film. Therefore, the terms “high refractive index film” and “low refractive index film” are the same when the refractive index films constituting the optical reflection film are focused on two adjacent refractive index films. All forms other than those having a refractive index are included.
  • Examples of suitable configurations included in the dielectric multilayer film of the dielectric type narrow band band-pass filter include the following.
  • (H 1 L 1 ) m means that the layer structure of H 1 L 1 is laminated m times and sH 2 means that H 2 is laminated s times.
  • H 1 , H 2 , H 3 and H 4 each represent a high refractive index film
  • L 1 , L 2 , L 3 and L 4 represent low refractive index films.
  • H 1 , H 2 , H 3 and H 4 may be the same or different in film thickness and film configuration.
  • L 1 , L 2 , L 3 and L 4 may be the same or different in film thickness and film configuration.
  • the optical film thickness of the high refractive index film and the low refractive index film is ⁇ / 4 ⁇ 50% with respect to the maximum transmittance wavelength ⁇ [nm] in the narrow band pass band of the spectral transmittance curve of the filter.
  • ⁇ / 4 ⁇ 50% means “( ⁇ / 4 ⁇ / 4 ⁇ 0.5) or more ( ⁇ / 4 + ⁇ / 4 ⁇ 0.5) or less”).
  • optical film thickness [nm] refractive index ⁇ physical film thickness [nm].
  • each refractive index film is ⁇ / 4 ⁇ 50% (( ⁇ / 4 ⁇ / 4 ⁇ 0.5) or more ( ⁇ / 4 + ⁇ / 4 ⁇ 0.5) or less).
  • m and n are integers of 1 or more. Further, s is an integer of 2 or more, but s is generally 2. In order to adjust the width of the passband, the number of m and n may be adjusted. The smaller the m and n are, the wider the passband is.
  • the upper limits of m and n are not particularly limited, but are usually 100 or less. The upper limit of s is not particularly limited, but is usually 10 or less.
  • any one of the above film configurations may be provided in accordance with a set wavelength to form a laminated structure of a plurality of cavities.
  • the film configuration of the laminated structure corresponding to each pass band may be the same or different.
  • the (HL) may be laminated while shifting the optical film thickness by 3 to 30% instead of repeating the same optical film thickness.
  • These multilayer structures can be designed by using optical simulation (FTG Software Associates Film DESIGN Version 2.23.3700). When only one type of ⁇ / 4 is used, the width of the stop band is about 30 to 100 nm, so it should be somewhat wide.
  • the dielectric multilayer film has the following formula (1):
  • H 1 , H 2 , and H 3 are dielectric multilayer films having optical film thicknesses of ( ⁇ / 4 ⁇ / 4 ⁇ 0.5) or more and ( ⁇ / 4 + ⁇ / 4 ⁇ 0.5) or less.
  • represents the maximum transmittance wavelength in the narrowband passband of the spectral transmittance curve of the filter.
  • m and n are integers of 1 or more, s is an integer of 2 or more, (H 1 L 1 ) m and (L 2 H 3 ) n are (H 1 L 1 ) m times, and This means that (L 2 H 3 ) is repeated n times, and sH 2 is a cavity layer.
  • the specific range and preferred range of m, n, and s are as described above. With such a configuration, durability at the time of bending and high temperature and high humidity is improved. This is thought to be due to a decrease in water and oxygen permeability due to the material type and path length of the coating film and an improvement in stress relaxation due to the mixing of materials having different elasticity and ductility.
  • the pass portion is wide to some extent.
  • sH rather than sL
  • the end of the constituent layer is another organic film.
  • the film for example, a film support.
  • it is more advantageous to contact the high refractive index film than to contact the low refractive index film from the viewpoint of reducing the number of required layers.
  • the layer constituting the outermost surface of the filter is preferably H from the viewpoint of permeability, and more preferably rH (r is an integer of 2 or more).
  • the upper limit of the total number of high refractive index films and low refractive index films is preferably 200 layers or less. More preferably, it is 100 layers or less, More preferably, it is 40 layers or less.
  • the preferable refractive index range of the high refractive index film is 1.70 to 2.50, more preferably 1.8 to 2.1, and still more preferably 1.90 to 2.1.
  • the preferred refractive index range of the low refractive index film is 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.3 to 1.45.
  • a preferable refractive index difference between the high refractive index film and the low refractive index film is 0.1 or more, and more preferably 0.3 to 0.7.
  • the refractive index difference is obtained by calculating the refractive indexes of the high refractive index film and the low refractive index film according to the following method, and the difference between the two is defined as the refractive index difference.
  • Each refractive index film is produced as a single film (using a base material if necessary), and after cutting this sample into 10 cm ⁇ 10 cm, the refractive index is determined according to the following method.
  • a U-4000 type manufactured by Hitachi, Ltd.
  • the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray. Then, the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result.
  • the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result.
  • a light shielding means In the narrow band-pass filter of the present invention, a light shielding means can be further used. By combining further light shielding means, light outside the target wavelength range can be effectively shielded, and the target wavelength range can be effectively transmitted.
  • the light shielding means is preferably a means for shielding light in a wavelength region other than the wavelength region in which the narrow band pass band is formed, and is particularly limited as long as it is such a light shielding means. is not. Alternatively, the total light amount can be adjusted by the light shielding means.
  • the light shielding means is a visible light shielding layer.
  • the light shielding means may be achieved by a dielectric multilayer film that forms a narrow band pass band in the spectral transmittance curve, or other than the dielectric multilayer film that forms a narrow band pass band, a light shielding layer (a narrow band pass band is formed).
  • a dielectric multilayer film other than the dielectric multilayer film to be formed may be provided separately.
  • a dielectric multilayer film other than the dielectric multilayer film forming a narrow band pass band (hereinafter, also simply referred to as “other dielectric multilayer film”) can be used.
  • another dielectric multilayer film a laminated structure in which a high refractive index film and a low refractive index film are repeated at the same optical film thickness, or a high refractive index film and a low refractive index film while shifting the optical film thickness by 5%, for example, A stacked structure in which layers are repeatedly stacked can be used in combination.
  • Such a dielectric multilayer film is preferable from the viewpoint of productivity because the same material as that of the dielectric multilayer film forming the narrow band pass band can be used.
  • a layer containing a light absorbing / reflecting material can be provided as a means other than using a dielectric multilayer film.
  • a light absorbing or reflecting material may be supported in the binder.
  • Preferable binders include polyvinyl butyral resins, ethylene-vinyl acetate copolymer resins, and polyvinyl alcohol resins.
  • plastic polyvinyl butyral manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto, etc.
  • ethylene-vinyl acetate copolymer manufactured by Takeda Pharmaceutical Co., Ltd., duramin
  • modified ethylene-vinyl acetate copolymer manufactured by Tosoh Corporation.
  • tin oxide, indium oxide, zinc oxide, cadmium oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO), and aluminum-doped zinc oxide (AZO) can be preferably used, and ATO and ITO are particularly preferable.
  • the content of the light absorbing / reflecting material is preferably 1 to 60% with respect to the total mass of the layer.
  • the volume ratio of the light absorbing / reflecting material and the binder is preferably 1: 0.5 to 5.
  • an ultraviolet absorber an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion adjusting agent, and the like may be appropriately added to the layer containing the light absorption / reflection material.
  • the thickness of the layer containing the light absorbing / reflecting material is preferably 0.1 to 50 ⁇ m, and more preferably 1 to 20 ⁇ m.
  • the dielectric narrow band-pass filter of the present invention includes a dielectric multilayer film containing an organic polymer.
  • the organic polymer contained in the dielectric multilayer film is not particularly limited, and is not particularly limited as long as the polymer can form the dielectric multilayer film.
  • organic polymers described in JP-T-2002-509279 can be used as the organic polymer.
  • specific examples include polyethylene naphthalate (PEN) and its isomers (eg, 2,6-, 1,4-, 1,5-, 2,7- and 2,3-PEN), polyalkylene terephthalates (eg, , Polyethylene terephthalate, polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate), polyimide (eg, polyacrylimide), polyetherimide, atactic polystyrene, polycarbonate, polyalkyl methacrylate (eg, polyisobutyl methacrylate, Polypropyl methacrylate, polyethyl methacrylate, and polymethyl methacrylate), polyalkyl acrylates (eg, polybutyl acrylate, and polymethyl acrylate), cellulose derivatives (eg, , Ethylcellulose, acetylcellulose, cellulose prop
  • Copolymers such as copolymers of PEN [e.g. (a) terephthalic acid or ester thereof, (b) isophthalic acid or ester thereof, (c) phthalic acid or ester thereof, (d) alkane glycol, (e) cycloalkane glycol ( (E.g., cyclohexanedimethanoldiol), (f) alkanedicarboxylic acid, and / or (g) cycloalkanedicarboxylic acid (e.g., cyclohexanedicarboxylic acid) and 2,6-, 1,4-, 1,5-, 2, 7- and / or copolymers with 2,3-naphthalenedicarboxylic acid or esters thereof], copolymers of polyalkylene terephthalates [eg (a) naphthalenedicarboxylic acid or esters thereof, (b) isophthalic acid or esters thereof, ( c) phthalic acid or The ester
  • a dielectric multilayer film can be formed by subjecting the polymer to melt extrusion and stretching.
  • a preferred combination of polymers forming the high refractive index film and the low refractive index film includes PEN / PMMA, PEN / polyvinylidene fluoride, and PEN / PET.
  • polyester A a polyester (hereinafter referred to as polyester A) and a polyester (hereinafter referred to as polyester B) containing residues derived from at least three diols of ethylene glycol, spiroglycol and butylene glycol, Can be used.
  • Polyester A is not particularly limited as long as it has a structure obtained by polycondensation of a dicarboxylic acid component and a diol component.
  • Polyester A may be a copolymer.
  • the copolyester has a structure obtained by polycondensation using at least three or more dicarboxylic acid components and diol components.
  • dicarboxylic acid component examples include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, Examples thereof include 4′-diphenylsulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid and ester-forming derivatives thereof.
  • glycol component examples include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis (4 ′ - ⁇ -hydroxyethoxyphenyl) propane, isosorbate, 1,4-cyclohexanedimethanol, spiroglycol, and ester-forming derivatives thereof.
  • Polyester A is preferably polyethylene terephthalate or polyethylene naphthalate.
  • the polyester B includes residues derived from at least three kinds of diols, ethylene glycol, spiroglycol and butylene glycol. Typical examples include copolymerized polyesters having a structure obtained by copolymerization using ethylene glycol, spiroglycol and butylene glycol, and polyesters having a structure obtained by polymerization using these three diols. There is polyester obtained by blending. This configuration is preferable because it is easy to form and difficult to delaminate. Moreover, it is preferable that the polyester B is a polyester containing residues derived from at least two dicarboxylic acids of terephthalic acid / cyclohexanedicarboxylic acid.
  • Such polyesters include copolyesters copolymerized with terephthalic acid / cyclohexanedicarboxylic acid, or those obtained by blending polyesters containing terephthalic acid residues and polyesters containing cyclohexanedicarboxylic acid residues.
  • the polyester containing the cyclohexanedicarboxylic acid residue has a large difference between the in-plane average refractive index of the A layer and the in-plane average refractive index of the B layer, and a high reflectance is obtained.
  • the glass transition temperature difference with polyethylene terephthalate or polyethylene naphthalate is small, it is difficult to be overstretched at the time of molding, and it is preferable that delamination is difficult.
  • a water-soluble polymer as the polymer.
  • the water-soluble polymer is preferable because it does not use an organic solvent, has a low environmental load, and has high flexibility, so that the durability of the film during bending is improved.
  • water-soluble polymer examples include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, Or acrylic resin such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene -Styrene acrylic resin such as acrylic acid copolymer or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer Co
  • particularly preferred examples include polyvinyl alcohol, polyvinylpyrrolidones and copolymers containing them, gelatin, thickening polysaccharides (particularly celluloses) from the viewpoint of handling during production and film flexibility. Is mentioned. These water-soluble polymers may be used alone or in combination of two or more.
  • Preferred polyvinyl alcohol includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • the polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably has an average degree of polymerization of 1,500 to 5,000.
  • the degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.5 mol%.
  • Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383.
  • Polyvinyl alcohol which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, as described in JP-A-61-237681 and JP-A-63-307979, Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795.
  • the vinyl alcohol polymer include Exeval (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Polyvinyl alcohol can be used in combination of two or more, such as the degree of polymerization and the type of modification.
  • gelatin in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
  • thickening polysaccharides examples include natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides that are generally known. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21.
  • the thickening polysaccharide as used herein is a polymer of saccharides and has many hydrogen bonding groups in the molecule. Due to the difference in hydrogen bonding strength between molecules depending on the temperature, the viscosity at low temperature and the viscosity at high temperature are It is a polysaccharide with a large viscosity difference, and when metal oxide fine particles are added, the viscosity rises due to hydrogen bonding with the metal oxide fine particles at low temperatures.
  • thickening polysaccharide examples include ⁇ 1-4 glucan (eg, carboxymethylcellulose, carboxyethylcellulose, etc.), galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xylo Glucan (eg, tamarind gum, etc.), glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan (eg, soybean) Glycans derived from microorganisms, glycans derived from microorganisms, etc.), glucoraminoglycans (eg, gellan gum, etc.), glycosaminoglycans (eg, hyaluronic acid, keratan sul
  • the structural unit does not have a carboxylic acid group or a sulfonic acid group.
  • polysaccharides include, for example, pentoses such as L-arabitose, D-ribose, 2-deoxyribose, and D-xylose, and hexoses such as D-glucose, D-fructose, D-mannose, and D-galactose only. It is preferable that it is a polysaccharide.
  • tamarind seed gum known as xyloglucan whose main chain is glucose and side chain is xylose
  • guar gum known as galactomannan whose main chain is mannose and side chain is galactose
  • locust bean gum Tara gum or arabinogalactan whose main chain is galactose and whose side chain is arabinose
  • xyloglucan whose main chain is glucose and side chain is xylose
  • galactomannan whose main chain is mannose and side chain is galactose
  • locust bean gum Tara gum or arabinogalactan whose main chain is galactose and whose side chain is arabinose
  • Two or more thickening polysaccharides may be used in combination.
  • the weight average molecular weight of the water-soluble polymer is preferably 1,000 or more and 200,000 or less. Furthermore, 3,000 or more and 40,000 or less are more preferable. In this specification, the value measured on the following measurement conditions using gel permeation chromatography (GPC) is employ
  • a curing agent may be used to cure the water-soluble polymer as a binder.
  • the curing agent is not particularly limited as long as it causes a curing reaction with the water-soluble polymer, but boric acid and its salt are preferable when the water-soluble polymer is polyvinyl alcohol.
  • the curing agent other known ones can be used.
  • the curing agent is a compound having a group capable of reacting with a water-soluble polymer or a compound that promotes the reaction between different groups of the water-soluble polymer. Depending on the type of water-soluble polymer, it is appropriately selected and used.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) -S-triazine, etc.), active vinyl compounds (1,3,5-tris-acryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • water-soluble polymer is gelatin
  • organic hardeners such as vinylsulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, isocyanate compounds, etc.
  • Inorganic polyvalent metal salts such as chromium, aluminum and zirconium.
  • the content of the organic polymer is preferably 10% by mass or more, and preferably 25% by mass or more with respect to the total mass of the refractive index film (the upper limit is 100% by mass).
  • the dielectric multilayer film forming the narrow band pass band preferably further contains metal oxide particles.
  • metal oxide particles By containing metal oxide particles, the refractive index difference between the refractive index films can be increased, the number of stacked layers can be reduced, and a thin film can be obtained. In addition, there is an advantage that stress relaxation works and film physical properties (flexibility at the time of bending and high temperature and high humidity) are improved.
  • the metal oxide particles may be contained in any of the films constituting the dielectric multilayer film, but a preferable form is that at least the high refractive index film contains metal oxide particles, and a more preferable form is a high refractive index. Both the film and the low refractive index film have a form containing metal oxide particles.
  • metal oxide particles examples include titanium dioxide, zirconium oxide, zinc oxide, silicon dioxide (synthetic amorphous silica, colloidal silica), alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, oxidation
  • metal oxide particles include chromium, ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • the metal oxide particles have an average particle size of 100 nm or less, preferably 4 to 50 nm, more preferably 4 to 30 nm.
  • the average particle size of the metal oxide particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the layer with an electron microscope and measuring the particle size of 1,000 arbitrary particles. Average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the content of metal oxide particles in each refractive index film is preferably 20 to 90% by mass, and more preferably 40 to 75% by mass with respect to the total mass of the refractive index film.
  • metal oxide particles it is preferable to use solid fine particles selected from titanium dioxide, silicon dioxide, and alumina.
  • silicon dioxide silicon dioxide
  • acidic colloidal silica sol acidic colloidal silica sol
  • silicon dioxide As silicon dioxide (silica) that can be used in the present invention, silica synthesized by an ordinary wet method, colloidal silica, silica synthesized by a gas phase method, or the like is preferably used, but is particularly preferably used in the present invention.
  • the fine particle silica colloidal silica or fine particle silica synthesized by a vapor phase method is preferable.
  • the metal oxide particles are preferably in a state where the fine particle dispersion before mixing with the cationic polymer is dispersed to the primary particles.
  • the average particle size (particle size in the dispersion state before coating) of the metal oxide fine particles dispersed in the primary particle state is 100 nm or less. More preferably, it is 4 to 50 nm, and most preferably 4 to 20 nm.
  • Aerosil manufactured by Nippon Aerosil Co., Ltd. is commercially available as the silica synthesized by the vapor phase method in which the average particle diameter of primary particles is 4 to 20 nm.
  • the vapor phase fine particle silica can be dispersed to primary particles relatively easily by being sucked and dispersed in water, for example, by a jet stream inductor mixer manufactured by Mitamura Riken Kogyo Co., Ltd.
  • the colloidal silica preferably used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • colloidal silica may be a synthetic product or a commercially available product.
  • Commercially available products include the Snowtex series (Snowtex 20, Snowtex 30, Snowtex 40, Snowtex O, Snowtex OS, Snowtex OXS, Snowtex XS, Snowtex sold by Nissan Chemical Industries, Ltd. O-40, Snowtex C, Snowtex N, Snowtex S, Snowtex 20L, Snowtex OL).
  • the preferred average particle size (number average; diameter) of colloidal silica is usually 5 to 100 nm, but an average particle size of 7 to 30 nm is particularly preferable.
  • Silica and colloidal silica synthesized by a vapor phase method may be those whose surfaces are cation-modified, or those treated with Al, Ca, Mg, Ba, or the like.
  • TiO 2 , ZnO, and ZrO 2 are preferable, and TiO 2 is used from the viewpoint of the stability of the metal oxide particle-containing composition described later for forming the high refractive index film. Is more preferable, and titanium dioxide sol is more preferable.
  • TiO 2 rutile type is more preferable than anatase type because it has low catalytic activity, and thus the weather resistance of the high refractive index film and the adjacent layer is high, and the refractive index is high.
  • the first step in the production method of rutile type fine particle titanium dioxide includes at least one basic compound selected from the group consisting of an alkali metal hydroxide and an alkaline earth metal hydroxide. It is the process (process 1) processed by this.
  • Titanium dioxide hydrate can be obtained by hydrolysis of water-soluble titanium compounds such as titanium sulfate and titanium chloride.
  • the method of hydrolysis is not particularly limited, and a known method can be applied. Especially, it is preferable that it was obtained by thermal hydrolysis of titanium sulfate.
  • the step (1) can be performed, for example, by adding the basic compound to an aqueous suspension of the titanium dioxide hydrate and treating (reacting) it under a predetermined temperature condition for a predetermined time. it can.
  • the method for preparing the titanium dioxide hydrate as an aqueous suspension is not particularly limited, and can be performed by adding the titanium dioxide hydrate to water and stirring.
  • the concentration of the suspension is not particularly limited.
  • the concentration of TiO 2 is 30 to 150 g / L in the suspension. By setting it within the above range, the reaction (treatment) can proceed efficiently.
  • the at least one basic compound selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides used in the step (1) is not particularly limited. Examples include potassium, magnesium hydroxide, calcium hydroxide, and the like.
  • the amount of the basic compound added in the step (1) is preferably 30 to 300 g / L in terms of the basic compound concentration in the reaction (treatment) suspension.
  • the above step (1) is preferably performed at a reaction (treatment) temperature of 60 to 120 ° C.
  • the reaction (treatment) time varies depending on the reaction (treatment) temperature, but is preferably 2 to 10 hours.
  • the reaction (treatment) is preferably performed by adding an aqueous solution of sodium hydroxide, potassium hydroxide, magnesium hydroxide, or calcium hydroxide to a suspension of titanium dioxide hydrate. After the reaction (treatment), the reaction (treatment) mixture is cooled, neutralized with an inorganic acid such as hydrochloric acid as necessary, and then filtered and washed with water to obtain fine particle titanium dioxide hydrate.
  • the compound obtained in step (1) may be treated with a carboxylic acid group-containing compound and an inorganic acid.
  • the method of treating the compound obtained in the above step (1) with an inorganic acid in the production of rutile type fine particle titanium dioxide is a known method, but in addition to the inorganic acid, a carboxylic acid group-containing compound is used. Can be adjusted.
  • the carboxylic acid group-containing compound is an organic compound having a —COOH group.
  • the carboxylic acid group-containing compound is preferably a polycarboxylic acid having 2 or more, more preferably 2 or more and 4 or less carboxylic acid groups. Since the polycarboxylic acid has a coordination ability to a metal atom, it is presumed that agglomeration between fine particles can be suppressed by coordination, whereby rutile type fine particle titanium dioxide can be suitably obtained.
  • the carboxylic acid group-containing compound is not particularly limited, and examples thereof include dicarboxylic acids such as succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, propylmalonic acid, and maleic acid; hydroxys such as malic acid, tartaric acid, and citric acid.
  • dicarboxylic acids such as succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, propylmalonic acid, and maleic acid
  • hydroxys such as malic acid, tartaric acid, and citric acid.
  • two or more compounds may be used in combination.
  • carboxylic acid group-containing compound may be a neutralized product of an organic compound having a —COOH group (for example, an organic compound having a —COONa group or the like).
  • the inorganic acid is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid and the like.
  • the inorganic acid may be added so that the concentration in the reaction (treatment) solution is 0.5 to 2.5 mol / L, more preferably 0.8 to 1.4 mol / L.
  • the step (2) is preferably performed by suspending the compound obtained in the step (1) in pure water and heating it with stirring as necessary.
  • the carboxylic acid group-containing compound and the inorganic acid may be added simultaneously or sequentially, but it is preferable to add them sequentially.
  • the addition may be to add an inorganic acid after the addition of the carboxylic acid group-containing compound, or to add the carboxylic acid group-containing compound after the addition of the inorganic acid.
  • a carboxyl group-containing compound is added to the suspension of the compound obtained by the above step (1), heating is started, and the inorganic acid is added when the liquid temperature is 60 ° C. or higher, preferably 90 ° C. or higher. Adding and maintaining the liquid temperature, preferably stirring for 15 minutes to 5 hours, more preferably 2 to 3 hours (Method 1); heating the suspension of the compound obtained by the above step (1)
  • an inorganic acid is added when the liquid temperature is 60 ° C. or higher, preferably 90 ° C. or higher, and a carboxylic acid group-containing compound is added 10 to 15 minutes after the inorganic acid addition, and the liquid temperature is preferably maintained.
  • a method of stirring for 15 minutes to 5 hours, more preferably 2 to 3 hours (Method 2).
  • the carboxylic acid group-containing compound is preferably used in an amount of 0.25 to 1.5 mol% with respect to 100 mol% of TiO 2 , and 0.4 to More preferably, it is used at a ratio of 0.8 mol%.
  • the addition amount of the carboxylic acid group-containing compound is less than 0.25 mol%, there is a possibility that particle growth proceeds and particles having the target particle size may not be obtained.
  • the amount is more than 5 mol%, rutile conversion of the particles does not proceed and anatase particles may be formed.
  • the carboxylic acid group-containing compound is preferably used in an amount of 1.6 to 4.0 mol% with respect to 100 mol% of TiO 2 , and is preferably 2.0 to It is more preferable to use it at a ratio of 2.4 mol%.
  • the addition amount of the carboxylic acid group-containing compound is less than 1.6 mol%, there is a possibility that the particle growth proceeds and particles having the target particle size may not be obtained, and the addition amount of the carboxylic acid group-containing compound is 4. If the amount is more than 0 mol%, the rutile conversion of the particles may not proceed and anatase particles may be formed. Even if the amount of the carboxylic acid group-containing compound exceeds 4.0 mol%, the effect will be good. It is economically disadvantageous. Further, if the addition of the carboxylic acid group-containing compound is performed in less than 10 minutes after the addition of the inorganic acid, there is a possibility that the rutileization will not proceed and anatase-type particles may be formed. In some cases, the particle growth proceeds excessively, and particles having a target particle size cannot be obtained.
  • step (2) it is preferable to cool after completion of the reaction (treatment) and further neutralize to pH 5.0 to 10.0.
  • the neutralization can be performed with an alkaline compound such as an aqueous sodium hydroxide solution or aqueous ammonia.
  • the target rutile type fine particle titanium dioxide can be separated by filtering and washing with water after neutralization.
  • titanium dioxide fine particles As other methods for producing titanium dioxide fine particles, known methods described in “Titanium oxide—physical properties and applied technology” (Kagino Kiyono, pp 255-258 (2000) Gihodo Publishing Co., Ltd.) can be used.
  • JP-A-2000-053421 comprising alkyl silicate as a dispersion stabilizer, and silicon in the alkyl silicate is changed to SiO 2.
  • the titanium oxide particles may be coated with a silicon-containing hydrated oxide.
  • the coating amount of the silicon-containing hydrated compound is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass. This is because if the coating amount is 30% by mass or less, a desired refractive index of the high refractive index film can be obtained, and if the coating amount is 3% or more, particles can be stably formed.
  • titanium oxide particles with a silicon-containing hydrated oxide it can be produced by a conventionally known method.
  • JP-A-10-158015 Si / Al hydration to rutile titanium oxide) Oxide treatment
  • a method for producing a titanium oxide sol in which a hydrous oxide of silicon and / or aluminum is deposited on the surface of titanium oxide after peptization in the alkaline region of the titanate cake JP 2000-204301 A (A sol in which a rutile-type titanium oxide is coated with a complex oxide of Si and Zr and / or Al.
  • JP 2007-246351 Oxidation obtained by peptizing hydrous titanium oxide
  • titanium to hydrosol
  • R 1 n SiX 4-n wherein R 1 as stabilizer C 1 -C 8 alkyl group, glycidyloxy substituted C 1 -C 8 Alkyl group or a C 2 -C 8 alkenyl group, X is an alkoxy group, n is 1 or 2.
  • Sodium silicate added in the alkaline range the compound having a complexing effect on organoalkoxysilanes or titanium oxide Alternatively, it is possible to refer to matters described in, for example, a method for producing a titanium oxide hydrosol coated with a hydrous oxide of silicon by adding, adjusting pH, and aging a silica sol solution.
  • a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a titanium oxide such as hydrous titanium oxide with a monobasic acid or a salt thereof, and an alkyl silicate as a dispersion stabilizer are mixed by a conventional method.
  • Neutralization method Japanese Patent Laid-Open No.
  • Colloidal aggregates are formed, and then the electrolyte in the aggregate slurry is removed to produce a stable aqueous sol of composite colloidal particles comprising titanium oxide; silicates (e.g., sodium silicate)
  • silicates e.g., sodium silicate
  • a stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing the aqueous solution) and removing the cations present in the aqueous solution; the resulting composite containing titanium oxide 100 parts by weight of the aqueous sol in terms of metal oxide TiO 2 and 2 to 100 parts by weight of the resulting composite aqueous sol containing silicon dioxide in terms of metal oxide SiO 2 were mixed together.
  • Japanese Patent Laid-Open No. 2000-063119 Japanese Patent Laid-Open No. 2000-063119
  • adding hydroperoxide to hydrous titanic acid gel or sol to dissolve hydrous titanic acid, and obtaining peroxotitanic acid A silicon compound or the like is added to the aqueous solution and heated to obtain a dispersion of core particles composed of a complex solid solution oxide having a rutile structure, and then the silicon compound or the like is added to the dispersion of the core particles.
  • the volume average particle diameter of the titanium oxide particles is preferably 30 nm or less, more preferably 1 to 30 nm, and even more preferably 5 to 15 nm.
  • a volume average particle size of 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • the volume average particle diameter is a volume average particle diameter of primary particles or secondary particles dispersed in a medium, and can be measured by a laser diffraction / scattering method, a dynamic light scattering method, or the like.
  • the particles themselves or the particles appearing on the cross section or surface of the refractive index film are observed with an electron microscope, and the particle diameters of 1,000 arbitrary particles are measured, and d1, d2,. ...
  • Nk particles each having a particle size of dk the volume average particle size when the volume per particle is vi
  • colloidal silica composite emulsion can also be used as a metal oxide in the low refractive index film.
  • the colloidal silica composite emulsion preferably used in the present invention has a central part of a particle mainly composed of a polymer or copolymer, and is described in JP-A-59-71316 and JP-A-60-127371. It is obtained by polymerizing a monomer having an ethylenically unsaturated bond in the presence of colloidal silica which has been conventionally known by an emulsion polymerization method.
  • the particle diameter of colloidal silica applied to the composite emulsion is preferably less than 40 nm.
  • the colloidal silica used for the preparation of this composite emulsion usually includes primary particles of 2 to 100 nm.
  • the ethylenic monomer include (meth) acrylic acid ester having 1 to 18 carbon atoms, aryl group, or allyl group, styrene, ⁇ -methylstyrene, vinyl toluene, acrylonitrile, vinyl chloride, vinylidene chloride. , Vinyl acetate, vinyl propionate, acrylamide, N-methylol acrylamide, ethylene, butadiene, and other materials known in the latex industry, and if necessary, vinyl trimethoate is used to improve compatibility with colloidal silica.
  • Vinyl silanes such as oxysilane, vinyltriethoxysilane, ⁇ -methacrylooxypropyltrimethoxysilane, etc. are also used to stabilize the dispersion of (meth) acrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid.
  • Anionic monomers such as -Is used as an auxiliary agent.
  • two or more types of ethylenic monomers can be used together as necessary.
  • the ratio of ethylenic monomer / colloidal silica in the emulsion polymerization is preferably 100/1 to 200 in terms of solid content.
  • colloidal silica composite emulsions used in the present invention those having a glass transition point in the range of ⁇ 30 to 30 ° C. are preferable.
  • compositions include ethylenic monomers such as acrylic acid esters and methacrylic acid esters, and particularly preferred are copolymers of (meth) acrylic acid esters and styrene, alkyl (meth) acrylates.
  • ethylenic monomers such as acrylic acid esters and methacrylic acid esters
  • copolymers of (meth) acrylic acid esters and styrene, alkyl (meth) acrylates examples thereof include a copolymer of ester and (meth) acrylic acid aralkyl ester, and a (meth) acrylic acid alkyl ester and (meth) acrylic acid aryl ester copolymer.
  • emulsifiers used in emulsion polymerization include alkyl allyl polyether sulfonic acid soda salt, lauryl sulfonic acid soda salt, alkyl benzene sulfonic acid soda salt, polyoxyethylene nonylphenyl ether sodium nitrate salt, alkyl allyl sulfosuccinate soda salt, sulfo Examples include propyl maleic acid monoalkyl ester soda salt.
  • Each refractive index film forming the dielectric multilayer film can contain various additives as required.
  • various anionic, cationic or nonionic surfactants include various anionic, cationic or nonionic surfactants; dispersants such as polycarboxylic acid ammonium salt, allyl ether copolymer, benzenesulfonic acid sodium salt, graft compound dispersant, polyethylene glycol type nonionic dispersant; Organic acid salts such as acetate, propionate or citrate; organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphate plasticizers, organic phosphorous acid plasticizers, etc.
  • dispersants such as polycarboxylic acid ammonium salt, allyl ether copolymer, benzenesulfonic acid sodium salt, graft compound dispersant, polyethylene glycol type nonionic dispersant
  • Organic acid salts such as acetate, propionate or citrate
  • organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphat
  • Plasticizers such as phosphoric acid plasticizers; ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57 -87989, 60-72785, 61-14659, JP-A-1-95091 and 3-13376, etc .; Japanese Patent Laid-Open Nos. 59-42993, 59-52689, 62-280069, 61-242871, and Japanese Patent Laid-Open No.
  • Optical brighteners described in the Gazettes, etc . pH adjusters such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate; antifoaming agents; lubricants such as diethylene glycol; Agents; antistatic agents; may contain various known additives such as matting agents.
  • the above-mentioned dielectric multilayer film can be laminated on a film support if necessary.
  • various resin films can be used, such as polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc. Can be used, and a polyester film is preferable.
  • polyester film but it does not specifically limit as a polyester film (henceforth polyester), It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components.
  • the main component dicarboxylic acid component includes terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • the thickness of the film support used in the present invention is preferably 10 to 300 ⁇ m, particularly 20 to 150 ⁇ m.
  • the film support of the present invention may be a laminate of two sheets. In this case, the type may be the same or different.
  • the functional layer is not particularly limited, but is a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer), an antifouling layer, a deodorant layer, a droplet layer, an easy slip layer, Used for hard coat layer, abrasion-resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorption layer, infrared absorption layer, printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, adhesive layer, laminated glass Examples include an intermediate film layer, a heat insulating layer, a heat ray reflective layer, and a heat dissipation layer.
  • the ultraviolet absorber used in the ultraviolet absorbing layer for example, the ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476 can be used.
  • the thickness of the functional layer is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the filter of the present invention preferably includes a hard coat layer as a surface protective layer for enhancing the scratch resistance. Specifically, it is preferable to laminate a hard coat layer containing a resin that is cured by heat, ultraviolet rays, or the like on the uppermost layer on the side opposite to the side having the dielectric multilayer film.
  • the curable resin used in the hard coat layer examples include a thermosetting resin and an ultraviolet curable resin.
  • an ultraviolet curable resin is preferable because it is easy to mold, and among them, those having a pencil hardness of at least 2H. More preferred.
  • Such cured resins can be used singly or in combination of two or more.
  • an ultraviolet curable resin it is synthesized from, for example, a polyfunctional acrylate resin such as acrylic acid or methacrylic acid ester having a polyhydric alcohol, and acrylic acid or methacrylic acid having a diisocyanate and a polyhydric alcohol.
  • a polyfunctional acrylate resin such as acrylic acid or methacrylic acid ester having a polyhydric alcohol, and acrylic acid or methacrylic acid having a diisocyanate and a polyhydric alcohol.
  • polyfunctional urethane acrylate resins can be mentioned.
  • polyether resins, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins or polythiol polyene resins having an acrylate-based functional group can also be suitably used.
  • benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl methyl ketal and the like Alkyl ethers; acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone; anthraquinones such as methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone; thioxanthone, 2,4 -Thioxanthones such as diethylthioxanthone and 2,4-diisopropylthioxanthone; Ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; Benzophenone and 4,4-b
  • tertiary amines such as triethanolamine and methyldiethanolamine
  • photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate
  • radical polymerization initiators are used in an amount of 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the polymerizable component of the resin.
  • a well-known general paint additive with the above-mentioned cured resin as needed.
  • a silicone-based or fluorine-based paint additive that imparts leveling or surface slip properties is effective in preventing scratches on the surface of a cured film, and in the case of using ultraviolet rays as active energy rays, When the additive bleeds to the air interface, the inhibition of curing of the resin by oxygen can be reduced, and an effective degree of curing can be obtained even under low irradiation intensity conditions.
  • the hard coat layer preferably contains inorganic fine particles.
  • Preferable inorganic fine particles include fine particles of an inorganic compound containing a metal such as titanium, silica, zirconium, aluminum, magnesium, antimony, zinc or tin.
  • the average particle size of the inorganic fine particles is preferably 1000 nm or less, and more preferably in the range of 10 to 500 nm, from the viewpoint of ensuring visible light transmittance.
  • the inorganic fine particles have a higher bond strength with the cured resin forming the hard coat layer, and can be prevented from falling off the hard coat layer. Therefore, a photosensitive group having photopolymerization reactivity such as monofunctional or polyfunctional acrylate. Those in which is introduced into the surface are preferred.
  • the thickness of the hard coat layer is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 1 to 20 ⁇ m. If it is 0.1 ⁇ m or more, the hard coat property tends to be improved. Conversely, if it is 50 ⁇ m or less, the transparency tends to be improved.
  • the method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for hard coat layer containing the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured with heat and / or UV. And a method of forming a hard coat layer.
  • the filter of the present invention can be used for various applications.
  • a colored film for decoration a color filter that modulates the color of the light source
  • a reflective mirror for visible light or infrared light
  • a white LED for visible light or infrared light
  • a white LED for visible light or infrared light
  • a white LED for visible light or infrared light
  • a white LED for visible light or infrared light
  • a white LED a white LED
  • a fluorescent light a color filter for organic EL lighting
  • it is preferably used for agriculture where light from a light source is modulated to promote plant growth.
  • narrow band light with a band edge such as red light of 640 nm to 690 nm and blue light of 420 nm to 470 nm are optimal for promoting photosynthesis and normal formation of leaves.
  • the transmission wavelength region is determined depending on the material, so it cannot be designed to transmit the desired wavelength, but in the filter of the present invention, a filter is formed in accordance with the target set wavelength. Therefore, it can be used particularly for plant growth promotion. Therefore, a narrow band-pass filter that exhibits maximum transmittance in a blue light region of 400 nm to 500 nm or a red light region of 630 to 700 nm is suitable.
  • the present invention also includes a plant growth promoting method for promoting plant growth using the narrow band-pass filter.
  • the target wavelength is appropriately set depending on the plant species and the plant part that is desired to promote growth.
  • Specific examples of the method (1) include the following forms: (1) A high refractive index film coating solution is applied on a substrate and dried to form a high refractive index film. A method of forming a low refractive index film by applying a refractive film coating liquid and drying; (2) A low refractive index film coating liquid is applied and dried on a substrate to form a low refractive index film.
  • a method of forming a film by applying a high refractive index film coating liquid and drying to form a film (3) coating a high refractive index film coating liquid and a low refractive index film on the substrate
  • a method of forming a film including a high refractive index film and a low refractive index film by alternately coating and drying the liquid alternately and successively (4) A high refractive index film coating liquid and a low refractive index on a substrate
  • a method of forming a film containing a high refractive index film and a low refractive index film by simultaneously applying a multilayer coating with a film coating solution and drying Especially, it is preferable that it is simultaneous multilayer coating of (4) from a viewpoint of production efficiency.
  • a synthetic polymer such as polyvinyl alcohol, a water-soluble polymer such as gelatin and a thickening polysaccharide is used as a binder for preparing each layer coating liquid and laminating by simultaneous multilayering. It can be used suitably.
  • a water-soluble polymer is contained as an organic polymer.
  • a plurality of constituent layers including a high-refractive index film and a low-refractive index film can be appropriately selected from known coating methods, and simultaneously coated in water on a support, and then set and dried.
  • the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the refractive index film contains a water-soluble polymer and metal oxide particles
  • a multilayer body is formed by multilayer coating, so that the mass ratio (F / B) of the water-soluble polymer and metal oxide particles in each film coating solution. Is preferably in the range of 0.3 to 10, more preferably 0.5 to 5.
  • the time from simultaneous multilayer coating to sol-gel transition and setting is within 5 minutes, preferably within 2 minutes. Moreover, it is preferable to take time of 45 seconds or more.
  • Adjust the set time by adjusting the viscosity according to the concentration of metal oxide particles and other components, adjusting the binder mass ratio, and adding various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. It can be performed by adjustment.
  • the term “set” refers to, for example, increasing the viscosity of the coating composition by lowering the temperature by applying cold air or the like to the coating, reducing the fluidity of the material between each layer and each layer, or gelling.
  • the time from application to set is what the finger has when the cold air of 5-10 ° C is applied to the coating film from the surface and the finger is pressed against the surface. Let's say lost time.
  • the temperature condition when using cold air is preferably 25 ° C. or lower, more preferably 10 ° C. or lower.
  • the time for which the coating film is exposed to the cold air is preferably 10 seconds or more and 120 seconds or less, although it depends on the coating conveyance speed.
  • the solvent for preparing each coating solution for simultaneous multilayer coating is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • an aqueous solvent can be used because polyvinyl alcohol is mainly used as the resin binder. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
  • the viscosity of each coating solution at the time of simultaneous multilayer coating is preferably in the range of 5 to 100 mPa ⁇ s, more preferably 10 to 50 mPa ⁇ s in the temperature range of 25 to 60 ° C. It is the range of s.
  • the range of 5 to 1200 mPa ⁇ s is preferable, and the range of 25 to 500 mPa ⁇ s is more preferable.
  • the viscosity of the coating solution at 15 ° C. is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, still more preferably 3,000 to 30,000 mPa ⁇ s, and most preferably 10 , 30,000 to 30,000 mPa ⁇ s.
  • the coating solution is heated to 30 ° C. or higher and coated, and then the temperature of the formed coating film is once cooled to 1 to 15 ° C. and dried at 10 ° C. or higher. More preferably, the drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. Moreover, as a cooling method immediately after application
  • the method described in US Pat. No. 6,049,419 can be used. That is, a high-refractive-index film material polymer and other additives (high-refractive-index film-forming composition) and a low-refractive-film material polymer and other additives (low-refractive-index film-forming composition) are co-extruded. Can be used to form a high refractive index film and a low refractive index film.
  • each refractive index film material is melted at 85 to 300 ° C. so as to have a viscosity suitable for extrusion, and various additives are added as necessary, so that both polymers are alternately formed into two layers.
  • the extruded laminated film is cooled and solidified by a cooling drum or the like to obtain a laminated body.
  • the laminate is heated and then stretched in two directions to obtain a narrow band filter.
  • the unstretched film obtained by peeling from the above-mentioned cooling drum is subjected to a glass transition temperature (Tg) of ⁇ 50 ° C. to Tg + 100 ° C. via a plurality of roll groups and / or a heating device such as an infrared heater. It is preferable that the film is heated inside and stretched in one or more stages in the film conveying direction (also referred to as the longitudinal direction). Next, it is also preferable to stretch the stretched film obtained as described above in a direction perpendicular to the film transport direction (also referred to as the width direction). In order to stretch the film in the width direction, it is preferable to use a tenter device.
  • Tg glass transition temperature
  • heat processing can be performed subsequent to stretching.
  • the thermal processing is preferably carried out in the range of Tg-100 ° C. to Tg + 50 ° C., usually for 0.5 to 300 seconds.
  • the heat processing means is not particularly limited and can be generally performed with hot air, infrared rays, a heating roll, microwaves, or the like, but is preferably performed with hot air in terms of simplicity.
  • the heating of the film is preferably increased stepwise.
  • the heat-processed film is usually cooled to Tg or less, and the clip gripping portions at both ends of the film are cut and wound.
  • the cooling is gradually performed from the final heat processing temperature to Tg at a cooling rate of 100 ° C. or less per second.
  • the means for cooling is not particularly limited, and can be performed by a conventionally known means. In particular, it is preferable to perform these treatments while sequentially cooling in a plurality of temperature ranges from the viewpoint of improving the dimensional stability of the film.
  • the cooling rate is a value obtained by (T1 ⁇ Tg) / t, where T1 is the final heat processing temperature and t is the time until the film reaches Tg from the final heat processing temperature.
  • PET polyethylene terephthalate
  • the optical film thickness of each refractive index layer in the narrow-band bandpass filter of Comparative Example 1 is ( ⁇ / 4-96). %) To ( ⁇ / 4 + 44%), where ⁇ / 4-96% means ⁇ / 4- ⁇ / 4 ⁇ 96/100, and so on.
  • the numerical value in parentheses described next to the material of the layer structure is the physical film thickness value of each refractive index film.
  • Example 2 Comparative Example 2
  • silver, TiO 2 , SiO 2 , and MgF 2 are converted into PET / TiO 2 (76 nm) / (SiO 2 (100 nm) / TiO 2 (64 nm)) 3 / MgF 2 using a known sputtering method.
  • Example 3 Comparative Example 3
  • Ta 2 O 5 and SiO 2 are changed into PET / (Ta 2 O 5 (70 nm) / SiO 2 (106 nm)) 5 / Ta 2 O 5 (70 nm) / SiO 2.
  • the optical film thickness of each refractive index layer in the narrow-band bandpass filter of Example 2 was in the range of ( ⁇ / 4-67%) to ( ⁇ / 4 + 43%).
  • PBT Toraycon 1401-X06, manufactured by Toray Industries, Inc.
  • Example 9 Example 6 (Preparation of coating solution for low refractive index film)
  • water-soluble resin PVA224 manufactured by Kuraray Co., Ltd., saponification degree 88%, polymerization degree 1000
  • water-soluble resin R1130 manufactured by Kuraray Co., Ltd., By adding 5.0 parts by mass of silanol-modified polyvinyl alcohol
  • water-soluble resin Nichigo G polymer AZF8035W manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • the entire amount of the water-soluble resin aqueous solution was added to and mixed with 350 parts by mass of 10% by mass acidic silica sol (Snowtex (registered trademark) OXS, manufactured by Nissan Chemical Industries, Ltd.) containing silica fine particles having an average particle diameter of 5 nm. Furthermore, 0.3 parts by mass of Lapisol A30 (manufactured by Nippon Oil & Fats Co., Ltd.) was added as an anionic activator, and after stirring for 1 hour, the coating solution for low refractive index film was prepared by finishing to 1000.0 g with pure water .
  • Snowtex registered trademark
  • OXS organic silica sol
  • Lapisol A30 manufactured by Nippon Oil & Fats Co., Ltd.
  • aqueous dispersion of titanium oxide sol Sodium hydroxide aqueous solution (concentration 10 mol / L) was added to 10 L of an aqueous suspension (TiO 2 concentration 100 g / L) in which titanium oxide hydrate was suspended in water with stirring, and the temperature was raised to 90 ° C. After warming and aging for 5 hours, it was neutralized with hydrochloric acid, filtered and washed with water.
  • titanium oxide hydrate was obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
  • the titanium oxide hydrate treated with the base was suspended in pure water so that the TiO 2 concentration was 20 g / L, and 0.4 mol% of citric acid was added to the amount of TiO 2 with stirring to raise the temperature.
  • concentrated hydrochloric acid was added to a hydrochloric acid concentration of 30 g / L, and the mixture was stirred for 3 hours while maintaining the liquid temperature.
  • the pH and zeta potential of the obtained titanium oxide sol solution were measured, the pH was 1.4 and the zeta potential was +40 mV. Furthermore, when the particle size was measured with a Zetasizer Nano manufactured by Malvern, the average particle size was 35 nm, and the monodispersity was 16%. Also, the titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain a particle powder, and X-ray diffraction measurement was performed using JDX-3530 type manufactured by JEOL Datum Co., Ltd. to confirm that the particles were rutile type particles. did. Moreover, the volume average particle diameter was 10 nm.
  • the coating apparatus a slide hopper coating apparatus capable of simultaneously coating 21 layers was used. On the 30 cm ⁇ 30 cm size 50 ⁇ m thick polyethylene terephthalate (PET) film (A4300: double-sided easy-adhesive layer, manufactured by Toyobo Co., Ltd.), the coating solution for the low refractive index film and the coating solution for the high refractive index film prepared above are used.
  • PET polyethylene terephthalate
  • the layers were applied simultaneously. Immediately after that, after setting the film surface by blowing cold air for 1 minute under the condition that the film surface is 15 ° C.
  • the dielectric multilayer film is a dielectric film containing an organic polymer and a metal oxide by drying by blowing hot air of 80 ° C.
  • the optical film thickness of each refractive index layer in the narrowband bandpass filter of Example 6 is ( ⁇ / 4-11%) to ( ⁇ / 4 + 36%).
  • the layer structure is PET / (low refractive index film (119 nm) / high refractive index film (78 nm) 5 / low refractive index film (119 nm) / high refractive index film (157 nm) / low refractive index film ( 119 nm) / (High refractive index film (78 nm) / Low refractive index film (119 nm)) 5 /
  • the dielectric multilayer film contains an organic polymer and a metal oxide, except that it is a high refractive index film (157 nm). Then, a dielectric type narrow band-pass filter (FIG.
  • Sample 11 Example 8
  • Sample 11 was prepared in the same manner as Sample 10 except that a visible light shielding layer was provided.
  • Example 12 Example 9
  • PVA224, TINUVIN-P manufactured by Ciba Japan Co., Ltd.
  • TINUVIN326 manufactured by Ciba Japan Co., Ltd.
  • a functional film having a dry film thickness of 3 ⁇ m containing 80/15/5 in volume ratio.
  • UV curable hard coat material UV-7600B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • UV-7600B manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • a photopolymerization initiator Irgacure (registered trademark) 184, Ciba Specialty) (Chemicals Co., Ltd.) 0.5 parts by mass was added and stirred and mixed.
  • ATO powder ultrasonine particle ATO, manufactured by Sumitomo Metal Mining Co., Ltd.
  • the hard coat layer coating solution is applied with a wire bar to a dry film thickness of 3 ⁇ m, and hot air is applied at 70 ° C. for 3 minutes. Dried. After that, by curing with an irradiation amount of 400 mJ / cm 2 with a UV curing device (using a high-pressure mercury lamp) manufactured by Eye Graphics Co., Ltd. in the atmosphere, an infrared light blocking hard coat layer is formed. Sample 13 was produced.
  • Example 14 Comparative Example 4
  • Ta 2 O 5 and SiO 2 are changed into PET / (SiO 2 (110 nm) / Ta 2 O 5 (64.5 nm) 5 / SiO 2 (110 nm) / Ta 2 ).
  • Example 15 Layer structure is PET / (low refractive index film (119 nm) / high refractive index film (78 nm) 5 / low refractive index film (119 nm) / high refractive index film (180 nm) / low refractive index film (119 nm) / (high refractive index
  • the dielectric multilayer film contains an organic polymer and a metal oxide in the same manner as in Example 10 except that the refractive index film (78 nm) / low refractive index film (119 nm)) 5 / high refractive index film (180 nm) is used.
  • a dielectric type narrow band-pass filter (FIG.
  • each refractive index layer was in the range of ( ⁇ / 4-9%) to ( ⁇ / 4 + 5%).
  • a spectrophotometer (U-4000 model, manufactured by Hitachi, Ltd.) is attached with a transmission unit, and after baseline correction by blank measurement, the surface side of the dielectric multilayer film is used as the measurement surface, and 0.5 nm in the region of 400 to 700 nm.
  • the transmittance at 600 points was measured at intervals, and the wavelength and transmittance of the narrowband passband were obtained.
  • Table 2 shows the durability evaluation results. It can be seen that the configuration satisfying the present invention is excellent in durability in both the bending test and the forced deterioration test with little decrease in wavelength transmittance in a narrow band pass band.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Cultivation Of Plants (AREA)

Abstract

[Problem] To obtain an optical film which is reduced in production cost, can be produced so as to have a larger area, and has excellent durability when flexed or when used under high-temperature high-humidity conditions. [Solution] A narrow-region bandpass filter which comprises a dielectric multilayer film obtained from organic polymers.

Description

狭帯域バンドパスフィルターNarrow bandpass filter
 本発明は、有機ポリマーを含む誘電多層膜を有する狭帯域バンドパスフィルターに関する。 The present invention relates to a narrow band-pass filter having a dielectric multilayer film containing an organic polymer.
 今後の世界の人口増や環境問題を考慮し、農業にハイテクを導入することで、安定な食糧生産につなげるいわゆる農業の工業化が注目されてきている。環境制御や自動化などハイテクを利用した植物の周年生産システムである植物工場では、植物栽培の環境をコンピューターにより制御することで、天候に左右されることなく、人手を必要とせずに作物を自動的に生産する試みが行われている。最近の研究によると、植物栽培には、植物種や植物の成長過程で、それぞれ成長促進の為に最適な光源波長分布があることが分かってきており、白色光を植物に照射するよりも、ある特定色を照射するほうが有利であり、例えば、光合成促進には640nm~690nmの赤色光、葉の正常な形成促進には420nm~470nmの青色光といった、バンドエッジが立った狭帯域の光が最適とされている。 Considering future world population growth and environmental issues, so-called agricultural industrialization that leads to stable food production by introducing high technology in agriculture has been attracting attention. In the plant factory, which is an annual production system for plants that uses high technology such as environmental control and automation, the plant cultivation environment is controlled by a computer so that crops are automatically produced without being affected by the weather and without the need for human intervention. Attempts to produce are being made. According to recent research, it has been found that plant cultivation has an optimal light source wavelength distribution for promoting growth in plant species and plant growth processes, rather than irradiating plants with white light, It is more advantageous to irradiate a specific color. For example, red light of 640 nm to 690 nm is used to promote photosynthesis, and blue light of 420 nm to 470 nm is used to promote normal formation of leaves. It is considered optimal.
 これらの植物栽培の人工光源としてLEDを用いるケースが増えている。この理由としては、小型軽量、低消費電力で、熱放射が少なく、現在工業的に広く用いられている赤色LED(660nm)、青色LED(450nm)を利用できるという特長が寄与しているとされている。植物の成長促進として、LEDの各色光源を使い分けることは、確かにユニークな視点ではあるが、多数のLEDチップを基板に取り付ける必要があること、LED制御用の回路システムや電源システムが必要である。このため、LEDの利用には制限があり、作付面積が大規模である場合や、さらに人工光源を必要としない屋外のビニールハウスへの対応には難がある。また、LED材料によって透過波長域が決定されるために植物種に併せて光源波長を任意に設計できる自由度も限られている。 More and more cases are using LEDs as artificial light sources for plant cultivation. The reason for this is that small size, light weight, low power consumption, low heat radiation, and the advantages of being able to use red LED (660 nm) and blue LED (450 nm), which are currently widely used in industry, are contributing. ing. To promote the growth of plants, using different LED light sources is certainly a unique point of view, but it is necessary to attach a large number of LED chips to the board, and a circuit system and power supply system for LED control are required. . For this reason, there is a limit to the use of the LED, and it is difficult to cope with a large-scale planting area or an outdoor greenhouse that does not require an artificial light source. Further, since the transmission wavelength range is determined by the LED material, the degree of freedom in which the light source wavelength can be arbitrarily designed in accordance with the plant species is limited.
 これに鑑み、太陽光を利用する大規模なビニールハウスや、安価な白色光源を用いる場合において、光学フィルターを用いて、特定光のみ植物に照射するシステムが提案されている。これに用いる光学フィルターとして、前述の特性から、いわゆるバンドパスフィルターが有効であると考えられる。 In view of this, in the case of using a large-scale greenhouse using sunlight or an inexpensive white light source, a system that irradiates a plant with only specific light using an optical filter has been proposed. As an optical filter used for this, a so-called band-pass filter is considered effective from the above-mentioned characteristics.
 特許文献1には酸化タリウムとシリカの無機材料を積層させた狭帯域光学フィルターが開示されている。 Patent Document 1 discloses a narrow-band optical filter in which an inorganic material of thallium oxide and silica is laminated.
特許2001-215325号公報Japanese Patent No. 2001-215325
 しかしながら、特許文献1に開示されているフィルターは、スパッタ装置を用いてフィルターを製造するものであり、大面積化がコスト的に困難であること、また無機材料のリジッドな膜で形成されており、屈曲時や高温高湿時の膜の耐久性に難がある。 However, the filter disclosed in Patent Document 1 is a filter manufactured using a sputtering apparatus, and it is difficult to increase the area in terms of cost, and is formed of a rigid film of an inorganic material. Durability of the film when bent or at high temperature and high humidity is difficult.
 したがって、本発明の目的は、製造コストが安く、大面積化が可能であり、屈曲時や高温高湿時の膜の耐久性に優れる光学フィルムを得ることである。 Therefore, an object of the present invention is to obtain an optical film that is low in manufacturing cost, can be increased in area, and has excellent film durability when bent or at high temperature and high humidity.
 本発明の上記課題は有機ポリマーを含む誘電多層膜を有することを特徴とする、狭帯域バンドパスフィルターにより達成される。 The above object of the present invention is achieved by a narrow band-pass filter characterized by having a dielectric multilayer film containing an organic polymer.
分光透過率曲線における狭帯域パスバンドを説明する図である。It is a figure explaining the narrow-band pass band in a spectral transmittance curve. 試料4の狭帯域バンドパスフィルターの分光透過率曲線を示す図である。6 is a diagram showing a spectral transmittance curve of a narrow band-pass filter of Sample 4. FIG. 試料5の狭帯域バンドパスフィルターの分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 5. FIG. 試料6の狭帯域バンドパスフィルターの分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 6. FIG. 試料9の狭帯域バンドパスフィルターの分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 9. FIG. 試料10の狭帯域バンドパスフィルターの分光透過率曲線を示す図である。2 is a diagram showing a spectral transmittance curve of a narrow band-pass filter of a sample 10. FIG. 試料15の狭帯域バンドパスフィルターの分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of the narrow-band band pass filter of the sample 15. FIG.
 本発明は、有機ポリマーを含む誘電多層膜を有する狭帯域バンドパスフィルターである。すなわち、本発明のフィルターは、分光透過率曲線において、有機ポリマーを含む誘電多層膜に由来する狭帯域パスバンドが形成されていることを特徴とする。 The present invention is a narrow band-pass filter having a dielectric multilayer film containing an organic polymer. That is, the filter of the present invention is characterized in that a narrow band pass band derived from a dielectric multilayer film containing an organic polymer is formed in a spectral transmittance curve.
 ポリマー材料を用いることによる、本発明の作用としては以下があげられる。(1)無機材料のスパッタ積層膜に比較して膜自体の屈曲時および高温高湿時の物理的耐久性が大幅に改善される。(2)溶融延伸や重層塗布といった大面積化に適する製造方法が可能である。このため、製造コストが安く、大幅なコスト低減が図れる。(3)ポリマー材料を含む誘電膜を多層積層したことで、相対標準偏差で数%程度生じる膜厚のゆらぎが逆に誤差拡散として作用し、ロバストの高い狭帯域パスバンド形成が可能である。また、誘電多層膜を用いることにより、着色染料や顔料といった一般的な光調整材料では実現できない、バンドエッジが立ったシャープな透過波長域ウィンドーを設計できる。すなわち、透過波長の設計自由度が高い。 The effects of the present invention by using a polymer material include the following. (1) Compared with a sputtered laminated film of inorganic material, the physical durability at the time of bending of the film itself and at high temperature and high humidity is greatly improved. (2) A production method suitable for increasing the area such as melt stretching or multilayer coating is possible. For this reason, the manufacturing cost is low and the cost can be significantly reduced. (3) Since the dielectric films containing the polymer material are laminated in multiple layers, the fluctuation of the film thickness which occurs about several percent with a relative standard deviation acts on the contrary as error diffusion, and a narrow band pass band with high robustness can be formed. In addition, by using a dielectric multilayer film, it is possible to design a sharp transmission wavelength region window having a band edge that cannot be realized by a general light adjustment material such as a coloring dye or a pigment. That is, the degree of freedom in designing the transmission wavelength is high.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 (狭帯域パスバンド)
 本発明において、狭帯域パスバンドは以下の様に定義する。図1の分光透過率曲線において、透過率80%以上のトップと、透過率20%以下のボトムを有するバンドに着目し、λ0を透過率80%の波長の平均波長(すなわち、透過率80%の波長を波長λおよびλとすると、λ0=(λ+λ)/2(nm))、Δλを透過率20%の波長幅(すなわち、透過率20%の波長を波長λおよびλ(λ>λ)とすると、Δλ=λ-λ(nm))とすると、Δλ/λ0×100≦15%を満たすバンドを狭帯域パスバンドと定義する。Δλ/λ0×100の値は小さいほど好ましく、10%以下であることが好ましく、6%以下であることがより好ましい。なお、Δλ/λ0×100の値は小さいほど好ましいため、Δλ/λ0×100の値は小さければ小さいほど好ましいが、通常0.5%以上である。
(Narrowband passband)
In the present invention, the narrowband passband is defined as follows. In the spectral transmittance curve of FIG. 1, paying attention to a band having a top with a transmittance of 80% or more and a bottom with a transmittance of 20% or less, λ0 is an average wavelength of the wavelengths with a transmittance of 80% (that is, a transmittance of 80%). When the wavelength of the wavelength lambda 1 and λ 2, λ0 = (λ 1 + λ 2) / 2 (nm)), Δλ a transmittance of 20% in the wavelength range (i.e., the wavelength of the transmittance of 20% wavelength lambda 3 and If λ 44 > λ 3 ), Δλ = λ 4 −λ 3 (nm)), a band satisfying Δλ / λ0 × 100 ≦ 15% is defined as a narrowband passband. The value of Δλ / λ0 × 100 is preferably as small as possible, preferably 10% or less, and more preferably 6% or less. In addition, since the value of Δλ / λ0 × 100 is preferably as small as possible, the value of Δλ / λ0 × 100 is preferably as small as possible, but is usually 0.5% or more.
 本発明においては、目的に応じて、狭帯域パスバンドの数を設定することができ、狭帯域パスバンドは1つに限られず、2以上存在してもよい。 In the present invention, the number of narrowband passbands can be set according to the purpose, and the number of narrowband passbands is not limited to one, and there may be two or more.
 (誘電体型狭帯域バンドパスフィルター)
 一般に狭帯域バンドパスフィルターの構成として、Mを金属、Dを誘電体とした場合、(1)MDM型、(2)DMD型、(3)誘電体型の3タイプがあることが知られている。本発明の誘電体型狭帯域パスバンドフィルターは、前記(3)に属するものであり、(1)、(2)とは異なりバンド形成に寄与する構成層中に耐久性に劣る金属膜を用いないことが特徴である。
(Dielectric type narrow-band bandpass filter)
In general, it is known that there are three types of narrowband bandpass filters: (1) MDM type, (2) DMD type, and (3) dielectric type, where M is a metal and D is a dielectric. . The dielectric type narrow band pass band filter of the present invention belongs to the above (3), and unlike (1) and (2), a metal film having poor durability is not used in a constituent layer contributing to band formation. It is a feature.
 誘電体型狭帯域バンドパスフィルターは、高屈折率膜および低屈折率膜が隣接した構造を少なくとも1つ有する。ここで「高屈折率膜」および「低屈折率膜」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率膜を高屈折率膜とし、低い方の屈折率膜を低屈折率膜とすることを意味する。したがって、「高屈折率膜」および「低屈折率膜」なる用語は、光学反射フィルムを構成する各屈折率膜において、隣接する2つの屈折率膜に着目した場合に、各屈折率膜が同じ屈折率を有する形態以外のあらゆる形態を含むものである。 The dielectric type narrow-band bandpass filter has at least one structure in which a high refractive index film and a low refractive index film are adjacent to each other. Here, the terms “high refractive index film” and “low refractive index film” mean that the refractive index film having the higher refractive index is the high refractive index film when the difference in refractive index between two adjacent layers is compared, and the low refractive index film is low. This means that the other refractive index film is a low refractive index film. Therefore, the terms “high refractive index film” and “low refractive index film” are the same when the refractive index films constituting the optical reflection film are focused on two adjacent refractive index films. All forms other than those having a refractive index are included.
 誘電体型狭帯域バンドバスフィルターの誘電多層膜に含まれる好適な構成例としては以下が挙げられる。 Examples of suitable configurations included in the dielectric multilayer film of the dielectric type narrow band band-pass filter include the following.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ここで、例えば、(Hは、Hの層構成がm回繰り返して積層され、また、sHはHがs回繰り返して積層されていることを指す。 Here, for example, (H 1 L 1 ) m means that the layer structure of H 1 L 1 is laminated m times and sH 2 means that H 2 is laminated s times.
 また、H、H、HおよびHはそれぞれ高屈折率膜を示し、L、L、LおよびLは、低屈折率膜を示す。ここで、H、H、HおよびHは、膜厚、膜構成において、それぞれ同一であってもよいし、異なっていてもよい。同様に、L、L、LおよびLは、膜厚、膜構成において、それぞれ同一であってもよいし、異なっていてもよい。好適には、フィルターの分光透過率曲線の狭帯域パスバンドにおける最大透過率波長λ[nm]に対して、高屈折率膜および低屈折率膜の光学膜厚は、λ/4±50%(ここで、「λ/4±50%」とは「(λ/4-λ/4×0.5)以上(λ/4+λ/4×0.5)以下」」の意である)である。なお、実際の積層体での各屈折率膜の膜厚(物理膜厚)と、光学膜厚との関係は、光学膜厚[nm]=屈折率×物理膜厚[nm]である。 H 1 , H 2 , H 3 and H 4 each represent a high refractive index film, and L 1 , L 2 , L 3 and L 4 represent low refractive index films. Here, H 1 , H 2 , H 3 and H 4 may be the same or different in film thickness and film configuration. Similarly, L 1 , L 2 , L 3 and L 4 may be the same or different in film thickness and film configuration. Preferably, the optical film thickness of the high refractive index film and the low refractive index film is λ / 4 ± 50% with respect to the maximum transmittance wavelength λ [nm] in the narrow band pass band of the spectral transmittance curve of the filter. Here, “λ / 4 ± 50%” means “(λ / 4−λ / 4 × 0.5) or more (λ / 4 + λ / 4 × 0.5) or less”). The relationship between the film thickness (physical film thickness) of each refractive index film and the optical film thickness in the actual laminate is optical film thickness [nm] = refractive index × physical film thickness [nm].
 設定波長において狭帯域パスバンドを形成させるには、λ/4のλを設定波長に置き、高屈折率膜と低屈折率膜とも、光学膜厚をこのλ/4を中心に設定すればよい。好適には、各屈折率膜の光学膜厚がλ/4±50%((λ/4-λ/4×0.5)以上(λ/4+λ/4×0.5)以下)となるように設計する。 To form a narrow-band passband at the setting wavelength, position the lambda A / 4 of lambda A set wavelength, both high and low-index films, setting the optical thickness around this lambda A / 4 do it. Preferably, the optical film thickness of each refractive index film is λ / 4 ± 50% ((λ / 4−λ / 4 × 0.5) or more (λ / 4 + λ / 4 × 0.5) or less). To design.
 上記膜構成1~4において、mおよびnは、1以上の整数である。また、sは2以上の整数であるが、sは2が一般的である。パスバンドの幅を調整するには、前記m、nの数を調整すればよい。m、nが小さい程、パスバンドの幅は広くなる。m、nの上限は特に制限されるものではないが、通常100以下である。また、sの上限は特に制限されるものではないが、通常10以下である。 In the above film configurations 1 to 4, m and n are integers of 1 or more. Further, s is an integer of 2 or more, but s is generally 2. In order to adjust the width of the passband, the number of m and n may be adjusted. The smaller the m and n are, the wider the passband is. The upper limits of m and n are not particularly limited, but are usually 100 or less. The upper limit of s is not particularly limited, but is usually 10 or less.
 複数の波長領域にパスバンドを設ける場合は、上記膜構成のいずれかを設定波長に応じて設け、複数キャビティーの積層構造にすればよい。この際、各パスバンドに対応する積層構造の膜構成は同一であってもよいし、異なっていてもよい。 When providing passbands in a plurality of wavelength regions, any one of the above film configurations may be provided in accordance with a set wavelength to form a laminated structure of a plurality of cavities. At this time, the film configuration of the laminated structure corresponding to each pass band may be the same or different.
 また、ストップバンドの幅を広げるには、前記(HL)を同じ光学膜厚の繰り返しでは無く、例えば、3~30%ずつ光学膜厚をずらしながら積層させればよい。これらの多層膜構造は光学シミュレーション(FTG Software Associates Film DESIGN Version 2.23.3700)を用いれば設計可能である。ストップバンドの幅はλ/4を1種のみ用いた場合、30~100nm程度であるため、ある程度広いほうがよい。 Further, in order to widen the width of the stop band, the (HL) may be laminated while shifting the optical film thickness by 3 to 30% instead of repeating the same optical film thickness. These multilayer structures can be designed by using optical simulation (FTG Software Associates Film DESIGN Version 2.23.3700). When only one type of λ / 4 is used, the width of the stop band is about 30 to 100 nm, so it should be somewhat wide.
 また、青色光の波長域である400nm以上500nm以下、または赤色光の波長域である630nm以上700nm以下の領域に狭帯域パスバンドを形成させることも上記考え方に基づき設計可能である。これらの設計手法は、“Thin-Film Optical Filters Fourth Edition”Taylor and Francis Group.LLC 2010,pp302~401に詳細な記載がある。 Further, it is possible to design a narrow band pass band in the blue light wavelength range of 400 nm to 500 nm or the red light wavelength range of 630 nm to 700 nm based on the above concept. These design methods are described in “Thin-Film Optical Filters Fourth Edition” Taylor and Francis Group. There are detailed descriptions in LLC 2010, pp 302-401.
 これらの構成のうち、本発明のフィルターにおいては、誘電多層膜が、下記式(1): Among these configurations, in the filter of the present invention, the dielectric multilayer film has the following formula (1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で示される層構成を含むことが特に好ましい。ここで、H、H、およびHは、(λ/4-λ/4×0.5)以上(λ/4+λ/4×0.5)以下の光学膜厚を有する誘電多層膜の高屈折率膜を示し、L、およびLは、(λ/4-λ/4×0.5)以上(λ/4+λ/4×0.5)以下の光学膜厚を有する誘電多層膜の低屈折率膜を示し、ここで、λは、フィルターの分光透過率曲線の狭帯域パスバンドにおける最大透過率波長を表わす。m、nは1以上の整数であり、sは2以上の整数であり、(Hおよび(Lとは、それぞれ(H)をm回、および(L)をn回繰り返して積層するという意味であり、sHはキャビティー層である。ここで、m、n、およびsの具体的範囲および好適な範囲は上述したとおりである。かような構成とすることで、屈曲時および高温高湿時の耐久性が向上する。これは塗膜の材料種やパス長による水や酸素の透過性の低下と、さらに異なる弾性と延性を有する材料を混合したことによる応力緩和性の向上によるものと考えられる。また、透過する光量を考慮すると、ある程度パス部分が広いほうが好ましいが、sLよりもsHを用いることで、パス部分が広いバンドを設計可能であること、また、構成層の末端は他の有機膜(例えばフィルム支持体)と接する場合が多く、その際、低屈折率膜と接するよりも高屈折率膜と接する方が、必要層数減の観点から有利である。 It is particularly preferable to include a layer structure represented by: Here, H 1 , H 2 , and H 3 are dielectric multilayer films having optical film thicknesses of (λ / 4−λ / 4 × 0.5) or more and (λ / 4 + λ / 4 × 0.5) or less. A dielectric multilayer film having a high refractive index film, wherein L 1 and L 2 have an optical film thickness of (λ / 4−λ / 4 × 0.5) or more and (λ / 4 + λ / 4 × 0.5) or less Where λ represents the maximum transmittance wavelength in the narrowband passband of the spectral transmittance curve of the filter. m and n are integers of 1 or more, s is an integer of 2 or more, (H 1 L 1 ) m and (L 2 H 3 ) n are (H 1 L 1 ) m times, and This means that (L 2 H 3 ) is repeated n times, and sH 2 is a cavity layer. Here, the specific range and preferred range of m, n, and s are as described above. With such a configuration, durability at the time of bending and high temperature and high humidity is improved. This is thought to be due to a decrease in water and oxygen permeability due to the material type and path length of the coating film and an improvement in stress relaxation due to the mixing of materials having different elasticity and ductility. In consideration of the amount of light to be transmitted, it is preferable that the pass portion is wide to some extent. However, by using sH rather than sL, it is possible to design a band having a wide pass portion, and the end of the constituent layer is another organic film. In many cases, it is in contact with the film (for example, a film support). In that case, it is more advantageous to contact the high refractive index film than to contact the low refractive index film from the viewpoint of reducing the number of required layers.
 フィルターの最表面を構成する層は、透過性の観点からHであることが好ましく、rH(rは2以上の整数である)であることがより好ましい。 The layer constituting the outermost surface of the filter is preferably H from the viewpoint of permeability, and more preferably rH (r is an integer of 2 or more).
 本発明の誘電体型狭域帯バンドパスフィルターにおいて、高屈折率膜および低屈折率膜の総数の上限としては、200層以下であることが好ましい。より好ましくは100層以下であり、さらに好ましくは40層以下である。 In the dielectric narrow band-pass filter of the present invention, the upper limit of the total number of high refractive index films and low refractive index films is preferably 200 layers or less. More preferably, it is 100 layers or less, More preferably, it is 40 layers or less.
 高屈折率膜の好ましい屈折率範囲は1.70~2.50であり、1.8~2.1であることがより好ましく、さらに好ましくは1.90~2.1である。また、低屈折率膜の好ましい屈折率範囲は1.10~1.60であり、1.30~1.55であることがより好ましく、1.3~1.45であることがさらに好ましい。また、高屈折率膜と低屈折率膜の好ましい屈折率差は、0.1以上であり、より好ましくは0.3~0.7である。屈折率差がかような範囲であると、誘電多層膜の層数が適当で、生産性が向上し、また、製造ばらつきによる変動の影響を受けにくく、パスバンド形成が安定する。なお、高屈折率膜と低屈折率膜とを複数有する場合には、全ての屈折率膜が上記屈折率および屈折率差の要件を満たすことが好ましい。ただし、最表層や最下層に関しては、この限りではない。屈折率差に上限はないが、実質的には1.40程度が限界である。なお、上記屈折率差は、高屈折率膜、低屈折率膜の屈折率を下記の方法に従って求め、両者の差分を屈折率差とする。 The preferable refractive index range of the high refractive index film is 1.70 to 2.50, more preferably 1.8 to 2.1, and still more preferably 1.90 to 2.1. The preferred refractive index range of the low refractive index film is 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.3 to 1.45. Further, a preferable refractive index difference between the high refractive index film and the low refractive index film is 0.1 or more, and more preferably 0.3 to 0.7. When the refractive index difference is in such a range, the number of layers of the dielectric multilayer film is appropriate, the productivity is improved, and the formation of the passband is stable due to being hardly affected by variations due to manufacturing variations. In addition, when it has two or more high refractive index films | membranes and low refractive index films | membranes, it is preferable that all the refractive index films satisfy | fill the requirements of the said refractive index and refractive index difference. However, this is not the case for the outermost layer and the lowermost layer. There is no upper limit to the refractive index difference, but the limit is substantially about 1.40. The refractive index difference is obtained by calculating the refractive indexes of the high refractive index film and the low refractive index film according to the following method, and the difference between the two is defined as the refractive index difference.
 (必要により基材を用いて)各屈折率膜を単膜で作製し、このサンプルを10cm×10cmに断裁した後、下記の方法に従って屈折率を求める。分光光度計として、U-4000型(日立製作所社製)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm~700nm)の反射率を25点測定して平均値を求め、その測定結果より平均屈折率を求める。 Each refractive index film is produced as a single film (using a base material if necessary), and after cutting this sample into 10 cm × 10 cm, the refractive index is determined according to the following method. Using a U-4000 type (manufactured by Hitachi, Ltd.) as a spectrophotometer, the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray. Then, the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result. Ask.
 (光遮蔽手段)
 本発明の狭帯域バンドパスフィルターにおいては、さらに、光遮蔽手段を用いることができる。さらなる光遮蔽手段を組み合わせることで、目的とする波長域以外の光を効果的に遮蔽でき、目的の波長域を効果的に透過させることができる。この場合、該光遮蔽手段は、狭帯域パスバンドが形成されている波長域以外の波長域の光を遮蔽する手段であることが好ましく、かような光遮蔽手段であれば特に限定されるものではない。あるいは、光遮蔽手段により、全体の光量を調節することもできる。好適には、光遮蔽手段は可視光遮蔽層である。
(Light shielding means)
In the narrow band-pass filter of the present invention, a light shielding means can be further used. By combining further light shielding means, light outside the target wavelength range can be effectively shielded, and the target wavelength range can be effectively transmitted. In this case, the light shielding means is preferably a means for shielding light in a wavelength region other than the wavelength region in which the narrow band pass band is formed, and is particularly limited as long as it is such a light shielding means. is not. Alternatively, the total light amount can be adjusted by the light shielding means. Preferably, the light shielding means is a visible light shielding layer.
 また、光遮蔽手段を設けることで、屈曲時および耐湿耐熱時の耐久性が向上する。これは、材質の異なる材料の混合で弾性と延性が混合された構造になることによって応力が緩和されたことによるものと考えられる。 Also, by providing a light shielding means, durability at the time of bending and moisture and heat resistance is improved. This is considered to be due to the fact that the stress was relieved by forming a structure in which elasticity and ductility were mixed by mixing different materials.
 光遮蔽手段としては、分光透過率曲線において狭帯域パスバンドを形成させる誘電多層膜によって達成されてもよいし、狭帯域パスバンドを形成させる誘電多層膜以外に光遮蔽層(狭帯域パスバンドを形成させる誘電多層膜以外の誘電多層膜を含む)を別途設けてもよい。 The light shielding means may be achieved by a dielectric multilayer film that forms a narrow band pass band in the spectral transmittance curve, or other than the dielectric multilayer film that forms a narrow band pass band, a light shielding layer (a narrow band pass band is formed). A dielectric multilayer film other than the dielectric multilayer film to be formed may be provided separately.
 他の光遮蔽層としては、狭帯域パスバンドを形成する誘電多層膜以外の誘電多層膜(以下、単に「他の誘電多層膜」とも称する)を用いることができる。他の誘電多層膜としては、高屈折率膜と低屈折率膜を同じ光学膜厚で繰り返した積層構造や、例えば5%ずつ光学膜厚をずらしながら高屈折率膜と低屈折率膜とを繰り返し積層させた積層構造を併用して用いることができる。かような誘電多層膜は上記狭帯域パスバンドを形成する誘電多層膜を構成する材料と同じ材料を用いることができるので、生産性の点で好ましい。 As the other light shielding layer, a dielectric multilayer film other than the dielectric multilayer film forming a narrow band pass band (hereinafter, also simply referred to as “other dielectric multilayer film”) can be used. As another dielectric multilayer film, a laminated structure in which a high refractive index film and a low refractive index film are repeated at the same optical film thickness, or a high refractive index film and a low refractive index film while shifting the optical film thickness by 5%, for example, A stacked structure in which layers are repeatedly stacked can be used in combination. Such a dielectric multilayer film is preferable from the viewpoint of productivity because the same material as that of the dielectric multilayer film forming the narrow band pass band can be used.
 また、誘電多層膜を用いる以外の手段として、光吸収/反射材料を含む層を設けることができる。光吸収や反射材料をバインダー中に担持してもよい。好ましいバインダーとしては、ポリビニルブチラール系樹脂、エチレン-酢酸ビニル共重合体系樹脂、またはポリビニルアルコール樹脂が挙げられる。具体的には可塑性ポリビニルブチラール〔積水化学工業社製、三菱モンサント社製等〕、エチレン-酢酸ビニル共重合体〔デュポン社製、武田薬品工業社製、デュラミン〕、変性エチレン-酢酸ビニル共重合体〔東ソー社製、メルセンG〕等である。また、光吸収、反射材料としては、酸化錫、酸化インジウム、酸化亜鉛、酸化カドミウム、アンチモンドープ酸化錫(ATO)、フッ素ドープ酸化錫(FTO)、錫ドープ酸化インジウム(ITO)及びアルミニウムドープ酸化亜鉛(AZO)を好ましく用いることができ、特に好ましいのは、ATO、ITOである。光吸収/反射材料の含有量は、層の全質量に対して1~60%であることが好ましい。また、光吸収/反射材料とバインダーとの含有体積比は、1:0.5~5であることが好ましい。なお、光吸収/反射材料を含む層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。光吸収/反射材料を含む層の厚みは0.1~50μmが好ましく、1~20μmがより好ましい。 Further, as a means other than using a dielectric multilayer film, a layer containing a light absorbing / reflecting material can be provided. A light absorbing or reflecting material may be supported in the binder. Preferable binders include polyvinyl butyral resins, ethylene-vinyl acetate copolymer resins, and polyvinyl alcohol resins. Specifically, plastic polyvinyl butyral [manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto, etc.], ethylene-vinyl acetate copolymer [manufactured by DuPont, manufactured by Takeda Pharmaceutical Co., Ltd., duramin], modified ethylene-vinyl acetate copolymer [Mersen G manufactured by Tosoh Corporation]. Further, as light absorption and reflection materials, tin oxide, indium oxide, zinc oxide, cadmium oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO), and aluminum-doped zinc oxide (AZO) can be preferably used, and ATO and ITO are particularly preferable. The content of the light absorbing / reflecting material is preferably 1 to 60% with respect to the total mass of the layer. The volume ratio of the light absorbing / reflecting material and the binder is preferably 1: 0.5 to 5. In addition, an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion adjusting agent, and the like may be appropriately added to the layer containing the light absorption / reflection material. The thickness of the layer containing the light absorbing / reflecting material is preferably 0.1 to 50 μm, and more preferably 1 to 20 μm.
 (誘電多層膜材料)
 本発明の誘電体型狭帯域バンドパスフィルターは、有機ポリマーを含む誘電多層膜を含むことを特徴とする。誘電多層膜に含まれる有機ポリマーには特に制限はなく、誘電多層膜を形成できるポリマーであれば特に制限されない。
(Dielectric multilayer material)
The dielectric narrow band-pass filter of the present invention includes a dielectric multilayer film containing an organic polymer. The organic polymer contained in the dielectric multilayer film is not particularly limited, and is not particularly limited as long as the polymer can form the dielectric multilayer film.
 例えば、有機ポリマーとしては、特表2002-509279号公報に記載の有機ポリマーを用いることができる。具体例としては、ポリエチレンナフタレート(PEN)およびその異性体(例えば、2,6-、1,4-、1,5-、2,7-および2,3-PEN)、ポリアルキレンテレフタレート(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、およびポリ-1,4-シクロヘキサンジメチレンテレフタレート)、ポリイミド(例えば、ポリアクリルイミド)、ポリエーテルイミド、アタクチックポリスチレン、ポリカーボネート、ポリアルキルメタクリレート(例えば、ポリイソブチルメタクリレート、ポリプロピルメタクリレート、ポリエチルメタクリレート、およびポリメチルメタクリレート)、ポリアルキルアクリレート(例えば、ポリブチルアクリレート、およびポリメチルアクリレート)、セルロース誘導体(例えば、エチルセルロース、アセチルセルロース、セルロースプロピオネート、アセチルセルロースブチレート、および硝酸セルロース)、ポリアルキレンポリマー(例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリイソブチレン、およびポリ(4-メチル)ペンテン)、フッ素化ポリマー(例えば、パーフルオロアルコキシ樹脂、ポリテトラフルオロエチレン、フッ素化エチレンプロピレンコポリマー、ポリフッ化ビニリデン、およびポリクロロトリフルオロエチレン)、塩素化ポリマー(例えば、ポリ塩化ビニリデンおよびポリ塩化ビニル)、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリアミド、シリコーン樹脂、エポキシ樹脂、ポリ酢酸ビニル、ポリエーテルアミド、アイオノマー樹脂、エラストマー(例えば、ポリブタジエン、ポリイソプレンおよびネオプレン)、およびポリウレタンが挙げられる。コポリマー、例えば、PENのコポリマー[例えば、(a)テレフタル酸もしくはそのエステル、(b)イソフタル酸もしくはそのエステル、(c)フタル酸もしくはそのエステル、(d)アルカングリコール、(e)シクロアルカングリコール(例えば、シクロヘキサンジメタノールジオール)、(f)アルカンジカルボン酸、および/または(g)シクロアルカンジカルボン酸(例えば、シクロヘキサンジカルボン酸)と2,6-、1,4-、1,5-、2,7-、および/または2,3-ナフタレンジカルボン酸またはそれらのエステルとのコポリマー]、ポリアルキレンテレフタレートのコポリマー[例えば、(a)ナフタレンジカルボン酸もしくはそのエステル、(b)イソフタル酸もしくはそのエステル、(c)フタル酸もしくはそのエステル、(d)アルカングリコール、(e)シクロアルカングリコール(例えば、シクロヘキサンジメタノールジオール)、(f)アルカンジカルボン酸、および/または(g)シクロアルカンジカルボン酸(例えば、シクロヘキサンジカルボン酸)と、テレフタル酸もしくはそのエステルとのコポリマー]、並びにスチレンコポリマー(例えば、スチレン-ブタジエンコポリマー、およびスチレン-アクリロニトリルコポリマー)、4,4-ビ安息香酸およびエチレングリコールも適している。さらに、各層はそれぞれ、2種またはそれ以上の上記のポリマーまたはコポリマーのブレンド(例えば、SPSとアタクチックポリスチレンとのブレンド)を包含してよい。 For example, as the organic polymer, organic polymers described in JP-T-2002-509279 can be used. Specific examples include polyethylene naphthalate (PEN) and its isomers (eg, 2,6-, 1,4-, 1,5-, 2,7- and 2,3-PEN), polyalkylene terephthalates (eg, , Polyethylene terephthalate, polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate), polyimide (eg, polyacrylimide), polyetherimide, atactic polystyrene, polycarbonate, polyalkyl methacrylate (eg, polyisobutyl methacrylate, Polypropyl methacrylate, polyethyl methacrylate, and polymethyl methacrylate), polyalkyl acrylates (eg, polybutyl acrylate, and polymethyl acrylate), cellulose derivatives (eg, , Ethylcellulose, acetylcellulose, cellulose propionate, acetylcellulose butyrate, and cellulose nitrate), polyalkylene polymers (eg, polyethylene, polypropylene, polybutylene, polyisobutylene, and poly (4-methyl) pentene), fluorinated polymers ( For example, perfluoroalkoxy resins, polytetrafluoroethylene, fluorinated ethylene propylene copolymers, polyvinylidene fluoride, and polychlorotrifluoroethylene), chlorinated polymers (eg, polyvinylidene chloride and polyvinyl chloride), polysulfones, polyether sulfones , Polyacrylonitrile, polyamide, silicone resin, epoxy resin, polyvinyl acetate, polyether amide, ionomer resin, elastomer For example, polybutadiene, polyisoprene and neoprene), and polyurethanes. Copolymers such as copolymers of PEN [e.g. (a) terephthalic acid or ester thereof, (b) isophthalic acid or ester thereof, (c) phthalic acid or ester thereof, (d) alkane glycol, (e) cycloalkane glycol ( (E.g., cyclohexanedimethanoldiol), (f) alkanedicarboxylic acid, and / or (g) cycloalkanedicarboxylic acid (e.g., cyclohexanedicarboxylic acid) and 2,6-, 1,4-, 1,5-, 2, 7- and / or copolymers with 2,3-naphthalenedicarboxylic acid or esters thereof], copolymers of polyalkylene terephthalates [eg (a) naphthalenedicarboxylic acid or esters thereof, (b) isophthalic acid or esters thereof, ( c) phthalic acid or The ester, (d) alkane glycol, (e) cycloalkane glycol (eg, cyclohexanedimethanol diol), (f) alkane dicarboxylic acid, and / or (g) cycloalkane dicarboxylic acid (eg, cyclohexanedicarboxylic acid); Also suitable are copolymers with terephthalic acid or esters thereof, and styrene copolymers (eg styrene-butadiene copolymers and styrene-acrylonitrile copolymers), 4,4-bibenzoic acid and ethylene glycol. In addition, each layer may each include a blend of two or more of the above polymers or copolymers (eg, a blend of SPS and atactic polystyrene).
 上記ポリマーを、米国特許第6049419号に記載のように、ポリマーの溶融押出しおよび延伸により、誘電多層膜を形成することができる。本発明において、高屈折率膜および低屈折率膜を形成するポリマーの好ましい組み合わせとしては、PEN/PMMA、PEN/ポリフッ化ビニリデン、PEN/PETが挙げられる。 As described in US Pat. No. 6,049,419, a dielectric multilayer film can be formed by subjecting the polymer to melt extrusion and stretching. In the present invention, a preferred combination of polymers forming the high refractive index film and the low refractive index film includes PEN / PMMA, PEN / polyvinylidene fluoride, and PEN / PET.
 また、有機ポリマーとして、特開2010-184493号に記載のポリマーを用いてもよい。具体的には、ポリエステル(以下、ポリエステルAとする)と、エチレングリコール、スピログリコールおよびブチレングリコールの少なくとも3種のジオール由来の残基を含んでいるポリエステル(以下、ポリエステルBとする)とを、用いることができる。ポリエステルAは、ジカルボン酸成分とジオール成分とが重縮合して得られる構造を有するものであれば特に限定されず、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレンジフェニルレートなどが挙げられる。ポリエステルAは共重合体であってもよい。ここで、共重合ポリエステルとは、ジカルボン酸成分とジオール成分が合わせて少なくとも3種以上用いて重縮合して得られる構造を有する。ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、アジピン酸、セバシン酸、ダイマー酸、シクロヘキサンジカルボン酸とそれらのエステル形成性誘導体などが挙げられる。グリコール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタジオール、ジエチレングリコール、ポリアルキレングリコール、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、イソソルベート、1,4-シクロヘキサンジメタノール、スピログリコール、およびこれらのエステル形成性誘導体などが挙げられる。ポリエステルAは、ポリエチレンテレフタレートまたはポリエチレンナフタレートであることが好ましい。 Further, as the organic polymer, a polymer described in JP 2010-184493 may be used. Specifically, a polyester (hereinafter referred to as polyester A) and a polyester (hereinafter referred to as polyester B) containing residues derived from at least three diols of ethylene glycol, spiroglycol and butylene glycol, Can be used. Polyester A is not particularly limited as long as it has a structure obtained by polycondensation of a dicarboxylic acid component and a diol component. For example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, Examples thereof include poly-1,4-cyclohexanedimethylene terephthalate and polyethylene diphenylate. Polyester A may be a copolymer. Here, the copolyester has a structure obtained by polycondensation using at least three or more dicarboxylic acid components and diol components. Examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, Examples thereof include 4′-diphenylsulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid and ester-forming derivatives thereof. Examples of the glycol component include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis (4 ′ -Β-hydroxyethoxyphenyl) propane, isosorbate, 1,4-cyclohexanedimethanol, spiroglycol, and ester-forming derivatives thereof. Polyester A is preferably polyethylene terephthalate or polyethylene naphthalate.
 上記ポリエステルBは、エチレングリコール、スピログリコールおよびブチレングリコールの少なくとも3種のジオール由来の残基を含んでいる。典型的な例としては、エチレングリコール、スピログリコールおよびブチレングリコールを用いて共重合して得られる構造を有した共重合ポリエステルや該3種のジオールを用いて重合して得られる構造を有したポリエステルをブレンドして得られるポリエステルがある。この構成だと成形加工がしやすくかつ層間剥離もしにくいために好ましい。また、ポリエステルBが、テレフタル酸/シクロヘキサンジカルボン酸の少なくとも2種のジカルボン酸由来の残基を含むポリエステルであることが好ましい。このようなポリエステルには、テレフタル酸/シクロヘキサンジカルボン酸を共重合したコポリエステル、またはテレフタル酸残基を含むポリエステルとシクロヘキサンジカルボン酸残基を含むポリエステルをブレンドして得られるものがある。シクロヘキサンジカルボン酸残基を含んだポリエステルは、A層の面内平均屈折率とB層の面内平均屈折率の差が大きくなり、高反射率なものが得られる。また、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になることがなりにくく、かつ層間剥離もしにくいために好ましい。 The polyester B includes residues derived from at least three kinds of diols, ethylene glycol, spiroglycol and butylene glycol. Typical examples include copolymerized polyesters having a structure obtained by copolymerization using ethylene glycol, spiroglycol and butylene glycol, and polyesters having a structure obtained by polymerization using these three diols. There is polyester obtained by blending. This configuration is preferable because it is easy to form and difficult to delaminate. Moreover, it is preferable that the polyester B is a polyester containing residues derived from at least two dicarboxylic acids of terephthalic acid / cyclohexanedicarboxylic acid. Such polyesters include copolyesters copolymerized with terephthalic acid / cyclohexanedicarboxylic acid, or those obtained by blending polyesters containing terephthalic acid residues and polyesters containing cyclohexanedicarboxylic acid residues. The polyester containing the cyclohexanedicarboxylic acid residue has a large difference between the in-plane average refractive index of the A layer and the in-plane average refractive index of the B layer, and a high reflectance is obtained. Moreover, since the glass transition temperature difference with polyethylene terephthalate or polyethylene naphthalate is small, it is difficult to be overstretched at the time of molding, and it is preferable that delamination is difficult.
 その他、ポリマーとして水溶性高分子を用いることも好ましい。水溶性高分子は、有機溶剤を用いないため、環境負荷が少なく、また、柔軟性が高いため、屈曲時の膜の耐久性が向上するため好ましい。水溶性高分子としては、例えば、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩などの合成水溶性高分子;ゼラチン、増粘多糖類などの天然水溶性高分子などが挙げられる。これらの中で、特に好ましい例としては、製造時のハンドリングと膜の柔軟性の点から、ポリビニルアルコール、ポリビニルピロリドン類及びそれを含有する共重合体、ゼラチン、増粘多糖類(特にセルロース類)が挙げられる。これらの水溶性高分子は、1種単独で用いてもよいし、2種以上併用して用いてもよい。 In addition, it is also preferable to use a water-soluble polymer as the polymer. The water-soluble polymer is preferable because it does not use an organic solvent, has a low environmental load, and has high flexibility, so that the durability of the film during bending is improved. Examples of the water-soluble polymer include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, Or acrylic resin such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene -Styrene acrylic resin such as acrylic acid copolymer or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer Coalescence, styrene-2 -Hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer, vinyl acetate -Synthetic water-soluble polymers such as maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate copolymers such as vinyl acetate-acrylic acid copolymers and their salts; gelatin, thickened And natural water-soluble polymers such as saccharides. Among these, particularly preferred examples include polyvinyl alcohol, polyvinylpyrrolidones and copolymers containing them, gelatin, thickening polysaccharides (particularly celluloses) from the viewpoint of handling during production and film flexibility. Is mentioned. These water-soluble polymers may be used alone or in combination of two or more.
 好ましく用いられるポリビニルアルコールには、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、変性ポリビニルアルコールも含まれる。変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。 Preferred polyvinyl alcohol includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. Examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
 酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1,000以上のものが好ましく用いられ、特に平均重合度が1,500~5,000のものが好ましく用いられる。また、ケン化度は、70~100モル%のものが好ましく、80~99.5モル%のものが特に好ましい。 The polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably has an average degree of polymerization of 1,500 to 5,000. The degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.5 mol%.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383. Polyvinyl alcohol, which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%、好ましくは0.2~5モル%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号および同63-307979号に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, as described in JP-A-61-237681 and JP-A-63-307979, Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。またビニルアルコール系ポリマーとして、エクセバール(商品名:(株)クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業(株)製)などが挙げられる。ポリビニルアルコールは、重合度や変性の種類違いなど二種類以上を併用することもできる。 Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol modified polyvinyl alcohol having silanol group, reactive group modified polyvinyl alcohol having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Etc. Examples of the vinyl alcohol polymer include Exeval (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.). Polyvinyl alcohol can be used in combination of two or more, such as the degree of polymerization and the type of modification.
 ゼラチンとしては、石灰処理ゼラチンのほか、酸処理ゼラチンを使用してもよく、さらにゼラチンの加水分解物、ゼラチンの酵素分解物を用いることもできる。 As the gelatin, in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
 増粘多糖類としては、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類及び合成複合多糖類に挙げることができ、これら多糖類の詳細については、「生化学事典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。 Examples of thickening polysaccharides include natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides that are generally known. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21.
 本明細書でいう増粘多糖類とは、糖類の重合体であり分子内に水素結合基を多数有するもので、温度により分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度差が大きな特性を備えた多糖類であり、さらに金属酸化物微粒子を添加すると、低温時にその金属酸化物微粒子との水素結合によると思われる粘度上昇を起こすものであり、その粘度上昇幅は、添加することにより40℃における粘度が1.0mPa・s以上の上昇を生じる多糖類であり、好ましくは5.0mPa・s以上であり、更に好ましくは10.0mPa・s以上の粘度上昇能を備えた多糖類である。 The thickening polysaccharide as used herein is a polymer of saccharides and has many hydrogen bonding groups in the molecule. Due to the difference in hydrogen bonding strength between molecules depending on the temperature, the viscosity at low temperature and the viscosity at high temperature are It is a polysaccharide with a large viscosity difference, and when metal oxide fine particles are added, the viscosity rises due to hydrogen bonding with the metal oxide fine particles at low temperatures. , A polysaccharide that causes an increase in viscosity at 40 ° C. of 1.0 mPa · s or more when added, preferably 5.0 mPa · s or more, and more preferably 10.0 mPa · s or more. It is a provided polysaccharide.
 増粘多糖類としては、例えば、β1-4グルカン(例えば、カルボキシメチルセルロース、カルボキシエチルセルロース等)、ガラクタン(例えば、アガロース、アガロペクチン等)、ガラクトマンノグリカン(例えば、ローカストビーンガム、グアラン等)、キシログルカン(例えば、タマリンドガム等)、グルコマンノグリカン(例えば、蒟蒻マンナン、木材由来グルコマンナン、キサンタンガム等)、ガラクトグルコマンノグリカン(例えば、針葉樹材由来グリカン)、アラビノガラクトグリカン(例えば、大豆由来グリカン、微生物由来グリカン等)、グルコラムノグリカン(例えば、ジェランガム等)、グリコサミノグリカン(例えば、ヒアルロン酸、ケラタン硫酸等)、アルギン酸及びアルギン酸塩、寒天、κ-カラギーナン、λ-カラギーナン、ι-カラギーナン、ファーセレラン等の紅藻類に由来する天然高分子多糖類等が挙げられる。特に後述するように金属酸化物粒子を含有する場合には、金属酸化微粒子の分散安定性を低下させない観点から、好ましくは、その構成単位がカルボン酸基やスルホン酸基を有しないものが好ましい。その様な多糖類としては、例えば、L-アラビトース、D-リボース、2-デオキシリボース、D-キシロースなどのペントース、D-グルコース、D-フルクトース、D-マンノース、D-ガラクトースなどのヘキソースのみからなる多糖類であることが好ましい。具体的には、主鎖がグルコースであり、側鎖がキシロースであるキシログルカンとして知られるタマリンドシードガムや、主鎖がマンノースで側鎖がガラクトースであるガラクトマンナンとして知られるグアーガム、ローカストビーンガム、タラガムや、主鎖がガラクトースで側鎖がアラビノースであるアラビノガラクタンを好ましく使用することができる。 Examples of the thickening polysaccharide include β1-4 glucan (eg, carboxymethylcellulose, carboxyethylcellulose, etc.), galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xylo Glucan (eg, tamarind gum, etc.), glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan (eg, soybean) Glycans derived from microorganisms, glycans derived from microorganisms, etc.), glucoraminoglycans (eg, gellan gum, etc.), glycosaminoglycans (eg, hyaluronic acid, keratan sulfate, etc.), alginic acid and alginates, agar, κ-carrageenan, Examples thereof include natural polymer polysaccharides derived from red algae such as λ-carrageenan, ι-carrageenan, and far cerulean. In particular, when metal oxide particles are contained as described later, from the viewpoint of not reducing the dispersion stability of the metal oxide fine particles, it is preferable that the structural unit does not have a carboxylic acid group or a sulfonic acid group. Such polysaccharides include, for example, pentoses such as L-arabitose, D-ribose, 2-deoxyribose, and D-xylose, and hexoses such as D-glucose, D-fructose, D-mannose, and D-galactose only. It is preferable that it is a polysaccharide. Specifically, tamarind seed gum known as xyloglucan whose main chain is glucose and side chain is xylose, guar gum known as galactomannan whose main chain is mannose and side chain is galactose, locust bean gum, Tara gum or arabinogalactan whose main chain is galactose and whose side chain is arabinose can be preferably used.
 また、二種類以上の増粘多糖類を併用してもよい。 Two or more thickening polysaccharides may be used in combination.
 水溶性高分子の重量平均分子量は、1,000以上200,000以下が好ましい。さらには、3,000以上40,000以下がより好ましい。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて下記測定条件下で測定した値を採用する。 The weight average molecular weight of the water-soluble polymer is preferably 1,000 or more and 200,000 or less. Furthermore, 3,000 or more and 40,000 or less are more preferable. In this specification, the value measured on the following measurement conditions using gel permeation chromatography (GPC) is employ | adopted for a weight average molecular weight.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明においては、バインダーである水溶性高分子を硬化させるため、硬化剤を使用してもよい。 In the present invention, a curing agent may be used to cure the water-soluble polymer as a binder.
 硬化剤としては、水溶性高分子と硬化反応を起こすものであれば特に制限はないが、水溶性高分子がポリビニルアルコールの場合には、ホウ酸及びその塩が好ましい。硬化剤は、その他にも公知のものが使用でき、一般的には水溶性高分子と反応し得る基を有する化合物あるいは水溶性高分子が有する異なる基同士の反応を促進するような化合物であり、水溶性高分子の種類に応じて適宜選択して用いられる。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリス-アクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬等が挙げられる。 The curing agent is not particularly limited as long as it causes a curing reaction with the water-soluble polymer, but boric acid and its salt are preferable when the water-soluble polymer is polyvinyl alcohol. As the curing agent, other known ones can be used. Generally, the curing agent is a compound having a group capable of reacting with a water-soluble polymer or a compound that promotes the reaction between different groups of the water-soluble polymer. Depending on the type of water-soluble polymer, it is appropriately selected and used. Specific examples of the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) -S-triazine, etc.), active vinyl compounds (1,3,5-tris-acryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
 水溶性高分子がゼラチンの場合には、例えば、ビニルスルホン化合物、尿素-ホルマリン縮合物、メラニン-ホルマリン縮合物、エポキシ系化合物、アジリジン系化合物、活性オレフィン類、イソシアネート系化合物などの有機硬膜剤、クロム、アルミニウム、ジルコニウムなどの無機多価金属塩類などを挙げることができる。 When the water-soluble polymer is gelatin, for example, organic hardeners such as vinylsulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, isocyanate compounds, etc. Inorganic polyvalent metal salts such as chromium, aluminum and zirconium.
 有機ポリマーの含有量は、積層膜を形成させる観点からは屈折率膜の全質量に対して、10質量%以上であることが好ましく、25質量%以上であることが好ましい(上限は100質量%)。 From the viewpoint of forming a laminated film, the content of the organic polymer is preferably 10% by mass or more, and preferably 25% by mass or more with respect to the total mass of the refractive index film (the upper limit is 100% by mass). ).
 (金属酸化物粒子)
 狭帯域パスバンドを形成する誘電多層膜はさらに金属酸化物粒子を含有することが好ましい。金属酸化物粒子を含有することにより、各屈折率膜間の屈折率差を大きくでき、積層数が低減され、薄膜とすることができる。また、応力緩和が働き膜物性(屈曲時および高温高湿時の屈曲性)が向上する等の利点がある。金属酸化物粒子は、誘電多層膜を構成するいずれかの膜に含有させればよいが、好適な形態は、少なくとも高屈折率膜が金属酸化物粒子を含み、より好適な形態は高屈折率膜および低屈折率膜のいずれもが金属酸化物粒子を含む形態である。
(Metal oxide particles)
The dielectric multilayer film forming the narrow band pass band preferably further contains metal oxide particles. By containing metal oxide particles, the refractive index difference between the refractive index films can be increased, the number of stacked layers can be reduced, and a thin film can be obtained. In addition, there is an advantage that stress relaxation works and film physical properties (flexibility at the time of bending and high temperature and high humidity) are improved. The metal oxide particles may be contained in any of the films constituting the dielectric multilayer film, but a preferable form is that at least the high refractive index film contains metal oxide particles, and a more preferable form is a high refractive index. Both the film and the low refractive index film have a form containing metal oxide particles.
 金属酸化物粒子としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、二酸化ケイ素(合成非晶質シリカ、コロイダルシリカ)、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ、等を挙げることができる。 Examples of the metal oxide particles include titanium dioxide, zirconium oxide, zinc oxide, silicon dioxide (synthetic amorphous silica, colloidal silica), alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, oxidation Examples thereof include chromium, ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
 金属酸化物粒子は、平均粒径が100nm以下であり、4~50nm、より好ましくは4~30nmであることが好ましい。金属酸化物粒子の平均粒径は、粒子そのものあるいは層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The metal oxide particles have an average particle size of 100 nm or less, preferably 4 to 50 nm, more preferably 4 to 30 nm. The average particle size of the metal oxide particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the layer with an electron microscope and measuring the particle size of 1,000 arbitrary particles. Average). Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 各屈折率膜における金属酸化物粒子の含有量は、屈折率膜の全質量に対して、20~90質量%であることが好ましく、40~75質量%であることがより好ましい。 The content of metal oxide particles in each refractive index film is preferably 20 to 90% by mass, and more preferably 40 to 75% by mass with respect to the total mass of the refractive index film.
 金属酸化物粒子としては、二酸化チタン、二酸化ケイ素、及びアルミナから選ばれた固体微粒子を用いることが好ましい。 As the metal oxide particles, it is preferable to use solid fine particles selected from titanium dioxide, silicon dioxide, and alumina.
 低屈折率膜においては、金属酸化物粒子として二酸化ケイ素(シリカ)を用いることが好ましく、酸性のコロイダルシリカゾルを用いることが特に好ましい。 In the low refractive index film, it is preferable to use silicon dioxide (silica) as the metal oxide particles, and it is particularly preferable to use acidic colloidal silica sol.
 〔二酸化ケイ素〕
 本発明で用いることのできる二酸化ケイ素(シリカ)としては、通常の湿式法で合成されたシリカ、コロイダルシリカ或いは気相法で合成されたシリカ等が好ましく用いられるが、本発明において特に好ましく用いられる微粒子シリカとしては、コロイダルシリカまたは気相法で合成された微粒子シリカが好ましい。
[Silicon dioxide]
As silicon dioxide (silica) that can be used in the present invention, silica synthesized by an ordinary wet method, colloidal silica, silica synthesized by a gas phase method, or the like is preferably used, but is particularly preferably used in the present invention. As the fine particle silica, colloidal silica or fine particle silica synthesized by a vapor phase method is preferable.
 金属酸化物粒子は、カチオン性ポリマーと混合する前の微粒子分散液が一次粒子まで分散された状態であるのが好ましい。 The metal oxide particles are preferably in a state where the fine particle dispersion before mixing with the cationic polymer is dispersed to the primary particles.
 例えば、上記気相法微粒子シリカの場合、一次粒子の状態で分散された金属酸化物微粒子の一次粒子の平均粒径(塗設前の分散液状態での粒径)は、100nm以下のものが好ましく、より好ましくは4~50nm、最も好ましくは4~20nmである。 For example, in the case of the gas phase method fine particle silica, the average particle size (particle size in the dispersion state before coating) of the metal oxide fine particles dispersed in the primary particle state is 100 nm or less. More preferably, it is 4 to 50 nm, and most preferably 4 to 20 nm.
 最も好ましく用いられる、一次粒子の平均粒径が4~20nmである気相法により合成されたシリカとしては、例えば、日本アエロジル社製のアエロジルが市販されている。この気相法微粒子シリカは、水中に、例えば、三田村理研工業株式会社製のジェットストリームインダクターミキサーなどにより、容易に吸引分散することで、比較的容易に一次粒子まで分散することができる。 For example, Aerosil manufactured by Nippon Aerosil Co., Ltd. is commercially available as the silica synthesized by the vapor phase method in which the average particle diameter of primary particles is 4 to 20 nm. The vapor phase fine particle silica can be dispersed to primary particles relatively easily by being sucked and dispersed in water, for example, by a jet stream inductor mixer manufactured by Mitamura Riken Kogyo Co., Ltd.
 該気相法シリカとして現在市販されているものとしては日本アエロジル社の各種のアエロジルが該当する。 As the gas phase process silica, various types of Aerosil manufactured by Nippon Aerosil Co., Ltd. are currently available.
 本発明で好ましく用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものである。例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号パンフレットなどに記載されているものである。このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックス20、スノーテックス30、スノーテックス40、スノーテックスO、スノーテックスOS、スノーテックスOXS、スノーテックスXS、スノーテックスO-40、スノーテックスC、スノーテックスN、スノーテックスS、スノーテックス20L、スノーテックスOL)が挙げられる。 The colloidal silica preferably used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, Japanese Patent Laid-Open Nos. 57-14091, 60-219083, 60-219084, 61-20792, 61-188183, 61-188183, 63-17807, JP 4-93284, JP 5-278324, JP 6-92011, JP 6-183134, JP 6-297830, JP 7-7. 81214, JP-A-7-101142, JP-A-7-179029, JP-A-7-137431, and International Publication No. 94/26530 pamphlet. Such colloidal silica may be a synthetic product or a commercially available product. Commercially available products include the Snowtex series (Snowtex 20, Snowtex 30, Snowtex 40, Snowtex O, Snowtex OS, Snowtex OXS, Snowtex XS, Snowtex sold by Nissan Chemical Industries, Ltd. O-40, Snowtex C, Snowtex N, Snowtex S, Snowtex 20L, Snowtex OL).
 コロイダルシリカの好ましい平均粒径(個数平均;直径)は通常は5~100nmであるが特に7~30nmの平均粒子径が好ましい。 The preferred average particle size (number average; diameter) of colloidal silica is usually 5 to 100 nm, but an average particle size of 7 to 30 nm is particularly preferable.
 気相法により合成されたシリカ及びコロイダルシリカは、その表面をカチオン変成されたものであってもよく、また、Al、Ca、Mg及びBa等で処理された物であってもよい。 Silica and colloidal silica synthesized by a vapor phase method may be those whose surfaces are cation-modified, or those treated with Al, Ca, Mg, Ba, or the like.
 高屈折率膜に含有される金属酸化物としては、TiO、ZnO、ZrOが好ましく、高屈折率膜を形成するための後述の金属酸化物粒子含有組成物の安定性の観点ではTiOがより好ましく、二酸化チタンゾルがより好ましい。また、TiOの中でも特にアナターゼ型よりルチル型の方が、触媒活性が低いために高屈折率膜や隣接した層の耐候性が高くなり、さらに屈折率が高いことから好ましい。 As the metal oxide contained in the high refractive index film, TiO 2 , ZnO, and ZrO 2 are preferable, and TiO 2 is used from the viewpoint of the stability of the metal oxide particle-containing composition described later for forming the high refractive index film. Is more preferable, and titanium dioxide sol is more preferable. Of TiO 2 , rutile type is more preferable than anatase type because it has low catalytic activity, and thus the weather resistance of the high refractive index film and the adjacent layer is high, and the refractive index is high.
 〔二酸化チタン〕
 以下、二酸化チタンゾルの好適な一製造方法について説明する。
〔titanium dioxide〕
Hereinafter, a suitable method for producing the titanium dioxide sol will be described.
 ルチル型微粒子二酸化チタンの製造方法における第1の工程は、二酸化チタン水和物をアルカリ金属の水酸化物及びアルカリ土類金属の水酸化物からなる群から選択される少なくとも1種の塩基性化合物で処理する工程(工程1)である。 The first step in the production method of rutile type fine particle titanium dioxide includes at least one basic compound selected from the group consisting of an alkali metal hydroxide and an alkaline earth metal hydroxide. It is the process (process 1) processed by this.
 二酸化チタン水和物は、硫酸チタン、塩化チタン等の水溶性チタン化合物の加水分解によって得ることができる。加水分解の方法は特に限定されず、公知の方法を適用することができる。なかでも、硫酸チタンの熱加水分解によって得られたものであることが好ましい。 Titanium dioxide hydrate can be obtained by hydrolysis of water-soluble titanium compounds such as titanium sulfate and titanium chloride. The method of hydrolysis is not particularly limited, and a known method can be applied. Especially, it is preferable that it was obtained by thermal hydrolysis of titanium sulfate.
 上記工程(1)は、例えば、上記二酸化チタン水和物の水性懸濁液に、上記塩基性化合物を添加し、所定温度の条件下において、所定時間処理する(反応させる)ことにより行うことができる。 The step (1) can be performed, for example, by adding the basic compound to an aqueous suspension of the titanium dioxide hydrate and treating (reacting) it under a predetermined temperature condition for a predetermined time. it can.
 上記二酸化チタン水和物を水性懸濁液とする方法は特に限定されず、水に上記二酸化チタン水和物を添加して攪拌することによって行うことができる。懸濁液の濃度は特に限定されないが、例えば、TiO濃度が懸濁液中に30~150g/Lとなる濃度であることが好ましい。上記範囲内とすることによって、反応(処理)を効率よく進行させることができる。 The method for preparing the titanium dioxide hydrate as an aqueous suspension is not particularly limited, and can be performed by adding the titanium dioxide hydrate to water and stirring. The concentration of the suspension is not particularly limited. For example, it is preferable that the concentration of TiO 2 is 30 to 150 g / L in the suspension. By setting it within the above range, the reaction (treatment) can proceed efficiently.
 上記工程(1)において使用するアルカリ金属の水酸化物及びアルカリ土類金属の水酸化物からなる群から選択される少なくとも1種の塩基性化合物としては特に限定されず、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等を挙げることができる。上記工程(1)における上記塩基性化合物の添加量は、反応(処理)懸濁液中の塩基性化合物濃度で30~300g/Lであることが好ましい。 The at least one basic compound selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides used in the step (1) is not particularly limited. Examples include potassium, magnesium hydroxide, calcium hydroxide, and the like. The amount of the basic compound added in the step (1) is preferably 30 to 300 g / L in terms of the basic compound concentration in the reaction (treatment) suspension.
 上記工程(1)は、60~120℃の反応(処理)温度で行うことが好ましい。反応(処理)時間は、反応(処理)温度によって異なるが、2~10時間であることが好ましい。反応(処理)は、二酸化チタン水和物の懸濁液に、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムの水溶液を添加することによって行うことが好ましい。反応(処理)後、反応(処理)混合物を冷却し、必要に応じて塩酸等の無機酸で中和した後、濾過、水洗することによって微粒子二酸化チタン水和物を得ることができる。 The above step (1) is preferably performed at a reaction (treatment) temperature of 60 to 120 ° C. The reaction (treatment) time varies depending on the reaction (treatment) temperature, but is preferably 2 to 10 hours. The reaction (treatment) is preferably performed by adding an aqueous solution of sodium hydroxide, potassium hydroxide, magnesium hydroxide, or calcium hydroxide to a suspension of titanium dioxide hydrate. After the reaction (treatment), the reaction (treatment) mixture is cooled, neutralized with an inorganic acid such as hydrochloric acid as necessary, and then filtered and washed with water to obtain fine particle titanium dioxide hydrate.
 また、第2の工程(工程(2))として、工程(1)によって得られた化合物をカルボン酸基含有化合物及び無機酸で処理してもよい。ルチル型微粒子二酸化チタンの製造において上記工程(1)によって得られた化合物を無機酸で処理する方法は公知の方法であるが、無機酸に加えてカルボン酸基含有化合物を使用して、粒子径を調整することができる。 Further, as the second step (step (2)), the compound obtained in step (1) may be treated with a carboxylic acid group-containing compound and an inorganic acid. The method of treating the compound obtained in the above step (1) with an inorganic acid in the production of rutile type fine particle titanium dioxide is a known method, but in addition to the inorganic acid, a carboxylic acid group-containing compound is used. Can be adjusted.
 上記カルボン酸基含有化合物は、-COOH基を有する有機化合物である。上記カルボン酸基含有化合物としては、2以上、より好ましくは2以上4以下のカルボン酸基を有するポリカルボン酸であることが好ましい。上記ポリカルボン酸は、金属原子への配位能を有することから、配位によって微粒子間の凝集を抑制し、これによって好適にルチル型微粒子二酸化チタンを得ることができるものと推測される。 The carboxylic acid group-containing compound is an organic compound having a —COOH group. The carboxylic acid group-containing compound is preferably a polycarboxylic acid having 2 or more, more preferably 2 or more and 4 or less carboxylic acid groups. Since the polycarboxylic acid has a coordination ability to a metal atom, it is presumed that agglomeration between fine particles can be suppressed by coordination, whereby rutile type fine particle titanium dioxide can be suitably obtained.
 上記カルボン酸基含有化合物としては特に限定されず、例えば、蓚酸、マロン酸、琥珀酸、グルタル酸、アジピン酸、プロピルマロン酸、マレイン酸等のジカルボン酸;リンゴ酸、酒石酸、クエン酸等のヒドロキシ多価カルボン酸;フタル酸、イソフタル酸、ヘミメリト酸、トリメリト酸等の芳香族ポリカルボン酸;エチレンジアミン四酢酸等を挙げることができる。これらのなかから、2種以上の化合物を同時に併用するものであってもよい。 The carboxylic acid group-containing compound is not particularly limited, and examples thereof include dicarboxylic acids such as succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, propylmalonic acid, and maleic acid; hydroxys such as malic acid, tartaric acid, and citric acid. Polycarboxylic acids; aromatic polycarboxylic acids such as phthalic acid, isophthalic acid, hemimellitic acid and trimellitic acid; ethylenediaminetetraacetic acid and the like. Among these, two or more compounds may be used in combination.
 なお、上記カルボン酸基含有化合物の全部又は一部は、-COOH基を有する有機化合物の中和物(例えば、-COONa基等を有する有機化合物)であってもよい。 Note that all or part of the carboxylic acid group-containing compound may be a neutralized product of an organic compound having a —COOH group (for example, an organic compound having a —COONa group or the like).
 上記無機酸としては特に限定されず、例えば、塩酸、硫酸、硝酸等を挙げることができる。上記無機酸は、反応(処理)用液中の濃度が0.5~2.5モル/L、より好ましくは0.8~1.4モル/Lになるように加えるとよい。 The inorganic acid is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid and the like. The inorganic acid may be added so that the concentration in the reaction (treatment) solution is 0.5 to 2.5 mol / L, more preferably 0.8 to 1.4 mol / L.
 上記工程(2)は、上記工程(1)によって得られた化合物を純水中に懸濁させ、攪拌下、必要に応じて加熱して行うことが好ましい。カルボン酸基含有化合物及び無機酸の添加は同時であっても順次添加するものであってもよいが、順次添加することが好ましい。 The step (2) is preferably performed by suspending the compound obtained in the step (1) in pure water and heating it with stirring as necessary. The carboxylic acid group-containing compound and the inorganic acid may be added simultaneously or sequentially, but it is preferable to add them sequentially.
 添加は、カルボン酸基含有化合物添加後に無機酸を添加するものであっても、無機酸添加後にカルボン酸基含有化合物を添加するものであってもよい。 The addition may be to add an inorganic acid after the addition of the carboxylic acid group-containing compound, or to add the carboxylic acid group-containing compound after the addition of the inorganic acid.
 例えば、上記工程(1)によって得られた化合物の懸濁液中にカルボキシル基含有化合物を添加し、加熱を開始し、液温が60℃以上、好ましくは90℃以上になったところで無機酸を添加し、液温を維持しつつ、好ましくは15分~5時間、より好ましくは2~3時間攪拌する方法(方法1);上記工程(1)によって得られた化合物の懸濁液中を加熱し、液温が60℃以上、好ましくは90℃以上になったところで無機酸を添加し、無機酸添加から10~15分後にカルボン酸基含有化合物を添加し、液温を維持しつつ、好ましくは15分~5時間、より好ましくは2~3時間攪拌する方法(方法2)等を挙げることができる。これらの方法によって行うことにより、好適な微粒子状のルチル型二酸化チタンを得ることができる。 For example, a carboxyl group-containing compound is added to the suspension of the compound obtained by the above step (1), heating is started, and the inorganic acid is added when the liquid temperature is 60 ° C. or higher, preferably 90 ° C. or higher. Adding and maintaining the liquid temperature, preferably stirring for 15 minutes to 5 hours, more preferably 2 to 3 hours (Method 1); heating the suspension of the compound obtained by the above step (1) In addition, an inorganic acid is added when the liquid temperature is 60 ° C. or higher, preferably 90 ° C. or higher, and a carboxylic acid group-containing compound is added 10 to 15 minutes after the inorganic acid addition, and the liquid temperature is preferably maintained. And a method of stirring for 15 minutes to 5 hours, more preferably 2 to 3 hours (Method 2). By carrying out these methods, a suitable fine particle rutile type titanium dioxide can be obtained.
 上記工程(2)を上記方法1によって行う場合、上記カルボン酸基含有化合物は、TiO100モル%に対し0.25~1.5モル%使用するものであることが好ましく、0.4~0.8モル%の割合で使用することがより好ましい。カルボン酸基含有化合物の添加量が0.25モル%より少ない場合は粒子成長が進んでしまい目的とする粒子サイズの粒子が得られないおそれがあり、カルボン酸基含有化合物の添加量が1.5モル%より多い場合は粒子のルチル化が進まずアナタースの粒子ができてしまうおそれがある。 When the step (2) is performed by the method 1, the carboxylic acid group-containing compound is preferably used in an amount of 0.25 to 1.5 mol% with respect to 100 mol% of TiO 2 , and 0.4 to More preferably, it is used at a ratio of 0.8 mol%. When the addition amount of the carboxylic acid group-containing compound is less than 0.25 mol%, there is a possibility that particle growth proceeds and particles having the target particle size may not be obtained. When the amount is more than 5 mol%, rutile conversion of the particles does not proceed and anatase particles may be formed.
 上記工程(2)を上記方法2によって行う場合、上記カルボン酸基含有化合物は、TiO100モル%に対し1.6~4.0モル%使用するものであることが好ましく、2.0~2.4モル%の割合で使用することがより好ましい。 When the step (2) is performed by the method 2, the carboxylic acid group-containing compound is preferably used in an amount of 1.6 to 4.0 mol% with respect to 100 mol% of TiO 2 , and is preferably 2.0 to It is more preferable to use it at a ratio of 2.4 mol%.
 カルボン酸基含有化合物の添加量が1.6モル%より少ない場合は粒子成長が進んでしまい目的とする粒子サイズの粒子が得られないおそれがあり、カルボン酸基含有化合物の添加量が4.0モル%より多い場合は粒子のルチル化が進まずアナタースの粒子ができてしまうおそれがあり、カルボン酸基含有化合物の添加量が4.0モル%を超えても効果は良好なものとならず、経済的に不利である。また、上記カルボン酸基含有化合物の添加を無機酸添加から10分未満で行うと、ルチル化が進まず、アナタース型の粒子ができてしまうおそれがあり、無機酸添加から15分を超えて行うと、粒子成長が進みすぎ、目的とする粒子サイズの粒子が得られない場合がある。 When the addition amount of the carboxylic acid group-containing compound is less than 1.6 mol%, there is a possibility that the particle growth proceeds and particles having the target particle size may not be obtained, and the addition amount of the carboxylic acid group-containing compound is 4. If the amount is more than 0 mol%, the rutile conversion of the particles may not proceed and anatase particles may be formed. Even if the amount of the carboxylic acid group-containing compound exceeds 4.0 mol%, the effect will be good. It is economically disadvantageous. Further, if the addition of the carboxylic acid group-containing compound is performed in less than 10 minutes after the addition of the inorganic acid, there is a possibility that the rutileization will not proceed and anatase-type particles may be formed. In some cases, the particle growth proceeds excessively, and particles having a target particle size cannot be obtained.
 上記工程(2)においては、反応(処理)終了後冷却し、さらにpH5.0~pH10.0になるように中和することが好ましい。上記中和は、水酸化ナトリウム水溶液やアンモニア水等のアルカリ性化合物によって行うことができる。中和後に濾過、水洗することによって目的のルチル型微粒子二酸化チタンを分離することができる。 In the above step (2), it is preferable to cool after completion of the reaction (treatment) and further neutralize to pH 5.0 to 10.0. The neutralization can be performed with an alkaline compound such as an aqueous sodium hydroxide solution or aqueous ammonia. The target rutile type fine particle titanium dioxide can be separated by filtering and washing with water after neutralization.
 また、その他の二酸化チタン微粒子の製造方法として、「酸化チタン-物性と応用技術」(清野学 pp255~258(2000年)技報堂出版株式会社)等に記載の公知の方法を用いることができる。 In addition, as other methods for producing titanium dioxide fine particles, known methods described in “Titanium oxide—physical properties and applied technology” (Kagino Kiyono, pp 255-258 (2000) Gihodo Publishing Co., Ltd.) can be used.
 さらに、酸化チタン粒子を含めた金属酸化物粒子のその他の製造方法としては、特開2000-053421号公報(分散安定化剤としてアルキルシリケートを配合してなり、該アルキルシリケート中のケイ素をSiOに換算した量と酸化チタン中のチタンをTiOに換算した量との重量比(SiO/TiO)が0.7~10である酸化チタンゾル)、特開2000-063119号公報(TiO-ZrO-SnOの複合体コロイド粒子を核としてその表面を、WO-SnO-SiOの複合酸化物コロイド粒子で被覆したゾル)等に記載された事項を参照することができる。 Furthermore, another method for producing metal oxide particles including titanium oxide particles is disclosed in JP-A-2000-053421 (comprising alkyl silicate as a dispersion stabilizer, and silicon in the alkyl silicate is changed to SiO 2. A titanium oxide sol having a weight ratio (SiO 2 / TiO 2 ) of 0.7 to 10 of the amount converted to TiO 2 and the amount converted to TiO 2 in titanium oxide), JP 2000-063119 A (TiO 2 Reference can be made to matters described in, for example, a sol in which a composite colloidal particle of —ZrO 2 —SnO 2 is used as a nucleus and a surface thereof is coated with a composite oxide colloidal particle of WO 3 —SnO 2 —SiO 2 .
 さらに、酸化チタン粒子を含ケイ素の水和酸化物で被覆してもよい。含ケイ素の水和化合物の被覆量は、3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率膜の所望の屈折率化が得られ、被覆量が3%以上であると粒子を安定に形成することができるからである。 Further, the titanium oxide particles may be coated with a silicon-containing hydrated oxide. The coating amount of the silicon-containing hydrated compound is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass. This is because if the coating amount is 30% by mass or less, a desired refractive index of the high refractive index film can be obtained, and if the coating amount is 3% or more, particles can be stably formed.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報(ルチル型酸化チタンへのSi/Al水和酸化物処理;チタン酸ケーキのアルカリ領域での解膠後酸化チタンの表面にケイ素及び/又はアルミニウムの含水酸化物を析出させて表面処理する酸化チタンゾルの製造方法)、特開2000-204301号公報(ルチル型酸化チタンにSiとZrおよび/またはAlの酸化物との複合酸化物を被覆したゾル。水熱処理。)、特開2007-246351号公報(含水酸化チタンを解膠して得られる酸化チタンのヒドロゾルへ、安定剤として式R SiX4-n(式中RはC-Cアルキル基、グリシジルオキシ置換C-Cアルキル基またはC-Cアルケニル基、Xはアルコキシ基、nは1または2である。)のオルガノアルコキシシランまたは酸化チタンに対して錯化作用を有する化合物を添加、アルカリ領域でケイ酸ナトリウムまたはシリカゾルの溶液へ添加・pH調整・熟成することにより、ケイ素の含水酸化物で被覆された酸化チタンヒドロゾルを製造する方法)等に記載された事項を参照にすることができる。また、含水酸化チタンなどの酸化チタンを一塩基酸またはその塩で解膠処理して得られる酸性域のpHで安定した酸化チタンゾルと、分散安定化剤としてのアルキルシリケートを常法により混合し、中性化する方法(特開2000-053421号);過酸化水素および金属スズを、2~3のH/Snモル比に保持しつつ同時にまたは交互にチタン塩(例えば、四塩化チタン)等の混合物水溶液に添加し、チタンを含む塩基性塩水溶液を生成し、該塩基性塩水溶液を0.1~100時間かけて50~100℃の温度で保持して酸化チタンを含む複合体コロイドの凝集体を生成させ、次いで、該凝集体スラリー中の電解質を除去し、酸化チタンを含む複合体コロイド粒子の安定な水性ゾルを製造する;ケイ酸塩(例えば、ケイ酸ナトリウム水溶液)等を含有する水溶液を調製し、水溶液中に存在する陽イオンを除去することで、二酸化ケイ素を含む複合体コロイド粒子の安定な水性ゾルが製造する;得られた酸化チタンを含む複合体水性ゾルを金属酸化物TiOに換算して100重量部と、得られた二酸化ケイ素を含む複合体水性ゾルを金属酸化物SiOに換算して2~100重量部とを混合し、陰イオンを除去後、80℃で1時間加熱熟成する方法(特開2000-063119号);含水チタン酸のゲルまたはゾルに過酸化水素を加えて含水チタン酸を溶解し、得られたペルオキソチタン酸水溶液に、ケイ素化合物等を添加し加熱し、ルチル型構造をとる複合固溶体酸化物からなるコア粒子の分散液が得られ、次いで、該コア粒子の分散液にケイ素化合物等を添加した後、加熱しコア粒子表面に被覆層を形成し、複合酸化物粒子が分散されたゾルを得て、さらに、加熱する方法が挙げられる。 As a method of coating titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015 (Si / Al hydration to rutile titanium oxide) Oxide treatment; a method for producing a titanium oxide sol in which a hydrous oxide of silicon and / or aluminum is deposited on the surface of titanium oxide after peptization in the alkaline region of the titanate cake), JP 2000-204301 A (A sol in which a rutile-type titanium oxide is coated with a complex oxide of Si and Zr and / or Al. Hydrothermal treatment), JP 2007-246351 (Oxidation obtained by peptizing hydrous titanium oxide) titanium to hydrosol, wherein R 1 n SiX 4-n (wherein R 1 as stabilizer C 1 -C 8 alkyl group, glycidyloxy substituted C 1 -C 8 Alkyl group or a C 2 -C 8 alkenyl group, X is an alkoxy group, n is 1 or 2. Sodium silicate added in the alkaline range the compound having a complexing effect on organoalkoxysilanes or titanium oxide) Alternatively, it is possible to refer to matters described in, for example, a method for producing a titanium oxide hydrosol coated with a hydrous oxide of silicon by adding, adjusting pH, and aging a silica sol solution. In addition, a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a titanium oxide such as hydrous titanium oxide with a monobasic acid or a salt thereof, and an alkyl silicate as a dispersion stabilizer are mixed by a conventional method. Neutralization method (Japanese Patent Laid-Open No. 2000-053421); while maintaining hydrogen peroxide and metal tin at a H 2 O 2 / Sn molar ratio of 2 to 3 simultaneously or alternately with titanium salts (eg, titanium tetrachloride) ) And the like to form a basic salt aqueous solution containing titanium, and the basic salt aqueous solution is maintained at a temperature of 50 to 100 ° C. for 0.1 to 100 hours to contain a composite containing titanium oxide. Colloidal aggregates are formed, and then the electrolyte in the aggregate slurry is removed to produce a stable aqueous sol of composite colloidal particles comprising titanium oxide; silicates (e.g., sodium silicate A stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing the aqueous solution) and removing the cations present in the aqueous solution; the resulting composite containing titanium oxide 100 parts by weight of the aqueous sol in terms of metal oxide TiO 2 and 2 to 100 parts by weight of the resulting composite aqueous sol containing silicon dioxide in terms of metal oxide SiO 2 were mixed together. A method of heating and aging at 80 ° C. for 1 hour after removing ions (Japanese Patent Laid-Open No. 2000-063119); adding hydroperoxide to hydrous titanic acid gel or sol to dissolve hydrous titanic acid, and obtaining peroxotitanic acid A silicon compound or the like is added to the aqueous solution and heated to obtain a dispersion of core particles composed of a complex solid solution oxide having a rutile structure, and then the silicon compound or the like is added to the dispersion of the core particles. After heating to form a coating layer on the core particle surface, thereby to obtain a sol of composite oxide particles are dispersed, further, it includes a method of heating.
 酸化チタン粒子の体積平均粒径は、30nm以下であることが好ましく、1~30nmであることがより好ましく、5~15nmであるのがさらに好ましい。体積平均粒径が30nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The volume average particle diameter of the titanium oxide particles is preferably 30 nm or less, more preferably 1 to 30 nm, and even more preferably 5 to 15 nm. A volume average particle size of 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
 ここでいう体積平均粒径とは、媒体中に分散された一次粒子または二次粒子の体積平均粒径であり、レーザー回折/散乱法、動的光散乱法等により測定できる。 Here, the volume average particle diameter is a volume average particle diameter of primary particles or secondary particles dispersed in a medium, and can be measured by a laser diffraction / scattering method, a dynamic light scattering method, or the like.
 具体的には、粒子そのものあるいは屈折率膜の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する金属酸化物粒子の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径を算出する。 Specifically, the particles themselves or the particles appearing on the cross section or surface of the refractive index film are observed with an electron microscope, and the particle diameters of 1,000 arbitrary particles are measured, and d1, d2,. .. In a group of metal oxide particles having n1, n2,..., Nk particles each having a particle size of dk, the volume average particle size when the volume per particle is vi The average particle diameter weighted by the volume represented by mv = {Σ (vi · di)} / {Σ (vi)} is calculated.
 また、本発明においては、コロイダルシリカ複合エマルジョンも低屈折率膜において、金属酸化物として用いることができる。本発明に好ましく用いられるコロイダルシリカ複合エマルジョンは、粒子の中心部が重合体或いは共重合体等を主成分としてなり、特開昭59-71316号公報、特開昭60-127371号公報に記載されているコロイダルシリカの存在下でエチレン性不飽和結合を有するモノマーを従来公知の乳化重合法で重合して得られる。該複合体エマルジョンに適用されるコロイダルシリカの粒子径としては40nm未満のものが好ましい。 In the present invention, colloidal silica composite emulsion can also be used as a metal oxide in the low refractive index film. The colloidal silica composite emulsion preferably used in the present invention has a central part of a particle mainly composed of a polymer or copolymer, and is described in JP-A-59-71316 and JP-A-60-127371. It is obtained by polymerizing a monomer having an ethylenically unsaturated bond in the presence of colloidal silica which has been conventionally known by an emulsion polymerization method. The particle diameter of colloidal silica applied to the composite emulsion is preferably less than 40 nm.
 この複合エマルジョンの調製に用いられるコロイダルシリカとしては、通常2~100nmの一次粒子のものが挙げられる。エチレン性モノマーとしては、例えば炭素数が1~18個のアルキル基、アリール基、或いはアリル基を有する(メタ)アクリル酸エステル、スチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、塩化ビニル、塩化ビニリデン、酢酸ビニル、プロピオン酸ビニル、アクリルアミド、N-メチロールアクリルアミド、エチレン、ブタジエン等のラテックス業界で公知の材料が挙げられ、必要に応じて更にコロイダルシリカとの相溶性をより良くするためにビニルトリメトオキシシラン、ビニルトリエトオキシシラン、γ-メタクリロオキシプロピルトリメトオキシシラン等の如きビニルシランが、また、エマルジョンの分散安定に(メタ)アクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸等のアニオン性モノマーが助剤的に使われる。なお、エチレン性モノマーは必要に応じて2種類以上を併用することができる。 The colloidal silica used for the preparation of this composite emulsion usually includes primary particles of 2 to 100 nm. Examples of the ethylenic monomer include (meth) acrylic acid ester having 1 to 18 carbon atoms, aryl group, or allyl group, styrene, α-methylstyrene, vinyl toluene, acrylonitrile, vinyl chloride, vinylidene chloride. , Vinyl acetate, vinyl propionate, acrylamide, N-methylol acrylamide, ethylene, butadiene, and other materials known in the latex industry, and if necessary, vinyl trimethoate is used to improve compatibility with colloidal silica. Vinyl silanes such as oxysilane, vinyltriethoxysilane, γ-methacrylooxypropyltrimethoxysilane, etc. are also used to stabilize the dispersion of (meth) acrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid. Anionic monomers such as -Is used as an auxiliary agent. In addition, two or more types of ethylenic monomers can be used together as necessary.
 また、乳化重合におけるエチレン性モノマー/コロイダルシリカの比率は固形分比率で100/1~200であることが好ましい。 Further, the ratio of ethylenic monomer / colloidal silica in the emulsion polymerization is preferably 100/1 to 200 in terms of solid content.
 本発明に使用されるコロイダルシリカ複合体エマルジョンの中でより好ましいものとしては、ガラス転移点が-30~30℃の範囲のものが挙げられる。 Among the colloidal silica composite emulsions used in the present invention, those having a glass transition point in the range of −30 to 30 ° C. are preferable.
 また、組成的に好ましいものとしては、アクリル酸エステル、メタクリル酸エステル等のエチレン性モノマーが挙げられ、特に好ましいものとしては(メタ)アクリル酸エステルとスチレンの共重合体、(メタ)アクリル酸アルキルエステルと(メタ)アクリル酸アラルキルエステルの共重合体、(メタ)アクリル酸アルキルエステルと(メタ)アクリル酸アリールエステル共重合体が挙げられる。 In addition, preferred examples of the composition include ethylenic monomers such as acrylic acid esters and methacrylic acid esters, and particularly preferred are copolymers of (meth) acrylic acid esters and styrene, alkyl (meth) acrylates. Examples thereof include a copolymer of ester and (meth) acrylic acid aralkyl ester, and a (meth) acrylic acid alkyl ester and (meth) acrylic acid aryl ester copolymer.
 乳化重合で使われる乳化剤としては、例えばアルキルアリルポリエーテルスルホン酸ソーダ塩、ラウリルスルホン酸ソーダ塩、アルキルベンゼンスルホン酸ソーダ塩、ポリオキシエチレンノニルフェニルエーテル硝酸ソーダ塩、アルキルアリルスルホサクシネートソーダ塩、スルホプロピルマレイン酸モノアルキルエステルソーダ塩等が挙げられる。 Examples of emulsifiers used in emulsion polymerization include alkyl allyl polyether sulfonic acid soda salt, lauryl sulfonic acid soda salt, alkyl benzene sulfonic acid soda salt, polyoxyethylene nonylphenyl ether sodium nitrate salt, alkyl allyl sulfosuccinate soda salt, sulfo Examples include propyl maleic acid monoalkyl ester soda salt.
 (その他添加剤)
 誘電多層膜を形成する各屈折率膜には、必要に応じて各種の添加剤を含有させることが出来る。
(Other additives)
Each refractive index film forming the dielectric multilayer film can contain various additives as required.
 具体的には、アニオン、カチオンまたはノニオンの各種界面活性剤;ポリカルボン酸アンモニウム塩、アリルエーテルコポリマー、ベンゼンスルホン酸ナトリウム塩、グラフト化合物系分散剤、ポリエチレングリコール型ノニオン系分散剤などの分散剤;酢酸塩、プロピオン酸塩、またはクエン酸塩等の有機酸塩;一塩基性有機酸エステル、多塩基性有機酸エステル等の有機エステル可塑剤、有機リン酸可塑剤、有機亜リン酸可塑剤等のリン酸可塑剤等の可塑剤;特開昭57-74193号公報、同57-87988号公報及び同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤;特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤;硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤;消泡剤;ジエチレングリコール等の潤滑剤;防腐剤;帯電防止剤;マット剤等の公知の各種添加剤を含有していてもよい。 Specifically, various anionic, cationic or nonionic surfactants; dispersants such as polycarboxylic acid ammonium salt, allyl ether copolymer, benzenesulfonic acid sodium salt, graft compound dispersant, polyethylene glycol type nonionic dispersant; Organic acid salts such as acetate, propionate or citrate; organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphate plasticizers, organic phosphorous acid plasticizers, etc. Plasticizers such as phosphoric acid plasticizers; ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57 -87989, 60-72785, 61-14659, JP-A-1-95091 and 3-13376, etc .; Japanese Patent Laid-Open Nos. 59-42993, 59-52689, 62-280069, 61-242871, and Japanese Patent Laid-Open No. 4-219266 Optical brighteners described in the Gazettes, etc .; pH adjusters such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate; antifoaming agents; lubricants such as diethylene glycol; Agents; antistatic agents; may contain various known additives such as matting agents.
 (フィルム支持体(基材))
 本発明では必要によりフィルム支持体に上記誘電多層膜を積層させることができる。本発明に用いられるフィルム支持体としては、種々の樹脂フィルムを用いることができ、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。
(Film support (base material))
In the present invention, the above-mentioned dielectric multilayer film can be laminated on a film support if necessary. As the film support used in the present invention, various resin films can be used, such as polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc. Can be used, and a polyester film is preferable. Although it does not specifically limit as a polyester film (henceforth polyester), It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components. The main component dicarboxylic acid component includes terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters having these as main components, from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 本発明に用いられるフィルム支持体の厚みは、10~300μm、特に20~150μmであることが好ましい。また、本発明のフィルム支持体は、2枚重ねたものであっても良く、この場合、その種類が同じでも異なってもよい。 The thickness of the film support used in the present invention is preferably 10 to 300 μm, particularly 20 to 150 μm. The film support of the present invention may be a laminate of two sheets. In this case, the type may be the same or different.
 (その他の機能性層)
 本発明に係るフィルターにおいては、必要に応じて、さらなる機能の付加を目的として、機能性層を設けることが好ましい。また、機能性を設けることで屈曲時の耐久性が向上するという利点もある。機能性層としては、特に限定されるものではないが、導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、合わせガラスに利用される中間膜層、断熱層、熱線反射層、放熱層などが挙げられる。
(Other functional layers)
In the filter which concerns on this invention, it is preferable to provide a functional layer for the purpose of the addition of the further function as needed. Moreover, there is an advantage that durability at the time of bending is improved by providing functionality. The functional layer is not particularly limited, but is a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer), an antifouling layer, a deodorant layer, a droplet layer, an easy slip layer, Used for hard coat layer, abrasion-resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorption layer, infrared absorption layer, printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, adhesive layer, laminated glass Examples include an intermediate film layer, a heat insulating layer, a heat ray reflective layer, and a heat dissipation layer.
 紫外線吸収層に用いられる紫外線吸収剤としては、例えば、特開昭57-74193号公報、同57-87988号公報及び同62-261476号公報に記載の紫外線吸収剤を用いることができる。 As the ultraviolet absorber used in the ultraviolet absorbing layer, for example, the ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476 can be used.
 機能性層の厚みは0.1μm~50μmが好ましく、1~20μmがより好ましい。 The thickness of the functional layer is preferably 0.1 μm to 50 μm, more preferably 1 to 20 μm.
 <ハードコート層>
 本発明のフィルターは、耐擦過性を高めるための表面保護層として、ハードコート層を含むことが好ましい。具体的には、基材の誘電多層膜を有する側とは逆側の最上層に、熱や紫外線などで硬化する樹脂を含むハードコート層を積層することが好ましい。
<Hard coat layer>
The filter of the present invention preferably includes a hard coat layer as a surface protective layer for enhancing the scratch resistance. Specifically, it is preferable to laminate a hard coat layer containing a resin that is cured by heat, ultraviolet rays, or the like on the uppermost layer on the side opposite to the side having the dielectric multilayer film.
 ハードコート層で使用される硬化樹脂としては、熱硬化型樹脂や紫外線硬化型樹脂が挙げられるが、成形が容易なことから、紫外線硬化型樹脂が好ましく、その中でも鉛筆硬度が少なくとも2Hのものがより好ましい。かような硬化樹脂は、単独でもまたは2種以上組み合わせても用いることができる。 Examples of the curable resin used in the hard coat layer include a thermosetting resin and an ultraviolet curable resin. However, an ultraviolet curable resin is preferable because it is easy to mold, and among them, those having a pencil hardness of at least 2H. More preferred. Such cured resins can be used singly or in combination of two or more.
 このような紫外線硬化型樹脂としては、例えば、多価アルコールを有するアクリル酸またはメタクリル酸エステルのような多官能性のアクリレート樹脂、ならびにジイソシアネートおよび多価アルコールを有するアクリル酸やメタクリル酸から合成されるような多官能性のウレタンアクリレート樹脂などを挙げることができる。さらにアクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂またはポリチオールポリエン樹脂等も好適に使用することができる。 As such an ultraviolet curable resin, it is synthesized from, for example, a polyfunctional acrylate resin such as acrylic acid or methacrylic acid ester having a polyhydric alcohol, and acrylic acid or methacrylic acid having a diisocyanate and a polyhydric alcohol. Such polyfunctional urethane acrylate resins can be mentioned. Furthermore, polyether resins, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins or polythiol polyene resins having an acrylate-based functional group can also be suitably used.
 また、これらの樹脂の反応性希釈剤として、比較的低粘度である1,6-ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メ夕)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の2官能以上のモノマーやオリゴマー、ならびに、N-ビニルピロリドン、エチルアクリレート、プロピルアクリレート等のアクリル酸エステル類、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、ブチルメタクリレート、ヘキシルメタクリレート、イソオクチルメタクリレート、2-ヒドロキシエチルメタクリレート、シクロヘキシルメタクリレート、ノニルフェニルメタクリレート等のメタクリル酸エステル類、テトラヒドロフルフリルメタクリレート、およびそのカプロラクトン変成物などの誘導体、スチレン、α-メチルスチレンまたはアクリル酸等の単官能モノマー等を用いることができる。これら反応性希釈剤は、単独でもまたは2種以上組み合わせても用いることができる。 As reactive diluents for these resins, relatively low viscosity 1,6-hexanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexanediol (methacrylate) ) Bifunctional or higher functional monomers and oligomers such as acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, neopentylglycol di (meth) acrylate, and Acrylic esters such as N-vinylpyrrolidone, ethyl acrylate, propyl acrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, hexyl Methacrylic acid esters such as tacrylate, isooctyl methacrylate, 2-hydroxyethyl methacrylate, cyclohexyl methacrylate, nonylphenyl methacrylate, derivatives such as tetrahydrofurfuryl methacrylate and its caprolactone modified products, styrene, α-methylstyrene, acrylic acid, etc. A monofunctional monomer or the like can be used. These reactive diluents can be used alone or in combination of two or more.
 さらにまた、これらの樹脂の光増感剤(ラジカル重合開始剤)として、ペンゾイン、べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンジルメチルケタールなどのべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのアセトフェノン類;メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノンなどのアントラキノン類;チオキサントン、2,4―ジエチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4,4-ビスメチルアミノべンゾフェノンなどのベンゾフェノン類およびアゾ化合物等を用いることができる。これらは単独でもまたは2種以上組み合わせても使用することができる。加えて、トリエタノールアミン、メチルジエタノールアミンなどの第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体等の光開始助剤などと組み合わせて使用することができる。これらラジカル重合開始剤の使用量は、樹脂の重合性成分100質量部に対して0.5~20質量部、好ましくは1~15質量部である。 Furthermore, as photosensitizers (radical polymerization initiators) for these resins, benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl methyl ketal and the like Alkyl ethers; acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone; anthraquinones such as methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone; thioxanthone, 2,4 -Thioxanthones such as diethylthioxanthone and 2,4-diisopropylthioxanthone; Ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; Benzophenone and 4,4-bismethi Benzophenones such as amino benzophenone and azo compounds can be used. These may be used alone or in combination of two or more. In addition, tertiary amines such as triethanolamine and methyldiethanolamine; photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate can be used in combination. it can. These radical polymerization initiators are used in an amount of 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the polymerizable component of the resin.
 なお、上述の硬化樹脂には、必要に応じて公知の一般的な塗料添加剤を配合してもよい。例えば、レベリングや表面スリップ性等を付与するシリコーン系やフッ素系の塗料添加剤は、硬化膜表面の傷つき防止性に効果があることに加え、活性エネルギー線として紫外線を利用する場合に、該塗料添加剤が空気界面へブリードすることによって、酸素による樹脂の硬化阻害を低下させることができ、低照射強度条件下においても有効な硬化度合を得ることができる。 In addition, you may mix | blend a well-known general paint additive with the above-mentioned cured resin as needed. For example, a silicone-based or fluorine-based paint additive that imparts leveling or surface slip properties is effective in preventing scratches on the surface of a cured film, and in the case of using ultraviolet rays as active energy rays, When the additive bleeds to the air interface, the inhibition of curing of the resin by oxygen can be reduced, and an effective degree of curing can be obtained even under low irradiation intensity conditions.
 また、ハードコート層は無機微粒子を含有することが好ましい。好ましい無機微粒子としては、チタン、シリカ、ジルコニウム、アルミニウム、マグネシウム、アンチモン、亜鉛または錫などの金属を含む無機化合物の微粒子が挙げられる。この無機微粒子の平均粒径は、可視光線の透過性を確保することから、1000nm以下が好ましく、10~500nmの範囲にあるものがより好ましい。また、無機微粒子は、ハードコート層を形成する硬化樹脂との結合カが高いほうがハードコート層からの脱落を抑制できることから、単官能または多官能のアクリレートなどの光重合反応性を有する感光性基を表面に導入しているものが好ましい。 The hard coat layer preferably contains inorganic fine particles. Preferable inorganic fine particles include fine particles of an inorganic compound containing a metal such as titanium, silica, zirconium, aluminum, magnesium, antimony, zinc or tin. The average particle size of the inorganic fine particles is preferably 1000 nm or less, and more preferably in the range of 10 to 500 nm, from the viewpoint of ensuring visible light transmittance. In addition, the inorganic fine particles have a higher bond strength with the cured resin forming the hard coat layer, and can be prevented from falling off the hard coat layer. Therefore, a photosensitive group having photopolymerization reactivity such as monofunctional or polyfunctional acrylate. Those in which is introduced into the surface are preferred.
 ハードコート層の厚みは0.1μm~50μmが好ましく、1~20μmがより好ましい。0.1μm以上であればハードコート性が向上する傾向にあり、逆に50μm以下であれば透明性が向上する傾向にある。 The thickness of the hard coat layer is preferably 0.1 μm to 50 μm, more preferably 1 to 20 μm. If it is 0.1 μm or more, the hard coat property tends to be improved. Conversely, if it is 50 μm or less, the transparency tends to be improved.
 ハードコート層の形成方法は特に制限されず、例えば、上記各成分を含むハードコート層用塗布液を調製した後、塗布液をワイヤーバー等により塗布し、熱および/またはUVで塗布液を硬化させ、ハードコート層を形成する方法などが挙げられる。 The method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for hard coat layer containing the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured with heat and / or UV. And a method of forming a hard coat layer.
 (用途)
 本発明のフィルターは、種々の用途に用いることができる。例えば、装飾を目的とした着色カラーフィルム、光源色の色を変調させるカラーフィルター、可視光や赤外光の反射ミラー、白色LEDや蛍光灯や有機EL照明用のカラーフィルター等が挙げられるが、特に植物成長促進の為に光源の光を変調させる農業用に用いることが好ましい。上述したように、光合成促進には640nm~690nmの赤色光、葉の正常な形成促進には420nm~470nmの青色光といった、バンドエッジが立った狭帯域の光が最適とされている。従来のLED材料の場合、材料依存的に透過波長領域が決定されるため、所望の波長を透過するようには設計できないが、本発明のフィルターにおいては、目的の設定波長にあわせてフィルターを形成させることが可能であるため、特に植物成長促進用途で用いることができる。したがって、400nm~500nmの青色光領域または、630~700nmの赤色光領域に、最大透過率を示す狭帯域バンドパスフィルターが好適である。
(Use)
The filter of the present invention can be used for various applications. For example, a colored film for decoration, a color filter that modulates the color of the light source, a reflective mirror for visible light or infrared light, a white LED, a fluorescent light, a color filter for organic EL lighting, etc. In particular, it is preferably used for agriculture where light from a light source is modulated to promote plant growth. As described above, narrow band light with a band edge such as red light of 640 nm to 690 nm and blue light of 420 nm to 470 nm are optimal for promoting photosynthesis and normal formation of leaves. In the case of conventional LED materials, the transmission wavelength region is determined depending on the material, so it cannot be designed to transmit the desired wavelength, but in the filter of the present invention, a filter is formed in accordance with the target set wavelength. Therefore, it can be used particularly for plant growth promotion. Therefore, a narrow band-pass filter that exhibits maximum transmittance in a blue light region of 400 nm to 500 nm or a red light region of 630 to 700 nm is suitable.
 また、本発明の狭帯域バンドパスフィルターを、ビニールハウス等に取り付けることによって、植物の成長が促進される。すなわち、本発明は、上記狭帯域バンドパスフィルターを用いて、植物の成長を促進させる植物の成長促進方法をも包含する。植物種、成長を促進させたい植物部位によって、目的波長は適宜設定される。 Also, plant growth is promoted by attaching the narrow band-pass filter of the present invention to a greenhouse or the like. That is, the present invention also includes a plant growth promoting method for promoting plant growth using the narrow band-pass filter. The target wavelength is appropriately set depending on the plant species and the plant part that is desired to promote growth.
 (フィルターの製造方法)
 本発明の狭帯域バンドパスフィルターの製造方法について特に制限はなく、いずれの誘電多層膜の製造方法も用いることができる。
(Filter manufacturing method)
There is no particular limitation on the method for producing the narrow band-pass filter of the present invention, and any method for producing a dielectric multilayer film can be used.
 好適な形態としては、(1)基材上に高屈折率膜と低屈折率膜とを交互に塗布、乾燥して積層体を形成する方法、(2)押し出しにより積層体を形成後、該積層体を延伸してフィルムを形成する方法が挙げられる。 As a preferred form, (1) a method in which a high refractive index film and a low refractive index film are alternately coated on a substrate and dried to form a laminate, (2) after the laminate is formed by extrusion, The method of extending | stretching a laminated body and forming a film is mentioned.
 上記(1)の方法は、具体的には以下の形態が挙げられる;(1)基材上に、高屈折率膜塗布液を塗布し乾燥して高屈折率膜を形成した後、低屈折率膜塗布液を塗布し乾燥して低屈折率膜を形成し、フィルムを形成する方法;(2)基材上に、低屈折率膜塗布液を塗布し乾燥して低屈折率膜を形成した後、高屈折率膜塗布液を塗布し乾燥して高屈折率膜を形成し、フィルムを形成する方法;(3)基材上に、高屈折率膜塗布液と、低屈折率膜塗布液とを交互に逐次重層塗布・乾燥して、高屈折率膜、および低屈折率膜を含むフィルムを形成する方法;(4)基材上に、高屈折率膜塗布液と、低屈折率膜塗布液とを同時重層塗布し、乾燥して、高屈折率膜、および低屈折率膜を含むフィルムを形成する方法;などが挙げられる。中でも、生産効率性の観点から(4)の同時重層塗布であることが好ましい。本発明に係る屈折率膜においては、各層塗布液を調製して同時重層により積層を行うためのバインダーとしては、ポリビニルアルコール等の合成高分子、ゼラチン、増粘多糖類等の水溶性高分子を好適に用いることができる。 Specific examples of the method (1) include the following forms: (1) A high refractive index film coating solution is applied on a substrate and dried to form a high refractive index film. A method of forming a low refractive index film by applying a refractive film coating liquid and drying; (2) A low refractive index film coating liquid is applied and dried on a substrate to form a low refractive index film. After that, a method of forming a film by applying a high refractive index film coating liquid and drying to form a film; (3) coating a high refractive index film coating liquid and a low refractive index film on the substrate A method of forming a film including a high refractive index film and a low refractive index film by alternately coating and drying the liquid alternately and successively; (4) A high refractive index film coating liquid and a low refractive index on a substrate And a method of forming a film containing a high refractive index film and a low refractive index film by simultaneously applying a multilayer coating with a film coating solution and drying. Especially, it is preferable that it is simultaneous multilayer coating of (4) from a viewpoint of production efficiency. In the refractive index film according to the present invention, a synthetic polymer such as polyvinyl alcohol, a water-soluble polymer such as gelatin and a thickening polysaccharide is used as a binder for preparing each layer coating liquid and laminating by simultaneous multilayering. It can be used suitably.
 〔重層塗布の製造方法〕
 特に水溶性高分子を有機ポリマーとして含有する場合に好適である。高屈折率膜、および低屈折率膜を含む複数の構成層を、公知の塗布方式から適宜選択して、支持体上に水系で同時重層塗布した後、セット、乾燥して製造することができる。塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。
[Manufacturing method of multi-layer coating]
It is particularly suitable when a water-soluble polymer is contained as an organic polymer. A plurality of constituent layers including a high-refractive index film and a low-refractive index film can be appropriately selected from known coating methods, and simultaneously coated in water on a support, and then set and dried. . Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791. A slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
 屈折率膜が水溶性高分子および金属酸化物粒子を含有する場合、重層塗布により積層体を形成するため、各膜塗布液において水溶性高分子と金属酸化物粒子の質量比(F/B)が0.3~10の範囲であることが好ましく、より好ましくは0.5~5である。 When the refractive index film contains a water-soluble polymer and metal oxide particles, a multilayer body is formed by multilayer coating, so that the mass ratio (F / B) of the water-soluble polymer and metal oxide particles in each film coating solution. Is preferably in the range of 0.3 to 10, more preferably 0.5 to 5.
 また、同時重層塗布からゾルゲル転移してセットするまでの時間を5分以内、好ましくは2分以内にすることが好ましい。また、45秒以上の時間をとることが好ましい。 Also, it is preferable that the time from simultaneous multilayer coating to sol-gel transition and setting is within 5 minutes, preferably within 2 minutes. Moreover, it is preferable to take time of 45 seconds or more.
 セット時間の調整は金属酸化物粒子の濃度や他の成分等により粘度を調整する、またバインダー質量比率を調整したり、ゼラチン、ペクチン、寒天、カラギーナン、ジェランガム等の各種公知のゲル化剤を添加、調整等により行うことができる。 Adjust the set time by adjusting the viscosity according to the concentration of metal oxide particles and other components, adjusting the binder mass ratio, and adding various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. It can be performed by adjustment.
 ここでセットとは、例えば、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間及び各層内の物質流動性を低下させたり、またゲル化する工程のことを意味するが、具体的には、塗布からセットまでの時間は、5~10℃の冷風を塗布膜に表面から当てて、表面に指を押し付けたときに指に何もつかなくなった時間を言うものとする。 Here, the term “set” refers to, for example, increasing the viscosity of the coating composition by lowering the temperature by applying cold air or the like to the coating, reducing the fluidity of the material between each layer and each layer, or gelling. Specifically, the time from application to set is what the finger has when the cold air of 5-10 ° C is applied to the coating film from the surface and the finger is pressed against the surface. Let's say lost time.
 冷風を用いる場合の温度条件としては、25℃以下が好ましく、10℃以下であることがさらに好ましい。また、塗布膜が冷風に晒される時間は、塗布搬送速度にもよるが、10秒以上120秒以下であることが好ましい。 The temperature condition when using cold air is preferably 25 ° C. or lower, more preferably 10 ° C. or lower. The time for which the coating film is exposed to the cold air is preferably 10 seconds or more and 120 seconds or less, although it depends on the coating conveyance speed.
 同時重層塗布を行う際の各塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本発明においては、樹脂バインダーとしてポリビニルアルコールを主に用いるために、水系溶媒を用いることができる。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。 The solvent for preparing each coating solution for simultaneous multilayer coating is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In the present invention, an aqueous solvent can be used because polyvinyl alcohol is mainly used as the resin binder. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒が好ましく、水がより好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
 同時重層塗布を行う際の各塗布液の粘度としては、スライドビード塗布方式を用いる場合には、25~60℃の温度範囲で5~100mPa・sの範囲が好ましく、さらに好ましくは10~50mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。 When the slide bead coating method is used, the viscosity of each coating solution at the time of simultaneous multilayer coating is preferably in the range of 5 to 100 mPa · s, more preferably 10 to 50 mPa · s in the temperature range of 25 to 60 ° C. It is the range of s. When the curtain coating method is used, the range of 5 to 1200 mPa · s is preferable, and the range of 25 to 500 mPa · s is more preferable.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは3,000~30,000mPa・sであり、最も好ましいのは10,000~30,000mPa・sである。 The viscosity of the coating solution at 15 ° C. is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, still more preferably 3,000 to 30,000 mPa · s, and most preferably 10 , 30,000 to 30,000 mPa · s.
 塗布および乾燥方法としては、塗布液を30℃以上に加温して、塗布を行った後、形成した塗膜の温度を1~15℃に一旦冷却し、10℃以上で乾燥することが好ましく、より好ましくは、乾燥条件として、湿球温度5~50℃、膜面温度10~50℃の範囲の条件で行うことである。また、塗布直後の冷却方式としては、形成された塗膜均一性の観点から、水平セット方式で行うことが好ましい。 As a coating and drying method, it is preferable that the coating solution is heated to 30 ° C. or higher and coated, and then the temperature of the formed coating film is once cooled to 1 to 15 ° C. and dried at 10 ° C. or higher. More preferably, the drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the formed coating-film uniformity.
 上記(2)における押出し工程は、米国特許第6049419号に記載の方法を用いることができる。すなわち、高屈折率膜材料のポリマーおよびその他の添加剤(高屈折率膜形成用組成物)ならびに低屈折膜材料のポリマーおよびその他の添加剤(低屈折率膜形成用組成物)を同時押出し法を用いて高屈折率膜および低屈折率膜を形成することができる。 For the extrusion step in (2) above, the method described in US Pat. No. 6,049,419 can be used. That is, a high-refractive-index film material polymer and other additives (high-refractive-index film-forming composition) and a low-refractive-film material polymer and other additives (low-refractive-index film-forming composition) are co-extruded. Can be used to form a high refractive index film and a low refractive index film.
 一実施形態として、各屈折率膜材料を85~300℃で押出しに適当な粘度になるように溶融させ、必要に応じて各種添加剤を添加し、両方のポリマーを交互に二層になるように押出し機によって押し出すことができる。次に、押し出された積層膜を、冷却ドラム等により冷却固化し、積層体を得る。 As one embodiment, each refractive index film material is melted at 85 to 300 ° C. so as to have a viscosity suitable for extrusion, and various additives are added as necessary, so that both polymers are alternately formed into two layers. Can be extruded by an extruder. Next, the extruded laminated film is cooled and solidified by a cooling drum or the like to obtain a laminated body.
 その後、この積層体を加熱してから二方向に延伸し、狭帯域バンドフィルターを得ることができる。 Thereafter, the laminate is heated and then stretched in two directions to obtain a narrow band filter.
 延伸方法としては、前述の冷却ドラムから剥離され、得られた未延伸フィルムを複数のロール群および/または赤外線ヒーター等の加熱装置を介してガラス転移温度(Tg)-50℃からTg+100℃の範囲内に加熱し、フィルム搬送方向(長手方向ともいう)に、一段または多段縦延伸することが好ましい。次に、上記のようにして得られた延伸されたフィルムを、フィルム搬送方向に直交する方向(幅手方向ともいう)に延伸することも好ましい。フィルムを幅手方向に延伸するには、テンター装置を用いることが好ましい。 As the stretching method, the unstretched film obtained by peeling from the above-mentioned cooling drum is subjected to a glass transition temperature (Tg) of −50 ° C. to Tg + 100 ° C. via a plurality of roll groups and / or a heating device such as an infrared heater. It is preferable that the film is heated inside and stretched in one or more stages in the film conveying direction (also referred to as the longitudinal direction). Next, it is also preferable to stretch the stretched film obtained as described above in a direction perpendicular to the film transport direction (also referred to as the width direction). In order to stretch the film in the width direction, it is preferable to use a tenter device.
 フィルム搬送方向またはフィルム搬送方向に直交する方向に延伸する場合は、フィルムの複屈折性制御の点から、1.1~4倍の倍率で延伸することが好ましく、より好ましくは1.5~2.5倍の範囲である。 When stretching in the film transport direction or the direction perpendicular to the film transport direction, it is preferable to stretch the film at a magnification of 1.1 to 4 times, more preferably 1.5 to 2 from the viewpoint of controlling the birefringence of the film. .5 times the range.
 また、延伸に引き続き熱加工することもできる。熱加工は、Tg-100℃~Tg+50℃の範囲内で通常0.5~300秒間搬送しながら行うことが好ましい。 Also, heat processing can be performed subsequent to stretching. The thermal processing is preferably carried out in the range of Tg-100 ° C. to Tg + 50 ° C., usually for 0.5 to 300 seconds.
 熱加工手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。フィルムの加熱は段階的に高くしていくことが好ましい。 The heat processing means is not particularly limited and can be generally performed with hot air, infrared rays, a heating roll, microwaves, or the like, but is preferably performed with hot air in terms of simplicity. The heating of the film is preferably increased stepwise.
 熱加工されたフィルムは通常Tg以下まで冷却され、フィルム両端のクリップ把持部分をカットし巻き取られる。また冷却は、最終熱加工温度からTgまでを、毎秒100℃以下の冷却速度で徐冷することが好ましい。 The heat-processed film is usually cooled to Tg or less, and the clip gripping portions at both ends of the film are cut and wound. In addition, it is preferable that the cooling is gradually performed from the final heat processing temperature to Tg at a cooling rate of 100 ° C. or less per second.
 冷却する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながらこれらの処理を行うことがフィルムの寸法安定性向上の点で好ましい。尚、冷却速度は、最終熱加工温度をT1、フィルムが最終熱加工温度からTgに達するまでの時間をtとしたとき、(T1-Tg)/tで求めた値である。 The means for cooling is not particularly limited, and can be performed by a conventionally known means. In particular, it is preferable to perform these treatments while sequentially cooling in a plurality of temperature ranges from the viewpoint of improving the dimensional stability of the film. The cooling rate is a value obtained by (T1−Tg) / t, where T1 is the final heat processing temperature and t is the time until the film reaches Tg from the final heat processing temperature.
 以下、実施例により本発明を具体的に説明するが本発明はこれにより限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
 実施例1
 (試料1:比較例1)
 50μm厚みのポリエチレンテレフタレート(PET)フィルム(A4300:両面易接着層、東洋紡株式会社製、以下PETフィルムと略す)上に、公知のスパッタ法を用いて銀、MgFをPET/銀(40nm)/(MgF(143.5nm))/銀(40nm)の順に積層した、MDM型の狭帯域バンドパスフィルター(Δλ/λ0×100=11%、最大透過率波長λ=550nmを作製した。銀の屈折率は0.135であり、MgFの屈折率は1.38であることから、比較例1の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-96%)~(λ/4+44%)の範囲であった。λ/4-96%は、λ/4-λ/4×96/100を意味する。以下、同様である。
Example 1
(Sample 1: Comparative Example 1)
On a 50 μm-thick polyethylene terephthalate (PET) film (A4300: double-sided easy-adhesion layer, manufactured by Toyobo Co., Ltd., hereinafter abbreviated as PET film), silver / MgF 2 is PET / silver (40 nm) / An MDM type narrow-band bandpass filter (Δλ / λ0 × 100 = 11%, maximum transmittance wavelength λ = 550 nm) was formed by stacking (MgF 2 (143.5 nm)) 2 / silver (40 nm). Since the refractive index of MgF 2 is 1.35, the optical film thickness of each refractive index layer in the narrow-band bandpass filter of Comparative Example 1 is (λ / 4-96). %) To (λ / 4 + 44%), where λ / 4-96% means λ / 4-λ / 4 × 96/100, and so on.
 なお、以下実施例および比較例において、層構成の材料に次いで記載した括弧内の数値は各屈折率膜の物理膜厚の値である。 In the following examples and comparative examples, the numerical value in parentheses described next to the material of the layer structure is the physical film thickness value of each refractive index film.
 (試料2:比較例2)
 PETフィルム上に、公知のスパッタ法を用いて、銀、TiO、SiO、MgFを、PET/TiO(76nm)/(SiO(100nm)/TiO(64nm))/MgF(164nm)/銀(70nm)/MgF(192nm)/(TiO(56nm)/SiO(86nm))/TiO(78nm)/SiO(130nm)の順に積層した、DMD型の狭帯域バンドパスフィルター(Δλ/λ0×100=4%、最大透過率波長λ=550nm)を作製した。TiOの屈折率は2.6であり、SiOの屈折率は1.5であることから、比較例2の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-93%)~(λ/4+93%)の範囲であった。
(Sample 2: Comparative Example 2)
On a PET film, silver, TiO 2 , SiO 2 , and MgF 2 are converted into PET / TiO 2 (76 nm) / (SiO 2 (100 nm) / TiO 2 (64 nm)) 3 / MgF 2 using a known sputtering method. (164 nm) / silver (70 nm) / MgF 2 (192 nm) / (TiO 2 (56 nm) / SiO 2 (86 nm)) 3 / TiO 2 (78 nm) / SiO 2 (130 nm) stacked in this order, narrow A band-pass filter (Δλ / λ0 × 100 = 4%, maximum transmittance wavelength λ = 550 nm) was produced. Since the refractive index of TiO 2 is 2.6 and the refractive index of SiO 2 is 1.5, the optical film thickness of each refractive index layer in the narrowband bandpass filter of Comparative Example 2 is (λ / 4). -93%) to (λ / 4 + 93%).
 (試料3:比較例3)
 PETフィルム上に、公知のスパッタ法を用いて、Ta,SiOを、PET/(Ta(70nm)/SiO(106nm))/Ta(70nm)/SiO(212nm)/Ta(70nm)/(SiO(106nm)/Ta(70nm))/SiO(212nm)の順に積層した、誘電多層膜が無機物からなる誘電体型の狭帯域バンドパスフィルター(Δλ/λ0×100=1.3%、最大透過率波長λ=643nm)を作製した。Taの屈折率は2.3であることから、比較例3の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-1%)~λ/4の範囲であった。
(Sample 3: Comparative Example 3)
On a PET film, using a known sputtering method, Ta 2 O 5 and SiO 2 are changed into PET / (Ta 2 O 5 (70 nm) / SiO 2 (106 nm)) 5 / Ta 2 O 5 (70 nm) / SiO 2. 2 (212 nm) / Ta 2 O 5 (70 nm) / (SiO 2 (106 nm) / Ta 2 O 5 (70 nm)) 5 / SiO 2 (212 nm) laminated in this order, a dielectric multilayer film made of an inorganic material A narrow band-pass filter (Δλ / λ0 × 100 = 1.3%, maximum transmittance wavelength λ = 643 nm) was produced. Since the refractive index of Ta 2 O 5 is 2.3, the optical film thickness of each refractive index layer in the narrow-band bandpass filter of Comparative Example 3 is in the range of (λ / 4−1%) to λ / 4. Met.
 (試料4:実施例1)
 米国特許第6049419号に記載の溶融押し出し方法に従い、ポリエチレンナフタレート(PEN)とポリメチルメタクリレート(PMMA)を、(PMMA(116nm)/PEN(102nm))50/(PMMA(100nm)/PEN(88nm))25/PMMA(183nm=91.5nm×2)/(PEN(80nm)/PMMA(91nm)25/PEN(80nm)/(PMMA(83m)/PEN(73nm)50の順に積層した後、縦2倍、横2倍に延伸し、25μmのPETフィルムと張り合わせ、誘電多層膜が有機物を含む誘電体型の狭帯域バンドパスフィルター(図2、Δλ/λ0×100=1.6%、最大透過率波長λ=574nm)を作製した。実施例1の狭帯域バンドパスフィルターの構成は、(L50[(L25/2L/(H25/H](L50である([]内層構成2、m=n=25、s=2)。ここで、Lは低屈折率膜を、Hは高屈折率膜を示す(X,Yは整数)。以下、実施例において同様である。PMMAの屈折率は1.7、PENの屈折率は1.5であることから、実施例1の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-24%)~(λ/4+37%)の範囲であった。
(Sample 4: Example 1)
According to the melt extrusion method described in US Pat. No. 6,049,419, polyethylene naphthalate (PEN) and polymethylmethacrylate (PMMA) are (PMMA (116 nm) / PEN (102 nm)) 50 / (PMMA (100 nm) / PEN (88 nm). )) 25 /PMMA(183nm=91.5nm×2)/(PEN(80nm)/PMMA(91nm) 25 / PEN (80nm) / (PMMA (83m) / PEN (73nm) was laminated to the 50 order, vertical Double-width, double-width, pasted with 25 μm PET film, dielectric multilayer narrow band-pass filter containing organic material (Fig. 2, Δλ / λ0 × 100 = 1.6%, maximum transmittance) Wavelength λ = 574 nm) The configuration of the narrow band-pass filter of Example 1 is (L 1 H 1 ) 50 [(L 2 H 2 ) 25 / 2L 3 / (H 3 L 4 ) 25 / H 4 ] (L 5 H 5 ) 50 ([] inner layer structure 2, m = n = 25, s = 2) where L X represents a low refractive index film, H Y represents a high refractive index film (X and Y are integers), and the same applies to the following examples, where the refractive index of PMMA is 1.7. Since the refractive index of PEN is 1.5, the optical film thickness of each refractive index layer in the narrow-band bandpass filter of Example 1 is (λ / 4-24%) to (λ / 4 + 37%). It was in range.
 (試料5:実施例2)
 試料4と同様にし、(PMMA(117nm)/PEN(103nm))25/(PMMA(108nm)/PEN(96nm))25/(PMMA(100nm)/PEN(88nm))25/(PMMA(92nm)/PEN(81nm))25/(PMMA(83nm)/PEN(74nm))24/PMMA(83nm)/PEN(150nm)/(PMMA(75nm)/PEN(66nm))25の順に積層し、25μmのPETフィルムと張り合わせ、誘電多層膜が有機物を含む誘電体型の狭帯域バンドパスフィルター(図3、Δλ/λ0×100=4.2%、最大透過率波長λ=475nm)を作製した。実施例2の狭帯域バンドパスフィルターの構成は、(L25/(L25/(L25/(L25[(L24/L/2H/L/(H24/Hである]([]内層構成2、m=n=24、s=2)。実施例2の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-67%)~(λ/4+43%)の範囲であった。
(Sample 5: Example 2)
Similar to Sample 4, (PMMA (117 nm) / PEN (103 nm)) 25 / (PMMA (108 nm) / PEN (96 nm)) 25 / (PMMA (100 nm) / PEN (88 nm)) 25 / (PMMA (92 nm) / PEN (81nm)) 25 / (PMMA (83nm) / PEN (74nm)) 24 / PMMA (83nm) / PEN (150nm) / (PMMA (75nm) / PEN (66nm)) laminated in this order 25, 25 [mu] m of A dielectric type narrow-band bandpass filter (FIG. 3, Δλ / λ0 × 100 = 4.2%, maximum transmittance wavelength λ = 475 nm) was prepared by laminating with a PET film. The configuration of the narrow band-pass filter of Example 2 is (L 1 H 1 ) 25 / (L 2 H 2 ) 25 / (L 3 H 3 ) 25 / (L 4 H 4 ) 25 [(L 5 H 5 ) 24 / L 6 / 2H 6 / L 7 / (H 7 L 7 ) 24 / H 7 ] ([] inner layer configuration 2, m = n = 24, s = 2). The optical film thickness of each refractive index layer in the narrow-band bandpass filter of Example 2 was in the range of (λ / 4-67%) to (λ / 4 + 43%).
 (試料6:実施例3)
 試料4と同様にし、(PMMA(117nm)/PEN(103nm))25/PMMA(217nm)/PEN(96nm)/(PMMA(108nm)/PEN(96nm))24/(PMMA(100nm)/PEN(88nm))25/PMMA(183nm)/PEN(81nm)/(PMMA(92nm)/PEN(81nm))24/(PMMA(83nm)/PEN(74nm))25/(PMMA(75nm)/PEN(66nm))25の順に積層し、25μmのPETフィルムと張り合わせ、誘電多層膜が有機物を含む誘電体型の狭帯域バンドパスフィルター(図4、(1)Δλ/λ0×100=1.8%、1つ目の最大透過率波長λ=574nm、(2)Δλ/λ0×100=2.3%、2つ目の最大透過率波長λ=673nm)を作製した。実施例3の狭帯域バンドパスフィルターの構成は、[(L25/2L/(H24/H][(L25/2L/(H24/H](L25/(L25である([]内層構成2、m=25、n=24、s=2)。実施例3の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、λ=574nmに対しては、(λ/4-31%)~(λ/4+39%)の範囲であり、λ=673nmに対しては、(λ/4-41%)~(λ/4+18%)の範囲であった。
(Sample 6: Example 3)
Similar to Sample 4, (PMMA (117 nm) / PEN (103 nm)) 25 / PMMA (217 nm) / PEN (96 nm) / (PMMA (108 nm) / PEN (96 nm)) 24 / (PMMA (100 nm) / PEN ( 88nm)) 25 / PMMA (183nm ) / PEN (81nm) / (PMMA (92nm) / PEN (81nm)) 24 / (PMMA (83nm) / PEN (74nm)) 25 / (PMMA (75nm) / PEN (66nm )) Laminated in the order of 25 , laminated with 25 μm PET film, dielectric multilayer narrow band-pass filter containing organic material (FIG. 4, (1) Δλ / λ0 × 100 = 1.8%, one Eye maximum transmittance wavelength λ = 574 nm, (2) Δλ / λ0 × 100 = 2.3% Second maximum transmittance wavelength λ 673nm) was prepared. The configuration of the narrow band pass filter of Example 3 is [(L 1 H 1 ) 25 / 2L 2 / (H 2 L 3 ) 24 / H 3 ] [(L 4 H 4 ) 25 / 2L 5 / (H 6 L 6 ) 24 / H 6 ] (L 7 H 7 ) 25 / (L 8 H 8 ) 25 ([] inner layer configuration 2, m = 25, n = 24, s = 2). The optical film thickness of each refractive index layer in the narrow-band bandpass filter of Example 3 is in the range of (λ / 4-31%) to (λ / 4 + 39%) with respect to λ = 574 nm, and λ = For 673 nm, it was in the range of (λ / 4-41%) to (λ / 4 + 18%).
 (試料7:実施例4)
 試料6のPMMAをポリエチレンテレフタレート(固有粘度0.65、融点255℃、東レ社製F20S)、PENをポリエチレンテレフタレート共重合体(固有粘度0.72、シクロヘキサンジカルボン酸成分29mol%、スピログリコール成分20mol%の共重合)とPBT(トレコン1401-X06、東レ社製)(ポリエチレンテレフタレート共重合体:PBT=1:0.2(質量比))に変更した以外は試料6と同様にして、誘電多層膜が有機ポリマーを含む誘電体型の狭帯域バンドパスフィルター((1)Δλ/λ0×100=1.8%、1つ目の最大透過率波長λ=574nm、(2)Δλ/λ0×100=2.3%、2つ目の最大透過率波長λ=673nm)を作製した。ポリエチレンテレフタレートの屈折率は1.7、ポリエチレンテレフタレート共重合体+PBTの屈折率は1.5であることから、実施例4の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、λ=574nmに対しては、(λ/4-31%)~(λ/4+39%)の範囲であり、λ=673nmに対しては、(λ/4-41%)~(λ/4+18%)の範囲であった。
(Sample 7: Example 4)
Sample 6 PMMA is polyethylene terephthalate (inherent viscosity 0.65, melting point 255 ° C., F20S manufactured by Toray Industries, Inc.), PEN is polyethylene terephthalate copolymer (inherent viscosity 0.72, cyclohexanedicarboxylic acid component 29 mol%, spiroglycol component 20 mol%) Dielectric multilayer film in the same manner as in Sample 6, except that the copolymer was changed to PBT (Toraycon 1401-X06, manufactured by Toray Industries, Inc.) (polyethylene terephthalate copolymer: PBT = 1: 0.2 (mass ratio)). Is a dielectric type narrow-band bandpass filter containing an organic polymer ((1) Δλ / λ0 × 100 = 1.8%, first maximum transmittance wavelength λ = 574 nm, (2) Δλ / λ0 × 100 = 2 3% and the second maximum transmittance wavelength λ = 673 nm). Since the refractive index of polyethylene terephthalate is 1.7 and the refractive index of polyethylene terephthalate copolymer + PBT is 1.5, the optical film thickness of each refractive index layer in the narrow-band bandpass filter of Example 4 is λ = For 574 nm, the range is from (λ / 4-31%) to (λ / 4 + 39%), and for λ = 673 nm, the range is from (λ / 4-41%) to (λ / 4 + 18%). It was in range.
 (試料8:実施例5)
 試料6のPMMAをF系ポリマーであるビニリデンフロライド(DYNEON THVP 2030GX,DYNEON,LLC製)に変更した以外は試料6と同様にして、誘電多層膜が有機ポリマーを含む誘電体型の狭帯域バンドパスフィルター((1)Δλ/λ0×100=1.8%、1つ目の最大透過率波長λ=574nm、(2)Δλ/λ0×100=2.3%、2つ目の最大透過率波長λ=673nm)を作製した。ビニリデンフロライドの屈折率は1.7であることから、実施例5の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、λ=574nmに対しては、(λ/4-31%)~(λ/4+39%)の範囲であり、λ=673nmに対しては、(λ/4-41%)~(λ/4+18%)の範囲であった。
(Sample 8: Example 5)
Dielectric type narrowband bandpass with dielectric multilayer film containing organic polymer in the same way as sample 6, except that PMMA of sample 6 is changed to vinylidene fluoride (DYNEON THVP 2030GX, DYNEON, LLC) which is F-based polymer Filter ((1) Δλ / λ0 × 100 = 1.8%, first maximum transmittance wavelength λ = 574 nm, (2) Δλ / λ0 × 100 = 2.3%, second maximum transmittance wavelength (λ = 673 nm). Since the refractive index of vinylidene fluoride is 1.7, the optical film thickness of each refractive index layer in the narrow-band bandpass filter of Example 5 is (λ / 4−31%) for λ = 574 nm. ) To (λ / 4 + 39%), and for λ = 673 nm, the range was (λ / 4-41%) to (λ / 4 + 18%).
 (試料9:実施例6)
 (低屈折率膜用塗布液の調製)
 純水500質量部に、撹拌しながら水溶性樹脂PVA224(株式会社クラレ製、ケン化度88%、重合度1000)10.0質量部を添加し、さらに水溶性樹脂R1130(クラレ株式会社製、シラノール変性ポリビニルアルコール)5.0質量部、次いで水溶性樹脂ニチゴーGポリマーAZF8035W(日本合成化学工業株式会社製)2.0質量部を添加し、混合しながら70℃に昇温溶解することで、水溶性樹脂の水溶液を得た。
(Sample 9: Example 6)
(Preparation of coating solution for low refractive index film)
To 500 parts by mass of pure water, 10.0 parts by mass of water-soluble resin PVA224 (manufactured by Kuraray Co., Ltd., saponification degree 88%, polymerization degree 1000) is added, and further water-soluble resin R1130 (manufactured by Kuraray Co., Ltd., By adding 5.0 parts by mass of silanol-modified polyvinyl alcohol) and then 2.0 parts by mass of water-soluble resin Nichigo G polymer AZF8035W (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) An aqueous solution of a water-soluble resin was obtained.
 次いで、平均粒径が5nmのシリカ微粒子を含む10質量%酸性シリカゾル(スノーテックス(登録商標)OXS、日産化学工業株式会社製)350質量部中に上記水溶性樹脂水溶液の全量を加え混合した。さらにアニオン系活性剤として、ラピゾールA30(日本油脂株式会社製)を0.3質量部添加し、1時間撹拌後、純水で1000.0gに仕上げることで低屈折率膜用塗布液を調製した。 Next, the entire amount of the water-soluble resin aqueous solution was added to and mixed with 350 parts by mass of 10% by mass acidic silica sol (Snowtex (registered trademark) OXS, manufactured by Nissan Chemical Industries, Ltd.) containing silica fine particles having an average particle diameter of 5 nm. Furthermore, 0.3 parts by mass of Lapisol A30 (manufactured by Nippon Oil & Fats Co., Ltd.) was added as an anionic activator, and after stirring for 1 hour, the coating solution for low refractive index film was prepared by finishing to 1000.0 g with pure water .
 <酸化チタンゾル水系分散液の調製>
 酸化チタン水和物を水に懸濁させた水性懸濁液(TiO濃度 100g/L)10Lに、水酸化ナトリウム水溶液(濃度10モル/L)を30L撹拌下で添加し、90℃に昇温し、5時間熟成した後、塩酸で中和し、濾過・水洗した。なお、上記反応(処理)において、酸化チタン水和物は公知の手法に従い、硫酸チタン水溶液を熱加水分解して得られたものを用いた。
<Preparation of aqueous dispersion of titanium oxide sol>
Sodium hydroxide aqueous solution (concentration 10 mol / L) was added to 10 L of an aqueous suspension (TiO 2 concentration 100 g / L) in which titanium oxide hydrate was suspended in water with stirring, and the temperature was raised to 90 ° C. After warming and aging for 5 hours, it was neutralized with hydrochloric acid, filtered and washed with water. In the above reaction (treatment), titanium oxide hydrate was obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
 塩基で処理した酸化チタン水和物を、TiO濃度が20g/Lになるよう純水に懸濁させ、撹拌下、クエン酸をTiO量に対し0.4モル%加え昇温した。液温が95℃になったところで、濃塩酸を塩酸濃度30g/Lになるように加え、液温を維持しつつ3時間撹拌した。 The titanium oxide hydrate treated with the base was suspended in pure water so that the TiO 2 concentration was 20 g / L, and 0.4 mol% of citric acid was added to the amount of TiO 2 with stirring to raise the temperature. When the liquid temperature reached 95 ° C., concentrated hydrochloric acid was added to a hydrochloric acid concentration of 30 g / L, and the mixture was stirred for 3 hours while maintaining the liquid temperature.
 得られた酸化チタンゾル液のpHおよびゼータ電位を測定したところ、pHは1.4、ゼータ電位は+40mVであった。さらに、マルバーン社製ゼータサイザーナノにより粒径測定を行ったところ、平均粒径は35nm、単分散度は16%であった。また、酸化チタンゾル液を105℃で3時間乾燥させて粒子紛体を得て、日本電子データム株式会社製、JDX-3530型を用いてX線回折の測定を行い、ルチル型粒子であることを確認した。また、体積平均粒径は10nmであった。 When the pH and zeta potential of the obtained titanium oxide sol solution were measured, the pH was 1.4 and the zeta potential was +40 mV. Furthermore, when the particle size was measured with a Zetasizer Nano manufactured by Malvern, the average particle size was 35 nm, and the monodispersity was 16%. Also, the titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain a particle powder, and X-ray diffraction measurement was performed using JDX-3530 type manufactured by JEOL Datum Co., Ltd. to confirm that the particles were rutile type particles. did. Moreover, the volume average particle diameter was 10 nm.
 この体積平均粒径が10nmであるルチル型酸化チタン微粒子を含む20.0質量%二酸化チタンゾル水系分散液1kgに、純水1kgを添加し、10.0質量%酸化チタンゾル水系分散液を得た。 1 kg of pure water was added to 1 kg of a 20.0 mass% titanium dioxide sol aqueous dispersion containing rutile-type titanium oxide fine particles having a volume average particle diameter of 10 nm to obtain a 10.0 mass% titanium oxide sol aqueous dispersion.
 <ケイ酸水溶液の調製>
 SiO濃度が2.0質量%であるケイ酸水溶液を調製した。
<Preparation of silicic acid aqueous solution>
An aqueous silicic acid solution having a SiO 2 concentration of 2.0 mass% was prepared.
 <シリカ変性酸化チタンゾル水系分散液の調製>
 上記の10.0質量%酸化チタンゾル水系分散液0.5kgに純水2kgを加えた後、90℃に加熱した。次いで、上記ケイ酸水溶液1.3kgを徐々に添加し、オートクレーブ中、175℃で18時間加熱処理を行った。その後、さらに濃縮することにより、ルチル型構造を有する二酸化チタンであり被覆層がSiOであるシリカ変性二酸化チタンゾルを20.0質量%の濃度で含む、シリカ変性二酸化チタンゾル水系分散液を得た。
<Preparation of silica-modified titanium oxide sol aqueous dispersion>
2 kg of pure water was added to 0.5 kg of the 10.0 mass% titanium oxide sol aqueous dispersion, and the mixture was heated to 90 ° C. Next, 1.3 kg of the above silicic acid aqueous solution was gradually added, and heat treatment was performed at 175 ° C. for 18 hours in an autoclave. Thereafter, further concentration was performed to obtain a silica-modified titanium dioxide sol aqueous dispersion containing a silica-modified titanium dioxide sol having a rutile structure and a coating layer of SiO 2 at a concentration of 20.0% by mass.
 (高屈折率膜用塗布液の調製)
 上記で得られた20.0質量%のシリカ変性酸化チタン粒子ゾル水系分散液289質量部、1.92質量%のクエン酸水溶液105質量部、10質量%のアリルエーテルコポリマー(AKM-0531、日油株式会社製)水溶液20質量部、および3質量%のホウ酸水溶液90質量部を混合して、シリカ変性酸化チタンゾル分散液を調製した。
(Preparation of coating solution for high refractive index film)
20.0% by mass of silica-modified titanium oxide particle sol aqueous dispersion obtained above, 289 parts by mass, 1.92% by mass of citric acid aqueous solution 105 parts by mass, 10% by mass of allyl ether copolymer (AKM-0531, JP (Oil Corporation) 20 parts by mass of an aqueous solution and 90 parts by mass of a 3% by mass boric acid aqueous solution were mixed to prepare a silica-modified titanium oxide sol dispersion.
 次いで、シリカ変性酸化チタンゾル分散液を撹拌しながら、純水20質量部、およびポリビニルアルコール(PVA217、クラレ株式会社製)の5.0質量%水溶液335質量部を添加した。さらに、アニオン性界面活性剤(ラピゾールA30、日油株式会社製)の1質量%水溶液を20質量部添加し、最後に純水で全量を1000質量部とし、高屈折率膜用塗布液を調製した。 Next, while stirring the silica-modified titanium oxide sol dispersion, 20 parts by mass of pure water and 335 parts by mass of a 5.0% by mass aqueous solution of polyvinyl alcohol (PVA217, manufactured by Kuraray Co., Ltd.) were added. Furthermore, 20 parts by mass of a 1% by mass aqueous solution of an anionic surfactant (Lapisol A30, manufactured by NOF Corporation) was added, and finally the total amount was 1000 parts by mass with pure water to prepare a coating solution for a high refractive index film. did.
 (光学フィルムの形成)
 塗布装置は、21層同時塗布可能なスライドホッパー塗布装置を用いた。30cm×30cmサイズで50μm厚みのポリエチレンテレフタレート(PET)フィルム(A4300:両面易接着層、東洋紡株式会社製)上に、上記で調製した低屈折率膜用塗布液および高屈折率膜用塗布液を、45℃に保温しながら、PET/(高屈折率膜(78nm)/低屈折率膜(119nm))/高屈折率膜(119nm)/低屈折率膜(238nm)/(高屈折率膜(78nm)/低屈折率膜(119nm))/高屈折率膜78nm)/低屈折率膜(238nm)の層構成に成る様に同時重層塗布した。その直後、膜面が15℃以下となる条件で冷風を1分間吹き付けてセットさせた後、80℃の温風を吹き付けて乾燥させて、誘電多層膜が有機ポリマーと金属酸化物とを含む誘電体型の狭帯域バンドパスフィルター(図5、Δλ/λ0×100=3.8%、設定波長λ=666nm)を作製した。実施例6の狭帯域バンドパスフィルターの構成は、[(H/H/2L/H/(L/L]L([]内は、上記層構成3に対応、m=n=5、s=2)である。高屈折率膜の屈折率は1.9、低屈折率膜の屈折率は1.4であることから、実施例6の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-11%)~(λ/4+36%)の範囲であった。
(Formation of optical film)
As the coating apparatus, a slide hopper coating apparatus capable of simultaneously coating 21 layers was used. On the 30 cm × 30 cm size 50 μm thick polyethylene terephthalate (PET) film (A4300: double-sided easy-adhesive layer, manufactured by Toyobo Co., Ltd.), the coating solution for the low refractive index film and the coating solution for the high refractive index film prepared above are used. PET / (High refractive index film (78 nm) / Low refractive index film (119 nm)) 5 / High refractive index film (119 nm) / Low refractive index film (238 nm) / (High refractive index film) (78 nm) / low refractive index film (119 nm)) 5 / high refractive index film 78 nm) / low refractive index film (238 nm) The layers were applied simultaneously. Immediately after that, after setting the film surface by blowing cold air for 1 minute under the condition that the film surface is 15 ° C. or less, the dielectric multilayer film is a dielectric film containing an organic polymer and a metal oxide by drying by blowing hot air of 80 ° C. A body-shaped narrow band-pass filter (FIG. 5, Δλ / λ0 × 100 = 3.8%, set wavelength λ = 666 nm) was produced. The configuration of the narrow-band bandpass filter of Example 6 is [(H 1 L 1 ) 5 / H 1 / 2L 1 / H 1 / (L 1 H 1 ) 5 / L 1 ] L 1 (inside [], Corresponding to the layer structure 3 above, m = n = 5, s = 2). Since the refractive index of the high refractive index film is 1.9 and the refractive index of the low refractive index film is 1.4, the optical film thickness of each refractive index layer in the narrowband bandpass filter of Example 6 is (λ / 4-11%) to (λ / 4 + 36%).
 (試料10:実施例7)
 試料9と同様にし、層構成をPET/(低屈折率膜(119nm)/高屈折率膜(78nm)/低屈折率膜(119nm)/高屈折率膜(157nm)/低屈折率膜(119nm)/(高屈折率膜(78nm)/低屈折率膜(119nm))/高屈折率膜(157nm)とする以外は同様にして、誘電多層膜が有機ポリマーと金属酸化物とを含み、高屈折率膜のキャビティーを有する誘電体型の狭帯域バンドパスフィルター(図6、Δλ/λ0×100=5.1%、設定波長λ=625nm透過)を作製した。実施例7の狭帯域バンドパスフィルターの構成は、L[(H/2H/(L)]2H([]内は、上記層構成1に対応、m=n=5、s=2)である。実施例7の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-5%)~(λ/4+7%)の範囲であった。
(Sample 10: Example 7)
Similar to Sample 9, the layer structure is PET / (low refractive index film (119 nm) / high refractive index film (78 nm) 5 / low refractive index film (119 nm) / high refractive index film (157 nm) / low refractive index film ( 119 nm) / (High refractive index film (78 nm) / Low refractive index film (119 nm)) 5 / Similarly, the dielectric multilayer film contains an organic polymer and a metal oxide, except that it is a high refractive index film (157 nm). Then, a dielectric type narrow band-pass filter (FIG. 6, Δλ / λ0 × 100 = 5.1%, set wavelength λ = 625 nm transmission) having a cavity of a high refractive index film was produced. The configuration of the band-pass filter is L 1 [(H 1 L 1 ) 5 / 2H 2 / (L 1 H 1 ) 5 L 1 )] 2H 2 (inside [], the layer configuration 1 corresponds to m = n = 5, s = 2). The optical film thickness of each refractive index layer in the narrow band-pass filter of Example 7 was in the range of (λ / 4-5%) to (λ / 4 + 7%).
 (試料11:実施例8)
 試料10の誘電多層膜が形成されている面とは反対側のPETフィルム上に、体積比でATO(アンチモンドープ酸化スズ)/PVA224=4/6となる混合物層を乾燥膜厚で8μm塗設して可視光遮蔽層を設けた以外は試料10と同様にして試料11を作製した。
(Sample 11: Example 8)
On the PET film opposite to the surface on which the dielectric multilayer film of Sample 10 is formed, a mixture layer having a volume ratio of ATO (antimony-doped tin oxide) / PVA224 = 4/6 is applied in a dry film thickness of 8 μm. Sample 11 was prepared in the same manner as Sample 10 except that a visible light shielding layer was provided.
 (試料12:実施例9)
 試料10の誘電多層膜が形成されている面とは反対側のPETフィルム上に、PVA224、紫外線吸収材であるTINUVIN-P(チバ・ジャパン株式会社製)、TINUVIN326(チバ・ジャパン株式会社製)とを体積比で80/15/5含む乾燥膜厚3μmの機能性膜(紫外線吸収層)を設けて試料12を作製した。
(Sample 12: Example 9)
On the PET film opposite to the surface on which the dielectric multilayer film of Sample 10 is formed, PVA224, TINUVIN-P (manufactured by Ciba Japan Co., Ltd.), which is an ultraviolet absorber, and TINUVIN326 (manufactured by Ciba Japan Co., Ltd.) Was provided with a functional film (ultraviolet absorption layer) having a dry film thickness of 3 μm containing 80/15/5 in volume ratio.
 (試料13:実施例10)
 メチルエチルケトン溶媒 90質量部にUV硬化型ハードコート材(UV-7600B、日本合成化学工業株式会社製)7.5質量部を添加し、次いで光重合開始剤(イルガキュア(登録商標)184、チバ・スペシャリティ・ケミカルズ社製)0.5質量部を添加し、撹拌混合した。次いで、ATO粉末(超微粒子ATO、住友金属鉱山株式会社製)2質量部を添加し、ホモジナイザーで高速撹拌することで、ハードコート層用塗布液を作製した。
(Sample 13: Example 10)
7.5 parts by mass of UV curable hard coat material (UV-7600B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) is added to 90 parts by mass of methyl ethyl ketone solvent, and then a photopolymerization initiator (Irgacure (registered trademark) 184, Ciba Specialty) (Chemicals Co., Ltd.) 0.5 parts by mass was added and stirred and mixed. Next, 2 parts by mass of ATO powder (ultrafine particle ATO, manufactured by Sumitomo Metal Mining Co., Ltd.) was added and stirred at high speed with a homogenizer to prepare a coating solution for a hard coat layer.
 試料10のPETフィルムの誘電多層膜がある側とは逆側のPETフィルム表面に、上記ハードコート層用塗布液を乾燥膜厚3μmになる様にワイヤーバーにより塗布し、70℃で3分間熱風乾燥した。その後、大気下で、アイグラフィックス社製のUV硬化装置(高圧水銀ランプ使用)にて、400mJ/cmの照射量で硬化を行うことにより、赤外光遮断性のハードコート層を形成し、試料13を作製した。 On the surface of the PET film of Sample 10 opposite to the side where the dielectric multilayer film is provided, the hard coat layer coating solution is applied with a wire bar to a dry film thickness of 3 μm, and hot air is applied at 70 ° C. for 3 minutes. Dried. After that, by curing with an irradiation amount of 400 mJ / cm 2 with a UV curing device (using a high-pressure mercury lamp) manufactured by Eye Graphics Co., Ltd. in the atmosphere, an infrared light blocking hard coat layer is formed. Sample 13 was produced.
 (試料14:比較例4)
 PETフィルム上に、公知のスパッタ法を用いて、Ta,SiOを、PET/(SiO(110nm)/Ta(64.5nm)/SiO(110nm)/Ta(129nm)/SiO(110nm)/(Ta(64.5nm)/SiO(110nm))/Ta(129nm)の順に積層した、誘電多層膜が無機物からなる狭帯域バンドパスフィルター(Δλ/λ0×100=5.1%、最大透過率波長λ=625nm)を作製した。比較例4の狭帯域バンドパスフィルターの構成は、L[(H/2H/(L)]2H([]内は、上記層構成1に対応、m=n=5、s=2)である。比較例4の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-5%)~(λ/4+6%)の範囲であった。
(Sample 14: Comparative Example 4)
On a PET film, using a known sputtering method, Ta 2 O 5 and SiO 2 are changed into PET / (SiO 2 (110 nm) / Ta 2 O 5 (64.5 nm) 5 / SiO 2 (110 nm) / Ta 2 ). O 5 (129nm) / stacked in this order SiO 2 (110nm) / (Ta 2 O 5 (64.5nm) / SiO 2 (110nm)) 5 / Ta 2 O 5 (129nm), a dielectric multilayer film made of an inorganic substance A narrow-band bandpass filter (Δλ / λ0 × 100 = 5.1%, maximum transmittance wavelength λ = 625 nm) was produced, and the configuration of the narrow-band bandpass filter of Comparative Example 4 was L 1 [(H 1 L 1 ) 5 / 2H 2 / (L 1 H 1 ) 5 L 1 )] 2H 2 (inside [], the layer configuration 1 corresponds to m = n = 5, s = 2). The optical film thickness of each refractive index layer in the narrow-band bandpass filter of Comparative Example 4 was in the range of (λ / 4-5%) to (λ / 4 + 6%).
 (試料15:実施例11)
 層構成をPET/(低屈折率膜(119nm)/高屈折率膜(78nm)/低屈折率膜(119nm)/高屈折率膜(180nm)/低屈折率膜(119nm)/(高屈折率膜(78nm)/低屈折率膜(119nm))/高屈折率膜(180nm)とする以外は実施例10と同様にして、誘電多層膜が有機ポリマーと金属酸化物とを含み、高屈折率膜のキャビティーを有する誘電体型の狭帯域バンドパスフィルター(図7、Δλ/λ0=3.0%、設定波長λ=649nm透過)を作製した。実施例10の狭帯域バンドパスフィルターにおける各屈折率層の光学膜厚は、(λ/4-9%)~(λ/4+5%)の範囲であった。
(Sample 15: Example 11)
Layer structure is PET / (low refractive index film (119 nm) / high refractive index film (78 nm) 5 / low refractive index film (119 nm) / high refractive index film (180 nm) / low refractive index film (119 nm) / (high refractive index The dielectric multilayer film contains an organic polymer and a metal oxide in the same manner as in Example 10 except that the refractive index film (78 nm) / low refractive index film (119 nm)) 5 / high refractive index film (180 nm) is used. A dielectric type narrow band-pass filter (FIG. 7, Δλ / λ0 = 3.0%, set wavelength λ = 649 nm transmission) having a cavity of a refractive index film was produced. The optical film thickness of each refractive index layer was in the range of (λ / 4-9%) to (λ / 4 + 5%).
 (透過率の測定)
 分光光度計(日立製作所社製 U-4000型)に透過ユニットを付け、ブランク測定でベースライン補正したのち、誘電多層膜の面側を測定面にして、400~700nmの領域で、0.5nm間隔で600点の透過率を測定し、狭帯域パスバンドの波長と透過率を求めた。
(Measurement of transmittance)
A spectrophotometer (U-4000 model, manufactured by Hitachi, Ltd.) is attached with a transmission unit, and after baseline correction by blank measurement, the surface side of the dielectric multilayer film is used as the measurement surface, and 0.5 nm in the region of 400 to 700 nm. The transmittance at 600 points was measured at intervals, and the wavelength and transmittance of the narrowband passband were obtained.
 (耐久性の評価)
 <曲げ試験>
 上記作製した各試料について、JIS K5600-5-1(1999)に準拠した屈曲試験法に基づき、屈曲試験機タイプ1(井元製作所社製、型式IMC-AOF2、マンドレル径φ20mm)を用いて、300回の屈曲試験を行った。屈曲試験前後での狭帯域パスバンドの波長における透過率比(屈曲試験前の透過率(%)に対する屈曲試験後の透過率(%))を求めた。透過率比の値が小さいほど、屈曲時の柔軟性に優れていることを表す。
(Durability evaluation)
<Bending test>
For each of the above prepared samples, based on a bending test method based on JIS K5600-5-1 (1999), using a bending tester type 1 (manufactured by Imoto Seisakusho, model IMC-AOF2, mandrel diameter φ20 mm), 300 Bending tests were performed. The transmittance ratio (the transmittance (%) after the bending test with respect to the transmittance (%) before the bending test) at the wavelength of the narrow band pass band before and after the bending test was determined. It represents that the flexibility at the time of bending is excellent, so that the value of the transmittance ratio is small.
 <強制劣化後の曲げ試験>上記作製した各試料について、温度60℃、相対湿度85%に設定したサーモ装置に投入し、強制劣化前後での狭帯域パスバンドの波長における透過率比(強制劣化試験前の透過率(%)に対する耐湿耐熱試験後の透過率(%))を求めた。透過率比の値が小さいほど、高温高湿時の柔軟性に優れていることを表す。 <Bending test after forced deterioration> For each of the above-prepared samples, it was put into a thermo-device set at a temperature of 60 ° C. and a relative humidity of 85%, and the transmittance ratio at the wavelength of the narrow band pass band before and after the forced deterioration (forced deterioration) The transmittance (%) after the moisture and heat resistance test with respect to the transmittance (%) before the test was determined. The smaller the transmittance ratio value, the better the flexibility at high temperature and high humidity.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に耐久性評価結果を示す。本発明を満たす構成が、曲げ試験、強制劣化試験とも、狭帯域パスバンドにおける波長の透過率低下が少なく、耐久性に優れていることが判る。 Table 2 shows the durability evaluation results. It can be seen that the configuration satisfying the present invention is excellent in durability in both the bending test and the forced deterioration test with little decrease in wavelength transmittance in a narrow band pass band.
 本出願は、2012年1月13日に出願された日本特許出願番号2012-005083号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2012-005083 filed on January 13, 2012, the disclosure content of which is referenced and incorporated as a whole.

Claims (8)

  1.  有機ポリマーを含む誘電多層膜を有する、誘電体型狭帯域バンドパスフィルター。 Dielectric type narrow-band bandpass filter with dielectric multilayer film containing organic polymer.
  2.  前記誘電多層膜が、金属酸化物粒子を含む、請求項1に記載の狭帯域バンドパスフィルター。 The narrow band-pass filter according to claim 1, wherein the dielectric multilayer film includes metal oxide particles.
  3.  前記誘電多層膜が、下記(1)で示される層構成を含む、請求項1または2に記載の狭帯域バンドパスフィルター:
    Figure JPOXMLDOC01-appb-C000001
     この際、H、H、およびHは、(λ/4-λ/4×0.5)以上(λ/4+λ/4×0.5)以下の光学膜厚を有する誘電多層膜の高屈折率膜を示し、L、およびLは、(λ/4-λ/4×0.5)以上(λ/4+λ/4×0.5)以下の光学膜厚を有する誘電多層膜の低屈折率膜を示し、ここで、λは、フィルターの分光透過率曲線の狭帯域パスバンドにおける最大透過率波長を表わし、m、nは1以上の整数であり、sは2以上の整数であり、(Hおよび(Lとは、それぞれ(H)をm回、および(L)をn回繰り返して積層するという意味であり、sHはキャビティー層である。
    The narrow-band bandpass filter according to claim 1 or 2, wherein the dielectric multilayer film includes a layer structure represented by the following (1):
    Figure JPOXMLDOC01-appb-C000001
    At this time, H 1 , H 2 , and H 3 are dielectric multilayer films having an optical film thickness of (λ / 4−λ / 4 × 0.5) or more and (λ / 4 + λ / 4 × 0.5) or less. A dielectric multilayer film having a high refractive index film, wherein L 1 and L 2 have an optical film thickness of (λ / 4−λ / 4 × 0.5) or more and (λ / 4 + λ / 4 × 0.5) or less Λ represents the maximum transmittance wavelength in the narrow band pass band of the spectral transmittance curve of the filter, m and n are integers of 1 or more, and s is an integer of 2 or more. (H 1 L 1 ) m and (L 2 H 3 ) n mean that (H 1 L 1 ) is repeated m times and (L 2 H 3 ) is repeated n times, respectively. , SH is a cavity layer.
  4.  さらに光遮蔽手段、または前記誘電多層膜とは異なる機能性層を有する、請求項1~3のいずれか1項に記載の誘電体型狭帯域バンドパスフィルター。 The dielectric narrow band-pass filter according to any one of claims 1 to 3, further comprising a light shielding means or a functional layer different from the dielectric multilayer film.
  5.  前記機能性層がハードコート層である、請求項4に記載の狭帯域バンドパスフィルター。 The narrow band-pass filter according to claim 4, wherein the functional layer is a hard coat layer.
  6.  最大透過率を示す波長が400nm以上500nm以下の領域に存在する、または最大透過率を示す波長が630nm以上700nm以下の領域に存在する、請求項1~5のいずれか1項に記載の狭帯域バンドパスフィルター。 The narrowband according to any one of claims 1 to 5, wherein a wavelength indicating the maximum transmittance exists in a region of 400 nm to 500 nm or a wavelength indicating the maximum transmittance exists in a region of 630 nm to 700 nm. Bandpass filter.
  7.  植物成長促進用である、請求項1~6のいずれか1項に記載の狭帯域バンドパスフィルター。 The narrow-band bandpass filter according to any one of claims 1 to 6, which is used for promoting plant growth.
  8.  請求項1~6のいずれか1項に記載の狭帯域バンドパスフィルターを用いて、植物の成長を促進させる、植物の成長促進方法。 A plant growth promoting method for promoting plant growth using the narrow-band bandpass filter according to any one of claims 1 to 6.
PCT/JP2012/081829 2012-01-13 2012-12-07 Narrow-region bandpass filter WO2013105374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012005083 2012-01-13
JP2012-005083 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105374A1 true WO2013105374A1 (en) 2013-07-18

Family

ID=48781334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081829 WO2013105374A1 (en) 2012-01-13 2012-12-07 Narrow-region bandpass filter

Country Status (2)

Country Link
JP (1) JPWO2013105374A1 (en)
WO (1) WO2013105374A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230477A (en) * 2014-06-06 2015-12-21 コニカミノルタ株式会社 Optical reflection film
KR20200088125A (en) * 2019-01-14 2020-07-22 경기대학교 산학협력단 Selective Filtering Device of Electromagnetic Wave and Electromagnetic wave Sensor System
TWI705269B (en) * 2019-03-27 2020-09-21 群光電子股份有限公司 Image captured device, optical filter film, and method for manufacturing optical thin film
US10837905B2 (en) 2018-09-14 2020-11-17 Kabushiki Kaisha Toshiba Optical sensor
KR20210030526A (en) * 2019-09-09 2021-03-18 킹레이 테크놀로지 컴퍼니 리미티드 IR Narrow Band Pass Filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245104A (en) * 1990-02-23 1991-10-31 Matsushita Electric Works Ltd Multilayered interference film
JPH08160220A (en) * 1994-12-05 1996-06-21 Fujikura Ltd Optical multilayer film filter
JP2002509271A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Color shift film
JP2002535735A (en) * 1999-01-29 2002-10-22 キネティック リミテッド Multilayer optical filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245104A (en) * 1990-02-23 1991-10-31 Matsushita Electric Works Ltd Multilayered interference film
JPH08160220A (en) * 1994-12-05 1996-06-21 Fujikura Ltd Optical multilayer film filter
JP2002509271A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Color shift film
JP2002535735A (en) * 1999-01-29 2002-10-22 キネティック リミテッド Multilayer optical filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230477A (en) * 2014-06-06 2015-12-21 コニカミノルタ株式会社 Optical reflection film
US10837905B2 (en) 2018-09-14 2020-11-17 Kabushiki Kaisha Toshiba Optical sensor
KR20200088125A (en) * 2019-01-14 2020-07-22 경기대학교 산학협력단 Selective Filtering Device of Electromagnetic Wave and Electromagnetic wave Sensor System
KR102250409B1 (en) 2019-01-14 2021-05-12 경기대학교 산학협력단 Selective Filtering Device of Electromagnetic Wave and Electromagnetic wave Sensor System
TWI705269B (en) * 2019-03-27 2020-09-21 群光電子股份有限公司 Image captured device, optical filter film, and method for manufacturing optical thin film
KR20210030526A (en) * 2019-09-09 2021-03-18 킹레이 테크놀로지 컴퍼니 리미티드 IR Narrow Band Pass Filter
KR102288217B1 (en) 2019-09-09 2021-08-10 킹레이 테크놀로지 컴퍼니 리미티드 IR Narrow Band Pass Filter

Also Published As

Publication number Publication date
JPWO2013105374A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6201756B2 (en) Infrared shielding film
JP6044638B2 (en) Infrared shield
JP6115675B2 (en) Optical reflection film and optical reflector using the same
JP5880438B2 (en) Near-infrared reflective film, manufacturing method thereof, and near-infrared reflector provided with near-infrared reflective film
JP6070550B2 (en) Optical reflective film
WO2014010562A1 (en) Infrared-shielding film
WO2013151136A1 (en) Infrared-shielding film and infrared-shielding element
WO2013105374A1 (en) Narrow-region bandpass filter
WO2014069507A1 (en) Optical reflection film, infrared-shielding film, and process for producing same
WO2013077274A1 (en) Infrared shielding film
JPWO2014171494A1 (en) Optical reflective film, method for producing the same, and optical reflector using the same
JP2018015898A (en) Heat-shielding film
JP5831242B2 (en) Infrared shielding film evaluation method and infrared shielding film manufacturing method
JP6264376B2 (en) LAMINATED REFLECTIVE FILM, MANUFACTURING METHOD THEREOF, AND IR Shield
JP6787336B2 (en) Optical reflective film and optical reflector
JP6176256B2 (en) Optical reflection film and optical reflector using the same
JP6759697B2 (en) Roll-shaped optical reflective film
WO2014148366A1 (en) Light reflecting film and fabrication method therefor
JP6520240B2 (en) Optical reflective film and method of manufacturing the same
JP2016090878A (en) Optical reflection film
JP2016138906A (en) Optical reflective film and optical reflector
JP2015215413A (en) Ultraviolet ray-shielding film
JP2016057537A (en) Optical reflection film, method for producing the same and optical reflection body prepared therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864999

Country of ref document: EP

Kind code of ref document: A1