WO2013104290A1 - 太阳能光热混合利用系统 - Google Patents

太阳能光热混合利用系统 Download PDF

Info

Publication number
WO2013104290A1
WO2013104290A1 PCT/CN2013/070165 CN2013070165W WO2013104290A1 WO 2013104290 A1 WO2013104290 A1 WO 2013104290A1 CN 2013070165 W CN2013070165 W CN 2013070165W WO 2013104290 A1 WO2013104290 A1 WO 2013104290A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
input
heat
photovoltaic cell
schottky diode
Prior art date
Application number
PCT/CN2013/070165
Other languages
English (en)
French (fr)
Inventor
容云
Original Assignee
Rong Yun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rong Yun filed Critical Rong Yun
Publication of WO2013104290A1 publication Critical patent/WO2013104290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/428Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis with inclined axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of solar energy application technologies, and in particular, to a solar thermal hybrid utilization system.
  • the photovoltaic cell In concentrating solar power generation, the photovoltaic cell generates a small voltage and a large current. In order to transmit the current over a long distance, the photovoltaic cells are usually connected in series, because the voltage variation of the photovoltaic cell is small under different illumination conditions. The current varies with the intensity of the light, and because of the high power of the photovoltaic cell, it is usually cut into small pieces, otherwise the printed circuit on the surface of the photovoltaic cell will be difficult to carry the current generated by the photovoltaic cell.
  • the premise of photovoltaic cell series application is that each photovoltaic cell receives light uniformly, otherwise the efficiency of serial application will be greatly reduced, while the parallel application of photovoltaic cell will cause the wire used to be thick due to the excessive current, and the power loss caused by the wire resistance. Higher.
  • Fresnel concentrating technology is widely used in high-concentration solar energy systems.
  • the photovoltaic cells corresponding to each Fresnel mirror are connected in series, and the equal area of each Fresnel mirror is used to ensure uniformity of light reception by each photovoltaic cell. Most of them are 500 to 1000 times, and the accuracy of tracking is less than ⁇ 0.3°.
  • the Fresnel mirror is supported by a precision-machined aluminum alloy case to ensure the positioning accuracy of dozens of photovoltaic chips per square meter.
  • the existing Fresnel mirror type battery assembly has the following disadvantages: (1) Fresnel cost and short life; (2) high cost of the aluminum alloy case; (3) heat is lost to the air and cannot be effectively utilized, etc. problem.
  • the current intensive problem and the problem that the battery cannot be boosted in series due to the uniformity problem are more difficult to solve.
  • the prior art adopts a three-dimensional liquid cooling support structure to solve the current intensive problem, and the multi-planar combined concentrating mirror is similar to a shadowless lamp.
  • the embodiment of the invention provides a solar thermal hybrid utilization system, which can solve the problem that the current solar energy utilization system has low efficiency due to uneven distribution of reflected light.
  • Embodiments of the present invention provide a solar thermal hybrid utilization system, including:
  • a chasing frame a parabolic reflector, a concentrator, an electrical energy storage transmission unit, and a heat exchange unit;
  • the parabolic reflection condensing mirror is disposed on the chase;
  • the light receiving surface of the concentrator is opposite to the reflecting surface of the parabolic reflecting condensing mirror, and the electrical output end of the concentrator is electrically connected to the electrical energy storage and transmission unit;
  • the heat output end of the concentrator is connected to the heat exchange unit;
  • the concentrator includes: a photovoltaic cell, a liquid-cooled support, and a switching booster; wherein the photovoltaic cell is disposed on the liquid-cooled support, and the electrical output of the photovoltaic cell is connected to the switch booster, and the switch
  • the booster is provided with an electrical output connected to the electrical energy storage and transmission unit; and the liquid-cooled support is provided with a heat output end connected to the heat exchange unit.
  • the system provided by the embodiment of the present invention uses a concentrator as a core component, and a switch booster connected to the photovoltaic cell is disposed in the concentrator, thereby ensuring the electric energy generated by the photovoltaic cell. They are respectively combined and outputted to the outside of the concentrator through the switching booster, which avoids the problem that the power can not be simply transmitted by the series structure due to the uniformity problem.
  • This is more costly than the switching booster, but because of the problem of inseparable boosting caused by uneven reflection light, an inexpensive and durable tempered glass smooth parabolic concentrator can be used, and the aluminum alloy battery pack is omitted.
  • the total cost of the cabinet is greatly reduced, and at the same time, the available thermal resources can be provided, and the solar energy can be maximized, so that the revenue and cost ratio of the solar power generation can be economically feasible, and at the same time, the inside of the concentrator is Photovoltaic cells and switching boosters are modular products that are easy to maintain and increase their usability.
  • the concentrator in the system of the invention cooperates with the photovoltaic cell through the switch booster, so that the photovoltaic cell can work independently without uniform energy, so that the photovoltaic cell can work optimally, thereby effectively overcoming the current parabolic concentrating solar energy system.
  • the problem of uneven light is efficient, cheap, and convenient to maintain.
  • FIG. 1 is a schematic structural diagram of a solar thermal hybrid utilization system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a concentrator of a system according to an embodiment of the present invention.
  • FIG. 3 is a side view of a concentrator of a system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another structure concentrator of the system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a switching booster of a concentrator according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a switching booster of another structure of a concentrator according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a switching booster of still another structure of a concentrator according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a switching booster of still another structure of a concentrator according to an embodiment of the present invention.
  • FIG. 9 is another schematic structural diagram of a solar thermal hybrid utilization system according to an embodiment of the present invention.
  • FIG. 10 is still another schematic structural diagram of a solar thermal hybrid utilization system according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a connection structure of a sun-tracking frame and a parabolic concentrating mirror and a concentrator according to an embodiment of the present invention
  • the figures are: 1-direct sunlight; 2-chasing frame; 3-parabolic reflector; 4-concentrator; 41-concentrating prism; 42-photovoltaic cell; 43-liquid cooled support; 44-switch Booster; 441-input anti-reverse Schottky diode; 442-pulse drive controller; 443-input storage capacitor; 444-inductor; 445-switch; 446-piezoceramic transformer; Special diode; 448-reverse Schottky diode; 449-output capacitor; 450-high frequency electromagnetic transformer; 5-electric energy storage and transmission unit; 51-storage capacitor; 52-battery charge and discharge protector; ; 54-inverter; 6-heat exchange unit; 61-heat pipe heat exchanger; 62-passive radiator; 63-heat exchanger; 64-water pump; 65-water storage tank; 66-hot water storage tank; Radiator; 7-overheat protection controller.
  • the embodiment of the invention provides a solar thermal hybrid utilization system, which can realize the utilization of solar energy into electrical and thermal energy, as shown in FIGS. 1 to 4, the system includes: chasing sun frame 2, parabolic reflection condensing mirror 3, collecting light 4, electrical energy storage and transmission unit 5 and heat exchange unit 6;
  • the parabolic reflection condensing mirror 3 is disposed on the chase 2 (see FIG. 11);
  • the light receiving surface of the concentrator 4 is opposite to the reflecting surface of the parabolic reflecting condensing mirror 3, and the electric output end of the concentrator 4 is electrically connected to the electric energy storage and transmission unit 5, and the output end of the electric energy storage and transmission unit 5 can be connected to the electric grid or the electric device;
  • the heat output end of the concentrator 4 is connected to the heat exchange unit 6;
  • the structure of the above concentrator is as shown in FIGS. 2 to 4, and includes: a photovoltaic cell 42, a liquid cooling support 43 and a switching booster 44; wherein the photovoltaic cell 42 is disposed on the liquid cooling support 43, the photovoltaic cell 42
  • the electric output terminal is connected to the switching booster 44 (the switching booster 44 is generally connected under the liquid cooling support 43), and the switching booster 44 is provided with an electrical output terminal connected to the electrical energy storage and transmission unit 5; the liquid cooling support body
  • a heat output terminal connected to the heat exchange unit 6 is provided on the 44.
  • the concentrator 4 of the above system may further include a condensing prism 41 disposed above the light receiving surface of the photovoltaic cell 42.
  • a condensing prism 41 disposed above the light receiving surface of the photovoltaic cell 42.
  • the concentrating prism 41 Through the concentrating prism 41, the incident light can be scattered and multi-reflected multiple times to output uniform light at the light exiting port, thereby ensuring uniformity of light on the photovoltaic cell, and the concentrating prism is wide and narrow, which is convenient to be arranged between the photovoltaic cells. Connect the wires.
  • each concentrating prism 41 is correspondingly disposed on one photovoltaic cell or a plurality of photovoltaics. Above the battery.
  • the concentrator 4 may be composed of a group of concentrating prisms 41, a photovoltaic cell 42, a liquid-cooled support 43 and a switching booster 44.
  • the concentrating prism 41 is connected to the photovoltaic cell 42.
  • the photovoltaic cell 42 is connected to the liquid cooling support 43 through the alumina ceramic circuit board 431.
  • the wire 432 passes through the wire slot 433, the wire 432 connects the photovoltaic cell 42 and the switch riser interface 441, and the switch booster interface 441 is connected to the switch booster. 44.
  • the liquid-cooled support 43 is hollow and is connected to the heat exchange unit 6 through a liquid-cooling interface 436.
  • the concentrator 4 may also be composed of a plurality of sets of concentrating prisms 41, a photovoltaic cell 42, a liquid-cooled support 43, and a switching booster 44, and the output ends of the plurality of sets of switching boosters 44 are connected in parallel, as shown in FIG.
  • the concentrating prism 41 is connected to the photovoltaic cell 42.
  • the photovoltaic cell 42 is connected to the liquid cooling support 43 through the alumina ceramic circuit board 431.
  • the wire 432 passes through the wire slot 433, and the wire 432 connects the photovoltaic cell 42 and the switch booster interface 441.
  • the switch booster interface 441 is connected to the switch boost energy accumulator 44, which is hollow and connected to the heat exchange unit 6 via a liquid cooling interface 436.
  • the concentrator 4 of the above structure simultaneously solves the purpose of liquid cooling and heat dissipation of the photovoltaic cell through the wire to the subsequent circuit.
  • the electric energy storage and transmission unit 5 in the above system may be composed of a storage capacitor 51 and an inverter 54; wherein one end of the storage capacitor 51 is electrically connected to the input end of the inverter 54, and the other end of the storage capacitor 51 is grounded (see FIG. 1). ).
  • the electric energy storage and transmission unit 5 can also be provided with a battery charge and discharge protector 53 and a battery pack 52; the input end of the battery charge and discharge protector 53 is connected between the storage capacitor 51 and the inverter 54, and the battery charge and discharge protector 53 The output is electrically connected to the battery pack 52 (see Figure 8).
  • the liquid-cooling support body 43 of the concentrator 4 of the above system is a hollow cylindrical structure having a plurality of supporting surfaces, wherein the hollow portion is a heat dissipation hole, and a heat dissipation tube can be disposed in the heat dissipation hole, and at least one outer surface thereof is used as a photovoltaic cell. Support surface.
  • the photovoltaic cells 42 may be plural, and a plurality of photovoltaic cells are disposed adjacent to each other on the support surface of the liquid-cooled support 43; and, the number of the switching boosters 44 and the photovoltaic cells 42 Correspondingly, the electrical output of the photovoltaic cell is electrically connected to the input of a switching booster 44; the electrical output of each switching booster 44 is connected in parallel as the electrical output of the concentrator 4.
  • the switching booster 44 of the concentrator 4 of the above system comprises a voltage conversion loop, and the input end of the voltage conversion loop is connected to the electrical output end of the photovoltaic cell 42 (see Fig. 5 or Fig. 7);
  • the input ends of the voltage conversion circuits are connected to the electrical output ends of the photovoltaic cells 42, and the output ends of the voltage conversion circuits are connected in parallel (see FIG. 6 or FIG. 8);
  • the voltage conversion loop has a variety of designs, including the following two structural forms:
  • the first voltage conversion circuit is as shown in FIG. 5, and includes: an input anti-reverse Schottky diode 441, a pulse drive controller 442, an input storage capacitor 443, a switch 445, an output Schottky diode 447, and an output capacitor. 449 and a high frequency electromagnetic transformer 450; wherein
  • the input end of the input anti-reverse Schottky diode 441 is used to connect the electrical output end of the photovoltaic cell 42.
  • the output end of the input anti-reverse Schottky diode 441 is electrically connected to one end of the input storage capacitor, and the input end is stored. The other end of the capacitor is grounded;
  • the switch tube 445 is connected between one end of the input storage capacitor 443 and the input end of the high frequency electromagnetic transformer 450;
  • the input end of the pulse drive controller 443 is electrically connected to the output end of the input anti-backward Schottky diode 441, and the output end of the pulse drive controller 443 is electrically connected to the control end of the switch tube 445 and the control end of the high frequency electromagnetic transformer 450, respectively. connection;
  • the output of the high frequency electromagnetic transformer 450 is electrically connected to the output Schottky diode 447;
  • the output of the output Schottky diode 447 is electrically coupled to one end of the output capacitor 449, and the other end of the output capacitor 449 is coupled to ground.
  • the second voltage conversion circuit is as shown in FIG. 7 and includes: an input anti-backward Schottky diode 441, a pulse drive controller 442, an input storage capacitor 443, an inductor 444, a switch tube 445, a piezoelectric ceramic transformer 446, Output Schottky diode 447, anti-charge Schottky diode 448, and output capacitor 449;
  • the input end of the input anti-reverse Schottky diode 441 is used to connect the electrical output end of the photovoltaic cell 42.
  • the output end of the input anti-reverse Schottky diode 441 is electrically connected to one end of the input storage capacitor 443, and the input end is stored.
  • the other end of the capacitor 443 is grounded;
  • the inductor 444 is connected between one end of the input storage capacitor 443 and the input end of the piezoelectric ceramic transformer 446;
  • the switch tube 445 is connected between the input end of the piezoelectric ceramic transformer 446 and the ground;
  • the input end of the pulse drive controller 442 is electrically connected to the output end of the input anti-backward Schottky diode 441, and the control end of the pulse drive controller 442 is electrically connected to the control end of the switch tube 445;
  • the anti-charge Schottky diode 448 is reversely connected between the output of the piezoelectric ceramic transformer 446 and the ground;
  • An output of the piezoelectric ceramic transformer 446 is electrically connected to an input end of the output Schottky diode 447;
  • the output of the output Schottky diode 447 is electrically coupled to one end of the output capacitor 449, and the other end of the output capacitor 449 is coupled to ground.
  • a switching booster as shown in FIG. 5 is formed.
  • the switching booster operates, and the input voltage enters the input storage capacitor 443 through the input anti-reverse Schottky diode 441; the input end of the switch transistor 445 is connected to the input storage capacitor 443 and the high-frequency electromagnetic transformer 450, the switch tube 445 continuous conduction and shutdown can make the current flow through the input side of the high-frequency electromagnetic transformer 450, and can generate an AC high voltage at the output of the high-frequency electromagnetic transformer 450, which is generated by the output Schottky diode 447 rectification and output capacitor 449 filtering.
  • the DC high voltage is outputted to the subsequent circuit;
  • the pulse drive controller 442 (which can be realized by a single chip microcomputer) is connected to the switch tube 445, and the output electric power can be adjusted by adjusting the working frequency and the pulse width of the switch tube 445, and the input of the pulse drive controller is connected to the input anti-reverse To the Schottky diode 441 and the input storage capacitor 443, the pulse drive controller adjusts the operating frequency of the switch tube 445 according to the change of the input voltage, and increases the output power when the input voltage is higher than the preset voltage, when the input voltage is low. When the voltage is preset, the output power is reduced, so that the voltage on the input storage capacitor 443 is always close to the preset power. The preset voltage output maximization adjusted.
  • the pulse driving controller is set at different times around the preset voltage intermediate value to make the preset voltage fluctuate around the intermediate value of the preset voltage in a small range, and find the maximum preset voltage value that does not drop the voltage on the input storage capacitor 443. And setting the value to the intermediate value of the preset voltage, through multiple searching, the working point capable of maintaining the maximum power of the photovoltaic cell 42 can be found, and the electric energy generated by the photovoltaic cell 42 is efficiently boosted and outputted to the output.
  • Capacitor 449 Capacitor 449.
  • the voltage can be boosted by such a switching booster, so that a plurality of such switching booster outputs can be connected in parallel to reduce the wire cross-sectional area of the inverter 54 of the electrical energy storage and transmission unit 5, reducing the cost of the wire and the power loss on the wire.
  • a switching booster as shown in FIG. 8 is formed.
  • the operation of each of the voltage conversion circuits of the switching booster is the same as that shown in FIG. 7.
  • the electric energy accumulates to increase the voltage of the photovoltaic cell and reduce the current.
  • the current can be safely passed through 5A per square millimeter, thereby reducing the cross-sectional area of the inverter 54 connecting the concentrator to the electric energy storage and transmission unit 5.
  • the cost of the wire because the power loss on the wire is proportional to the square of the current on the wire, can further reduce the power loss on the wire.
  • a switching booster as shown in FIG. 7 is formed.
  • the switching booster operates, and the input voltage enters the input storage capacitor 443 through the input anti-reverse Schottky diode 441, the inductor 444 is connected to the input storage capacitor 443 and the piezoelectric ceramic transformer 446, and the switch 445 is connected.
  • the input end of the electric ceramic transformer and the ground; the continuous turn-on and turn-off of the switch tube 445 can generate an alternating voltage at the input side of the piezoelectric ceramic transformer 446, and an output high voltage is generated at the output end of the piezoelectric ceramic transformer 446, and the current passes through the output in the forward direction.
  • the special diode 447 rectifies and outputs the capacitor 449 to generate a DC high voltage output to the subsequent circuit.
  • the current is connected to the ground through the anti-charge Schottky diode 448 to charge the output of the piezoelectric ceramic transformer 446;
  • the transformer 446 has the advantages of high step-up ratio, high reliability, high efficiency, etc.
  • the booster circuit can efficiently raise the 3V voltage to above 1000V; the pulse drive controller 442 (which can be realized by a single chip microcomputer) is connected to the switch tube 445, and the switch is adjusted.
  • the operating frequency and pulse width of the tube can adjust the output power, and the input of the pulse drive controller is connected to the input anti-reverse Schottky II.
  • the pulse drive controller adjusts the operating frequency of the switch tube 445 according to the change of the input voltage, and increases the output power when the input voltage is higher than the preset voltage, when the input voltage is lower than the preset At the time of voltage, the output power is reduced, so that the voltage on the input storage capacitor 443 is always close to the preset voltage, and the preset voltage is adjusted according to the output maximization principle; the pulse drive controller 442 surrounds the preset voltage intermediate value at different times.
  • the setting causes the preset voltage to fluctuate within a small range of positive and negative values of the preset voltage intermediate value, and finds a maximum preset voltage value that causes the voltage on the input storage capacitor 443 not to decrease and sets the value as the preset voltage intermediate value. Through multiple searches, an operating point that can maintain the maximum power of the photovoltaic cell 42 can be found, and the electrical energy generated by the photovoltaic cell 42 is boosted and outputted to the output capacitor 449.
  • a switching booster as shown in FIG. 8 is formed.
  • the operation of each of the voltage conversion circuits of the switching booster is the same as that shown in FIG. 7.
  • the electric energy accumulates to increase the voltage of the photovoltaic cell and reduce the current.
  • the current can be safely passed through 5A per square millimeter, thereby reducing the cross-sectional area of the inverter 54 connecting the concentrator to the electric energy storage and transmission unit 5.
  • the cost of the wire because the power loss on the wire is proportional to the square of the current on the wire, can further reduce the power loss on the wire.
  • the optimal operating point of the photovoltaic cell can be independently tracked, so that each photovoltaic cell can work in an optimal state, thereby effectively ensuring efficient conversion of light energy into electrical energy.
  • the output of the switching booster of the above-described FIG. 5 and FIG. 7 is used as a DC power source, and a plurality of switching boosters may be used in series with each other to form a voltage summation.
  • the heat exchange unit can take the following forms:
  • the first form of the heat exchange unit 6 includes: a heat pipe heat exchanger 61 and a passive heat sink 62;
  • the hot water inlet of the heat pipe heat exchanger 61 is connected to the heat output end of the concentrator 4, and the heat pipe heat exchanger 61 is connected to the passive heat sink 62.
  • the heat exchange unit of this structure is composed of a heat pipe heat exchanger 61 and a passive heat sink 62 to form a heat pipe unpowered circulation heat dissipation system, and the heat of the light collector 4 is exchanged into the air by circulation, thereby reducing the photovoltaic cells 42 in the light collector 4. temperature.
  • the second form of heat exchange unit includes:
  • a heat exchanger 63 a heat exchanger 63, a water pump 64, a water storage tank 65, and a radiator 67;
  • the hot water inlet of the heat exchanger 63 is connected to the heat output end of the concentrator 4;
  • the water outlet of the water storage tank 65 is sequentially returned to the water return port of the water storage tank 65 via the heat exchanger 61 and the radiator 67 via the pipeline and the water pump 64.
  • the heat exchange unit of this configuration can exchange the heat of the concentrator 4 into the environment, including air or ground water or land, thereby reducing the temperature of the photovoltaic cells 42 in the concentrator 4.
  • the third form of the heat exchange unit includes: the heat exchange unit includes:
  • a heat exchanger 63 a water storage tank 65, a water pump 64, and a hot water storage tank 66;
  • the hot water inlet of the heat exchanger 63 is connected to the heat output end of the concentrator 4;
  • the water outlet of the water storage tank 65 communicates with the hot water storage tank 65 via a pipeline, a water pump 64, and a heat exchanger 63.
  • the heat exchange unit of such a structure comprises a water storage tank 65, a water pump 64, a heat exchanger 63, and a hot water storage tank 66 to form a circulating heat dissipation system, and the heat of the concentrator 4 is collected into the hot water storage tank 66 for further use, thereby reducing the set.
  • the temperature of the photovoltaic cell 42 in the optical device 4, and at the same time, the available hot water is obtained.
  • the above system may further be provided with an overheat protection controller, wherein the detecting end is connected to the heat output end of the concentrator, and the control end is electrically connected to the driving device controller of the sun finder frame, and is used for collecting the light
  • an overheat protection controller can be implemented by a thermal element and a microcontroller controller, and the entire overheat protection controller can be integrated into the controller of the chase.
  • the direct sunlight 1 is condensed onto the concentrator 4 through the parabolic reflection condensing mirror 3 connected to the chasing frame 2, and is irradiated to the photovoltaic cell 42 of the concentrator 4 (if the concentrator 4 is provided with a concentrating prism) 41, the light concentrated by the parabolic reflection condensing mirror 3 is first irradiated onto the concentrating prism 41, and then condensed by the concentrating prism 41 to be irradiated onto the photovoltaic cell 42), and the photovoltaic cell 42 converts the sunlight into electric energy and thermal energy, and the electric energy passes through
  • the switching booster 44 boosts the voltage and sums it up through the capacitor 51 and transmits it to the inverter 54 to convert the electrical energy into the power consumption unit according to the grid standard; the thermal energy is exchanged to the environment through the heat exchange unit 6, thereby ensuring the photovoltaic cell 42.
  • the working temperature is stable.
  • the overheat protection controller 7 adjusts the tracking frame 2 so that the condensing point of the parabolic reflecting condensing lens 3 is deflected away from the concentrator 4 to protect the concentrator 4 from overheating damage.
  • a parabolic reflection condensing mirror is used as a concentrating element to converge light onto a concentrator including a plurality of photovoltaic cells, and the photovoltaic cells of the concentrator are respectively connected to the switch booster.
  • the electric energy generated by the photovoltaic cells is respectively combined and outputted to the outside of the concentrator through the switching booster, because each switching booster has the independent ability to track the optimal operating point of the photovoltaic cell, so each photovoltaic cell can Working in an ideal state, the resulting power can be maximized.
  • the heat-dissipating tube disposed in the hollow of the liquid-cooled support body is connected to the heat exchange unit by using a three-dimensional columnar and hollow liquid-cooled support body in the concentrator, and the surface of the liquid-cooled support body is connected to the photovoltaic cell through the thermal circuit board to meet the photovoltaic function.
  • the battery is dissipating heat
  • the heat energy is output through the heat exchange unit;
  • the photovoltaic cell is connected to the glass cover of the plurality of concentrating prism structures, and the light receiving area of the prism glass cover is larger than the area of the photovoltaic cell, so that the gap between the photovoltaic cells is increased, and more There is room for soldering the wires and arranging the circuit board.
  • the concentrator of this structure relatively increases the cost of the switching booster, but can use an inexpensive and durable tempered glass smooth parabolic reflector (without a multi-planar concentrating mirror), and the aluminum alloy is omitted.
  • the battery pack cabinet has a significant reduction in total cost; at the same time, it can provide available thermal resources and maximize the utilization of solar energy, making the revenue and cost ratio of solar power generation economically viable and also enabling light collection.
  • the photovoltaic cells and switching boosters in the unit become modular products that are easy to maintain and increase their usability. It solves the problem of current uniformity, heat dissipation, inconvenient simple series boosting for power transmission, and the need for glass cover protection for photovoltaic cell components, which are currently used in the use of smooth parabolic reflectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能光热混合利用系统,其包括追日架(2)、抛物面反射聚光镜(3)、集光器(4)、电能储存传输单元(5)和热交换单元(6),其中抛物面反射聚光镜(3)设置在追日架(2)上,集光器(4)的受光面与所述抛物面反射聚光镜(3)的反射面相对,集光器(4)的电输出端与所述电能储存传输单元(5)电连接,集光器(4)的热输出端与所述热交换单元(6)连接,集光器(4)包括:光伏电池(42),液冷支撑体(43)和开关升压器(44),其中所述光伏电池(42)设置在所述液冷支撑体(43)上,光伏电池(42)的电输出端与开关升压器(44)连接,开关升压器(44)设有连接所述储存传输单元(5)的电输出端,液冷支撑体(43)上设有连接热交换单(6)元的热输出端,该系统解决了电流不均带来的无法串联升压传输的问题,便于电能的传输。

Description

太阳能光热混合利用系统
本申请要求2012年1月10日提交的、申请号为“201210006230.x”、名称为“太阳能光热混合利用系统”的中国在先发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳能应用技术领域,尤其涉及一种太阳能光热混合利用系统。
背景技术
聚光太阳能发电中,光伏电池发电电压小而电流大,为将电流远距离传输,通常采用串联法,将各光伏电池串联,因为在不同光照条件下,光伏电池最大效率时电压变化很小,电流随光照强弱而变化,并因光伏电池功率较高,通常切割成小块使用,否则光伏电池表面印制的导线将难以承载光伏电池所产生的电流。所以光伏电池串联应用的前提是各光伏电池受光要均匀,否则串联应用时效率会大幅度下降,而光伏电池并联应用则因电流过大从而使所用导线很粗,并且导线电阻带来的功率损失较高。
现在高倍聚光太阳能系统普遍采用菲涅耳镜聚光技术,各菲涅耳镜所对应的光伏电池串联后输出,以各菲涅耳镜的相等面积来保证各光伏电池受光均匀,聚光倍数多数在500~1000倍,追日精度要求±0.3°以内,菲涅耳镜由精密加工的铝合金箱体支撑,以保证每平米数十个光伏芯片的定位精度。现有菲涅尔镜式电池组件具有以下缺点:(1)菲涅耳镜成本高寿命短;(2)铝合金箱体成本高;(3)热量被散失到空气中而无法被有效利用等问题。
为解决以上问题,人们在研究用抛物面聚光反射镜来做为反射元件构建高倍聚光太阳能利用系统,这需要同时解决以下几个问题:(1)电流密集问题,光伏电池集中后,电流会较集中,传输电流的导线难以布置。(2)散热问题,光伏电池集中后,其未能转换成电能的太阳能会以热能形式集中在一起,简单的气冷散热无法满足散热要求。(3)电流的均匀性问题,因为在一个抛物面镜的聚光光斑内光是不均匀分布的,有强弱差别,所以对集光器内的光伏电池不能简单串联使用,否则会造成各电池效率大幅度下降而失去利用价值。
尤其电流密集问题和因均匀性问题而造成电池无法串联升压的问题比较难解决,现有技术采用立体液冷支撑结构来解决电流密集问题,采用多平面组合的聚光反射镜用类似无影灯的方式来解决光线均匀性问题,但由于追日系统的跟踪误差和光伏电池元件的晃动,解决的效果仍然不好,并且多平面组合的聚光反射镜制造和调整比较困难。
发明内容
本发明实施方式提供一种太阳能光热混合利用系统,可以解决目前的太阳能利用系统因反射光线分布不均而产生存在效率低下的问题。
为解决上述问题本发明提供的技术方案如下:
本发明实施方式提供一种太阳能光热混合利用系统,包括:
追日架、抛物面反射聚光镜、集光器、电能储存传输单元和热交换单元;其中,
所述抛物面反射聚光镜设置在所述追日架上;
所述集光器的受光面与所述抛物面反射聚光镜的反射面相对,集光器的电输出端与所述电能储存传输单元电连接;
所述集光器的热输出端与所述热交换单元连接;
所述集光器包括:光伏电池、液冷支撑体和开关升压器;其中,所述光伏电池设置在所述液冷支撑体上,光伏电池的电输出端与开关升压器连接,开关升压器设有连接所述电能储存传输单元的电输出端;所述液冷支撑体上设有连接热交换单元的热输出端。
由上述提供的技术方案可以看出,本发明实施方式提供的系统,通过采用集光器作为核心部件,集光器内设置与光伏电池连接的开关升压器,从而保证了光伏电池产生的电能分别通过开关升压器汇总在一起输出到集光器外部,避免了因均匀性问题而带来的无法简单采用串联结构升压传输电能的问题。这样做在成本上多了开关升压器,但因为解决反射光线不均匀带来的无法串联升压的问题而可以使用廉价且耐久的钢化玻璃光滑抛物面聚光镜,并且省去了铝合金的电池组箱体,总成本上大幅度降低,并且同时可以提供可利用的热资源,对太阳能实现了最大化的利用,使得太阳能发电的收益、成本比达到了经济可行,同时还使得集光器内的光伏电池和开关升压器成为方便维护的模块化产品,提高了其可用性。本发明系统中的集光器通过开关升压器与光伏电池配合,可以实现光伏电池独立工作而无需做到能量均匀,使得光伏电池可以最佳工作,从而可以有效克服目前抛物面聚光太阳能系统所存在的光线不均匀的问题,具有高效、廉价、方便维护的优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的太阳能光热混合利用系统的结构示意图;
图2为本发明实施例提供的系统的集光器的示意图;
图3为本发明实施例提供的系统的集光器的侧视示意图;
图4为本发明实施例提供的系统的另一结构集光器的示意图;
图5为本发明实施例提供的集光器的开关升压器的示意图;
图6为本发明实施例提供的集光器的另一结构的开关升压器的示意图;
图7为本发明实施例提供的集光器的又一结构的开关升压器的示意图;
图8为本发明实施例提供的集光器的再一结构的开关升压器的示意图;
图9为本发明实施例提供的太阳能光热混合利用系统的另一结构示意图;
图10为本发明实施例提供的太阳能光热混合利用系统的又一结构示意图;
图11为本发明实施例提供的追日架与抛物面聚光反射镜和集光器的连接结构示意图;
图中各标号为:1-直射阳光;2-追日架;3-抛物面反射聚光镜;4-集光器;41-聚光棱镜;42-光伏电池;43-液冷支撑体;44-开关升压器;441-输入防反向肖特基二极管;442-脉冲驱动控制器;443-输入端储能电容;444-电感;445-开关管;446-压电陶瓷变压器;447-输出肖特基二极管;448-反充肖特基二极管;449-输出电容;450-高频电磁变压器;5-电能储存传输单元;51-储能电容;52-蓄电池充放电保护器;53-蓄电池组;54-逆变器;6-热交换单元;61-热管换热器;62-被动散热器;63-换热器;64-水泵;65-储水箱;66-热水储水箱;67-散热器;7-过热保护控制器。
具体实施方式
下面结合具体实施例对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面对本发明实施例作进一步地详细描述。
本发明实施例提供一种太阳能光热混合利用系统,可以实现利用太阳能转化成电、热能进行利用,如图1~4所示,该系统包括:追日架2、抛物面反射聚光镜3、集光器4、电能储存传输单元5和热交换单元6;
其中,抛物面反射聚光镜3设置在追日架2上(见图11);
集光器4的受光面与抛物面反射聚光镜3的反射面相对,集光器4的电输出端与电能储存传输单元5电连接,电能储存传输单元5的输出端可连接电网或用电装置;
集光器4的热输出端与热交换单元6连接;
上述集光器的结构如图2~4所示,包括:光伏电池42、液冷支撑体43和开关升压器44;其中,光伏电池42设置在液冷支撑体43上,光伏电池42的电输出端与开关升压器44(开关升压器44一般连接设置在液冷支撑体43下方)连接,开关升压器44设有连接电能储存传输单元5的电输出端;液冷支撑体44上设有连接热交换单元6的热输出端。
上述系统的集光器4还可以包括:聚光棱镜41,聚光棱镜41设置在光伏电池42的受光面上方。通过聚光棱镜41可以将入射光线散射和多次全反射后在出光口输出均匀光线,从而保证照射到光伏电池上光线的均匀性,并且聚光棱镜上宽下窄,便于在光伏电池间布置连接导线。在光伏电池42设置多个,并相邻设置铺设在液冷支撑体43的支撑面上时,聚光棱镜41也为多个,每个聚光棱镜41对应设置在一个光伏电池或多个光伏电池的上方。
实际中,集光器4可以由一组聚光棱镜41、光伏电池42、液冷支撑体43和开关升压器44构成,如图2、3所示,聚光棱镜41连接光伏电池42,光伏电池42通过氧化铝陶瓷电路板431连接液冷支撑体43,导线432经过走线槽口433,导线432连接光伏电池42和开关升器接口441,开关升压器接口441连接开关升压器44,液冷支撑体43中空,并通过液冷接口436连接到热交换单元6。
集光器4也可以由多组聚光棱镜41、光伏电池42、液冷支撑体43和开关升压器44构成,其多组开关升压器44的输出端并联连接,如图4所示,聚光棱镜41连接光伏电池42,光伏电池42通过氧化铝陶瓷电路板431连接液冷支撑体43,导线432经过走线槽口433,导线432连接光伏电池42和开关升压器接口441,开关升压器接口441连接开关升压电能累加器44,液冷支撑体43中空,并通过液冷接口436连接到热交换单元6。
上述结构的集光器4同时解决了液冷散热和光伏电池的电流通过导线向后续电路引出的目的。
上述系统中的电能储存传输单元5可由储能电容51和逆变器54构成;其中,储能电容51一端与逆变器54的输入端电连接,储能电容51另一端接地(见图1)。该电能储存传输单元5还可以设置蓄电池充放电保护器53和蓄电池组52;蓄电池充放电保护器53的输入端连接在储能电容51与逆变器54之间,蓄电池充放电保护器53的输出端与蓄电池组52电连接(见图8)。
上述系统的集光器4的液冷支撑体43为具有多个支撑面的中空柱形结构,其中空部分为散热孔,散热孔内可以设置散热管,其至少一个外表面作为设置光伏电池的支撑面。
上述系统的集光器4中,光伏电池42可以为多个,多个光伏电池相邻设置铺设在液冷支撑体43的支撑面上;并且,开关升压器44的数量与光伏电池42的数量对应,光伏电池的电输出端与一个开关升压器44的输入端电连接;各开关升压器44的电输出端并联连接后作为集光器4的电输出端。
上述系统的集光器4的开关升压器44包括一条电压转换回路,电压转换回路的输入端与光伏电池42的电输出端连接(见图5或图7);
或者,包括多条电压转换回路,各电压转换回路的输入端与光伏电池42的电输出端连接,各电压转换回路的输出端并联连接(见图6或图8);
电压转换回路有多种设计,主要包括以下两种结构形式:
第1种电压转换回路如图5所示,包括:输入防反向肖特基二极管441、脉冲驱动控制器442、输入端储能电容443、开关管445、输出肖特基二极管447、输出电容449和高频电磁变压器450;其中,
输入防反向肖特基二极管441的输入端用于连接光伏电池42的电输出端,输入防反向肖特基二极管441的输出端与输入端储能电容的一端电连接,输入端储能电容的另一端接地;
开关管445连接在输入端储能电容443的一端与高频电磁变压器450的输入端之间;
脉冲驱动控制器443的输入端与输入防反向肖特基二极管441的输出端电连接,脉冲驱动控制器443的输出端分别与开关管445的控制端和高频电磁变压器450的控制端电连接;
高频电磁变压器450的输出端与输出肖特基二极管447电连接;
输出肖特基二极管电447的输出端与输出电容449的一端电连接,输出电容449的另一端接地。
第2种电压转换回路如图7所示,包括:输入防反向肖特基二极管441、脉冲驱动控制器442、输入端储能电容443、电感444、开关管445、压电陶瓷变压器446、输出肖特基二极管447、反充肖特基二极管448和输出电容449;其中,
输入防反向肖特基二极管441的输入端用于连接光伏电池42的电输出端,输入防反向肖特基二极管441的输出端与输入端储能电容443的一端电连接,输入端储能电容443的另一端接地;
电感444连接在输入端储能电容443的一端与压电陶瓷变压器446的输入端之间;
开关管445连接在压电陶瓷变压器446输入端与地之间;
脉冲驱动控制器442输入端与输入防反向肖特基二极管441的输出端电连接,脉冲驱动控制器442控制端与开关管445的控制端电连接;
反充肖特基二极管448反向连接在压电陶瓷变压器446的输出端与地之间;
压电陶瓷变压器446的输出端与输出肖特基二极管447的输入端电连接;
输出肖特基二极管447的输出端与输出电容449的一端电连接,输出电容449的另一端接地。
若采用第1种结构的电压转换回路且只包括一条电压转换回路的开关升压器,则形成如图5所示的开关升压器。这种开关升压器,工作时输入电压通过输入防反向肖特基二极管441进入输入端储能电容443;开关管445输入端连接输入端储能电容443和高频电磁变压器450,开关管445连续导通与关断可使电流交变流过高频电磁变压器450输入边,可在高频电磁变压器450输出端产生一个交流高压,经过输出肖特基二极管447整流和输出电容449滤波产生直流高压输出到后续电路;脉冲驱动控制器442(可采用单片机实现)连接开关管445,通过调整开关管445的工作频率和脉冲宽度可调整输出的电功率,脉冲驱动控制器输入端连接输入防反向肖特基二极管441和输入端储能电容443,脉冲驱动控制器根据输入电压的变化调整开关管445的工作频率,当输入电压高于预设电压时,加大输出功率,当输入电压低于预设电压时,减小输出功率,从而使输入端储能电容443上的电压一直接近于预设电压,预设电压根据输出最大化原则调整。脉冲驱动控制器围绕预设电压中间值在不同时间设定使预设电压围绕预设电压中间值正负小范围波动,寻找使输入端储能电容443上的电压不下降的最大预设电压值并将该值设定为预设电压中间值,通过多次寻找,可寻找到能保持光伏电池42最大功率工作的工作点,并将光伏电池42所产生的电能高效率地升压输出到输出电容449。通过这种开关升压器可以提升电压,便于多个这样的开关升压器输出端并联降低电能储存传输单元5的逆变器54的导线截面积,降低导线成本及导线上的电能损耗。
若采用第1种结构的电压转换回路且包括输出端并联的多条电压转换回路的开关升压器,则形成如图8所示的开关升压器。这种开关升压器每一条电压转换回路的工作过程与图7所示的相同,当多个这样的电压转换回路的输出汇总在一起形成高压直流电,输出到逆变器54,这样做可实现电能累加提升光伏电池的电压,降低电流,根据欧姆定律,每平方毫米约可安全通过5A电流,从而可降低连接集光器到电能储存传输单元5的逆变器54的导线截面积降低所使用导线的费用,因为导线上的电能损耗和导线上电流的平方成正比,从而可以进一步降低导线上的电能损耗。
若采用第2种结构的电压转换回路且只包括一条电压转换回路的开关升压器,则形成如图7所示的开关升压器。这种开关升压器,工作时输入电压通过输入防反向肖特基二极管441进入输入端储能电容443,电感444连接输入端储能电容443和压电陶瓷变压器446,开关管445连接压电陶瓷变压器输入端和地;开关管445连续导通与关断可在压电陶瓷变压器446输入边产生交变电压,压电陶瓷变压器446输出端产生一个交流高压,正向时电流经过输出肖特基二极管447整流和输出电容449滤波产生直流高压输出到后续电路,反向时电流通过反充肖特基二极管448将压电陶瓷变压器446的输出端连接到地线对其充电;压电陶瓷变压器446具有升压比高,可靠性高,效率高等优点,这个升压电路能将3V电压高效地提升到1000V以上;脉冲驱动控制器442(可采用单片机实现)连接开关管445,通过调整开关管的工作频率和脉冲宽度可调整输出的电功率,脉冲驱动控制器输入端连接输入防反向肖特基二极管441和输入端储能电容443,脉冲驱动控制器根据输入电压的变化调整开关管445的工作频率,当输入电压高于预设电压时,加大输出功率,当输入电压低于预设电压时,减小输出功率,从而使输入端储能电容443上的电压一直接近于预设电压,预设电压根据输出最大化原则调整;脉冲驱动控制器442围绕预设电压中间值在不同时间设定使预设电压围绕预设电压中间值正负小范围波动,寻找使输入端储能电容443上的电压不下降的最大预设电压值并将该值设定为预设电压中间值,通过多次寻找,可寻找到能保持光伏电池42最大功率工作的工作点,并将光伏电池42所产生的电能高效率地升压输出到输出电容449。
若采用第2种结构的电压转换回路且包括输出端并联的多条电压转换回路的开关升压器,则形成如图8所示的开关升压器。这种开关升压器每一条电压转换回路的工作过程与图7所示的相同,当多个这样的电压转换回路的输出汇总在一起形成高压直流电,输出到逆变器54,这样做可实现电能累加提升光伏电池的电压,降低电流,根据欧姆定律,每平方毫米约可安全通过5A电流,从而可降低连接集光器到电能储存传输单元5的逆变器54的导线截面积降低所使用导线的费用,因为导线上的电能损耗和导线上电流的平方成正比,从而可以进一步降低导线上的电能损耗。
通过上述结构的开关升压器,可以独立跟踪光伏电池最佳工作点,使每个光伏电池都能工作在最佳状态,进而有效保证光能高效转换为电能。
上述图5和图7结构的开关升压器的输出作为直流电源,多个开关升压器也可以相互间串联使用,形成电压加总。
上述系统中,热交换单元可以采用以下几种形式:
第1种形式的热交换单元6包括:热管换热器61和被动散热器62;其中,
热管换热器61的热水进口与集光器4的热输出端连接,热管换热器61与被动散热器62连接。
这种结构的热交换单元由热管换热器61和被动散热器62构成热管无动力循环散热系统,将集光器4的热量通过循环交换到空气中,从而降低集光器4中光伏电池42的温度。
第2种形式的热交换单元包括:
换热器63、水泵64、储水箱65和散热器67;其中,
换热器63的热水进口与集光器4的热输出端连接;
储水箱65出水口经管路、水泵64依次经换热器61、散热器67回接至该储水箱65的回水口。
这种结构的热交换单元可将集光器4的热量通过循环交换到环境中,包括空气或地下水或土地中,从而降低集光器4中光伏电池42的温度。
第3种形式的热交换单元包括:所述热交换单元包括:
换热器63、储水箱65、水泵64和热水储水箱66;其中,
换热器63的热水进口与集光器4的热输出端连接;
储水箱65的出水口经管路、水泵64、换热器63与热水储水箱65连通。
这种结构的热交换单元由储水箱65、水泵64、换热器63、热水储水箱66构成循环散热系统,将集光器4的热量收集到热水储水箱66进一步利用,从而降低集光器4中光伏电池42的温度,并同时获得了可利用的热水。
上述系统中还可以设置,过热保护控制器,其检测端与所述集光器的热输出端连接,控制端与所述追日架的驱动装置控制器电连接,用于当所述集光器的热输出端的热值达到预设值时,发出控制信号控制所述追日架的驱动装置驱动所述追日架调整偏离太阳光的照射方向。过热保护控制器可通过热敏元件与单片机控制器来实现,整个过热保护控制器可集成到追日架的控制器中。
上述系统工作时,直射阳光1通过连接在追日架2上的抛物面反射聚光镜3汇聚到集光器4上,照射到集光器4的光伏电池42(若集光器4设有聚光棱镜41,则抛物面反射聚光镜3汇聚的光先照射到聚光棱镜41上后,再由聚光棱镜41汇聚光后照射到光伏电池42上),光伏电池42将阳光转化成电能和热能,电能通过开关升压器44提升电压并汇总在一起通过电容器51后传输到逆变器54转换成符合电网标准的电能传输到用电单位;热能通过热交换单元6交换到环境中,从而保证光伏电池42工作温度稳定,在散热系统工作不正常时,过热保护控制器7调整追日架2使抛物面反射聚光镜3聚光点偏离集光器4从而保护集光器4不会过热损坏。
综上所述,为解决现有技术所存的问题,采用抛物面反射聚光镜作为聚光元件来将光线汇聚到包含多个光伏电池的集光器上,由于集光器的光伏电池分别连接开关升压器,光伏电池产生的电能分别通过开关升压器汇总在一起输出到集光器外部,因为每个开关升压器具有独立的跟踪光伏电池最佳工作点的能力,所以每个光伏电池都能工作在较理想的状态,从而汇集起的电能能够实现最大化。通过在集光器内采用立体呈柱状且中空的液冷支撑体,该液冷支撑体中空内设置的散热管连接热交换单元,液冷支撑体表面通过热电路板连接光伏电池,可满足光伏电池散热的同时,通过热交换单元对其热能进行输出;光伏电池连接做成多组聚光棱镜结构的玻璃罩,棱镜玻璃罩受光面积大于光伏电池的面积使得光伏电池之间缝隙加大,多出了可以焊接导线和布置电路板的空间,导线一端连接光伏电池和导热电路板,另一端从柱状液冷支撑体的两侧孔隙向后引出。这种结构的集光器相对增加了开关升压器的成本,但可以使用廉价且耐久的钢化玻璃光滑抛物面反射聚光镜(而不需要多平面组合的聚光反射镜),并且省去了铝合金的电池组箱体,总成本上大幅度降低;并且同时可以提供可利用的热资源,对太阳能实现了最大化的利用,使得太阳能发电的收益、成本比达到了经济可行,同时还使得集光器内的光伏电池和开关升压器成为方便维护的模块化产品,提高了其可用性。很好的解决了目前使用平滑抛物面反射聚光镜所存在的电流密集、散热、不便于简单串联升压进行电能传输的电流均匀性问题以及光伏电池元件需要玻璃罩保护的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

  1. 一种太阳能光热混合利用系统,其特征在于,包括:
    追日架、抛物面反射聚光镜、集光器、电能储存传输单元和热交换单元;其中,
    所述抛物面反射聚光镜设置在所述追日架上;
    所述集光器的受光面与所述抛物面反射聚光镜的反射面相对,集光器的电输出端与所述电能储存传输单元电连接;
    所述集光器的热输出端与所述热交换单元连接;
    所述集光器包括:光伏电池、液冷支撑体和开关升压器;其中,所述光伏电池设置在所述液冷支撑体上,光伏电池的电输出端与开关升压器连接,开关升压器设有连接所述电能储存传输单元的电输出端;所述液冷支撑体上设有连接热交换单元的热输出端。
  2. 如权利要求1所述的系统,其特征在于,所述液冷支撑体为具有多个支撑面的中空柱形结构,其中空部分为散热孔,散热孔内设置散热管,其至少一个外表面作为设置光伏电池的支撑面。
  3. 如权利要求1所述的系统,其特征在于,所述光伏电池为多个,相邻设置铺设在所述液冷支撑体的支撑面上;
    所述开关升压器的数量与光伏电池的数量对应,每个光伏电池的电输出端与一个开关升压器的输入端电连接;各开关升压器的电输出端并联连接后作为集光器的电输出端。
  4. 如权利要求1所述的系统,其特征在于,所述集光器还包括:
    聚光棱镜,所述聚光棱镜设置在所述光伏电池的受光面上方。
  5. 如权利要求4所述的系统,其特征在于,所述光伏电池为多个,相邻设置铺设在所述液冷支撑体的支撑面上;
    所述聚光棱镜为多个,每个聚光棱镜对应设置在一个光伏电池或多个光伏电池的上方。
  6. 如权利要求1所述的系统,其特征在于,所述开关升压器包括一条电压转换回路,电压转换回路的输入端与光伏电池的电输出端连接;
    或者,
    包括多条电压转换回路,各电压转换回路的输入端与光伏电池的电输出端连接,各电压转换回路的输出端并联连接;
    所述电压转换回路包括:输入防反向肖特基二极管、脉冲驱动控制器、输入端储能电容、开关管、输出肖特基二极管、输出电容和高频电磁变压器;其中,
    输入防反向肖特基二极管的输入端用于连接光伏电池的电输出端,输入防反向肖特基二极管的输出端与输入端储能电容的一端电连接,输入端储能电容的另一端接地;
    开关管连接在输入端储能电容的一端与高频电磁变压器的输入端之间;
    脉冲驱动控制器的输入端与输入防反向肖特基二极管的输出端电连接,脉冲驱动控制器的输出端分别与开关管的控制端和高频电磁变压器的控制端电连接;
    高频电磁变压器的输出端与输出肖特基二极管电连接;
    输出肖特基二极管的输出端与输出电容的一端电连接,输出电容的另一端接地。
  7. 如权利要求1所述的系统,其特征在于,所述开关升压器包括一条电压转换回路,电压转换回路的输入端与光伏电池的电输出端连接;
    或者,包括多条电压转换回路,各电压转换回路的输入端与光伏电池的电输出端连接,各电压转换回路的输出端并联连接;
    所述电压转换回路包括:输入防反向肖特基二极管、脉冲驱动控制器、输入端储能电容、电感、开关管、压电陶瓷变压器、输出肖特基二极管、反充肖特基二极管和输出电容;其中,
    输入防反向肖特基二极管的输入端用于连接光伏电池的电输出端,输入防反向肖特基二极管的输出端与输入端储能电容的一端电连接,输入端储能电容的另一端接地;
    电感连接在输入端储能电容的一端与压电陶瓷变压器的输入端之间;
    开关管连接在压电陶瓷变压器输入端与地之间;
    脉冲驱动控制器输入端与输入防反向肖特基二极管的输出端电连接,脉冲驱动控制器控制端与开关管的控制端电连接;
    反充肖特基二极管反向连接在压电陶瓷变压器的输出端与地之间;
    压电陶瓷变压器的输出端与输出肖特基二极管的输入端电连接;
    输出肖特基二极管的输出端与输出电容的一端电连接,输出电容的另一端接地。
  8. 如权利要求1所述的系统,其特征在于,所述热交换单元包括:
    热管换热器和被动散热器;其中,
    热管换热器的热水进口与所述集光器的热输出端连接,热管换热器与被动散热器连接。
  9. 如权利要求1所述的系统,其特征在于,所述热交换单元包括:
    换热器、水泵、储水箱和散热器;其中,
    换热器的热水进口与所述集光器的热输出端连接;
    储水箱出水口经管路、水泵依次经换热器、散热器回接至该储水箱的回水口;
    或者,
    所述热交换单元包括:
    换热器、储水箱、水泵和热水储水箱;其中,
    换热器的热水进口与集光器的热输出端连接;
    储水箱的出水口经管路、水泵、换热器与热水储水箱连通。
  10. 如权利要求1所述的系统,其特征在于,所述系统还包括:
    过热保护控制器,其检测端与所述集光器的热输出端连接,控制端与所述追日架的驱动装置控制器电连接,用于当所述集光器的热输出端的热值达到预设值时,发出控制信号控制所述追日架的驱动装置驱动所述追日架调整偏离太阳光的照射方向。
PCT/CN2013/070165 2012-01-10 2013-01-07 太阳能光热混合利用系统 WO2013104290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210006230.X 2012-01-10
CN201210006230.XA CN102545706B (zh) 2012-01-10 2012-01-10 太阳能光热混合利用系统

Publications (1)

Publication Number Publication Date
WO2013104290A1 true WO2013104290A1 (zh) 2013-07-18

Family

ID=46351815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070165 WO2013104290A1 (zh) 2012-01-10 2013-01-07 太阳能光热混合利用系统

Country Status (2)

Country Link
CN (1) CN102545706B (zh)
WO (1) WO2013104290A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617775A (zh) * 2019-01-10 2019-04-12 杭州中恒云能源互联网技术有限公司 能源数据监测装置与系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545706B (zh) * 2012-01-10 2016-08-03 容云 太阳能光热混合利用系统
CN102749933A (zh) * 2012-07-23 2012-10-24 湘电集团有限公司 一种用于碟式太阳能热发电系统的对日跟踪方法和系统
CN105485939B (zh) * 2015-12-14 2017-04-26 西安交通大学 一种太阳能聚光光伏光热联产系统热电输出性能的测量与计算方法
CN105577105B (zh) * 2015-12-17 2018-09-14 广东五星太阳能股份有限公司 一种可固定安装的非对称聚光光伏光热系统
CN107147353B (zh) * 2017-05-09 2024-03-29 江苏水智蓝科技有限公司 一种聚光光伏光热太阳能综合利用系统
CN107992155B (zh) * 2017-05-27 2019-11-19 湖北工业大学 一种基于恒流集成电路的聚光光伏系统及其监测控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2188728Y (zh) * 1994-02-25 1995-02-01 北京有色金属研究总院 聚光发电及太阳能集热装置
US5898585A (en) * 1997-05-29 1999-04-27 Premier Global Corporation, Ltd. Apparatus and method for providing supplemental alternating current from a solar cell array
CN2528144Y (zh) * 2001-12-24 2002-12-25 张煌仁 高效太阳能电能转换装置
CN201194339Y (zh) * 2008-04-29 2009-02-11 王皓 太阳能控制器
CN102270690A (zh) * 2011-07-28 2011-12-07 容云 太阳能利用装置
CN102545706A (zh) * 2012-01-10 2012-07-04 容云 太阳能光热混合利用系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319812A (ja) * 2003-04-17 2004-11-11 Canon Inc 電力変換器付き太陽電池モジュール
CN101714838B (zh) * 2009-11-28 2012-01-11 上海聚恒太阳能有限公司 一种主动散热的太阳能聚光发电装置
CN202406065U (zh) * 2012-01-10 2012-08-29 容云 太阳能光热混合利用系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2188728Y (zh) * 1994-02-25 1995-02-01 北京有色金属研究总院 聚光发电及太阳能集热装置
US5898585A (en) * 1997-05-29 1999-04-27 Premier Global Corporation, Ltd. Apparatus and method for providing supplemental alternating current from a solar cell array
CN2528144Y (zh) * 2001-12-24 2002-12-25 张煌仁 高效太阳能电能转换装置
CN201194339Y (zh) * 2008-04-29 2009-02-11 王皓 太阳能控制器
CN102270690A (zh) * 2011-07-28 2011-12-07 容云 太阳能利用装置
CN102545706A (zh) * 2012-01-10 2012-07-04 容云 太阳能光热混合利用系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617775A (zh) * 2019-01-10 2019-04-12 杭州中恒云能源互联网技术有限公司 能源数据监测装置与系统

Also Published As

Publication number Publication date
CN102545706B (zh) 2016-08-03
CN102545706A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2013104290A1 (zh) 太阳能光热混合利用系统
EP3051217B1 (en) Photovoltaic air conditioning system
JP2015139367A (ja) 電力変換装置、太陽光モジュール、通信装置及びそれを備える太陽光システム
US10727777B2 (en) System and apparatus for generating electricity with integrated circuitry
JP2015156791A (ja) 電力変換装置及び太陽光モジュール
CN110943599B (zh) 一种多功能的高效功率单元及其功率电路
CN104113279A (zh) 聚光太阳能光伏发电装置
CN103424869B (zh) 均光器、光能转换器及反射聚光太阳能模组
WO2023216617A1 (zh) 分光吸收集热组件、光伏热电联供系统及电能存储系统
CN217114659U (zh) 一种电池模块及具有多种输出方式的锂电池储能电源
CN201474197U (zh) 波形瓦聚光太阳能水电一体化建筑模块
CN202524328U (zh) 太阳能光热混合利用系统
CN214674950U (zh) 一种具有温差发电功能的移动照明设备
CN111964282A (zh) 一种高效光伏系统
CN203300681U (zh) 光热一体化太阳能电池模组
CN202406065U (zh) 太阳能光热混合利用系统
CN202034393U (zh) 单晶硅发电模组
CN219678331U (zh) 一种带市电充电功能的逆变器
CN216818355U (zh) 一种一体化碲化镉薄膜太阳能电池组件
CN214205461U (zh) 一种太阳能光伏组件循环散热装置
CN214380805U (zh) 一种发光的充电光伏板
CN220492687U (zh) 一种充电储能装置
CN217656559U (zh) 一种dc-dc变换器
CN220421773U (zh) 一种光伏板散热器
CN114900123B (zh) 一种高效率户外太阳能供电系统及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 13736110

Country of ref document: EP

Kind code of ref document: A1