WO2013104211A1 - 发光装置和发光系统 - Google Patents

发光装置和发光系统 Download PDF

Info

Publication number
WO2013104211A1
WO2013104211A1 PCT/CN2012/084923 CN2012084923W WO2013104211A1 WO 2013104211 A1 WO2013104211 A1 WO 2013104211A1 CN 2012084923 W CN2012084923 W CN 2012084923W WO 2013104211 A1 WO2013104211 A1 WO 2013104211A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
conversion layer
emitting
light emitting
Prior art date
Application number
PCT/CN2012/084923
Other languages
English (en)
French (fr)
Inventor
胡飞
杨毅
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2013104211A1 publication Critical patent/WO2013104211A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/20Combination of light sources of different form

Definitions

  • the present invention relates to the field of optical tympanics, and more particularly to illuminating devices and illuminating systems.
  • the pre-semiconductor illumination is getting more and more attention.
  • the monochromatic light source capable of emitting red, green and blue light has broad application prospects in projection display and stage decoration illumination.
  • the first one is to use a monochromatic light-emitting diode.
  • the resulting monochromatic light has a small spectral width, and the color is bright and bright, but the problem is that the efficiency is relatively low; the efficiency of the monochromatic light generated by the phosphor is higher, but the light is colored due to the larger width of the light. It is difficult to be satisfactory. For example, a comparison of the luminescence spectrum 01 of red light LBi) and the luminescence 702 of a red phosphor is shown in FIG.
  • the main technical problem solved by the present invention is to provide a light-emitting device and a light-emitting system that enable a light-emitting diode of the same color and a phosphor to realize a common light without enlarging the light-emitting area of the light source.
  • the invention provides a light-emitting device, comprising at least one light-emitting diode for emitting a first light, the light-emitting diode comprising a light-emitting surface, and an excitation light source for emitting the excitation light, further comprising: coating the light-emitting surface of the light-emitting diode
  • the wavelength conversion layer, the read wavelength conversion layer cannot be excited by the first light, and the wavelength conversion layer can be excited by the excitation light and emit the second light.
  • the light emitting device further includes an optical path distinguishing means between the wavelength conversion layer and the optical path of the excitation light source for guiding the excitation light to be incident on the *wavelength conversion layer while guiding at least part of the mixed light emitted from the wavelength conversion layer and incident thereon Wavelength rotation: the optical path of the excitation light of the layer is separated and forms the outgoing light of the illuminating device sandwiched light Including first light and second light
  • the invention also provides an illumination system, comprising the above illumination device, further comprising a driving control device, configured to independently control the LED and the excitation light source in the illumination device, thereby implementing the emission light of the illumination system
  • a driving control device configured to independently control the LED and the excitation light source in the illumination device, thereby implementing the emission light of the illumination system
  • the luminous flux of one light and the second light are independently controlled
  • the reflection of the light by the light-emitting diode itself realizes the sharing of the first light emitted by the light-emitting diode and the second light generated by the wavelength conversion layer coated on the surface of the light-emitting diode. Does not enlarge the light-emitting area of the light source
  • Figure ⁇ is a schematic view of the first embodiment of the present invention.
  • S 1 a is a schematic view of a modified example of the first embodiment of the present invention.
  • S 2 is a schematic view of the second embodiment of the present invention.
  • Figure 3 is a schematic view S of a third embodiment of the present invention.
  • m 4 is a schematic view of a fourth embodiment of the present invention.
  • Figure 5 is a schematic view showing a fifth embodiment of the present invention.
  • m 6 is a schematic drawing of the sixth embodiment of the present invention:
  • S 7 is an example of an emission spectrum of a red LED illuminating error and a red phosphor.
  • the structure of the first embodiment of the present invention is as shown in FIG. 1.
  • the illuminating focal length 100 includes a light emitting diode 101 for emitting a first light 111, and the light emitting diode 101 includes a light emitting surface 101a; and further includes for emitting excitation light 11
  • the excitation light source 105 of 3 is provided with a wavelength conversion layer 03 on the light-emitting surface 101a of the light-emitting diode 10.1.
  • the wavelength conversion layer 103 cannot be excited by the first light 11 1 while the wavelength conversion layer can be excited by the excitation light 1 U And emitting the second light 115.
  • the light emitting device ???00 further includes an optical path distinguishing device 10?
  • the optical path distinguishing device 107 is configured to guide the excitation light Incident light is incident on the wavelength conversion house 103, and at the same time, at least a part of the mixed light emitted from the erbium wavelength conversion layer 103 is separated from the optical path incident on the wavelength-converted excitation light 1 1 3 and forms an outgoing light of the illuminating device, wherein the mixed light includes the first Light ill and second light 1.15.
  • the first light 11 1 emitted from the light emitting surface I Ma of the light emitting diode 101 is first incident on the wavelength conversion layer .1 03 , since the wavelength conversion layer 103 cannot be excited by the first light .1 1 1
  • the wavelength conversion layer 103 does not absorb or only slightly absorbs the first light 111.
  • a portion of the first light 1 11 directly transmits the wavelength conversion layer 103.
  • the light path is formed by the optical path distinguishing device 10, and the remaining portion is reflected back to the light emitting diode 101 by the wavelength conversion layer 103, and is again reflected by the light emitting diode 101 and then incident on the wavelength conversion layer 103 again, wherein part of the light energy is transmitted through the rest.
  • the light energy is again reflected back to the light-emitting diode, and after that, the light-emitting diode emits the first light 1 1 1 and finally exits from the wavelength conversion layer 103, and forms an outgoing light after passing through the optical path distinguishing device 107.
  • the wavelength conversion layer H!3 is excited by the excitation light guided by the optical path distinguishing device 07' and is stimulated to emit the second light 1 1 5 and a part of the second light is directly emitted to the light emitting diode 10].
  • the emitted light After passing through the optical path distinguishing device 107, the emitted light is formed; the other portion is incident on the inside of the light emitting diode 101, and is reflected by the light emitting diode and then incident on the wavelength conversion layer 103, wherein part of the light energy is transmitted back to the light emitting diode again.
  • the second light 1 15 is finally emitted from the wavelength conversion layer 103, and passes through the optical path distinguishing means i? to form an outgoing light.
  • the present invention utilizes the reflection effect of the light-emitting diode itself on light--the sharing of the first light emitted by the light-emitting diode and the second light generated by the wavelength conversion layer coated on the surface of the light-emitting diode.
  • the light-emitting area is the same as the light-emitting area of the light-emitting diode
  • the light-emitting diode has a reflective effect on the light, because the light-emitting diode has a reflective layer inside, and the read-reflective layer is used to reflect the light emitted from the light-emitting layer in the light-emitting diode toward the front side to reflect the light of the light-emitting diode. All of them are emitted from the light emitting surface thereof, which can greatly improve the light emitting brightness of the light emitting diode, and belongs to the prior art.
  • the wavelength conversion layer is disposed on the light-emitting surface of the light-emitting diode, which is also a prior art technology.
  • the wavelength conversion material mixed with the hybrid and then printed by the printing method.
  • the surface of the diode forms a wavelength conversion layer, and for example, the wavelength conversion material is mixed with the liquid solution and sprayed on the surface of the light emitting diode by a spray gun to form a wavelength conversion layer.
  • a focusing lens 109 is further provided for focusing the excitation light: 1 1 3 on the wavelength conversion layer 103, and simultaneously collecting the first light 11 and the second light 1 15
  • the use of the focusing lens 109 in the collimated illumination device can improve system efficiency, and is an optimized implementation.
  • the optical path for distinguishing means 107 comprises a first light mixing n 1 and a second light 115 and the optical path of the excitation light 3] 1 5 prevents separation of the mixed light directly incident on the excitation light source 105 caused by the loss
  • the optical path distinguishing device is a milliscopic filter 10, and the mixed light including the first light 1 1 1 and the second light 115 is guided to form the light emitting device 1 ⁇ in a reflective manner.
  • the outgoing light of () is simultaneously guided to transmit the excitation light 1 1 3 to the surface of the wavelength conversion layer 103.
  • the light-emitting diode 01 is a red light-emitting diode
  • the excitation light source ⁇ () 5 is a blue light or ultraviolet light-emitting diode light source or a blue light or ultraviolet laser diode light source
  • the wavelength conversion layer 103 includes a red wavelength conversion material, It can be excited by the blue light or ultraviolet light emitted by the excitation light source to excite the red wavelength conversion material to generate red light.
  • the interference filter 107 transmits the blue light or ultraviolet light emitted by the excitation light source 105, and simultaneously reflects the red light first light 11 1 emitted by the light emitting diode 11 and the red light second light U 5 emitted by the wavelength conversion layer 103.
  • the wavelength conversion layer 103 may further include a yellow wavelength conversion material that is stimulated to emit yellow light; since the wavelength of the yellow light is shorter than the red light, the yellow wavelength conversion material cannot be red light emitted by the light emitting diode.
  • the 1000 filter 100 transmits the blue light or ultraviolet light emitted from the excitation light source 105, and reflects the red light first light in and the wavelength of the light emitting diode 101: the yellow light emitted by the layer 03 1.15
  • the light emitting diode 01. may also be a green light emitting light tube, and the wavelength converting layer may include a yellow or green wavelength converting material.
  • the thousand light filter 1.07 transmits the blue light or ultraviolet light emitted by the excitation light source 105, Simultaneously reflecting light-emitting diodes] "The emitted green first light 11 1 and the wavelength conversion layer ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the Qiang filter 10? can also reflect a portion including the first pupil and the second light 115 mixed light, which can achieve the purpose of adjusting the mixed light emission spectrum as shown in FIG.
  • the two kinds of red light Pan if the Qiang filter 10? reflects only the spectral components of more than 600 nanometers, the spectrum 70i of the red light emitting diode is almost completely reflected as the light emitted by the light emitting device, t3 ⁇ 4 red wavelength conversion layer In the illuminating error 702, a yellowish light component of 600 nm or less will transmit through the filter 107 and cannot be emitted. Only a spectral component larger than 6 (H) nanometer can be reflected and become an outgoing light. Make the color of the mixed red light that is emitted more vivid
  • the intensity of the first light in the light emitted by the light-emitting device 00 is determined by the light-emitting intensity of the light-emitting diode 10 i, and the light-emitting intensity of the second light 15 is determined by the excitation.
  • the luminous intensity of the light 3 ⁇ 4 1 ⁇ 5, and further, the present invention also extracts an illumination system, and the illumination system including the above illumination device further includes a driving control device for independently controlling the illumination emitted light emitting diode device 101 and the excitation light source 1055 so as to realize the light emitting system 111 of the first light and the second light!
  • the luminous flux of 15 is independently controlled, that the illuminating system may also include the illuminating device exemplified in the following examples.
  • the beneficial effects of independently controlling the luminous fluxes of the first light 1 1 1 and the second light 1 15 in the outgoing light are as follows: According to the background, the first light emitted by the light emitting diode and the wavelength conversion layer are emitted. The color of the two lights is different, so independently adjusting the strength of the two can obtain the color of the mixed light. When the two kinds of light can be mixed into white light, the color temperature of different white light can be obtained by adjusting the strength between the two. .
  • the deformation further includes light 3 ⁇ 4 106, and the light emitted by the optical circuit can be divided by the optical path. 1 07 is guided to become the light emitted by the light-emitting device.
  • the light-emitting diode is a red light-emitting diode
  • the wavelength conversion layer comprises a yellow or yellow-green wavelength conversion material
  • the light source is a blue light-emitting diode or a basket light laser source, so
  • the emitted light of the ⁇ illuminating device contains blue, yellow or yellow-green light and red light components, and the white light formed by the illuminating device has a high color rendering index.
  • the light-emitting diode, the excitation light source and the light source 106 can be independently controlled to achieve the adjustment of the color coordinates of the emitted white light.
  • the light 117 emitted by the light source 106 passes through the optical path distinguishing device 10, and the combined light of the first light and the second light is combined to emit light of the common light emitting device.
  • the light emitted by the light 3 ⁇ 4 1 06 can also be combined with the mixed light in other ways, for example, a spectroscopic filter is arranged at the rear end of the optical path of the optical path distinguishing device 10?
  • the optical path distinguishing device 10 transmits the excitation pupil 3 while at least partially reflecting the first first 111 and the second light 1 1 5; it can be understood that the optical path distinguishing device 107 can also at least partially transmit the first The light 111 and the second light 1 15 are simultaneously reflected by the excitation light 11 3 . This can achieve the separation of the optical paths of the first light 1 1 1 and the second light 1 1 5 from the excitation light 11 3 .
  • the light-emitting device in this embodiment includes a light-emitting diode, which may actually include a plurality of light-emitting diodes, and the light-emitting diodes form an array, and the distance between each of the light-emitting diodes and the light-emitting diodes of the phase is small, so that this
  • the light-emitting surfaces of each of the light-emitting diodes form a surface light source.
  • the spacing between each of the light-emitting diodes and the light-emitting diodes of the phase is smaller than the light-emitting surface of the light-emitting diode.
  • the interference filter is used as the optical path distinguishing device, and the optical path distinguishing device can be realized in other manners, in the following second to sixth embodiments.
  • INTRODUCTION be held down sub-described 5 is worth noting that in the first embodiment with the features described and illustrated applies to the following embodiments Cheung embodiment, in the following of this description will not be repeated.
  • the structure of the second embodiment of the present invention is as shown in FIG. 2 in the light-emitting device 200.
  • the optical path distinguishing device 207 is a mirror, and the mirror 207 reflects the excitation light 21 to be incident on the wavelength conversion layer 203, and includes the first The mixed light of the light 21J and the second light 215 is emitted from the periphery of the mirror 207 to form the light emitted from the light-emitting device 2 (H).
  • the mixed light further includes the reflected by the wavelength conversion layer 203.
  • the excitation light source is a blue light source
  • the wavelength conversion layer includes yellow
  • the light emitted from the light-emitting device of the present embodiment includes components of blue light, yellow light, or yellow-green light and red light, and the light-emitting device in this embodiment is compared with the first embodiment.
  • a white light with a high color rendering index can be realized without adding another blue light source.
  • the following embodiment has this advantage compared with the first embodiment.
  • a disadvantage of this embodiment is that a part of the mixed light is incident on the surface of the mirror 207 and is reflected to form a loss as long as the mirror 2 is sufficiently small. 5
  • the energy of the part of the light can be neglected; therefore, in practical applications, Effectively reflecting the excitation light to the wavelength conversion layer, the smaller the size of the mirror, the better.
  • the optical path g device is a reflection device 307 with a through hole
  • the reflection device 307 includes a through hole and a reflection around the through hole 307a.
  • the excitation light 313 is incident on the wavelength conversion layer 3 through the through hole 307a, and the mixed light including the first light 3U and the second light 315 is reflected by the reflection surface of the through hole and forms the outgoing light of the light emitting device 300.
  • the mixed light further includes residual excitation light 31 that is not absorbed by the wavelength conversion layer 303.
  • the shape of the reflective device 30? is planar, and in the fourth and fifth embodiments of the present invention, the shape of the reflecting device is dome-shaped.
  • the reflection means 40 of the through hole is a paraboloid shape, and unlike the third embodiment, the mixed light is incident on the reflection.
  • the device 407 is then focused on the focus of the paraboloid, which may be useful for subsequent use of the illumination of the source in some applications.
  • the structure of the fifth embodiment of the present invention is as shown in FIG. 5.
  • the reflection device 50 of the through hole is a hemispherical shape, and the wavelength conversion layer 503 of the light emitting diode 501 and the light emitting surface thereof is located.
  • the vicinity of the hemispherical center of the sphere, and the mixed light emitted from the wavelength conversion layer 503 is reflected by the reflection surface around the through hole and then focused to a point and forms an outgoing light of the light-emitting device 5 (H), the focus point and the light-emitting diode
  • the position of the 501 is symmetric about the hemispherical sphere
  • the illuminating device 5 in this embodiment further includes a light collecting device 508 for collecting the focused outgoing light.
  • the light collecting device 508 is a collecting lens, actually It can also have other forms, such as integral rods or tapered integrator rods, which is not a problem in the prior art.
  • the anti-reflection device 5 ⁇ 7 of the through-hole in the light-emitting device of the present example can also be a plump sphere, and the light is emitted at this time.
  • the diode 501 and the wavelength conversion layer 503 on the light-emitting surface thereof are located at one focus of the i-semi-spherical sphere, and the mixed light emitted from the wavelength conversion house 503 is reflected by the reflection surface around the through-hole and is focused on the semi-spherical surface.
  • the reflecting means with a through hole can be a plurality of curved surfaces, not limited to the above examples.
  • the bandpass tie shape reflecting means 607 is opposed stepped :: Indeed, the stepped profile consists of two curved surfaces 6 ⁇ ) composition and 607b.
  • the two partial curved surfaces are respectively a part of two concentric spherical surfaces or the same spherical picking surface; as can be understood from the fifth embodiment, the mixed light is focused on the same position after being reflected by the two partial curved surfaces.

Abstract

一种发光装置和发光系统,包括用于发射第一光的发光二极管和用于发射激发光的激发光源,以及涂覆在发光二极管的发光面上的波长转换层。波长转换层不能被第一光激发,能够被激发光激发并发射第二光。发光装置还包括位于波长转换层与激发光源的光路之间的光路区分装置,用于将激发光引导入射于波长转换层,同时引导从波长转换层出射的包括第一光和第二光的混合光与激发光的光路分开,以形成发光装置的出射光。这种发光装置和发光系统利用了发光二极管自身对光线的反射作用,实现了发光二极管发射的第一光与涂敷在其表面的波长转换层产生的第二光的共用,同时未扩大光源的发光面积。

Description

说 明 书
发光装置和发光系统
本发明涉及光学鼓术领域, 特別是涉及发光装置和发光系统 背景技术
g前半导体照明越来.越受到人 ]的重视,其中能够发射诸如红绿蓝光等的单色光先 源在投影显示、 舞台装饰照明中有着广泛的应用前景
目前, 实现单色光光源的技术路线主要存在两种, 第一种是使用单色发光二极管
( LED, l i iit emi t t i ng diode )直接产生各单色光, 第二种是使用篮先或紫外发光二极 管激发各单色荧光粉来产生单色光, 这两种方法各有优势 LE!)产生的单色光光谱宽度 较小、 此顏色鲜艳亮丽, 但其问題在于效率相对较低; ¾荧光粉产生的单色光的效率 较高, 但是由于光¾·宽度较大使其发光類色看起来难以令人满意 例如, 图 7中表示了 红光 LBi)的发光光谱 01和一种紅色荧光粉的发光光讲 702的比较
一种解决方案是, n时使用单色 LED与同色荧光粉光源,以将二者的优点结合起来, 实现更好的综合性能 然而, 从 S 7可以看出, 由于顏色接近, 单色 LED与同色荧光粉 的发光光译存在较大交叠, 因此无法使用常用的千涉滤光片等合光器件利用两种光的波 长的差异合并为一束 因此若想实现两种光共同使用5 两种光源必须并排放置 这必然 增大光源的发光面积和光東的截面直径, 进《 显著降低光束的能量密度, 这对子投影显 示和投射照,明等领域是难以接受的,
因此, 需要一种发光装置, 在不扩大发光源的发光面积的前提下, 实现同色的 LED 与焚光粉发光的共用,. 发明内容
本发明解决的主要技术问题是提供使同色的发光二极管与荧光粉能够在不扩大发 光源的发光面积的前提下实现共用的发光装置和发光系统
本发明提出一种发光装置, 包括至少一颗用于发射第一光的发光二极管, 该发光二 极管包括发光面, 和用于发射激发光的激发光源 还包括涂:歡在发光二极管的发光面上 的波长转换层、 读波长转换层不能被第一光所激发, 同时该波长转换层能够被激发光激 发并发射第二光。该发光装置还包括位于波长转换层与激发光源的光路之间的光路区分 装置 用于将激发光引导入射于 *波长转换层, 同时引导从该波长转换层出射的至少部 分混合光与入射于该波长转 :层的激发光的光路分开并形成发光装置的出射光„混合光 包括第一光与第二光
本发明还提出一种发光系统, 包括上述的发光装置, 还包括驱动控制装置, 该駆动 控制装置用于独立的控制发光装置中的发光二极管与激发光源,进而实现发光系统的出 射光中第一光与第二光的光通量分别独立控制的 的
在本发明的发光装置和发光系统中, 利用发光二极管自身对光线的反射作用 实现 了该发光二极管发射的第一光与涂敷在该发光二极管表面的波长转换层产生的第二光 的共用 同时并不扩大光源的发光面积 附图说明
图 ί是本发明的第一实施倒的示意图;
S 1 a是本发明的第一实 例的一个变形实 例的示意图;
S 2是本发明的第二实施倒的示意图;
图 3是.本发明的第三实施铜的示意 S;
m 4是本发明的第四实施例的示意图;
图 5是本发明的第五实施倒的示意图;
m 6是本发明的第六实施例的示意画:
S 7是红色 LED发光光錯与一种红色荧光粉的发射光谱的举例 具体实施方式
本发明的第一实施例的结构如图 1所示《 发光焦置 100包括用于发射第一光 111的 发光二极管 101 , 该发光二极管 101包括发光面 101 a ; 还包括用于发射激发光 11 3的激 发光源 105. 在发光二极管 10.1的发光面 1 01a上设置有波长转换层 03 , 渎波长转换层 103不能被第一光 11 1所激发, 同时该波长转换层能够被激发光 1 U激发并发射第二光 115. 该发光装置】.00还包括位于波长转换层 1 03与激发光源 ϊ ί)5的光路之间的光路区 分装置 10? , 该光路区分装置 107用于将激发光 引导入射于波长转换屋 103、 同时 引导从 ϋ波长转换层 103出射的至少部分混合光与入射于该波长转换 的激发光 1 1 3的 光路分开并形成发光装置的出射光, 其中混合光包括第一光 i l l与第二光 1.15.
应用本发明, 可以实现如背景技术中所说的在不扩大光源发光面积的前提下 1 色发 光二极管与波长转换材料发光的共用, 具体的工作原理如下:
在本发明中, 发光二极管 101从其发光面 I Ma发出的第一光 11 1 先入射于波长转 换层 .1 03 , 由于波长转换层 1 03不能被第-光 .1 1 1所激发 因此该波长转换层 103对第 一光 111不吸收或仅有微小的吸收 第一光 1 11中的一部分会直接透射该波长转换层 103 并经过光路区分装置 10?形成出射光, 其余的部分会被波长转换层 103反射回发光二极 管 101 , 并被发光二极管 1 01再次反射后再次入射于波长转换层 1 03, 其中部分光能量 透射其余光能量再次被反射回发光二极管,如此循《后,发光二极管 发出第一光 1 1 1 最终得以从波长转换层 103出射, 并经过光路区分装置 1 07后形成出射光
同时, 波长转换层 H!3被经过光路区分装置〗07'引导的激发光 激发并受激发射 第二光 1 1 5 第二光中一部分直接向发光二极管 10】的异倒发射, 这部分光经过光路区 分装置 107后形成出射光;另一部分会入射到发光二极管 1 01内部,并被发光二极管 反射后入射于波长转换层 1 03 , 其中部分光能量透射其余光能量再次被反射回发光二极 管,如此循环后 第二光 1 15最终得以从波长转换层 103出射,并经过光路区分装置 i? 后形成出射光。
综上所迷, 本发明利用发光二极管自身对光线的反射作用- 实现了该发光二极營 '发 射的第一光与涂敷在该发光二极管表面的波长转换层产生的第二光的共用, n时发光面 积与发光二 *ι管的发光面积相同、、
值得说明的是, 发光二极管对光具有反射作用, 这是因为发光二极管内部具有反射 层,读反射层用于将发光二极管中的发光层向背面发射的光向正面进行反射从而使发光 二极管的光全部从其发光面出射出来, 这可以大大提高发光二极管的发光亮度, 属于现 有技术
在本发明中, 波长转换层设置于发光二极管的发光面上, 这也是现有的技术, 有多 种方式可以实现 倒如将波长转换材料与雜结 混合后, 使用印刷的方法涂覆在发光二 极管表面形成波长转换层 , 又例如将波长转换材料与液态溶 ¾混合后用喷枪喷洒于发光 二极管表面形成波长转換层
在本实施^的发光装置 Ί0中, 还包括聚焦透镜 1 09 , 它用于将激发光 :1 1 3聚焦于 波长转换层 103上, 同时用于收集第一光〗11和第二光 1 15并将其准直 发光装置中聚 焦透镜 1 09的使用可以提高系统效率, 是一种优化的实施方式
在本发 中, 光路区分装置 107用于将包括第一光 n 1和第二光 115的混合光与激 发光 1】 3的光路分开 5 防止该混合光直接入射于激发光源 1 05而造成损耗 在本实施例 中, 光路区分装置是千涉滤光片,, 该千涉滤光片 10?以反射的方式引导包括第一光 1 1 1 和第二光 115的混合光形成发光装置 1 ί)()的出射光, 同时以透射的方式引导激发光 1 1 3 入射于波长转换层 103的表面。
具体举洌来说, 发光二极管】 01为红光发光二极管, 激发光源 ί ()5为蓝光或紫外发 光二极管光源或蓝光或紫外激光二极管光源, 波长转换层 103 包括紅色波长转换材料、 它可以被激发光源发出的蓝光或紫外光激发 红色波长转换材料受激产生红光, 根据波 长转换材料的工作原理可知, 它不能被红光发光二极管产生的红光激发 此时, 干涉滤 光片 107透射激发光源 105发出的蓝光或紫外光, 同时反射发光二极管 1 1发射的红光 第一光 11 1和波长转换层 103发射的紅光第二光 U 5 ,.
在该例子中,波长转换层 1 03还可以包括黄色波长转换材料,该材料受激发射黄光; 由于黄光的波长比红光短, 所以该黄色波长转换材料不能被发光二极管 发射的红光 激发 此时, 千涉滤光片 1 07透射激发光源 1 05发出的蓝光或紫外光, 时反射发光二 极管 101发射的红光第一光 i n和波长转 :层〗03发射的黄光第二光 1.15
发光二极管〗01.还可以是绿光发光^"极管, 而波长转换层可以包括黄色或绿色波长 转换材斜. 此时, 千涉滤光片 1.07透射激发光源 105发出的蓝光或紫外光, 同时反射发 光二极管】《发射的绿光第一光 11 1和波长转换层 Ι ίΒ发射的黄先或绿光第二光 n s 波长转换层还可以包括蓝光波长转换材料,激发光 113为紫外光,此时,千涉滤光片 1 07 透射激发光源 105发出的紫外光, 同时反射发光二极管 10!发射的绿光第一光 1 1 1和波 长转换晨〗03发射的蓝光第二光 115。
值得说明的是、 上迷举例并不对本发明构成限制
在本实拖例中、 千涉滤光片 10?还可以反射部分包括第一光 Π 和第二光 115混合 光, 这祥傲可以达到调整混合光发光光谱的目的 倒如结合图 7 所示的两种红光光潘, 若千涉滤光片 10?只反射 600纳来以上的光谱成分, 則红光发光二极管的光谱 70i几乎 被全部反射成为发光装置的出射光, t¾红色波长转换层的发光光錯 702中 600纳米以下 的偏黄色的光潘成分躬会透射千涉滤光片 107而不能成为出射光 >只有大于 6 (H)纳米的 光谱成分才能被反射而成为出射光 这祥就使得出射的混合的红光的颜色更加鲜艳
在本实施^中, 如前所述, 发光装置〗 00的出射光中的第一光].11的强度决定于发 光二极管 10 i的发光强度, 时第二光 1 15的发光强度决定于激发光 ¾ 1 ϋ 5的发光强度 因,此进一步的, 本发明还拔.出一种发光系统, i 发光系统包括上迷的发光装置 还包括 驱动控制装置, 该驱动控制装置用于独立的控制发光装置中的发光二极管 1 01与激发光 源 1 055 进而实现该发光系统的出射光中第一光 1 11与第二光! 1 5的光通量分別独立控 制的 g的 值得说明的是, 该发光系统也可以包括下面实旄例中舉例的发光装置
实现出射光中第一光 1 1 1与第二光 1 15的光通量分别独立控制的有益效果如下: 根 据背景 4支术中所描述的 ,发光二极管发射的第一光与波长转换层发射的第二光的顏色不 同, 因此独立调节两者的强弱可以得到不冏的混合光的颜色, 当两种光可以混合成白 光时, 调节两者之间的强弱则可以得到不同的白光的色温。 控制发光二极管 1 01与激发光源 105的发光强度的方法有很多, 例如控制其电流大 小, 或在勝冲驱动时控制其占空比, 甚至可以控制发光 极管 1.01与激发光源〗05交替 点亮, 这属亍现有技术, 此处不赘迷
本实施例还存在一个变形, 其结构如闺 l a所示 与图 1所示的实施例不同的是, 该变形中还包括光 ¾ 106, 它发射的光 1 .1 7可以经过光路区分装 ¾ 1 07引导成为该发光 装置的出射光 在该变形中, 发光二极管是红光发光二极管, 波长转换层包括黄色或黄 绿色波长转换材料, 光源】 06是蓝光发光二极管或篮光激光光源, 因此在渎发光装置的 出射光中同时包含蓝光、 黄光或黄绿光以及红光的成分, 这祥形成的白光具有较高的显 色指数。 同样的, 发光^ 极管、 激发光源与光源 1 06均可以独立控制, 以实现出射白光 的色坐标的调节。
在本实施例中, 光源 106发射的光 1 1 7通过光路区分装置 10?与包括第一光.和第二 光的混合光合光后共同发光装置的出射光 这是 种优选的实施例,它真有简洁的结构; 实际上光¾ 1 06发射的光 1 Π也可以以其他方式与混合光合光,例如在光路区分装置 1 0? 的光路后端设置一个分光滤光片来合光
在本实拖例中、 光路区分装置 1 07透射激发光 Π 3 , 同时至少部分反射第一先 111 和第二光 1 1 5; 可以理解的是, 光路区分装置 107也可以至少部分透射第一光 111和第 二光 1 15, 同时反射激发光 11 3 这冏样可以实现将第一光 1 1 1和第二光 1 1 5与激发光 11 3的光路相分离的作用
在本实施例中的发光装置包括一颗发光二极管, 实际上可以包括多颗发光二极管, 这些发光二极管形成一个阵列,每一顆发光二极管与其相部的发光二极管之间的间距很 小, 使得这个发光二极管阵列中的每一顆发光二极管的发光面共 构成一个面光源 一 般来说, 在这样的阵列中, 每一颗发光二极管与其相部的发光二极管之间的间距小于发 光二极管的发光面的外接圓直径的 56
本发明的第一实施例中的发光装置, 使用了干涉滤光片作为光路区分装置 实际上 还可以有其它的方式来实现光路区分装置的功能,在下面的第二至第六实旎例中分刖予 以举倒说明 值得说明的是 5 第一实施例中的特征描述和举例同祥适用于下面的实施例 中, 此在下面的描述中不再重复说明。
本发明的第二实施例的结构如图 2所示 在发光装置 200中, 光路区分装置 207为 反射镜,该反射镜 207反射激发光 21 3使其入射于波长转换层 203 ,同时 括第一光 21J 和第二光 215的混合光从该反射镜 207的 周出射形成发光装置 2(H)的出射光
与第一实施例不同的是, 在本实施例中, 混合光还包括被波长转换层 203反射的没 有被吸收的剩余激发光 2 Π,这部分光也可以从反射镜 207的 周出射形成发先装置 200 的出射光 发光二极管为红光发光二极管, 激发光源为蓝光光源, 波长转換层包括黄 色或黄绿色波长转换材料时, 本实施例的发光装置的出射光中就同时包括了蓝光、 黄光 或黄绿光和红光的成分, 与第一实旄例相比, 本实施例中的发光装置不需要增加另一个 蓝光光源就可以实现高显色指数的白光.: 下述的实施例与第一实旄例相比都具有这个优 点
本实施例的缺点在于, 混合光中会有一部分入射于反射镜 207的表面而被反射形成 损耗 只要反射镜 2ί)?足够小 5 这部分光的能量就可以忽略; 因此在实际应用中只要能 够有效的反射激发光到波长转换层, 该反射镜的尺寸越小越好。
本发明的第三实施例的结构如图 3所示„ 在发光装置 30«中, 光路 g分装置是带通 孔的反射装置 307 , 该反射装置 307包括通孔和该通孔 307a周围的反射面,. 激发光 313 穿过通孔 307a入射于波长转换层 3ίΒ,包括第一光 3U和第二光 315的混合光被该通孔 周的反射面反射并形成发光装置 300的出射光 在本实施例中, 混合光还包括被波长 转换层 303反.射的没有被吸收的剩佘激发光 31 ?。
值得说明的是、 混合光中会有一小部分会穿过反射装置 307的通孔 307a而不能被 反射成为出射光, 因此只要能够保证激发光 313的穿过 通孔 307a的尺寸越小越好. 在实际工作中 , 这部分光的损失往往是可以忽略不计的
在本实旄例中、 带通礼的反射装置 30?的形状是平面的, 在本发明的第四和第五实 施例中, 该.反射装置的形状是瓠形的,
本发明的第四实施例的结构如图 4所示 在该实旄例中, 带通孔的反射装置 40?是 —个抛物面形, 与第三实施例不同的是, 混合光入射到该反射装置 407后聚焦于该抛物 面的焦点, 在有些应用场合这对于后续的光源发光的利用是有帮助的
本发明的第五实旄例的结构如图 5所示 在该实旄例中, 带通孔的反射装置 50?是 一个半球形,发光二极管 501以及其发光面上的波长转换层 503位于该半球形的球心的 附近, 而从该波长转换层 503出射出来的混合光被通孔四周的反射面反射后聚焦于一点 并形成发光装置 5(H)的出射光,该聚焦点与发光二极管 501的放置的位置关于该半球形 的球心对称
优逸的, 本实施例中的发光装置 5 还包括光收集装置. 508 , 该光收集装置 508用 于收集聚焦后的出射光, 在本实施例中, 光收集装置 508是一个收集透镜, 实际上它还 可以有其它形式, 例如积分棒或锥形积分棒, 这是现有技术 此处不赘迷
本实拖例的发光装置中的带通孔的反.射装置 5ϋ7还可以是一个丰镞球形, 此时发光 二极管 501以及其发光面上的波长.转换层 503位于 i 半继球形的一个焦点上 而从波长 转换屋 503出射出来的混合光被通孔四周的反射面反射后聚焦于该半镞球面的另一个焦 点上
結合第四和第五实旄例可以理解, 带通孔的反射装置可以是.很多种 ¾形曲面 并不 限于以上举例
本发明的第六实施例的結构如图 6所示. :, 带通扎的反射装.置 607的形状是阶梯状:: 实际上 , 该阶梯状的外形由两部分曲面 6ΐ) 和 607b组成 这两部分曲面分別是两个同 心的球面或同焦点的摘球面的一部分; 结合第五实施例可以理解, 混合光经过这两部分 曲面的反射后会聚焦于同一个位置
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围 凡是^用本发明 说明书及附 S内容所作的等效结构或等效流程变换, 或直接或间接逸用在其他相关的技 术领域, 均同理包括在本发明的专利保护范围内 ,

Claims

权 利 要 求 书
L 一种发光装置 其特 ^£在于, 包括:
至少一颡用亍发射第一光的发光二极管, 该发光二极管包括发光面;
用于发射激发光的激发光源;
设置在发光二极管的发光面上的波长转换层, 该波长转换层不能被所述第一光所激 发, ffl时该波长转换层能够被所述激发光激发并发射第二光;
位于所迷波长转换层与所述激发光源的光路之间的光路区分装置, 用于将所迷激发 光引导入射于¾波长转换层, 同时引导从该波长转換层出射的至少部分混合光与入 射于该波长转换层的激发光的光路分开并形成发光装置的出射光, 所述.混合光包括 第一光与第二光、'
2. 根据权利要求 1所述的发光装置5 其特征在于, 所述第一光为红光
3. 根据权利要求 2所述的发光装置, 其特征在于, 所述波长转换层包括红色波长转换 材料,黄色波长转换材料,绿色波长转换材料和蓝色波长转换材料中的一种或几种„
4. 根据权利要求 1所迷的发光装置; 其特征在于, 所述第一光为绿光
5. 根据权利要求 4所迷的发光装置, 其特征在于, 所迷波长转换.屡包括黄色波长转换 材料、 绿色波长转换材料和蓝色波长转换材料中的一种或凡种
6. 根据权利要求 1所迷的发光装置,其特征在于,所迷光路区分装置包括干涉滤光片; 该千涉滤光片对混合光至少部分透射同时对激发光反射, 或对激发光透射同时对混 合光至少部分反射
7. 根据权利要求 6所述的发光装置,其特征在于,还包括用于发射第三光的基色光源, 该第三光与所述混合光共同构成 t光装置的出射光
8. 根据权利要求 1 所述的发光装置, 其特征在于, 所迷光路区分装置包括反射镜, 该 反射镜反射激发光使其入射于波长转换层 5 同时至少部分从波长转换层出射的混合 光从该反射镜的 周出射形成发光装置的出射光。
9. 根据权利要求 〗 所述.的发光装置, 其特征在于 所述光路区分装置包括带通孔的反 射装置, 该反射装置包括通孔和该通孔周围的反射面; 所迷激发光穿过通孔入射于 波长转换层,, 从波长转换层出射的至少部分混合光被该通孔四周的反射面反射并形 成发光装置的出射光
10.根据权利要求 8或 9所述的发光装置, 其特征在千, 所迷混合光还包括^ t波长转换 层反射的没有被吸收的剩余激发光
11.根据权利要求 9所述的发光装置, 其特征在于, 所迷帯通孔的反射装置的形状为平 面、 孤形或阶梯状 4 1 根据权利要求 1. 所述的发光装置 其特征在于, 所迷至少一潁发光二极管形成一个 阵列, 每一颗发光二极管与其相邻的发光二极管之间的间距小于发光二极管的所述 发光面的外接國直径的 50
U.—翁发光系统, 其特征在于, 包括权利要求】-至 12中的任意一项所述的发光装置 还包括驱动控制装置, 该驱动控制装置用于独立的控制发光装.置中的发光二极管与 激发光源, 进而实现发光系统的出射光中第一光与第二光的光通量分别独立控制的 目的'
PCT/CN2012/084923 2012-01-14 2012-11-20 发光装置和发光系统 WO2013104211A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210011262.9 2012-01-14
CN201210011262 2012-01-14
CN201210038217.2 2012-02-20
CN201210038217.2A CN102720954B (zh) 2012-01-14 2012-02-20 发光装置和发光系统

Publications (1)

Publication Number Publication Date
WO2013104211A1 true WO2013104211A1 (zh) 2013-07-18

Family

ID=46946787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084923 WO2013104211A1 (zh) 2012-01-14 2012-11-20 发光装置和发光系统

Country Status (2)

Country Link
CN (1) CN102720954B (zh)
WO (1) WO2013104211A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720954B (zh) * 2012-01-14 2014-08-27 深圳市光峰光电技术有限公司 发光装置和发光系统
CN102890397B (zh) * 2012-07-31 2015-10-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
US9435996B2 (en) * 2012-12-07 2016-09-06 Samsung Electronics Co., Ltd. Illumination optical system for beam projector
CN103913936B (zh) * 2012-12-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
US9423680B2 (en) * 2013-07-23 2016-08-23 Seiko Epson Corporation Light source apparatus that irradiates a phosphor layer with excitation light and projector
CN103809350B (zh) * 2013-09-03 2017-01-11 杨毅 显示系统和显示设备
CN103672501B (zh) * 2013-10-11 2017-05-03 杨毅 光源
US9568816B2 (en) * 2013-11-25 2017-02-14 Texas Instruments Incorporated Projector with optical conversion media pumped by low etendue source
CN103645596A (zh) * 2013-12-18 2014-03-19 吴震 发光装置和投影显示系统
CN103631078A (zh) * 2013-12-18 2014-03-12 吴震 发光装置和投影显示系统
CN103777445B (zh) * 2014-01-06 2018-12-25 杨毅 投影显示装置
CN103777450A (zh) * 2014-01-06 2014-05-07 吴震 发光装置、投影显示装置和发光系统
CN104808273B (zh) * 2014-01-29 2017-10-24 台达电子工业股份有限公司 光波长转换器及其适用的光源系统
CN106030403B (zh) * 2014-02-27 2017-10-20 三菱电机株式会社 光源装置
JP6344596B2 (ja) * 2014-03-17 2018-06-20 カシオ計算機株式会社 光源装置及び投影装置
CN105319819B (zh) * 2014-07-28 2019-09-20 深圳光峰科技股份有限公司 发光装置及投影系统
JP6008218B1 (ja) * 2015-03-30 2016-10-19 ウシオ電機株式会社 光源装置
KR101847932B1 (ko) * 2015-04-23 2018-04-11 엘지전자 주식회사 발광모듈
CN105068367B (zh) * 2015-08-04 2017-08-29 杨毅 发光装置、投影显示装置和灯具
CN106287436A (zh) * 2016-09-07 2017-01-04 广州市巴卡研玻璃制品有限责任公司 一种新型激光与led混色光源系统
CN108286660B (zh) * 2018-03-19 2020-05-08 杨毅 蓝光光源、发光装置和灯具
US20220342291A1 (en) * 2019-11-01 2022-10-27 Kazuhiro Fujita Light-source device, image projection apparatus, and light-source optical system
CN113725716A (zh) * 2021-08-26 2021-11-30 新沂市锡沂高新材料产业技术研究院有限公司 一种高饱和功率密度的绿光光源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246876A (zh) * 2007-02-16 2008-08-20 厦门通士达照明有限公司 一种获得高光效高显色性led灯的方法及高光效高显色性led灯
JP2008293838A (ja) * 2007-05-25 2008-12-04 Nikon Corp 光源装置
CN102141210A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 高显色指数高亮度照明设备及其实现多色温调节的方法
CN201984274U (zh) * 2011-03-18 2011-09-21 红蝶科技(深圳)有限公司 基于荧光粉的多泵浦光源及使用其的投影光学引擎
CN102252169A (zh) * 2010-04-07 2011-11-23 深圳市光峰光电技术有限公司 高亮度激发方法及基于光波长转换的发光装置
CN102720954A (zh) * 2012-01-14 2012-10-10 深圳市光峰光电技术有限公司 发光装置和发光系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677983A (en) * 1995-01-11 1997-10-14 Nauchno-Proizvodstvennaya Firma "Adonis" Light beam heater with light source and reflector having two ellipsoidal sections and a truncated spherical surface there between
TW200907538A (en) * 2007-08-14 2009-02-16 Benq Corp Image formation system
DE102008031996A1 (de) * 2008-07-07 2010-02-18 Osram Gesellschaft mit beschränkter Haftung Strahlungsemittierende Vorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246876A (zh) * 2007-02-16 2008-08-20 厦门通士达照明有限公司 一种获得高光效高显色性led灯的方法及高光效高显色性led灯
JP2008293838A (ja) * 2007-05-25 2008-12-04 Nikon Corp 光源装置
CN102141210A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 高显色指数高亮度照明设备及其实现多色温调节的方法
CN102252169A (zh) * 2010-04-07 2011-11-23 深圳市光峰光电技术有限公司 高亮度激发方法及基于光波长转换的发光装置
CN201984274U (zh) * 2011-03-18 2011-09-21 红蝶科技(深圳)有限公司 基于荧光粉的多泵浦光源及使用其的投影光学引擎
CN102720954A (zh) * 2012-01-14 2012-10-10 深圳市光峰光电技术有限公司 发光装置和发光系统

Also Published As

Publication number Publication date
CN102720954A (zh) 2012-10-10
CN102720954B (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2013104211A1 (zh) 发光装置和发光系统
CN102563410B (zh) 发光装置、投影装置和照明装置
US9075299B2 (en) Light source with wavelength conversion device and filter plate
KR102088741B1 (ko) 발광 장치 및 프로젝션 시스템
CN103574347B (zh) 具有发光材料轮的照明设备
US8662690B2 (en) Multi-colored illumination system with wavelength converter and method
JP5631509B2 (ja) 蛍光体エレメントを有する照明装置
KR101875850B1 (ko) 조명장치와 투영장치
EP3392549B1 (en) Light source system and illumination system
TWI437350B (zh) 光源系統及其波長轉換裝置
US9388960B2 (en) Lighting unit comprising a phosphor element
TWI432780B (zh) 光源系統
CN102662301B (zh) 光源系统及相关投影系统
JP2014527261A (ja) 照明装置および投影装置
CN203587953U (zh) 光源、投影显示装置和光纤照明装置
CN110471245A (zh) 光源系统、投影设备及照明设备
CN104865783B (zh) 光源系统及相关投影系统
CN104345535A (zh) 激光光源和投影装置
CN105258076B (zh) 发光装置和灯具
CN110207025B (zh) 光源系统及照明装置
CN107728412B (zh) 一种光源装置及相关投影系统
CN113900336B (zh) 光源组件和投影设备
CN106681090B (zh) 光源模组和投影设备
CN210090899U (zh) 一种混合投影光源
CN209962081U (zh) 一种投影机光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/12/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12864697

Country of ref document: EP

Kind code of ref document: A1