WO2013105310A1 - Aluminum compound, starting material for forming thin film, and method for producing thin film - Google Patents

Aluminum compound, starting material for forming thin film, and method for producing thin film Download PDF

Info

Publication number
WO2013105310A1
WO2013105310A1 PCT/JP2012/075334 JP2012075334W WO2013105310A1 WO 2013105310 A1 WO2013105310 A1 WO 2013105310A1 JP 2012075334 W JP2012075334 W JP 2012075334W WO 2013105310 A1 WO2013105310 A1 WO 2013105310A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
raw material
aluminum
aluminum compound
compound
Prior art date
Application number
PCT/JP2012/075334
Other languages
French (fr)
Japanese (ja)
Inventor
雅子 畑▲瀬▼
山田 直樹
桜井 淳
翼 白鳥
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Publication of WO2013105310A1 publication Critical patent/WO2013105310A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/062Al linked exclusively to C
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/066Aluminium compounds with C-aluminium linkage compounds with Al linked to an element other than Al, C, H or halogen (this includes Al-cyanide linkage)
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • the present invention relates to a novel aluminum compound having a specific organic ligand, a raw material for forming a thin film containing the compound, and a method for producing a thin film using the raw material to form a thin film containing aluminum. .
  • Thin film materials containing aluminum elements exhibit specific electrical and optical properties and are applied in various applications.
  • aluminum and aluminum alloy thin films are used as LSI wiring materials because of their high conductivity and electromigration resistance.
  • Aluminum oxide thin films are hard coating films for machine parts and tools; semiconductor memory insulating films and gates. Insulating films, dielectric films; electronic components such as MR heads for hard disks; optical glass for optical communication circuits and the like.
  • Examples of the method for producing the thin film include a sputtering method, an ion plating method, a MOD method such as a coating pyrolysis method and a sol-gel method, a chemical vapor deposition method, etc., but has excellent composition controllability and step coverage. Since it has many advantages such as being suitable for mass production and capable of hybrid integration, a chemical vapor deposition (hereinafter sometimes simply referred to as CVD) method including an ALD (Atomic Layer Deposition) method. Is the optimal manufacturing process.
  • CVD chemical vapor deposition
  • ALD Atomic Layer Deposition
  • Patent Document 2 discloses a general formula containing the aluminum compound of the present invention as a raw material component of a catalyst composition, but there is no description of the aluminum compound of the present invention, and the use of this component as a raw material for forming a thin film. There is no description.
  • Patent Document 3 discloses a general formula containing the aluminum compound of the present invention as a thin film forming raw material, but there is no description of the aluminum compound of the present invention, and AlMe 2 is the most preferable thin film forming raw material among alkoxyalanes. (O i Pr) has been reported. However, AlMe 2 (O i Pr) has low thermal stability and is not a compound that can be satisfactorily satisfied as a raw material for chemical vapor deposition.
  • Patent Document 4 reports dimethylaluminum t-butoxide as a material for coating a base material with aluminum oxide by chemical vapor deposition.
  • dimethylaluminum t-butoxide has a high melting point and is not a compound that is sufficiently satisfactory as a raw material for chemical vapor deposition.
  • the properties required of a compound (precursor) suitable for the raw material are not pyrophoric and can be transported in a liquid state with a low melting point. That is, the vapor pressure is large and it is easy to vaporize, and the thermal stability is high.
  • a precursor that has become a gas phase by heating is transported to the substrate without being thermally decomposed, adsorbed to the substrate heated to a high temperature without being thermally decomposed, and then reacted with the reactive gas introduced. Therefore, in order to carry out the process of forming a thin film, the high thermal stability of the precursor is important. None of the conventional aluminum compounds can be satisfactorily satisfactory in these respects.
  • the present invention provides an aluminum compound represented by the following chemical formula (I), a raw material for forming a thin film containing the same, and a method for producing a thin film using the raw material to form a thin film containing aluminum. Is.
  • an aluminum compound that is not pyrophoric, liquid at room temperature, exhibits sufficient volatility, and has high thermal stability.
  • the compound is suitable as a raw material for forming a thin film by a CVD method.
  • FIG. 1 is a schematic view showing an example of an apparatus for chemical vapor deposition used in the method for producing a thin film containing aluminum according to the present invention.
  • FIG. 2 is a schematic view showing another example of the chemical vapor deposition apparatus used in the method for producing a thin film containing aluminum according to the present invention.
  • FIG. 3 is a schematic diagram showing another example of an apparatus for chemical vapor deposition used in the method for producing a thin film containing aluminum according to the present invention.
  • the aluminum compound of the present invention is represented by the above chemical formula (I), and is suitable as a precursor for a thin film production method having a vaporization step such as a CVD method. It is suitable as a precursor used in the above.
  • the secondary butyl group in the chemical formula (I) is a group having an optically active site, but the aluminum compound of the present invention is not particularly distinguished by the R-form and S-form, and either of them may be used. It may be a mixture of R and S isomers in any ratio.
  • the racemate is inexpensive to manufacture.
  • the aluminum compound of the present invention is not particularly limited by its production method, and is produced by applying a known reaction. As a manufacturing method, it can obtain by making secondary butyl alcohol react with trimethylaluminum, for example.
  • the thin film forming raw material of the present invention is a thin film precursor made of the above-described aluminum compound of the present invention, and its form varies depending on the manufacturing process to which the thin film forming raw material is applied.
  • the raw material for forming a thin film of the present invention does not contain a metal compound and a semimetal compound other than the aluminum compound.
  • the raw material for forming a thin film according to the present invention includes a compound and / or metalloid containing a metal other than aluminum in addition to the above aluminum compound.
  • the thin film forming raw material of the present invention may further contain an organic solvent and / or a nucleophilic reagent.
  • the raw material for forming a thin film of the present invention is suitable for chemical vapor deposition (hereinafter sometimes referred to as CVD raw material) because the physical properties of the aluminum compound as a precursor are suitable for CVD and ALD methods. Useful as.
  • the raw material for forming a thin film of the present invention is a raw material for chemical vapor deposition
  • the form is appropriately selected depending on the method such as the transport and supply method of the CVD method used.
  • the raw material for CVD is vaporized by heating and / or decompressing in a container in which the raw material is stored (hereinafter sometimes simply referred to as a raw material container), and is necessary.
  • Gas transport method, CVD which introduces the vapor into a film forming chamber (hereinafter sometimes referred to as a deposition reaction part) where a substrate is installed, together with a carrier gas such as argon, nitrogen, helium, etc.
  • a carrier gas such as argon, nitrogen, helium, etc.
  • the aluminum compound itself represented by the chemical formula (I) can be used as a CVD raw material.
  • the aluminum compound itself represented by the above chemical formula (I) or a solution obtained by dissolving the compound in an organic solvent can be used as a raw material for CVD.
  • These CVD raw materials may further contain other precursors, nucleophilic reagents and the like.
  • the CVD raw material is vaporized and supplied independently for each component (hereinafter sometimes referred to as a single source method), and the multi-component raw material is mixed in advance with a desired composition.
  • a method of vaporizing and supplying a mixed raw material hereinafter, sometimes referred to as a cocktail sauce method.
  • a cocktail sauce method a mixture of the aluminum compound of the present invention and another precursor or a mixed solution obtained by dissolving the mixture in an organic solvent can be used as a raw material for CVD.
  • This mixture or mixed solution may further contain a nucleophilic reagent and the like.
  • the CVD raw material containing the R body and the CVD raw material containing the S body may be vaporized separately. Or you may vaporize the raw material for CVD containing the mixture of R body and S body.
  • the organic solvent is not particularly limited and a well-known general organic solvent can be used.
  • the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, and n-butanol; acetates such as ethyl acetate, butyl acetate, and methoxyethyl acetate; tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Ethers such as triethylene glycol dimethyl ether, dibutyl ether, dioxane; ketones such as methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, Methylcyclohexane
  • the total amount of the precursor in the CVD raw material which is a solution obtained by dissolving the precursor in the organic solvent, is 0.01 to 2.0 mol / liter, particularly 0.05 to 1.0 mol / liter. It is preferable to make it liter.
  • the amount of the entire precursor is the amount of the aluminum compound of the present invention when the thin film forming raw material of the present invention does not contain a metal compound and a semimetal compound other than the aluminum compound of the present invention.
  • the forming raw material contains a compound containing a metal other than aluminum and / or a compound containing a metalloid in addition to the aluminum compound, this is the total amount of the aluminum compound of the present invention and another precursor.
  • Examples of the other precursor include one or more selected from the group consisting of compounds used as organic ligands such as alcohol compounds, glycol compounds, ⁇ -diketone compounds, cyclopentadiene compounds, and organic amine compounds.
  • organic ligands such as alcohol compounds, glycol compounds, ⁇ -diketone compounds, cyclopentadiene compounds, and organic amine compounds.
  • a compound with silicon or metal (except aluminum) can be used.
  • the precursor metal species include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, manganese, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver , Gold, zinc, gallium, indium, germanium, tin, lead, antimony, bismuth, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium , Lutetium.
  • Examples of the alcohol compound used as the organic ligand include methanol, ethanol, propanol, isopropyl alcohol, butanol, secondary butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, pentyl alcohol, isopentyl alcohol, and tertiary pentyl alcohol.
  • Alkyl alcohols 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2- (2-methoxyethoxy) ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1,1-dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2- (2-methoxyethoxy) -1,1-dimethylethanol , Ether alcohols such as 2-propoxy-1,1-diethylethanol, 2-s-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol; dimethylaminoethanol, ethylmethylaminoethanol Diethylaminoethanol, dimethylamino-2-pentanol, ethylmethylamino-2-pentanol, dimethylamino-2-methyl-2-pentanol, ethylmethylamino-2-methyl-2-pent
  • glycol compound used as the organic ligand of the other precursor examples include 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, 2,2- Dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3-butanediol, 2 -Ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4-hexanediol, Examples include 2,4-dimethyl-2,4-pentanediol.
  • ⁇ -diketone compounds include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, heptane-2,4-dione, 2-methylheptane-3,5-dione, 5 -Methylheptane-2,4-dione, 6-methylheptane-2,4-dione, 2,2-dimethylheptane-3,5-dione, 2,6-dimethylheptane-3,5-dione, 2,2 , 6-trimethylheptane-3,5-dione, 2,2,6,6-tetramethylheptane-3,5-dione, octane-2,4-dione, 2,2,6-trimethyloctane-3,5 -Dione, 2,6-dimethyloctane-3,5-dione, 2,9-dimethylnonane-4,6-dione, 2-methyl-6-e
  • Cyclopentadiene compounds include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, isopropylcyclopentadiene, butylcyclopentadiene, secondary butylcyclopentadiene, isobutylcyclopentadiene, tertiary butylcyclopentadiene, dimethylcyclopentadiene.
  • organic amine compounds used as the above-mentioned organic ligands include methylamine, ethylamine, propylamine, isopropylamine, butylamine, secondary butylamine, tertiary butylamine, isobutylamine, and dimethyl. Amine, diethylamine, dipropylamine, diisopropylamine, ethylmethylamine, propylmethylamine, Isopropyl methyl amine and the like.
  • precursors described above are known in the art, and their manufacturing methods are also known.
  • the inorganic salt of metal or its hydrate described above is reacted with the alkali metal alkoxide of the alcohol compound.
  • a precursor can be manufactured.
  • the metal inorganic salt or hydrate include metal halides and nitrates
  • examples of the alkali metal alkoxide include sodium alkoxide, lithium alkoxide, and potassium alkoxide.
  • the other precursor is preferably a compound having similar thermal and / or oxidative decomposition behavior to the aluminum compound of the present invention, and in the case of the cocktail source method, the heat and / or oxidation. In addition to being similar in decomposition behavior, those that do not undergo alteration due to chemical reaction during mixing are preferred.
  • examples of the precursor containing titanium, zirconium or hafnium include compounds represented by the following formulas (II-1) to (II-5).
  • M 1 represents titanium, zirconium or hafnium, and R a and R b each independently may be substituted with a halogen atom, and may have an oxygen atom in the chain.
  • R c represents an alkyl group having 1 to 8 carbon atoms
  • R d represents an alkylene group having 2 to 18 carbon atoms which may be branched
  • R e and R f each independently represents a hydrogen atom.
  • each of R g , R h , R k and R j independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and p represents an integer of 0 to 4 Q represents 0 or 2, r represents an integer of 0 to 3, s represents an integer of 0 to 4, and t represents an integer of 1 to 4.
  • an alkyl having 1 to 20 carbon atoms which may be substituted with a halogen atom and may contain an oxygen atom in the chain represented by R a and R b
  • the groups are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, sec-butyl, isobutyl, amyl, isoamyl, sec-amyl, tertiary amyl, hexyl, cyclohexyl, 1-methylcyclohexyl, heptyl, 3-heptyl , Isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl, trifluoromethyl, perfluorohexyl, 2-methoxyethyl, 2-ethoxyethy
  • alkyl group having 1 to 8 carbon atoms represented by R c examples include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl, amyl, isoamyl, secondary amyl, tertiary amyl. Hexyl, 1-ethylpentyl, cyclohexyl, 1-methylcyclohexyl, heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl and the like.
  • the alkylene group having 2 to 18 carbon atoms which may be branched and represented by R d is a group given by glycol, and examples of the glycol include 1,2-ethanediol, 1,2- Propanediol, 1,3-propanediol, 1,3-butanediol, 2,4-hexanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2,2-diethyl-1,3-butanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 1-methyl- 2,4-pentanediol and the like can be mentioned.
  • Examples of the alkyl group having 1 to 3 carbon atoms represented by R e and R f include methyl, ethyl, propyl, 2-propyl and the like, represented by R g , R h , R j and R k.
  • Examples of the alkyl group having 1 to 4 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, and isobutyl.
  • Examples of the precursor containing rare earth elements include compounds represented by the following formulas (III-1) to (III to 3).
  • R a and R b each independently represents an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom and may contain an oxygen atom in the chain
  • R c represents an alkyl group having 1 to 8 carbon atoms
  • R e and R f each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R g and R j each independently represent (It represents an alkyl group having 1 to 4 carbon atoms, p ′ represents an integer of 0 to 3, and r ′ represents an integer of 0 to 2.
  • the rare earth atom represented by M 2 includes scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, Examples thereof include ytterbium and lutetium, and examples of the group represented by R a , R b , R c , R e , R f , R g, and R j include the groups exemplified for the aforementioned titanium precursor.
  • the raw material for forming a thin film of the present invention may contain a nucleophilic reagent as needed to impart stability of the aluminum compound of the present invention and other precursors.
  • the nucleophilic reagent include ethylene glycol ethers such as glyme, diglyme, triglyme and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl-24-crown-8.
  • Crown ethers such as dibenzo-24-crown-8, ethylenediamine, N, N′-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7,7- Polyamines such as pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine and triethoxytriethyleneamine, cyclic polyamines such as cyclam and cyclen, pyridine, pyrrolidine and piperi Heterocyclic compounds such as gin, morpholine, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, oxazole, thiazole, oxathiolane, methyl acetoacetate, ethyl acetoacetate, ⁇ -ketoesters such
  • the raw material for forming a thin film according to the present invention should contain as little impurities metal elements as possible, impurities halogen such as impurity chlorine, and impurities organic components as much as possible.
  • the impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less.
  • the content of alkali metal elements, alkaline earth metal elements, and related elements that affect the electrical characteristics of the resulting thin film should be reduced. is required.
  • the impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, and still more preferably 1 ppm or less.
  • the total amount of impurity organic components is preferably 500 ppm or less, more preferably 50 ppm or less, and still more preferably 10 ppm or less.
  • each metal compound, organic solvent, and nucleophilic reagent is reduced in moisture. Therefore, it is better to remove moisture as much as possible before use.
  • the water content of each of the metal compound, metalloid compound, organic solvent and nucleophilic reagent is preferably 10 ppm or less, more preferably 1 ppm or less.
  • the raw material for forming a thin film of the present invention contains as few particles as possible in order to reduce or prevent particle contamination of the formed thin film.
  • the number of particles larger than 0.3 ⁇ m is preferably 100 or less in 1 ml of the liquid phase, and larger than 0.2 ⁇ m.
  • the number of particles is more preferably 1000 or less in 1 ml of the liquid phase, and the number of particles larger than 0.2 ⁇ m is further preferably 100 or less in 1 ml of the liquid phase.
  • the thin film production method of the present invention for producing a thin film using the raw material for forming a thin film of the present invention includes a substrate containing vapor obtained by vaporizing the raw material for thin film formation of the present invention, and a reactive gas used as necessary. It is introduced by a CVD method in which a thin film containing aluminum is grown and deposited on the surface of a substrate by introducing the film into an installed film forming chamber and then decomposing and / or chemically reacting the precursor on the substrate.
  • CVD method in which a thin film containing aluminum is grown and deposited on the surface of a substrate by introducing the film into an installed film forming chamber and then decomposing and / or chemically reacting the precursor on the substrate.
  • Examples of the reactive gas used as necessary include oxygen, ozone, nitrogen dioxide, nitric oxide, water vapor, hydrogen peroxide, formic acid, acetic acid, acetic anhydride, etc.
  • Examples of reducing substances include hydrogen, and examples of nitrides that can be used include organic amine compounds such as monoalkylamines, dialkylamines, trialkylamines, and alkylenediamines, hydrazine, and ammonia. Can be used alone or in combination of two or more.
  • examples of the transport and supply method include the gas transport method, the liquid transport method, the single source method, and the cocktail sauce method described above.
  • the above deposition methods include thermal CVD in which a raw material gas or a raw material gas and a reactive gas are reacted only by heat to deposit a thin film, plasma CVD using heat and plasma, photo CVD using heat and light, heat In addition, optical plasma CVD using light and plasma, and ALD in which the deposition reaction of CVD is divided into elementary processes and deposition is performed stepwise at the molecular level.
  • Examples of the material of the substrate include silicon; ceramics such as silicon nitride, titanium nitride, tantalum nitride, titanium oxide, titanium nitride, ruthenium oxide, zirconium oxide, hafnium oxide, and lanthanum oxide; glass; metals such as metal ruthenium.
  • Examples of the shape of the substrate include a plate shape, a spherical shape, a fiber shape, and a scale shape, and the surface of the substrate may be a flat surface or a three-dimensional structure such as a trench structure.
  • reaction temperature base
  • reaction pressure a deposition rate, etc.
  • the reaction temperature is preferably 100 ° C. or higher, which is the temperature at which the aluminum compound of the present invention sufficiently reacts, and more preferably 150 ° C. to 400 ° C.
  • the reaction pressure is preferably from atmospheric pressure to 10 Pa in the case of thermal CVD and photo CVD, and is preferably 2000 Pa to 10 Pa in the case of using plasma.
  • the deposition rate can be controlled by the raw material supply conditions (vaporization temperature, vaporization pressure), reaction temperature, and reaction pressure. When the deposition rate is large, the properties of the obtained thin film may be deteriorated. When the deposition rate is small, productivity may be problematic. Therefore, 0.01 to 100 nm / min is preferable, and 1 to 50 nm / min is more preferable. In the case of the ALD method, the number of cycles is controlled so as to obtain a desired film thickness.
  • the above production conditions include temperature and pressure at which the thin film forming raw material is vaporized into steam.
  • the step of vaporizing the raw material for forming a thin film to form a vapor may be performed in a raw material container or in a vaporization chamber.
  • the thin film forming raw material of the present invention is preferably evaporated at 0 to 150 ° C.
  • the pressure in the raw material container and the pressure in the vaporizing chamber are both preferably 1 to 10,000 Pa.
  • the thin film manufacturing method of the present invention adopts the ALD method, vaporizes the raw material for forming the thin film into the vapor by the above-described transport and supply method, and introduces the vapor into the film forming chamber.
  • the raw material introduction step described above is performed. Preferred temperatures and pressures when the thin film forming raw material is steam are the same as those described above.
  • a precursor thin film is formed on the surface of the substrate by the aluminum compound introduced into the deposition reaction part (precursor thin film forming step). At this time, heat may be applied by heating the substrate or heating the deposition reaction part.
  • the precursor thin film formed in this step is an aluminum oxide thin film or a thin film formed by decomposition and / or reaction of a part of the aluminum compound, and has a composition different from that of the target aluminum oxide thin film.
  • the substrate temperature when this step is performed is preferably from room temperature to 500 ° C, more preferably from 150 to 350 ° C.
  • the pressure of the system (in the film forming chamber) when this step is performed is preferably 1 to 10,000 Pa, and more preferably 10 to 1000 Pa.
  • unreacted aluminum compound gas and by-product gas are exhausted from the deposition reaction part (exhaust process).
  • the unreacted aluminum compound gas or by-product gas is completely exhausted from the deposition reaction part, but it is not necessarily exhausted completely.
  • the exhaust method include a method of purging the system with an inert gas such as nitrogen, helium, and argon, a method of exhausting by reducing the pressure in the system, and a method combining these.
  • the degree of pressure reduction is preferably 0.01 to 300 Pa, more preferably 0.01 to 100 Pa.
  • an oxidizing gas is introduced into the deposition reaction portion, and an aluminum oxide thin film is formed from the precursor thin film obtained in the precursor thin film forming step by the action of the oxidizing gas or the oxidizing gas and heat ( Aluminum-containing thin film forming step).
  • the temperature when heat is applied in this step is preferably room temperature to 500 ° C., more preferably 150 to 350 ° C.
  • the pressure of the system (in the film forming chamber) when this step is performed is preferably 1 to 10,000 Pa, and more preferably 10 to 1000 Pa.
  • the aluminum compound of the present invention has good reactivity with an oxidizing gas, and an aluminum oxide thin film can be obtained.
  • the thin film by a series of operations including the above-described raw material introduction step, precursor thin film formation step, exhaust step, and aluminum-containing thin film formation step
  • the deposition may be one cycle, and this cycle may be repeated a plurality of times until a thin film having a required film thickness is obtained.
  • the unreacted aluminum compound gas and reactive gas oxidizing gas in the case of forming an aluminum oxide thin film
  • further by-produced gas from the deposition reaction portion in the same manner as the exhaust process. After exhausting, it is preferable to perform the next one cycle.
  • energy such as plasma, light, or voltage may be applied.
  • the timing for applying these energies is not particularly limited. For example, when introducing an aluminum compound gas in the raw material introducing step, heating in the precursor thin film forming step or the aluminum-containing thin film forming step, It may be at the time of exhausting, at the time of introducing an oxidizing gas in the aluminum-containing thin film forming step, or between the above steps.
  • annealing may be performed in an inert atmosphere, an oxidizing atmosphere, or a reducing atmosphere in order to obtain better electrical characteristics.
  • a reflow process may be provided.
  • the temperature in this case is 200 to 1000 ° C., preferably 250 to 500 ° C.
  • a known chemical vapor deposition apparatus can be used as the apparatus for producing a thin film using the thin film forming raw material of the present invention.
  • the apparatus include a non-shower head type apparatus as shown in FIG. 1, an apparatus capable of carrying a precursor as shown in FIG. 2 by bubbling supply, and an apparatus having a vaporization chamber as shown in FIG. It is done.
  • an apparatus capable of simultaneously processing a large number of sheets using a batch furnace can also be used.
  • the film forming chamber is described as a “reaction film forming chamber” in FIG. 2 and a “thin film deposition portion” in FIG.
  • a thin film manufactured using the raw material for forming a thin film of the present invention can be selected from other precursors, reactive gases, and manufacturing conditions as appropriate, so that a desired type of metal, oxide ceramics, nitride ceramics, glass, etc. It can be a thin film.
  • the thin film containing aluminum to be produced include an aluminum metal thin film and an aluminum-based ceramic thin film.
  • the aluminum ceramic thin film include an aluminum nitride thin film, an aluminum oxide thin film, and an aluminum-containing composite metal oxide thin film represented by aluminum titanate.
  • LSI wiring materials include LSI wiring materials, hard coating films for machine parts and tools, semiconductor memory insulating films, gate insulating films, dielectric films, hard disk MR heads and other electronic parts, optical communication circuits and other optical glasses, Widely used in the production of catalysts and the like.
  • Example 1 Production of aluminum compound of the present invention
  • a solution obtained by dissolving 52.9 g of trimethylaluminum in 460 g of a toluene solution dehydrated in a reaction flask was stirred with an ice-cooled bath at around 0 ° C.
  • 54.4 g of racemic secondary butyl alcohol was slowly added dropwise over 3 hours.
  • Methane gas generated during the reaction was distilled off by aeration of argon gas. Then, it returned to room temperature and made it react for about 20 hours. Thereafter, toluene was distilled off under reduced pressure in a bath at 100 ° C. to obtain a liquid residue.
  • the liquid was distilled at a bath of 100 ° C. under a reduced pressure of 190 Pa to obtain a compound distilled at a tower top temperature of 70 ° C.
  • the recovery by this purification was 79%.
  • the obtained compound was liquid at room temperature, and as a result of elemental analysis and 1 H-NMR analysis, it was confirmed that it was the target aluminum compound of the present invention.
  • the results of these analyzes are shown below.
  • the results of TG-DTA are also shown below.
  • Comparative Compound 1 exhibited ignitability in the atmosphere.
  • a compound exhibiting ignitability is difficult to handle as a raw material for chemical vapor deposition from the viewpoint of safety.
  • the aluminum compound of the present invention and the comparative compounds 2 and 3 did not show ignition properties and can be used safely in the atmosphere.
  • Example 2 Production of Aluminum Oxide Thin Film by ALD Method Using the aluminum compound of the present invention obtained in Example 1 as a raw material for chemical vapor deposition, using the apparatus shown in FIG. An aluminum oxide thin film was produced on a silicon wafer. About the obtained thin film, when the film thickness measurement by X-ray reflectivity method, the thin film structure and the thin film composition were confirmed by X-ray diffraction method and X-ray photoelectron spectroscopy, the film thickness was 6 nm, and the film composition was oxidized. It was aluminum and the carbon content was 1 atom%.

Abstract

An aluminum compound represented by chemical formula (I); a starting material for forming a thin film, which contains the aluminum compound; and a method for producing a thin film, wherein a vapor which is obtained by vaporizing the starting material for forming a thin film and contains the aluminum compound is introduced into a film formation chamber in which a base is disposed, and the aluminum compound is decomposed and/or subjected to a chemical reaction so that a thin film containing aluminum is formed on the surface of the base. Since the physical properties of the aluminum compound, which serves as the precursor for the starting material for forming a thin film of the present invention, are suitable for a CVD method and an ALD method, the starting material for forming a thin film is especially useful as a starting material for chemical vapor deposition.

Description

アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法Aluminum compound, thin film forming raw material, and thin film manufacturing method
 本発明は、特定の有機配位子を有する新規なアルミニウム化合物、該化合物を含有してなる薄膜形成用原料、及び、アルミニウムを含有する薄膜を、該原料を用いて形成する薄膜の製造方法に関する。 The present invention relates to a novel aluminum compound having a specific organic ligand, a raw material for forming a thin film containing the compound, and a method for producing a thin film using the raw material to form a thin film containing aluminum. .
 アルミニウム元素を含む薄膜材料は、特異的な電気特性及び光学特性を示し、種々の用途に応用されている。例えば、アルミニウム及びアルミニウム合金薄膜は、高い導電性、エレクトロマイグレーション耐性からLSIの配線材料として使用されており、酸化アルミニウム系薄膜は、機械部品や工具等のハードコーティング膜;半導体メモリの絶縁膜、ゲート絶縁膜、誘電体膜;ハードディスク用MRヘッド等の電子部品;光通信用回路等の光学ガラスとして使用されている。 Thin film materials containing aluminum elements exhibit specific electrical and optical properties and are applied in various applications. For example, aluminum and aluminum alloy thin films are used as LSI wiring materials because of their high conductivity and electromigration resistance. Aluminum oxide thin films are hard coating films for machine parts and tools; semiconductor memory insulating films and gates. Insulating films, dielectric films; electronic components such as MR heads for hard disks; optical glass for optical communication circuits and the like.
 上記の薄膜の製造法としては、スパッタリング法、イオンプレーティング法、塗布熱分解法やゾルゲル法等のMOD法、化学気相成長法等が挙げられるが、組成制御性、段差被覆性に優れること、量産化に適すること、ハイブリッド集積が可能である等多くの長所を有しているので、ALD(Atomic Layer Deposition)法を含む化学気相成長(以下、単にCVDと記載することもある)法が最適な製造プロセスである。 Examples of the method for producing the thin film include a sputtering method, an ion plating method, a MOD method such as a coating pyrolysis method and a sol-gel method, a chemical vapor deposition method, etc., but has excellent composition controllability and step coverage. Since it has many advantages such as being suitable for mass production and capable of hybrid integration, a chemical vapor deposition (hereinafter sometimes simply referred to as CVD) method including an ALD (Atomic Layer Deposition) method. Is the optimal manufacturing process.
 安価な塩化アルミニウムを酸化アルミニウム系薄膜の気相成長法用原料としたCVD法としては、切削工具等の硬度及び強度を向上させるコーティング層への使用が多数報告されており、例えば、特許文献1には、酸化性ガスとして、二酸化炭素、塩酸又は硫化水素を用いたCVD法による酸化アルミニウム膜の製造方法が開示されている。しかし、特許文献1に記載されている塩化アルミニウムを用いたプロセスは、固体を原料として使用するものであり、薄膜堆積部位への原料供給性やパーティクル発生の面で問題があり、成膜温度も高いため半導体素子用途に適した電気的特性、ステップカバレッジ、膜質等が高度に制御された微細な薄膜形成を与えるものではない。特許文献2には触媒組成物の原料成分として本発明のアルミニウム化合物を含む一般式の開示があるが、本発明のアルミニウム化合物についての記載はなく、該成分を薄膜形成用原料として使用することについての記載もない。特許文献3には薄膜形成用原料として本発明のアルミニウム化合物を含む一般式の開示があるが、本発明のアルミニウム化合物についての記載はなく、アルコキシアランの中で最も好ましい薄膜形成用原料としてAlMe2(OiPr)が報告されている。しかし、AlMe2(OiPr)は熱安定性が低く、化学気相成長用原料として十分に満足し得る化合物ではなかった。また、特許文献4には化学蒸着によって基材を酸化アルミニウムでコーティングする材料として、ジメチルアルミニウムt-ブトキシドが報告されている。しかし、ジメチルアルミニウムt-ブトキシドは融点が高く、化学気相成長用原料として十分に満足し得る化合物ではなかった。 As a CVD method using inexpensive aluminum chloride as a raw material for the vapor phase growth method of an aluminum oxide thin film, many uses have been reported for coating layers that improve the hardness and strength of cutting tools and the like. Discloses a method for producing an aluminum oxide film by a CVD method using carbon dioxide, hydrochloric acid or hydrogen sulfide as an oxidizing gas. However, the process using aluminum chloride described in Patent Document 1 uses a solid as a raw material, and has problems in terms of supply of raw material to a thin film deposition site and generation of particles, and the film forming temperature is also low. Since it is high, it does not give fine thin film formation in which electrical characteristics, step coverage, film quality and the like suitable for semiconductor device use are highly controlled. Patent Document 2 discloses a general formula containing the aluminum compound of the present invention as a raw material component of a catalyst composition, but there is no description of the aluminum compound of the present invention, and the use of this component as a raw material for forming a thin film. There is no description. Patent Document 3 discloses a general formula containing the aluminum compound of the present invention as a thin film forming raw material, but there is no description of the aluminum compound of the present invention, and AlMe 2 is the most preferable thin film forming raw material among alkoxyalanes. (O i Pr) has been reported. However, AlMe 2 (O i Pr) has low thermal stability and is not a compound that can be satisfactorily satisfied as a raw material for chemical vapor deposition. Patent Document 4 reports dimethylaluminum t-butoxide as a material for coating a base material with aluminum oxide by chemical vapor deposition. However, dimethylaluminum t-butoxide has a high melting point and is not a compound that is sufficiently satisfactory as a raw material for chemical vapor deposition.
US2002/0076284A1US2002 / 0076284A1 US5747409AUS5747409A US2009/0203222A1US2009 / 0203222A1 US5922405AUS5922405A
 化学気相成長用原料等を気化させて薄膜を形成する場合において、該原料に適する化合物(プレカーサ)に求められる性質は、自然発火性が無く、融点が低く液体の状態で輸送が可能であること、蒸気圧が大きく気化させやすいこと、熱安定性が高いことである。特にALD法においては、加熱によって気相となったプレカーサが熱分解することなく基体へ輸送され、高温に温められた基体に熱分解することなく吸着し、その後導入される反応性ガスと反応することで薄膜を形成する工程を実施する為に、プレカーサの熱安定性の高さが重要となる。従来のアルミニウム化合物において、これらの点で充分に満足し得る化合物はなかった。 When a thin film is formed by vaporizing a raw material for chemical vapor deposition or the like, the properties required of a compound (precursor) suitable for the raw material are not pyrophoric and can be transported in a liquid state with a low melting point. That is, the vapor pressure is large and it is easy to vaporize, and the thermal stability is high. In particular, in the ALD method, a precursor that has become a gas phase by heating is transported to the substrate without being thermally decomposed, adsorbed to the substrate heated to a high temperature without being thermally decomposed, and then reacted with the reactive gas introduced. Therefore, in order to carry out the process of forming a thin film, the high thermal stability of the precursor is important. None of the conventional aluminum compounds can be satisfactorily satisfactory in these respects.
本発明者等は、検討を重ねた結果、特定の配位子を用いたアルミニウム化合物が上記課題を解決し得ることを知見し、本発明に到達した。 As a result of repeated studies, the present inventors have found that an aluminum compound using a specific ligand can solve the above problems, and have reached the present invention.
 本発明は、下記化学式(I)で表されるアルミニウム化合物、これを含有してなる薄膜形成用原料、及び、アルミニウムを含有する薄膜を、該原料を用いて形成する薄膜の製造方法を提供するものである。 The present invention provides an aluminum compound represented by the following chemical formula (I), a raw material for forming a thin film containing the same, and a method for producing a thin film using the raw material to form a thin film containing aluminum. Is.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明によれば、自然発火性が無く、常温で液体であり、充分な揮発性を示し且つ高い熱安定性を有するアルミニウム化合物を得ることができる。また、該化合物はCVD法による薄膜形成用原料として適している。 According to the present invention, it is possible to obtain an aluminum compound that is not pyrophoric, liquid at room temperature, exhibits sufficient volatility, and has high thermal stability. The compound is suitable as a raw material for forming a thin film by a CVD method.
図1は、本発明に係るアルミニウムを含有する薄膜の製造方法に用いられる化学気相成長用装置の一例を示す概要図である。FIG. 1 is a schematic view showing an example of an apparatus for chemical vapor deposition used in the method for producing a thin film containing aluminum according to the present invention. 図2は、本発明に係るアルミニウムを含有する薄膜の製造方法に用いられる化学気相成長用装置の別の例を示す概要図である。FIG. 2 is a schematic view showing another example of the chemical vapor deposition apparatus used in the method for producing a thin film containing aluminum according to the present invention. 図3は、本発明に係るアルミニウムを含有する薄膜の製造方法に用いられる化学気相成長用装置の別の例を示す概要図である。FIG. 3 is a schematic diagram showing another example of an apparatus for chemical vapor deposition used in the method for producing a thin film containing aluminum according to the present invention.
 本発明のアルミニウム化合物は、上記化学式(I)で表されるものであり、CVD法等の気化工程を有する薄膜製造方法のプレカーサとして好適なものであり、熱安定性が高いことから特にALD法に用いられるプレカーサとして好適なものである。なお、化学式(I)中の第二ブチル基は、光学活性部位を有する基であるが、本発明のアルミニウム化合物は、特にR体、S体により区別されるものではなく、そのどちらでもよく、R体とS体との任意の割合の混合物でもよい。ラセミ体は、製造コストが安価である。 The aluminum compound of the present invention is represented by the above chemical formula (I), and is suitable as a precursor for a thin film production method having a vaporization step such as a CVD method. It is suitable as a precursor used in the above. The secondary butyl group in the chemical formula (I) is a group having an optically active site, but the aluminum compound of the present invention is not particularly distinguished by the R-form and S-form, and either of them may be used. It may be a mixture of R and S isomers in any ratio. The racemate is inexpensive to manufacture.
 本発明のアルミニウム化合物は、その製造方法により特に制限されることはなく、周知の反応を応用して製造される。製造方法としては、例えばトリメチルアルミニウムに第2ブチルアルコールを反応させることによって得ることができる。 The aluminum compound of the present invention is not particularly limited by its production method, and is produced by applying a known reaction. As a manufacturing method, it can obtain by making secondary butyl alcohol react with trimethylaluminum, for example.
 本発明の薄膜形成用原料とは、上記で説明した本発明のアルミニウム化合物を薄膜のプレカーサとしたものであり、その形態は、該薄膜形成用原料が適用される製造プロセスによって異なる。たとえば、金属としてアルミニウムのみを含む薄膜を製造する場合、本発明の薄膜形成用原料は、上記アルミニウム化合物以外の金属化合物及び半金属化合物を非含有である。一方、アルミニウム、並びにアルミニウム以外の金属及び/又は半金属を含む薄膜を製造する場合、本発明の薄膜形成用原料は、上記アルミニウム化合物に加えて、アルミニウム以外の金属を含む化合物及び/又は半金属を含む化合物(以下、他のプレカーサともいう)を含有する。本発明の薄膜形成用原料は、後述するように、更に、有機溶剤及び/又は求核性試薬を含有してもよい。
 本発明の薄膜形成用原料は、上記説明のとおり、プレカーサであるアルミニウム化合物の物性がCVD法、ALD法に好適であるので、特に化学気相成長用原料(以下CVD用原料ということもある)として有用である。
The thin film forming raw material of the present invention is a thin film precursor made of the above-described aluminum compound of the present invention, and its form varies depending on the manufacturing process to which the thin film forming raw material is applied. For example, when manufacturing a thin film containing only aluminum as a metal, the raw material for forming a thin film of the present invention does not contain a metal compound and a semimetal compound other than the aluminum compound. On the other hand, when producing a thin film containing aluminum and a metal and / or metalloid other than aluminum, the raw material for forming a thin film according to the present invention includes a compound and / or metalloid containing a metal other than aluminum in addition to the above aluminum compound. Containing a compound (hereinafter also referred to as other precursor). As will be described later, the thin film forming raw material of the present invention may further contain an organic solvent and / or a nucleophilic reagent.
As described above, the raw material for forming a thin film of the present invention is suitable for chemical vapor deposition (hereinafter sometimes referred to as CVD raw material) because the physical properties of the aluminum compound as a precursor are suitable for CVD and ALD methods. Useful as.
 本発明の薄膜形成用原料が化学気相成長用原料である場合、その形態は使用されるCVD法の輸送供給方法等の手法により適宜選択されるものである。 When the raw material for forming a thin film of the present invention is a raw material for chemical vapor deposition, the form is appropriately selected depending on the method such as the transport and supply method of the CVD method used.
 上記の輸送供給方法としては、CVD用原料を該原料が貯蔵される容器(以下、単に原料容器と記載することもある)中で加熱及び/又は減圧することにより気化させて蒸気となし、必要に応じて用いられるアルゴン、窒素、ヘリウム等のキャリアガスと共に、該蒸気を基体が設置された成膜チャンバー内(以下、堆積反応部と記載することもある)へと導入する気体輸送法、CVD用原料を液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより気化させて蒸気となし、該蒸気を成膜チャンバー内へと導入する液体輸送法がある。気体輸送法の場合は、上記化学式(I)で表されるアルミニウム化合物そのものをCVD原料とすることができる。液体輸送法の場合は、上記化学式(I)で表されるアルミニウム化合物そのもの又は該化合物を有機溶剤に溶かした溶液をCVD用原料とすることができる。これらのCVD原料は更に他のプレカーサや求核性試薬等を含んでいてもよい。 As the above transportation and supply method, the raw material for CVD is vaporized by heating and / or decompressing in a container in which the raw material is stored (hereinafter sometimes simply referred to as a raw material container), and is necessary. Gas transport method, CVD, which introduces the vapor into a film forming chamber (hereinafter sometimes referred to as a deposition reaction part) where a substrate is installed, together with a carrier gas such as argon, nitrogen, helium, etc. There is a liquid transport method in which a raw material is transported to a vaporization chamber in a liquid or solution state, vaporized by heating and / or decompressing in the vaporization chamber to form a vapor, and the vapor is introduced into a film formation chamber. In the case of the gas transport method, the aluminum compound itself represented by the chemical formula (I) can be used as a CVD raw material. In the case of the liquid transport method, the aluminum compound itself represented by the above chemical formula (I) or a solution obtained by dissolving the compound in an organic solvent can be used as a raw material for CVD. These CVD raw materials may further contain other precursors, nucleophilic reagents and the like.
 また、多成分系のCVD法においては、CVD用原料を各成分独立で気化、供給する方法(以下、シングルソース法と記載することもある)と、多成分原料を予め所望の組成で混合した混合原料を気化、供給する方法(以下、カクテルソース法と記載することもある)がある。カクテルソース法の場合、本発明のアルミニウム化合物と他のプレカーサとの混合物若しくは該混合物を有機溶剤に溶かした混合溶液をCVD用原料とすることができる。この混合物や混合溶液は更に求核性試薬等を含んでいてもよい。
 尚、プレカーサとして本発明のアルミニウム化合物のみを用い、R体とS体とを併用する場合には、R体を含むCVD用原料とS体を含むCVD用原料とを別個に気化させてもよく、或いはR体及びS体の混合物を含むCVD用原料を気化させてもよい。
In the multi-component CVD method, the CVD raw material is vaporized and supplied independently for each component (hereinafter sometimes referred to as a single source method), and the multi-component raw material is mixed in advance with a desired composition. There is a method of vaporizing and supplying a mixed raw material (hereinafter, sometimes referred to as a cocktail sauce method). In the case of the cocktail sauce method, a mixture of the aluminum compound of the present invention and another precursor or a mixed solution obtained by dissolving the mixture in an organic solvent can be used as a raw material for CVD. This mixture or mixed solution may further contain a nucleophilic reagent and the like.
In addition, when only the aluminum compound of the present invention is used as a precursor and the R body and the S body are used in combination, the CVD raw material containing the R body and the CVD raw material containing the S body may be vaporized separately. Or you may vaporize the raw material for CVD containing the mixture of R body and S body.
 上記の有機溶剤としては、特に制限を受けることはなく周知一般の有機溶剤を用いることが出来る。該有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-ブタノール等のアルコール類;酢酸エチル、酢酸ブチル、酢酸メトキシエチル等の酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等のシアノ基を有する炭化水素類;ピリジン、ルチジン等が挙げられ、これらは、溶質の溶解性、使用温度と沸点、引火点の関係等により、単独又は二種類以上の混合溶媒として用いられる。これらの有機溶剤を使用する場合、プレカーサを有機溶剤に溶かした溶液であるCVD用原料中におけるプレカーサ全体の量が0.01~2.0モル/リットル、特に0.05~1.0モル/リットルとなるようにするのが好ましい。プレカーサ全体の量とは、本発明の薄膜形成用原料が、本発明のアルミニウム化合物以外の金属化合物及び半金属化合物を非含有である場合、本発明のアルミニウム化合物の量であり、本発明の薄膜形成用原料が、該アルミニウム化合物に加えてアルミニウム以外の金属を含む化合物及び/又は半金属を含む化合物を含有する場合、本発明のアルミニウム化合物及び他のプレカーサの合計量である。 The organic solvent is not particularly limited and a well-known general organic solvent can be used. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, and n-butanol; acetates such as ethyl acetate, butyl acetate, and methoxyethyl acetate; tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Ethers such as triethylene glycol dimethyl ether, dibutyl ether, dioxane; ketones such as methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, Methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, toluene Hydrocarbons such as xylene; 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyanohexane, 1, Hydrocarbons having a cyano group such as 4-dicyanocyclohexane and 1,4-dicyanobenzene; pyridine, lutidine and the like, and these are determined depending on the solubility of the solute, the relationship between the use temperature and boiling point, the flash point, etc. Or it is used as a 2 or more types of mixed solvent. When these organic solvents are used, the total amount of the precursor in the CVD raw material, which is a solution obtained by dissolving the precursor in the organic solvent, is 0.01 to 2.0 mol / liter, particularly 0.05 to 1.0 mol / liter. It is preferable to make it liter. The amount of the entire precursor is the amount of the aluminum compound of the present invention when the thin film forming raw material of the present invention does not contain a metal compound and a semimetal compound other than the aluminum compound of the present invention. When the forming raw material contains a compound containing a metal other than aluminum and / or a compound containing a metalloid in addition to the aluminum compound, this is the total amount of the aluminum compound of the present invention and another precursor.
 また、多成分系のCVD法の場合において、本発明のアルミニウム化合物と共に用いられる他のプレカーサとしては、特に制限を受けず、CVD用原料に用いられている周知一般のプレカーサを用いることができる。 Further, in the case of a multi-component CVD method, other precursors used together with the aluminum compound of the present invention are not particularly limited, and well-known general precursors used for CVD raw materials can be used.
 上記の他のプレカーサとしては、アルコール化合物、グリコール化合物、β-ジケトン化合物、シクロペンタジエン化合物、有機アミン化合物等の有機配位子として用いられる化合物からなる群から選択される一種類又は二種類以上と珪素や金属(但しアルミニウムを除く)との化合物が挙げられる。また、プレカーサの金属種としては、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、マンガン、鉄、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、ガリウム、インジウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられる。 Examples of the other precursor include one or more selected from the group consisting of compounds used as organic ligands such as alcohol compounds, glycol compounds, β-diketone compounds, cyclopentadiene compounds, and organic amine compounds. A compound with silicon or metal (except aluminum) can be used. The precursor metal species include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, manganese, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver , Gold, zinc, gallium, indium, germanium, tin, lead, antimony, bismuth, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium , Lutetium.
 上記の有機配位子として用いられるアルコール化合物としては、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、第2ブチルアルコール、イソブチルアルコール、第3ブチルアルコール、ペンチルアルコール、イソペンチルアルコール、第3ペンチルアルコール等のアルキルアルコール類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-メトキシ-1-メチルエタノール、2-メトキシ-1,1-ジメチルエタノール、2-エトキシ-1,1-ジメチルエタノール、2-イソプロポキシ-1,1-ジメチルエタノール、2-ブトキシ-1,1-ジメチルエタノール、2-(2-メトキシエトキシ)-1,1-ジメチルエタノール、2-プロポキシ-1,1-ジエチルエタノール、2-s-ブトキシ-1,1-ジエチルエタノール、3-メトキシ-1,1-ジメチルプロパノール等のエーテルアルコール類;ジメチルアミノエタノール、エチルメチルアミノエタノール、ジエチルアミノエタノール、ジメチルアミノー2-ペンタノール、エチルメチルアミノ-2―ペンタノール、ジメチルアミノー2-メチルー2-ペンタノール、エチルメチルアミノー2-メチルー2-ペンタノール、ジエチルアミノー2-メチルー2-ペンタノール等のジアルキルアミノアルコール類等が挙げられる。 Examples of the alcohol compound used as the organic ligand include methanol, ethanol, propanol, isopropyl alcohol, butanol, secondary butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, pentyl alcohol, isopentyl alcohol, and tertiary pentyl alcohol. Alkyl alcohols; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2- (2-methoxyethoxy) ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1,1-dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2- (2-methoxyethoxy) -1,1-dimethylethanol , Ether alcohols such as 2-propoxy-1,1-diethylethanol, 2-s-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol; dimethylaminoethanol, ethylmethylaminoethanol Diethylaminoethanol, dimethylamino-2-pentanol, ethylmethylamino-2-pentanol, dimethylamino-2-methyl-2-pentanol, ethylmethylamino-2-methyl-2-pentanol, diethylamino-2-methyl-2 -Dialkylamino alcohols such as pentanol.
 上記の他のプレカーサの有機配位子として用いられるグリコール化合物としては、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、2,4-ブタンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2,4-ペンタンジオール、2,4-ヘキサンジオール、2,4-ジメチル-2,4-ペンタンジオール等が挙げられる。 Examples of the glycol compound used as the organic ligand of the other precursor include 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, 2,2- Dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3-butanediol, 2 -Ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4-hexanediol, Examples include 2,4-dimethyl-2,4-pentanediol.
 また、β-ジケトン化合物としては、アセチルアセトン、ヘキサン-2,4-ジオン、5-メチルヘキサン-2,4-ジオン、ヘプタン-2,4-ジオン、2-メチルヘプタン-3,5-ジオン、5-メチルヘプタン-2,4-ジオン、6-メチルヘプタン-2,4-ジオン、2,2-ジメチルヘプタン-3,5-ジオン、2,6-ジメチルヘプタン-3,5-ジオン、2,2,6-トリメチルヘプタン-3,5-ジオン、2,2,6,6-テトラメチルヘプタン-3,5-ジオン、オクタン-2,4-ジオン、2,2,6-トリメチルオクタン-3,5-ジオン、2,6-ジメチルオクタン-3,5-ジオン、2,9-ジメチルノナン-4,6-ジオン、2-メチル-6-エチルデカン-3,5-ジオン、2,2-ジメチル-6-エチルデカン-3,5-ジオン等のアルキル置換β-ジケトン類;1,1,1-トリフルオロペンタン-2,4-ジオン、1,1,1-トリフルオロ-5,5-ジメチルヘキサン-2,4-ジオン、1,1,1,5,5,5-ヘキサフルオロペンタン-2,4-ジオン、1,3-ジパーフルオロヘキシルプロパン-1,3-ジオン等のフッ素置換アルキルβ-ジケトン類;1,1,5,5-テトラメチル-1-メトキシヘキサン-2,4-ジオン、2,2,6,6-テトラメチル-1-メトキシヘプタン-3,5-ジオン、2,2,6,6-テトラメチル-1-(2-メトキシエトキシ)ヘプタン-3,5-ジオン等のエーテル置換β-ジケトン類等が挙げられる。 Examples of β-diketone compounds include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, heptane-2,4-dione, 2-methylheptane-3,5-dione, 5 -Methylheptane-2,4-dione, 6-methylheptane-2,4-dione, 2,2-dimethylheptane-3,5-dione, 2,6-dimethylheptane-3,5-dione, 2,2 , 6-trimethylheptane-3,5-dione, 2,2,6,6-tetramethylheptane-3,5-dione, octane-2,4-dione, 2,2,6-trimethyloctane-3,5 -Dione, 2,6-dimethyloctane-3,5-dione, 2,9-dimethylnonane-4,6-dione, 2-methyl-6-ethyldecane-3,5-dione, 2,2-dimethyl-6 -ethyl Alkyl-substituted β-diketones such as can-3,5-dione; 1,1,1-trifluoropentane-2,4-dione, 1,1,1-trifluoro-5,5-dimethylhexane-2, Fluorine-substituted alkyl β-diketones such as 4-dione, 1,1,1,5,5,5-hexafluoropentane-2,4-dione, 1,3-diperfluorohexylpropane-1,3-dione 1,1,5,5-tetramethyl-1-methoxyhexane-2,4-dione, 2,2,6,6-tetramethyl-1-methoxyheptane-3,5-dione, 2,2,6; And ether-substituted β-diketones such as 6-tetramethyl-1- (2-methoxyethoxy) heptane-3,5-dione.
 また、シクロペンタジエン化合物としては、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、プロピルシクロペンタジエン、イソプロピルシクロペンタジエン、ブチルシクロペンタジエン、第2ブチルシクロペンタジエン、イソブチルシクロペンタジエン、第3ブチルシクロペンタジエン、ジメチルシクロペンタジエン、テトラメチルシクロペンタジエン等が挙げられ、上記の有機配位子として用いられる有機アミン化合物としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、第2ブチルアミン、第3ブチルアミン、イソブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、エチルメチルアミン、プロピルメチルアミン、イソプロピルメチルアミン等が挙げられる。 Cyclopentadiene compounds include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, isopropylcyclopentadiene, butylcyclopentadiene, secondary butylcyclopentadiene, isobutylcyclopentadiene, tertiary butylcyclopentadiene, dimethylcyclopentadiene. Examples of organic amine compounds used as the above-mentioned organic ligands include methylamine, ethylamine, propylamine, isopropylamine, butylamine, secondary butylamine, tertiary butylamine, isobutylamine, and dimethyl. Amine, diethylamine, dipropylamine, diisopropylamine, ethylmethylamine, propylmethylamine, Isopropyl methyl amine and the like.
 上記の他のプレカーサは、当該技術分野において公知のものであり、その製造方法も公知である。製造方法の一例を挙げれば、例えば、有機配位子としてアルコール化合物を用いた場合には、先に述べた金属の無機塩又はその水和物と、該アルコール化合物のアルカリ金属アルコキシドとを反応させることによって、プレカーサを製造することができる。ここで、金属の無機塩又はその水和物としては、金属のハロゲン化物、硝酸塩等を挙げることができ、アルカリ金属アルコキシドとしては、ナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシド等を挙げることができる。 Other precursors described above are known in the art, and their manufacturing methods are also known. As an example of the production method, for example, when an alcohol compound is used as the organic ligand, the inorganic salt of metal or its hydrate described above is reacted with the alkali metal alkoxide of the alcohol compound. Thus, a precursor can be manufactured. Here, examples of the metal inorganic salt or hydrate include metal halides and nitrates, and examples of the alkali metal alkoxide include sodium alkoxide, lithium alkoxide, and potassium alkoxide.
 上記の他のプレカーサは、シングルソース法の場合は、本発明のアルミニウム化合物と、熱及び/又は酸化分解の挙動が類似している化合物が好ましく、カクテルソース法の場合は、熱及び/又は酸化分解の挙動が類似していることに加え、混合時に化学反応による変質を起こさないものが好ましい。 In the case of the single source method, the other precursor is preferably a compound having similar thermal and / or oxidative decomposition behavior to the aluminum compound of the present invention, and in the case of the cocktail source method, the heat and / or oxidation. In addition to being similar in decomposition behavior, those that do not undergo alteration due to chemical reaction during mixing are preferred.
 上記の他のプレカーサのうち、チタニウム、ジルコニウム又はハフニウムを含むプレカーサとしては、下記式(II-1)~(II-5)で表される化合物が挙げられる。 Among the other precursors described above, examples of the precursor containing titanium, zirconium or hafnium include compounds represented by the following formulas (II-1) to (II-5).
Figure JPOXMLDOC01-appb-C000003
(式中、M1は、チタニウム、ジルコニウム又はハフニウムを表し、Ra及びRbは各々独立に、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素数1~20のアルキル基を表し、Rcは炭素数1~8のアルキル基を表し、Rdは炭素数2~18の分岐してもよいアルキレン基を表し、Re及びRfは各々独立に、水素原子又は炭素数1~3のアルキル基を表し、Rg、Rh、Rk及びRjは各々独立に、水素原子又は炭素数1~4のアルキル基を表し、pは0~4の整数を表し、qは0又は2を表し、rは0~3の整数を表し、sは0~4の整数を表し、tは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, M 1 represents titanium, zirconium or hafnium, and R a and R b each independently may be substituted with a halogen atom, and may have an oxygen atom in the chain. R c represents an alkyl group having 1 to 8 carbon atoms, R d represents an alkylene group having 2 to 18 carbon atoms which may be branched, and R e and R f each independently represents a hydrogen atom. Or an alkyl group having 1 to 3 carbon atoms, each of R g , R h , R k and R j independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and p represents an integer of 0 to 4 Q represents 0 or 2, r represents an integer of 0 to 3, s represents an integer of 0 to 4, and t represents an integer of 1 to 4.)
 上記式(II-1)~(II-5)において、Ra及びRbで表される、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素数1~20のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2ブチル、第3ブチル、イソブチル、アミル、イソアミル、第2アミル、第3アミル、ヘキシル、シクロヘキシル、1-メチルシクロヘキシル、ヘプチル、3-ヘプチル、イソヘプチル、第3ヘプチル、n-オクチル、イソオクチル、第3オクチル、2-エチルヘキシル、トリフルオロメチル、パーフルオロヘキシル、2-メトキシエチル、2-エトキシエチル、2-ブトキシエチル、2-(2-メトキシエトキシ)エチル、1-メトキシ-1,1-ジメチルメチル、2-メトキシ-1,1-ジメチルエチル、2-エトキシ-1,1-ジメチルエチル、2-イソプロポキシ-1,1-ジメチルエチル、2-ブトキシ-1,1-ジメチルエチル、2-(2-メトキシエトキシ)-1,1-ジメチルエチル等が挙げられる。また、Rcで表される炭素数1~8のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2ブチル、第3ブチル、イソブチル、アミル、イソアミル、第2アミル、第3アミル、ヘキシル、1-エチルペンチル、シクロヘキシル、1-メチルシクロヘキシル、ヘプチル、イソヘプチル、第3ヘプチル、n-オクチル、イソオクチル、第3オクチル、2-エチルヘキシル等が挙げられる。また、Rdで表される炭素数2~18の分岐してもよいアルキレン基とは、グリコールにより与えられる基であり、該グリコールとしては、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、1-メチル-2,4-ペンタンジオール等が挙げられる。また、Re及びRfで表される炭素数1~3のアルキル基としては、メチル、エチル、プロピル、2-プロピル等が挙げられ、Rg、Rh、Rj及びRkで表される炭素数1~4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2ブチル、第3ブチル、イソブチル等が挙げられる。 In the above formulas (II-1) to (II-5), an alkyl having 1 to 20 carbon atoms which may be substituted with a halogen atom and may contain an oxygen atom in the chain, represented by R a and R b The groups are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, sec-butyl, isobutyl, amyl, isoamyl, sec-amyl, tertiary amyl, hexyl, cyclohexyl, 1-methylcyclohexyl, heptyl, 3-heptyl , Isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl, trifluoromethyl, perfluorohexyl, 2-methoxyethyl, 2-ethoxyethyl, 2-butoxyethyl, 2- (2-methoxy Ethoxy) ethyl, 1-methoxy-1,1-dimethylmethyl, 2-methoxy-1,1-dimethylethyl 2-ethoxy-1,1-dimethylethyl, 2-isopropoxy-1,1-dimethylethyl, 2-butoxy-1,1-dimethylethyl, 2- (2-methoxyethoxy) -1,1-dimethylethyl Etc. Examples of the alkyl group having 1 to 8 carbon atoms represented by R c include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl, amyl, isoamyl, secondary amyl, tertiary amyl. Hexyl, 1-ethylpentyl, cyclohexyl, 1-methylcyclohexyl, heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl and the like. The alkylene group having 2 to 18 carbon atoms which may be branched and represented by R d is a group given by glycol, and examples of the glycol include 1,2-ethanediol, 1,2- Propanediol, 1,3-propanediol, 1,3-butanediol, 2,4-hexanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2,2-diethyl-1,3-butanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 1-methyl- 2,4-pentanediol and the like can be mentioned. Examples of the alkyl group having 1 to 3 carbon atoms represented by R e and R f include methyl, ethyl, propyl, 2-propyl and the like, represented by R g , R h , R j and R k. Examples of the alkyl group having 1 to 4 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, and isobutyl.
 具体的にはチタニウムを含むプレカーサとして、テトラキス(エトキシ)チタニウム、テトラキス(2-プロポキシ)チタニウム、テトラキス(ブトキシ)チタニウム、テトラキス(第2ブトキシ)チタニウム、テトラキス(イソブトキシ)チタニウム、テトラキス(第3ブトキシ)チタニウム、テトラキス(第3アミル)チタニウム、テトラキス(1-メトキシ-2-メチル-2-プロポキシ)チタニウム等のテトラキスアルコキシチタニウム類;テトラキス(ペンタン-2,4-ジオナト)チタニウム、(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、テトラキス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム等のテトラキスβ-ジケトナトチタニウム類;ビス(メトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(エトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(第3ブトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(メトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(エトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(2-プロポキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3ブトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3アミロキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(メトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(エトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(2-プロポキシ)ビス(2,6,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3ブトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3アミロキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム等のビス(アルコキシ)ビス(βジケトナト)チタニウム類;(2-メチルペンタンジオキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、(2-メチルペンタンジオキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム等のグリコキシビス(βジケトナト)チタニウム類;(メチルシクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(シクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(メチルシクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(シクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(メチルシクロペンタジエニル)トリス(ジエチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(ジエチルアミノ)チタニウム、(シクロペンタジエニル)トリス(ジエチルアミノ)チタニウム等の(シクロペンタジエニル)トリス(ジアルキルアミノ)チタニウム類;(シクロペンタジエニル)トリス(メトキシ)チタニウム、(メチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(エチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(プロチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(イソプロピルシクロペンタジエニル)トリス(メトキシ)チタニウム、(ブチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(イソブチルシクロペンタジエニル)トリス(メトキシ)チタニウム、第3ブチルシクロペンタジエニル)トリス(メトキシ)チタニウム等の(シクロペンタジエニル)トリス(アルコキシ)チタニウム類等が挙げられ、ジルコニウムを含むプレカーサ又はハフニウムを含むプレカーサとしては、上記チタニウムを含むプレカーサとして例示した化合物におけるチタニウムを、ジルコニウム又はハフニウムに置き換えた化合物が挙げられる。 Specifically, as a precursor containing titanium, tetrakis (ethoxy) titanium, tetrakis (2-propoxy) titanium, tetrakis (butoxy) titanium, tetrakis (second butoxy) titanium, tetrakis (isobutoxy) titanium, tetrakis (third butoxy) Tetrakisalkoxytitaniums such as titanium, tetrakis (tertiary amyl) titanium, tetrakis (1-methoxy-2-methyl-2-propoxy) titanium; tetrakis (pentane-2,4-dionato) titanium, (2,6-dimethyl) Tetrakis β-diketonatotitaniums such as heptane-3,5-dionato) titanium, tetrakis (2,2,6,6-tetramethylheptane-3,5-dionato) titanium; bis (methoxy) bis (pentane) 2,4-Dionato) titanium, bis (ethoxy) bis (pentane-2,4-dionato) titanium, bis (tertiary butoxy) bis (pentane-2,4-dionato) titanium, bis (methoxy) bis (2, 6-dimethylheptane-3,5-dionato) titanium, bis (ethoxy) bis (2,6-dimethylheptane-3,5-dionato) titanium, bis (2-propoxy) bis (2,6-dimethylheptane-3) , 5-Dionato) titanium, bis (tertiary butoxy) bis (2,6-dimethylheptane-3,5-dionato) titanium, bis (tertiary amyloxy) bis (2,6-dimethylheptane-3,5-dionato) ) Titanium, bis (methoxy) bis (2,2,6,6-tetramethylheptane-3,5-dionato) titanium, bis (ethoxy) Ii) Bis (2,2,6,6-tetramethylheptane-3,5-dionato) titanium, bis (2-propoxy) bis (2,6,6,6-tetramethylheptane-3,5-dionato) Titanium, bis (tertiary butoxy) bis (2,2,6,6-tetramethylheptane-3,5-dionato) titanium, bis (tertiary amyloxy) bis (2,2,6,6-tetramethylheptane- Bis (alkoxy) bis (β-diketonato) titanium such as 3,5-dionato) titanium; (2-methylpentanedioxy) bis (2,2,6,6-tetramethylheptane-3,5-dionato) titanium (2-methylpentanedioxy) bis (2,6-dimethylheptane-3,5-dionato) titanium and other glycoxybis (β-diketonato) titaniums; Cyclopentadienyl) tris (dimethylamino) titanium, (ethylcyclopentadienyl) tris (dimethylamino) titanium, (cyclopentadienyl) tris (dimethylamino) titanium, (methylcyclopentadienyl) tris (ethylmethyl) Amino) titanium, (ethylcyclopentadienyl) tris (ethylmethylamino) titanium, (cyclopentadienyl) tris (ethylmethylamino) titanium, (methylcyclopentadienyl) tris (diethylamino) titanium, (ethylcyclopenta (Cyclopentadienyl) tris (dialkylamino) titaniums such as (dienyl) tris (diethylamino) titanium, (cyclopentadienyl) tris (diethylamino) titanium; ) Tris (methoxy) titanium, (methylcyclopentadienyl) tris (methoxy) titanium, (ethylcyclopentadienyl) tris (methoxy) titanium, (protylcyclopentadienyl) tris (methoxy) titanium, Pentadienyl) tris (methoxy) titanium, (butylcyclopentadienyl) tris (methoxy) titanium, (isobutylcyclopentadienyl) tris (methoxy) titanium, tert-butylcyclopentadienyl) tris (methoxy) titanium, etc. (Cyclopentadienyl) tris (alkoxy) titanium and the like, and as a precursor containing zirconium or a precursor containing hafnium, in the compounds exemplified as the precursor containing titanium The Taniumu, compounds obtained by replacing zirconium or hafnium and the like.
 希土類元素を含むプレカーサとしては、下記式(III-1)~(III~3)で表される化合物が挙げられる。 Examples of the precursor containing rare earth elements include compounds represented by the following formulas (III-1) to (III to 3).
Figure JPOXMLDOC01-appb-C000004
(式中、M2は、希土類原子を表し、Ra及びRbは各々独立に、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素数1~20のアルキル基を表し、Rcは炭素数1~8のアルキル基を表し、Re及びRfは各々独立に、水素原子又は炭素数1~3のアルキル基を表し、Rg及びRjは各々独立に、炭素数1~4のアルキル基を表し、p’は0~3の整数を表し、r’は0~2の整数を表す。)
Figure JPOXMLDOC01-appb-C000004
(Wherein M 2 represents a rare earth atom, and R a and R b each independently represents an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom and may contain an oxygen atom in the chain) R c represents an alkyl group having 1 to 8 carbon atoms, R e and R f each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R g and R j each independently represent (It represents an alkyl group having 1 to 4 carbon atoms, p ′ represents an integer of 0 to 3, and r ′ represents an integer of 0 to 2.)
 上記の希土類元素を含むプレカーサにおいて、M2で表される希土類原子としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられ、Ra、Rb、Rc、Re、Rf、Rg及びRjで表される基としては、前記のチタニウムプレカーサで例示した基が挙げられる。 In the precursor containing the rare earth element, the rare earth atom represented by M 2 includes scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, Examples thereof include ytterbium and lutetium, and examples of the group represented by R a , R b , R c , R e , R f , R g, and R j include the groups exemplified for the aforementioned titanium precursor.
 また、本発明の薄膜形成用原料には、必要に応じて、本発明のアルミニウム化合物及び他のプレカーサの安定性を付与するため、求核性試薬を含有してもよい。該求核性試薬としては、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8、ジベンゾ-24-クラウン-8等のクラウンエーテル類、エチレンジアミン、N,N’-テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミン等のポリアミン類、サイクラム、サイクレン等の環状ポリアミン類、ピリジン、ピロリジン、ピペリジン、モルホリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、オキサゾール、チアゾール、オキサチオラン等の複素環化合物類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-2-メトキシエチル等のβ-ケトエステル類又はアセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、ジピバロイルメタン等のβ-ジケトン類が挙げられ、これら求核性試薬の使用量は、プレカーサ全体の量1モルに対して0.1モル~10モルの範囲が好ましく、より好ましくは1~4モルである。 In addition, the raw material for forming a thin film of the present invention may contain a nucleophilic reagent as needed to impart stability of the aluminum compound of the present invention and other precursors. Examples of the nucleophilic reagent include ethylene glycol ethers such as glyme, diglyme, triglyme and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl-24-crown-8. , Crown ethers such as dibenzo-24-crown-8, ethylenediamine, N, N′-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7,7- Polyamines such as pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine and triethoxytriethyleneamine, cyclic polyamines such as cyclam and cyclen, pyridine, pyrrolidine and piperi Heterocyclic compounds such as gin, morpholine, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, oxazole, thiazole, oxathiolane, methyl acetoacetate, ethyl acetoacetate, Β-ketoesters such as 2-methoxyethyl acetoacetate or β-diketones such as acetylacetone, 2,4-hexanedione, 2,4-heptanedione, 3,5-heptanedione, dipivaloylmethane, etc. The amount of these nucleophilic reagents used is preferably in the range of 0.1 mol to 10 mol, more preferably 1 to 4 mol, relative to 1 mol of the whole precursor.
 本発明の薄膜形成用原料には、これを構成する成分以外の不純物金属元素分、不純物塩素などの不純物ハロゲン分、及び不純物有機分が極力含まれないようにする。不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では、1ppm以下が好ましく、100ppb以下がより好ましい。特に、LSIのゲート絶縁膜、ゲート膜、バリア層として用いる場合は、得られる薄膜の電気的特性に影響のあるアルカリ金属元素、アルカリ土類金属元素、及び、同属元素の含有量を少なくすることが必要である。不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下が更に好ましい。不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下が更に好ましい。また、水分は、化学気相成長用原料中でのパーティクル発生や、薄膜形成中におけるパーティクル発生の原因となるので、金属化合物、有機溶剤、及び、求核性試薬については、それぞれの水分の低減のために、使用の際にあらかじめできる限り水分を取り除いた方がよい。金属化合物、半金属化合物、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下が好ましく、1ppm以下が更に好ましい。 The raw material for forming a thin film according to the present invention should contain as little impurities metal elements as possible, impurities halogen such as impurity chlorine, and impurities organic components as much as possible. The impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less. In particular, when used as an LSI gate insulating film, gate film, or barrier layer, the content of alkali metal elements, alkaline earth metal elements, and related elements that affect the electrical characteristics of the resulting thin film should be reduced. is required. The impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, and still more preferably 1 ppm or less. The total amount of impurity organic components is preferably 500 ppm or less, more preferably 50 ppm or less, and still more preferably 10 ppm or less. In addition, since moisture causes generation of particles in the raw material for chemical vapor deposition and generation of particles during thin film formation, each metal compound, organic solvent, and nucleophilic reagent is reduced in moisture. Therefore, it is better to remove moisture as much as possible before use. The water content of each of the metal compound, metalloid compound, organic solvent and nucleophilic reagent is preferably 10 ppm or less, more preferably 1 ppm or less.
 また、本発明の薄膜形成用原料は、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルが極力含まれないようにするのが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きい粒子の数が液相1ml中に100個以下であることが好ましく、0.2μmより大きい粒子の数が液相1ml中に1000個以下であることがより好ましく、0.2μmより大きい粒子の数が液相1ml中に100個以下であることが更に好ましい。 Further, it is preferable that the raw material for forming a thin film of the present invention contains as few particles as possible in order to reduce or prevent particle contamination of the formed thin film. Specifically, in the particle measurement by the light scattering liquid particle detector in the liquid phase, the number of particles larger than 0.3 μm is preferably 100 or less in 1 ml of the liquid phase, and larger than 0.2 μm. The number of particles is more preferably 1000 or less in 1 ml of the liquid phase, and the number of particles larger than 0.2 μm is further preferably 100 or less in 1 ml of the liquid phase.
 本発明の薄膜形成用原料を用いて薄膜を製造する本発明の薄膜の製造方法としては、本発明の薄膜形成用原料を気化させた蒸気、及び必要に応じて用いられる反応性ガスを基体が設置された成膜チャンバー内に導入し、次いで、プレカーサを基体上で分解及び/又は化学反応させてアルミニウムを含有する薄膜を基体表面に成長、堆積させるCVD法によるものである。原料の輸送供給方法、堆積方法、製造条件、製造装置等については、特に制限を受けるものではなく、周知一般の条件、方法を用いることができる。 The thin film production method of the present invention for producing a thin film using the raw material for forming a thin film of the present invention includes a substrate containing vapor obtained by vaporizing the raw material for thin film formation of the present invention, and a reactive gas used as necessary. It is introduced by a CVD method in which a thin film containing aluminum is grown and deposited on the surface of a substrate by introducing the film into an installed film forming chamber and then decomposing and / or chemically reacting the precursor on the substrate. There are no particular restrictions on the method of transporting and supplying the raw material, the deposition method, the production conditions, the production apparatus, etc., and well-known general conditions and methods can be used.
 上記の必要に応じて用いられる反応性ガスとしては、例えば、酸化性のものとしては酸素、オゾン、二酸化窒素、一酸化窒素、水蒸気、過酸化水素、ギ酸、酢酸、無水酢酸等が挙げられ、還元性のものとしては水素が挙げられ、また、窒化物を製造するものとしては、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミン等の有機アミン化合物、ヒドラジン、アンモニア等が挙げられ、これらは1種類又は2種類以上使用することができる。 Examples of the reactive gas used as necessary include oxygen, ozone, nitrogen dioxide, nitric oxide, water vapor, hydrogen peroxide, formic acid, acetic acid, acetic anhydride, etc. Examples of reducing substances include hydrogen, and examples of nitrides that can be used include organic amine compounds such as monoalkylamines, dialkylamines, trialkylamines, and alkylenediamines, hydrazine, and ammonia. Can be used alone or in combination of two or more.
 また、上記の輸送供給方法としては、前記に記載の気体輸送法、液体輸送法、シングルソース法、カクテルソース法等が挙げられる。 Further, examples of the transport and supply method include the gas transport method, the liquid transport method, the single source method, and the cocktail sauce method described above.
 また、上記の堆積方法としては、原料ガス又は原料ガスと反応性ガスを熱のみにより反応させ薄膜を堆積させる熱CVD,熱とプラズマを使用するプラズマCVD、熱と光を使用する光CVD、熱、光及びプラズマを使用する光プラズマCVD、CVDの堆積反応を素過程に分け、分子レベルで段階的に堆積を行うALDが挙げられる。 In addition, the above deposition methods include thermal CVD in which a raw material gas or a raw material gas and a reactive gas are reacted only by heat to deposit a thin film, plasma CVD using heat and plasma, photo CVD using heat and light, heat In addition, optical plasma CVD using light and plasma, and ALD in which the deposition reaction of CVD is divided into elementary processes and deposition is performed stepwise at the molecular level.
 上記基体の材質としては、例えばシリコン;窒化ケイ素、窒化チタン、窒化タンタル、酸化チタン、窒化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン等のセラミックス;ガラス;金属ルテニウム等の金属が挙げられる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられ、基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。 Examples of the material of the substrate include silicon; ceramics such as silicon nitride, titanium nitride, tantalum nitride, titanium oxide, titanium nitride, ruthenium oxide, zirconium oxide, hafnium oxide, and lanthanum oxide; glass; metals such as metal ruthenium. . Examples of the shape of the substrate include a plate shape, a spherical shape, a fiber shape, and a scale shape, and the surface of the substrate may be a flat surface or a three-dimensional structure such as a trench structure.
 また、上記の製造条件としては、反応温度(基体温度)、反応圧力、堆積速度等が挙げられる。反応温度については、本発明のアルミニウム化合物が充分に反応する温度である100℃以上が好ましく150℃~400℃がより好ましい。また、反応圧力は、熱CVD、光CVDの場合、大気圧~10Paが好ましく、プラズマを使用する場合は、2000Pa~10Paが好ましい。
 また、堆積速度は、原料の供給条件(気化温度、気化圧力)、反応温度、反応圧力によりコントロールすることが出来る。堆積速度は、大きいと得られる薄膜の特性が悪化する場合があり、小さいと生産性に問題を生じる場合があるので、0.01~100nm/分が好ましく、1~50nm/分がより好ましい。また、ALD法の場合は、所望の膜厚が得られるようにサイクルの回数でコントロールされる。
Moreover, as said manufacturing conditions, reaction temperature (base | substrate temperature), reaction pressure, a deposition rate, etc. are mentioned. The reaction temperature is preferably 100 ° C. or higher, which is the temperature at which the aluminum compound of the present invention sufficiently reacts, and more preferably 150 ° C. to 400 ° C. The reaction pressure is preferably from atmospheric pressure to 10 Pa in the case of thermal CVD and photo CVD, and is preferably 2000 Pa to 10 Pa in the case of using plasma.
The deposition rate can be controlled by the raw material supply conditions (vaporization temperature, vaporization pressure), reaction temperature, and reaction pressure. When the deposition rate is large, the properties of the obtained thin film may be deteriorated. When the deposition rate is small, productivity may be problematic. Therefore, 0.01 to 100 nm / min is preferable, and 1 to 50 nm / min is more preferable. In the case of the ALD method, the number of cycles is controlled so as to obtain a desired film thickness.
 上記の製造条件として更に、薄膜形成用原料を気化させて蒸気とする際の温度や圧力が挙げられる。薄膜形成用原料を気化させて蒸気とする工程は、原料容器内で行ってもよく、気化室内で行ってもよい。いずれの場合においても、本発明の薄膜形成用原料は0~150℃で蒸発させることが好ましい。また、原料容器内又は気化室内で薄膜形成用原料を気化させて蒸気とする場合に原料容器内の圧力及び気化室内の圧力はいずれも1~10000Paであることが好ましい。 Further, the above production conditions include temperature and pressure at which the thin film forming raw material is vaporized into steam. The step of vaporizing the raw material for forming a thin film to form a vapor may be performed in a raw material container or in a vaporization chamber. In any case, the thin film forming raw material of the present invention is preferably evaporated at 0 to 150 ° C. Further, when the thin film forming raw material is vaporized in the raw material container or in the vaporizing chamber to form a vapor, the pressure in the raw material container and the pressure in the vaporizing chamber are both preferably 1 to 10,000 Pa.
 本発明の薄膜の製造方法は、ALD法を採用して、上記の輸送供給方法により、薄膜形成用原料を気化させて蒸気となし、該蒸気を成膜チャンバー内へ導入する原料導入工程のほか、該蒸気中の上記アルミニウム化合物により上記基体の表面に前駆体薄膜を形成する前駆体薄膜成膜工程、未反応のアルミニウム化合物ガスを排気する排気工程、及び、該前駆体薄膜を反応性ガスと化学反応させて、該基体の表面に上記アルミニウムを含有する薄膜を形成するアルミニウム含有薄膜形成工程を有していてもよい。 The thin film manufacturing method of the present invention adopts the ALD method, vaporizes the raw material for forming the thin film into the vapor by the above-described transport and supply method, and introduces the vapor into the film forming chamber. A precursor thin film forming step for forming a precursor thin film on the surface of the substrate by the aluminum compound in the vapor, an exhausting step for exhausting unreacted aluminum compound gas, and the precursor thin film as a reactive gas. You may have the aluminum containing thin film formation process of making it react chemically and forming the thin film containing the said aluminum on the surface of this base | substrate.
 以下では、上記の各工程について、酸化アルミニウム薄膜を形成する場合を例に詳しく説明する。酸化アルミニウム薄膜をALD法により形成する場合は、まず、前記で説明した原料導入工程を行う。薄膜形成用原料を蒸気とする際の好ましい温度や圧力は上記で説明したものと同様である。次に、堆積反応部に導入したアルミニウム化合物により、基体表面に前駆体薄膜を成膜させる(前駆体薄膜成膜工程)。このときに、基体を加熱するか、堆積反応部を加熱して、熱を加えてもよい。この工程で成膜される前駆体薄膜は、酸化アルミニウム薄膜、又は、アルミニウム化合物の一部が分解及び/又は反応して生成した薄膜であり、目的の酸化アルミニウム薄膜とは異なる組成を有する。本工程が行われる際の基体温度は、室温~500℃が好ましく、150~350℃がより好ましい。本工程が行われる際の系(成膜チャンバー内)の圧力は1~10000Paが好ましく、10~1000Paがより好ましい。 Hereinafter, each of the above steps will be described in detail by taking as an example the case of forming an aluminum oxide thin film. When forming an aluminum oxide thin film by the ALD method, first, the raw material introduction step described above is performed. Preferred temperatures and pressures when the thin film forming raw material is steam are the same as those described above. Next, a precursor thin film is formed on the surface of the substrate by the aluminum compound introduced into the deposition reaction part (precursor thin film forming step). At this time, heat may be applied by heating the substrate or heating the deposition reaction part. The precursor thin film formed in this step is an aluminum oxide thin film or a thin film formed by decomposition and / or reaction of a part of the aluminum compound, and has a composition different from that of the target aluminum oxide thin film. The substrate temperature when this step is performed is preferably from room temperature to 500 ° C, more preferably from 150 to 350 ° C. The pressure of the system (in the film forming chamber) when this step is performed is preferably 1 to 10,000 Pa, and more preferably 10 to 1000 Pa.
 次に、堆積反応部から、未反応のアルミニウム化合物ガスや副生したガスを排気する(排気工程)。未反応のアルミニウム化合物ガスや副生したガスは、堆積反応部から完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、窒素、ヘリウム、アルゴンなどの不活性ガスにより系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法などが挙げられる。減圧する場合の減圧度は、0.01~300Paが好ましく、0.01~100Paがより好ましい。 Next, unreacted aluminum compound gas and by-product gas are exhausted from the deposition reaction part (exhaust process). Ideally, the unreacted aluminum compound gas or by-product gas is completely exhausted from the deposition reaction part, but it is not necessarily exhausted completely. Examples of the exhaust method include a method of purging the system with an inert gas such as nitrogen, helium, and argon, a method of exhausting by reducing the pressure in the system, and a method combining these. When the pressure is reduced, the degree of pressure reduction is preferably 0.01 to 300 Pa, more preferably 0.01 to 100 Pa.
 次に、堆積反応部に酸化性ガスを導入し、該酸化性ガス又は酸化性ガス及び熱の作用により、先の前駆体薄膜成膜工程で得た前駆体薄膜から酸化アルミニウム薄膜を形成する(アルミニウム含有薄膜形成工程)。本工程において熱を作用させる場合の温度は、室温~500℃が好ましく、150~350℃がより好ましい。本工程が行われる際の系(成膜チャンバー内)の圧力は1~10000Paが好ましく、10~1000Paがより好ましい。本発明のアルミニウム化合物は、酸化性ガスとの反応性が良好であり、酸化アルミニウム薄膜を得ることができる。 Next, an oxidizing gas is introduced into the deposition reaction portion, and an aluminum oxide thin film is formed from the precursor thin film obtained in the precursor thin film forming step by the action of the oxidizing gas or the oxidizing gas and heat ( Aluminum-containing thin film forming step). The temperature when heat is applied in this step is preferably room temperature to 500 ° C., more preferably 150 to 350 ° C. The pressure of the system (in the film forming chamber) when this step is performed is preferably 1 to 10,000 Pa, and more preferably 10 to 1000 Pa. The aluminum compound of the present invention has good reactivity with an oxidizing gas, and an aluminum oxide thin film can be obtained.
 本発明の薄膜の製造方法において、上記のようにALD法を採用した場合、上記の原料導入工程、前駆体薄膜成膜工程、排気工程、及び、アルミニウム含有薄膜形成工程からなる一連の操作による薄膜堆積を1サイクルとし、このサイクルを必要な膜厚の薄膜が得られるまで複数回繰り返してもよい。この場合、1サイクル行った後、上記排気工程と同様にして、堆積反応部から未反応のアルミニウム化合物ガス及び反応性ガス(酸化アルミニウム薄膜を形成する場合は酸化性ガス)、更に副成したガスを排気した後、次の1サイクルを行うことが好ましい。 In the method for producing a thin film of the present invention, when the ALD method is employed as described above, the thin film by a series of operations including the above-described raw material introduction step, precursor thin film formation step, exhaust step, and aluminum-containing thin film formation step The deposition may be one cycle, and this cycle may be repeated a plurality of times until a thin film having a required film thickness is obtained. In this case, after one cycle, the unreacted aluminum compound gas and reactive gas (oxidizing gas in the case of forming an aluminum oxide thin film) and further by-produced gas from the deposition reaction portion in the same manner as the exhaust process. After exhausting, it is preferable to perform the next one cycle.
 また、酸化アルミニウム薄膜のALD法による形成においては、プラズマ、光、電圧などのエネルギーを印加してもよい。これらのエネルギーを印加する時期は、特には限定されず、例えば、原料導入工程におけるアルミニウム化合物ガス導入時、前駆体薄膜成膜工程又はアルミニウム含有薄膜形成工程における加温時、排気工程における系内の排気時、アルミニウム含有薄膜形成工程における酸化性ガス導入時でもよく、上記の各工程の間でもよい。 In the formation of the aluminum oxide thin film by the ALD method, energy such as plasma, light, or voltage may be applied. The timing for applying these energies is not particularly limited. For example, when introducing an aluminum compound gas in the raw material introducing step, heating in the precursor thin film forming step or the aluminum-containing thin film forming step, It may be at the time of exhausting, at the time of introducing an oxidizing gas in the aluminum-containing thin film forming step, or between the above steps.
 また、本発明の薄膜の製造方法においては、薄膜堆積の後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、200~1000℃であり、250~500℃が好ましい。 In the method for producing a thin film of the present invention, after thin film deposition, annealing may be performed in an inert atmosphere, an oxidizing atmosphere, or a reducing atmosphere in order to obtain better electrical characteristics. When embedding is necessary, a reflow process may be provided. The temperature in this case is 200 to 1000 ° C., preferably 250 to 500 ° C.
 本発明の薄膜形成用原料を用いて薄膜を製造する装置は、周知な化学気相成長法用装置を用いることができる。具体的な装置の例としては図1のような非シャワーヘッドタイプの装置や、図2のようなプレカーサをバブリング供給で行うことのできる装置や、図3のように気化室を有する装置が挙げられる。また、図1、図2,図3のような枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。上記の成膜チャンバーは、図2においては「反応成膜室」、図3においては「薄膜堆積部」として記載されている。 As the apparatus for producing a thin film using the thin film forming raw material of the present invention, a known chemical vapor deposition apparatus can be used. Specific examples of the apparatus include a non-shower head type apparatus as shown in FIG. 1, an apparatus capable of carrying a precursor as shown in FIG. 2 by bubbling supply, and an apparatus having a vaporization chamber as shown in FIG. It is done. In addition to the single wafer type apparatus as shown in FIGS. 1, 2, and 3, an apparatus capable of simultaneously processing a large number of sheets using a batch furnace can also be used. The film forming chamber is described as a “reaction film forming chamber” in FIG. 2 and a “thin film deposition portion” in FIG.
 本発明の薄膜形成用原料を用いて製造される薄膜は、他のプレカーサ、反応性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の所望の種類の薄膜とすることができる。製造されるアルミニウムを含有する薄膜としては、例えば、アルミニウム金属薄膜やアルミニウム系セラミックス薄膜等が挙げられる。上記アルミニウム系セラミックス薄膜としては、アルミニウム窒化物薄膜、アルミニウム酸化物薄膜、又はチタン酸アルミニウムに代表されるアルミニウム含有複合金属系酸化物薄膜等が挙げられる。これらは、LSIの配線材料、機械部品や工具等のハードコーティング膜、半導体メモリの絶縁膜、ゲート絶縁膜、誘電体膜、ハードディスク用MRヘッド等の電子部品、光通信用回路等の光学ガラス、触媒等の製造に広く用いられている。 A thin film manufactured using the raw material for forming a thin film of the present invention can be selected from other precursors, reactive gases, and manufacturing conditions as appropriate, so that a desired type of metal, oxide ceramics, nitride ceramics, glass, etc. It can be a thin film. Examples of the thin film containing aluminum to be produced include an aluminum metal thin film and an aluminum-based ceramic thin film. Examples of the aluminum ceramic thin film include an aluminum nitride thin film, an aluminum oxide thin film, and an aluminum-containing composite metal oxide thin film represented by aluminum titanate. These include LSI wiring materials, hard coating films for machine parts and tools, semiconductor memory insulating films, gate insulating films, dielectric films, hard disk MR heads and other electronic parts, optical communication circuits and other optical glasses, Widely used in the production of catalysts and the like.
 以下、実施例及び評価例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。 Hereinafter, the present invention will be described in more detail with examples and evaluation examples. However, the present invention is not limited by the following examples.
[実施例1]本発明のアルミニウム化合物の製造
 アルゴンガス雰囲気下で、反応フラスコに脱水処理したトルエン溶液460gにトリメチルアルミニウム52.9gを溶解させた溶液を、氷冷バスにて攪拌し0℃付近まで冷却し、脱水処理したラセミ体の第2ブチルアルコール54.4gを3時間かけてゆっくりと滴下した。反応中に発生するメタンガスはアルゴンガスの通気により留去した。その後、室温に戻して約20時間反応させた。その後、トルエンをバス100℃減圧下にて留去し、液体残渣を得た。その液体を、190Paの減圧下、バス100℃で蒸留し、塔頂温度70℃にて留出した化合物を得た。この精製による回収率は79%であった。得られた化合物は室温で液体であり、元素分析及び1H-NMR分析の結果、目的物である本発明のアルミニウム化合物であることが確認された。これらの分析結果を以下に示す。以下には、TG-DTAの結果も併せて示す。
[Example 1] Production of aluminum compound of the present invention In an argon gas atmosphere, a solution obtained by dissolving 52.9 g of trimethylaluminum in 460 g of a toluene solution dehydrated in a reaction flask was stirred with an ice-cooled bath at around 0 ° C. Then, 54.4 g of racemic secondary butyl alcohol was slowly added dropwise over 3 hours. Methane gas generated during the reaction was distilled off by aeration of argon gas. Then, it returned to room temperature and made it react for about 20 hours. Thereafter, toluene was distilled off under reduced pressure in a bath at 100 ° C. to obtain a liquid residue. The liquid was distilled at a bath of 100 ° C. under a reduced pressure of 190 Pa to obtain a compound distilled at a tower top temperature of 70 ° C. The recovery by this purification was 79%. The obtained compound was liquid at room temperature, and as a result of elemental analysis and 1 H-NMR analysis, it was confirmed that it was the target aluminum compound of the present invention. The results of these analyzes are shown below. The results of TG-DTA are also shown below.
(分析値)
(1)元素分析(金属分析:ICP-AES)
アルミニウム: 19.7質量%(理論値 20.73質量%)、C: 54.09質量%、H: 12.58質量% (理論値;C: 55.36質量%、H: 11.62質量%)
(2)1H-NMR(溶媒:重ベンゼン)(ケミカルシフト:多重度:H数)
(-0.448ppm:s:6)(0.666ppm:t:3)(1.028ppm:d:3)(1.251ppm:m:1)(1.481ppm:m:1)(3.628ppm:sext:1)
(3)TG-DTA
TG-DTA(Ar 100ml/min、 10℃/min昇温、サンプル量 9.791mg)50質量%減少温度 136℃
(Analysis value)
(1) Elemental analysis (metal analysis: ICP-AES)
Aluminum: 19.7 mass% (theoretical value: 20.73 mass%), C: 54.09 mass%, H: 12.58 mass% (theoretical value; C: 55.36 mass%, H: 11.62 mass%) %)
(2) 1 H-NMR (solvent: heavy benzene) (chemical shift: multiplicity: H number)
(−0.448 ppm: s: 6) (0.666 ppm: t: 3) (1.028 ppm: d: 3) (1.251 ppm: m: 1) (1.481 ppm: m: 1) (3.628 ppm : Sext: 1)
(3) TG-DTA
TG-DTA (Ar 100 ml / min, 10 ° C./min temperature increase, sample amount 9.791 mg) 50 mass% reduction temperature 136 ° C.
[評価例1]アルミニウム化合物の発火性評価
 本発明のアルミニウム化合物並びに以下に示す比較化合物1、2及び3について、大気中に放置することで発火性の有無を確認した。結果を表1に示す。
[Evaluation Example 1] Evaluation of ignitability of aluminum compound The aluminum compound of the present invention and comparative compounds 1, 2 and 3 shown below were confirmed to be ignitable by being left in the atmosphere. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1の結果より、比較化合物1は大気中で発火性を示すことがわかった。発火性を示す化合物は安全性の点から、化学気相成長用原料として扱いにくい。本発明のアルミニウム化合物並びに比較化合物2及び3は発火性を示さず、大気中でも安全に用いることができることがわかった。 From the results shown in Table 1, it was found that Comparative Compound 1 exhibited ignitability in the atmosphere. A compound exhibiting ignitability is difficult to handle as a raw material for chemical vapor deposition from the viewpoint of safety. It was found that the aluminum compound of the present invention and the comparative compounds 2 and 3 did not show ignition properties and can be used safely in the atmosphere.
[評価例2]アルミニウム化合物の物性評価
 発火性のない化合物である本発明のアルミニウム化合物並びに比較化合物2及び3について、20℃で固体のものについては微小融点測定装置を用いて融点を測定した。また、TG-DTA測定装置を用いて、Ar雰囲気下での加熱によってサンプル重量が50質量%減少した時点の温度を確認した。結果を表2に示す。
[Evaluation Example 2] Evaluation of Physical Properties of Aluminum Compound Regarding the aluminum compound of the present invention and the comparative compounds 2 and 3 which are non-ignitable compounds, the melting point of the solid compound at 20 ° C. was measured using a minute melting point measuring apparatus. In addition, using the TG-DTA measuring device, the temperature at the time when the weight of the sample was reduced by 50 mass% by heating in an Ar atmosphere was confirmed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2の結果より、本発明のアルミニウム化合物及び比較化合物2は、常温(20℃)で液体の化合物であることや、高い蒸気圧を示す化合物であることが確認できた。また、比較化合物3は、常温で固体であり、融点が高いことがわかった。融点の高い化合物は、化学気相成長用原料として用いる場合に、液体状態で輸送するために大きなエネルギーが必要となるため、エネルギー的に不利である。 From the results shown in Table 2, it was confirmed that the aluminum compound and comparative compound 2 of the present invention were liquid compounds at room temperature (20 ° C.) or compounds exhibiting a high vapor pressure. Moreover, it was found that Comparative Compound 3 was solid at room temperature and had a high melting point. A compound having a high melting point is disadvantageous in terms of energy because it requires a large amount of energy to be transported in a liquid state when used as a raw material for chemical vapor deposition.
[評価例3]アルミニウム化合物の熱安定性評価
 常温で液体の化合物である本発明のアルミニウム化合物及び比較化合物2について、DSC測定装置を用いて熱分解が発生する温度を測定することで、各化合物の熱安定性を確認した。結果を表3に示す。
[Evaluation Example 3] Evaluation of Thermal Stability of Aluminum Compound Each compound is measured by measuring the temperature at which thermal decomposition occurs using a DSC measuring apparatus for the aluminum compound of the present invention and the comparative compound 2 which are liquid compounds at room temperature. The thermal stability of was confirmed. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表3の結果より、本発明のアルミニウム化合物は、400℃以上の非常に高い熱安定性を示すことがわかった。これに対して、比較化合物2は200℃付近という低温で熱分解が発生してしまうことがわかった。このことから、本発明のアルミニウム化合物は、特に優れた熱安定性を示す化合物であることがわかった。 From the results in Table 3, it was found that the aluminum compound of the present invention exhibits a very high thermal stability of 400 ° C. or higher. In contrast, Comparative Compound 2 was found to undergo thermal decomposition at a low temperature of around 200 ° C. From this, it was found that the aluminum compound of the present invention is a compound exhibiting particularly excellent thermal stability.
[実施例2]ALD法による酸化アルミニウム薄膜の製造
 上記実施例1で得た本発明のアルミニウム化合物を化学気相成長用原料とし、図3に示す装置を用いて以下の条件のALD法により、シリコンウエハ上に酸化アルミニウム薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は6nmであり、膜組成は酸化アルミニウムであり、炭素含有量は1atom%であった。
 (条件)
 反応温度(基体温度):300℃、反応性ガス:オゾンガス
 (工程)
 下記(1)~(4)からなる一連の工程を1サイクルとして、150サイクル繰り返した。
(1)気化室温度:45℃、気化室圧力:1.1Torr(147Pa)の条件で気化させた化学気相成長用原料の蒸気を成膜チャンバー内に導入し、系圧力1Torr(133Pa)で10秒間、シリコンウエハ表面に堆積させる。
(2)20秒間のアルゴンパージにより、未反応原料を除去する。
(3)反応性ガスを導入し、系圧力1Torr(133Pa)で10秒間反応させる。
(4)20秒間のアルゴンパージにより、未反応原料を除去する。
Example 2 Production of Aluminum Oxide Thin Film by ALD Method Using the aluminum compound of the present invention obtained in Example 1 as a raw material for chemical vapor deposition, using the apparatus shown in FIG. An aluminum oxide thin film was produced on a silicon wafer. About the obtained thin film, when the film thickness measurement by X-ray reflectivity method, the thin film structure and the thin film composition were confirmed by X-ray diffraction method and X-ray photoelectron spectroscopy, the film thickness was 6 nm, and the film composition was oxidized. It was aluminum and the carbon content was 1 atom%.
(conditions)
Reaction temperature (substrate temperature): 300 ° C., reactive gas: ozone gas (process)
A series of steps consisting of the following (1) to (4) was set as one cycle and repeated 150 cycles.
(1) Vapor of chemical vapor deposition material vaporized under the conditions of vaporization chamber temperature: 45 ° C. and vaporization chamber pressure: 1.1 Torr (147 Pa) is introduced into the film formation chamber, and the system pressure is 1 Torr (133 Pa). Deposit on the silicon wafer surface for 10 seconds.
(2) Unreacted raw materials are removed by argon purging for 20 seconds.
(3) A reactive gas is introduced, and the reaction is performed at a system pressure of 1 Torr (133 Pa) for 10 seconds.
(4) Unreacted raw material is removed by argon purge for 20 seconds.

Claims (3)

  1.  下記化学式(I)で表されるアルミニウム化合物。
    Figure JPOXMLDOC01-appb-C000001
    An aluminum compound represented by the following chemical formula (I).
    Figure JPOXMLDOC01-appb-C000001
  2.  請求項1に記載のアルミニウム化合物を含有してなる薄膜形成用原料。 A raw material for forming a thin film comprising the aluminum compound according to claim 1.
  3.  請求項2に記載の薄膜形成用原料を気化させて得た、上記アルミニウム化合物を含有する蒸気を、基体が設置された成膜チャンバー内に導入し、該アルミニウム化合物を分解及び/又は化学反応させて該基体の表面にアルミニウムを含有する薄膜を形成する薄膜の製造方法。 The vapor containing the aluminum compound obtained by vaporizing the raw material for forming a thin film according to claim 2 is introduced into a film forming chamber in which a substrate is installed, and the aluminum compound is decomposed and / or chemically reacted. A thin film manufacturing method for forming a thin film containing aluminum on the surface of the substrate.
PCT/JP2012/075334 2012-01-13 2012-10-01 Aluminum compound, starting material for forming thin film, and method for producing thin film WO2013105310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012004965A JP2013145787A (en) 2012-01-13 2012-01-13 Aluminum compound, starting material for forming thin film, and method for producing thin film
JP2012-004965 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105310A1 true WO2013105310A1 (en) 2013-07-18

Family

ID=48781274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075334 WO2013105310A1 (en) 2012-01-13 2012-10-01 Aluminum compound, starting material for forming thin film, and method for producing thin film

Country Status (3)

Country Link
JP (1) JP2013145787A (en)
TW (1) TW201329092A (en)
WO (1) WO2013105310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165496A (en) * 2013-02-25 2014-09-08 Samsung Electronics Co Ltd Aluminum precursor, and methods of forming thin film and capacitor using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008445B1 (en) * 2014-02-26 2019-08-08 주식회사 유진테크 머티리얼즈 Precursor compositions for forming zirconium-containing film and method of forming zirconium-containing film using them as precursors
JP2024022694A (en) * 2020-12-28 2024-02-20 株式会社Adeka Thin film forming raw material for atomic layer deposition method, thin film manufacturing method, and aluminum compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013377A1 (en) * 2002-08-02 2004-02-12 Korea Research Institute Of Chemical Technology Method for preparation of aluminum oxide thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013377A1 (en) * 2002-08-02 2004-02-12 Korea Research Institute Of Chemical Technology Method for preparation of aluminum oxide thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165496A (en) * 2013-02-25 2014-09-08 Samsung Electronics Co Ltd Aluminum precursor, and methods of forming thin film and capacitor using the same

Also Published As

Publication number Publication date
JP2013145787A (en) 2013-07-25
TW201329092A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
JP4565897B2 (en) Thin film forming raw material and thin film manufacturing method
JP6184030B2 (en) Aluminum compound, thin film forming raw material, and thin film manufacturing method
JP5843318B2 (en) Raw material for forming aluminum nitride thin film for ALD method and method for producing the thin film
JP6200429B2 (en) Metal alkoxide compound, raw material for thin film formation, method for producing thin film, and alcohol compound
WO2019203035A1 (en) Source material for thin film formation for atomic layer deposition and method for producing thin film
WO2013018413A1 (en) Alkoxide compound and raw material for forming thin film
WO2017221586A1 (en) Vanadium compound, starting material for thin film formation, and method for producing thin film
WO2015093177A1 (en) Ruthenium compound, raw material for forming thin film, and method for producing thin film
WO2013105310A1 (en) Aluminum compound, starting material for forming thin film, and method for producing thin film
JP5912911B2 (en) Method for producing thin film by ALD method using aluminum compound
WO2018235530A1 (en) Metal alkoxide compound, thin-film-forming raw material, and method for producing thin film
JP2013216614A (en) Cobalt alkoxide compound, raw material for thin film formation and method for producing thin film
WO2020170853A1 (en) Starting material for forming gallium nitride-containing thin film for atomic layer deposition method, and method for producing gallium nitride-containing thin film
JP2018035072A (en) Diazadienyl compound, raw material for forming thin film, and method for producing thin film
WO2021200218A1 (en) Material for formation of thin film for use in atomic layer deposition and method for producing thin film
WO2023276716A1 (en) Starting material for forming thin film, thin film and method for producing thin film
TWI824133B (en) Raw material for forming thin film, method for manufacturing thin film, and scandium compound
WO2023171489A1 (en) Starting material for thin film formation by atomic layer deposition, thin film, and method for producing thin film
WO2021200219A1 (en) Zinc compound, raw material for thin film formation, thin film, and method for producing thin film
WO2022059571A1 (en) Raw material for formation of thin film for use in atomic layer deposition, and method for producing thin film
WO2023282104A1 (en) Compound, raw material for thin film formation, thin film, and method for producing thin film
WO2022190877A1 (en) Thin film-forming starting material for use in atomic layer deposition method, thin film, method for producing thin film, and zinc compound
WO2023054066A1 (en) Thin film-forming material, thin film manufacturing method, thin film, and molybdenum compound
WO2022220153A1 (en) Thin film-forming feedstock for use in atomic layer deposition, thin film, method for producing thin film, and ruthenium compound
WO2021054160A1 (en) Raw material for forming thin film for atomic layer deposition and method for producing zinc-containing thin film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865361

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12865361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE