WO2013105209A1 - 光生体計測装置 - Google Patents

光生体計測装置 Download PDF

Info

Publication number
WO2013105209A1
WO2013105209A1 PCT/JP2012/050223 JP2012050223W WO2013105209A1 WO 2013105209 A1 WO2013105209 A1 WO 2013105209A1 JP 2012050223 W JP2012050223 W JP 2012050223W WO 2013105209 A1 WO2013105209 A1 WO 2013105209A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
scalp surface
image data
image
scalp
Prior art date
Application number
PCT/JP2012/050223
Other languages
English (en)
French (fr)
Inventor
石川 亮宏
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2012/050223 priority Critical patent/WO2013105209A1/ja
Priority to US14/363,345 priority patent/US10258237B2/en
Priority to JP2013553117A priority patent/JP5729490B2/ja
Publication of WO2013105209A1 publication Critical patent/WO2013105209A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • the present invention relates to an optical biological measurement apparatus, and more particularly to an optical biological measurement apparatus that measures brain activity non-invasively.
  • an optical brain functional imaging apparatus that performs noninvasive measurement using light.
  • near-infrared light of three different wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 (for example, 780 nm, 805 nm, and 830 nm) is obtained by a light transmission probe arranged on the scalp surface of a subject.
  • concentration / optical path length product of total hemoglobin ([oxyHb] + [deoxyHb]) is calculated from the concentration / optical path length product [oxyHb] of oxyhemoglobin and the deoxyhemoglobin concentration / optical path length product [deoxyHb]. Yes.
  • a ( ⁇ 1 ) E O ( ⁇ 1 ) ⁇ [oxyHb] + E d ( ⁇ 1 ) ⁇ [deoxyHb] (1)
  • a ( ⁇ 2 ) E O ( ⁇ 2 ) ⁇ [oxyHb] + E d ( ⁇ 2 ) ⁇ [deoxyHb] (2)
  • a ( ⁇ 3 ) E O ( ⁇ 3 ) ⁇ [oxyHb] + E d ( ⁇ 3 ) ⁇ [deoxyHb] (3)
  • E O ( ⁇ m) is an absorbance coefficient of oxyhemoglobin in light having a wavelength ⁇ m
  • E d ( ⁇ m) is an absorbance coefficient of deoxyhemoglobin in light having a wavelength ⁇ m.
  • FIG. 6 is a cross-sectional view showing a relationship between a pair of light transmitting probe and light receiving probe and a measurement site.
  • the light transmitting probe 12 is pressed against the light transmitting point t on the subject's scalp surface, and the light receiving probe 13 is pressed against the light receiving point r on the subject's scalp surface. Then, light is emitted from the light transmitting probe 12 and light emitted from the scalp surface is incident on the light receiving probe 13.
  • the light passing through the banana shape reaches the light receiving point r on the scalp surface.
  • the light transmitting point t and the light receiving point r are particularly determined from the midpoint s of the line connecting the light transmitting point t and the light receiving point r at the shortest distance along the surface of the subject's scalp. It is assumed that received light amount information A ( ⁇ 1 ), A ( ⁇ 2 ), and A ( ⁇ 3 ) regarding the measurement site m of the subject that is half the distance of the line connected at the shortest distance along the scalp surface is obtained. Yes.
  • the measurement site m is a brain region
  • the scalp is present outside the brain, so the positions of the light transmitting probe 12 and the light receiving probe 13 can be determined while checking the position of the brain. I can't decide. Therefore, doctors, laboratory technicians, and the like do not determine the positions of the light transmitting probe 12 and the light receiving probe 13 based on the position of the brain, but based on the reference point set on the scalp surface. The arrangement position of the light receiving probe 13 is determined.
  • a reference point set on the scalp surface for example, the International 10-20 method has been published (see, for example, Non-Patent Document 2).
  • the shape of the human brain is actually distorted and often asymmetric.
  • the human brain is asymmetrical, when the brain activity is measured by arranging the light transmitting probe 12 and the light receiving probe 13 at equal positions with respect to the scalp surface, the brain of the part of the brain to be measured is measured. The problem was that activity was not measured. There are individual differences in the anatomy of the brain. In other words, since brain shapes often differ from person to person, brain activity data measured based on the International 10-20 method could not be compared among multiple persons.
  • an optical biometric device capable of displaying an image of a three-dimensional morphological image indicating the positional relationship between the scalp surface and the brain surface in order to arrange the light transmitting probe 12 and the light receiving probe 13 is disclosed (for example, see Patent Document 1).
  • FIG. 7 is a diagram showing a three-dimensional morphological image showing the positional relationship between the scalp surface and the brain surface.
  • Such an optical biometric apparatus is configured by designating a morphological image display means for displaying a three-dimensional morphological image indicating the positional relationship between a scalp surface image and a brain surface image, and a predetermined position of the brain surface image.
  • a measurement point determining means for determining a predetermined position of the brain surface image as the measurement point m, and a specific position of the scalp surface image is determined as the estimation point s based on the measurement point m, and an image of the estimation point s is displayed.
  • Estimated point determination means According to such an optical biometric apparatus, a doctor, a laboratory technician, or the like transmits a probe to the scalp surface of a subject while observing an image display of a three-dimensional morphological image indicating the positional relationship between the scalp surface image and the brain surface image. 12 and the light receiving probe 13 can be accurately arranged.
  • NeuroImage 18 865-879, 2003 “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping” (NeuroImage 21 (2004) 99-111)
  • the present inventor examined a method for accurately determining the position of the subject's scalp surface corresponding to the estimated point s. Therefore, it has been found that a reference point set on the scalp surface by the international 10-20 method or the like is used.
  • the optical biometric apparatus of the present invention is an optical biometric apparatus that includes a display device that performs image display and an input device that is operated for input, and is a three-dimensional diagram that shows the positional relationship between the scalp surface and the brain surface.
  • a measurement point determination unit that determines a predetermined position of the brain surface image as a measurement point by specifying a predetermined position of the brain surface image displayed on the basis of the morphological image data with the input device, and the measurement point Based on the three-dimensional morphological image data, a specific position of the scalp surface image displayed as an estimated point, and an estimated point determination unit for displaying an image of the estimated point on the scalp surface image;
  • a position guide unit that displays a path image indicating a shortest path along the scalp surface between the estimated point and a reference point of the scalp surface image corresponding to the reference point of the subject on the scalp surface image; Have .
  • three-dimensional morphological image data indicating the positional relationship between the scalp surface and the brain surface refers to video data of a subject created by a nuclear magnetic resonance imaging apparatus (hereinafter abbreviated as MRI), a CT image, or the like. This refers to three-dimensional morphological image data created by extracting video data indicating the scalp surface and brain surface (see FIG. 7).
  • the “measurement point” means an arbitrary position designated on the brain surface image by using an input device or the like.
  • the “estimated point” refers to a position determined on the scalp surface image based on the measurement point. For example, the position of the scalp surface image at the shortest distance from the measurement point or the radius of the sphere is enlarged. For example, the barycentric coordinates of the scalp surface obtained by the ball.
  • the estimation point is determined on the scalp surface image by specifying the measurement point on the brain surface image
  • the scalp surface image corresponding to the estimation point and the reference point of the subject A path image showing the shortest path along the scalp surface with the reference point is displayed on the scalp surface image.
  • a doctor, a laboratory technician, or the like can determine the position of the subject's scalp surface corresponding to the estimated point while referring to the route image from the reference point of the subject.
  • the position of the subject's scalp surface corresponding to the estimated point can be accurately determined, and therefore, the light transmitting probe, the light receiving probe, and the like are accurately arranged. Can do.
  • the optical biometric apparatus of the present invention acquires scalp surface morphological image data by extracting morphological video data indicating the scalp surface based on morphological video data indicating the subject including the scalp surface and the brain surface.
  • a morphological image data acquisition unit that acquires cerebral surface morphological image data by extracting morphological video data indicating the brain surface, and by combining the scalp surface morphological image data and the brain surface morphological image data, You may make it provide the morphological image creation part which produces
  • the position guiding unit displays a shortest distance along the scalp surface between the estimated point and a reference point of a scalp surface image corresponding to the reference point of the subject. May be. As described above, according to the optical biological measurement apparatus of the present invention, the shortest distance between the estimated point and the reference point is displayed, so that the position of the subject's scalp surface corresponding to the estimated point can be more accurately determined. it can.
  • the reference point of the subject may be the nasal root, the top of the subject, the right auricle front point, or the left auricle front point.
  • the estimated point determination unit may determine a specific position of the scalp surface image at the shortest distance from the measurement point as an estimated point.
  • the optical biometric apparatus of the present invention comprises a measurement probe having at least one light transmitting probe disposed on the scalp surface and at least one light receiving probe disposed on the scalp surface, and the light transmitting probe. May emit light to the scalp surface, and the light-receiving probe may detect light emitted from the scalp surface.
  • the optical biometric apparatus of the present invention it is possible to measure the brain activity of the part of the brain to be measured with the measurement probe regardless of individual differences in the anatomical structure of the brain.
  • the optical biometric device of the present invention includes a morphological image data acquisition unit that acquires the morphological image data, and the morphological image data acquisition unit acquires morphological image data created by the nuclear magnetic resonance imaging apparatus. You may do it.
  • the block diagram which shows the structure of the optical biological measuring device which is one Embodiment of this invention.
  • FIG. 1 is a block diagram showing a configuration of an optical biological measurement apparatus according to an embodiment of the present invention.
  • the optical biological measurement apparatus 1 includes a nuclear magnetic resonance imaging diagnostic apparatus (hereinafter abbreviated as MRI) 2, a measurement probe 11, and a control system (computer) 20 that controls the entire optical biological measurement apparatus 1.
  • MRI nuclear magnetic resonance imaging diagnostic apparatus
  • 2 and 3 are diagrams illustrating an example of a monitor screen 23a on which an image obtained by the biological measurement apparatus 1 is displayed.
  • a three-dimensional morphological image 24d showing the positional relationship between the scalp surface image 24a and the brain surface image 24b is displayed on the monitor screen 23a.
  • an image display of the pointer 24c, the measurement point m, and the estimated point s is performed.
  • the scalp surface image 24a is translucent and displayed as an image.
  • FIG. 3 an image display of a three-dimensional morphological image 24d showing the scalp surface image 24a is performed.
  • image display of the route images L1 and L2 is performed.
  • the MRI2 creates morphological image data indicating a two-dimensional image in three directions as shown in FIG.
  • the morphological video data indicates subjects including the scalp surface and the brain surface.
  • the morphological image data is composed of a plurality of pixels having numerical values such as intensity information and phase information of the MR signal.
  • the measurement probe 11 includes a light transmission probe 12 and a light reception probe 13.
  • the light transmission probe 12 emits light according to a drive signal input from the computer 20.
  • the light receiving probe 13 outputs light reception amount information A ( ⁇ 1 ), A ( ⁇ 2 ), A ( ⁇ 3 ) to the computer 20 by detecting light.
  • the computer 20 includes a CPU 21, and further includes a memory 25 for storing morphological image data, scalp surface morphological image data, brain surface morphological image data, brain activity data, and the like, a display device 23 having a monitor screen 23a and the like, and an input device.
  • a keyboard 22a and a mouse 22b are connected. Further, the functions processed by the CPU 21 will be described as a block.
  • the morphological image data acquisition unit 31, the morphological image data acquisition unit 32, the morphological image creation unit 33, the measurement point determination unit 34, and the estimated point determination unit 35 The pointer display control unit 36, the position guide unit 38, and the brain activity data acquisition unit 37 are provided.
  • the pointer display control unit 36 displays the image of the pointer 24c on the monitor screen 23a, and moves the pointer 24c displayed on the monitor screen 23a based on the input signal output from the mouse 22b, or moves the pointer 24c with the pointer 24c. Control to specify the position.
  • the morphological video data acquisition unit 31 acquires morphological video data created by the MRI 2 and performs control for storing the morphological video data in the memory 25.
  • the morphological image data acquisition unit 32 extracts morphological video data indicating the scalp surface based on the morphological video data stored in the memory 25, thereby acquiring scalp surface morphological image data and indicating the brain surface.
  • the brain surface morphological image data is acquired, and the scalp surface morphological image data and the brain surface morphological image data are controlled to be stored in the memory 25.
  • an image region dividing method such as region expansion method, region merging method, heuristic method, boundary element, etc.
  • the morphological image creation unit 33 synthesizes the scalp surface morphological image data and the brain surface morphological image data stored in the memory 25 to thereby indicate a three-dimensional morphological image indicating the positional relationship between the scalp surface image 24a and the brain surface image 24b.
  • 24d is created and control is performed to display the image of the three-dimensional form image 24d on the monitor screen 23a.
  • the scalp surface image 24a and the brain surface image 24b are displayed in an overlapping manner, the scalp surface image 24a is displayed in a translucent manner.
  • the three-dimensional morphological image 24d can accurately indicate the positional relationship between the scalp surface and the brain surface by synthesizing the scalp surface morphological image data and the brain surface morphological image data based on the morphological video data.
  • the measurement point determination unit 34 determines the predetermined position of the brain surface image 24b as the measurement point m by designating the predetermined position of the brain surface image 24b displayed on the monitor screen 23a with the pointer 24c, and Control is performed to display an image of the measurement point m on the monitor image 23a on the surface image 24b.
  • the estimated point determination unit 35 determines a specific position of the scalp surface image 24a displayed on the monitor screen 23a as an estimated point s and displays an image of the estimated point s on the scalp surface image 24a. Is performed on the monitor screen 23a.
  • the estimated point determination unit 35 determines, for example, a specific position of the scalp surface image 24a at the shortest distance from the measurement point m as the estimated point s. Note that the estimated point determination unit 35 may enlarge the radius of the sphere and determine the center-of-gravity coordinates of the scalp surface obtained by the sphere as the estimated point s.
  • the position guiding unit 38 designates two predetermined positions of the scalp surface image 24a as reference points by designating the two predetermined positions of the scalp surface image 24a displayed on the monitor screen 23a by the pointer 24c.
  • a path image L1 indicating the shortest path along the scalp surface between the estimated point s and the reference point O1
  • Control is performed to display an image with L2 on the monitor screen 23a.
  • Examples of the reference points described above include a nasal root image, a parietal image, a right auricular point image, a left auricular point image, and the like.
  • a plane head section including the estimated point s and the reference point is reconstructed, and the outer layer pixel between the estimated point s and the reference point is reconstructed.
  • the method of calculating the distance, the corresponding point on the scalp surface of the midpoint of the straight line passing through the estimated point s and the reference point, and the scalp of the midpoint of the straight line passing through the corresponding point and the estimated point s (reference point) For example, a method of obtaining a corresponding point on the surface and repeating this to make a route is used.
  • the brain activity data acquisition unit 37 Based on the input signal output from the input device 22, the brain activity data acquisition unit 37 outputs a drive signal for acquiring brain activity data to the light transmission probe 12 and also receives light reception amount information A ( ⁇ 1) from the light reception probe 13. ), A ( ⁇ 2 ), and A ( ⁇ 3 ) are input to control the memory 25 to store the brain activity data. Therefore, according to the brain activity data, for example, oxyhemoglobin concentration / optical path length product [oxyHb], deoxyhemoglobin concentration / optical path length product [deoxyHb], total hemoglobin concentration / optical path length product ([oxyHb] + [deoxyHb] ]).
  • FIG. 5 is a flowchart for explaining an example of the inspection method by the living body measurement apparatus 1.
  • morphological image data indicating a subject including a scalp surface and a brain surface is acquired from the MRI 2, and the morphological image data is stored in the memory 25 (see FIG. 4).
  • the morphological image data may be stored in the memory 25 using a storage medium or the like from a separately provided MRI.
  • the scalp surface morphological image data is obtained by extracting the morphological video data indicating the scalp surface based on the morphological video data stored in the memory 25, and the scalp surface morphological image data. Is stored in the memory 25. At this time, for example, morphological image data indicating the scalp surface is extracted by a surface rendering method (see FIG. 7A).
  • brain surface morphological image data is obtained by extracting morphological video data indicating the brain surface based on the morphological video data stored in the memory 25, and the brain surface morphological image data. Is stored in the memory 25. At this time, for example, morphological image data indicating the brain surface is extracted by a volume rendering method (see FIG. 7B).
  • the scalp surface morphological image data and the brain surface morphological image data stored in the memory 25 are synthesized to indicate the three-dimensional relationship between the scalp surface image 24a and the brain surface image 24b.
  • a morphological image 24d is created, and an image of the three-dimensional morphological image 24d is displayed on the monitor screen 23a (see FIG. 7C).
  • the predetermined position of the brain surface image 24b is determined as the measurement point m by designating the predetermined position of the brain surface image 24b displayed on the monitor screen 23a with the pointer 24c. At this time, an image of the measurement point m is displayed on the monitor screen 23a (see FIG. 2).
  • the predetermined position examples include a motor area, a somatosensory area, a visual area, an auditory area, and a motor language center. That is, the brain activity at a predetermined position can be measured.
  • the specific position of the scalp surface image 24a displayed on the monitor screen 23a is determined as the estimated point s.
  • an image of the estimated point s is displayed on the monitor screen 23a (see FIG. 2).
  • the two predetermined positions of the scalp surface image 24a are designated by specifying the two predetermined positions of the scalp surface image 24a displayed on the monitor screen 23a with the pointer 24c, respectively.
  • Reference points O1 and O2 are determined.
  • a path image L1 showing the shortest path along the scalp surface between the estimated point s and the reference point O1, and a shortest path along the scalp surface between the estimated point s and the reference point O2 are shown. An image is displayed with the route image L2 (see FIG. 3).
  • step S109 the midpoint of the line connecting the position where the one end 12a of the light transmitting probe 12 is disposed and the position where the one end 13a of the light receiving probe 13 is disposed at the shortest distance along the scalp surface.
  • one light transmitting probe 12 and one light receiving probe 13 are arranged on the subject so as to be the same position as the position of the scalp surface corresponding to the estimated point s. That is, the measurement probe 11 is arranged with reference to the monitor screen 23a displayed as an image shown in FIG.
  • step S110 the light is emitted from one end 12a of the light transmitting probe 12, and the light emitted from the scalp surface is detected by the one end 13a of the light receiving probe 13.
  • the concentration / optical path length product [oxyHb] of oxyhemoglobin at the position of the brain corresponding to the measurement point m of the brain surface image 24b the concentration / optical path length product [deoxyHb] of deoxyhemoglobin, and the concentration / optical path length of total hemoglobin.
  • the product ([oxyHb] + [deoxyHb]) is obtained.
  • this flowchart is complete
  • the position of the scalp surface of the subject corresponding to the estimated point s can be accurately determined, so that the light transmitting probe 12 and the light receiving probe 13 can be accurately arranged. it can.
  • a path image L1 indicating the shortest path along the scalp surface between the estimated point s and the reference point O1
  • the shortest path along the scalp surface between the estimated point s and the reference point O2 has been shown
  • the numerical value indicating the shortest distance along the scalp surface between the estimated point s and the reference point O1
  • the scalp between the estimated point s and the reference point O2 It is good also as a structure which displays an image with the numerical value which shows the shortest distance along the surface.
  • the position guiding unit 38 specifies the two predetermined positions of the scalp surface image 24a by designating the two predetermined positions of the scalp surface image 24a with the pointer 24c.
  • a configuration may be adopted in which two (or three) predetermined positions of the scalp surface image are determined as reference points.
  • the position guiding unit automatically extracts and extracts a reference point (for example, a point defined by the International 10-20 method, etc.) from a three-dimensional morphological image data by a feature point detection device using a normalized pattern recognition method.
  • the distances between the plurality of reference points and the target point (estimated point s) are calculated.
  • Two or three reference points having a small distance calculated in this way are automatically selected. This eliminates the need for doctors, laboratory technicians, and the like to designate reference points with pointers.
  • the position guiding unit 38 specifies the two predetermined positions of the scalp surface image 24a by designating the two predetermined positions of the scalp surface image 24a with the pointer 24c.
  • reference points O1 and O2 are defined as reference points O1 and O2, respectively.
  • the present invention can be used in an optical biometric apparatus that measures brain activity non-invasively.
  • Optical biological measurement device 2 MRI 11: Measurement probe 12: Light transmission probe 13: Light reception probe 22: Input device 23: Display device 31: Morphological image data acquisition unit 32: Morphological image data acquisition unit 33: Morphological image creation unit 34: Measurement point determination unit 35: Estimation Point determining unit 38: Position guiding unit t: Light transmitting point r: Light receiving point m: Measurement point s: Estimated point

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 光生体計測装置1であって、脳表面画像24bの所定の位置が入力装置22で指定されることにより、脳表面画像24bの所定の位置を測定点mと定める測定点決定部34と、測定点mに基づいて、頭皮表面画像24aの特定の位置を推定点sと定めるとともに、推定点sの画像表示を行う推定点決定部35と、推定点sと、被験者の基準点に対応する頭皮表面画像24aの基準点との頭皮表面に沿った最短経路を示す経路画像L1、L2を、頭皮表面画像上24aに表示する位置誘導部38とを備えることを特徴とする。

Description

光生体計測装置
 本発明は、光生体計測装置に関し、さらに詳細には非侵襲で脳活動を測定する光生体計測装置に関する。
 近年、脳の活動状況を観察するために、光を用いて簡便に非侵襲で測定する光脳機能イメージング装置が開発されている。このような光脳機能イメージング装置では、被験者の頭皮表面上に配置した送光プローブにより、異なる3種類の波長λ、λ、λ(例えば、780nmと805nmと830nm)の近赤外光を脳に照射するとともに、頭皮表面上に配置した受光プローブにより、脳から放出された各波長λ、λ、λの近赤外光の強度(受光量情報)A(λ)、A(λ)、A(λ)をそれぞれ検出する。
 そして、このようにして得られた受光量情報A(λ)、A(λ)、A(λ)から、脳血流中のオキシヘモグロビンの濃度・光路長積[oxyHb]と、デオキシヘモグロビンの濃度・光路長積[deoxyHb]とを求めるために、例えば、Modified Beer Lambert則を用いて関係式(1)(2)(3)に示す連立方程式を作成して、この連立方程式を解いている(例えば、非特許文献1参照)。さらには、オキシヘモグロビンの濃度・光路長積[oxyHb]と、デオキシヘモグロビンの濃度・光路長積[deoxyHb]とから総ヘモグロビンの濃度・光路長積([oxyHb]+[deoxyHb])を算出している。
 A(λ)=E(λ)×[oxyHb]+E(λ)×[deoxyHb]・・・(1)
 A(λ)=E(λ)×[oxyHb]+E(λ)×[deoxyHb]・・・(2)
 A(λ)=E(λ)×[oxyHb]+E(λ)×[deoxyHb]・・・(3)
 なお、E(λm)は、波長λmの光におけるオキシヘモグロビンの吸光度係数であり、E(λm)は、波長λmの光におけるデオキシヘモグロビンの吸光度係数である。
 ここで、送光プローブと受光プローブとの間の距離(チャンネル)と、測定部位との関係について説明する。図6は、一対の送光プローブ及び受光プローブと、測定部位との関係を示す断面図である。
 送光プローブ12が被験者の頭皮表面の送光点tに押し当てられるとともに、受光プローブ13が被験者の頭皮表面の受光点rに押し当てられる。そして、送光プローブ12から光を照射させるとともに、受光プローブ13に頭皮表面から放出される光を入射させる。このとき、光は、頭皮表面の送光点tから照射された光のうちで、バナナ形状(測定領域)を通過した光が、頭皮表面の受光点rに到達する。これにより、測定領域の中でも、特に送光点tと受光点rとを被験者の頭皮表面に沿って最短距離で結んだ線の中点sから、送光点tと受光点rとを被験者の頭皮表面に沿って最短距離で結んだ線の距離の半分の深さである被験者の測定部位mに関する受光量情報A(λ)、A(λ)、A(λ)が得られるとしている。
 ところが、医師や検査技師等は、測定部位mは脳の部位であるが、脳の外側に頭皮が存在するので、脳の位置を確認しながら、送光プローブ12及び受光プローブ13の配置位置を決めることはできない。
 そのため、医師や検査技師等は、脳の位置を基準にして送光プローブ12及び受光プローブ13の配置位置を決めるのではなく、頭皮表面に設定された基準点を基にして送光プローブ12及び受光プローブ13の配置位置を決めている。なお、頭皮表面に設定された基準点としては、例えば、国際10-20法が発表されている(例えば、非特許文献2参照)。
 しかしながら、ヒトの脳の形状は、実際には歪んでおり、非対称であることが多い。ヒトの脳が左右非対称であるにもかかわらず、送光プローブ12及び受光プローブ13の配置位置を頭皮表面に対して均等な位置に配置して脳活動を測定すると、測定したい脳の部位の脳活動が測定されないという問題が生じた。
 また、脳の解剖学的構造には個人差がある。つまり、脳の形状がヒトによって違っている場合も多いため、国際10-20法に基づいて測定された脳活動データを複数のヒトで比較することができなかった。
 そこで、送光プローブ12及び受光プローブ13等を配置するために、頭皮表面と脳表面との位置関係を示す3次元形態画像の画像表示を行うことができる光生体計測装置が開示されている(例えば、特許文献1参照)。図7は、頭皮表面と脳表面との位置関係を示す3次元形態画像を示す図である。このような光生体計測装置は、頭皮表面画像と脳表面画像との位置関係を示す3次元形態画像の画像表示を行う形態画像表示手段と、脳表面画像の所定の位置が指定されることにより、脳表面画像の所定の位置を測定点mと定める測定点決定手段と、測定点mに基づいて、頭皮表面画像の特定の位置を推定点sと定めるとともに、推定点sの画像表示を行う推定点決定手段とを備える。
 このような光生体計測装置によれば、医師や検査技師等は頭皮表面画像と脳表面画像との位置関係を示す3次元形態画像の画像表示を観察しながら、被験者の頭皮表面に送光プローブ12及び受光プローブ13等を正確に配置することができる。
特開2007-315827号公報
Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters, NeuroImage 18, 865-879, 2003 "Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping" (NeuroImage 21 (2004) 99-111)
 しかしながら、上述したような光生体計測装置では、頭皮表面画像上に推定点の画像表示が行われるが、実際の被験者の頭皮表面には目印がないため、推定点sに対応する被験者の頭皮表面の位置を正確に判断することが困難であった。その結果、被験者の頭皮表面に送光プローブ12及び受光プローブ13等を正確に配置することができず、測定点mに関する受光量情報A(λ)、A(λ)、A(λ)を得られないことがあった。
 本件発明者は、上記課題を解決するために、推定点sに対応する被験者の頭皮表面の位置を正確に判断する方法について検討を行った。そこで、国際10-20法等によって頭皮表面に設定された基準点を利用することを見出した。
 すなわち、本発明の光生体計測装置は、画像表示が行われる表示装置と、入力操作される入力装置とを備える光生体計測装置であって、頭皮表面と脳表面との位置関係を示す3次元形態画像データに基づいて画像表示された脳表面画像の所定の位置が前記入力装置で指定されることにより、当該脳表面画像の所定の位置を測定点と定める測定点決定部と、前記測定点に基づいて、前記3次元形態画像データに基づいて画像表示された頭皮表面画像の特定の位置を推定点と定めるとともに、当該頭皮表面画像上に推定点の画像表示を行う推定点決定部と、前記推定点と、前記被験者の基準点に対応する頭皮表面画像の基準点との頭皮表面に沿った最短経路を示す経路画像を、前記頭皮表面画像上に表示する位置誘導部とを備えるようにしている。
 ここで、「頭皮表面と脳表面との位置関係を示す3次元形態画像データ」とは、核磁気共鳴画像診断装置(以下、MRIと略す)やCT画像等により作成された被験者の映像データから、頭皮表面及び脳表面を示す映像データを抽出することにより作成された3次元形態画像データのことをいう(図7参照)。
 また、「基準点」とは、国際10-20法等によって定義された点等のことをいい、例えば、鼻根(Nasion=Nz)、後頭結節(Inion=Iz)、左右両耳介前点(AL,AR)等が挙げられる。
 また、「測定点」とは、入力装置等を用いて脳表面画像上で指定された任意の位置のことをいい、例えば、運動野、体性感覚野、視覚野、聴覚野、運動性言語中枢等が挙げられる。
 また、「推定点」とは、測定点に基づいて頭皮表面画像上で決定される位置のことをいい、例えば、測定点から最短の距離にある頭皮表面画像の位置や、球体の半径を拡大し球体によりえぐられる頭皮表面の重心座標等が挙げられる。
 本発明の光生体計測装置によれば、脳表面画像上で測定点が指定されることにより、頭皮表面画像上で推定点を決定すると、推定点と、被験者の基準点に対応する頭皮表面画像の基準点との頭皮表面に沿った最短経路を示す経路画像を、頭皮表面画像上に表示する。これにより、医師や検査技師等は被験者の基準点からの経路画像を参考にしながら、推定点に対応する被験者の頭皮表面の位置を判断することができる。
 以上のように、本発明の光生体計測装置によれば、推定点に対応する被験者の頭皮表面の位置を正確に判断することができるため、送光プローブ及び受光プローブ等を正確に配置することができる。
(その他の課題を解決するための手段及び効果)
 また、本発明の光生体計測装置は、頭皮表面と脳表面とを含む被験者を示す形態映像データに基づいて、頭皮表面を示す形態映像データを抽出することにより、頭皮表面形態画像データを取得するとともに、脳表面を示す形態映像データを抽出することにより、脳表面形態画像データを取得する形態画像データ取得部と、前記頭皮表面形態画像データと脳表面形態画像データとを合成することにより、前記3次元形態画像データを作成する形態画像作成部とを備えるようにしてもよい。
 以上のように、本発明の光生体計測装置によれば、頭皮表面と脳表面との位置関係を示す3次元形態画像データを作成するので、正確な頭皮表面と脳表面との位置関係を示すことができる。
 また、本発明の光生体計測装置は、前記位置誘導部は、前記推定点と、前記被験者の基準点に対応する頭皮表面画像の基準点との頭皮表面に沿った最短距離を表示するようにしてもよい。
 以上のように、本発明の光生体計測装置によれば、推定点と基準点との最短距離が表示されるので、推定点に対応する被験者の頭皮表面の位置をより正確に判断することができる。
 また、本発明の光生体計測装置は、前記被験者の基準点は、前記被験者の鼻根、頭頂、右耳介前点又は左耳介前点であるようにしてもよい。
 また、本発明の光生体計測装置は、前記推定点決定部は、前記測定点から最短の距離にある前記頭皮表面画像の特定の位置を推定点と定めるようにしてもよい。
 そして、本発明の光生体計測装置は、前記頭皮表面に配置される少なくとも一つの送光プローブと、前記頭皮表面に配置される少なくとも一つの受光プローブとを有する測定プローブを備え、前記送光プローブは、前記頭皮表面に光を出射するとともに、前記受光プローブは、前記頭皮表面から放出される光を検出するようにしてもよい。
 本発明の光生体計測装置によれば、測定プローブにより、脳の解剖学的構造の個人差にかかわらず、測定したい脳の部位の脳活動を測定することができる。
 さらに、本発明の光生体計測装置は、前記形態映像データを取得する形態映像データ取得部を備え、前記形態映像データ取得部は、核磁気共鳴画像診断装置により作成された形態映像データを取得するようにしてもよい。
本発明の一実施形態である光生体計測装置の構成を示すブロック図。 生体計測装置により得られた画像が表示されたモニタ画面の一例を示す図。 生体計測装置により得られた画像が表示されたモニタ画面の一例を示す図。 MRIにより得られた3方向の2次元画像を示す図。 本発明に係る生体計測装置による検査方法の一例について説明するフローチャート。 一対の送光プローブ及び受光プローブと、測定部位との関係を示す断面図。 頭皮表面と脳表面との位置関係を示す3次元形態画像を示す図。
 以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
 図1は、本発明の一実施形態である光生体計測装置の構成を示すブロック図である。
 光生体計測装置1は、核磁気共鳴画像診断装置(以下、MRIと略す)2と、測定プローブ11と、光生体計測装置1全体の制御を行う制御系(コンピュータ)20とにより構成される。
 図2及び図3は、生体計測装置1により得られる画像が画像表示されたモニタ画面23aの一例を示す図である。図2では、モニタ画面23aには頭皮表面画像24aと脳表面画像24bとの位置関係を示す3次元形態画像24dの画像表示が行われている。また、ポインタ24cと測定点mと推定点sとの画像表示が行われている。なお、頭皮表面画像24aは、半透明で画像表示されている。図3は、頭皮表面画像24aを示す3次元形態画像24dの画像表示が行われている。また、経路画像L1、L2の画像表示が行われている。
 MRI2は、図4に示すような3方向の2次元画像を示す形態映像データを作成するものである。なお、形態映像データは、頭皮表面と脳表面とを含む被験者を示すものである。また、形態映像データは、MR信号の強度情報や位相情報等の数値を有する複数のピクセルから構成される。
 測定プローブ11は、送光プローブ12と受光プローブ13とを有する。送光プローブ12は、コンピュータ20から入力された駆動信号により光を出射する。受光プローブ13は、光を検出することにより、受光量情報A(λ)、A(λ)、A(λ)をコンピュータ20に出力する。
 コンピュータ20においては、CPU21を備え、さらに形態映像データや頭皮表面形態画像データや脳表面形態画像データや脳活動データ等を記憶するメモリ25と、モニタ画面23a等を有する表示装置23と、入力装置22であるキーボード22aやマウス22bとが連結されている。また、CPU21が処理する機能をブロック化して説明すると、形態映像データ取得部31と、形態画像データ取得部32と、形態画像作成部33と、測定点決定部34と、推定点決定部35と、ポインタ表示制御部36と、位置誘導部38と、脳活動データ取得部37とを有する。
 ポインタ表示制御部36は、モニタ画面23aにポインタ24cの画像表示を行うとともに、マウス22bから出力された入力信号に基づいて、モニタ画面23aに画像表示されたポインタ24cを移動したり、ポインタ24cで位置を指定したりする制御を行う。
 形態映像データ取得部31は、MRI2により作成された形態映像データを取得するとともに、形態映像データをメモリ25に記憶させる制御を行う。
 形態画像データ取得部32は、メモリ25に記憶された形態映像データに基づいて、頭皮表面を示す形態映像データを抽出することにより、頭皮表面形態画像データを取得し、かつ、脳表面を示す形態映像データを抽出することにより、脳表面形態画像データを取得するとともに、頭皮表面形態画像データと脳表面形態画像データとをメモリ25に記憶させる制御を行う。
 上述した抽出する方法としては、例えば、MRI信号の強度情報や位相情報等の数値を有する複数のピクセルを用いることにより、領域拡張法、領域併合法、ヒューリスティック法等の画像領域分割方法、境界要素を連結して領域を抽出する方法、閉曲線を変形させて領域を抽出する方法等を利用する方法等が挙げられる。このように形態映像データを抽出することにより、頭皮表面形態画像データ及び脳表面形態画像データを取得するので、鮮明な画像データを取得することができる。
 形態画像作成部33は、メモリ25に記憶された頭皮表面形態画像データと脳表面形態画像データとを合成することにより、頭皮表面画像24aと脳表面画像24bとの位置関係を示す3次元形態画像24dを作成して、3次元形態画像24dの画像表示をモニタ画面23aに行う制御を行う。このとき、頭皮表面画像24aと脳表面画像24bとを重ねて表示するときには、頭皮表面画像24aは半透明で画像表示される。なお、形態映像データに基づいて、頭皮表面形態画像データと脳表面形態画像データとを合成することにより、3次元形態画像24dは頭皮表面と脳表面との位置関係を正確に示すことができる。
 測定点決定部34は、モニタ画面23aに画像表示された脳表面画像24bの所定の位置がポインタ24cで指定されることにより、脳表面画像24bの所定の位置を測定点mと定めるとともに、脳表面画像24b上に測定点mの画像表示をモニタ画面23aに行う制御を行う。
 推定点決定部35は、測定点mに基づいて、モニタ画面23aに画像表示された頭皮表面画像24aの特定の位置を推定点sと定めるとともに、頭皮表面画像24a上に推定点sの画像表示をモニタ画面23aに行う制御を行う。このとき、推定点決定部35は、例えば、測定点mから最短の距離にある頭皮表面画像24aの特定の位置を推定点sと定める。なお、推定点決定部35は、球体の半径を拡大し球体によりえぐられる頭皮表面の重心座標を推定点sと定めてもよい。
 位置誘導部38は、モニタ画面23aに画像表示された頭皮表面画像24aの2箇所の所定の位置がポインタ24cで指定されることにより、頭皮表面画像24aの2箇所の所定の位置をそれぞれ基準点O1、O2と定めるとともに、推定点sと基準点O1との頭皮表面に沿った最短経路を示す経路画像L1と、推定点sと基準点O2との頭皮表面に沿った最短経路を示す経路画像L2との画像表示をモニタ画面23aに行う制御を行う。
 上述した基準点としては、例えば、鼻根画像、頭頂画像、右耳介前点画像、左耳介前点画像等が挙げられる。また、上述した経路画像L1、L2を作成する方法としては、例えば、推定点sと基準点とを含む平面の頭部断面を再構成し、推定点sと基準点との間の外層ピクセルの距離を算出する方法や、推定点sと基準点とを通る直線の中点の頭皮表面での対応点を求め、さらに対応点と推定点s(基準点)とを通る直線の中点の頭皮表面での対応点を求め、これを繰り返して経路とする方法等が挙げられる。
 脳活動データ取得部37は、入力装置22から出力された入力信号に基づいて、脳活動データを取得する駆動信号を送光プローブ12に出力するとともに、受光プローブ13から受光量情報A(λ)、A(λ)、A(λ)が入力されることにより、メモリ25に脳活動データを記憶させる制御を行う。よって、脳活動データにより、例えば、オキシヘモグロビンの濃度・光路長積[oxyHb]と、デオキシヘモグロビンの濃度・光路長積[deoxyHb]と、総ヘモグロビンの濃度・光路長積([oxyHb]+[deoxyHb])とを求める。
 ここで、本発明の生体計測装置1により、脳の部位の脳活動を測定する検査方法について説明する。図5は、生体計測装置1による検査方法の一例について説明するためのフローチャートである。
 まず、ステップS101の処理において、MRI2から、頭皮表面と脳表面とを含む被験者を示す形態映像データを取得するとともに、形態映像データをメモリ25に記憶させる(図4参照)。このとき、形態映像データは、別に設けられたMRIから記憶媒体等を用いてメモリ25に記憶されるようにしてもよい。
 次に、ステップS102の処理において、メモリ25に記憶された形態映像データに基づいて、頭皮表面を示す形態映像データを抽出することにより、頭皮表面形態画像データを取得するとともに、頭皮表面形態画像データをメモリ25に記憶させる。このとき、例えば、サーフェースレンダリング法により頭皮表面を示す形態映像データを抽出する(図7(a)参照)。
 次に、ステップS103の処理において、メモリ25に記憶された形態映像データに基づいて、脳表面を示す形態映像データを抽出することにより、脳表面形態画像データを取得するとともに、脳表面形態画像データをメモリ25に記憶させる。このとき、例えば、ボリュームレンダリング法により脳表面を示す形態映像データを抽出する(図7(b)参照)。
 次に、ステップS104の処理において、メモリ25に記憶された頭皮表面形態画像データと脳表面形態画像データとを合成させることにより、頭皮表面画像24aと脳表面画像24bとの位置関係を示す3次元形態画像24dを作成して、3次元形態画像24dの画像表示をモニタ画面23aに行わせる(図7(c)参照)。
 次に、ステップS105の処理において、モニタ画面23aに画像表示された脳表面画像24bの所定の位置をポインタ24cで指定することにより、脳表面画像24bの所定の位置を測定点mと定める。このとき、モニタ画面23aに測定点mの画像表示を行わせる(図2参照)。所定の位置としては、例えば、運動野、体性感覚野、視覚野、聴覚野、運動性言語中枢等が挙げられる。つまり、所定の位置の脳活動を測定できることになる。
 次に、ステップS106の処理において、測定点mに基づいて、モニタ画面23aに画像表示された頭皮表面画像24aの特定の位置を推定点sと定めさせる。このとき、モニタ画面23aに推定点sの画像表示を行わせる(図2参照)。
 次に、ステップS107の処理において、モニタ画面23aに画像表示された頭皮表面画像24aの2箇所の所定の位置をポインタ24cで指定することにより、頭皮表面画像24aの2箇所の所定の位置をそれぞれ基準点O1、O2と定めさせる。
 次に、ステップS108の処理において、推定点sと基準点O1との頭皮表面に沿った最短経路を示す経路画像L1と、推定点sと基準点O2との頭皮表面に沿った最短経路を示す経路画像L2との画像表示を行わせる(図3参照)。
 次に、ステップS109の処理において、送光プローブ12の一端12aが配置される位置と受光プローブ13の一端13aが配置される位置とを頭皮表面に沿って最短距離で結んだ線の中点が、推定点sに対応する頭皮表面の位置と同一の位置となるように、被験者に1個の送光プローブ12と1個の受光プローブ13とを配置する。つまり、図3に示される画像表示されたモニタ画面23aを参考にしながら測定プローブ11を配置する。
 次に、ステップS110の処理において、送光プローブ12の一端12aから光を出射させるとともに、受光プローブ13の一端13aに、頭皮表面から放出される光を検出させる。このとき、光は、頭皮表面の送光点tから、脳表面画像24bの測定点mに対応する脳の位置を通って頭皮表面の受光点rまで移動することになる(図6参照)。よって、脳表面画像24bの測定点mに対応する脳の位置のオキシヘモグロビンの濃度・光路長積[oxyHb]と、デオキシヘモグロビンの濃度・光路長積[deoxyHb]と、総ヘモグロビンの濃度・光路長積([oxyHb]+[deoxyHb])とを求めることになる。
 そして、ステップS110の処理が終了したときには、本フローチャートを終了させる。
 以上のように、生体計測装置1によれば、推定点sに対応する被験者の頭皮表面の位置を正確に判断することができるため、送光プローブ12及び受光プローブ13を正確に配置することができる。
<他の実施形態>
(1)上述したX線検査装置1では、1個の送光プローブ12と1個の受光プローブ13とを有する測定プローブ11を備える構成を示したが、測定プローブ11の代わりに、格子状の多数の送光プローブ及び受光プローブを有する測定プローブを備える構成としてもよい。
 このときには、送光プローブが配置される位置と受光プローブが配置される位置とを頭皮表面に沿って最短距離で結んだ線の中点が、できる限り複数の推定点と同一の位置となるように配置させることになる。
(2)上述したX線検査装置1では、MRIを備える構成を示したが、MRIの代わりに、CT等を備える構成としてもよい。
(3)上述したX線検査装置1では、推定点sと基準点O1との頭皮表面に沿った最短経路を示す経路画像L1と、推定点sと基準点O2との頭皮表面に沿った最短経路を示す経路画像L2との画像表示を行う構成を示したが、さらに推定点sと基準点O1との頭皮表面に沿った最短距離を示す数値と、推定点sと基準点O2との頭皮表面に沿った最短距離を示す数値との画像表示を行う構成としてもよい。
(4)上述したX線検査装置1では、位置誘導部38は、頭皮表面画像24aの2箇所の所定の位置がポインタ24cで指定されることにより、頭皮表面画像24aの2箇所の所定の位置をそれぞれ基準点O1、O2と定める構成を示したが、国際10-20法等によって定義された点のうちで推定点sの近傍となる2(もしくは3)つの点を自動検出して選択することにより、頭皮表面画像の2(もしくは3)箇所の所定の位置をそれぞれ基準点と定める構成としてもよい。
 例えば、位置誘導部は、3次元形態画像データから正規化パターン認識法による特徴点検出装置により基準点(例えば、国際10-20法等によって定義された点)を自動的に抽出し、抽出された複数の基準点とターゲットの点(推定点s)との距離をそれぞれ算出する。このように算出された距離の小さい基準点を2個もしくは3個、自動的に選択する。
 これにより、医師や検査技師等が基準点をポインタで指定する必要をなくすことができる。
(5)上述したX線検査装置1では、位置誘導部38は、頭皮表面画像24aの2箇所の所定の位置がポインタ24cで指定されることにより、頭皮表面画像24aの2箇所の所定の位置をそれぞれ基準点O1、O2と定める構成を示したが、常に鼻根(Nasion=Nz)、後頭結節(Inion=Iz)、左右両耳介前点(AL,AR)を基準点と定める構成としてもよい。
 これにより、医師や検査技師等が基準点をポインタで指定する必要をなくすことができる。
 本発明は、非侵襲で脳活動を測定する光生体計測装置に利用することができる。
 1: 光生体計測装置
 2: MRI
11: 測定プローブ
12: 送光プローブ
13: 受光プローブ
22: 入力装置
23: 表示装置
31: 形態映像データ取得部
32: 形態画像データ取得部
33: 形態画像作成部
34: 測定点決定部
35: 推定点決定部
38: 位置誘導部
 t: 送光点
 r: 受光点
 m: 測定点
 s: 推定点

Claims (7)

  1.  画像表示が行われる表示装置と、入力操作される入力装置とを備える光生体計測装置であって、
     頭皮表面と脳表面との位置関係を示す3次元形態画像データに基づいて画像表示された脳表面画像の所定の位置が前記入力装置で指定されることにより、当該脳表面画像の所定の位置を測定点と定める測定点決定部と、
     前記測定点に基づいて、前記3次元形態画像データに基づいて画像表示された頭皮表面画像の特定の位置を推定点と定めるとともに、当該頭皮表面画像上に推定点の画像表示を行う推定点決定部と、
     前記推定点と、前記被験者の基準点に対応する頭皮表面画像の基準点との頭皮表面に沿った最短経路を示す経路画像を、前記頭皮表面画像上に表示する位置誘導部とを備えることを特徴とする光生体計測装置。
  2.  頭皮表面と脳表面とを含む被験者を示す形態映像データに基づいて、頭皮表面を示す形態映像データを抽出することにより、頭皮表面形態画像データを取得するとともに、脳表面を示す形態映像データを抽出することにより、脳表面形態画像データを取得する形態画像データ取得部と、
     前記頭皮表面形態画像データと脳表面形態画像データとを合成することにより、前記3次元形態画像データを作成する形態画像作成部とを備えることを特徴とする請求項1に記載の光生体計測装置。
  3.  前記位置誘導部は、前記推定点と、前記被験者の基準点に対応する頭皮表面画像の基準点との頭皮表面に沿った最短距離を表示することを特徴とする請求項1又は請求項2に記載の光生体計測装置。
  4.  前記被験者の基準点は、前記被験者の鼻根、頭頂、右耳介前点又は左耳介前点であることを特徴とする請求項1~請求項3のいずれか1項に記載の光生体計測装置。
  5.  前記推定点決定部は、前記測定点から最短の距離にある前記頭皮表面画像の特定の位置を推定点と定めることを特徴とする請求項1~請求項4のいずれか1項に記載の光生体計測装置。
  6.  前記頭皮表面に配置される少なくとも一つの送光プローブと、前記頭皮表面に配置される少なくとも一つの受光プローブとを有する測定プローブを備え、
     前記送光プローブは、前記頭皮表面に光を出射するとともに、前記受光プローブは、前記頭皮表面から放出される光を検出することを特徴とする請求項1~請求項5のいずれか1項に記載の光生体計測装置。
  7.  前記形態映像データを取得する形態映像データ取得部を備え、
     前記形態映像データ取得部は、核磁気共鳴画像診断装置により作成された形態映像データを取得することを特徴とする請求項2~請求項6のいずれか1項に記載の光生体計測装置。
PCT/JP2012/050223 2012-01-10 2012-01-10 光生体計測装置 WO2013105209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/050223 WO2013105209A1 (ja) 2012-01-10 2012-01-10 光生体計測装置
US14/363,345 US10258237B2 (en) 2012-01-10 2012-01-10 Photobiomedical measurement apparatus
JP2013553117A JP5729490B2 (ja) 2012-01-10 2012-01-10 光生体計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/050223 WO2013105209A1 (ja) 2012-01-10 2012-01-10 光生体計測装置

Publications (1)

Publication Number Publication Date
WO2013105209A1 true WO2013105209A1 (ja) 2013-07-18

Family

ID=48781188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050223 WO2013105209A1 (ja) 2012-01-10 2012-01-10 光生体計測装置

Country Status (3)

Country Link
US (1) US10258237B2 (ja)
JP (1) JP5729490B2 (ja)
WO (1) WO2013105209A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537363A (ja) * 2014-09-24 2017-12-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生体構造のボリュメトリック画像を視覚化すること

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088528A (ja) * 2001-09-18 2003-03-25 Hitachi Medical Corp 生体光計測装置
JP2007315827A (ja) * 2006-05-24 2007-12-06 Shimadzu Corp 光生体計測装置、光生体計測装置用プログラム及び光生体計測方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI113615B (fi) * 2002-10-17 2004-05-31 Nexstim Oy Kallonmuodon ja sisällön kolmiulotteinen mallinnusmenetelmä
JP4403453B2 (ja) * 2003-11-13 2010-01-27 株式会社島津製作所 頭表座標を脳表座標に変換する方法と、その変換データを利用する経頭蓋的脳機能測定装置
JP4630564B2 (ja) * 2004-03-30 2011-02-09 国立大学法人浜松医科大学 手術支援装置、方法及びプログラム
JP6273207B2 (ja) * 2012-11-14 2018-01-31 株式会社島津製作所 光生体計測装置及びそれに用いられる位置計測装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088528A (ja) * 2001-09-18 2003-03-25 Hitachi Medical Corp 生体光計測装置
JP2007315827A (ja) * 2006-05-24 2007-12-06 Shimadzu Corp 光生体計測装置、光生体計測装置用プログラム及び光生体計測方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537363A (ja) * 2014-09-24 2017-12-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生体構造のボリュメトリック画像を視覚化すること

Also Published As

Publication number Publication date
JPWO2013105209A1 (ja) 2015-05-11
US20140330109A1 (en) 2014-11-06
JP5729490B2 (ja) 2015-06-03
US10258237B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP4968167B2 (ja) 光生体測定装置及びそれに用いられるホルダ配置支援システム
US7613502B2 (en) Optical bioinstrumentation for living body
US20170340241A1 (en) Endoscopic examination support device, endoscopic examination support method, and endoscopic examination support program
US9247894B2 (en) Apparatus and method for white-matter-enhancement processing
JP4661688B2 (ja) 光生体計測装置、光生体計測装置用プログラム及び光生体計測方法
US10299710B2 (en) Organism optical measurement device
US10052040B2 (en) Photobiological measurement apparatus
JP5347448B2 (ja) 生体測定装置
JP6273207B2 (ja) 光生体計測装置及びそれに用いられる位置計測装置
JP4876808B2 (ja) 脳機能データ制御装置
JP4490303B2 (ja) 生体光計測装置
JP5729490B2 (ja) 光生体計測装置
JP4978485B2 (ja) 光生体測定装置
JP6011636B2 (ja) 光生体計測装置
JP2005328933A (ja) 経頭蓋的脳機能測定装置
JP5853777B2 (ja) 光生体計測装置
JP2013059437A (ja) 光生体測定装置
JP5347312B2 (ja) 光測定装置
Mourad et al. Localization of Brain Activation Through Integration of Optical Topography and Magnetic Resonance Imaging
Mourad et al. A Projection Approach of Optical Topographic Maps to the Cortical Surface of the Brain Abstract
CN113365561A (zh) 脑功能测量装置
Mourad An integrated functional mapping and source localization platform for brain research
Mourad et al. An interface for analyzing and integrating different sensory modalities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865404

Country of ref document: EP

Kind code of ref document: A1