WO2013105200A1 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
WO2013105200A1
WO2013105200A1 PCT/JP2012/008378 JP2012008378W WO2013105200A1 WO 2013105200 A1 WO2013105200 A1 WO 2013105200A1 JP 2012008378 W JP2012008378 W JP 2012008378W WO 2013105200 A1 WO2013105200 A1 WO 2013105200A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
vehicle
heat exchanger
outside
door
Prior art date
Application number
PCT/JP2012/008378
Other languages
French (fr)
Japanese (ja)
Inventor
圭俊 野田
智裕 寺田
勝志 谷口
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013105200A1 publication Critical patent/WO2013105200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • B60H1/00057Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment the air being heated and cooled simultaneously, e.g. using parallel heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00085Assembling, manufacturing or layout details of air intake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00099Assembling, manufacturing or layout details comprising additional ventilating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00178Temperature regulation comprising an air passage from the HVAC box to the exterior of the cabin

Definitions

  • the present invention relates to a vehicle air conditioner mounted on a vehicle.
  • a vehicle air conditioner mounted on a vehicle to adjust the temperature of the vehicle interior.
  • a vehicle air conditioner generally adjusts the temperature inside a vehicle compartment using a heat pump.
  • Patent Document 1 discloses a vehicle air conditioner that heats a vehicle interior using heat of an engine while heating the vehicle interior using a heat pump.
  • Patent Document 2 discloses a vehicle air conditioner that performs heating and cooling of a vehicle compartment using a heat pump.
  • a vehicle air conditioner which heats a vehicle interior using heat of an engine has a problem that the heat of the heating becomes insufficient when it is cold, in an engine car or an electric car with a small amount of heat release.
  • Patent Document 2 in an air conditioner that reverses the flow of refrigerant in the heat pump to switch between cooling and heating, it is necessary to stably invert the flow of refrigerant having a pressure difference in the heat pump. . Therefore, in such an air conditioner, it takes a long time to switch between the cooling operation and the heating operation, or the piping of the refrigerant and the mechanism of the valves become complicated in order to stably reverse the flow of the refrigerant. A problem arises.
  • Vehicles are required to be able to switch quickly between cooling and heating, as the temperature and humidity of the cabin are highly variable and the windows may be cloudy depending on the situation.
  • an air conditioner that reverses the flow of refrigerant to switch between cooling and heating, it takes a considerable amount of time to stably reverse the refrigerant, so it has been difficult to meet this requirement.
  • An object of the present invention is to provide a vehicular air-conditioning system capable of heating without the heat of the engine and capable of quickly switching between cooling and heating.
  • a vehicle air conditioner includes: a pressure reducing unit that reduces the pressure of the refrigerant; a first heat exchanger that exchanges heat between the refrigerant that has been reduced by the pressure reducing unit and the ambient air; 1) A compression unit that compresses the refrigerant that has passed through the heat exchanger, a second heat exchanger that exchanges heat between the refrigerant compressed by the compression unit and the ambient air, and the heat exchanger that passes through the first heat exchanger First flow path for introducing the air into the vehicle compartment, a second flow path for introducing the air passing through the second heat exchanger into the vehicle compartment, and a first switch capable of adjusting the flow rate of the air in the first flow path A second switching unit capable of adjusting the flow rate of air in the second flow passage, and a third switching unit capable of adjusting the flow rate of air passing through the first heat exchanger and being discharged to the outside of the vehicle A fourth switching unit capable of adjusting the flow rate of air passing through the second heat exchanger and being discharged to
  • heating can be performed without the heat of the engine by sending the air warmed by the second heat exchanger into the vehicle compartment. Furthermore, according to the present invention, the cooling operation and the heating operation can be quickly switched by switching the flow path of air without reversing the flow of the refrigerant.
  • the block diagram which shows a heat pump among the vehicle air conditioners of embodiment of this invention The block diagram which shows an air blower among the vehicle air conditioners of embodiment of this invention.
  • Diagram showing the state of heating operation in the vehicle air conditioner according to the embodiment of the present invention Diagram showing a state of cooling operation in the vehicle air conditioner according to the embodiment of the present invention
  • Diagram showing a state of the dehumidifying and heating operation in the vehicle air conditioner according to the embodiment of the present invention Diagram showing the state of exhaust heat recovery heating operation in the vehicle air conditioner of the embodiment of the present invention
  • FIG. 1 is a block diagram showing a heat pump in the vehicle air conditioner according to the embodiment of the present invention.
  • FIG. 2 is a configuration diagram (a schematic cross-sectional view in which the internal flow path is made visible) showing the air blower of the vehicle air conditioner according to the embodiment of the present invention.
  • the vehicle air conditioner according to this embodiment includes the structure of the heat pump shown in FIG. 1 and the structure of the blower shown in FIG.
  • the heat pump includes an expansion valve 2 that decompresses the refrigerant, an evaporator (also referred to as an evaporator) 3 that exchanges heat between the decompressed refrigerant and the surrounding air, and a compressor 4 that compresses the refrigerant.
  • a condenser (also referred to as a condenser) 5 is provided to perform heat exchange between the refrigerant and the ambient air.
  • the expansion valve 2 corresponds to a pressure reduction unit
  • the evaporator 3 corresponds to a first heat exchanger
  • the compressor 4 corresponds to a compression unit
  • the condenser 5 corresponds to a second heat exchanger.
  • the blower includes an indoor duct 11, a mix chamber (mixed air chamber) 12, a first indoor blower duct 13, a first indoor blower door 14, a first outdoor discharge door 15, a first duct 16, a first fan 17, a first fan.
  • the indoor blower door 26 and the second indoor blower duct 27 are provided.
  • the first indoor blowing door 14, the second indoor blowing door 26, the first outdoor discharge door 15, the second outdoor discharge door 25, the first outside air introduction door 18, the first inside air introduction door 20, the second The outside air introduction door 22 and the second inside air introduction door 21 correspond to first to eighth switching portions, respectively.
  • the indoor duct 11 is a duct that leads from the mix chamber 12 to an air outlet (DEF) for preventing fog inside the vehicle compartment, an upper air outlet (VENT), and a foot air outlet (FOOT).
  • DEF air outlet
  • VENT upper air outlet
  • FOOT foot air outlet
  • the mix chamber 12 is an air chamber in which the air sent into the room and the air introduced from the room are temporarily stored and mixed.
  • the mixing chamber 12 has a function of mixing the dehumidified cold air with the heated air, for example, when dehumidifying and heating are performed in combination.
  • the first fan 17 is disposed upstream, the evaporator 3 is disposed midway, and the first indoor blowing door 14 and the first outdoor discharge door 15 are disposed downstream.
  • the air of the first duct 16 flows from the upstream to the downstream by the action of the first fan 17, and passes along the evaporator 3 to be cooled and dehumidified on the way.
  • the first fan 17 is not particularly limited, but a multi-wing fan (also called a sirocco fan) is employed.
  • the second fan 23 is disposed upstream, the condenser 5 is disposed midway, and the second indoor blowing door 26 and the second outdoor discharge door 25 are disposed downstream.
  • the air of the second duct 24 flows from the upstream to the downstream by the action of the second fan 23, passes through the condenser 5 and is warmed on the way.
  • a propeller fan is adopted as the second fan 23, though not particularly limited.
  • the downstream side of the first indoor air blowing duct 13 and the first duct 16 is a duct (corresponding to a first flow path) for guiding the air having passed through the evaporator 3 into the vehicle compartment.
  • the downstream side of the second indoor air blowing duct 27 and the second duct 24 is a duct (corresponding to a second flow path) for guiding the air having passed through the condenser 5 into the vehicle compartment.
  • the inside air return duct 19 is a duct for returning the air in the vehicle compartment to the upstream side of the first duct 16 and the upstream side of the second duct 24.
  • the upstream end opens into the vehicle compartment, and the downstream end is the first duct 16 and the first duct 2 is opened on the upstream side of the duct 24;
  • the first indoor blower door 14 is a valve for opening and closing the passage of the first indoor blower duct 13
  • the second indoor blower door 26 is a valve for opening and closing the passage of the second indoor blower duct 27.
  • the first outdoor discharge door 15 is a valve for opening and closing the outdoor discharge port on the downstream side of the first duct 16
  • the first outside air introduction door 18 is a valve for opening and closing the outside air introduction port of the first fan 17.
  • the first inside air introduction door 20 is a valve that opens and closes an opening that leads from the downstream end of the inside air return duct 19 to the inlet of the first fan 17.
  • the second inside air introduction door 21 is downstream of the inside air return duct 19 It is a valve which opens and closes the opening which leads to the suction side of the 2nd fan 23 from the end.
  • the second outdoor air introduction door 22 is a valve for opening and closing the outdoor air introduction port on the upstream side of the second duct 24, and the second outdoor exhaust door 25 is a valve for opening and closing the outdoor exhaust port on the downstream side of the second duct 24. is there.
  • First indoor blowing door 14 First outdoor discharge door 15, first outside air introduction door 18, first inside air introduction door 20, second inside air introduction door 21, second outside air introduction door 22, second outside discharge door 25, and
  • the second indoor blowing door 26 is configured to be opened and closed by an electric motor.
  • Each door opens and closes the air passage and switches the air flow rate of the passage to zero or a finite flow rate.
  • each door is configured to be able to switch the degree of opening of each air passage continuously or in multiple steps, thereby making it possible to switch the flow rate of air in continuous or multiple steps.
  • Opening and closing of each door is electrically controlled by a control unit (not shown).
  • the control unit opens and closes each door at a predetermined opening degree based on the user's button operation or the like.
  • Each door may be configured to be opened and closed by transmitting power of the user's lever operation via hydraulic pressure or a wire.
  • the vehicle air conditioner includes at least an evaporator 3, a condenser 5, a first indoor air blowing duct 13, a first indoor air blowing door 14, a first outdoor discharge door 15, a first duct 16, a first fan 17, First outside air introduction door 18, inside air return duct 19, first inside air introduction door 20, second inside air introduction door 21, second outside air introduction door 22, second fan 23, second duct 24, second outside discharge door 25,
  • the second indoor blower door 26 and the second indoor blower duct 27 are configured integrally (also referred to as unitization).
  • the indoor duct 11 and the mix chamber 12 are disposed in the vehicle compartment, and the unitized component is disposed outside the vehicle.
  • the evaporator 3 and the condenser 5 are disposed in the vicinity of the passenger compartment, and the first duct 16, the second duct 24, the first indoor air duct 13, and the second indoor air duct 27 have a short flow path length.
  • the air conditioner for vehicles of this embodiment is mounted in an electric vehicle.
  • a heat pump condenser in the vicinity of a radiator at the head of the vehicle in order to reduce the influence of engine exhaust heat, but in an electric car there is no such restriction on the arrangement. Therefore, in the vehicle air conditioner of this embodiment, it is possible to arrange the condenser 5 of the heat pump in the blower.
  • the air blower can be disposed outside the passenger compartment to widen the space in the passenger compartment.
  • FIG. 3 is a diagram showing the state of the heating operation in the vehicle air conditioner according to the embodiment of the present invention.
  • the flow of air is represented by a band-shaped arrow, and the air introduced from the outside (also called outside air) is "FRE (Fresh air)", and the air returned from the vehicle interior (also called inside air) is "REC (Recirculated air) It is written as ").
  • FRE Fresh air
  • REC Recirculated air
  • the flow of refrigerant in the heat pump is in the same direction regardless of switching of operation such as heating or cooling.
  • the first indoor blowing door 14 is closed, and the second indoor blowing door 26 is opened. Further, the first outdoor discharge door 15, the first outside air introduction door 18, and the second outside air introduction door 22 are opened, and the second outside discharge door 25 is closed. Further, the first inside air introduction door 20 is closed, and the second inside air introduction door 21 is opened. Then, the first fan 17 and the second fan 23 are driven.
  • Heat exchange for transferring heat from the air introduced from the outside (outside air) to the refrigerant is performed in the evaporator 3 by switching the air flow path as described above, and the cooled air after heat exchange is discharged to the outside of the vehicle. Be done. Further, in the condenser 5, heat exchange for transferring heat from the refrigerant to air introduced from the outside (outside air) and air introduced from the vehicle compartment (inside air) is performed, and the warmed air after heat exchange is mixed chamber 12 Sent to The ratio between the outside air and the inside air introduced to the condenser 5 is controlled to, for example, 7: 3 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
  • the reason for including the outside air in the air introduced to the condenser 5 is that if the air is 100% inside air, the humidity of the vehicle interior can not be reduced, and there is a possibility that the window may become cloudy.
  • the ratio of the outside air to the inside air introduced to the capacitor 5 can be changed to about “1: 9” to “9: 1” depending on the humidity and the temperature.
  • the air warmed by the condenser 5 is delivered to the vehicle interior through the mix chamber 12 and the indoor duct 11 to heat the vehicle interior.
  • FIG. 4 is a diagram showing a state of cooling operation in the vehicle air conditioner according to the embodiment of the present invention.
  • the first indoor blowing door 14 is opened and the second indoor blowing door 26 is closed. Further, the first outdoor discharge door 15 and the first outside air introduction door 18 are closed, and the second outdoor discharge door 25 and the second outside air introduction door 22 are opened. Further, the first inside air introduction door 20 is opened, and the second inside air introduction door 21 is closed. Further, the first fan 17 and the second fan 23 are driven.
  • the evaporator 3 performs heat exchange for transferring heat from the air introduced from the vehicle compartment to the refrigerant, and the cooled air after heat exchange is sent to the mix chamber 12 .
  • heat exchange is performed to transfer heat from the refrigerant to air introduced from the outside, and the warmed air after heat exchange is discharged to the outside.
  • the air cooled by the evaporator 3 is sent out to the vehicle interior via the mix chamber 12 and the indoor duct 11, and the vehicle interior is cooled.
  • FIG. 5 is a diagram showing the state of the dehumidifying and heating operation in the vehicle air conditioner according to the embodiment of the present invention.
  • the refrigerant flows in the heat pump in the same direction as the heating operation and the cooling operation.
  • the first indoor blowing door 14 is slightly opened, and the second indoor blowing door 26 is largely opened. Further, the first outdoor discharge door 15, the first outside air introduction door 18, and the second outside air introduction door 22 are opened, and the second outside discharge door 25 is closed. Further, the first inside air introduction door 20 and the second inside air introduction door 21 are opened. Further, the first fan 17 and the second fan 23 are driven.
  • the ratio of the outside air to the inside air sent to the evaporator 3 is controlled to, for example, 8: 2 by the opening degree of the first outside air introduction door 18 and the first inside air introduction door 20. Further, the ratio between the outside air and the inside air sent to the condenser 5 is controlled to, for example, 2: 8 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
  • the evaporator 3 performs heat exchange for transferring heat from the outside air and the inside air to the refrigerant, and partially discharges the cooled and dehumidified air after the heat exchange. And a portion is sent to the mix chamber 12.
  • heat exchange is performed to transfer heat from the refrigerant to the outside air and the inside air, and the warmed air after the heat exchange is sent to the mix chamber 12.
  • the air warmed by the condenser 5 and a part of the air dehumidified by the evaporator 3 are mixed in the mix chamber 12 and delivered to the vehicle compartment via the indoor duct 11.
  • the ratio between the outside air introduced into the evaporator 3 and the inside air is not limited to 8: 2, and the same action can be obtained if the ratio of outside air is half or more. Further, in the dehumidifying and heating operation, the ratio between the outside air introduced into the condenser 5 and the inside air is not limited to 2: 8, and the same action can be obtained if the ratio of the inside air is half or more. These proportions are adjusted by the temperature and humidity outside the passenger compartment.
  • FIG. 6 is a diagram showing the state of the exhaust heat recovery heating operation in the vehicle air conditioner of the embodiment of the present invention.
  • the refrigerant flows in the heat pump in the same direction as the heating operation and the cooling operation.
  • the first indoor blowing door 14 is closed, and the second indoor blowing door 26 is opened. Further, the first outdoor discharge door 15, the first outside air introduction door 18, and the second outside air introduction door 22 are opened, and the second outside discharge door 25 is closed. Further, the first inside air introduction door 20 and the second inside air introduction door 21 are opened. Further, the first fan 17 and the second fan 23 are driven.
  • the ratio between the outside air and the inside air sent to the evaporator 3 is controlled, for example, to 3: 7 by the opening degree of the first outside air introduction door 18 and the first inside air introduction door 20. Further, the ratio between the outside air and the inside air sent to the condenser 5 is controlled to, for example, 7: 3 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
  • the evaporator 3 performs heat exchange for transferring heat from the outside air and the inside air to the refrigerant, and the cooled air after the heat exchange is discharged to the outside.
  • heat exchange is performed to transfer heat from the refrigerant to the outside air and the inside air, and the warmed air after the heat exchange is sent to the mix chamber 12.
  • the air warmed by the condenser 5 is delivered to the vehicle compartment via the mix chamber 12 and the indoor duct 11 to heat the vehicle interior. Moreover, although warm inside air passes the evaporator 3 and is discharged
  • This exhaust heat recovery heating operation can be used when the outside air temperature is very low and high heating performance is required.
  • the exhaust heat recovery heating operation may cause frost formation on the evaporator 3 because the inside air having high humidity is applied to the evaporator 3. In such a case, the above-described heating operation can prevent frost formation on the evaporator 3.
  • the ratio of the outside air introduced into the evaporator 3 to the inside air is not limited to 3: 7, and the same action can be obtained if the ratio of the inside air is half or more. Further, in the exhaust heat recovery heating operation, the ratio between the outside air introduced into the condenser 5 and the inside air is not limited to 7: 3, and the same action can be obtained if the ratio of outside air is half or more. These proportions are adjusted by the temperature and humidity outside the passenger compartment.
  • the vehicle air conditioner of the present embodiment it is possible to heat the passenger compartment using a heat pump. Therefore, even if there is no heat of the engine, the interior of the vehicle can be efficiently heated with less energy. Moreover, according to the vehicle air conditioner of the present embodiment, the heating operation and the cooling operation can be switched by switching the form of the flow path of air without reversing the flow of the refrigerant of the heat pump. Therefore, it is possible to quickly switch between heating and cooling of the passenger compartment as compared to reversing the flow of the refrigerant. Therefore, for example, when clouding of the window occurs in the heating operation, the cooling operation can be promptly performed to remove the clouding of the window.
  • the configuration for reversing the flow of the refrigerant in the heat pump is unnecessary, and therefore, it is possible to reduce the number of parts and the cost of parts.
  • the operation content can be appropriately switched to the heating operation, the cooling operation, the dehumidifying heating operation, and the exhaust heat recovery heating operation described above. Therefore, the temperature and humidity of the vehicle interior can be efficiently adjusted appropriately according to the temperature and humidity of the outside air and the inside air by switching the operation content.
  • the vehicle air conditioner of the present embodiment most of the evaporator 3, the condenser 5, and the blower are integrally configured and unitized. Therefore, the vehicle air conditioner can be easily mounted on the vehicle. In addition, since the unitized configuration is disposed outside the vehicle and only the indoor duct 11 and the mix chamber 12 are disposed in the vehicle interior, the space in the vehicle interior can be widened.
  • condenser 5 is arrange
  • the condenser 5 is disposed in the air blower, refrigerant pipes before and after the condenser 5 can be shortened as compared with the case where the condenser 5 is disposed in front of the radiator of the vehicle. Therefore, the cost reduction of refrigerant
  • the configuration of the open / close door has been described as an example, but it is obvious that various types of valves can be similarly applied.
  • the structure which switches the flow volume of the air of each flow path can also be employ
  • the flow rate of air can be switched continuously or in a plurality of stages as an example.
  • the vehicle air conditioner according to the present invention may be configured such that the mix chamber 12 and the indoor duct 11 are omitted from the vehicle air conditioner according to the above-described embodiment. Further, the arrangement and form of the first duct 16, the second duct 24 and the inside air return duct 19 can be appropriately changed from those of the above embodiment.
  • the present invention is useful for a vehicle air conditioner mounted on an electric vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A vehicle air conditioner, which is capable of providing heat even without engine heat and is capable of quickly switching between heating and cooling, is provided. The vehicle air conditioner is provided with: a pressure reducing part for reducing the pressure of a refrigerant; a first heat exchanger for exchanging heat between pressure-reduced refrigerant and ambient air; a compression part for compressing the refrigerant; a second heat exchanger for exchanging heat between compressed refrigerant and ambient air; a first flow passage for leading air that has passed through the first heat exchanger to the vehicle interior; a second flow passage for leading air that has passed through the second heat exchanger to the vehicle interior; a first switching part that is capable of regulating the flow rate of air in the first flow passage; a second switching part that is capable of regulating the flow rate of air in the second flow passage; a third switching unit that is capable of regulating the flow rate of air that has passed through the first heat exchanger and is discharged outside of the vehicle; and a fourth switching part that is capable of regulating the flow rate of air that has passed through the second heat exchanger and is discharged outside of the vehicle.

Description

車両用空調装置Vehicle air conditioner
 本発明は、車両に搭載される車両用空調装置に関する。 The present invention relates to a vehicle air conditioner mounted on a vehicle.
 従来、車両に搭載されて車室内の気温を調整する車両用空調装置がある。車両用空調装置は、特許文献1、2に示されるように、ヒートポンプを用いて車室内の気温調整を行うものが一般的である。 BACKGROUND Conventionally, there is a vehicle air conditioner mounted on a vehicle to adjust the temperature of the vehicle interior. As disclosed in Patent Documents 1 and 2, a vehicle air conditioner generally adjusts the temperature inside a vehicle compartment using a heat pump.
 特許文献1には、ヒートポンプを用いて車室内の冷房を行う一方、エンジンの熱を利用して車室内の暖房を行う車両用空調装置が開示されている。特許文献2には、ヒートポンプを用いて車室内の冷暖房を行う車両用空調装置が開示されている。 Patent Document 1 discloses a vehicle air conditioner that heats a vehicle interior using heat of an engine while heating the vehicle interior using a heat pump. Patent Document 2 discloses a vehicle air conditioner that performs heating and cooling of a vehicle compartment using a heat pump.
特開2008-155827号公報JP 2008-155827 A 特開2005-306300号公報JP 2005-306300 A
 エンジンの熱を利用して車室内の暖房を行う車両用空調装置は、排熱量の少ないエンジン車または電気自動車等において、寒冷時に暖房の熱が足りなくなるという課題がある。 A vehicle air conditioner which heats a vehicle interior using heat of an engine has a problem that the heat of the heating becomes insufficient when it is cold, in an engine car or an electric car with a small amount of heat release.
 また、特許文献2に示されるように、ヒートポンプの冷媒の流れを逆転させて冷房と暖房とを切り替える空調装置では、ヒートポンプの中で圧力差のある冷媒の流れを安定的に反転させる必要がある。よって、このような空調装置では、冷房運転と暖房運転との切り替えに時間がかかるという課題、または、冷媒の流れを安定的に反転させるために冷媒の配管および弁類の機構が複雑になるという課題が生じる。 In addition, as disclosed in Patent Document 2, in an air conditioner that reverses the flow of refrigerant in the heat pump to switch between cooling and heating, it is necessary to stably invert the flow of refrigerant having a pressure difference in the heat pump. . Therefore, in such an air conditioner, it takes a long time to switch between the cooling operation and the heating operation, or the piping of the refrigerant and the mechanism of the valves become complicated in order to stably reverse the flow of the refrigerant. A problem arises.
 車両では、車室内の温度および湿度の変動が激しく、状況によっては窓がくもることもあるため、冷房と暖房とを素早く切り替えられることが要求される。冷媒の流れを逆転させて冷房と暖房とを切り替える空調装置では、冷媒の安定的な逆転に相当時間を要するため、この要求に応じるのが困難であった。 Vehicles are required to be able to switch quickly between cooling and heating, as the temperature and humidity of the cabin are highly variable and the windows may be cloudy depending on the situation. In an air conditioner that reverses the flow of refrigerant to switch between cooling and heating, it takes a considerable amount of time to stably reverse the refrigerant, so it has been difficult to meet this requirement.
 本発明の目的は、エンジンの熱がなくても暖房が可能であり、冷房と暖房とを素早く切り替えることが可能な車両用空調装置を提供することである。 An object of the present invention is to provide a vehicular air-conditioning system capable of heating without the heat of the engine and capable of quickly switching between cooling and heating.
 本発明の一態様に係る車両用空調装置は、冷媒を減圧する減圧部と、前記減圧部により減圧された冷媒と周囲の空気との間で熱を交換する第1熱交換器と、前記第1熱交換器を通過した冷媒を圧縮する圧縮部と、前記圧縮部により圧縮された冷媒と周囲の空気との間で熱を交換する第2熱交換器と、前記第1熱交換器を通過した空気を車室内へ導く第1流路と、前記第2熱交換器を通過した空気を車室内へ導く第2流路と、前記第1流路の空気の流量を調整可能な第1切替部と、前記第2流路の空気の流量を調整可能な第2切替部と、前記第1熱交換器を通過して車室外へ排出される空気の流量を調整可能な第3切替部と、前記第2熱交換器を通過して車室外へ排出される空気の流量を調整可能な第4切替部と、を具備する構成を採る。 A vehicle air conditioner according to an aspect of the present invention includes: a pressure reducing unit that reduces the pressure of the refrigerant; a first heat exchanger that exchanges heat between the refrigerant that has been reduced by the pressure reducing unit and the ambient air; 1) A compression unit that compresses the refrigerant that has passed through the heat exchanger, a second heat exchanger that exchanges heat between the refrigerant compressed by the compression unit and the ambient air, and the heat exchanger that passes through the first heat exchanger First flow path for introducing the air into the vehicle compartment, a second flow path for introducing the air passing through the second heat exchanger into the vehicle compartment, and a first switch capable of adjusting the flow rate of the air in the first flow path A second switching unit capable of adjusting the flow rate of air in the second flow passage, and a third switching unit capable of adjusting the flow rate of air passing through the first heat exchanger and being discharged to the outside of the vehicle A fourth switching unit capable of adjusting the flow rate of air passing through the second heat exchanger and being discharged to the outside of the vehicle is adopted.
 本発明によれば、第2熱交換器により温められた空気を車室内へ送ることでエンジンの熱がなくても暖房が可能となる。さらに、本発明によれば、冷媒の流れを反転させずに、空気の流路を切り替えることで、冷房運転と暖房運転とを素早く切り替えることができる。 According to the present invention, heating can be performed without the heat of the engine by sending the air warmed by the second heat exchanger into the vehicle compartment. Furthermore, according to the present invention, the cooling operation and the heating operation can be quickly switched by switching the flow path of air without reversing the flow of the refrigerant.
本発明の実施の形態の車両用空調装置のうちヒートポンプを示す構成図The block diagram which shows a heat pump among the vehicle air conditioners of embodiment of this invention 本発明の実施の形態の車両用空調装置のうち送風装置を示す構成図The block diagram which shows an air blower among the vehicle air conditioners of embodiment of this invention. 本発明の実施の形態の車両用空調装置における暖房運転の状態を表わす図Diagram showing the state of heating operation in the vehicle air conditioner according to the embodiment of the present invention 本発明の実施の形態の車両用空調装置における冷房運転の状態を表わす図Diagram showing a state of cooling operation in the vehicle air conditioner according to the embodiment of the present invention 本発明の実施の形態の車両用空調装置における除湿暖房運転の状態を表わす図Diagram showing a state of the dehumidifying and heating operation in the vehicle air conditioner according to the embodiment of the present invention 本発明の実施の形態の車両用空調装置における排熱回収暖房運転の状態を表わす図Diagram showing the state of exhaust heat recovery heating operation in the vehicle air conditioner of the embodiment of the present invention
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。 Hereinafter, each embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施の形態の車両用空調装置のうちヒートポンプを示す構成図である。図2は、本発明の実施の形態の車両用空調装置の送風装置を示す構成図(内部流路が見えるようにした概略断面図)である。 FIG. 1 is a block diagram showing a heat pump in the vehicle air conditioner according to the embodiment of the present invention. FIG. 2 is a configuration diagram (a schematic cross-sectional view in which the internal flow path is made visible) showing the air blower of the vehicle air conditioner according to the embodiment of the present invention.
 この実施の形態の車両用空調装置は、図1に示すヒートポンプの構成と、図2に示す送風装置の構成とを備えている。 The vehicle air conditioner according to this embodiment includes the structure of the heat pump shown in FIG. 1 and the structure of the blower shown in FIG.
 ヒートポンプには、冷媒を減圧する膨張弁2と、減圧された冷媒と周囲の空気との間で熱交換を行うエバポレータ(蒸発器とも言う)3と、冷媒を圧縮する圧縮機4と、圧縮された冷媒と周囲の空気との間で熱交換を行うコンデンサ(凝縮器とも言う)5とが設けられている。 The heat pump includes an expansion valve 2 that decompresses the refrigerant, an evaporator (also referred to as an evaporator) 3 that exchanges heat between the decompressed refrigerant and the surrounding air, and a compressor 4 that compresses the refrigerant. A condenser (also referred to as a condenser) 5 is provided to perform heat exchange between the refrigerant and the ambient air.
 上記構成のうち、膨張弁2は減圧部、エバポレータ3は第1熱交換器、圧縮機4は圧縮部、コンデンサ5は第2熱交換器に、それぞれ相当する。 Among the above configurations, the expansion valve 2 corresponds to a pressure reduction unit, the evaporator 3 corresponds to a first heat exchanger, the compressor 4 corresponds to a compression unit, and the condenser 5 corresponds to a second heat exchanger.
 送風装置は、室内ダクト11、ミックスチャンバー(混合空気室)12、第1室内送風ダクト13、第1室内送風扉14、第1室外排出扉15、第1ダクト16、第1ファン17、第1外気導入扉18、内気戻りダクト19、第1内気導入扉20、第2内気導入扉21、第2外気導入扉22、第2ファン23、第2ダクト24、第2室外排出扉25、第2室内送風扉26、第2室内送風ダクト27を備えている。 The blower includes an indoor duct 11, a mix chamber (mixed air chamber) 12, a first indoor blower duct 13, a first indoor blower door 14, a first outdoor discharge door 15, a first duct 16, a first fan 17, a first fan. The outside air introduction door 18, the inside air return duct 19, the first inside air introduction door 20, the second inside air introduction door 21, the second outside air introduction door 22, the second fan 23, the second duct 24, the second outside discharge door 25, the second The indoor blower door 26 and the second indoor blower duct 27 are provided.
 これらの構成のうち、第1室内送風扉14、第2室内送風扉26、第1室外排出扉15、第2室外排出扉25、第1外気導入扉18、第1内気導入扉20、第2外気導入扉22、第2内気導入扉21が、第1~第8切替部にそれぞれ相当する。 Among these configurations, the first indoor blowing door 14, the second indoor blowing door 26, the first outdoor discharge door 15, the second outdoor discharge door 25, the first outside air introduction door 18, the first inside air introduction door 20, the second The outside air introduction door 22 and the second inside air introduction door 21 correspond to first to eighth switching portions, respectively.
 室内ダクト11は、ミックスチャンバー12から、車室内の曇り止め用の吹出口(DEF)、上側吹出口(VENT)および足元吹出口(FOOT)まで通じるダクトである。 The indoor duct 11 is a duct that leads from the mix chamber 12 to an air outlet (DEF) for preventing fog inside the vehicle compartment, an upper air outlet (VENT), and a foot air outlet (FOOT).
 ミックスチャンバー12は、室内に送られる空気および室内から導入される空気が一時的に貯留されて混合される空気室である。ミックスチャンバー12は、例えば、除湿と暖房とを合わせて行う場合に、除湿された冷気と温められた空気とを混合する機能を有する。 The mix chamber 12 is an air chamber in which the air sent into the room and the air introduced from the room are temporarily stored and mixed. The mixing chamber 12 has a function of mixing the dehumidified cold air with the heated air, for example, when dehumidifying and heating are performed in combination.
 第1ダクト16には、上流側に第1ファン17が、途中にエバポレータ3が、下流側に第1室内送風扉14および第1室外排出扉15が、それぞれ配置されている。第1ダクト16の空気は、第1ファン17の作用により上流から下流へ流れ、途中でエバポレータ3を通過して冷却および除湿される。第1ファン17としては、特に制限されないが多翼ファン(シロッコファンとも呼ぶ)を採用している。 In the first duct 16, the first fan 17 is disposed upstream, the evaporator 3 is disposed midway, and the first indoor blowing door 14 and the first outdoor discharge door 15 are disposed downstream. The air of the first duct 16 flows from the upstream to the downstream by the action of the first fan 17, and passes along the evaporator 3 to be cooled and dehumidified on the way. The first fan 17 is not particularly limited, but a multi-wing fan (also called a sirocco fan) is employed.
 第2ダクト24には、上流側に第2ファン23が、途中にコンデンサ5が、下流側に第2室内送風扉26および第2室外排出扉25が、それぞれ配置されている。第2ダクト24の空気は、第2ファン23の作用により上流から下流へ流れ、途中でコンデンサ5を通過して温められる。第2ファン23としては、特に制限されないがプロペラファンを採用している。 In the second duct 24, the second fan 23 is disposed upstream, the condenser 5 is disposed midway, and the second indoor blowing door 26 and the second outdoor discharge door 25 are disposed downstream. The air of the second duct 24 flows from the upstream to the downstream by the action of the second fan 23, passes through the condenser 5 and is warmed on the way. A propeller fan is adopted as the second fan 23, though not particularly limited.
 第1室内送風ダクト13および第1ダクト16の下流側は、エバポレータ3を通過した空気を車室内へ導くダクト(第1流路に相当)である。第2室内送風ダクト27および第2ダクト24の下流側は、コンデンサ5を通過した空気を車室内へ導くダクト(第2流路に相当)である。 The downstream side of the first indoor air blowing duct 13 and the first duct 16 is a duct (corresponding to a first flow path) for guiding the air having passed through the evaporator 3 into the vehicle compartment. The downstream side of the second indoor air blowing duct 27 and the second duct 24 is a duct (corresponding to a second flow path) for guiding the air having passed through the condenser 5 into the vehicle compartment.
 内気戻りダクト19は、車室内の空気を第1ダクト16の上流側および第2ダクト24の上流側へ戻すダクトであり、上流端が車室内に開口し、下流端が第1ダクト16および第2ダクト24の上流側に開口している。 The inside air return duct 19 is a duct for returning the air in the vehicle compartment to the upstream side of the first duct 16 and the upstream side of the second duct 24. The upstream end opens into the vehicle compartment, and the downstream end is the first duct 16 and the first duct 2 is opened on the upstream side of the duct 24;
 第1室内送風扉14は、第1室内送風ダクト13の通路を開閉する弁であり、第2室内送風扉26は、第2室内送風ダクト27の通路を開閉する弁である。第1室外排出扉15は、第1ダクト16の下流側の室外排出口を開閉する弁であり、第1外気導入扉18は、第1ファン17の外気導入口を開閉する弁である。また、第1内気導入扉20は、内気戻りダクト19の下流端から第1ファン17の吸気口へ通じる開口部を開閉する弁であり、第2内気導入扉21は、内気戻りダクト19の下流端から第2ファン23の吸気側へ通じる開口部を開閉する弁である。第2外気導入扉22は、第2ダクト24の上流側の外気導入口を開閉する弁であり、第2室外排出扉25は、第2ダクト24の下流側の室外排出口を開閉する弁である。 The first indoor blower door 14 is a valve for opening and closing the passage of the first indoor blower duct 13, and the second indoor blower door 26 is a valve for opening and closing the passage of the second indoor blower duct 27. The first outdoor discharge door 15 is a valve for opening and closing the outdoor discharge port on the downstream side of the first duct 16, and the first outside air introduction door 18 is a valve for opening and closing the outside air introduction port of the first fan 17. Further, the first inside air introduction door 20 is a valve that opens and closes an opening that leads from the downstream end of the inside air return duct 19 to the inlet of the first fan 17. The second inside air introduction door 21 is downstream of the inside air return duct 19 It is a valve which opens and closes the opening which leads to the suction side of the 2nd fan 23 from the end. The second outdoor air introduction door 22 is a valve for opening and closing the outdoor air introduction port on the upstream side of the second duct 24, and the second outdoor exhaust door 25 is a valve for opening and closing the outdoor exhaust port on the downstream side of the second duct 24. is there.
 第1室内送風扉14、第1室外排出扉15、第1外気導入扉18、第1内気導入扉20、第2内気導入扉21、第2外気導入扉22、第2室外排出扉25、および、第2室内送風扉26は、電気モータにより開閉駆動されるように構成されている。各扉は、空気の通り路を開閉して、この通り路の空気の流量をゼロ又は有限の流量に切り替える。また、各扉は、各空気の通り路の開度を連続的または複数段階に切り替え可能に構成され、それにより空気の流量を連続的又は複数段階に切り替えることができる。 First indoor blowing door 14, first outdoor discharge door 15, first outside air introduction door 18, first inside air introduction door 20, second inside air introduction door 21, second outside air introduction door 22, second outside discharge door 25, and The second indoor blowing door 26 is configured to be opened and closed by an electric motor. Each door opens and closes the air passage and switches the air flow rate of the passage to zero or a finite flow rate. In addition, each door is configured to be able to switch the degree of opening of each air passage continuously or in multiple steps, thereby making it possible to switch the flow rate of air in continuous or multiple steps.
 各扉の開閉は、図示略の制御部により電気的に制御される。この制御部はユーザのボタン操作等に基づいて各扉を所定の開度に開閉駆動する。なお、各扉は、ユーザのレバー操作の動力を油圧又はワイヤーを介して伝達して開閉する構成としてもよい。 Opening and closing of each door is electrically controlled by a control unit (not shown). The control unit opens and closes each door at a predetermined opening degree based on the user's button operation or the like. Each door may be configured to be opened and closed by transmitting power of the user's lever operation via hydraulic pressure or a wire.
 この実施の形態の車両用空調装置は、少なくとも、エバポレータ3、コンデンサ5、第1室内送風ダクト13、第1室内送風扉14、第1室外排出扉15、第1ダクト16、第1ファン17、第1外気導入扉18、内気戻りダクト19、第1内気導入扉20、第2内気導入扉21、第2外気導入扉22、第2ファン23、第2ダクト24、第2室外排出扉25、第2室内送風扉26、および、第2室内送風ダクト27が、一体化(ユニット化とも言う)されて構成されている。 The vehicle air conditioner according to this embodiment includes at least an evaporator 3, a condenser 5, a first indoor air blowing duct 13, a first indoor air blowing door 14, a first outdoor discharge door 15, a first duct 16, a first fan 17, First outside air introduction door 18, inside air return duct 19, first inside air introduction door 20, second inside air introduction door 21, second outside air introduction door 22, second fan 23, second duct 24, second outside discharge door 25, The second indoor blower door 26 and the second indoor blower duct 27 are configured integrally (also referred to as unitization).
 そして、室内ダクト11とミックスチャンバー12とが車室内に配置され、上記ユニット化された構成物が車室外に配置されている。エバポレータ3およびコンデンサ5は車室の近傍に配置され、第1ダクト16、第2ダクト24、第1室内送風ダクト13および第2室内送風ダクト27は、流路長が短く構成されている。 The indoor duct 11 and the mix chamber 12 are disposed in the vehicle compartment, and the unitized component is disposed outside the vehicle. The evaporator 3 and the condenser 5 are disposed in the vicinity of the passenger compartment, and the first duct 16, the second duct 24, the first indoor air duct 13, and the second indoor air duct 27 have a short flow path length.
 この実施の形態の車両用の空調装置は、電気自動車に搭載されるものである。エンジン自動車では、エンジン排熱の影響を軽減させるため、ヒートポンプのコンデンサを車両先頭のラジエータの近傍に配置する必要があるが、電気自動車ではこのような配置制限がない。そのため、この実施の形態の車両用空調装置では、ヒートポンプのコンデンサ5を送風装置内に配置することが可能になっている。 The air conditioner for vehicles of this embodiment is mounted in an electric vehicle. In an engine car, it is necessary to arrange a heat pump condenser in the vicinity of a radiator at the head of the vehicle in order to reduce the influence of engine exhaust heat, but in an electric car there is no such restriction on the arrangement. Therefore, in the vehicle air conditioner of this embodiment, it is possible to arrange the condenser 5 of the heat pump in the blower.
 また、エンジン自動車では、エンジンルーム内が非常に高温になることから、エンジンルームと車室との間に断熱性のある仕切りを設けて、送風装置を仕切りより車室側に配置する必要があった。しかし、電気自動車ではこのような配置制限がない。このため、この実施の形態の車両用空調装置では、送風装置を車室外に配置して、車室内のスペースを広くすることが可能になっている。 In addition, in an engine car, since the inside of the engine room becomes extremely hot, it is necessary to provide a heat insulating partition between the engine room and the vehicle compartment, and to arrange the air blower on the vehicle compartment side rather than the partition The However, electric vehicles do not have such an arrangement restriction. For this reason, in the vehicle air conditioner according to this embodiment, the air blower can be disposed outside the passenger compartment to widen the space in the passenger compartment.
 以下には、上記構成の車両用空調装置の複数種類の運転動作について説明する。 Below, the driving | operation operation | movement of multiple types of the vehicle air conditioner of the said structure is demonstrated.
<暖房運転>
 図3は、本発明の実施の形態の車両用空調装置における暖房運転の状態を表わす図である。図中、空気の流れを帯状の矢印で表わし、外部から導入される空気(外気とも呼ぶ)を「FRE(Fresh air)」、車室内から戻される空気(内気とも呼ぶ)を「REC(Recirculated air)」と記している。
<Heating operation>
FIG. 3 is a diagram showing the state of the heating operation in the vehicle air conditioner according to the embodiment of the present invention. In the figure, the flow of air is represented by a band-shaped arrow, and the air introduced from the outside (also called outside air) is "FRE (Fresh air)", and the air returned from the vehicle interior (also called inside air) is "REC (Recirculated air) It is written as ").
 この実施の形態の車両用空調装置では、暖房または冷房等の運転の切り替えに拘わらずに、ヒートポンプの冷媒の流れは同一方向である。 In the vehicle air conditioner according to this embodiment, the flow of refrigerant in the heat pump is in the same direction regardless of switching of operation such as heating or cooling.
 暖房運転では、図3に示すように、第1室内送風扉14が閉じられ、第2室内送風扉26が開かれる。また、第1室外排出扉15と、第1外気導入扉18と、第2外気導入扉22とが開かれ、第2室外排出扉25が閉じられる。また、第1内気導入扉20が閉じられ、第2内気導入扉21が開かれる。そして、第1ファン17と第2ファン23とが駆動される。 In the heating operation, as shown in FIG. 3, the first indoor blowing door 14 is closed, and the second indoor blowing door 26 is opened. Further, the first outdoor discharge door 15, the first outside air introduction door 18, and the second outside air introduction door 22 are opened, and the second outside discharge door 25 is closed. Further, the first inside air introduction door 20 is closed, and the second inside air introduction door 21 is opened. Then, the first fan 17 and the second fan 23 are driven.
 このような空気の流路の切り替えにより、エバポレータ3では、外部から導入した空気(外気)から冷媒へ熱を移動する熱交換が行われて、熱交換後の冷却された空気が車室外に排出される。また、コンデンサ5では、外部から導入した空気(外気)および車室内から導入した空気(内気)へ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気がミックスチャンバー12へ送られる。コンデンサ5へ導入される外気と内気との割合は、第2外気導入扉22と第2内気導入扉21との開度によって、例えば7:3に制御される。 Heat exchange for transferring heat from the air introduced from the outside (outside air) to the refrigerant is performed in the evaporator 3 by switching the air flow path as described above, and the cooled air after heat exchange is discharged to the outside of the vehicle. Be done. Further, in the condenser 5, heat exchange for transferring heat from the refrigerant to air introduced from the outside (outside air) and air introduced from the vehicle compartment (inside air) is performed, and the warmed air after heat exchange is mixed chamber 12 Sent to The ratio between the outside air and the inside air introduced to the condenser 5 is controlled to, for example, 7: 3 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
 なお、コンデンサ5へ導入する空気に外気を含めている理由は、この空気を内気100%とすると、車室内の湿度を下げることができずに、窓にくもりが生じる恐れがあるからである。なお、コンデンサ5へ導入する外気と内気との割合は、湿度および温度によって、「1:9」~「9:1」程度に変更可能である。 The reason for including the outside air in the air introduced to the condenser 5 is that if the air is 100% inside air, the humidity of the vehicle interior can not be reduced, and there is a possibility that the window may become cloudy. The ratio of the outside air to the inside air introduced to the capacitor 5 can be changed to about “1: 9” to “9: 1” depending on the humidity and the temperature.
 このような暖房運転により、コンデンサ5で温められた空気がミックスチャンバー12と室内ダクト11とを介して車室内へ送出されて車室内が暖房される。 By such a heating operation, the air warmed by the condenser 5 is delivered to the vehicle interior through the mix chamber 12 and the indoor duct 11 to heat the vehicle interior.
<冷房運転>
 図4は、本発明の実施の形態の車両用空調装置における冷房運転の状態を表わす図である。
<Cooling operation>
FIG. 4 is a diagram showing a state of cooling operation in the vehicle air conditioner according to the embodiment of the present invention.
 冷房運転では、図4に示すように、第1室内送風扉14が開かれ、第2室内送風扉26が閉じられる。また、第1室外排出扉15と第1外気導入扉18とが閉じられ、第2室外排出扉25と第2外気導入扉22とが開かれる。また、第1内気導入扉20が開かれ、第2内気導入扉21が閉じられる。また、第1ファン17と第2ファン23とが駆動される。 In the cooling operation, as shown in FIG. 4, the first indoor blowing door 14 is opened and the second indoor blowing door 26 is closed. Further, the first outdoor discharge door 15 and the first outside air introduction door 18 are closed, and the second outdoor discharge door 25 and the second outside air introduction door 22 are opened. Further, the first inside air introduction door 20 is opened, and the second inside air introduction door 21 is closed. Further, the first fan 17 and the second fan 23 are driven.
 このような空気の流路の切り替えにより、エバポレータ3では、車室内から導入した空気から冷媒へ熱を移動する熱交換が行われて、熱交換後の冷却された空気がミックスチャンバー12へ送られる。また、コンデンサ5では、外部から導入した空気へ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気が外部へ排出される。 By switching the air flow path as described above, the evaporator 3 performs heat exchange for transferring heat from the air introduced from the vehicle compartment to the refrigerant, and the cooled air after heat exchange is sent to the mix chamber 12 . In the condenser 5, heat exchange is performed to transfer heat from the refrigerant to air introduced from the outside, and the warmed air after heat exchange is discharged to the outside.
 このような冷房運転により、エバポレータ3で冷却された空気がミックスチャンバー12と室内ダクト11とを介して車室内へ送出されて車室内が冷房される。 By such a cooling operation, the air cooled by the evaporator 3 is sent out to the vehicle interior via the mix chamber 12 and the indoor duct 11, and the vehicle interior is cooled.
<除湿暖房運転>
 図5は、本発明の実施の形態の車両用空調装置における除湿暖房運転の状態を表わす図である。
<Dehumidifying heating operation>
FIG. 5 is a diagram showing the state of the dehumidifying and heating operation in the vehicle air conditioner according to the embodiment of the present invention.
 除湿暖房運転においても、ヒートポンプの冷媒が流れる方向は、暖房運転および冷房運転と同一方向である。 Also in the dehumidifying and heating operation, the refrigerant flows in the heat pump in the same direction as the heating operation and the cooling operation.
 除湿暖房運転では、図5に示すように、第1室内送風扉14が少し開かれ、第2室内送風扉26が大きく開かれる。また、第1室外排出扉15と、第1外気導入扉18と、第2外気導入扉22とが開かれ、第2室外排出扉25が閉じられる。また、第1内気導入扉20と第2内気導入扉21とが開かれる。また、第1ファン17と第2ファン23とが駆動される。 In the dehumidifying and heating operation, as shown in FIG. 5, the first indoor blowing door 14 is slightly opened, and the second indoor blowing door 26 is largely opened. Further, the first outdoor discharge door 15, the first outside air introduction door 18, and the second outside air introduction door 22 are opened, and the second outside discharge door 25 is closed. Further, the first inside air introduction door 20 and the second inside air introduction door 21 are opened. Further, the first fan 17 and the second fan 23 are driven.
 エバポレータ3へ送られる外気と内気との割合は、第1外気導入扉18と第1内気導入扉20との開度によって、例えば8:2に制御される。また、コンデンサ5へ送られる外気と内気との割合は、第2外気導入扉22と第2内気導入扉21との開度によって、例えば2:8に制御される。 The ratio of the outside air to the inside air sent to the evaporator 3 is controlled to, for example, 8: 2 by the opening degree of the first outside air introduction door 18 and the first inside air introduction door 20. Further, the ratio between the outside air and the inside air sent to the condenser 5 is controlled to, for example, 2: 8 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
 このような空気の流路の切り替えにより、エバポレータ3では、外気と内気とから冷媒へ熱を移動する熱交換が行われて、熱交換後の冷却および除湿された空気の一部が外部に排出され、一部がミックスチャンバー12へ送られる。また、コンデンサ5では、外気と内気とへ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気がミックスチャンバー12へ送られる。 By switching the air flow path as described above, the evaporator 3 performs heat exchange for transferring heat from the outside air and the inside air to the refrigerant, and partially discharges the cooled and dehumidified air after the heat exchange. And a portion is sent to the mix chamber 12. In the condenser 5, heat exchange is performed to transfer heat from the refrigerant to the outside air and the inside air, and the warmed air after the heat exchange is sent to the mix chamber 12.
 このような除湿暖房運転により、コンデンサ5で温められた空気とエバポレータ3で除湿された空気の一部とがミックスチャンバー12で混合され、室内ダクト11を介して車室内に送出される。 By such dehumidifying and heating operation, the air warmed by the condenser 5 and a part of the air dehumidified by the evaporator 3 are mixed in the mix chamber 12 and delivered to the vehicle compartment via the indoor duct 11.
 この除湿暖房運転によれば、エバポレータ3で冷却された空気の一部が車室内へ送られるので、暖房能力が少し低下するが、湿度が高くて窓がくもりやすいときに、車室内の温度を余り低下させずに湿度を低くすることができる。 According to this dehumidifying and heating operation, part of the air cooled by the evaporator 3 is sent to the vehicle compartment, so the heating capacity slightly decreases, but when the humidity is high and the window is likely to be cloudy, the temperature of the vehicle interior is Humidity can be reduced without much reduction.
 なお、除湿暖房運転において、エバポレータ3へ導入される外気と内気との割合は8:2に制限されず、外気が半分以上の割合であれば同様の作用が得られる。また、除湿暖房運転において、コンデンサ5へ導入される外気と内気との割合は2:8に制限されず、内気が半分以上の割合であれば同様の作用が得られる。これらの割合は、車室内外の温度および湿度によって調整されるものである。 In the dehumidifying and heating operation, the ratio between the outside air introduced into the evaporator 3 and the inside air is not limited to 8: 2, and the same action can be obtained if the ratio of outside air is half or more. Further, in the dehumidifying and heating operation, the ratio between the outside air introduced into the condenser 5 and the inside air is not limited to 2: 8, and the same action can be obtained if the ratio of the inside air is half or more. These proportions are adjusted by the temperature and humidity outside the passenger compartment.
<排熱回収暖房運転>
 図6は、本発明の実施の形態の車両用空調装置における排熱回収暖房運転の状態を表わす図である。
<Exhaust heat recovery heating operation>
FIG. 6 is a diagram showing the state of the exhaust heat recovery heating operation in the vehicle air conditioner of the embodiment of the present invention.
 排熱回収暖房運転においても、ヒートポンプの冷媒が流れる方向は、暖房運転および冷房運転と同一方向である。 Also in the exhaust heat recovery heating operation, the refrigerant flows in the heat pump in the same direction as the heating operation and the cooling operation.
 排熱回収暖房運転では、図6に示すように、第1室内送風扉14が閉じられ、第2室内送風扉26が開かれる。また、第1室外排出扉15と、第1外気導入扉18と、第2外気導入扉22とが開かれ、第2室外排出扉25が閉じられる。また、第1内気導入扉20と第2内気導入扉21とが開かれる。また、第1ファン17と第2ファン23とが駆動される。 In the exhaust heat recovery heating operation, as shown in FIG. 6, the first indoor blowing door 14 is closed, and the second indoor blowing door 26 is opened. Further, the first outdoor discharge door 15, the first outside air introduction door 18, and the second outside air introduction door 22 are opened, and the second outside discharge door 25 is closed. Further, the first inside air introduction door 20 and the second inside air introduction door 21 are opened. Further, the first fan 17 and the second fan 23 are driven.
 エバポレータ3へ送られる外気と内気との割合は、第1外気導入扉18と第1内気導入扉20との開度によって、例えば3:7に制御される。また、コンデンサ5へ送られる外気と内気との割合は、第2外気導入扉22と第2内気導入扉21との開度によって、例えば7:3に制御される。 The ratio between the outside air and the inside air sent to the evaporator 3 is controlled, for example, to 3: 7 by the opening degree of the first outside air introduction door 18 and the first inside air introduction door 20. Further, the ratio between the outside air and the inside air sent to the condenser 5 is controlled to, for example, 7: 3 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
 このような空気の流路の切り替えにより、エバポレータ3では、外気と内気とから冷媒へ熱を移動する熱交換が行われて、熱交換後の冷却された空気が外部に排出される。また、コンデンサ5では、外気と内気とへ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気がミックスチャンバー12へ送られる。 By switching the flow path of the air as described above, the evaporator 3 performs heat exchange for transferring heat from the outside air and the inside air to the refrigerant, and the cooled air after the heat exchange is discharged to the outside. In the condenser 5, heat exchange is performed to transfer heat from the refrigerant to the outside air and the inside air, and the warmed air after the heat exchange is sent to the mix chamber 12.
 このような排熱回収暖房運転により、コンデンサ5で温められた空気がミックスチャンバー12と室内ダクト11とを介して車室内に送出されて車室内が暖房される。また、温かい内気がエバポレータ3を通過して外部に排出されるが、この通過の際にエバポレータ3を介して内気の熱が冷媒に移される。すなわち、内気が外部に排出されるが、この内気の熱は冷媒を介して回収されて、コンデンサ5において空気を温める熱として利用される。この排熱回収暖房運転は、外気温が非常に低くなって高い暖房性能が必要な時に利用できる。なお、外気と内気との温度および湿度によっては、排熱回収暖房運転は湿度の高い内気をエバポレータ3に当てるため、エバポレータ3の着霜を誘発する場合もある。このような場合には、上述した暖房運転のほうがエバポレータ3の着霜を防止することができる。 By such an exhaust heat recovery heating operation, the air warmed by the condenser 5 is delivered to the vehicle compartment via the mix chamber 12 and the indoor duct 11 to heat the vehicle interior. Moreover, although warm inside air passes the evaporator 3 and is discharged | emitted outside, the heat | fever of inside air is transferred to a refrigerant | coolant via the evaporator 3 in the case of this passage. That is, although the inside air is discharged to the outside, the heat of the inside air is recovered via the refrigerant and is used as the heat for warming the air in the condenser 5. This exhaust heat recovery heating operation can be used when the outside air temperature is very low and high heating performance is required. In addition, depending on the temperature and humidity of the outside air and the inside air, the exhaust heat recovery heating operation may cause frost formation on the evaporator 3 because the inside air having high humidity is applied to the evaporator 3. In such a case, the above-described heating operation can prevent frost formation on the evaporator 3.
 なお、この排熱回収暖房運転においては、エバポレータ3へ導入される外気と内気との割合は3:7に制限されず、内気が半分以上の割合であれば同様の作用が得られる。また、排熱回収暖房運転において、コンデンサ5へ導入される外気と内気との割合は7:3に制限されず、外気が半分以上の割合であれば同様の作用が得られる。これらの割合は車室内外の温度および湿度により調整されるものである。 In this exhaust heat recovery heating operation, the ratio of the outside air introduced into the evaporator 3 to the inside air is not limited to 3: 7, and the same action can be obtained if the ratio of the inside air is half or more. Further, in the exhaust heat recovery heating operation, the ratio between the outside air introduced into the condenser 5 and the inside air is not limited to 7: 3, and the same action can be obtained if the ratio of outside air is half or more. These proportions are adjusted by the temperature and humidity outside the passenger compartment.
 以上のように、本実施の形態の車両用空調装置によれば、ヒートポンプを利用した車室内の暖房を行うことができる。よって、エンジンの熱がない場合でも少ないエネルギーで車室内を高効率に暖房することができる。また、本実施の形態の車両用空調装置によれば、ヒートポンプの冷媒の流れを逆転させずに、空気の流路の形態を切り替えることで暖房運転と冷房運転とを切り替えることができる。従って、冷媒の流れを逆転する場合と比較して、車室内の暖房と冷房とを素早く切り替えることができる。よって、例えば、暖房運転で窓のくもりが発生した場合に、速やかに冷房運転を行って窓のくもりを除去することが可能となる。 As described above, according to the vehicle air conditioner of the present embodiment, it is possible to heat the passenger compartment using a heat pump. Therefore, even if there is no heat of the engine, the interior of the vehicle can be efficiently heated with less energy. Moreover, according to the vehicle air conditioner of the present embodiment, the heating operation and the cooling operation can be switched by switching the form of the flow path of air without reversing the flow of the refrigerant of the heat pump. Therefore, it is possible to quickly switch between heating and cooling of the passenger compartment as compared to reversing the flow of the refrigerant. Therefore, for example, when clouding of the window occurs in the heating operation, the cooling operation can be promptly performed to remove the clouding of the window.
 また、本実施の形態の車両用空調装置によれば、ヒートポンプの冷媒の流れを逆転させる構成が不要なので部品点数および部品コストの低減を図ることができる。 Further, according to the vehicle air conditioner of the present embodiment, the configuration for reversing the flow of the refrigerant in the heat pump is unnecessary, and therefore, it is possible to reduce the number of parts and the cost of parts.
 また、本実施の形態の車両用空調装置によれば、運転内容を、上述した暖房運転、冷房運転、除湿暖房運転および排熱回収暖房運転に適宜切り替えることができる。従って、これらの運転内容の切り替えにより、外気と内気との温度および湿度に応じて、効率的に車室内の温度および湿度を適宜調整することができる。 Moreover, according to the vehicle air conditioner of the present embodiment, the operation content can be appropriately switched to the heating operation, the cooling operation, the dehumidifying heating operation, and the exhaust heat recovery heating operation described above. Therefore, the temperature and humidity of the vehicle interior can be efficiently adjusted appropriately according to the temperature and humidity of the outside air and the inside air by switching the operation content.
 また、本実施の形態の車両用空調装置によれば、エバポレータ3、コンデンサ5、および送風装置の大半が一体的に構成されてユニット化されている。よって、車両用空調装置を車両へ容易に搭載することができる。また、ユニット化された構成が車室外に配置され、室内ダクト11およびミックスチャンバー12のみが車室内に配置される構成なので、車室内のスペースを広くすることができる。 Further, according to the vehicle air conditioner of the present embodiment, most of the evaporator 3, the condenser 5, and the blower are integrally configured and unitized. Therefore, the vehicle air conditioner can be easily mounted on the vehicle. In addition, since the unitized configuration is disposed outside the vehicle and only the indoor duct 11 and the mix chamber 12 are disposed in the vehicle interior, the space in the vehicle interior can be widened.
 また、コンデンサ5が送風装置の中に配置されているので、車両のラジエータの手前に配置される場合と比較して、コンデンサ5の塩害の影響を少なくすることができる。よって、コンデンサ5の塩害に対する耐性を低く設定して、コンデンサ5のコスト低減を図ることができる。 Moreover, since the capacitor | condenser 5 is arrange | positioned in an air blower, compared with the case where it arrange | positions in front of the radiator of a vehicle, the influence of the salt damage of the capacitor 5 can be decreased. Therefore, the resistance to salt damage of the capacitor 5 can be set low, and the cost of the capacitor 5 can be reduced.
 また、コンデンサ5が送風装置の中に配置されているので、車両のラジエータの手前に配置される場合と比較して、コンデンサ5の前後の冷媒配管を短くすることができる。よって、冷媒配管のコスト低減および冷媒圧損の低減を図ることができる。 Further, since the condenser 5 is disposed in the air blower, refrigerant pipes before and after the condenser 5 can be shortened as compared with the case where the condenser 5 is disposed in front of the radiator of the vehicle. Therefore, the cost reduction of refrigerant | coolant piping and reduction of a refrigerant | coolant pressure loss can be aimed at.
 また、エバポレータ3から車室内までのダクトの長さ、コンデンサ5から車室内までのダクトの長さが、共に短い構成なので、ダクトの圧力損失を小さくすることができ、送風の効率も高くすることができる。 In addition, since the length of the duct from the evaporator 3 to the passenger compartment and the length of the duct from the condenser 5 to the passenger compartment are both short, the pressure loss of the duct can be reduced, and the efficiency of air blowing can be increased. Can.
 以上、本発明の各実施の形態について説明した。 Hereinabove, the embodiments of the present invention have been described.
 なお、上記実施の形態では、各流路の空気の流量を切り替える手段として、開閉扉の構成を例にとって説明したが、様々な形態のバルブを同様に適用できることは明らかである。また、バルブを用いずに、複数のファンまたは走行中の風圧を利用して各流路の気圧を切り替えることにより、各流路の空気の流量を切り替える構成を採用することもできる。 In the above embodiment, as the means for switching the flow rate of air in each flow path, the configuration of the open / close door has been described as an example, but it is obvious that various types of valves can be similarly applied. Moreover, the structure which switches the flow volume of the air of each flow path can also be employ | adopted by switching the air pressure of each flow path using the wind pressure during driving | running | working, without using a valve | bulb.
 また、上記実施の形態では、各流路の空気の流量を調整する切替部の構成として、空気の流量を連続的にまたは複数段階に切り替えられる構成を例にとって説明したが、流量をゼロか有限量にのみ切り替えられる構成を採用しても良い。すなわち、1つの流路の入口又は出口に、2つの扉(切替部)を設けて、1つの扉を開、もう1つの扉を閉として、一方の扉にのみ空気が流れる構成としてもよい。また、両方の扉を所定の割合で開けて、両方に所定の割合で空気が流れる構成としてもよい。 Further, in the above embodiment, as the configuration of the switching unit for adjusting the flow rate of air in each flow path, the flow rate of air can be switched continuously or in a plurality of stages as an example. You may employ | adopt the structure switched only to limited amount. That is, two doors (switching portions) may be provided at the inlet or the outlet of one flow passage, one door may be opened, the other door may be closed, and air may flow only to one door. Alternatively, both doors may be opened at a predetermined rate, and air may flow to both at a predetermined rate.
 また、本発明に係る車両用空調装置は、上記実施の形態の車両用空調装置からミックスチャンバー12と室内ダクト11とを省いた構成としてもよい。また、第1ダクト16、第2ダクト24および内気戻りダクト19の配置および形態は、上記実施の形態のものから適宜変更可能である。 Further, the vehicle air conditioner according to the present invention may be configured such that the mix chamber 12 and the indoor duct 11 are omitted from the vehicle air conditioner according to the above-described embodiment. Further, the arrangement and form of the first duct 16, the second duct 24 and the inside air return duct 19 can be appropriately changed from those of the above embodiment.
 2012年1月12日出願の特願2012-003678の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosures of the specification, drawings, and abstract included in the Japanese application of Japanese Patent Application No. 2012-003678 filed on Jan. 12, 2012 are all incorporated herein by reference.
 本発明は、電気自動車に搭載される車両用空調装置に有用である。 The present invention is useful for a vehicle air conditioner mounted on an electric vehicle.
 3 エバポレータ
 5 コンデンサ
 13 第1室内送風ダクト
 14 第1室内送風扉
 15 第1室外排出扉
 16 第1ダクト
 17 第1ファン
 18 第1外気導入扉
 19 内気戻りダクト
 20 第1内気導入扉
 21 第2内気導入扉
 22 第2外気導入扉
 23 第2ファン
 24 第2ダクト
 25 第2室外排出扉
 26 第2室内送風扉
 27 第2室内送風ダクト
 
 
Reference Signs List 3 evaporator 5 condenser 13 first indoor air blowing duct 14 first indoor air blowing door 15 first outdoor air discharging door 16 first duct 17 first fan 18 first outside air introducing door 19 inside air returning duct 20 first inside air introducing door 21 second inside air Introduction door 22 second outside air introduction door 23 second fan 24 second duct 25 second outdoor discharge door 26 second room air flow door 27 second room air flow duct

Claims (10)

  1.  冷媒を減圧する減圧部と、
     前記減圧部により減圧された冷媒と周囲の空気との間で熱を交換する第1熱交換器と、
     前記第1熱交換器を通過した冷媒を圧縮する圧縮部と、
     前記圧縮部により圧縮された冷媒と周囲の空気との間で熱を交換する第2熱交換器と、
     前記第1熱交換器を通過した空気を車室内へ導く第1流路と、
     前記第2熱交換器を通過した空気を車室内へ導く第2流路と、
     前記第1流路の空気の流量を調整可能な第1切替部と、
     前記第2流路の空気の流量を調整可能な第2切替部と、
     前記第1熱交換器を通過して車室外へ排出される空気の流量を調整可能な第3切替部と、
     前記第2熱交換器を通過して車室外へ排出される空気の流量を調整可能な第4切替部と、
     を具備する車両用空調装置。
    A pressure reducing section for reducing the pressure of the refrigerant;
    A first heat exchanger that exchanges heat between the refrigerant decompressed by the decompressing unit and the ambient air;
    A compression unit that compresses the refrigerant that has passed through the first heat exchanger;
    A second heat exchanger that exchanges heat between the refrigerant compressed by the compressor and the ambient air;
    A first flow path for guiding the air that has passed through the first heat exchanger into a vehicle compartment;
    A second flow path for guiding the air that has passed through the second heat exchanger into a vehicle compartment;
    A first switching unit capable of adjusting the flow rate of air in the first flow path;
    A second switching unit capable of adjusting the flow rate of air in the second flow path;
    A third switching unit capable of adjusting the flow rate of air passing through the first heat exchanger and being discharged to the outside of the vehicle;
    A fourth switching unit capable of adjusting the flow rate of air passing through the second heat exchanger and being discharged to the outside of the vehicle;
    A vehicle air conditioner equipped with
  2.  前記第1から第4切替部は、
     空気の流路を、
     前記第1熱交換器を通過した空気が車室内へ送られ、且つ、前記第2熱交換器を通過した空気が車室外へ排出される第1形態と、
     前記第2熱交換器を通気した空気が車室内へ送られ、且つ、前記第1熱交換器を通過した空気が車室外へ排出される第2形態と、
     に切替可能である、
     請求項1記載の車両用空調装置。
    The first to fourth switching units are
    The air flow path,
    A first mode in which the air having passed through the first heat exchanger is sent into the vehicle compartment, and the air having passed through the second heat exchanger is discharged to the vehicle exterior,
    A second mode in which the air passing through the second heat exchanger is sent into the vehicle compartment, and the air having passed through the first heat exchanger is discharged out of the vehicle exterior;
    Switchable to,
    The vehicle air conditioner according to claim 1.
  3.  車室外から前記第2熱交換器へ導入される空気の流量を調整可能な第5切替部と、
     車室内から前記第2熱交換器へ導入される空気の流量を調整可能な第6切替部と、
     をさらに具備する請求項1記載の車両用空調装置。
    A fifth switching unit capable of adjusting the flow rate of air introduced from outside the vehicle to the second heat exchanger;
    A sixth switching unit capable of adjusting the flow rate of air introduced from the vehicle compartment to the second heat exchanger;
    The vehicle air conditioner according to claim 1, further comprising:
  4.  前記第1~第6切替部は、
     空気の流路を、
     車室外から前記第1熱交換器を通過した空気が車室外へ排出され、且つ、車室外および車室内から導入されて前記第2熱交換器を通過した空気が車室内へ送られる第3形態に切替可能である、
     請求項3記載の車両用空調装置。
    The first to sixth switching units are
    The air flow path,
    Third embodiment in which the air that has passed through the first heat exchanger from the vehicle exterior is discharged to the vehicle exterior, and the air that has been introduced from the vehicle exterior and vehicle interior and has passed through the second heat exchanger is sent to the vehicle interior Switchable to,
    The vehicle air conditioner according to claim 3.
  5.  前記第1~第6切替部は、
     空気の流路を、
     車室内から前記第1熱交換器を通過した空気が車室内へ送られ、且つ、車室外から前記第2熱交換器を通過した空気が車室外へ排出される第4形態に切替可能である、
     請求項3記載の車両用空調装置。
    The first to sixth switching units are
    The air flow path,
    It is possible to switch to a fourth mode in which the air having passed through the first heat exchanger from the vehicle interior is sent to the vehicle interior, and the air having passed through the second heat exchanger from the vehicle exterior is discharged to the vehicle exterior ,
    The vehicle air conditioner according to claim 3.
  6.  車室外から前記第1熱交換器へ導入される空気の流量を調整可能な第7切替部と、
     車室内から前記第1熱交換器へ導入される空気の流量を調整可能な第8切替部と、
     をさらに具備する請求項3記載の車両用空調装置。
    A seventh switching unit capable of adjusting the flow rate of air introduced from outside the vehicle to the first heat exchanger;
    An eighth switching unit capable of adjusting the flow rate of air introduced from the vehicle compartment to the first heat exchanger;
    The vehicle air conditioner according to claim 3, further comprising:
  7.  前記第1~第8切替部は、
     空気の流路を、
     車室外と車室内とから前者の方が大きな割合で導入された空気が前記第1熱交換器を通過して一部が車室内に一部が車室外に送られ、且つ、車室外と車室内とから後者の方が大きな割合で導入された空気が前記第2熱交換器を通過して車室内へ送られる第5形態に切替可能である、
     請求項6記載の車両用空調装置。
    The first to eighth switching units are
    The air flow path,
    The air introduced at a larger rate from the outside of the vehicle and the interior of the vehicle through the first heat exchanger passes through the first heat exchanger, and a part of the air is sent to the inside of the vehicle and out of the vehicle outside. It is possible to switch to a fifth mode in which the air introduced at a larger rate from the inside of the room is sent to the vehicle interior through the second heat exchanger.
    The vehicle air conditioner according to claim 6.
  8.  前記第1~第8切替部は、
     空気の流路を、
     車室外と車室内とから後者の方が大きな割合で導入された空気が前記第1熱交換器を通過して車室外に送られ、且つ、車室外と車室内とから前者の方が大きな割合で導入された空気が前記第2熱交換器を通過して車室内へ送られる第6形態に切替可能である、
     請求項6記載の車両用空調装置。
    The first to eighth switching units are
    The air flow path,
    The air introduced at a higher rate from the outside of the vehicle and the interior of the vehicle through the first heat exchanger is sent to the outside of the vehicle, and the rate of the former is greater from the outside of the vehicle and the vehicle interior Switchable to a sixth mode in which the air introduced in step b. Passes through the second heat exchanger and is delivered to the vehicle interior,
    The vehicle air conditioner according to claim 6.
  9.  前記第1熱交換器を通過する空気に推力を与える第1ファンと、
     前記第2熱交換器を通過する空気に推力を与える第2ファンと、
     をさらに具備し、
     前記第1熱交換器、前記第2熱交換器、前記第1流路、前記第2流路、前記第1~第8切替部、前記第1ファンおよび前記第2ファンが一体化されている、
     請求項6記載の車両用空調装置。
    A first fan for providing thrust to air passing through the first heat exchanger;
    A second fan for providing thrust to air passing through the second heat exchanger;
    Further equipped,
    The first heat exchanger, the second heat exchanger, the first flow path, the second flow path, the first to eighth switching units, the first fan, and the second fan are integrated. ,
    The vehicle air conditioner according to claim 6.
  10.  前記第1熱交換器を通過した空気および前記第2熱交換器を通過した空気を混合する混合空気室を、さらに具備し、
     前記空気室を介して空気が車室内へ送られる、
     請求項9記載の車両用空調装置。
     
    The apparatus further comprises a mixed air chamber for mixing the air passing through the first heat exchanger and the air passing through the second heat exchanger,
    Air is sent into the vehicle compartment via the air chamber,
    The vehicle air conditioner according to claim 9.
PCT/JP2012/008378 2012-01-12 2012-12-27 Vehicle air conditioner WO2013105200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-003678 2012-01-12
JP2012003678A JP2013141930A (en) 2012-01-12 2012-01-12 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2013105200A1 true WO2013105200A1 (en) 2013-07-18

Family

ID=48781179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008378 WO2013105200A1 (en) 2012-01-12 2012-12-27 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JP2013141930A (en)
WO (1) WO2013105200A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020583A3 (en) * 2014-11-17 2016-08-31 Hyundai Motor Company Air conditioner for vehicle
CN106976375A (en) * 2016-01-18 2017-07-25 翰昂汽车零部件有限公司 Mounted air conditioner system
CN107848372A (en) * 2016-01-18 2018-03-27 翰昂汽车零部件有限公司 Vehicle air-conditioning systems
JP2018517614A (en) * 2016-01-18 2018-07-05 ハンオン システムズ Air conditioning system for vehicles
US10457115B2 (en) 2015-08-10 2019-10-29 Hanon Systems Air conditioning system for vehicle
EP3623185A1 (en) * 2014-09-01 2020-03-18 Hanon Systems Heat pump system for vehicle
EP4147892A1 (en) * 2021-09-10 2023-03-15 Thermo King Corporation Recovery heat exchanger in an environmental control system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133811B2 (en) * 2014-04-02 2017-05-24 本田技研工業株式会社 Air conditioner for vehicles
KR102326343B1 (en) * 2015-04-10 2021-11-16 한온시스템 주식회사 Heat pump system for vehicle
CN105252991B (en) * 2015-11-20 2017-09-22 天津三电汽车空调有限公司 Vehicle heat pump air-conditioning system with heating and refrigerating function
KR102533421B1 (en) * 2016-01-18 2023-05-18 한온시스템 주식회사 Air conditioning system for vehicle
CN110103666A (en) * 2019-05-08 2019-08-09 泰铂(上海)环保科技股份有限公司 A kind of air-conditioning system and its control method of changes in temperature one

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221229A (en) * 1992-02-14 1993-08-31 Nippondenso Co Ltd Air conditioner for automobile
JPH08238919A (en) * 1995-03-07 1996-09-17 Calsonic Corp Air conditioner for electric automobile
JP2010013044A (en) * 2008-07-07 2010-01-21 Calsonic Kansei Corp Air-conditioning system for vehicle
JP2011240725A (en) * 2010-05-14 2011-12-01 Calsonic Kansei Corp Air conditioning device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221229A (en) * 1992-02-14 1993-08-31 Nippondenso Co Ltd Air conditioner for automobile
JPH08238919A (en) * 1995-03-07 1996-09-17 Calsonic Corp Air conditioner for electric automobile
JP2010013044A (en) * 2008-07-07 2010-01-21 Calsonic Kansei Corp Air-conditioning system for vehicle
JP2011240725A (en) * 2010-05-14 2011-12-01 Calsonic Kansei Corp Air conditioning device for vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3623185A1 (en) * 2014-09-01 2020-03-18 Hanon Systems Heat pump system for vehicle
US10071611B2 (en) 2014-11-17 2018-09-11 Hyundai Motor Company Air conditioner for vehicle
EP3020583A3 (en) * 2014-11-17 2016-08-31 Hyundai Motor Company Air conditioner for vehicle
US10457115B2 (en) 2015-08-10 2019-10-29 Hanon Systems Air conditioning system for vehicle
EP3406469A4 (en) * 2016-01-18 2020-01-08 Hanon Systems Vehicle air-conditioning system
JP2018517614A (en) * 2016-01-18 2018-07-05 ハンオン システムズ Air conditioning system for vehicles
CN107848372A (en) * 2016-01-18 2018-03-27 翰昂汽车零部件有限公司 Vehicle air-conditioning systems
EP3192682A3 (en) * 2016-01-18 2017-11-22 Hanon Systems Air conditioning system for vehicle
JP2017128328A (en) * 2016-01-18 2017-07-27 ハンオン システムズ Vehicular air-conditioning system
CN106976375A (en) * 2016-01-18 2017-07-25 翰昂汽车零部件有限公司 Mounted air conditioner system
US10611207B2 (en) 2016-01-18 2020-04-07 Hanon Systems Air conditioning system for vehicle
CN106976375B (en) * 2016-01-18 2020-04-17 翰昂汽车零部件有限公司 Vehicle-mounted air conditioning system
US11052726B2 (en) 2016-01-18 2021-07-06 Hanon Systems Vehicle air-conditioning system
EP3936355A1 (en) * 2016-01-18 2022-01-12 Hanon Systems Air conditioning system for vehicle
EP4147892A1 (en) * 2021-09-10 2023-03-15 Thermo King Corporation Recovery heat exchanger in an environmental control system

Also Published As

Publication number Publication date
JP2013141930A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
WO2013105200A1 (en) Vehicle air conditioner
WO2013105201A1 (en) Vehicle air conditioner
WO2013105202A1 (en) Vehicle air-conditioning device
US10052937B2 (en) Vehicle air conditioning apparatus
US9931905B2 (en) Air conditioning device for vehicle
US10889163B2 (en) Heat pump system
JP6167416B2 (en) Air conditioner for vehicles
JP4505510B2 (en) Vehicle air conditioning system
WO2013105203A1 (en) Vehicle air-conditioning device
JP6189098B2 (en) Heat pump air conditioning system for vehicles
JP5967403B2 (en) Air conditioner for vehicles
JP5750797B2 (en) Air conditioner for vehicles
WO2017098901A1 (en) Cooling system for vehicle
JP5851696B2 (en) Air conditioner for vehicles
JP2013107612A (en) Vehicular air conditioning apparatus
CN107110564B (en) Refrigeration cycle device
JP5346528B2 (en) Air conditioning system for vehicles
JP2004042758A (en) Air conditioner for vehicle
KR102622339B1 (en) Air-conditioning system for electric vehicles
KR20240039913A (en) Hvac system of an electric bus
JP2012062033A (en) Heat pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864775

Country of ref document: EP

Kind code of ref document: A1