WO2013103367A1 - Somatic ovule specific promoter and methods of use - Google Patents
Somatic ovule specific promoter and methods of use Download PDFInfo
- Publication number
- WO2013103367A1 WO2013103367A1 PCT/US2012/033255 US2012033255W WO2013103367A1 WO 2013103367 A1 WO2013103367 A1 WO 2013103367A1 US 2012033255 W US2012033255 W US 2012033255W WO 2013103367 A1 WO2013103367 A1 WO 2013103367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- expression
- nucleotide sequence
- promoter
- gene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/823—Reproductive tissue-specific promoters
- C12N15/8233—Female-specific, e.g. pistil, ovule
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8247—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8251—Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8251—Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
- C12N15/8253—Methionine or cysteine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8251—Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
- C12N15/8254—Tryptophan or lysine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
- C12N15/8275—Glyphosate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
- C12N15/8278—Sulfonylurea
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8281—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8283—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/8289—Male sterility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present disclosure relates to the field of plant molecular biology, more particularly to regulation of gene expression in plants.
- heterologous DNA sequences in a plant host is dependent upon the presence of operably linked regulatory elements that are functional within the plant host. Choice of the promoter sequence will determine when and where within the organism the heterologous DNA sequence is expressed. Where expression in specific tissues or organs is desired, tissue-preferred promoters may be used. Where gene expression in response to a stimulus is desired, inducible promoters are the regulatory element of choice. In contrast, where continuous expression is desired throughout the cells of a plant, constitutive promoters are utilized. Additional regulatory sequences upstream and/or downstream from the core promoter sequence may be included in the expression constructs of transformation vectors to bring about varying levels of expression of heterologous nucleotide sequences in a transgenic plant.
- a DNA sequence in particular tissues or organs of a plant.
- increased resistance of a plant to infection by soil- and air-borne pathogens might be accomplished by genetic manipulation of the plant's genome to comprise a tissue-preferred promoter operably linked to a heterologous pathogen-resistance gene such that pathogen-resistance proteins are produced in the desired plant tissue.
- tissue-preferred promoter operably linked to a heterologous pathogen-resistance gene such that pathogen-resistance proteins are produced in the desired plant tissue.
- such inhibition might be accomplished with transformation of the plant to comprise a tissue- preferred promoter operably linked to an antisense nucleotide sequence, such that expression of the antisense sequence produces an RNA transcript that interferes with translation of the mRNA of the native DNA sequence.
- a DNA sequence in plant tissues that are in a particular growth or developmental phase such as, for example, cell division or elongation. Such a DNA sequence may be used to promote or inhibit plant growth processes, thereby affecting the growth rate or architecture of the plant.
- somatic ovule tissue-preferred promoters particularly promoters that can serve as regulatory elements for expression of isolated nucleotide sequences of interest early in seed development, are needed for impacting various traits in plants and for use with scorable markers.
- compositions and methods for regulating gene expression in a plant comprise novel nucleotide sequences for a promoter active in somatic ovule tissues before, during, and after pollination. Such preferred expression is particularly desirable for a screen for adventitious embryony. More particularly, the promoter is active in the ovule, predominantly in the micropylar end of the inner integuments of Arabidopsis around and before fertilization and up to globular embryo formation. Certain embodiments of the disclosure comprise the nucleotide sequence set forth in SEQ ID NO: 3-8 and 33 and functional fragments thereof, which drive ovule- preferred expression of an operably-linked nucleotide sequence.
- Embodiments of the disclosure also include DNA constructs comprising a promoter operably linked to a heterologous nucleotide sequence of interest, wherein said promoter is capable of driving expression of said nucleotide sequence in a plant cell and said promoter comprises one of the nucleotide sequences disclosed herein.
- Embodiments of the disclosure further provide expression vectors, and plants or plant cells having stably incorporated into their genomes a DNA construct as is described above. Additionally, compositions include transgenic seed of such plants. A promoter with this preferred spatial and temporal expression is particularly desirable for adventitious embryony in dicots.
- adventitious embryony is a component of aposporous apomixis (asexual reproduction through seed) which would be of use in maintenance of stable, hybrid-based heterosis through multiple generations.
- FIG. 1 For purposes of this manner, the promoter sequences are useful for controlling the expression of operably linked coding sequences in a tissue- preferred manner.
- Downstream from the transcriptional initiation region of the promoter will be a sequence of interest that will provide for modification of the phenotype of the plant.
- modification includes modulating the production of an endogenous product as to amount, relative distribution, or the like, or production of an exogenous expression product, to provide for a novel or modulated function or product in the plant.
- a heterologous nucleotide sequence that encodes a gene product that confers resistance or tolerance to herbicide, salt, cold, drought, pathogen, nematodes or insects is encompassed.
- a method for modulating expression of a gene in a stably transformed plant comprising the steps of (a) transforming a plant cell with a DNA construct comprising the promoter of the disclosure operably linked to at least one nucleotide sequence; (b) growing the plant cell under plant growing conditions and (c) regenerating a stably transformed plant from the plant cell wherein expression of the linked nucleotide sequence alters the phenotype of the plant.
- FIG. 1 demonstrates the expression pattern of a heterologous gene (GUS) operably linked to the modified NUC1 (ALT1 ) promoter (PHP42329) invention in ovules with a pattern identical to that seen with the Arabidopsis NUC1 promoter (PHP3781 1 ) of the invention.
- GUS heterologous gene
- ALT1 modified NUC1
- PPP42329 modified NUC1 promoter
- FIG. 1 demonstrates the expression pattern of a heterologous gene (GUS) operably linked to the modified NUC1 (ALT1 ) promoter (PHP42329) invention in ovules with a pattern identical to that seen with the Arabidopsis NUC1 promoter (PHP3781 1 ) of the invention.
- (A) is a reference schematic of an Arabidopsis ovule with a mature embryo sac, showing the egg (red), 2 synergids (green), central cell (blue) and the 3 antipodals. Expression at the (B
- the expression pattern is visible in micropylar tip of inner integuments, spreads chalazally through the inner integuments surrounding the micropylar half of embryo sac. Expression transitions from the micropylar inner integuments to the chalazal integuments during the globular embryo stage (D), and at the heart-shaped embryo stage expression was observed only in integuments opposite the chalazal end (not shown).
- Figure 2 demonstrates the expression pattern of a heterologous gene (DS-RED) operably linked to the promoter AT-CYP86C1 in ovules at (A) the egg stage, (B) torpedo embryo stage, and (C) the late globular embryo stage.
- the expression pattern is visible in the micropylar tip of inner integuments (A), spreads chalazally through the endothelium to surround the base of the embryo sac, also spreads into the micropylar end of outer integuments (B), and then continues to spread chalazally through the entire endothelial layer (C).
- Figure 3 and 4 demonstrate the expression pattern of a heterologous gene (DS- RED) operably linked to the promoter AT-CYP86C1 in ovules at the egg stage.
- DS- RED heterologous gene operably linked to the promoter AT-CYP86C1 in ovules at the egg stage.
- Egg stage mature embryo sac stage
- AT-CYP86C1 pro:Ds-Red expression is localized to the inner integuments surrounding and opposite the micropylar end of the embryo sac
- Figure 5 demonstrates the expression pattern of a heterologous gene (DS-RED) operably linked to the promoter AT-CYP86C1 in an ovule at the egg/zygote stage.
- AT-CYP86C1 pro:Ds-Red expression is still localized to the inner integuments surrounding and opposite the micropylar end of the embryo sac.
- Expression extends chalazally in the endothelium layer beginning on the abaxial side of the ovule
- Figure 6 (A and B) demonstrates the expression pattern of a heterologous gene (DS-RED) operably linked to the promoter AT-CYP86C1 in an ovule at the zygote stage.
- AT-CYP86C1 pro:Ds-Red expression remains strongly localized to the inner integuments surrounding and opposite the micropylar end of the embryo sac. Expression extends chalazally in the endothelium layer beginning on the abaxial side of the ovule. Also expression can be seen in the outer integuments opposite the micropylar end of the embryo sac.
- Figures 7 and 8 (7 A-C, and 8 A-C) demonstrate the expression pattern of a heterologous gene (DS-RED) operably linked to the promoter AT-CYP86C1 in ovules at the torpedo stage.
- AT-CYP86C1 pro:Ds-Red expression remains strongly localized to the inner integuments surrounding and opposite the micropylar end of the embryo sac. Expression in the outer integuments opposite the micropylar end of the embryo sac becomes more widespread and stronger. Expression continues to extend chalazally in the endothelium layer.
- Figure 9 (A and B) demonstrates the expression pattern of a heterologous gene
- DS-RED operably linked to the promoter AT-CYP86C1 in ovules at the globular embryo stage.
- Figure 10 (A, B and C) demonstrates the expression pattern of a heterologous gene (DS-RED) operably linked to the promoter AT-CYP86C1 in an ovule at the late globular embryo stage.
- DS-RED heterologous gene
- Figure 1 1 (A-D) demonstrates the expression pattern of a heterologous gene (ZS- Green) operably linked to the promoter AT-PPM (putative pectin methylesterase) in ovules at the zygote stage. Two different patterns of expression were observed for the AT-PPM promoter. In pattern 1 (A and B), micropylar inner and outer integuments expression only, but not the epidermal outer integument. Pattern 2 (C and D), similar to pattern 1 plus expression throughout the inner integument surrounding the entire embryo sac, chalazal nucellus not included.
- Figure 12 (A, B and C) demonstrates the expression pattern of a heterologous gene (DS-Green) operably linked to the promoter AT-EXT (endo-xyloglucan transferase) in ovules at the egg/zygote stage. Expression is observed in the inner integuments and innermost layer of outer integument surrounding the micropylar end of the embryo sac (A and B), similar to the NUC1 promoter. Occasionally, a single cell (innermost layer of outer integument) shows strong expression (C).
- DS-Green heterologous gene operably linked to the promoter AT-EXT (endo-xyloglucan transferase) in ovules at the egg/zygote stage.
- AT-EXT endo-xyloglucan transferase
- Figure 13 demonstrates the expression pattern AT-CYP86C1 PRO::AT-RKD2 AT- DD45::DsRed (PHP50088) in the integumentary cells of an ovule. Numerous cells of the inner and outer integuments show an egg cell-like state expressing the AT-DD45-DsRed.
- Figure 14 demonstrates the expression pattern AT-CYP86C1 Pro::AT-RKD2 AT- DD45::DsRed (PHP50088). Two different planes of focus (left upper plane and right lower plane) within a single ovule showing embryogenic-like expression in outer integumentary cells induced by the RKD2 and fluorescently marked by AT-DD45-DsRed.
- Figure 15 demonstrates the expression pattern of AT-CYP86C1 Pro::AT-RKD2
- AT-DD45::DsRed PPP50088 in a single ovule.
- Figure 16 demonstrates the expression pattern AT-CYP86C1 Pro::AT-RKD2 AT- DD45::DsRed (PHP50088) in an ovule - single inner integumentary cell just outside of the embryo sac expressing AT-DD45-DsRed.
- Figure 17 (A-C) demonstrates the expression pattern AT-CYP86C1 Pro::AT-RKD2 AT-DD45::DsRed (PHP50088) in a single ovule.
- Three cells all expressing AT-DD45- DsRed.
- Middle one has formed a zygote-like structure that appears to have formed from the inner layer of the outer integument near the micropylar end.
- This egg-like cell is densely cytoplasmic, and is morphologically similar to an egg cell or zygote.
- Figure 18 demonstrates the expression pattern AT-CYP86C1 Pro::AT-RKD2 AT- DD45::DsRed (PHP50088) in an ovule.
- Zygotic embryo arrow
- two smaller bodies arrowheads
- FIG. 19 The AT-TT2 Pro::ZsGreen (PHP49217) promoter expressed in the micropylar inner and outer integuments of each ovule during the globular embryo stage. Micropylar end of the ovule is denoted by arrows
- FIG. 20 Expression is ovule maternal tissue-specific, not observed in the embryo sac.
- Expression of AT-TT2 Pro::ZsGreen (PHP49217) is in the inner integuments (endothelium and 2 nd layer) covering and surrounding the entire micropylar end of the embryo sac like a glove. This latter pattern was observed at the egg through globular embryo stage. Some weaker expression in the micropylar outer integuments can also be observed at the globular stage. At the late globular embryo, heart-shaped embryo stages, and later, the expression pattern extends chalazally through the inner integuments and now in the outer integuments as well. Expression is still very strong at the micropylar end. Pattern is reminiscent of the AT-NUC1 promoter expression.
- FIG. 21 AT-TT2 Pro::ZsGreen (PHP49217) promoter expression is shown initially at the micropylar end and expands toward the chalazal end during the globular embryo stage.
- Figure 22 Two ovules showing expression of AT-GILT1 Pro::ZsGreen (PHP49223). Expression is ovule maternal tissue-specific, not observed in the embryo sac. Pattern is consistent, but strength can be variable. Expression is in the inner integuments (endothelium and 2 nd layer) covering and surrounding a portion of or the entire micropylar end of the embryo sac. This latter pattern was observed at the egg through globular embryo stage. Little to no expression was observed in the outer integuments. At the heart-shaped embryo stage and later the expression is highly reduced and only a few inner integument cells opposite the micropylar end of the embryo sac can observed with expression.
- integuments endothelium and 2 nd layer
- FIG. 23 Two ovules showing expression of AT-GILT1 Pro::ZsGreen (PHP49223).
- A Globular embryo stage -expression is specific to the inner integuments surrounding the micropylar end of the embryo sac.
- B Heart-shaped embryo stage - Small number of inner integument cells opposite the micropylar end of the embryo sac showing expression.
- compositions and methods drawn to plant promoters and methods of their use comprise nucleotide sequences for ovule somatic tissue-preferred promoters known as AT-CYP86C1 , AT-PPM, AT-EXT, AT-GILT1 and AT- TT2.
- the compositions further comprise DNA constructs comprising a nucleotide sequence for the ovule specific promoter region operably linked to a heterologous nucleotide sequence of interest.
- the present disclosure provides for isolated nucleic acid molecules comprising the nucleotide sequence set forth in SEQ ID NO: 3-8 and 33, and fragments, variants and complements thereof.
- the ovule specific promoter sequences of the present disclosure include nucleotide constructs that allow initiation of transcription in a plant.
- the promoter sequence allows initiation of transcription in a tissue-preferred manner, more particularly in an ovule somatic tissue-preferred manner.
- Such constructs of the disclosure comprise regulated transcription initiation regions associated with plant developmental regulation.
- the compositions of the present disclosure include DNA constructs comprising a nucleotide sequence of interest operably linked to a plant promoter, particularly an ovule somatic tissue-preferred promoter sequence, more particularly an Arabidopsis ovule specific promoter sequence.
- a sequence comprising the Arabidopsis ovule specific promoter region is set forth in SEQ ID NO: 3-8 and 33.
- SEQ ID NO: 29 ADP DNA ENCODING PN
- compositions of the disclosure include the nucleotide sequences for the native ovule specific promoter and fragments and variants thereof.
- the promoter sequences of the disclosure are useful for expressing sequences.
- the promoter sequences of the disclosure are useful for expressing sequences of interest in an early-embryo formation, particularly an ovule somatic tissue-preferred manner.
- the promoter demonstrates an expression pattern in the micropylar inner integument and chalazal inner integument and/or nucellus, and expression appears present from several days before pollination to several days after pollination.
- the nucleotide sequences of the disclosure also find use in the construction of expression vectors for subsequent expression of a heterologous nucleotide sequence in a plant of interest or as probes for the isolation of other ovule somatic tissue-like promoters.
- the present disclosure provides for isolated DNA constructs comprising the ovule specific promoter nucleotide sequence set forth in SEQ ID NO: 3-8 and 33 operably linked to a nucleotide sequence of interest.
- the expression pattern of ovule specific is particularly desirable for apospory and adventitious embryony and other means for generating self reproducing hybrids in dicot crops such as soybean and the like.
- the disclosure encompasses isolated or substantially purified nucleic acid compositions.
- An “isolated” or “purified” nucleic acid molecule or biologically active portion thereof is substantially free of other cellular material or culture medium when produced by recombinant techniques or substantially free of chemical precursors or other chemicals when chemically synthesized.
- An “isolated” nucleic acid is substantially free of sequences (including protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
- the ovule specific promoter sequences of the disclosure may be isolated from the 5' untranslated region flanking their respective transcription initiation sites. Fragments and variants of the disclosed promoter nucleotide sequences are also encompassed by the present disclosure.
- fragments and variants of the ovule specific promoter sequence of SEQ ID NO: 3-8 and 33 may be used in the DNA constructs of the disclosure.
- fragment refers to a portion of the nucleic acid sequence. Fragments of an ovule specific promoter sequence may retain the biological activity of initiating transcription, more particularly driving transcription in an ovule somatic tissue -preferred manner. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes may not necessarily retain biological activity.
- Fragments of a nucleotide sequence for the ovule specific promoter region may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides and up to the full length of SEQ ID NO: 3-8 and 33.
- a biologically active portion of an ovule specific promoter can be prepared by isolating a portion of the ovule specific promoter sequence of the disclosure, and assessing the promoter activity of the portion.
- Nucleic acid molecules that are fragments of an ovule specific promoter nucleotide sequence comprise at least about 16, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 or 800 nucleotides or up to the number of nucleotides present in a full-length ovule specific promoter sequence disclosed herein.
- variants are intended to mean sequences having substantial similarity with a promoter sequence disclosed herein.
- a variant comprises a deletion and/or addition of one or more nucleotides at one or more internal sites within the native polynucleotide and/or a substitution of one or more nucleotides at one or more sites in the native polynucleotide.
- a "native" nucleotide sequence comprises a naturally occurring nucleotide sequence.
- naturally occurring variants can be identified with the use of well-known molecular biology techniques, such as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined herein.
- Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis.
- variants of a particular nucleotide sequence of the embodiments will have at least 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, to 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters.
- Biologically active variants are also encompassed by the embodiments.
- Biologically active variants include, for example, the native promoter sequences of the embodiments having one or more nucleotide substitutions, deletions or insertions.
- Promoter activity may be measured by using techniques such as Northern blot analysis, reporter activity measurements taken from transcriptional fusions, and the like. See, for example, Sambrook, et al., (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), hereinafter "Sambrook,” herein incorporated by reference in its entirety.
- levels of a reporter gene such as green fluorescent protein (GFP) or yellow fluorescent protein (YFP) or the like produced under the control of a promoter fragment or variant can be measured.
- GFP green fluorescent protein
- YFP yellow fluorescent protein
- Variant nucleotide sequences also encompass sequences derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different ovule specific nucleotide sequences for the promoter can be manipulated to create a new ovule specific promoter.
- libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo.
- Strategies for such DNA shuffling are known in the art. See, for example, Stemmer, (1994) Proc. Natl. Acad. Sci. USA 91 :10747-10751 ; Stemmer, (1994) Nature 370:389 391 ; Crameri, et al., (1997) Nature Biotech. 15:436-438; Moore, et ai, (1997) J. Mol. Biol. 272:336-347; Zhang, et ai, (1997) Proc.
- nucleotide sequences of the disclosure can be used to isolate corresponding sequences from other organisms, particularly other plants, more particularly other monocots. In this manner, methods such as PCR, hybridization and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences isolated based on their sequence identity to the entire ovule specific sequences set forth herein or to fragments thereof are encompassed by the present disclosure.
- oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any plant of interest.
- Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in, Sambrook, supra. See also, Innis, et al. , eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds.
- PCR Methods Manual (Academic Press, New York), herein incorporated by reference in their entirety.
- Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers and the like.
- hybridization techniques all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism.
- the hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides and may be labeled with a detectable group such as 32 P or any other detectable marker.
- probes for hybridization can be made by labeling synthetic oligonucleotides based on the ovule specific promoter sequences of the disclosure. Methods for preparation of probes for hybridization and for construction of genomic libraries are generally known in the art and are disclosed in Sambrook, supra.
- the entire ovule specific promoter sequence disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding dicot CYP86C1 promoter sequences and messenger RNAs.
- probes include sequences that are unique among ovule specific promoter sequences and are generally at least about 10 nucleotides in length or at least about 20 nucleotides in length.
- Such probes may be used to amplify corresponding ovule specific promoter sequences from a chosen plant by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism.
- Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies, see, for example, Sambrook, supra).
- Hybridization of such sequences may be carried out under stringent conditions.
- stringent conditions or “stringent hybridization conditions” are intended to mean conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, optimally less than 500 nucleotides in length.
- stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1 .0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides).
- Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.
- Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCI, 1 % SDS at 37°C and a wash in 0.5 times to 1 times SSC at 55 to 60°C.
- Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCI, 1 % SDS at 37°C, and a final wash in 0.1 times SSC at 60 to 65°C for a duration of at least 30 minutes. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. The duration of the wash time will be at least a length of time sufficient to reach equilibrium.
- T m the thermal melting point
- M the molarity of monovalent cations
- % GC the percentage of guanosine and cytosine nucleotides in the DNA
- % form is the percentage of formamide in the hybridization solution
- L the length of the hybrid in base pairs.
- the T m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T m is reduced by about 1 °C for each 1 % of mismatching, thus, T m , hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with 90% identity are sought, the T m can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the T m for the specific sequence and its complement at a defined ionic strength and pH.
- isolated sequences that have early-endosperm-preferred promoter activity, particularly ovule somatic tissue- preferred promoter activity and which hybridize under stringent conditions to the ovule specific promoter sequences disclosed herein or to fragments thereof, are encompassed by the present disclosure.
- sequences that have promoter activity and hybridize to the promoter sequences disclosed herein will be at least 40% to 50% homologous, about 60%, 70%, 80%, 85%, 90%, 95% to 98% homologous or more with the disclosed sequences. That is, the sequence similarity of sequences may range, sharing at least about 40% to 50%, about 60% to 70%, and about 80%, 85%, 90%, 95% to 98% sequence similarity.
- sequence relationships between two or more nucleic acids or polynucleotides are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) “reference sequence”, (b) “comparison window”, (c) “sequence identity”, (d) “percentage of sequence identity” and (e) “substantial identity”.
- reference sequence is a defined sequence used as a basis for sequence comparison.
- a reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence or the complete cDNA or gene sequence.
- comparison window makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
- the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100 or longer.
- Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA and T FAST A in the GCG Wisconsin Genetics Software Package®, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, Calif., USA). Alignments using these programs can be performed using the default parameters.
- the CLUSTAL program is well described by Higgins, et al. , (1988) Gene 73:237-244 (1988); Higgins, et al.
- Gapped BLAST in BLAST 2.0
- PSI-BLAST in BLAST 2.0
- PSI-BLAST can be used to perform an iterated search that detects distant relationships between molecules. See, Altschul, et al., (1997) supra.
- the default parameters of the respective programs e.g., BLASTN for nucleotide sequences, BLASTX for proteins
- Alignment may also be performed manually by inspection.
- sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof.
- equivalent program is any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.
- the GAP program uses the algorithm of Needleman and Wunsch, supra, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG Wisconsin Genetics Software Package® for protein sequences are 8 and 2, respectively.
- the default gap creation penalty is 50 while the default gap extension penalty is 3.
- the gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200.
- the gap creation and gap extension penalties can be 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.
- GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity and Similarity.
- the Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment.
- Percent Identity is the percent of the symbols that actually match.
- Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold.
- sequence identity or “identity” in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
- sequence similarity or “similarity”. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity.
- percentage of sequence identity means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
- substantially identical of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity, optimally at least 80%, more optimally at least 90% and most optimally at least 95%, compared to a reference sequence using an alignment program using standard parameters.
- sequence identity e.g., sequence identity of amino acid sequences
- amino acid sequences for these purposes normally means sequence identity of at least 60%, 70%, 80%, 90% and at least 95%.
- nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions.
- stringent conditions are selected to be about 5°C lower than the T m for the specific sequence at a defined ionic strength and pH.
- stringent conditions encompass temperatures in the range of about 1 °C to about 20°C lower than the T m , depending upon the desired degree of stringency as otherwise qualified herein.
- Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.
- One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.
- the ovule specific promoter sequence disclosed herein, as well as variants and fragments thereof, are useful for genetic engineering of plants, e.g. for the production of a transformed or transgenic plant, to express a phenotype of interest.
- the terms "transformed plant” and "transgenic plant” refer to a plant that comprises within its genome a heterologous polynucleotide.
- the heterologous polynucleotide is stably integrated within the genome of a transgenic or transformed plant such that the polynucleotide is passed on to successive generations.
- the heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct.
- transgenic includes any cell, cell line, callus, tissue, plant part or plant the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic.
- a transgenic "event” is produced by transformation of plant cells with a heterologous DNA construct, including a nucleic acid expression cassette that comprises a transgene of interest, the regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant and selection of a particular plant characterized by insertion into a particular genome location.
- An event is characterized phenotypically by the expression of the transgene.
- an event is part of the genetic makeup of a plant.
- the term “event” also refers to progeny produced by a sexual cross between the transformant and another plant wherein the progeny include the heterologous DNA.
- the term plant includes whole plants, plant organs (e.g., leaves, stems, roots, etc.), plant cells, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, plant clumps and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants and mutants of the regenerated plants are also included within the scope of the disclosure, provided that these parts comprise the introduced polynucleotides.
- the present disclosure may be used for transformation of any plant species, including, but not limited to, monocots and dicots.
- plant species include corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B.
- juncea particularly those Brassica species useful as sources of seed oil, alfalfa ⁇ Medicago sativa), rice ⁇ Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot
- Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.) and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis) and musk melon (C. melo).
- Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima) and chrysanthemum.
- Conifers that may be employed in practicing the present disclosure include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinusponderosa), lodgepole pine (Pinus contorta) and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea) and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis).
- pines such as loblolly pine (Pinus taeda), slash pine (Pin
- plants of the present disclosure are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.)-
- corn and soybean plants are optimal, and in yet other embodiments corn plants are optimal.
- plants of interest include grain plants that provide seeds of interest, oil-seed plants and leguminous plants.
- Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc.
- Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc.
- Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc.
- Heterologous coding sequences expressed by an ovule specific promoter of the disclosure may be used for varying the phenotype of a plant.
- Various changes in phenotype are of interest including modifying expression of a gene in a plant, altering a plant's pathogen or insect defense mechanism, increasing a plant's tolerance to herbicides, altering plant development to respond to environmental stress, modulating the plant's response to salt, temperature (hot and cold), drought and the like.
- These results can be achieved by the expression of a heterologous nucleotide sequence of interest comprising an appropriate gene product.
- the heterologous nucleotide sequence of interest is an endogenous plant sequence whose expression level is increased in the plant or plant part.
- Results can be achieved by providing for altered expression of one or more endogenous gene products, particularly hormones, receptors, signaling molecules, enzymes, transporters or cofactors or by affecting nutrient uptake in the plant.
- Tissue-preferred expression as provided by the ovule specific promoter can target the alteration in expression to plant parts and/or growth stages of particular interest, such as developing seed tissues, particularly the ovule somatic tissue. These changes result in a change in phenotype of the transformed plant.
- the expression pattern is primarily at the micropylar end of the embryo sac, where the embryo forms, the expression patterns of ovule specific promoters are particularly useful for screens for apomixis, adventitious embryony, artificial apospory and the generation of self reproducing hybrids. Indeed, the expression pattern envelops the synergids and egg cell and is very near to, although not within, the egg sac.
- nucleotide sequences of interest for the present disclosure include, for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include genes encoding important traits for agronomics, insect resistance, disease resistance, herbicide resistance, environmental stress resistance (altered tolerance to cold, salt, drought, etc) and grain characteristics. Still other categories of transgenes include genes for inducing expression of exogenous products such as enzymes, cofactors, and hormones from plants and other eukaryotes as well as prokaryotic organisms. It is recognized that any gene of interest can be operably linked to the promoter of the disclosure and expressed in the plant.
- Agronomically important traits that affect quality of grain such as levels and types of oils, saturated and unsaturated, quality and quantity of essential amino acids, levels of cellulose, starch and protein content can be genetically altered using the methods of the embodiments.
- Modifications to grain traits include, but are not limited to, increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and modifying starch.
- Hordothionin protein modifications in corn are described in US Patent Numbers 5,990,389; 5,885,801 ; 5,885,802 and 5,703,049; herein incorporated by reference in their entirety.
- soybean 2S albumin described in US Patent Number 5,850,016, filed March 20, 1996 and the chymotrypsin inhibitor from barley, Williamson, et al., (1987) Eur. J. Biochem 165:99-106, the disclosures of which are herein incorporated by reference in their entirety.
- Insect resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European corn borer and the like.
- Such genes include, for example, Bacillus thuringiensis toxic protein genes, US Patent Numbers 5,366,892; 5,747,450; 5,736,514; 5,723,756; 5,593,881 and Geiser, et al., (1986) Gene 48:109, the disclosures of which are herein incorporated by reference in their entirety.
- Genes encoding disease resistance traits include, for example, detoxification genes, such as those which detoxify fumonisin (US Patent Number 5,792,931 ); avirulence (avr) and disease resistance (R) genes (Jones, et al., (1994) Science 266:789; Martin, et al., (1993) Science 262:1432; and Mindrinos, et al. , (1994) Cell 78:1089), herein incorporated by reference in their entirety.
- detoxification genes such as those which detoxify fumonisin (US Patent Number 5,792,931 ); avirulence (avr) and disease resistance (R) genes (Jones, et al., (1994) Science 266:789; Martin, et al., (1993) Science 262:1432; and Mindrinos, et al. , (1994) Cell 78:1089), herein incorporated by reference in their entirety.
- Herbicide resistance traits may include genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea- type herbicides (e.g., the acetolactate synthase (ALS) gene containing mutations leading to such resistance, in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides that act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), genes coding for resistance to glyphosate (e.g., the EPSPS gene and the GAT gene; see, for example, US Patent Application Publication Number 2004/0082770 and WO 2003/092360, herein incorporated by reference in their entirety) or other such genes known in the art.
- the bar gene encodes resistance to the herbicide basta
- the nptll gene encodes resistance to the antibiotics kanamycin and geneticin and the
- Glyphosate resistance is imparted by mutant 5-enolpyruvl-3-phosphikimate synthase (EPSP) and aroA genes.
- EPEP 5-enolpyruvl-3-phosphikimate synthase
- aroA aroA genes.
- US Patent Number 4,940,835 to Shah, et al. discloses the nucleotide sequence of a form of EPSPS which can confer glyphosate resistance.
- US Patent Number 5,627,061 to Barry, et al. also describes genes encoding EPSPS enzymes.
- Glyphosate resistance is also imparted to plants that express a gene that encodes a glyphosate oxido-reductase enzyme as described more fully in US Patent Numbers 5,776,760 and 5,463,175, which are incorporated herein by reference in their entirety.
- glyphosate resistance can be imparted to plants by the over expression of genes encoding glyphosate N-acetyltransferase. See, for example, US Patent Application Serial Numbers 1 1/405,845 and 10/427,692, herein incorporated by reference in their entirety.
- Sterility genes can also be encoded in a DNA construct and provide an alternative to physical detasseling. Examples of genes used in such ways include male tissue- preferred genes and genes with male sterility phenotypes such as QM, described in US Patent Number 5,583,210, herein incorporated by reference in its entirety. Other genes include kinases and those encoding compounds toxic to either male or female gametophytic development.
- Exogenous products include plant enzymes and products as well as those from other sources including prokaryotes and other eukaryotes. Such products include enzymes, cofactors, hormones and the like. Examples of other applicable genes and their associated phenotype include the gene which encodes viral coat protein and/or RNA, or other viral or plant genes that confer viral resistance; genes that confer fungal resistance; genes that promote yield improvement; and genes that provide for resistance to stress, such as cold, dehydration resulting from drought, heat and salinity, toxic metal or trace elements or the like.
- the promoter is used to express transgenes involved in organ development, stem cells, initiation and development of the apical meristem, such as the Wuschel (WUS) gene; see US Patent Numbers 7,348,468 and 7,256,322 and United States Patent Application Publication Number 2007/0271628 published November 22, 2007, by Pioneer Hi-Bred International; Laux, et al., (1996) Development 122:87-96 and Mayer, et al., (1998) Cell 95:805-815.
- WUS Wuschel
- Modulation of WUS is expected to modulate plant and/or plant tissue phenotype including cell growth stimulation, organogenesis and somatic embryogenesis. WUS may also be used to improve transformation via somatic embryogenesis.
- Apomixis has economic potential because it can cause any genotype, regardless of how heterozygous, to breed true. It is a reproductive process that bypasses female meiosis and syngamy to produce embryos genetically identical to the maternal parent. With apomictic reproduction, progeny of specially adaptive or hybrid genotypes would maintain their genetic fidelity throughout repeated life cycles. In addition to fixing hybrid vigor, apomixis can make possible commercial hybrid production in crops where efficient male sterility or fertility restoration systems for producing hybrids are not available. Apomixis can make hybrid development more efficient. It also simplifies hybrid production and increases genetic diversity in plant species with good male sterility. Furthermore, apomixis may be advantageous under stress (drought, cold, high-salinity, etc.) conditions where pollination may be compromised.
- A Plant disease resistance genes. Plant defenses are often activated by specific interaction between the product of a disease resistance gene (R) in the plant and the product of a corresponding avirulence (Avr) gene in the pathogen.
- R disease resistance gene
- Avr avirulence
- a plant variety can be transformed with cloned resistance gene to engineer plants that are resistant to specific pathogen strains. See, for example Jones, et al. , (1994) Science 266:789 (cloning of the tomato Cf-9 gene for resistance to Cladosporium fulvum); Martin, et al., (1993) Science 262:1432 (tomato Pto gene for resistance to Pseudomonas syringae pv.
- a plant resistant to a disease is one that is more resistant to a pathogen as compared to the wild type plant.
- B A Bacillus thuringiensis protein, a derivative thereof or a synthetic polypeptide modeled thereon. See, for example, Geiser, et al., (1986) Gene 48:109, who disclose the cloning and nucleotide sequence of a Bt delta-endotoxin gene. Moreover, DNA molecules encoding delta-endotoxin genes can be purchased from American Type Culture Collection (Rockville, MD), for example, under ATCC Accession Numbers 40098, 67136, 31995 and 31998.
- Bacillus thuringiensis transgenes being genetically engineered are given in the following patents and patent applications and hereby are incorporated by reference for this purpose: US Patent Numbers 5,188,960; 5,689,052; 5,880,275; WO 1991/14778; WO 1999/31248; WO 2001/12731 ; WO 1999/24581 ; WO 1997/40162 and US Application Serial Numbers 10/032,717; 10/414,637 and 10/606,320, herein incorporated by reference in their entirety.
- C An insect-specific hormone or pheromone such as an ecdysteroid and juvenile hormone, a variant thereof, a mimetic based thereon, or an antagonist or agonist thereof. See, for example, the disclosure by Hammock, et al. , (1990) Nature 344:458, of baculovirus expression of cloned juvenile hormone esterase, an inactivator of juvenile hormone, herein incorporated by reference in its entirety.
- An enzyme involved in the modification, including the post-translational modification, of a biologically active molecule for example, a glycolytic enzyme, a proteolytic enzyme, a lipolytic enzyme, a nuclease, a cyclase, a transaminase, an esterase, a hydrolase, a phosphatase, a kinase, a phosphorylase, a polymerase, an elastase, a chitinase and a glucanase, whether natural or synthetic.
- a glycolytic enzyme for example, a glycolytic enzyme, a proteolytic enzyme, a lipolytic enzyme, a nuclease, a cyclase, a transaminase, an esterase, a hydrolase, a phosphatase, a kinase, a phosphorylase, a polymerase, an elastase, a chitinase and
- G A molecule that stimulates signal transduction.
- Botella, et al., (1994) Plant Molec. Biol. 24:757 of nucleotide sequences for mung bean calmodulin cDNA clones and Griess, et al., (1994) Plant Physiol.104: 1467, who provide the nucleotide sequence of a maize calmodulin cDNA clone, herein incorporated by reference in their entirety.
- (J) A viral-invasive protein or a complex toxin derived therefrom.
- the accumulation of viral coat proteins in transformed plant cells imparts resistance to viral infection and/or disease development effected by the virus from which the coat protein gene is derived, as well as by related viruses.
- Coat protein- mediated resistance has been conferred upon transformed plants against alfalfa mosaic virus, cucumber mosaic virus, tobacco streak virus, potato virus X, potato virus Y, tobacco etch virus, tobacco rattle virus and tobacco mosaic virus. Id.
- a herbicide that inhibits the growing point or meristem such as an imidazolinone or a sulfonylurea.
- Exemplary genes in this category code for mutant ALS and AHAS enzyme as described, for example, by Lee, et al., (1988) EMBO J. 7:1241 and Miki, et al., (1990) Theor. Appl. Genet. 80:449, respectively.
- Glyphosate resistance imparted by mutant 5-enolpyruvl-3-phosphikimate synthase (EPSP) and aroA genes, respectively
- PEP mutant 5-enolpyruvl-3-phosphikimate synthase
- aroA aroA genes
- other phosphono compounds such as glufosinate (phosphinothricin acetyl transferase (PAT) and Streptomyces hygroscopicus phosphinothricin acetyl transferase (bar) genes) and pyridinoxy or phenoxy proprionic acids and cycloshexones (ACCase inhibitor-encoding genes).
- PAT phosphinothricin acetyl transferase
- bar Streptomyces hygroscopicus phosphinothricin acetyl transferase
- Glyphosate resistance is also imparted to plants that express a gene that encodes a glyphosate oxido-reductase enzyme as described more fully in US Patent Numbers 5,776,760 and 5,463,175, which are incorporated herein by reference in their entirety.
- glyphosate resistance can be imparted to plants by the over expression of genes encoding glyphosate N-acetyltransferase.
- a DNA molecule encoding a mutant aroA gene can be obtained under ATCC Accession Number 39256 and the nucleotide sequence of the mutant gene is disclosed in US Patent Number 4,769,061 to Comai, herein incorporated by reference in its entirety.
- EP Patent Application Number 0 333 033 to Kumada, et al., and US Patent Number 4,975,374 to Goodman, et al. disclose nucleotide sequences of glutamine synthetase genes which confer resistance to herbicides such as L-phosphinothricin, herein incorporated by reference in their entirety.
- nucleotide sequence of a phosphinothricin-acetyl-transferase gene is provided in EP Patent Numbers 0 242 246 and 0 242 236 to Leemans, et al., De Greef, et al., (1989) Bio/Technology 7:61 which describe the production of transgenic plants that express chimeric bar genes coding for phosphinothricin acetyl transferase activity, herein incorporated by reference in their entirety.
- C A herbicide that inhibits photosynthesis, such as a triazine (psbA and gs+ genes) and a benzonitrile (nitrilase gene).
- Nucleotide sequences for nitrilase genes are disclosed in US Patent Number 4,810,648 to Stalker, herein incorporated by reference in its entirety, and DNA molecules containing these genes are available under ATCC Accession Numbers 53435, 67441 and 67442. Cloning and expression of DNA coding for a glutathione S-transferase is described by Hayes, et al., (1992) Biochem. J. 285:173, herein incorporated by reference in its entirety.
- Protoporphyrinogen oxidase is necessary for the production of chlorophyll, which is necessary for all plant survival.
- the protox enzyme serves as the target for a variety of herbicidal compounds. These herbicides also inhibit growth of all the different species of plants present, causing their total destruction.
- Up-regulation of a gene that reduces phytate content in maize, this, for example, could be accomplished, by cloning and then re-introducing DNA associated with one or more of the alleles, such as the LPA alleles, identified in maize mutants characterized by low levels of phytic acid, such as in Raboy, et al., (1990) Maydica 35:383 and/or by altering inositol kinase activity as in WO 2002/059324, US Patent Application Publication Number 2003/000901 1 , WO 2003/027243, US
- Chem. 268:22480 site-directed mutagenesis of barley alpha-amylase gene
- Fisher, et al. (1993) Plant Physiol. 102:1045 (maize endosperm starch branching enzyme I I)
- WO 1999/10498 improved digestibility and/or starch extraction through modification of UDP-D-xylose 4-epimerase, Fragile 1 and 2, Refl , HCHL, C4H
- US Patent Number 6,232,529 method of producing high oil seed by modification of starch levels (AGP)
- the fatty acid modification genes mentioned above may also be used to affect starch content and/or composition through the interrelationship of the starch and oil pathways.
- D Altered antioxidant content or composition, such as alteration of tocopherol or tocotrienols.
- ppt phytl prenyl transferase
- hggt homogentisate geranyl geranyl transferase
- FRT sites that may be used in the FLP/FRT system and/or Lox sites that may be used in the Cre/Loxp system.
- Lox sites that may be used in the Cre/Loxp system.
- Other systems that may be used include the Gin recombinase of phage Mu (Maeser, et al. , 1991 ; Vicki Chandler, The Maize Handbook ch. 1 18 (Springer-Verlag 1994), the Pin recombinase of E. coli (Enomoto, et al. , 1983), and the R/RS system of the pSR1 plasmid (Araki, et al., 1992), herein incorporated by reference in their entirety.
- genes and transcription factors that affect plant growth and agronomic traits such as yield, flowering, plant growth and/or plant structure, can be introduced or introgressed into plants, see, e.g., WO 1997/4981 1 (LHY), WO 1998/56918 (ESD4), WO 1997/10339 and US Patent Number 6,573,430 (TFL), US Patent Number 6,713,663 (FT), WO 1996/14414 (CON), WO 1996/38560, WO 2001/21822 (VRN1 ), WO 2000/44918 (VRN2), WO 1999/49064 (Gl), WO 2000/46358 (FRI), WO 1997/29123, US Patent Number 6,794,560, US Patent Number 6,307,126 (GAI), WO 1999/09174 (D8 and Rht) and WO 200/4076638 and WO 2004/031349 (transcription factors), herein incorporated by reference in their entirety.
- the heterologous nucleotide sequence operably linked to the ovule specific promoter and its related biologically active fragments or variants disclosed herein may be an antisense sequence for a targeted gene.
- antisense DNA nucleotide sequence is intended to mean a sequence that is in inverse orientation to the 5'-to-3' normal orientation of that nucleotide sequence.
- expression of the antisense DNA sequence prevents normal expression of the DNA nucleotide sequence for the targeted gene.
- the antisense nucleotide sequence encodes an RNA transcript that is complementary to and capable of hybridizing to the endogenous messenger RNA (mRNA) produced by transcription of the DNA nucleotide sequence for the targeted gene.
- mRNA messenger RNA
- antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having 70%, 80%, 85% sequence identity to the corresponding antisense sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides or greater may be used. Thus, the promoter sequences disclosed herein may be operably linked to antisense DNA sequences to reduce or inhibit expression of a native protein in the plant.
- RNAi refers to a series of related techniques to reduce the expression of genes
- promoter or “transcriptional initiation region” mean a regulatory region of DNA usually comprising a TATA box capable of directing RNA polymerase II to initiate RNA synthesis at the appropriate transcription initiation site for a particular coding sequence.
- a promoter may additionally comprise other recognition sequences generally positioned upstream or 5' to the TATA box, referred to as upstream promoter elements, which influence the transcription initiation rate. It is recognized that having identified the nucleotide sequences for the promoter regions disclosed herein, it is within the state of the art to isolate and identify further regulatory elements in the 5' untranslated region upstream from the particular promoter regions identified herein. Additionally, chimeric promoters may be provided.
- Such chimeras include portions of the promoter sequence fused to fragments and/or variants of heterologous transcriptional regulatory regions.
- the promoter regions disclosed herein can comprise upstream regulatory elements such as, those responsible for tissue and temporal expression of the coding sequence, enhancers and the like.
- the promoter elements which enable expression in the desired tissue such as reproductive tissue, can be identified, isolated and used with other core promoters to confer early-endosperm- preferred expression.
- core promoter is intended to mean a promoter without promoter elements.
- regulatory element also refers to a sequence of DNA, usually, but not always, upstream (5') to the coding sequence of a structural gene, which includes sequences which control the expression of the coding region by providing the recognition for RNA polymerase and/or other factors required for transcription to start at a particular site.
- a regulatory element that provides for the recognition for RNA polymerase or other transcriptional factors to ensure initiation at a particular site is a promoter element.
- a promoter element comprises a core promoter element, responsible for the initiation of transcription, as well as other regulatory elements that modify gene expression.
- nucleotide sequences, located within introns or 3' of the coding region sequence may also contribute to the regulation of expression of a coding region of interest.
- suitable introns include, but are not limited to, the maize IVS6 intron, or the maize actin intron.
- a regulatory element may also include those elements located downstream (3') to the site of transcription initiation, or within transcribed regions, or both.
- a post-transcriptional regulatory element may include elements that are active following transcription initiation, for example translational and transcriptional enhancers, translational and transcriptional repressors and mRNA stability determinants.
- the regulatory elements or variants or fragments thereof, of the present disclosure may be operatively associated with heterologous regulatory elements or promoters in order to modulate the activity of the heterologous regulatory element. Such modulation includes enhancing or repressing transcriptional activity of the heterologous regulatory element, modulating post-transcriptional events or either enhancing or repressing transcriptional activity of the heterologous regulatory element and modulating post- transcriptional events.
- one or more regulatory elements or fragments thereof of the present disclosure may be operatively associated with constitutive, inducible or tissue specific promoters or fragment thereof, to modulate the activity of such promoters within desired tissues in plant cells.
- the regulatory sequences of the present disclosure or variants or fragments thereof, when operably linked to a heterologous nucleotide sequence of interest can drive ovule somatic tissue-preferred expression, of the heterologous nucleotide sequence in the reproductive tissue of the plant expressing this construct.
- ovule somatic tissue- preferred expression means that expression of the heterologous nucleotide sequence is most abundant in the somatic cells of the ovule tissue. While some level of expression of the heterologous nucleotide sequence may occur in other plant tissue types, expression occurs most abundantly in the ovule somatic tissue.
- heterologous nucleotide sequence is a sequence that is not naturally occurring with the promoter sequence of the disclosure. While this nucleotide sequence is heterologous to the promoter sequence, it may be homologous or native or heterologous or foreign to the plant host.
- the isolated promoter sequences of the present disclosure can be modified to provide for a range of expression levels of the heterologous nucleotide sequence. Thus, less than the entire promoter region may be utilized and the ability to drive expression of the nucleotide sequence of interest retained. It is recognized that expression levels of the mRNA may be altered in different ways with deletions of portions of the promoter sequences. The mRNA expression levels may be decreased, or alternatively, expression may be increased as a result of promoter deletions if, for example, there is a negative regulatory element (for a repressor) that is removed during the truncation process. Generally, at least about 20 nucleotides of an isolated promoter sequence will be used to drive expression of a nucleotide sequence.
- Enhancers are nucleotide sequences that act to increase the expression of a promoter region. Enhancers are known in the art and include the SV40 enhancer region, the 35S enhancer element and the like. Some enhancers are also known to alter normal promoter expression patterns, for example, by causing a promoter to be expressed constitutively when without the enhancer, the same promoter is expressed only in one specific tissue or a few specific tissues.
- Modifications of the isolated promoter sequences of the present disclosure can provide for a range of expression of the heterologous nucleotide sequence. Thus, they may be modified to be weak promoters or strong promoters.
- a "weak promoter” means a promoter that drives expression of a coding sequence at a low level.
- a "low level” of expression is intended to mean expression at levels of about 1/10,000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts.
- a strong promoter drives expression of a coding sequence at a high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1 ,000 transcripts.
- the promoters of the disclosure may be used with their native ovule specific coding sequences to increase or decrease expression, thereby resulting in a change in phenotype of the transformed plant.
- the nucleotide sequences disclosed in the present disclosure, as well as variants and fragments thereof, are useful in the genetic manipulation of any plant.
- the ovule specific promoter sequences are useful in this aspect when operably linked with a heterologous nucleotide sequence whose expression is to be controlled to achieve a desired phenotypic response.
- the term "operably linked" means that the transcription or translation of the heterologous nucleotide sequence is under the influence of the promoter sequence.
- the nucleotide sequences for the promoters of the disclosure may be provided in expression cassettes along with heterologous nucleotide sequences of interest for expression in the plant of interest, more particularly for expression in the reproductive tissue of the plant.
- expression cassettes will comprise a transcriptional initiation region comprising one of the promoter nucleotide sequences of the present disclosure, or variants or fragments thereof, operably linked to the heterologous nucleotide sequence.
- Such an expression cassette can be provided with a plurality of restriction sites for insertion of the nucleotide sequence to be under the transcriptional regulation of the regulatory regions.
- the expression cassette may additionally contain selectable marker genes as well as 3' termination regions.
- the expression cassette can include, in the 5'-3' direction of transcription, a transcriptional initiation region (i.e., a promoter, or variant or fragment thereof, of the disclosure), a translational initiation region, a heterologous nucleotide sequence of interest, a translational termination region and optionally, a transcriptional termination region functional in the host organism.
- the regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or the polynucleotide of the embodiments may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or the polynucleotide of the embodiments may be heterologous to the host cell or to each other.
- heterologous in reference to a sequence is a sequence that originates from a foreign species or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.
- a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was derived or, if from the same/analogous species, one or both are substantially modified from their original form and/or genomic locus or the promoter is not the native promoter for the operably linked polynucleotide.
- the native sequences may be expressed. Such constructs would change expression levels of the ovule specific protein in the plant or plant cell. Thus, the phenotype of the plant or plant cell is altered.
- the termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous to the promoter, the DNA sequence being expressed, the plant host, or any combination thereof).
- Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau, et al. , (1991 ) Mol. Gen. Genet.
- the expression cassette comprising the sequences of the present disclosure may also contain at least one additional nucleotide sequence for a gene to be cotransformed into the organism.
- the additional sequence(s) can be provided on another expression cassette.
- nucleotide sequences whose expression is to be under the control of the early-endosperm-tissue-preferred promoter sequence of the present disclosure and any additional nucleotide sequence(s) may be optimized for increased expression in the transformed plant. That is, these nucleotide sequences can be synthesized using plant preferred codons for improved expression. See, for example, Campbell and Gowri, (1990) Plant Physiol. 92:1-1 1 , herein incorporated by reference in its entirety, for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, US Patent Numbers 5,380,831 , 5,436,391 and Murray, et al., (1989) Nucleic Acids Res. 17:477-498, herein incorporated by reference in their entirety.
- Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats and other such well- characterized sequences that may be deleterious to gene expression.
- the G-C content of the heterologous nucleotide sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.
- the expression cassettes may additionally contain 5' leader sequences.
- leader sequences can act to enhance translation.
- Translation leaders are known in the art and include, without limitation: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein, et al. , (1989) Proc. Nat. Acad. Sci.
- TEV leader tobacco Etch Virus
- MDMV leader Maize Dwarf Mosaic Virus
- human immunoglobulin heavy-chain binding protein BiP
- AMV RNA 4 alfalfa mosaic virus
- TMV tobacco mosaic virus leader
- MCMV maize chlorotic mottle virus leader
- introns such as the maize Ubiquitin intron (Christensen and Quail, (1996) Transgenic Res. 5:213-218; Christensen, et al. , (1992) Plant Molecular Biology 18:675-689) or the maize Adhl intron (Kyozuka, et al. , (1991 ) Mol. Gen. Genet. 228:40-48; Kyozuka, et al., (1990) Maydica 35:353-357) and the like, herein incorporated by reference in their entirety.
- introns such as the maize Ubiquitin intron (Christensen and Quail, (1996) Transgenic Res. 5:213-218; Christensen, et al. , (1992) Plant Molecular Biology 18:675-689) or the maize Adhl intron (Kyozuka, et al. , (1991 ) Mol. Gen. Genet. 228:40-48; Kyozuka,
- the DNA constructs of the embodiments can also include further enhancers, either translation or transcription enhancers, as may be required.
- enhancer regions are well known to persons skilled in the art, and can include the ATG initiation codon and adjacent sequences. The initiation codon must be in phase with the reading frame of the coding sequence to ensure translation of the entire sequence.
- the translation control signals and initiation codons can be from a variety of origins, both natural and synthetic.
- Translational initiation regions may be provided from the source of the transcriptional initiation region, or from the structural gene.
- the sequence can also be derived from the regulatory element selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. It is recognized that to increase transcription levels enhancers may be utilized in combination with the promoter regions of the embodiments. Enhancers are known in the art and include the SV40 enhancer region, the 35S enhancer element, and the like.
- the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame.
- adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites or the like.
- in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, for example, transitions and transversions may be involved.
- Reporter genes or selectable marker genes may also be included in the expression cassettes of the present disclosure.
- suitable reporter genes known in the art can be found in, for example, Jefferson, et al., (1991 ) in Plant Molecular Biology Manual, ed. Gelvin, et al., (Kluwer Academic Publishers), pp. 1-33; DeWet, et al., (1987) Mol. Cell. Biol. 7:725-737; Goff, et al. , (1990) EMBO J. 9:2517-2522; Kain, et al., (1995) Bio Techniques 19:650-655 and Chiu, et al., (1996) Current Biology 6:325-330, herein incorporated by reference in their entirety.
- Selectable marker genes for selection of transformed cells or tissues can include genes that confer antibiotic resistance or resistance to herbicides.
- suitable selectable marker genes include, but are not limited to, genes encoding resistance to chloramphenicol (Herrera Estrella, et al., (1983) EMBO J. 2:987-992); methotrexate (Herrera Estrella, et al., (1983) Nature 303:209-213; Meijer, et al., (1991 ) Plant Mol. Biol. 16:807-820); hygromycin (Waldron, et al., (1985) Plant Mol. Biol.
- GUS beta-glucuronidase
- Jefferson (1987) Plant Mol. Biol. Rep. 5:387)
- GFP green fluorescence protein
- luciferase Renidase
- luciferase Renidase
- the expression cassette comprising the ovule specific promoter of the present disclosure operably linked to a nucleotide sequence of interest can be used to transform any plant. In this manner, genetically modified plants, plant cells, plant tissue, seed, root and the like can be obtained.
- vector refers to a DNA molecule such as a plasmid, cosmid or bacterial phage for introducing a nucleotide construct, for example, an expression cassette, into a host cell.
- Cloning vectors typically contain one or a small number of restriction endonuclease recognition sites at which foreign DNA sequences can be inserted in a determinable fashion without loss of essential biological function of the vector, as well as a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Marker genes typically include genes that provide tetracycline resistance, hygromycin resistance or ampicillin resistance.
- the methods of the disclosure involve introducing a polypeptide or polynucleotide into a plant.
- introducing is intended to mean presenting to the plant the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the plant.
- the methods of the disclosure do not depend on a particular method for introducing a sequence into a plant, only that the polynucleotide or polypeptides gains access to the interior of at least one cell of the plant.
- Methods for introducing polynucleotide or polypeptides into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods and virus- mediated methods.
- a “stable transformation” is a transformation in which the nucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof.
- Transient transformation means that a polynucleotide is introduced into the plant and does not integrate into the genome of the plant or a polypeptide is introduced into a plant.
- Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway, et al. , (1986) Biotechniques 4:320-334), electroporation (Riggs, et al. , (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium-mediated transformation (Townsend, et al., US Patent Number 5,563,055 and Zhao, et al.
- the DNA constructs comprising the promoter sequences of the disclosure can be provided to a plant using a variety of transient transformation methods.
- transient transformation methods include, but are not limited to, viral vector systems and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA.
- transcription from the particle-bound DNA can occur, but the frequency with which it is released to become integrated into the genome is greatly reduced.
- Such methods include the use of particles coated with polyethylimine (PEI; Sigma #P3143).
- the polynucleotide of the disclosure may be introduced into plants by contacting plants with a virus or viral nucleic acids.
- such methods involve incorporating a nucleotide construct of the disclosure within a viral DNA or RNA molecule.
- Methods for introducing polynucleotides into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules are known in the art. See, for example, US Patent Numbers 5,889,191 , 5,889,190, 5,866,785, 5,589,367, 5,316,931 and Porta, et al., (1996) Molecular Biotechnology 5:209-221 , herein incorporated by reference in their entirety.
- the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system.
- a site-specific recombination system See, for example, WO 1999/25821 , WO 1999/25854, WO 1999/25840, WO 1999/25855 and WO 1999/25853, all of which are herein incorporated by reference in their entirety.
- the polynucleotide of the disclosure can be contained in transfer cassette flanked by two non-identical recombination sites.
- the transfer cassette is introduced into a plant having stably incorporated into its genome a target site which is flanked by two non-identical recombination sites that correspond to the sites of the transfer cassette.
- An appropriate recombinase is provided and the transfer cassette is integrated at the target site.
- the polynucleotide of interest is thereby integrated at a specific chromosomal position in the plant genome.
- the cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick, et al., (1986) Plant Cell Reports 5:81 - 84, herein incorporated by reference in its entirety. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting progeny having expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, the present disclosure provides transformed seed (also referred to as "transgenic seed") having a nucleotide construct of the disclosure, for example, an expression cassette of the disclosure, stably incorporated into its genome.
- the particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated.
- the regeneration, development and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, (1988) In: Methods for Plant Molecular Biology, (Eds.), Academic Press, Inc., San Diego, Calif., herein incorporated by reference in its entirety).
- This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
- the regenerated plants are self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants.
- a transgenic plant of the embodiments containing a desired polynucleotide is cultivated using methods well known to one skilled in the art.
- the embodiments provide compositions for screening compounds that modulate expression within plants.
- the vectors, cells and plants can be used for screening candidate molecules for agonists and antagonists of the ovule specific promoter.
- a reporter gene can be operably linked to an ovule specific promoter and expressed as a transgene in a plant. Compounds to be tested are added and reporter gene expression is measured to determine the effect on promoter activity.
- the Arabidopsis cytochrome P450 CYP86C1 (AT-CYP86C1 ) promoter was identified by a BLAST search of the Arabidopsis genome using the AT-NUC1 promoter and DS-RED Express.
- the Arabidopsis putative pectin methylesterase promoter (AT- PPM) was identified using Arabidopsis expression angler with AT-NUC1 PRO and ZS- Green.
- the Arabidopsis endo-xyloglucan transferase promoter (AT-EXT) was identified using ZS-Green.
- the Arabidopsis gamma interferon responsive lysosomal thiol reductase (AT-GILT1 ) promoter was identified using ZS-GREEN.
- the Arabidopsis Transparent Testa 2 Promoter (AT-TT2) was identified using ZS-Green.
- a transgenic ovule was created to test the expression pattern of the AT-ovule specific promoters with a GUS reporter. Expression was found exclusively in the ovule, and predominantly in the micropylar end. Expression also appeared to occur in the inner integuments. Further work confirmed that expression was specific in the inner integument at the micropylar end prior to fertilization and then moved to the chalazal end after fertilization. Expression was observed as early as the 4-8 nucleate stage of the egg sac.
- Micropylar expression is advantageous for adventitious embryony since the native embryo forms at the micropylar end of the embryo sac.
- the ovule specific expression pattern envelopes the synergids and egg cell and is very near to, although not within, the egg sac.
- transgenic Arabidopsis assays were performed. These assays provided a rapid assessment of whether the DNA sequence tested is able to direct gene expression (Figurel ). Activity of the Expression Cassette comprising the AT-CYP86C1 promoter linked to PS- Red Reporter (PHP43541 )
- PHP43541 was created to test the expression pattern of the AT-CYP86C1 promoter with a red fluorescent protein reporter.
- the promoter AT CYP86C1 (AT1 G24540) demonstrates an expression pattern in the micropylar tip of the inner integument surrounding the micropylar half of the embryo sac at the egg stage.
- the outer integument at the extreme micropylar end of the outer integuments also shows expression. Expression appears present from several days before pollination to several days after pollination.
- expression progressively spreads through the endothelial layer (innermost layer of the inner integument) towards the chalazal end of the ovule.
- the entire endothelial layer shows expression ( Figures 2 through 10).
- Activity of the Expression Cassette comprising the AT-PPM1 promoter linked to ZS- GREEN (PHP48047)
- the promoter AT PPM1 (AT5G49180) demonstrates two different types of expression patterns.
- the AT-PPM1 promoter demonstrates an expression pattern in the extreme micropylar end of the inner and outer integuments, but not the epidermal layer of the outer integument; the second type of expression pattern is an extension of the first.
- the extreme micropylar inner and outer integuments except for the epidermal layer
- expression extends chalazally to completely surround the entire embryo sac.
- the chalazal nucellus does not show expression.
- the latter expression pattern is most common in early stages of ovule development. No expression was noted within the embryo sac ( Figure 1 1 ).
- the promoter AT EXT (AT3G48580) demonstrates an expression pattern in the inner integuments and innermost layer of the outer integument surrounding the micropylar end of the embryo sac.
- a single cell innermost layer of outer integument at the micropylar end shows strong expression. No expression was noted within the embryo sac ( Figure 12).
- Activity of the AT-CYP86C1 promoter comprising the AT-RKD2 polynucleotide and characterization of the same when expressed in Arabidopsis
- the RKD expression cassette was molecularly stacked with AT-DD45-DSRED reporter construct (PHP50088 AT-CYP86C1 PRO:AT-RKD2 - AT-DD45 PRO:DsRed) and (PHP50089 AT-NUC1 PRO (ALT1 ) AT-RKD2 - AT-DD45 PRO:DsRed).
- Ovules of the transformed lines demonstrated multiple cells expressing the AT- DD45Pro-Red Express reporter in somatic cells in the ovule.
- Co-expression of the reporter construct with the RKD2 polypeptide in an ovule preferred manner demonstrated an egg-cell like transcriptional state induced in tissues and substructures suitable for adventitious embryony. ( Figures 13 throughl 8).
- FIG. 19 The TT2 promoter expressed in the micropylar inner and outer integuments in several ovules at the globular embryo stage. Micropylar end of the ovule is denoted by arrows
- FIG. 20 Expression is ovule maternal tissue-specific, not observed in the embryo sac.
- Expression of AT-TT2 Pro::ZsGreen is in the inner integuments (endothelium and 2 nd layer) covering and surrounding the entire micropylar end of the embryo sac like a glove. This latter pattern was observed at the egg through globular embryo stage. Some weaker expression in the micropylar outer integuments can also be observed at the globular stage. At the late globular embryo, heart-shaped embryo stages, and later, the expression pattern extends chalazally through the inner integuments and now in the outer integuments, as well. Expression is still very strong at the micropylar end. Pattern is reminiscent of the AT-NUC1 promoter expression.
- TT2 promoter expression is shown initially at the micropylar end and expands toward the chalazal end during the globular embryo stage.
- AT-GILT1 Pro::ZsGreen expression is ovule maternal tissue-specific, not observed in the embryo sac. Expression pattern is consistent, but strength can be variable. Expression is in the inner integuments (endothelium and 2 nd layer) covering and surrounding a portion of or the entire micropylar end of the embryo sac. This latter pattern was observed at the egg through globular embryo stage. Little to no expression was observed in the outer integuments. At the heart-shaped embryo stage and later, the expression is highly reduced and only a few inner integument cells opposite the micropylar end of the embryo sac can be observed with expression.
- FIG. 23 (A) Globular embryo stage - AT-GILT1 promoter - ZsGreen expression is specific to the inner integuments surrounding the micropylar end of the embryo sac. (B) Heart-shaped embryo stage - Small number of inner integument cells opposite the micropylar end of the embryo sac showing expression
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pregnancy & Childbirth (AREA)
- Reproductive Health (AREA)
- Insects & Arthropods (AREA)
- Pest Control & Pesticides (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280066348.XA CN104093843B (en) | 2012-01-06 | 2012-04-12 | Ovule somatocyte specificity promoter and using method |
EP12716930.8A EP2800815A1 (en) | 2012-01-06 | 2012-04-12 | Somatic ovule specific promoter and methods of use |
CA2860780A CA2860780A1 (en) | 2012-01-06 | 2012-04-12 | Somatic ovule specific promoter and methods of use |
BR112014016777A BR112014016777A2 (en) | 2012-01-06 | 2012-04-12 | isolated nucleic acid molecule, expression cassette, vector, plant cell, plant, transgenic seed and methods for expression of a polynucleotide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261583646P | 2012-01-06 | 2012-01-06 | |
US61/583,646 | 2012-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013103367A1 true WO2013103367A1 (en) | 2013-07-11 |
Family
ID=46000390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/033255 WO2013103367A1 (en) | 2012-01-06 | 2012-04-12 | Somatic ovule specific promoter and methods of use |
Country Status (6)
Country | Link |
---|---|
US (2) | US20130180007A1 (en) |
EP (1) | EP2800815A1 (en) |
CN (1) | CN104093843B (en) |
BR (1) | BR112014016777A2 (en) |
CA (1) | CA2860780A1 (en) |
WO (1) | WO2013103367A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017155714A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
WO2017218185A1 (en) | 2016-06-14 | 2017-12-21 | Pioneer Hi-Bred International, Inc. | Use of cpf1 endonuclease for plant genome modifications |
WO2017222773A1 (en) | 2016-06-20 | 2017-12-28 | Pioneer Hi-Bred International, Inc. | Novel cas systems and methods of use |
WO2018197520A1 (en) | 2017-04-24 | 2018-11-01 | Dupont Nutrition Biosciences Aps | Methods and compositions of anti-crispr proteins for use in plants |
WO2024196921A1 (en) | 2023-03-20 | 2024-09-26 | Pioneer Hi-Bred International, Inc. | Cas polypeptides with altered pam recognition |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2537153A (en) * | 2015-04-09 | 2016-10-12 | Stichting Diesnt Landbouwkundig Onderzoek | Induction of somatic embryogenesis in plants |
CN109477117A (en) * | 2016-04-11 | 2019-03-15 | 巴斯夫农业种子解决方案美国有限责任公司 | Seed specific and endosperm preferable promoter and application thereof |
BR112019005687A2 (en) | 2016-10-03 | 2019-07-02 | Dow Agrosciences Llc | plant promoter for transgenic expression |
US10400246B2 (en) | 2016-10-03 | 2019-09-03 | Dow Agrosciences Llc | Plant promoter for transgene expression |
WO2018098420A1 (en) * | 2016-11-28 | 2018-05-31 | The Regents Of The University Of California | Induction of haploid plants using baby boom1 gene |
EP3609315A4 (en) | 2017-04-10 | 2021-01-06 | The Regents of The University of California | Generation of haploid plants |
EP3654763A4 (en) | 2017-06-28 | 2021-06-09 | Dow Agrosciences LLC | Plant promoter for transgene expression |
US11236350B2 (en) | 2017-10-04 | 2022-02-01 | Corteva Agriscience Llc | Plant promoter for transgene expression |
CN112143716B (en) * | 2020-09-30 | 2022-07-15 | 中国农业科学院棉花研究所 | Application of thiol reductase gene or protein coded by same in aspect of regulating and controlling plant epidermal hair performance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077310A1 (en) * | 2000-04-08 | 2001-10-18 | Dongbu Hannong Chemical Co., Ltd. | A promoter cv20oxp which regulates the integument-specific expression of a gibberellin 20-oxidase gene in developing seeds of watermelon and a method for generating seedless fruits using the promoter |
WO2011056544A1 (en) * | 2009-10-26 | 2011-05-12 | Pioneer Hi-Bred International, Inc. | Somatic ovule specific promoter and methods of use |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080184386A1 (en) * | 1998-11-16 | 2008-07-31 | Yongwei Cao | Plant genome sequences and uses thereof |
US9029523B2 (en) * | 2000-04-26 | 2015-05-12 | Ceres, Inc. | Promoter, promoter control elements, and combinations, and uses thereof |
CN1869235B (en) * | 2000-06-16 | 2011-10-19 | 托马斯·施穆林 | Method for modifying plant morphology, biochemistry and physiology |
US7294759B2 (en) * | 2001-06-29 | 2007-11-13 | E. I. Du Pont De Nemours And Company | Alteration of oil traits in plants |
AU2003220146A1 (en) * | 2002-03-05 | 2003-09-22 | Syngenta Participations Ag | Nucleic acid sequences encoding the bos1 gene and promoter from arabidopisis thaliana and uses thereof |
US20090288226A1 (en) * | 2005-11-21 | 2009-11-19 | Hallahan David L | Method for manipulating growth, yield, and architecture in plants |
EA022877B1 (en) * | 2007-05-23 | 2016-03-31 | Зингента Партисипейшнс Аг | Polynucleotide of bolting b gene in sugar beet and use thereof |
US20130180005A1 (en) * | 2012-01-06 | 2013-07-11 | Pioneer Hi Bred International Inc | Method to Screen Plants for Genetic Elements Inducing Parthenogenesis in Plants |
EP2800761A1 (en) * | 2012-01-06 | 2014-11-12 | Pioneer Hi-Bred International Inc. | Methods and compositions for modulating expression or activity of a rkd polypeptide in a plant |
-
2012
- 2012-04-12 CA CA2860780A patent/CA2860780A1/en active Pending
- 2012-04-12 WO PCT/US2012/033255 patent/WO2013103367A1/en active Application Filing
- 2012-04-12 EP EP12716930.8A patent/EP2800815A1/en not_active Withdrawn
- 2012-04-12 US US13/445,391 patent/US20130180007A1/en not_active Abandoned
- 2012-04-12 CN CN201280066348.XA patent/CN104093843B/en not_active Expired - Fee Related
- 2012-04-12 BR BR112014016777A patent/BR112014016777A2/en not_active IP Right Cessation
-
2015
- 2015-05-14 US US14/712,371 patent/US20150247157A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077310A1 (en) * | 2000-04-08 | 2001-10-18 | Dongbu Hannong Chemical Co., Ltd. | A promoter cv20oxp which regulates the integument-specific expression of a gibberellin 20-oxidase gene in developing seeds of watermelon and a method for generating seedless fruits using the promoter |
WO2011056544A1 (en) * | 2009-10-26 | 2011-05-12 | Pioneer Hi-Bred International, Inc. | Somatic ovule specific promoter and methods of use |
Non-Patent Citations (5)
Title |
---|
DATABASE EMBL [online] 28 December 1996 (1996-12-28), "Genomic sequence for Arabidopsis thaliana BAC F21J9 from chromosome I, complete sequence.", XP002677987, retrieved from EBI accession no. EM_PL:AC000103 Database accession no. AC000103 * |
DATABASE TAIR [online] arabidopsis.org; 2 May 2003 (2003-05-02), ECKER, J. R., XP002677988, Database accession no. AT1G24540 * |
DWIVEDI K K ET AL: "Expression in Arabidopsis of a nucellus-specific promoter from watermelon (Citrullus lanatus)", PLANT SCIENCE, vol. 179, no. 5, 1 November 2010 (2010-11-01), ELSEVIER IRELAND LTD, IE, pages 549 - 552, XP027296541, ISSN: 0168-9452, [retrieved on 20100801] * |
REISER L ET AL: "THE OVULE AND THE EMBRYO SAC", THE PLANT CELL, vol. 5, 1 October 1993 (1993-10-01), AMERICAN SOCIETY OF PLANT BIOLOGISTS, US, pages 1291 - 1301, XP002934617, ISSN: 1040-4651, DOI: 10.1105/TPC.5.10.1291 * |
XIAO-JUN XIE ET AL: "Expression patterns of twoendo-Î-1,4-glucanase genes () in reproductive development", MOLECULAR BIOLOGY, vol. 45, no. 3, 16 June 2011 (2011-06-16), KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, pages 458 - 465, XP019916754, ISSN: 1608-3245, DOI: 10.1134/S0026893311030204 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017155714A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
EP3699281A1 (en) | 2016-03-11 | 2020-08-26 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
WO2017218185A1 (en) | 2016-06-14 | 2017-12-21 | Pioneer Hi-Bred International, Inc. | Use of cpf1 endonuclease for plant genome modifications |
WO2017222773A1 (en) | 2016-06-20 | 2017-12-28 | Pioneer Hi-Bred International, Inc. | Novel cas systems and methods of use |
WO2018197520A1 (en) | 2017-04-24 | 2018-11-01 | Dupont Nutrition Biosciences Aps | Methods and compositions of anti-crispr proteins for use in plants |
US11732251B2 (en) | 2017-04-24 | 2023-08-22 | Dupont Nutrition Biosciences Aps | Anti-CRISPR polynucleotides and polypeptides and methods of use |
WO2024196921A1 (en) | 2023-03-20 | 2024-09-26 | Pioneer Hi-Bred International, Inc. | Cas polypeptides with altered pam recognition |
Also Published As
Publication number | Publication date |
---|---|
CN104093843B (en) | 2016-02-17 |
CA2860780A1 (en) | 2013-07-11 |
US20150247157A1 (en) | 2015-09-03 |
US20130180007A1 (en) | 2013-07-11 |
CN104093843A (en) | 2014-10-08 |
EP2800815A1 (en) | 2014-11-12 |
BR112014016777A2 (en) | 2019-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150247157A1 (en) | Somatic ovule specific promoter and methods of use | |
US8466342B2 (en) | Early endosperm promoter and methods of use | |
US11104911B2 (en) | Embryo-preferred Zea mays promoters and methods of use | |
US8778672B2 (en) | Somatic ovule specific promoter and methods of use | |
CA2695811C (en) | A plant regulatory region that directs transgene expression in the maternal and supporting tissue of maize ovules and pollinated kernels | |
US20140109259A1 (en) | Guard Cell Promoters and Uses Thereof | |
US12060563B2 (en) | Plant regulatory elements and methods of use thereof | |
US20160251669A1 (en) | Pollen preferred promoters and methods of use | |
US20170218384A1 (en) | Ubiquitin promoters and introns and methods of use | |
US20240360461A1 (en) | Plant regulatory elements and methods of use thereof | |
US20150121568A1 (en) | Ovule specific promoter and methods of use | |
CA3096516A1 (en) | Plant regulatory elements and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280066348.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12716930 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2860780 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012716930 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012716930 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014016777 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014016777 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140707 |