WO2013103234A1 - Fuel additive composition containing liquid crystal state of borate ions, and preparation method thereof - Google Patents

Fuel additive composition containing liquid crystal state of borate ions, and preparation method thereof Download PDF

Info

Publication number
WO2013103234A1
WO2013103234A1 PCT/KR2013/000003 KR2013000003W WO2013103234A1 WO 2013103234 A1 WO2013103234 A1 WO 2013103234A1 KR 2013000003 W KR2013000003 W KR 2013000003W WO 2013103234 A1 WO2013103234 A1 WO 2013103234A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
additive composition
borate
alkali metal
combustion additive
Prior art date
Application number
PCT/KR2013/000003
Other languages
French (fr)
Korean (ko)
Inventor
오미혜
류나현
류연석
류환우
Original Assignee
Oh Mi Hye
Ryu Na Hyeon
Ryu Yeon Seok
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120126571A external-priority patent/KR101327504B1/en
Application filed by Oh Mi Hye, Ryu Na Hyeon, Ryu Yeon Seok filed Critical Oh Mi Hye
Publication of WO2013103234A1 publication Critical patent/WO2013103234A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/505Blending with additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2300/00Pretreatment and supply of liquid fuel
    • F23K2300/10Pretreatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2400/00Pretreatment and supply of gaseous fuel
    • F23K2400/10Pretreatment

Definitions

  • the present invention relates to a combustion additive composition having low temperature combustion, desulfurization and slagging reduction functions using borate ions in a liquid crystal state, and more particularly, to delay the initial combustion of fuel during combustion by fuel in various furnaces.
  • the present invention relates to a combustion additive composition comprising borate ions in a liquid crystal state capable of inducing low-temperature combustion and preventing slagging in the furnace, as well as promoting denitrification and desulfurization effects.
  • combustion engines containing various boilers such as fluidized bed boilers and PC boilers, as well as sinter furnaces, are fueled with ash containing fossil fuels (e.g. coal, coke, oil, etc.) or fuels containing ash such as biomass. use.
  • ash containing fossil fuels e.g. coal, coke, oil, etc.
  • fuels containing ash such as biomass. use.
  • soot and clinker of the furnace can be removed mainly by physical means and devices such as soot-blowers and iron rods. Thresholds occur.
  • the combustion engine is actively contacted with fuel and oxygen at the beginning of combustion to form higher than the overall average temperature in the furnace, so that the ash is exposed for a long time at a high temperature above the melting point, so that the ash is melted and slaked around the burner.
  • logging Slagging, Clinker, Fouling
  • the molten ash is blown away by the high temperature during the initial combustion of the combustion engine is attached to the components of the tube and the heater portion in the furnace to form a fouling, as well as wear or corrosion of the tube.
  • sulfuric acid gas or nitrate gas is generated when combustion is performed in a combustion engine.
  • limestone or the like is used for desulfurization or denitrification, but this lowers the melting point of ash and causes second slagging. have.
  • the present invention is to solve the problems of the prior art as described above, the addition of the composition of the ionic and liquid crystallized borate component to the fuel of the combustion engine (sinter furnace, boiler, etc.), the simple borate salt mixed with other materials It is differentiated from the existing patent No. 0544568 (fuel additive with improved combustion efficiency) which is a fuel additive composition using a dissolved state.
  • borates eg, borax
  • borax borates
  • the present invention prevents the increase in temperature in the furnace of the combustion engine to prevent thermal stress and abrasion or corrosion of components such as tubes (the higher the temperature of the furnace, the higher the tube of the combustion apparatus). Thermal shock and corrosion wear, etc.), and prevent the ash from melting for a long time by preventing it from being exposed to high temperatures, so that the unmelted ash is entangled with the melted ash, and a part of the ash is attached to a component such as a tube or a heater of the combustion engine. The phenomenon can be prevented.
  • liquid crystal borate can form a hard FeB layer on the surface of the tube for a long time to further improve the corrosion and wear protection effect.
  • the present invention provides a combustion additive composition comprising a borate ion in the liquid crystal (Liquid crystal) state.
  • an alkali metal based borate hydrate, an alkali metal based hydroxide, and water are mixed to provide an ionizing and liquid crystallizing method of the alkali metal based borate hydrate.
  • the combustion additive composition having a low-temperature combustion function using the liquid crystal borate ion since the composition of the borate ion is added as an additive in the fuel or the furnace, the low-temperature combustion of the fuel is induced while the initial combustion of the fuel is delayed. As the fuel is not burned at a lower temperature than the initial combustion temperature, the combustion temperature caused by the fuel during the combustion operation can be evenly averaged and averaged.
  • the ash that is not melted is mixed with molten ash (Clinker, Fouling) to soften the molten ash, thereby exerting the function of easily removing clinker or fouling fused to the tube in the furnace. It is possible to prevent the temperature rise of the combustion engine and maximize the thermal efficiency of the combustion engine.
  • molten ash Clinker, Fouling
  • a hard FeB layer may be formed on the surface of the tube to provide corrosion and wear protection.
  • the combustion additive composition of the present invention includes a borate ion in a liquid crystal state.
  • the present invention is to be added to the fuel and / or furnace used as a heat source in the furnace of the combustion engine, the ionized and liquid crystallized borate is applied to the additive composition to induce low-temperature combustion during the initial combustion.
  • the borate ions in the liquid crystal state induce low temperature combustion in the initial combustion section of the combustion engine. That is, when the fuel is heated from the combustion engine, water molecules are released from the borate ion compound to induce an endothermic reaction due to latent heat, and gradually the boron ion composition in the liquid crystal state becomes weak at high temperature and becomes weak in viscosity.
  • combustion delay and temperature reduction functions are superior to those of simple borate salts.
  • the kind of the borate ion is not particularly limited, but it is particularly preferable that it is a pentaborate ion or a tetraborate ion.
  • the borate ion is more preferable when hydrates such as Tindal, Tincalconite, Keratin, Zincborate, borax are ionized.
  • borate ions of alkaline earth metal (Mg, Ca, etc.) series are even more preferable.
  • the borate ions are B (OH) 3, B ( OH) 4 -, B 5 O 6 (OH) 4 -, B 3 O 3 (OH) 4 -, B 4 O 5 (OH) 4 At least one selected from -2 and B 3 O 3 (OH) 5 -2 , for example, B (OH) 3 .
  • borate salts such as sodium metaborate tetrahydrate, Sporgite, Pentaborate, Ameghinite, Borax, Tincalconite, Inderite, Inyoite, Meyerhofferite, Kurnakovite are ionized to water and alkali metal hydroxides (e.g., NaOH, KOH, LiOH), or hydrochloric acid, nitric acid.
  • alkali metal hydroxides e.g., NaOH, KOH, LiOH
  • hydrochloric acid nitric acid.
  • the borate ions induce low-temperature combustion in the initial combustion section of the combustion engine by crystallizing various kinds of elements, boron elements and water molecules, but the borate ions present in the liquid liquid in the liquid crystal state according to the present invention has a more excellent effect Exert.
  • the combustion additive composition of the present invention comprises at least one alkali metal ion selected from Na + , K + and Li + ; OH -; And H 2 O may be further included. That is, the present invention may further include an alkali metal-based compound or ions to be added to the fuel together with the borate ions in the liquid crystal state to prevent incomplete combustion occurring in the latter half of the combustion.
  • borate ions are reduced in exposure to high temperatures (incomplete combustion and CO gas increase or borate melting).
  • the ionized and liquidated borate ion composition instead of conventional borate ions, slagging and clinker and fouling reduction, as well as desulfurization and denitrification effect is greatly improved.
  • the alkali metal compounds include sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium phosphate (Na 3 PO 4 , Na 2 PO 4, etc.) and potassium phosphate (K 3 PO 4 ⁇ 3H 2 O, K 2 PO 4 , KY 2 PO 4, etc.) may be one or more metal compounds selected from the group consisting of.
  • Alkali metal-based compounds or ions used together with liquid carbonate borate ions promote combustion after mid-combustion while further lowering the initial combustion temperature along with the initial combustion retardation of the liquid crystalline borate ions.
  • Alkali metal series with OH is a function of OH's stabilizing function (Radical Trap) and "H + OH ⁇ H 2 O" to interfere with fuel and oxygen contact and to promote combustion after mid-combustion.
  • the carbonate-based alkali metal compound generates combustion CO 2 at an early stage, delays the initial combustion and promotes combustion by the alkali metal after mid.
  • Phosphoric acid-based alkali metal compound forms a carbonized film with Radical Trap or the like to delay the initial combustion of the fuel and promote the post-middle combustion by the alkali metal.
  • potassium hydroxide concentration of about 25 W%
  • the combustion additive composition of the present invention may further comprise at least one selected from ionized magnesium oxide, magnesium hydroxide, magnesium carbonate and magnesium phosphate. That is, the present invention is to add to the fuel under the combustion conditions to form a high temperature in the combustion engine for a long time, the borate ion may further include a magnesium-based compound or ions.
  • the magnesium-based compound is mixed with borate (ion) in a ratio of 50:50 by weight, and it is preferable to apply them in a ratio of 500 to 1500: 1 relative to the weight of the fuel.
  • this mixing ratio can be added or decreased depending on the furnace temperature and the ash content of the fuel.
  • the liquid crystal borate ions including alkali metals may be exposed to high temperatures for a long time in the combustion conditions in which high temperatures are formed for a long time, thereby degrading the anti-slag function, which is supplemented by the magnesium-based compound.
  • Borate and magnesium-based compounds other than the alkali metal series may be used as a solid, but are preferably used after being ionized to nitric acid or hydrochloric acid and mixed with borate ions.
  • combustion additive composition of the present invention may further include zincborate or ionized Zincborate in addition to borate ions (and alkali metal compounds, magnesium-based compounds) in the liquid crystal state.
  • the combustion additive composition of the present invention may be used in the form of a slurry for convenience, but is most preferably used in an ionized and liquidized "liquid" form. This also gives the ability to enlarge the specific surface area of the composition relative to the fuel.
  • the combustion additive composition of the present invention may be mixed with a liquid such as water and then mixed with a fuel, but may be used together with the fuel in the combustion engine, or may be directly injected into or combusted in the combustion engine. That is, it is possible to mix and use beforehand before putting into a combustion engine, and can also mix and spray a composition, or to inject directly into the fuel or ash injected into a combustion engine, while fuel is injected into a combustion engine.
  • the mixing degree of water is an amount of 3 to 15 times, more preferably 5 to 7 times the weight of the borate ions or the composition.
  • the preferred pH level is about 9.3 to 13. However, this can be changed according to the fuel and furnace operating conditions.
  • the combustion additive composition of the present invention includes borate ions in a liquid crystal state, thereby effectively performing at least one or more of low temperature combustion induction, slagging reduction, SO x reduction, and NO x reduction in the initial combustion section. Can be.
  • alkali metal-based borate hydrate by mixing alkali metal-based borate hydrate, alkali metal-based hydroxide (eg, at least one selected from NaOH, KOH, and LiOH) and water Characterized in that, there is provided a method for producing a combustion additive composition.
  • alkali metal-based hydroxide eg, at least one selected from NaOH, KOH, and LiOH
  • the alkali metal borate hydrate is present with Na + , K + , Li + , OH ⁇ and the like after being ionized in water.
  • the optimum pH for forming the liquid crystal by NaOH, KOH, LiOH, etc. in the manufacturing process is 13 ⁇ 0.8 and the optimum temperature is 96 ⁇ 100 °C.
  • the alkali metal borate is a liquid crystal without mixing or partially or totally dissolved with organic materials such as propylene glycol, ethylene glycol or glycerol, sorbitol, or ethanolamine having cis-diols, and low temperature function. Almost no effect. (See ⁇ Production Example 7 '', ⁇ Table 7 '' and ⁇ Table 8 '' below.)
  • the alkali metal-based borate hydrate is at least one selected from tindal, tincalconite, keratin, zincborate, borax, sodium metaborate tetrahydrate, sporgite, pentaborate, ameghinite, inderite, inyoite, meyerhofferite and kurnakovite, for example borax
  • B (OH) 3 specifically 4B (OH) 3, is formed as the borate ion in the liquid crystal state.
  • the combustion additive composition of the present invention may be prepared by mixing 17.5 to 25 parts by weight of an alkali metal borate hydrate and 3.7 to 7.4 parts by weight of an alkali metal hydroxide based on 100 parts by weight of water. More specifically, preferred liquid crystallization is achieved under the ratio of 81 parts by weight of water, 3 to 6 parts by weight of NaOH, and 14 to 20 parts by weight of borax.
  • the present invention may include the step of mixing the alkali metal-based borate hydrate, alkali metal-based hydroxide and water in the production of the combustion additive composition, and then cooling the mixture.
  • growth of the crystal (liquid crystal) by mass transfer may be continued while cooling from 96 to 100 ° C to 0 ° C.
  • the combustion state of the combustion (fuel) additive composition including the borate ion in the liquid crystal state according to the present invention was tested through the examples before and after the addition, respectively, to measure the temperature change and the emission of pollutants in the combustion engine. .
  • Preparation Example 2 further includes a magnesium-based compound and an alkali metal compound in borate
  • Preparation Example 3 further includes an alkali metal-based compound to deepen the combustion delay in the borate and prevent incomplete combustion occurring at a later stage.
  • the combustion engine was tested in a boiler using a Chinese ash coal (IDT: about 1180 °C, ash content of about 10W%) with low melting point and high volatile matter as a steam boiler of 150ton / hr.
  • IDT Chinese ash coal
  • "Tincal: Potassium hydroxide 45:55” in a ratio of 5 times by weight of water mixed by weight to make a liquid-free liquid phase state using a spray device at a ratio of 500: 1 to the weight of the fuel
  • the coal was fed into the coal above the coal transport feeder installed before the mill to grind the coal.
  • composition sample prepared after ionization and liquid crystallization of pentaborate (KB 5 O 7 4H 2 O) and potassium hydroxide (25W%) at a ratio of 21:23 with respect to 100 by weight of water was used. Applied at a ratio of 200: 5: 1 '.
  • 6 g of potassium hydroxide was mixed with 100 g of water in a reactor, and heated to 100 ° C. at a pH of 13.5, followed by heating and agitating for 5 hours in a ratio of 21 g of a fluoroborate. It was then naturally cooled to 25 ° C. through a cooling system.
  • the initial temperature reduction function is 2.6%, 3.3%, 4.0% more enhanced than when using only the borate when the composition containing the borate liquid crystal.
  • the shape and variation of SO x , NO x , SO 3 , CO, and slagging were much better than those of borate alone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Incineration Of Waste (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The present invention provides a fuel additive composition having a low temperature combustion function, containing a liquid crystal state of borate ions, wherein the fuel additive composition is added to a fuel used as a combustion heat source in a furnace of a combustion engine to enable retardation of the initial combustion of fuel so as to induce low temperature combustion during a combustion process of fuel in various furnaces, prevention of slagging in a furnace, and promotion of denitrification and desulfurization effects.

Description

액정 상태의 붕산염이온을 포함하는 연소 첨가제 조성물, 및 그 제조방법Combustion additive composition containing borate ion in liquid crystal state, and its manufacturing method
본 발명은 액정 상태의 붕산염이온을 이용한 저온연소, 탈황 및 슬래깅(Slagging) 저감 기능을 갖는 연소 첨가제 조성물에 관한 것으로서, 더욱 상세하게는 다양한 노 내의 연료에 의한 연소과정에서 연료의 초기 연소를 지연시켜 저온연소를 유도하고 노 내의 슬래깅을 방지함은 물론 탈질과 탈황 효과를 도모하는 것이 가능한 액정 상태의 붕산염이온을 포함하는 연소 첨가제 조성물에 관한 것이다.The present invention relates to a combustion additive composition having low temperature combustion, desulfurization and slagging reduction functions using borate ions in a liquid crystal state, and more particularly, to delay the initial combustion of fuel during combustion by fuel in various furnaces. The present invention relates to a combustion additive composition comprising borate ions in a liquid crystal state capable of inducing low-temperature combustion and preventing slagging in the furnace, as well as promoting denitrification and desulfurization effects.
일반적으로 소결로는 물론 유동층 보일러나 PC 보일러와 같은 각종 보일러를 포함한 연소기관은 연소를 위해 그 내부에 화석연료(예컨대, 석탄, 코크스, 오일 등)나 바이오매스 같은 회분이 함유된 연료를 열원으로 사용한다.In general, combustion engines containing various boilers such as fluidized bed boilers and PC boilers, as well as sinter furnaces, are fueled with ash containing fossil fuels (e.g. coal, coke, oil, etc.) or fuels containing ash such as biomass. use.
그러나, 시간이 지남에 따라 운전조건의 변화 등으로 일정한 온도 조절이 어려워진다. 그로 인해 노 내 온도가 올라가게 되며 보일러를 만들 때 설계된 온도 범위를 넘으면 Tube rupture 등 보일러 대형 사고(Accident)로 이어지는 것은 물론이며 각종 환경 오염물질의 증가를 초래한다. However, over time, constant temperature control becomes difficult due to changes in operating conditions. As a result, the furnace temperature rises, and if it exceeds the designed temperature range when the boiler is made, it leads to boiler accidents such as tube rupture, and also increases various environmental pollutants.
이 같은 Accident를 줄이기 위해 노 내 온도를 줄이는 현재의 방법은 약 500℃까지 데워진 스팀(Steam) 또는 일반 공업용수를 침투시키거나 연료를 감소시켜 필요한 Steam을 줄이는 것이다. In order to reduce this accident, current methods of reducing the temperature in the furnace are to infiltrate steam warmed up to about 500 ° C or general industrial water or reduce fuel by reducing fuel.
그러나, 데워진 Steam을 사용할 경우 500℃까지 가열하는데 필요한 열량 손실은 물론 증기 및 전기 생산이 감축됨과 함께 대기 오염물질인 SOx 및 NOx의 처리비용 또한 증가한다. However, the use of heated steam not only reduces the heat loss required to heat up to 500 ° C, but also reduces steam and electricity production, while increasing the cost of treating the air pollutants SO x and NO x .
그리고, 연소기관인 노 내에 회분이 함유된 연료를 투입한 후 연소 작업을 진행하면 노 내에 온도가 부분적으로 또는 전체적으로 상승하여 고온을 형성하고 이는 슬래깅(Slagging은 Clinker 및 Fouling을 포함하여 이름)을 발생시켜 노의 열전달 및 전반적인 노의 운전을 방해하는 문제가 있다. In addition, when a fuel containing ash is added to a furnace as a combustion engine and a combustion operation is performed, the temperature in the furnace rises partially or entirely to form a high temperature, which causes slagging (names including Clinker and Fouling). There is a problem that interferes with the heat transfer of the furnace and the overall operation of the furnace.
이 같은 문제를 해결하기 위해 주로 슈트 블로워(Soot-blower), 쇠막대기와 같은 물리적인 수단 및 장치에 의거하여 노의 슈트(Soot) 및 클링커(Clinker)를 제거할 수 있으나, 이 경우 역시 운전상 많은 한계점이 발생한다.In order to solve this problem, the soot and clinker of the furnace can be removed mainly by physical means and devices such as soot-blowers and iron rods. Thresholds occur.
또 다른 방법으로서, 산화마그네슘과 같이 고융점을 형성하는 별도의 첨가제를 노 내에 투입하거나 팽창성이 강한 규산계열의 염을 노 내에 투입하여 슬래깅의 발생을 제어하도록 하는 방법이 있다.As another method, there is a method of controlling the occurrence of slagging by adding a separate additive that forms a high melting point, such as magnesium oxide, into a furnace or by introducing a highly expandable silicic acid salt into the furnace.
그러나, 이처럼 산화마그네슘만을 사용하여 제어하는 경우 회분의 융점을 높이거나 팽창성을 유발하는데 양적인 한계를 극복하기 어려우며, 규산계열의 염을 사용할 경우에는 점성이 높아 약 1300℃ 이상의 고온에서 장시간 지속될 경우 오히려 슬래깅을 유발하는 부작용이 생기는 문제가 있다.However, when using only magnesium oxide, it is difficult to overcome the quantitative limitation in raising the melting point of the ash or inducing the expansion, and in the case of using a silicic acid salt, the viscosity is high and the slab is maintained at a high temperature of about 1300 ° C. for a long time. There is a problem that causes side effects that cause ging.
한편, 연소기관은 연소가 시작되는 초기에 연료와 산소가 활발하게 접촉되어 노 내의 전반적인 평균 온도보다도 높게 형성되어 회분이 회융점 이상의 고온에서 장시간 노출되기 때문에 회분이 용융되고 버너(Burner) 주위 등에 슬래깅(Slagging, Clinker, Fouling)이 발생하게 되는 문제가 있다.On the other hand, the combustion engine is actively contacted with fuel and oxygen at the beginning of combustion to form higher than the overall average temperature in the furnace, so that the ash is exposed for a long time at a high temperature above the melting point, so that the ash is melted and slaked around the burner. There is a problem that logging (Slagging, Clinker, Fouling) occurs.
더불어, 연소기관의 초기 연소시 고온에 의해 용융된 회분이 날아가 노 내의 튜브와 히터 부분의 구성품에 부착되어 Fouling을 형성함은 물론 튜브가 마모되거나 부식되는 문제점이 있다.In addition, the molten ash is blown away by the high temperature during the initial combustion of the combustion engine is attached to the components of the tube and the heater portion in the furnace to form a fouling, as well as wear or corrosion of the tube.
그리고, 연소기관에서 연소가 이뤄질 때는 황산가스나 질산가스가 발생하는데, 종래에는 탈황 또는 탈질을 위해 석회석(Limestone) 등을 사용하였으나, 이는 회분의 융점을 낮추고 제2의 슬래깅을 유발하는 문제가 있다.In addition, sulfuric acid gas or nitrate gas is generated when combustion is performed in a combustion engine. In the related art, limestone or the like is used for desulfurization or denitrification, but this lowers the melting point of ash and causes second slagging. have.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 연소기관(소결로, 보일러 등)의 연료에 이온 및 액정화된 붕산염 성분의 조성물을 첨가하는바, 다른 물질과 혼합된 붕산염의 단순한 용해 상태를 이용한 연료 첨가제 조성물인 기존 특허 제0544568호(연소효율을 개선한 연료 첨가제)호와 차별화된다.The present invention is to solve the problems of the prior art as described above, the addition of the composition of the ionic and liquid crystallized borate component to the fuel of the combustion engine (sinter furnace, boiler, etc.), the simple borate salt mixed with other materials It is differentiated from the existing patent No. 0544568 (fuel additive with improved combustion efficiency) which is a fuel additive composition using a dissolved state.
본 발명의 경우 붕산염(예컨대, 붕사)이 액정화된 상태로 첨가되어 연소 초기에 연료와 산소의 접촉이 활발한 구간에서 산소와 연료의 접촉을 차폐하여 연소를 지연한다. 특히 초기 연소 구간의 저온연소를 유도하고, 연소가 진행되는 작업 중에 연소온도를 고르게 평준화하며, 연소 중 노 내의 슬래깅 발생을 방지함은 물론 탈황과 탈질의 효과를 도모할 수 있다.In the present invention, borates (eg, borax) are added in a liquid crystalized state to delay combustion by shielding the contact between oxygen and fuel in a section in which fuel and oxygen are actively contacted at the beginning of combustion. In particular, it is possible to induce low-temperature combustion of the initial combustion section, to equalize the combustion temperature evenly during the operation in which the combustion proceeds, to prevent the occurrence of slagging in the furnace during combustion, and to achieve the effects of desulfurization and denitrification.
뿐만 아니라, 본 발명은 연소기관의 노 내에 온도가 증가하는 현상을 방지하여 튜브와 같은 구성품의 열 충격(Thermal stress) 및 마모나 부식을 미연에 방지하고(노의 온도가 고온일수록 연소기기의 튜브 등 열 충격 및 부식 마모가 증가함), 회분이 고온에 장시간 노출되지 않도록 하여 회분이 녹는 것을 방지함에 따라 녹지 않은 회분이 녹은 회분에 엉켜 회분의 일부가 연소기관의 튜브나 히터 등 구성품에 부착되는 현상을 방지할 수 있다. In addition, the present invention prevents the increase in temperature in the furnace of the combustion engine to prevent thermal stress and abrasion or corrosion of components such as tubes (the higher the temperature of the furnace, the higher the tube of the combustion apparatus). Thermal shock and corrosion wear, etc.), and prevent the ash from melting for a long time by preventing it from being exposed to high temperatures, so that the unmelted ash is entangled with the melted ash, and a part of the ash is attached to a component such as a tube or a heater of the combustion engine. The phenomenon can be prevented.
더불어, 액정화된 붕산염을 장기 사용시 튜브 표면에 단단한 FeB층을 형성하여 부식 및 마모 방지 효과를 더욱 향상시킬 수 있다.In addition, the liquid crystal borate can form a hard FeB layer on the surface of the tube for a long time to further improve the corrosion and wear protection effect.
상기한 기술적 과제를 달성하고자, 본 발명은 액정(Liquid crystal) 상태의 붕산염이온을 포함하는 연소 첨가제 조성물을 제공한다.In order to achieve the above technical problem, the present invention provides a combustion additive composition comprising a borate ion in the liquid crystal (Liquid crystal) state.
또한, 본 발명의 다른 측면으로, 알카리금속계열 붕산염 수화물, 알카리금속계열 수산화물 및 물을 혼합하여 상기 알카리금속계열 붕산염 수화물을 이온화 및 액정화시키는 것을 특징으로 하는, 연소 첨가제 조성물의 제조방법을 제공한다.In another aspect of the present invention, an alkali metal based borate hydrate, an alkali metal based hydroxide, and water are mixed to provide an ionizing and liquid crystallizing method of the alkali metal based borate hydrate.
본 발명에 따른 액정 붕산염이온을 이용한 저온연소기능을 갖는 연소 첨가제 조성물에 의하면 연료 또는 노 내에 붕산염이온의 조성물을 첨가제로 첨가하므로, 연료의 초기 연소를 지연시키면서 연료의 저온연소를 유도하여 초기에 연소하지 못한 연료를 이후 초기 연소의 온도보다 낮은 구간에서 연소함에 따라 연소 작업 중 연료에 의한 연소온도를 고르게 평준화, 평균화시킬 수 있다. According to the combustion additive composition having a low-temperature combustion function using the liquid crystal borate ion according to the present invention, since the composition of the borate ion is added as an additive in the fuel or the furnace, the low-temperature combustion of the fuel is induced while the initial combustion of the fuel is delayed. As the fuel is not burned at a lower temperature than the initial combustion temperature, the combustion temperature caused by the fuel during the combustion operation can be evenly averaged and averaged.
더불어, 연소 중에 회분의 용융 방지로 용융이 안 된 회분이 용융된 회분(Clinker, Fouling)에 섞임으로써 용융된 회분을 소프트하게 하여 노 내의 튜브 등에 융착된 클링커나 파울링을 쉽게 탈락시키는 기능을 발휘하는바, 연소기관의 온도 상승을 막고 연소기관의 열효율을 극대화할 수 있다.In addition, by preventing the melting of ash during combustion, the ash that is not melted is mixed with molten ash (Clinker, Fouling) to soften the molten ash, thereby exerting the function of easily removing clinker or fouling fused to the tube in the furnace. It is possible to prevent the temperature rise of the combustion engine and maximize the thermal efficiency of the combustion engine.
뿐만 아니라, 연소시 연소기관 내부에서 연료 속의 황화물의 분해를 억제하거나 NOx(특히, Thermal NOx)의 생성을 억제하여 자연스럽게 탈황 및 탈질의 효과를 제공할 수 있다.In addition, it is possible to suppress the decomposition of sulfides in the fuel or the generation of NO x (particularly, Thermal NO x ) in the combustion engine during combustion, thereby naturally providing the effect of desulfurization and denitrification.
또한, 연소기관 구성품의 열 충격(Thermal stress) 및 마모나 부식을 미연에 방지하므로 연소기관의 수명을 연장할 수 있는 효과가 있다. 한편, 액정 붕산염이온 조성물을 장기 사용시 튜브 표면에 단단한 FeB층을 형성하여 부식 및 마모 방지효과를 제공할 수도 있다.In addition, since it prevents thermal stress, wear, and corrosion of components of the combustion engine in advance, there is an effect of extending the life of the combustion engine. Meanwhile, when the liquid crystal borate composition is used for a long time, a hard FeB layer may be formed on the surface of the tube to provide corrosion and wear protection.
특히, PC 보일러의 경우 버너 주위에 형성되는 슬래그, 유동층 보일러의 경우 Air nozzle 부위에 형성되는 슬래그의 형성을 예방 및 제거하는데 유효하다.In particular, in the case of the PC boiler, it is effective to prevent and remove the slag formed around the burner, and in the case of the fluidized bed boiler, the slag formed in the air nozzle area.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 연소 첨가제 조성물은 액정(Liquid crystal) 상태의 붕산염이온을 포함하는 것이다. 구체적으로, 본 발명은 연소기관의 노 내에서 열원으로 사용되는 연료 및/또는 노 내에 첨가되는 것으로서, 초기 연소 시 저온연소를 유도하도록 첨가제 조성물에 이온화 및 액정화된 붕산염을 적용한 것이다.The combustion additive composition of the present invention includes a borate ion in a liquid crystal state. Specifically, the present invention is to be added to the fuel and / or furnace used as a heat source in the furnace of the combustion engine, the ionized and liquid crystallized borate is applied to the additive composition to induce low-temperature combustion during the initial combustion.
상기 액정 상태의 붕산염이온은 연소기관의 초기 연소 구간에서 저온연소를 유도한다. 즉, 연소기관으로부터 연료가 가열되면 상기 붕산염이온 화합물로부터 물 분자가 방출되어 잠열에 의한 흡열반응을 유도하고, 그리고 점차 상기 액정 상태의 붕산염이온 조성물은 고온에서 녹으면서 점성이 약해지며 ‘붕소 원소를 함유하는 점성이 물에 가까운 극히 얇은 막’을 형성하고 증발하면서 연료와 산소 간의 접촉을 차폐함으로써 연소지연 및 온도저하 기능이 단순한 붕산염을 사용하는 경우보다도 탁월하다.The borate ions in the liquid crystal state induce low temperature combustion in the initial combustion section of the combustion engine. That is, when the fuel is heated from the combustion engine, water molecules are released from the borate ion compound to induce an endothermic reaction due to latent heat, and gradually the boron ion composition in the liquid crystal state becomes weak at high temperature and becomes weak in viscosity. By containing an extremely thin film close to water 'and evaporating to shield the contact between fuel and oxygen, combustion delay and temperature reduction functions are superior to those of simple borate salts.
특히, 본 발명의 액정 상태의 붕산염이온 및 (액상의) 액정 조성물은 고온의 화염에 의해 생성되는 삼산화물(SO2+O=SO3)의 생성을 억제하고 공기예열기 부분 등에 생성되는 황산암모늄(Fouling)의 생성을 저감시킨다.In particular, the borate ions in the liquid crystal state of the present invention and the (liquid) liquid crystal composition suppress the formation of trioxide (SO 2 + O = SO 3 ) produced by a high temperature flame, and ammonium sulfate ( Reduce the production of fouling).
상기 붕산염이온의 종류는 특별히 제한되니 않으나, 5붕산염이온 또는 4붕산염이온인 것이 특히 바람직하다. 또한, 상기 붕산염이온은 Tindal, Tincalconite, Keratin, Zincborate, borax와 같은 수화물이 이온화할 경우 더욱 바람직하다. 나아가, 알카리토금속(Mg, Ca 등)계열의 붕산염이온이면 더욱더 바람직하다.The kind of the borate ion is not particularly limited, but it is particularly preferable that it is a pentaborate ion or a tetraborate ion. In addition, the borate ion is more preferable when hydrates such as Tindal, Tincalconite, Keratin, Zincborate, borax are ionized. Furthermore, borate ions of alkaline earth metal (Mg, Ca, etc.) series are even more preferable.
일 구체예에서, 상기 붕산염이온은 B(OH)3, B(OH)4 -, B5O6(OH)4 -, B3O3(OH)4 -, B4O5(OH)4 -2 및 B3O3(OH)5 -2 중에서 선택되는 1종 이상, 예를 들어 B(OH)3일 수 있다.In one embodiment, the borate ions are B (OH) 3, B ( OH) 4 -, B 5 O 6 (OH) 4 -, B 3 O 3 (OH) 4 -, B 4 O 5 (OH) 4 At least one selected from -2 and B 3 O 3 (OH) 5 -2 , for example, B (OH) 3 .
특히, Sodium metaborate tetrahydrate, Sporgite, Pentaborate, Ameghinite, Borax, Tincalconite, Inderite, Inyoite, Meyerhofferite, Kurnakovite와 같은 붕산염은 물과 알카리금속계열 수산화물(예컨대, NaOH, KOH, LiOH), 또는 염산, 질산 등에 이온화가 가능하나, 알카리금속 수화물 또는 염산에 의하여 물에 이온화되어 pH 9.5 ~ 13.5에서 B(OH)3, B(OH)4 -, B5O6(OH)4 -, B3O3(OH)4 -, B4O5(OH)4 -2, B3O3(OH)5 -2 등으로 액정 상태로 존재함으로써 최적의 효과를 가진다. In particular, borate salts such as sodium metaborate tetrahydrate, Sporgite, Pentaborate, Ameghinite, Borax, Tincalconite, Inderite, Inyoite, Meyerhofferite, Kurnakovite are ionized to water and alkali metal hydroxides (e.g., NaOH, KOH, LiOH), or hydrochloric acid, nitric acid. possible one, are ionized in water by alkali metal hydrate or hydrochloric acid, B (OH) at pH 9.5 ~ 13.5 3, B ( OH) 4 -, B 5 O 6 (OH) 4 -, B 3 O 3 (OH) 4 - , B 4 O 5 (OH) 4 -2 , B 3 O 3 (OH) 5 -2 and the like in the liquid crystal state to have an optimum effect.
상기 붕산염이온은 다양한 종류의 원소 및 붕소 원소와 물 분자를 결정체로연소기관의 초기 연소 구간에서 저온연소를 유도하지만, 본 발명에 따라 액정 상태로 용매인 액체에 존재하는 붕산염이온은 더욱 뛰어난 효과를 발휘한다.The borate ions induce low-temperature combustion in the initial combustion section of the combustion engine by crystallizing various kinds of elements, boron elements and water molecules, but the borate ions present in the liquid liquid in the liquid crystal state according to the present invention has a more excellent effect Exert.
바람직한 일 구체예에서, 본 발명의 연소 첨가제 조성물은 Na+, K+ 및 Li+ 중에서 선택되는 1종 이상의 알카리금속이온; OH-; 및 H2O를 더 포함하는 것일 수 있다. 즉, 본 발명은 상기 액정 상태의 붕산염이온과 함께 연료에 첨가하여 연소 중반 이후 후반에 발생하는 불완전 연소를 방지하도록 알카리금속계열의 화합물 또는 이온을 더 포함할 수 있다. In a preferred embodiment, the combustion additive composition of the present invention comprises at least one alkali metal ion selected from Na + , K + and Li + ; OH -; And H 2 O may be further included. That is, the present invention may further include an alkali metal-based compound or ions to be added to the fuel together with the borate ions in the liquid crystal state to prevent incomplete combustion occurring in the latter half of the combustion.
붕산염이온이 고온에 노출될 경우 효과가 감소되는 단점(불완전 연소 및 CO 가스 증가 또는 붕산염 용융)을 보완하기 위해 붕산염이온만을 사용하는 것보다는 알카리금속 또는 알카리토금속 화합물 내지 이온을 혼합하여 사용하는 것이 바람직하며, 특히 본 발명에서는 통상의 붕산염이온 대신 이온화 및 액정화된 붕산염이온 조성물을 사용함으로써 슬래깅 및 클링커와 파울링 저감은 물론 탈황과 탈질 효과가 대폭 개선된다.It is preferable to mix alkali metal or alkaline earth compounds or ions rather than only borate ions to compensate for the disadvantage that the borate ions are reduced in exposure to high temperatures (incomplete combustion and CO gas increase or borate melting). In particular, in the present invention, by using the ionized and liquidated borate ion composition instead of conventional borate ions, slagging and clinker and fouling reduction, as well as desulfurization and denitrification effect is greatly improved.
상기 알카리금속계열의 화합물은 탄산나트륨, 탄산칼륨, 수산화나트륨, 수산화칼륨, 인산나트륨(Na3PO4, Na2PO4 등) 및 인산칼륨(K3PO4·3H2O, K2PO4, KY2PO4 등)으로 이루어지는 군에서 선택된 1종 이상의 금속화합물일 수 있다.The alkali metal compounds include sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium phosphate (Na 3 PO 4 , Na 2 PO 4, etc.) and potassium phosphate (K 3 PO 4 · 3H 2 O, K 2 PO 4 , KY 2 PO 4, etc.) may be one or more metal compounds selected from the group consisting of.
액정 상태의 붕산염이온과 같이 사용되는 알카리금속계열 화합물 또는 이온은 액정 상태 붕산염이온의 초기 연소 지연작용과 더불어 초기 연소온도를 더욱 저하시키면서도 연소 중반 이후부터는 연소를 촉진시킨다. OH를 가지고 있는 알카리 금속계열은 OH의 안정화기능(Radical Trap)과 "H+OH→H2O"의 기능으로 연료와 산소의 접촉을 방해하고 연소 중반부 이후 연소를 촉진시키는 것이다. Alkali metal-based compounds or ions used together with liquid carbonate borate ions promote combustion after mid-combustion while further lowering the initial combustion temperature along with the initial combustion retardation of the liquid crystalline borate ions. Alkali metal series with OH is a function of OH's stabilizing function (Radical Trap) and "H + OH → H 2 O" to interfere with fuel and oxygen contact and to promote combustion after mid-combustion.
또한, 탄산계열 알카리금속 화합물은 연소 CO2를 초기에 발생시켜 초기 연소를 지연시키고 중반 이후 알카리금속에 의한 연소를 촉진시킨다. 인산계열 알카리 금속 화합물은 Radical Trap 등으로 탄화 막을 형성하여 연료의 초기 연소를 지연시키고 알카리금속에 의한 중반 이후의 연소를 촉진시킨다. In addition, the carbonate-based alkali metal compound generates combustion CO 2 at an early stage, delays the initial combustion and promotes combustion by the alkali metal after mid. Phosphoric acid-based alkali metal compound forms a carbonized film with Radical Trap or the like to delay the initial combustion of the fuel and promote the post-middle combustion by the alkali metal.
일 구체예에서, 알카리금속계열의 화합물의 사용비율은, 중량 기준 "붕산염이온 : 마그네슘계열 화합물 : 알카리계열 화합물 = 45:40:12"의 중량 비율로 혼합한 후 연료 중량 대비 500 ~ 1500:1의 비율로 사용함이 바람직하다. 다만 이 비율은 연료와 노의 온도조건에 따라 달리 적용할 수 있다. In one embodiment, the use ratio of the alkali metal compound is 500 ~ 1500: 1 to the fuel weight after mixing in a weight ratio of "borate ion: magnesium compound: alkali compound = 45:40:12" by weight It is preferable to use the ratio of. However, this ratio may be applied differently depending on the fuel and furnace temperature conditions.
또한, 슬래깅이 적게 형성되는 등 경우에 따라서는 단지 붕산염이온에 알카리금속계열 화합물만을 적용하여 대략 중량부로 “붕산염이온 : 알카리금속계열 화합물 = 70:30”의 비율로 사용할 수 있다. 다만 이 또한 정해진 비율은 아니며 연료의 질과 운전조건(부하 등)에 따라 달리 적용이 가능하다. In addition, if less slagging is formed, it may be used in a ratio of "borate ion: alkali metal compound = 70:30" in approximately parts by weight by applying only an alkali metal compound to the borate ion. However, this ratio is also not fixed and may be applied differently according to fuel quality and operating conditions (load, etc.).
물 등의 액체를 이용하여 이온화된 액상을 만들 경우, 10수화물의 tincal 같은 붕산염을 예로 들면 수산화칼륨(농도 약 25W%)을 붕산염 중량 대비 약 ‘붕산염:수산화칼륨 = 45:50’의 비율로 혼합하며 물(중량부 기준 붕산염 대비 약 4배)을 포함한 혼합물을 ‘이온화 및 액정화’시키기 위해서는 반응로에서 ‘온도 96 ~ 100℃와 pH 13±0.8’의 조건에서 2 ~ 3시간 정도 Agitating 하면 된다.When making an ionized liquid phase using a liquid such as water, for example, a borate such as tincal of 10-hydrate tincal is mixed with potassium hydroxide (concentration of about 25 W%) in a ratio of about 'borate: potassium hydroxide = 45:50' to the weight of borate. In order to 'ionize and liquefy' the mixture containing water (about 4 times the weight-based borate), agitating for 2 ~ 3 hours at the temperature of 96 ~ 100 ℃ and pH 13 ± 0.8 .
바람직한 다른 구체예에서, 본 발명의 연소 첨가제 조성물은 이온화된 산화마그네슘, 수산화마그네슘, 탄산마그네슘 및 인산마그네슘 중에서 선택되는 1종 이상을 더 포함하는 것일 수 있다. 즉, 본 발명은 연소기관 중 고온을 장시간 형성하는 연소조건에서 연료에 첨가하는 것으로서, 붕산염이온에 마그네슘계열의 화합물 또는 이온을 더 포함하는 것일 수 있다.In another preferred embodiment, the combustion additive composition of the present invention may further comprise at least one selected from ionized magnesium oxide, magnesium hydroxide, magnesium carbonate and magnesium phosphate. That is, the present invention is to add to the fuel under the combustion conditions to form a high temperature in the combustion engine for a long time, the borate ion may further include a magnesium-based compound or ions.
예를 들어, 상기 마그네슘계열의 화합물은 붕산염(이온)과 중량 기준 50:50의 비율로 혼합하며, 이들을 연료 중량 대비 500 ~ 1500:1의 비율로 적용함이 바람직하다. 다만 이러한 혼합비는 노 내 온도와 연료의 회분 정도에 따라 가감할 수 있다. For example, the magnesium-based compound is mixed with borate (ion) in a ratio of 50:50 by weight, and it is preferable to apply them in a ratio of 500 to 1500: 1 relative to the weight of the fuel. However, this mixing ratio can be added or decreased depending on the furnace temperature and the ash content of the fuel.
알카리금속을 포함한 액정 붕산염이온은 고온을 장시간 형성하는 연소조건에서는 붕산염과 회분이 장시간 고온에 노출되어 슬래깅 방지 기능이 저하될 수 있는데, 이를 상기 마그네슘계열의 화합물이 보완한다.The liquid crystal borate ions including alkali metals may be exposed to high temperatures for a long time in the combustion conditions in which high temperatures are formed for a long time, thereby degrading the anti-slag function, which is supplemented by the magnesium-based compound.
상기 알카리금속계열 외의 붕산염과 마그네슘계열 화합물은 고체로 사용될 수 있으나, 질산 또는 염산 등에 이온화한 후 붕산염이온에 혼합하여 사용하는 것이 바람직하다. Borate and magnesium-based compounds other than the alkali metal series may be used as a solid, but are preferably used after being ionized to nitric acid or hydrochloric acid and mixed with borate ions.
아울러, 본 발명의 연소 첨가제 조성물은 액정 상태의 붕산염이온(및 알카리금속계열 화합물, 마그네슘계열 화합물) 외에 Zincborate 또는 이온화된 Zincborate를 더 포함하는 것일 수 있다.In addition, the combustion additive composition of the present invention may further include zincborate or ionized Zincborate in addition to borate ions (and alkali metal compounds, magnesium-based compounds) in the liquid crystal state.
본 발명의 연소 첨가제 조성물은 편의상 슬러리 형태로 사용될 수도 있으나, 이온화 및 액정화된 "액상" 형태로 사용하는 것이 가장 바람직하다. 이는 연료 대비 조성물의 비표면적을 확대시키는 기능을 부여하기도 한다.The combustion additive composition of the present invention may be used in the form of a slurry for convenience, but is most preferably used in an ionized and liquidized "liquid" form. This also gives the ability to enlarge the specific surface area of the composition relative to the fuel.
본 발명의 연소 첨가제 조성물은 물과 같은 액체에 혼합한 후 연료에 혼합하되 연소기관에 연료와 함께 사용할 수도 있고, 연소기관에 연소되는 도중 또는 연소기관 내에 직접 분사하는 것도 가능하다. 즉 연소기관에 투입하기 전에 미리 혼합하여 사용하는 것도 가능하고, 연료가 연소기관에 투입되는 도중에 조성물을 분사하여 혼합하거나 연소기관에 투입된 연료나 회분을 향해 직접적으로 분사하여 사용하는 것도 가능하다. 이때 물의 혼합 정도는 붕산염이온 또는 조성물의 중량 대비 3 ~ 15배, 더욱 바람직하게는 5 ~ 7배의 양이다. 또한 물을 추가 혼합하는 경우 바람직한 pH 수준은 약 9.3 ~ 13이다. 다만 이는 연료 및 노의 운전조건에 따라 변경할 수 있다.The combustion additive composition of the present invention may be mixed with a liquid such as water and then mixed with a fuel, but may be used together with the fuel in the combustion engine, or may be directly injected into or combusted in the combustion engine. That is, it is possible to mix and use beforehand before putting into a combustion engine, and can also mix and spray a composition, or to inject directly into the fuel or ash injected into a combustion engine, while fuel is injected into a combustion engine. At this time, the mixing degree of water is an amount of 3 to 15 times, more preferably 5 to 7 times the weight of the borate ions or the composition. In addition, when further mixing the water, the preferred pH level is about 9.3 to 13. However, this can be changed according to the fuel and furnace operating conditions.
전술한 바와 같이, 본 발명의 연소 첨가제 조성물은 액정 상태의 붕산염이온을 포함함으로써, 초기 연소 구간의 저온연소 유도, 슬래깅 저감, SOx 저감, 및 NOx 저감 중 적어도 하나 이상의 기능을 효과적으로 수행할 수 있다.As described above, the combustion additive composition of the present invention includes borate ions in a liquid crystal state, thereby effectively performing at least one or more of low temperature combustion induction, slagging reduction, SO x reduction, and NO x reduction in the initial combustion section. Can be.
본 발명의 다른 측면에 따르면, 알카리금속계열 붕산염 수화물, 알카리금속계열 수산화물(예컨대, NaOH, KOH 및 LiOH 중에서 선택되는 1종 이상) 및 물을 혼합하여 상기 알카리금속계열 붕산염 수화물을 이온화 및 액정화시키는 것을 특징으로 하는, 연소 첨가제 조성물의 제조방법이 제공된다.According to another aspect of the present invention, ionizing and liquidating the alkali metal-based borate hydrate by mixing alkali metal-based borate hydrate, alkali metal-based hydroxide (eg, at least one selected from NaOH, KOH, and LiOH) and water Characterized in that, there is provided a method for producing a combustion additive composition.
상기 알카리금속계열 붕산염 수화물은 물에 이온화된 후 Na+, K+, Li+, OH- 등과 함께 존재하게 된다. 한편, 제조과정에서 NaOH, KOH, LiOH 등에 의하여 액정을 이루기 위한 최적의 pH는 13±0.8이고 최적의 온도는 96 ~ 100℃이다.The alkali metal borate hydrate is present with Na + , K + , Li + , OH and the like after being ionized in water. On the other hand, the optimum pH for forming the liquid crystal by NaOH, KOH, LiOH, etc. in the manufacturing process is 13 ± 0.8 and the optimum temperature is 96 ~ 100 ℃.
상기 알카리금속계열의 붕산염은 cis-diols를 가지고 있는 프로필렌글리콜, 에틸렌글리콜 또는 글리세롤, 소르비톨(Sorbitol), 또는 에탄올아민 등 유기물과 혼재되거나 부분적으로 또는 전체적으로 용해될 경우에는 액정이 형성되지 않고 저온기능 등의 효과가 거의 나타나지 아니한다. (이는 후술하는 ‘제조예 7', '표 7' 및 '표 8’를 참조) The alkali metal borate is a liquid crystal without mixing or partially or totally dissolved with organic materials such as propylene glycol, ethylene glycol or glycerol, sorbitol, or ethanolamine having cis-diols, and low temperature function. Almost no effect. (See `` Production Example 7 '', `` Table 7 '' and `` Table 8 '' below.)
일 구체예에서, 상기 알카리금속계열 붕산염 수화물은 tindal, tincalconite, keratin, zincborate, borax, sodium metaborate tetrahydrate, sporgite, pentaborate, ameghinite, inderite, inyoite, meyerhofferite 및 kurnakovite 중에서 선택되는 1종 이상, 예를 들어 borax일 수 있으며, 이 경우 액정 상태의 붕산염이온으로서 B(OH)3, 구체적으로 4B(OH)3가 형성된다.In one embodiment, the alkali metal-based borate hydrate is at least one selected from tindal, tincalconite, keratin, zincborate, borax, sodium metaborate tetrahydrate, sporgite, pentaborate, ameghinite, inderite, inyoite, meyerhofferite and kurnakovite, for example borax In this case, B (OH) 3 , specifically 4B (OH) 3, is formed as the borate ion in the liquid crystal state.
구체적으로, borax의 경우, 일반적으로 물 등에 ‘B5O6(OH)4 -’로 미미하게 이온화되나 본 발명의 경우에는 NaOH 및/또는 KOH에 의해 “Na2B4O7·10H2O + 7H2O + 2NaOH (또는 KOH) → 4Na(또는 2Na + 2K)+ + 4OH- + 4B(OH)3 + 10H2O”와 같은 반응을 가지며, Na2B4O7·10H2O는 molecular scale의 액정인 4B(OH)3를 거쳐 nano scale 수준의 그리고 더 큰 투명한 액정으로 자라게 된다. molecular scale이든 nano scale 규모이든 또는 그 이상의 크기를 가진 액정이든 본 발명의 효과는 크게 다르지 않다. 또한 이들 모두는 건조시키면 투명한 Crystal로 커지게 된다. Specifically, in the case of borax, generally water or the like 'B 5 O 6 (OH) 4 -' with but minimal to ionize the case of the present invention, by NaOH and / or KOH "Na 2 B 4 O 7 · 10H 2 O + 7H 2 O + 2NaOH (or KOH) → 4Na (or 2Na + 2K) + + 4OH - + 4B (OH) have a reaction, such as a 3 + 10H 2 O ", Na 2 B 4 O 7 · 10H 2 O is 4B (OH) 3 , the molecular scale liquid crystal, grows to nanoscale and larger transparent liquid crystals. Whether it is a liquid crystal having a molecular scale, nano scale scale, or more, the effect of the present invention is not significantly different. All of them also grow into transparent crystals when dried.
일 구체예로, 물 100 중량부에 대하여 알카리금속계열 붕산염 수화물 17.5 ~ 25 중량부 및 알카리금속계열 수산화물 3.7 ~ 7.4 중량부를 혼합하여 본 발명의 연소 첨가제 조성물을 제조할 수 있다. 보다 구체적으로, 물 81 중량부, NaOH 3 ~ 6 중량부, borax 14 ~ 20 중량부의 비율조건에서 바람직한 액정화가 이루어진다. In one embodiment, the combustion additive composition of the present invention may be prepared by mixing 17.5 to 25 parts by weight of an alkali metal borate hydrate and 3.7 to 7.4 parts by weight of an alkali metal hydroxide based on 100 parts by weight of water. More specifically, preferred liquid crystallization is achieved under the ratio of 81 parts by weight of water, 3 to 6 parts by weight of NaOH, and 14 to 20 parts by weight of borax.
다른 구체예로, 본 발명은 상기 연소 첨가제 조성물의 제조에 있어, 알카리금속계열 붕산염 수화물, 알카리금속계열 수산화물 및 물을 혼합한 후, 혼합물을 냉각시키는 단계를 포함할 수 있다. 구체적으로, 본 발명에서는 96 ~ 100℃로부터 0℃까지 냉각하는 중에 mass transfer에 의한 Crystal(액정)의 성장이 지속될 수 있다.In another embodiment, the present invention may include the step of mixing the alkali metal-based borate hydrate, alkali metal-based hydroxide and water in the production of the combustion additive composition, and then cooling the mixture. Specifically, in the present invention, growth of the crystal (liquid crystal) by mass transfer may be continued while cooling from 96 to 100 ° C to 0 ° C.
이하, 실시예를 통해 본 발명에 따른 액정 상태의 붕산염이온을 포함하는 연소(연료) 첨가제 조성물을 첨가하기 전과 첨가한 후의 연소 상태를 각각 실험하여 연소기관 내부의 온도변화 및 오염물질 배출량을 측정하였다.Hereinafter, the combustion state of the combustion (fuel) additive composition including the borate ion in the liquid crystal state according to the present invention was tested through the examples before and after the addition, respectively, to measure the temperature change and the emission of pollutants in the combustion engine. .
그러나, 본 발명의 실시예는 여러 가지 다양한 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예로 한정되는 것은 아니다. 본 발명의 실시예는 해당기술 분야에서 통상의 지식을 가진 자가 본 발명을 이해할 수 있도록 설명하기 위해서 제공되는 것이다.However, embodiments of the present invention may be modified in many different forms, the scope of the present invention is not limited to the embodiments described below. Embodiment of the present invention is provided to explain to those skilled in the art to understand the present invention.
제조예 1: 붕산염에 물만을 혼합하여 실시Preparation Example 1 was carried out by mixing only water with borate
연소기관으로 250MWh급의 PC 보일러를 사용하고 연료로는 석탄(IDT: 1330℃)을 공급하도록 하였으며, 동일한 설비 및 연료를 적용하여 무게 대비 석탄과 붕산염(5붕산염: KB5O7·4H2O)을 500:1로 혼합하여 첨가 전과 첨가 후를 각각 비교 측정해 평가하였다. 그 평가결과는 하기 표 1에 나타내었다.A 250MWh PC boiler was used as the combustion engine, and coal (IDT: 1330 ℃) was supplied as fuel. Coal and borate (5 borate: KB 5 O 7 · 4H 2 O by weight) was applied using the same equipment and fuel. ) Was mixed at 500: 1 and evaluated before and after addition, respectively. The evaluation results are shown in Table 1 below.
표 1 붕산염 + 물
구 분 첨가 전 첨가 후 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1310 -40 -3.0
중반온도 1300 1320 20 1.5
오염물질(ppm) SOx 180 152 -28 -15.6
NOx 165 141 -24 -14.5
SO3 17 12 -5 -29.4
Table 1 Borate + water
division Before addition After addition Change % Change
Temperature change (℃) Initial temperature 1350 1310 -40 -3.0
Mid temperature 1300 1320 20 1.5
Contaminants (ppm) SOx 180 152 -28 -15.6
NOx 165 141 -24 -14.5
SO 3 17 12 -5 -29.4
(* SOx는 일반적으로 SO2만을 측정하여 기록하는바, 본 발명에서도 SO2를 의미함.)(* Also SO x in a general sense only to the SO 2 SO 2 in bar, the present invention for measuring the recording.)
제조예 2: 붕산염에 마그네슘계열의 화합물과 알카리금속 화합물을 더 포함하여 실시Preparation Example 2 further includes a magnesium-based compound and an alkali metal compound in borate
연소기관으로 250Mew급의 PC 보일러를 사용하고 연료로는 석탄(IDT: 1322℃)을 공급하도록 동일한 조건과 설비 및 연료를 적용하며 “붕산염 Tincalconite(Na2B4O7·5H2O):산화마그네슘:탄산나트륨=45:30:25”의 무게 비로 혼합한 첨가제 조성물을 5배 정도의 물에 슬러리 타입으로 혼합한 후 물이 포함된 그 조성물을 석탄 무게 대비 400:1의 비율(물이 포함된 비율임)로 혼합하여 첨가 전과 첨가 후를 각각 비교 측정해 평가하였다. 그 평가결과는 하기 표 2에 나타내었다.We use 250Mew class PC boiler as the combustion engine and apply the same conditions, equipment and fuel to supply coal (IDT: 1322 ℃) as fuel. “Borate Tincalconite (Na 2 B 4 O 7 · 5H 2 O): Oxidation Magnesium: Sodium carbonate = 45:30:25 ”The additive composition mixed in a weight ratio of about 5 times the water in a slurry type, and then the composition containing water to the ratio of 400: 1 to the weight of coal (water Ratio), and before and after addition, respectively, were measured and evaluated. The evaluation results are shown in Table 2 below.
표 2 붕산염 + 산화마그네슘 + 탄산나트륨
구 분 첨가 전 첨가 후 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1281 -69 -5.1
중반온도 1300 1321 21 1.6
오염물질(ppm) SOx 180 134 -46 -25.6
NOx 165 127 -38 -23.0
SO3 17 9 -8 -47.1
CO 45 25 -20 -44.4
TABLE 2 Borate + Magnesium Oxide + Sodium Carbonate
division Before addition After addition Change % Change
Temperature change (℃) Initial temperature 1350 1281 -69 -5.1
Mid temperature 1300 1321 21 1.6
Contaminants (ppm) SOx 180 134 -46 -25.6
NOx 165 127 -38 -23.0
SO 3 17 9 -8 -47.1
CO 45 25 -20 -44.4
제조예 3: 상기 붕산염에 연소지연을 심화시키고 후반에 발생하는 불완전연소를 방지하도록 알카리금속계열의 화합물을 더 포함하여 실시Preparation Example 3 further includes an alkali metal-based compound to deepen the combustion delay in the borate and prevent incomplete combustion occurring at a later stage.
연소기관으로 Steam 발생량 150ton/hr급의 PC(미분탄 연소) 보일러로서 저 회융점과 고 휘발분을 가진 중국 선화탄(IDT: 약 1180℃, 회분 함량 약 10W%)을 사용하는 보일러에서 시험을 하였다. “붕산염(Tincal):수산화칼륨=45:55”의 비율로 혼합한 조성물로 물을 중량대비 5배를 혼합하여 액정 상태가 없는 액상으로 만들어 이를 연료 중량 대비 500:1의 비율로 분사 장치를 이용하여 석탄을 분쇄하는 Mill(분쇄기) 전에 설치된 석탄 운송 Feeder 위의 석탄에 투입하였다.The combustion engine was tested in a boiler using a Chinese ash coal (IDT: about 1180 ℃, ash content of about 10W%) with low melting point and high volatile matter as a steam boiler of 150ton / hr. "Tincal: Potassium hydroxide = 45:55" in a ratio of 5 times by weight of water mixed by weight to make a liquid-free liquid phase state using a spray device at a ratio of 500: 1 to the weight of the fuel The coal was fed into the coal above the coal transport feeder installed before the mill to grind the coal.
표 3 붕산염 + 수산화칼륨
구 분 첨가 전 첨가 후 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1292 -58 -4.3
중반온도 1300 1325 25 1.9
오염물질(ppm) SOx 180 123 -57 -31.7
NOx 165 121 -44 -26.7
SO3 17 10 -7 -41.2
CO 45 29 -16 -35.6
TABLE 3 Borate + Potassium Hydroxide
division Before addition After addition Change % Change
Temperature change (℃) Initial temperature 1350 1292 -58 -4.3
Mid temperature 1300 1325 25 1.9
Contaminants (ppm) SOx 180 123 -57 -31.7
NOx 165 121 -44 -26.7
SO 3 17 10 -7 -41.2
CO 45 29 -16 -35.6
제조예 1 내지 3을 통하여, 본 발명에 따른 ‘붕산염’과, ‘ 알카리금속 또는 마그네슘 화합물이 혼합된 붕산염이온’ 그리고 ‘이온 및 액정화된 붕산염이온 조성물’ 각각의 효과를 비교 및 설명하였다. 상기 표 1, 표 2 및 표 3에서 알 수 있는 바와 같이, 초기온도 감소효과가 단순 붕산염만을 사용한 것보다는 붕산염이온에 ‘마그네슘화합물과 알카리’ 또는 ‘알카리’를 혼합한 경우 각각 2.1%, 1.3%씩 더 증진되었다.Through Preparation Examples 1 to 3, the effects of 'borate', 'borate ion mixed with an alkali metal or magnesium compound' and 'ion and liquid crystallized borate ion composition' according to the present invention were compared and explained. As can be seen in Table 1, Table 2 and Table 3, the initial temperature reduction effect is 2.1%, 1.3%, respectively, when the magnesium compound and the alkali or the alkali is mixed with borate ions rather than using only borate only It was further enhanced.
아래의 제조예 4, 5 및 6과 표 4, 표 5 및 표 6은 상기 각각의 제조예 1, 2 및 3에서와 동일한 방법과 동일한 석탄 및 동일한 조건으로 각각의 조성물을 이온 및 액정화하여 실시한 결과물로 이온화 및 액정화한 경우의 효과가 탁월함을 증명해 준다.Preparation Examples 4, 5 and 6 and Tables 4, 5 and 6 below were carried out by ionizing and liquidifying the respective compositions under the same coal and the same conditions as in the respective Preparation Examples 1, 2 and 3 above. The result proves that the effect of ionization and liquid crystallization is excellent.
제조예 4 (제조예 1과 비교하기 위해)Preparation Example 4 (for comparison with Preparation Example 1)
5붕산염(KB5O7·4H2O)과 수산화칼륨(25W%)을 중량 기준 물 100 대하여 21:23의 비율로 이온화 및 액정화시킨 후 만들어진 조성물 Sample을 무게 대비 ‘석탄:물:조성물=200:5:1’의 비율로 적용하였다. 이온화 방법은, 반응로에 물 100g에 수산화칼륨 6g을 혼합한 후 pH 13.5의 상태에서 100℃까지 가열한 다음 5붕산염을 21g의 비율로 넣고 3시간 Heating 및 Agitating 한 후 완전 이온화 및 액정을 형성시킨 다음 냉각 시스템을 통해 25℃까지 자연 냉각하였다. The composition sample prepared after ionization and liquid crystallization of pentaborate (KB 5 O 7 4H 2 O) and potassium hydroxide (25W%) at a ratio of 21:23 with respect to 100 by weight of water was used. Applied at a ratio of 200: 5: 1 '. In the ionization method, 6 g of potassium hydroxide was mixed with 100 g of water in a reactor, and heated to 100 ° C. at a pH of 13.5, followed by heating and agitating for 5 hours in a ratio of 21 g of a fluoroborate. It was then naturally cooled to 25 ° C. through a cooling system.
그리고, 1개월간의 테스트를 마친 후 튜브 표면에서 SEM과 원소분석을 통해 부분적으로 형성된 FeB를 관찰하였다. 공기 예열기 등에 황산암모늄의 파울링이 형성되지 아니함을 확인하였다.After 1 month of testing, the formed FeB was observed on the surface of the tube through SEM and elemental analysis. It was confirmed that fouling of ammonium sulfate was not formed in the air preheater.
표 4 액정화 후 (5붕산염 + 수산화칼륨)
구 분 첨가 전 첨가 후 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1255 -95 -7.1
중반온도 1300 1315 15 1.2
오염물질(ppm) SOx 180 20 -160 -88.9
NOx 165 22 -143 -86.7
SO3 17 6 -11 -64.7
Table 4 After liquid crystallization (5-borate + potassium hydroxide)
division Before addition After addition Change % Change
Temperature change (℃) Initial temperature 1350 1255 -95 -7.1
Mid temperature 1300 1315 15 1.2
Contaminants (ppm) SOx 180 20 -160 -88.9
NOx 165 22 -143 -86.7
SO 3 17 6 -11 -64.7
제조예 1과 제조예 4에서, Bottom ash의 슬래깅(Slagging)을 채취하여 비교한 결과, 아래 그림 1과 같은 차이가 있었다. 즉 이온 및 액정화한 경우의 효과가 탁월하였다. In Preparation Example 1 and Preparation Example 4, the slagging of the bottom ash (Slagging) was collected and compared, there was a difference as shown in Figure 1 below. That is, the effect in the case of ionization and liquid crystallization was excellent.
[규칙 제91조에 의한 정정 16.01.2013] 
<Slagging 비교>
[Revision 16.01.2013 under Rule 91]
<Slagging comparison>
[규칙 제91조에 의한 정정 16.01.2013] 
첨가 전: 비중 2.813
붕산염(제조예 1): 비중 2.456
액정화된 붕산염 (제조예 4): 비중 1.763
[Revision 16.01.2013 under Rule 91]
Before addition: specific gravity 2.813
Borate (Manufacturing Example 1): Specific gravity 2.456
Liquidated Borate (Preparation 4): Specific Gravity 1.763
제조예 5 (제조예 2와 비교하기 위해)Preparation Example 5 (for comparison with Preparation Example 2)
“붕산염(Tincal):수산화칼륨(35W% 농도 액상)=45:45”의 비율로 pH 13.0 상태에서 이온 및 액정화된 붕산염을 포함하는 조성물(붕산염이온 Tincalconite:산화마그네슘:탄산나트륨=45:30:25)을 석탄 무게 대비 ‘석탄:물:조성물=500:5:1’의 비율로 적용하였다.Composition containing ions and liquid crystalline borate salts at pH 13.0 at a ratio of “Tincal: potassium hydroxide (35 W% concentration liquid) = 45: 45” (borate ion Tincalconite: magnesium oxide: sodium carbonate = 45: 30) 25) was applied as the ratio of coal: water: composition = 500: 5: 1 to the weight of coal.
표 5 액정화 후 “Tincalconite:산화마그네슘:탄산나트륨”
구 분 첨가 전 첨가 후 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1265 -85 -6.3
중반온도 1300 1311 11 0.8
오염물질(ppm) SOx 180 19 -161 -89.4
NOx 165 17 -148 -89.7
SO3 17 3 -14 -82.4
CO 45 18 -27 -60.0
Table 5 After liquefaction, “Tincalconite: Magnesium Oxide: Sodium Carbonate”
division Before addition After addition Change % Change
Temperature change (℃) Initial temperature 1350 1265 -85 -6.3
Mid temperature 1300 1311 11 0.8
Contaminants (ppm) SOx 180 19 -161 -89.4
NOx 165 17 -148 -89.7
SO 3 17 3 -14 -82.4
CO 45 18 -27 -60.0
제조예 6 (제조예 3과 비교하기 위해)Preparation Example 6 (for comparison with Preparation Example 3)
“붕산염(Tincal)을 '물:붕산염:수산화칼륨수용액(25W%)=100:23:17'의 비율로 제조예 4와 같은 방법으로 이온화 및 액정화시킨 후 만들어진 조성물 Sample을 무게 대비 ‘석탄:물:조성물=500:2:1’의 비율로 적용하였다.“Tincal is ionized and liquefied by the same method as Preparation Example 4 in the ratio of 'water: borate: potassium hydroxide aqueous solution (25W%) = 100: 23: 17', and the composition sample prepared by weight of 'coal: Water: composition = 500: 2: 1 '.
표 6 액정화 후 (tincal + 수산화칼륨)
구 분 첨가 전 첨가 후 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1255 -95 -7.0
중반온도 1300 1310 10 0.8
오염 물질(ppm) SOx 180 18 -162 -90.0
NOx 165 18 -147 -89.1
SO3 17 4 -13 -76.5
CO 45 14 -31 -68.9
Table 6 After liquidation (tincal + potassium hydroxide)
division Before addition After addition Change % Change
Temperature change (℃) Initial temperature 1350 1255 -95 -7.0
Mid temperature 1300 1310 10 0.8
Contaminants (ppm) SOx 180 18 -162 -90.0
NOx 165 18 -147 -89.1
SO 3 17 4 -13 -76.5
CO 45 14 -31 -68.9
상기 표 4, 표 5 및 표 6에서와 같이, 붕산염 액정이 포함된 조성물을 사용할 때 붕산염만을 사용할 때보다 초기온도 저하 기능이 2.6%, 3.3%, 4.0%가 더 증진되었다. 뿐만 아니라 SOx, NOx, SO3, CO, 그리고 Slagging의 형상 및 변화량도 붕산염만을 사용할 때보다도 훨씬 증진되었다.As shown in Table 4, Table 5 and Table 6, the initial temperature reduction function is 2.6%, 3.3%, 4.0% more enhanced than when using only the borate when the composition containing the borate liquid crystal. In addition, the shape and variation of SO x , NO x , SO 3 , CO, and slagging were much better than those of borate alone.
특히, 상기 표 6에 나타낸 바와 같이, 제조예 6의 경우 붕산염만 사용한 경우보다 그 효과가 월등하여 TMS수치에서 SOx는 90%, NOx는 89.1%, SO3는 76.5%, CO는 68.9%가 감소하였다.In particular, as shown in Table 6, in the case of Preparation Example 6, the effect is superior to the case of using only borate, SO x is 90%, NO x is 89.1%, SO 3 is 76.5%, CO is 68.9% in TMS value Decreased.
한편, 붕산염에 알카리금속 또는 마그네슘 화합물을 혼합했을 때보다 액정 상태의 붕산염이온을 포함한 조성물의 경우 그 효과가 더 증진되었음을 제조예 2, 3, 4, 5 및 6과 표 2, 표 3, 표 4, 표 5 및 표 6을 통해 비교하여 알 수 있었다.On the other hand, in the case of a composition containing borate ions in the liquid crystal state than the mixture of the alkali metal or magnesium compound in the borate salts, the effect was further enhanced the Preparation Examples 2, 3, 4, 5 and 6 and Table 2, Table 3, Table 4 , Table 5 and Table 6 it was found by comparison.
제조예 7Preparation Example 7
물 100g, 붕사 17g을 NaOH(농도 25W%) 12g의 비율로 이온 및 액정화시킨 경우 붕사 20g, 에틸렌글리콜 60g의 비율로 용해시킨 후 물 50g를 희석하여 비교하기 위해 제조예 1에서와 같은 조건으로 시험하여 아래 표 7과 같은 결과를 얻었다.When 100 g of water and 17 g of borax were ionized and liquefied at a rate of 12 g of NaOH (concentration 25 W%), 20 g of borax and 60 g of ethylene glycol were dissolved, and then 50 g of water was diluted and compared under the same conditions as in Preparation Example 1. The test yielded the results shown in Table 7 below.
또한, 제조예 1과 같은 조건에서 에틸렌글리콜 대신 에탄올아민 60g의 비율로 붕산염을 용해시킨 조성물을 만든 경우는 아래 표 8과 같았다.In addition, in the case of preparing a composition in which the borate was dissolved in the ratio of 60 g of ethanolamine under the same conditions as in Preparation Example 1, it was as shown in Table 8 below.
표 7 이온화 후(붕산염 + 수산화나트륨 / 붕산염 + 에틸렌글리콜)
구 분 첨가전 에틸렌글리콜로 이온화 NaOH로 액정화 된 경우
온도 변화량 변화율(%) 온도 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1317 -33 -2.5 1198 -152 -11.3
중반온도 1300 1300 0 0.0 1287 -13 -1.0
오염 물질(ppm) SOx 180 165 -15 -9.1 25 -155 -86.1
NOx 165 164 -1 -0.6 9 -156 -94.5
SO3 17 15 -2 -13.3 4 -13 -76.5
TABLE 7 After ionization (borate + sodium hydroxide / borate + ethylene glycol)
division Before addition Ionized with ethylene glycol When liquidated with NaOH
Temperature Change % Change Temperature Change % Change
Temperature change (℃) Initial temperature 1350 1317 -33 -2.5 1198 -152 -11.3
Mid temperature 1300 1300 0 0.0 1287 -13 -1.0
Contaminants (ppm) SOx 180 165 -15 -9.1 25 -155 -86.1
NOx 165 164 -One -0.6 9 -156 -94.5
SO 3 17 15 -2 -13.3 4 -13 -76.5
표 8 이온화 후(붕산염 + 수산화나트륨 / 붕산염 + 에탄올아민)
구 분 첨가전 에탄올아민으로 이온화 NaOH로 액정화 된 경우
온도 변화량 변화율(%) 온도 변화량 변화율(%)
온도 변화(℃) 초기온도 1350 1315 -35 -2.7 1198 -152 -11.3
중반온도 1300 1300 0 0.0 1287 -13 -1.0
오염 물질(ppm) SOx 180 170 -10 -5.9 25 -155 -86.1
NOx 165 162 -3 -1.0 9 -156 -94.5
SO3 17 15 -2 -13.3 4 -13 -76.5
Table 8 After ionization (borate + sodium hydroxide / borate + ethanolamine)
division Before addition Ionized with ethanolamine When liquidated with NaOH
Temperature Change % Change Temperature Change % Change
Temperature change (℃) Initial temperature 1350 1315 -35 -2.7 1198 -152 -11.3
Mid temperature 1300 1300 0 0.0 1287 -13 -1.0
Contaminants (ppm) SOx 180 170 -10 -5.9 25 -155 -86.1
NOx 165 162 -3 -1.0 9 -156 -94.5
SO 3 17 15 -2 -13.3 4 -13 -76.5
상기에서는 석탄 연료를 대상으로 본 발명에 따른 액정 상태의 붕산염이온을 이용한 저온연소기능을 갖는 연료 첨가제 조성물의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속함은 자명하다.In the above, a preferred embodiment of a fuel additive composition having a low-temperature combustion function using a borate ion in a liquid crystal state according to the present invention with respect to coal fuel has been described, but the present invention is not limited thereto, and the claims and the details of the invention are described. It is possible to carry out various modifications within the scope of the description, which also belongs to the scope of the invention is obvious.

Claims (17)

  1. 액정(Liquid crystal) 상태의 붕산염이온을 포함하는 연소 첨가제 조성물.Combustion additive composition comprising a borate ion in the liquid crystal (Liquid crystal) state.
  2. 제1항에 있어서,The method of claim 1,
    상기 붕산염이온은 5붕산염이온 또는 4붕산염이온인 것을 특징으로 하는 연소 첨가제 조성물.The borate ion is a combustion additive composition, characterized in that the pentaborate or tetraborate ion.
  3. 제1항에 있어서,The method of claim 1,
    상기 붕산염이온은 B(OH)3, B(OH)4 -, B5O6(OH)4 -, B3O3(OH)4 -, B4O5(OH)4 -2 및 B3O3(OH)5 -2 중에서 선택되는 1종 이상인 것을 특징으로 하는 연소 첨가제 조성물.The borate ion is B (OH) 3, B ( OH) 4 -, B 5 O 6 (OH) 4 -, B 3 O 3 (OH) 4 -, B 4 O 5 (OH) 4 -2 and B 3 Combustion additive composition, characterized in that at least one selected from O 3 (OH) 5 -2 .
  4. 제3항에 있어서,The method of claim 3,
    상기 붕산염이온은 B(OH)3인 것을 특징으로 하는 연소 첨가제 조성물.The borate ion is a combustion additive composition, characterized in that B (OH) 3 .
  5. 제1항에 있어서,The method of claim 1,
    Na+, K+ 및 Li+ 중에서 선택되는 1종 이상의 알카리금속이온; OH-; 및 H2O를 더 포함하는 것을 특징으로 하는 연소 첨가제 조성물.At least one alkali metal ion selected from Na + , K + and Li + ; OH -; And H 2 O.
  6. 제1항에 있어서,The method of claim 1,
    이온화된 산화마그네슘, 수산화마그네슘, 탄산마그네슘 및 인산마그네슘 중에서 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 연소 첨가제 조성물.Combustion additive composition, characterized in that it further comprises at least one selected from ionized magnesium oxide, magnesium hydroxide, magnesium carbonate and magnesium phosphate.
  7. 제1항에 있어서,The method of claim 1,
    Zincborate 또는 이온화된 Zincborate를 더 포함하는 것을 특징으로 하는 연소 첨가제 조성물.Combustion additive composition characterized in that it further comprises Zincborate or ionized Zincborate.
  8. 제1항에 있어서,The method of claim 1,
    액상 형태인 것을 특징으로 하는 연소 첨가제 조성물.Combustion additive composition, characterized in that the liquid form.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    초기 연소 구간의 저온연소 유도, 슬래깅(Slagging) 저감, SOx 저감, 및 NOx 저감 중 1 이상의 기능을 갖는 것을 특징으로 하는 연소 첨가제 조성물.Combustion additive composition characterized in that it has at least one function of low temperature combustion induction, slagging reduction, SO x reduction, and NO x reduction of the initial combustion section.
  10. 알카리금속계열 붕산염 수화물, 알카리금속계열 수산화물 및 물을 혼합하여 상기 알카리금속계열 붕산염 수화물을 이온화 및 액정화시키는 것을 특징으로 하는, 연소 첨가제 조성물의 제조방법.A method for producing a combustion additive composition, characterized in that the alkali metal series borate hydrate is ionized and liquid crystalized by mixing an alkali metal series borate hydrate, an alkali metal series hydroxide and water.
  11. 제10항에 있어서,The method of claim 10,
    상기 알카리금속계열 붕산염 수화물은 tindal, tincalconite, keratin, zincborate, borax, sodium metaborate tetrahydrate, sporgite, pentaborate, ameghinite, inderite, inyoite, meyerhofferite 및 kurnakovite 중에서 선택되는 1종 이상인 것을 특징으로 하는 연소 첨가제 조성물의 제조방법.The alkali metal-based borate hydrate is a method of producing a combustion additive composition, characterized in that at least one selected from tindal, tincalconite, keratin, zincborate, borax, sodium metaborate tetrahydrate, sporgite, pentaborate, ameghinite, inderite, inyoite, meyerhofferite and kurnakovite. .
  12. 제11항에 있어서,The method of claim 11,
    상기 알카리금속계열 붕산염 수화물은 borax인 것을 특징으로 하는 연소 첨가제 조성물의 제조방법.The alkali metal-based borate hydrate is a method for producing a combustion additive composition, characterized in that borax.
  13. 제12항에 있어서,The method of claim 12,
    액정(Liquid crystal) 상태의 붕산염이온으로서 4B(OH)3가 형성되는 것을 특징으로 하는 연소 첨가제 조성물의 제조방법.4B (OH) 3 is formed as a borate ion in a liquid crystal state.
  14. 제10항에 있어서,The method of claim 10,
    상기 알카리금속계열 수산화물은 NaOH, KOH 및 LiOH 중에서 선택되는 1종 이상인 것을 특징으로 하는 연소 첨가제 조성물의 제조방법.The alkali metal hydroxide is a method of producing a combustion additive composition, characterized in that at least one selected from NaOH, KOH and LiOH.
  15. 제10항에 있어서,The method of claim 10,
    물 100 중량부에 대하여 알카리금속계열 붕산염 수화물 17.5 ~ 25 중량부 및 알카리금속계열 수산화물 3.7 ~ 7.4 중량부를 혼합하는 것을 특징으로 하는 연소 첨가제 조성물의 제조방법.A method for producing a combustion additive composition comprising mixing 17.5 to 25 parts by weight of an alkali metal based borate hydrate and 3.7 to 7.4 parts by weight of an alkali metal hydroxide based on 100 parts by weight of water.
  16. 제10항에 있어서,The method of claim 10,
    상기 이온화 및 액정화는 96 ~ 100℃의 온도 및 pH 13±0.8의 조건하에서 수행되는 것을 특징으로 하는 연소 첨가제 조성물의 제조방법.The ionization and liquid crystallization is a method of producing a combustion additive composition, characterized in that carried out under the conditions of temperature of 96 ~ 100 ℃ and pH 13 ± 0.8.
  17. 제10항에 있어서,The method of claim 10,
    알카리금속계열 붕산염 수화물, 알카리금속계열 수산화물 및 물을 혼합한 후, 혼합물을 냉각시키는 것을 특징으로 하는 연소 첨가제 조성물의 제조방법.A method of producing a combustion additive composition, characterized by mixing an alkali metal-based borate hydrate, an alkali metal-based hydroxide, and water and then cooling the mixture.
PCT/KR2013/000003 2012-01-03 2013-01-02 Fuel additive composition containing liquid crystal state of borate ions, and preparation method thereof WO2013103234A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0000689 2012-01-03
KR20120000689 2012-01-03
KR1020120126571A KR101327504B1 (en) 2012-01-03 2012-11-09 Combusition additive composition comprising borate ion of liquid crystal phase, and method of preparing the same
KR10-2012-0126571 2012-11-09

Publications (1)

Publication Number Publication Date
WO2013103234A1 true WO2013103234A1 (en) 2013-07-11

Family

ID=48745268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000003 WO2013103234A1 (en) 2012-01-03 2013-01-02 Fuel additive composition containing liquid crystal state of borate ions, and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2013103234A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293410A (en) * 2014-09-10 2015-01-21 济南大学 Desulfurization, dust removal and coal combustion accelerant
CN106701222A (en) * 2017-03-13 2017-05-24 中山市绿浪助剂有限公司 Low-toxicity combustion additive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090966A (en) * 1987-04-23 1992-02-25 Bp Chemicals (Additives) Limited Fuel composition containing an additive for reducing valve seat recession
JP2002544370A (en) * 1999-05-13 2002-12-24 ゼネラル・エレクトリック・カンパニイ Turbine fuel composition
KR100544568B1 (en) * 2002-08-26 2006-01-23 오미혜 Fuel dope with enhanced improving combustion efficiency
JP2008537013A (en) * 2005-04-22 2008-09-11 エンバイロフューエルズ エル.エル.シー. Additive for hydrocarbon fuel comprising non-acidic inorganic compound containing boron and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090966A (en) * 1987-04-23 1992-02-25 Bp Chemicals (Additives) Limited Fuel composition containing an additive for reducing valve seat recession
JP2002544370A (en) * 1999-05-13 2002-12-24 ゼネラル・エレクトリック・カンパニイ Turbine fuel composition
KR100544568B1 (en) * 2002-08-26 2006-01-23 오미혜 Fuel dope with enhanced improving combustion efficiency
JP2008537013A (en) * 2005-04-22 2008-09-11 エンバイロフューエルズ エル.エル.シー. Additive for hydrocarbon fuel comprising non-acidic inorganic compound containing boron and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293410A (en) * 2014-09-10 2015-01-21 济南大学 Desulfurization, dust removal and coal combustion accelerant
CN104293410B (en) * 2014-09-10 2016-08-17 济南大学 Desulfurization, dust removal and coal combustion accelerant
CN106701222A (en) * 2017-03-13 2017-05-24 中山市绿浪助剂有限公司 Low-toxicity combustion additive

Similar Documents

Publication Publication Date Title
WO2019054658A1 (en) Desulfurization catalyst, method for producing same, and method for desulfurization using same
KR101697716B1 (en) Additive composition for solid fuel
JP3745973B2 (en) Coal additive for preventing slagging and coal combustion method
WO2011136556A2 (en) Additive composition for metal sintering
KR20000062297A (en) Process for preparing environmentally stable products by the remediation of contaminated sediments and soils
WO2017018628A1 (en) Fossil fuel and livestock manure combustion promoter for harmful discharge gas and clinker inhibition and for complete combustion, and preparation method therefor
CN108676601B (en) Calcium-magnesium additive for improving slagging performance of coal and application thereof
US5819672A (en) Treatment to enhance heat retention in coal and biomass burning furnaces
CN111687168A (en) Method for co-melting waste incineration ash
WO2013103234A1 (en) Fuel additive composition containing liquid crystal state of borate ions, and preparation method thereof
KR101327504B1 (en) Combusition additive composition comprising borate ion of liquid crystal phase, and method of preparing the same
CN1127776A (en) Sulfur-immobilizing coal-saving additive
Jun et al. Migration and transformation law of potassium in the combustion of biomass blended coal
Zhou et al. Effect of element content fluctuation on partial melting behavior of coal ash particles
Li et al. Exploring influence of MgO/CaO on crystallization characteristics to understand fluidity of synthetic coal slags
CN112779072B (en) Decoking agent and preparation method thereof
KR20120122174A (en) Fuel Additives For Prevention And Removal of Clinker And Reducing Harmful Gas
WO2012053835A2 (en) Liquid combustion catalyst composition comprising an ionized metal compound
KR101301400B1 (en) Fuel Additives Compositions For Reducing Coal Use And Harmful Gas
CN102351553B (en) Water wall refractory belt anti-coking paint
CN109022099A (en) For improving quasi- eastern coal slagging and lime-ash falls off the compound additive and its application method of characteristic
CN109609242B (en) Material preparation capable of changing structure of combustion product of eastern Junggar coal and method for combusting eastern Junggar coal in large proportion in power generation and heat supply boilers
Ma et al. Composition modification and plasma vitrification of bottom ash from industrial hazardous waste incineration
WO2012047065A2 (en) Adhesive composition for steel manufacturing having functions for accelerating combustion and lowering melting point
KR101701428B1 (en) Novel silica gel whose surface is modified, a method for preparing the same and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13733685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13733685

Country of ref document: EP

Kind code of ref document: A1