WO2013102444A1 - 磁电耦合器 - Google Patents

磁电耦合器 Download PDF

Info

Publication number
WO2013102444A1
WO2013102444A1 PCT/CN2013/070112 CN2013070112W WO2013102444A1 WO 2013102444 A1 WO2013102444 A1 WO 2013102444A1 CN 2013070112 W CN2013070112 W CN 2013070112W WO 2013102444 A1 WO2013102444 A1 WO 2013102444A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
group
frame
coil
neck
Prior art date
Application number
PCT/CN2013/070112
Other languages
English (en)
French (fr)
Inventor
刘刚
刘姿仪
Original Assignee
Liu Gang
Liu Ziyi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Gang, Liu Ziyi filed Critical Liu Gang
Priority to CN201380001111.8A priority Critical patent/CN103688444B/zh
Publication of WO2013102444A1 publication Critical patent/WO2013102444A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/26Synchronous generators characterised by the arrangement of exciting windings
    • H02K19/28Synchronous generators characterised by the arrangement of exciting windings for self-excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/046Windings on magnets for additional excitation ; Windings and magnets for additional excitation with rotating permanent magnets and stationary field winding

Definitions

  • the present invention relates to an electrical appliance, and more particularly to a magnetoelectric coupler. Background technique
  • the magnetic circuit enclosed generator disclosed at present is also a kind of magnetoelectric coupler, and there is a case where the magnetic coupling is low, mainly because the magnetic coupling between the magnetic guiding neck and the magnetic conducting frame on the stator is low, the magnetic circuit Closed generators failed to achieve efficient conversion of electrical energy.
  • the transformer currently used is also a magnetoelectric coupler.
  • the current secondary winding of the transformer is used in the same magnetic circuit as the primary winding of the induction, and there is loss in the process of transferring electric energy. There is also an urgent need for innovation. Summary of the invention
  • the invention provides a magnetoelectric coupler, which mainly solves the problem that the magnetic coupling between the magnetic guiding neck and the magnetic conducting frame on the stator of the magnetic circuit closed generator is low and the loss in the electric energy transferred by the transformer, in the generator and the transformer,
  • the induction winding has a group A coil connection capacitor, the B group coil is externally outputted, the A group coil magnetic field is magnetically excited, the B group coil is induced by the composite magnetic field, and the magnetic circuit magnetic coupling is good, so that the magnetoelectric coupler converts the electric energy with high efficiency.
  • a magnetoelectric coupler characterized in that: an organic seat, a casing, an end cover, a yoke, a drive shaft, a transmission wheel, a fan, a rotor and a stator composed of an induction unit constitute a generator, and an induced primary winding and The secondary winding of the sensing unit constitutes a transformer, and the induced unit has at least one configuration, and the induced unit includes an induced winding, a magnetic guiding Zheng, a magnetic guiding neck, and a magnetic conducting frame.
  • the inductive winding is composed of two sets of coils A and B, and the set B coil is set outside the group A coil, and the set A coil is sleeved on the magnetic guide frame integrated with the magnetic guide neck, between the group A and the group B.
  • the A group coil is connected with a large dry 0.001 microfarad capacitor, or connected with a load greater than 0.001 ohm, the induced current of the B group coil is externally output;
  • the A or B coils are all enameled wires, the diameter More than 0.001 mm, Group B enameled wire diameter is larger than Group A enameled wire, each group has at least one coil.
  • the sensing unit has a magnetic guiding neck and a magnetic conducting frame, and the magnetic guiding neck and the magnetic conducting frame are integrally fixed and fixed by 0 mm, and the magnetic guiding neck and the magnetic conducting frame are combined with two ends to have a hollow groove, and the magnetic conductive Wrap around the inside of the rack
  • the outer surface of the magnetic yoke is corresponding to the yoke, and the magnetic conductive frame has a gap corresponding to the magnetic conductive shoe portion, and the gap is greater than 0.1 mm; wherein the space occupied by the empty groove is a three-dimensional geometric shape, and the occupied space is larger than 0.01 cubic millimeter; wherein the magnetic magnetic field is magnetic
  • the cross-sectional area is equal to the total area of the magnetically conductive section of the magnetically permeable frame.
  • the induction unit has a magnetic guiding shoe, and a central angle of the magnetic guiding shoe is larger than a central angle of a magnetic field of the corresponding excitation magnetic source, that is, a magnetic pole of the magnet, and a magnetic flux cross-sectional area of each magnetic conductive shoe is greater than or equal to a magnetic field line of the magnetic pole of the corresponding rotor.
  • the cross-sectional area of the magnetic flux is required, and the maximum magnetic flux of the magnetic conductive shoe is greater than or equal to the magnetic flux of the magnetic conductive neck, that is, the maximum magnetic flux capability of the magnetic conductive shoe saturates the magnetic guiding neck, and the magnetic guiding neck reaches magnetic saturation.
  • the magnetic conductive shoe has a small portion of 0 mm fixed connection with the magnetic conductive shoe of the adjacent stator unit, and the small portion is connected as a magnetic bridge, and the cross-sectional area of the magnetic bridge is greater than or equal to that required for the magnetic pole line on the corresponding rotor. Magnetic flux cross-sectional area.
  • the at least one or more of the sensing units are integrally fixed to form a stator, which is a generator stator, wherein the stator has a circular hole, the circular hole is concentric with the generator rotor and the diameter is larger than the rotor diameter of 0.01 mm; wherein the stator and the yoke are fixed In contact, the magnetic neck of the stator has a gap with the yoke contact portion, and the minimum gap is 0 mm.
  • the sensing unit has a magnetic guiding frame, and the magnetic guiding frame and the magnetic guiding neck are fixed by 0 mm, and the magnetic conducting cross-sectional area of the magnetic guiding frame is equal to the total area of the magnetic guiding section of the magnetic guiding neck; wherein at least one magnetic guiding neck is included It is fixed in series or in parallel with the magnetic shielding frame.
  • the inductive unit has at least one magnetic guiding neck fixedly integrated with the magnetic guiding frame, and one of the magnetic guiding frames is mounted with a set of primary windings for induction excitation, and at least one of the magnetic guiding necks therein
  • the secondary windings that are sensed are installed in the upper and the magnetic magnetic frame to form a transformer; wherein there is a gap between the magnetic conductive frame and the magnetic conductive frame, and the gap is greater than 0.1 mm.
  • the load is a light emitting diode, and the resistors are connected in series and connected in parallel with the capacitor.
  • the magnetic path of the magnetically permeable frame has a gap between two cross sections.
  • the voids occupy a space of more than 5 cubic millimeters, and the voids are filled with an insulating material, one side of the gap being a flat surface and the other side being a zigzag surface.
  • the invention provides a magnetoelectric coupler, wherein a magnetic field induced by a variable magnetic field of the induction winding induces a current, and a magnetic field line generated by the current is enclosed in the sensing unit to form a magnetic line closed loop, and the induced magnetic field passes through the magnetic source of the excitation source.
  • the magnetic neck returns to the magnetic field of the original magnetic field and induces a magnetic field.
  • the magnetic field lines of the induced magnetic field and the magnetic lines of the induced magnetic field respectively go their own magnetic circuit, and the A group coils in the induction winding are connected with capacitors.
  • FIG. 1 is a schematic diagram of a structure of an inductive unit and an electrical principle thereof according to the present invention
  • FIG. 2 is a schematic structural diagram of an alternator according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a parallel structure of a transformer according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a series connection structure of a transformer according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another structure of an induction unit and an electrical principle thereof according to the present invention
  • FIG. 6 is a schematic structural diagram of another alternator according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another parallel structure of a transformer according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another series connection structure of a transformer according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic diagram showing the structure of an inductive unit and its electrical principle according to the present invention.
  • the inductive unit is driven by an inductive winding 2, a magnetic guiding shoe 6, a magnetic guiding neck 12, a magnetic conducting frame 1, and a magnetic field.
  • Frame 11 is constructed.
  • the magnetic guiding shoe 6, the magnetic guiding neck 12, the magnetic conducting frame 1, the magnetic conductive frame 11 are composed of silicon steel sheets;
  • the induction winding 2 is composed of two sets of A and B coils, and the B group coils are set outside the group A coils.
  • the coils of group A are sleeved on the magnetic conducting frame 1 which is integrated with the magnetic guiding neck 12, the coils of the group A are connected in series with capacitors, and the insulation between the group A and the group B is insulated; the magnetic guiding shoe 6 and the magnetic guiding neck 12.
  • the magnetic guide frame 1 and the magnetic conductive frame 11 are integrated
  • the magnetic guiding neck 12 and the magnetic conducting frame 1 are integrally combined with a hollow groove at both ends thereof, and the inner surface of the magnetic conducting frame 1 is wrapped with windings and the corresponding surface has a corresponding magnetic guiding shoe 6 and a yoke, and the magnetic conducting frame 1 corresponds to
  • the magnetic guide shoe 6 and the yoke portion have a gap; the cross section of the magnetic pole 6 corresponding to the N pole of the magnet is equal to the N pole cross section of the magnet, and the cross section of the magnetic pole 11 corresponding to the S pole of the magnet is larger than the S pole cross section of the magnet.
  • the magnet 4 moves to the left and right, and the magnetic field of the magnet 4 passes from the N pole through the magnetic guiding shoe 6, and returns from the magnetic conducting frame ABCDE to the magnet 4, forming a magnet 4 magnetic line closed loop; in the movement of the magnet 4,
  • the magnetic lines of force continuously change magnetically inside the coil winding 2, the A group coils are induced to generate current, the A group coils are connected with capacitors, the A group coil currents generate magnetic field and the magnet 4 excites, and the B group coils are induced by the composite magnetic field.
  • the electric field is connected to the load to form a current.
  • the magnetic wire likes to pass through the place where it is the easiest to pass.
  • the magnetic field line generated by the current in the coil winding 2 passes through the abc magnetic material silicon steel sheet in the magnetic shield 1 to form a magnetic field line. Loop.
  • the winding and the magnetic neck are magnetically coupled with the magnetic conducting frame.
  • the current of the coil winding 2 generates a magnetic field reverse exciting magnetic field.
  • the B group coil is induced by the composite magnetic field, and the magnetic field generated by the B group coil current also acts on the A group coil, A
  • the group coil follows the Lenz's law to produce a resistance to the movement of the magnet 4 on the rotor.
  • the magnetic field generated by the current of the coil winding 2 only has a part of the magnetic force acting on the magnet 4.
  • the magnetic field generated by the coil current of group A affects the movement of the magnet 4 on the rotor to a small extent.
  • the mechanical efficiency of the magnet 4 is improved, and the energy conversion efficiency of the inductor is simultaneously improved. Therefore, the magnetic circuit-enclosed inductor of the present invention is achieved.
  • the embodiment of the present invention includes a base 9, a casing, an end cover, a yoke 8, a stator, a rotor, and a transmission shaft 7 , drive wheel and fan.
  • the casing has a yoke 8 and a stator, and the stator and the yoke 8 are integrally fixed, and the stator is also an induction unit.
  • the induction unit includes an inductive winding 2, a magnetic guide 6, a magnetic neck 12, and a magnetic shield 1 .
  • the inductive winding 2 is composed of two sets of B and B coils, the B sets of coils are set outside the group A coils, and the group A coils are sleeved on the magnetic conducting frame 1 which is integrated with the magnetic guiding neck 12, and there is a group between the groups.
  • the insulating layer 11 is isolated; wherein the group A coils are connected in series with a large dry 0.001 capacitor, and the induced current of the group B coils is externally outputted; the preferred group A and group B coils are all enameled wires, the diameter of which is greater than 0.001 mm, group B The diameter of the enameled wire is larger than the group A enameled wire, and each group has at least one coil; the induction unit has a magnetic guiding shoe 6, The magnetic guiding neck 12 and the magnetic conducting frame 1 are integrally fixed, and the magnetic guiding neck 12 and the magnetic conducting frame 1 are combined with two ends to have a hollow groove 14.
  • the inner surface of the magnetic conducting frame 1 encloses the winding 2 and the outer surface of the magnetic conducting frame 1 is magnetically conductive.
  • the shoe 6 and the yoke 8 have a gap 13 corresponding to the magnetic conductive yoke 6 and the yoke 8 portion, and the gap is larger than 0.1 mm; wherein the space occupied by the hollow groove 14 is a three-dimensional geometric shape, and the occupied space is larger than 0.01 cubic.
  • the magnetic permeability cross-sectional area of the magnetic guiding neck 12 is equal to the total magnetic permeability sectional area of the magnetic conducting frame 1; the central angle of the magnetic guiding shoe 6 is larger than the central magnetic angle of the corresponding excitation magnetic source, that is, the magnetic pole of the magnet 4 on the rotor, each magnetic conductive leather
  • the magnetic flux cross-sectional area of the magnetic flux is greater than or equal to the magnetic flux cross-sectional area required for the magnetic pole lines on the corresponding rotor, and the maximum magnetic flux of the magnetic conductive shoe 6 is greater than or equal to the magnetic flux of the magnetic conductive neck 12, that is, the maximum magnetic flux capability of the magnetic conductive shoe 6 is saturated and magnetically conductive.
  • the neck 12, the magnetic neck 12 reaches magnetic saturation; wherein, the magnetic guide shoe 6 has a small portion of 0 mm fixed connection with the magnetic guide shoe 6 of the adjacent stator unit, and the small portion is connected as a magnetic bridge, and the magnetic bridge cross-sectional area A flux cut that is greater than or equal to the magnetic flux of the magnetic pole on the corresponding rotor
  • the induction unit has four fixed joints to form a generator stator, the stator has a circular hole, the circular hole is concentric with the generator rotor and the diameter is larger than the rotor diameter of 0.01 mm; wherein the stator and the yoke 8 are in fixed contact, the stator
  • the magnetic neck 12 has a gap with the yoke 8 contact portion, and the minimum gap is 0 mm.
  • the original power machine drives the rotor of the generator to rotate, and the magnet 4 on the rotor moves accordingly.
  • the magnet 4 conducts magnetic force on the magnetic guide 6 and the magnetic neck 12 of the stator.
  • the winding coil 2 is induced to generate current.
  • the magnet 4 on the rotor moves, and the magnetic field of the magnet 4 starts from the N pole.
  • the magnetic shoe 6, the magnetic neck 12 and the yoke 8 are returned to the magnet 4, forming a magnet 4 magnetic line closed loop.
  • the magnetic lines of force continuously change magnetically inside the coil winding 2
  • the A group coils are induced to generate current
  • the A group coils are connected with capacitors
  • the A group coil currents generate magnetic field and the magnet 4 are excited
  • Group B The coil is induced by the combined magnetic field to generate an electric field
  • the load is connected to form a current. Since the magnetic wire likes to pass through the place where the magnetic flux is most easily passed, the magnetic field magnetic field generated by the current in the coil winding 2 is composed of the silicon iron piece having the shortest magnetic resistance of the magnetic circuit.
  • the magnetically permeable frame 1 passes through, forming a winding 2 magnetic field closed loop.
  • the winding 2 and the magnetic conducting frame 1 and the magnetic guiding neck 12 are magnetically coupled, and the current of the coil winding 2 generates a magnetic field to react to the exciting magnetic field.
  • the source magnet 4 because the group A coil current is magnetized and the magnet 4 is excited, the magnetic field generated by the B group coil current is also coupled to the group A coil, the group A coil current is magnetized and the magnet 4 is excited, and the group B coil is induced by the composite magnetic field.
  • the magnetic field generated by the group B coil current acts on the group A coil, and the group A line
  • the circle follows the Lenz's law to exert a resistance effect on the movement of the magnet 4 on the rotor. Selecting the appropriate wire diameter and number of turns of the A group coil and selecting the capacitor of the appropriate capacity, then the magnetic field generated by the coil current of the A group has less influence on the rotor.
  • the magnet 4 moves, so that only a part of the magnetic force generated by the B group coil current acts on the magnet 4. Obviously, the mechanical efficiency of the moving rotor rotating magnet 4 is improved, and the energy conversion efficiency of the generator is simultaneously improved.
  • the generator has at least one magnet 4 on the rotor, and the coil winding 2 corresponding to each pole of the magnet 4 has at least one coil winding, and at least one or more windings may be connected in parallel or in series between the coil windings. This can form a generator set with different energies to meet a variety of places where power is required.
  • FIG. 3 is a schematic diagram of a parallel structure of a transformer according to an embodiment of the present invention.
  • the transformer of the embodiment of the present invention includes an induction winding, an inductive winding 2, a magnetic guiding neck 12, a magnetic conducting frame, and a magnetic conducting frame. 15.
  • a magnetic field frame 15 of the transformer is mounted with a set of induction (excitation) windings, which are both primary windings of the transformer, and two magnetic necks 12 are fixed in parallel with the magnetic shielding frame 15 on the magnetic guiding neck 12 and magnetically conductive.
  • the mounting of the sensing unit is both the secondary winding of the transformer (ie, the inductive winding 2).
  • the induction winding 2 is composed of two sets of B coils, the B sets of coils are set outside the group A coils, and the group A coils are sleeved on the magnetic bracket 1 which is integrated with the magnetic guide necks 12, and there is insulation between the groups.
  • Layer 11 is isolated; A group of coils are connected in series with load, load LED, resistance first series, parallel capacitor, capacitor large dry 0.01 start method, B group coil induced current output; Group A or Group B coil For the enameled wire, the diameter is greater than 0.001 mm, the diameter of the group B enameled wire is larger than the group A enameled wire, and each group has at least one coil.
  • the magnetic guiding frame 15, the magnetic guiding neck 12 and the magnetic conducting frame 1 are integrally fixed, and the magnetic guiding neck 12 and the magnetic conducting frame 1 are combined with two ends to open a hollow groove 14.
  • the inner surface of the magnetic conducting frame 1 is wrapped by the induction winding. 2, the outer surface corresponds to the magnetic frame 15, the magnetic frame 1 has a gap 13 corresponding to the magnetic frame 15, and the gap is greater than 0.1 mm; wherein the space occupied by the hollow 14 is a three-dimensional geometric shape, occupying a space larger than 0.01 cubic millimeter
  • the magnetic cross section of the magnetic neck 12 is equal to the total area of the magnetic conductive section of the magnetic shield, and the magnetic guide 15 is magnetically cut.
  • the area of the surface is equal to the total area of the magnetically conductive section of the magnetically permeable neck.
  • the magnetic conducting frame surrounds the gap in the magnetic circuit of the B group coil, preventing the magnetic field lines of the primary side coil winding from passing through the magnetic conducting frame surrounding the outer portion of the B group coil, and the magnetic leakage is small, so that the primary winding
  • the magnetic field lines of the excitation magnetic field are coupled to the secondary coil winding 2 at a high level. It is known that the current generated by the secondary winding 2 generates a magnetic field to react to the magnetic field of the primary winding. Since the A group coil is connected with a capacitor, the A group coil current assists the magnetic field of the primary winding.
  • the magnetic field generated by the coil current of group B is also coupled to the coils of group A.
  • the current of the group A coil is magnetized and the coil of the primary side is excited, the group B coil is induced by the composite magnetic field, and the magnetic field generated by the group B coil current acts on the group A coil.
  • the A-group coil follows the Lenz's law to hinder the excitation of the primary coil winding. Selecting the appropriate wire diameter and number of turns of the A-group coil and selecting the capacitor of the appropriate capacity, then the magnetic field generated by the coil current of the A-group has a small influence.
  • the primary side coil winding magnetic field obviously, the power coupling efficiency of the secondary side coil winding 2 is greatly improved, then the magnetoelectric coupler The energy conversion efficiency is high, and the energy conversion efficiency of the transformer is simultaneously improved.
  • FIG. 4 is a schematic diagram of a series connection structure of a transformer according to an embodiment of the present invention.
  • the transformer of the embodiment of the present invention has the same basic structure as the transformer of FIG. 3, and the difference is that the structure of the embodiment is a series type.
  • the induction winding 2 also consists of an induction winding, an inductive winding 2, a magnetic guiding neck 12, a magnetic conducting frame 1, a magnetic conducting frame 15, and a magnetic shielding frame 15 is mounted with a set of induction (excitation) windings, which are both primary windings of the transformer, and two
  • the magnetic guiding neck 12 and the magnetic shielding frame 15 are fixed in series, and the sensing unit is provided with the transformer secondary winding 2 on the magnetic guiding neck 12 and the magnetic conducting frame 1, and the induction winding 2 has the A and B two sets of coils.
  • the set B coil set is outside the group A coil, and the group A coil is sleeved on the magnetic bracket 1 which is integrated with the magnetic guide neck 12 guide, and the insulation layer 11 is isolated between the group and the group; the transformer works and Fig. 3
  • the transformer shown is the same, and the energy conversion efficiency of the transformer is also high.
  • each set has at least one coil.
  • the magnetic guiding frame 15, the magnetic guiding neck 12 and the magnetic guiding bracket 1 are integrated into one body, and the magnetic guiding neck 12 and the magnetic guiding bracket
  • the magnetic conductive bracket 1 has a gap 13 corresponding to the magnetic frame 15 with a gap greater than 0.1.
  • the space occupied by the hollow groove 14 is a three-dimensional geometric shape, and the occupied space is larger than 0.01 cubic millimeter; wherein the magnetic conductive cross-sectional area of the magnetic conductive neck 12 is equal to the total area of the magnetic conductive section of the magnetic conductive frame 1 and the magnetic conductive cross-sectional area of the magnetic conductive frame 15 Equal to the total area of the magnetically conductive section of the magnetic neck.
  • FIG. 5 is a schematic diagram of the structure and electrical principle of another magnetoelectric coupler provided by the present invention. As shown in FIG. 5, the magnetoelectric coupler is driven by the magnetic induction shoe 6, the magnetic guiding neck 12, and the magnetic conducting frame 1 The magnetic field frame 11 and the winding 2 are formed.
  • the magnetic flux guiding shoe 6, the magnetic guiding neck 12, the magnetic conducting frame 1, the magnetic conductive frame 11 are combined and fixed in a silicon iron piece, and the winding 2 is composed of a group A coil and a B group coil,
  • a The set coil is set on the magnetic shield 1 integrated with the magnetic neck 12, the B sets of coils are sleeved outside the A set of coils, the magnetic shield 1 surrounds the outside of the B sets of coils, and the magnetic path of the magnetic shield 1 has two sections. Between the gaps 16, the gap 16 occupies more than 5 cubic millimeters, the gap 16 is filled with the insulating material 15, one surface of the gap 16 is a plane, and the other surface is a zigzag surface, and the magnetic neck 12 and the magnetic shield 1 are combined.
  • a space 13 is disposed at the two ends, and a space 17 is disposed between the magnetic trajectory 1 and the magnetic conductive shoe 6.
  • a space 14 is disposed between the magnetic permeable frame 1 and the magnetic conductive frame 11, and the space is greater than 1 cubic centimeter, and the space 13
  • the magnetic cross-sectional area of the magnetic shield 1 is larger than the magnetic permeability cross-sectional area of the magnetic coring 6 and the magnetic conductive frame 11, and the magnetic permeability cross-sectional area of the magnetic coring 6 and the magnetic conductive frame 11 is equal to a magnetic cross-sectional area of the magnetic neck 12, the magnetic cross-sectional area is greater than 5 cubic centimeters;
  • the winding 2 has a group A coil, a group B coil combination, and between the group A and the group B Isolation insulating material 15, A set of coils connected in series with the load, the load is a light emitting diode, a resistor connected in series after the parallel capacitor, the coil of group B and the external output.
  • the magnet 4 is moved to the left and right, and the magnetic field line of the magnet 4 passes from the N pole through the magnetic guiding shoe 6, and returns from the ABCDE to the magnet 4, forming a magnet 4 magnetic line closed loop; in the movement of the magnet 4, the magnetic field line
  • the magnetic flux changes continuously inside the winding 2, the A group coils are induced to generate current, the capacitances connected to the A group coils are stored and discharged, and the excitation magnetic field is assisted.
  • the B group coils are coupled by the magnetic field with high efficiency, that is, high efficiency induction.
  • the group B coil generates an electric field, and the load forms a current; the magnetic field lines generated by the group B coil current pass through the silicon steel sheet abc of the magnetic shield 1 to form a magnetic line closed loop.
  • FIG. 6 is a schematic structural diagram of another alternating current generator magnetoelectric coupler according to an embodiment of the present invention.
  • the embodiment of the present invention includes a base 9, a casing, an end cover, a yoke 8, and a stator. Rotor, drive shaft 7, drive wheel and fan.
  • the stator and the yoke 8 are integrally fixed, and the stator is a magnetoelectric coupler, that is, an induction unit.
  • the induction unit includes a winding 2, a magnetic guiding shoe 6, a magnetic guiding neck 12, and a magnetic conducting frame 1.
  • the magnetic guiding shoe 6, the magnetic guiding neck 12 and the magnetic conducting frame 1 are combined and fixed together.
  • the winding 2 has a group A coil and a B group coil combination.
  • the group A coil is set on the magnetic conductive frame 1 integrated with the magnetic guiding neck 12, and the B group coil is sleeved outside the group A coil, and the magnetic conducting frame 1 Surrounding the outside of the group B coil, the magnetic path of the magnetic shield 1 has a gap 16 between the two sections, and the gap 16 occupies more than 1 cubic centimeter.
  • the gap 16 is filled with the insulating material 15, and one side of the gap 16 is flat.
  • One surface is a zigzag surface, and a space 13 is disposed at both end portions of the magnetic neck 12 and the magnetic field frame 1 , and a space 14 is disposed between the magnetic field frame 1 and the yoke 8 , and the spaces 13 and 14 are filled with an insulating material 15 .
  • a space 17 is disposed between the magnetic shield 1 and the magnetic guiding shoe 6, and air is in the space 17, the magnetic guiding sectional area of the magnetic conducting frame 1 is larger than the magnetic conductive sectional area of the magnetic guiding shoe 6, and the magnetic permeability of the magnetic guiding shoe 6
  • the cross-sectional area is equal to the magnetic cross-sectional area of the magnetic neck 12 and the yoke 8, and the magnetic cross-sectional area is greater than 10 cubic centimeters;
  • the winding 2 has a group A coil, a group B coil combination, and between the group A and the group B
  • the insulating material 15 is isolated, and the A group coil is connected in series with the load, and the load is a light emitting diode, and the resistor is connected in series and connected in parallel with the capacitor.
  • the rotor and the magnet 4 are rotated, and the magnetic field of the magnet 4 is returned from the N pole to the magnet 4 through the magnetic flux guiding shoe 6, the magnetic guiding neck 12, the yoke 8, the magnetic guiding neck 12, and the magnetic guiding shoe 6.
  • the magnetic field closed loop of the rotor magnet 4 is formed; in the rotary motion of the rotor and the magnet 4, the internal magnetic flux changes in the winding 2 generate a current, and the capacitance connected to the A group coil is from the storage to the discharge, and the excitation magnetic field is assisted, and the B group coil is
  • the high-efficiency coupling of the composite magnetic field means high-efficiency induction.
  • the B-group coil generates an electric field, and the load forms a current.
  • the magnetic field lines generated by the B-group coil current pass through the silicon steel sheet of the magnetic shield 1 to form a magnetic line closed loop.
  • the rotor and the magnet 4 In the rotary motion, only the current magnetic field of the A group coil is affected.
  • the capacitor connected to the A group coil discharges the magnetic force, which not only induces the B group coil, but also the B group coil outputs stable power, and the rotor and The magnet 4 maintains the original rotational motion rate unchanged.
  • the mechanical efficiency of the rotary motion of the rotor and the magnet 4 is high, and then the magnetic circuit closes the generator to efficiently convert electrical energy.
  • FIG. 7 is a schematic diagram of a parallel structure of another transformer magnetoelectric coupler according to an embodiment of the present invention. As shown in FIG. 7 , in the embodiment of the present invention, the secondary side structural unit of the transformer is guided by a magnetic guiding neck 12 and a magnetic conducting frame 1. Block 11 and winding 2 are formed.
  • the magnetic guiding neck 12, the magnetic conducting frame 1, the magnetic conductive frame 11 are formed by a combination of silicon iron sheets and fixedly connected, and the winding 2 has a group A coil and a B group coil combination, and the A group coil is set in
  • the magnetic guiding neck 12 is an integrated magnetic conducting frame 1, the B sets of coils are sleeved outside the A set of coils, the magnetic conducting frame 1 surrounds the outside of the B sets of coils, and the magnetic path of the magnetic conducting frame 1 has a gap between the two sections.
  • the gap 16 occupies more than 1 cubic centimeter of space, and the gap 16 is filled with the insulating material 15 , one surface of the gap is a plane, and the other surface is a zigzag surface, and the two ends of the magnetic field frame 1 and the magnetic core 12 are integrated
  • a space 13 is provided, and a space 14 is disposed between the magnetic magnetic frame and the magnetic conductive frame, and the space 14 is larger than 5 Cubic centimeter, air in spaces 13, 14 is air, the magnetic cross-sectional area of the magnetic shield 1 is larger than the magnetic cross-sectional area of the magnetic frame 11, and the magnetic cross-sectional area of the magnetic waveguide 11 is equal to the magnetic cross-sectional area of the magnetic neck 12.
  • the magnetic conductive cross-sectional area is greater than 5 cubic centimeters;
  • the winding 2 has a group A coil and a B group coil combination, and the group A coil and the group B coil are separated by an insulating material 15 , and the group A coil is connected in series with the load, the load
  • the light-emitting diodes and the resistors are connected in series and connected in parallel with the capacitors;
  • the magnetic guides 12 of the two secondary side structural units are connected to the magnetic conductive frame 11 , that is, the two windings 2 are arranged in parallel on the magnetic circuit of the magnetic conductive frame 11 to form a transformer. .
  • the magnetic field lines pass from the magnetic field N pole through the magnetic conducting frame 1, pass through the two magnetic guiding necks 12, and then return to the primary side coil magnetic field through the magnetic guiding frame 11 to form the magnetic field lines of the primary side coil magnetic field.
  • the internal magnetic flux of the A group coil of the winding 2 in the secondary side structural unit generates a current, and the capacitance of the A group coil is stored by the storage to the discharge, and the magnetic field of the primary winding is magnetically assisted, and the B group coil is coupled with the high efficiency of the composite magnetic field.
  • the B group coil generates an electric field, and the load forms a current; the magnetic field lines generated by the B group coil current pass through the magnetic shield 1 to form a magnetic line closed loop; as a result, the primary winding magnetic field magnetic line passes through two magnetically guided necks simultaneously.
  • the capacitor connected to the group A coil is discharged, which not only senses the output power of the full load of the group B coil, but also obtains the magnetic field of the primary winding. Strengthened, the primary winding works close to the full load state, so the transformer transfer energy is large and the loss is small.
  • FIG. 8 is a schematic diagram of a series structure of a transformer magnetoelectric coupler according to an embodiment of the present invention.
  • the transformer of the embodiment of the present invention has substantially the same structure as the transformer of FIG. 7 , and also has a winding 2 and a magnetic neck 12 .
  • the magnetic field frame 1 and the magnetic field frame 11 are configured, and the difference is that the structure of the embodiment is of a series type, the primary side winding is installed on the magnetic conductive frame 11, and the magnetic guiding neck 12 and the magnetic conductive are arranged in the two secondary side structural units.
  • the casing 11 is fixed in series, and the winding 2 is installed in the two magnetic brackets 1.
  • the windings of the group A and the coils of the group B in the winding 2 are installed as shown in Fig. 7 to form a transformer.
  • the transformer of the embodiment shown in FIG. 8 is the same as the primary side winding coupling sub-structure unit of the transformer of FIG. 7 described above, and the difference is that the primary winding current generates a magnetic field, and the magnetic field line starts from the magnetic field N pole through the magnetic conductive frame 11, after the first
  • the magnetic guiding neck 12 of one secondary side structural unit passes through the magnetic guiding frame 11 and then passes through the magnetic guiding neck 12 of the second secondary side structural unit, and returns to the primary winding magnetic field through the magnetic guiding frame 11 to form the primary winding.
  • Magnetic field magnetic line circuit the current and magnetic field magnetic lines of the A group coil and the B group coil of the winding 2 in the secondary side structural unit form a magnetic line closed loop like the secondary side structural unit of the transformer of FIG. 7 , so that the magnetic field lines of the primary winding magnetic field successively After passing through the two magnetic necks 12, only the current magnetic field of the A group coil is affected.
  • the capacitors connected to the A group coils are discharged, not only the sense.
  • the output power of the full load of the B group coil is applied, and the magnetic field of the primary winding is strengthened, and the primary winding works close to the full load state, so that the transformer transfer energy is large and the loss is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种磁电耦合器,包括由机壳、端盖、转子和被感应单元构成的定子组成的发电机,以及由感应的原边绕组和被感应单元的副边绕组组成的变压器。被感应单元的绕组(2)被变化的磁力线感生电流,该电流产生的磁场磁力线封闭在被感应单元中,形成磁力线封闭回路,感应磁场从磁源出发经过导磁颈(12)又回到感应磁场中,形成感应磁场磁力线封闭回路,在发电机和变压器中实现感应磁场磁力线与被感应磁场磁力线各自走自己的磁路,磁电耦合器高效地转换电能。

Description

磁电耦合器
技术领域
本发明涉及一种电器 , 尤其涉及一种磁电耦合器。 背景技术
目前所公开的磁路封闭发电机, 也是一种磁电耦合器, 存在着磁力耦合 较低的情况, 主要是定子上的导磁颈与导磁架之间磁力耦合较低, 所述磁路 封闭发电机未能达到高效地转化电能。 公知, 目前人们使用的变压器也是一 种磁电耦合器, 目前的变压器被感应的副边绕组与感应的原边绕组共用于同 一磁路, 转送电能的过程中有损耗, 故目前人们使用的变压器也急需革新。 发明内容
本发明提供一种磁电耦合器, 主要解决磁路封闭发电机定子上的导磁颈 与导磁架之间磁力耦合较低以及变压器转送电能中损耗的问题, 在发电机和 变压器中, 被感应绕组有 A组线圈接电容, B组线圈对外输出, A组线圈磁 场助磁励磁, B 组线圈被复合磁场感应, 磁路磁力耦合的好, 实现磁电耦合 器高效率地转换电能。
一种磁电耦合器, 其特征在于: 有机座、 机壳、 端盖、 磁轭、 传动轴、 传动轮、 风扇、 转子和被感应单元构成的定子组成发电机, 有感应的原边绕 组和被感应单元的副边绕组组成变压器, 所述被感应单元有至少一个构成, 被感应单元包括被感应绕组、 导磁鄭、 导磁颈、 导磁架。
所述被感应绕组有 A、 B二组线圈构成, B组线圈套装在 A组线圈外, A组线圈内套在和导磁颈共为一体的导磁架上, A组与 B组之间有绝缘层隔 离; 其中 A组线圈接有大干 0.001微法的电容, 或者接有大于 0.001欧姆的 负载, B组线圈的感生电流对外输出; A组或 B组线圈均为漆包线, 其直径 大于 0.001毫米, B组漆包线直径大于 A组漆包线, 每组有至少一匝线圈。
所述被感应单元有导磁颈、 导磁架, 导磁颈与导磁架为 0毫米固接固接 为一体, 导磁颈与导磁架对应结合两端部分开有空槽, 导磁架内形面包裹绕 组且外形面相对应磁轭, 导磁架相对应导磁靴部分有间隙, 其间隙大于 0.1 毫米; 其中空槽所占空间为立体几何形, 所占空间大于 0.01立方毫米; 其中 导磁颈磁导截面面积等于导磁架磁导截面总面积。
所述被感应单元有导磁靴, 导磁靴的圓心角大于所对应励磁磁源即转子 上磁体磁极的圓心角, 每个导磁靴磁通截面面积大于或等于所对应转子上磁 极磁力线所需磁通截面面积, 并且导磁靴最大磁通量大于或等于导磁颈磁通 量, 即导磁靴最大磁通能力饱和导磁颈, 导磁颈达到磁饱和。
其中, 所述导磁靴与相邻定子单元的导磁靴之间有小部分 0毫米固定连 接, 这小部分连接为磁桥, 磁桥通截面面积大于或等于所对应转子上磁极磁 力线所需磁通截面面积。
所述被感应单元有至少一个以上固接为一体, 形成一个定子既发电机定 子,其定子内为圓孔, 圓孔同心与发电机转子且直径大于转子直径 0.01毫米; 其中定子与磁轭固定接触, 定子的导磁颈与磁轭接触部分有间隙, 其间隙最 小值为 0毫米。
所述被感应单元有导磁框, 导磁框与导磁颈之间为 0毫米固接, 导磁框 磁导截面面积等于导磁颈磁导截面总面积; 其中有至少一个以上导磁颈与导 磁框串联固接或并联固接。
所述被感应单元有至少一个以上导磁颈与导磁框固接为一体, 在其中一 个导磁框上安装设置有一组用于感应励磁的原边绕组, 在其中至少一个以上 的导磁颈上及导磁架内安装设置被感应的副边绕组, 形成一个变压器; 其中 导磁架与导磁框之间有间隙, 其间隙大于 0.1毫米。
所述负载为发光二极管、 电阻串联接后与电容并联。
所述导磁架的磁通路中有 2个截面之间为空隙。
所述空隙占空间大于 5立方毫米, 所述空隙内充满绝缘材料, 所述空隙 的一个面为平面, 另一个面为锯齿形面。
本发明提供一种磁电耦合器, 被感应绕组被变化的磁力线感生电流, 该 电流产生的磁场磁力线封闭在被感应单元中, 形成磁力线封闭回路, 感应磁 场既励磁源磁场从磁源出发经过导磁颈又回到原磁场磁源中既感应磁场中, 在发电机和变压器中, 实现感应磁场磁力线与被感应磁场磁力线各自走自己 的磁路, 被感应绕组中 A组线圈接有电容, 其电流助磁与励磁源磁场, B组 线圈被复合磁场感应, 磁电耦合器可高效率地转换电能; 本发明的方案结构 合理、 磁路磁力线被封闭的好、 耦合的好, 可广泛用于发电设备、 电源设备 等磁电设备。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 对于本领域技术人员在不付出创造性劳 动的前提下, 还可以根据这些附图获得其他的附图,属本发明的范畴。 在附图 中:
图 1为本发明提供的被感应单元的结构及其电原理示意图;
图 2为本发明实施例提供的一种交流发电机的结构示意图;
图 3为本发明实施例提供的一种变压器并联结构示意图;
图 4为本发明实施例提供的一种变压器串联结构示意图;
图 5为本发明提供的另一种被感应单元的结构及其电原理示意图; 图 6为本发明实施例提供的另一种交流发电机的结构示意图;
图 7为本发明实施例提供的另一种变压器并联结构示意图;
图 8为本发明实施例提供的另一种变压器串联结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明的范围。
图 1为本发明提供的被感应单元的结构及其电原理示意图,如图 1所示, 被感应单元由被感应绕组 2、 导磁靴 6、 导磁颈 12、 导磁架 1、 导磁框 11构 成。 所述导磁靴 6、 导磁颈 12、 导磁架 1、 导磁框 11由硅钢片组合而成; 被 感应绕组 2由 A、 B二组线圈构成, B组线圈套装在 A组线圈外, A组线圈 内套在和导磁颈 12共为一体的导磁架 1上, A组线圈串接有电容, A组与 B 组之间有绝缘层隔离; 导磁靴 6、 导磁颈 12、 导磁架 1、 导磁框 11为一体结 构, 导磁颈 12与导磁架 1一体结合两端部分开有空槽, 导磁架 1内形面包裹 绕组且外形面有相对应导磁靴 6、 磁轭, 导磁架 1相对应导磁靴 6、 磁轭部分 有间隙; 导磁靴 6对应磁体的 N极的截面等于磁体 N极截面, 导磁框 11对 应磁体的 S极的截面大于磁体 S极截面。
如图 1所示磁体 4左右运动, 磁体 4磁力线从 N极出发通过导磁靴 6 , 从导磁框 ABCDE又回到了磁体 4中, 形成了一个磁体 4磁力线封闭回路; 在磁体 4运动中, 磁力线不停地在线圈绕组 2内部通磁变化, A组线圈被感 应产生电流, A组线圈接有电容, A组线圈电流产生的磁场助磁与磁体 4励 磁, B 组线圈被复合磁场感应产生电场, 接负载形成电流, 磁线喜欢在最容 易通过的地方中通过, 于是线圈绕组 2中电流产生的磁场磁力线就在导磁架 1内、 从 abc导磁材料硅钢片中通过, 形成磁力线封闭回路。
如图 1所示, 在磁体 4左右运动磁体磁力线通过导磁颈时, 绕组及导磁 颈与导磁架之间进行磁力耦合, 据公知愣次定律, 线圈绕组 2电流产生磁场 反向励磁场并反作用于励磁场源磁体 4, 由于 A组线圈接有电容, 其电流助 磁与磁体 4励磁, B组线圈被复合磁场感应, B组线圈电流产生的磁场也对 A 组线圈进行作用, A组线圈遵循愣次定律对转子上磁体 4运动产生阻力作用, 所以线圈绕组 2电流产生的磁场只有部分磁力作用于磁体 4, 选择 A组线圈 适当的线径及匝数、 选择适当容量的电容, A组线圈电流产生的磁场, 就较 小地影响转子上磁体 4运动, 显然, 磁体 4运动时机械效率得到提高, 那么 该电感器的能量转换效率同时得到提高。 因此, 实现了本发明磁路封闭电感 器目的。
图 2为本发明实施例提供的一种交流发电机的结构示意图,如图 2所示, 本发明实施例包括机座 9、 机壳、 端盖、 磁轭 8、 定子、 转子、 传动轴 7、 传 动轮和风扇。 机壳内有磁轭 8与定子, 定子与磁轭 8固接为一体, 定子也就 是被感应单元, 被感应单元包括被感应绕组 2、 导磁靴 6、 导磁颈 12、 导磁 架 1。 被感应绕组 2由八、 B二组线圈构成, B组线圈套装在 A组线圈外, A 组线圈内套在和导磁颈 12共为一体的导磁架 1上, 组与组之间有绝缘层 11 隔离; 其中 A组线圈串接有大干 0.001 啟法的电容, B组线圈的感生电流对 外输出; 优选的 A组、 B组线圈均为漆包线, 其直径大于 0.001毫米, B组漆 包线直径大于 A组漆包线, 每组有至少一匝线圈; 被感应单元有导磁靴 6、 导磁颈 12、 导磁架 1 固接为一体, 导磁颈 12与导磁架 1对应结合两端部分 开有空槽 14 , 导磁架 1内形面包裹绕组 2且外形面相对应导磁靴 6、 磁轭 8 , 导磁架 1相对应导磁靴 6、 磁轭 8部分有间隙 13 , 其间隙大于 0.1毫米; 其 中空槽 14所占空间为立体几何形, 所占空间大于 0.01立方毫米; 其中导磁 颈 12磁导截面面积等于导磁架 1磁导截面总面积;导磁靴 6的圓心角大于所 对应励磁磁源即转子上磁体 4磁极的圓心角, 每个导磁革化 6磁通截面面积大 于或等于所对应转子上磁极磁力线所需磁通截面面积, 并且导磁靴 6最大磁 通量大于或等于导磁颈 12磁通量, 即导磁靴 6最大磁通能力饱和导磁颈 12, 导磁颈 12达到磁饱和; 其中, 导磁靴 6与相邻定子单元的导磁靴 6之间有小 部分 0毫米固定连接, 这小部分连接为磁桥, 磁桥通截面面积大于或等于所 对应转子上磁极磁力线所需磁通截面面积; 被感应单元有四个固接为一体, 形成发电机定子, 其定子内为圓孔, 圓孔同心与发电机转子且直径大于转子 直径 0.01毫米; 其中定子与磁轭 8固定接触, 定子的导磁颈 12与磁轭 8接 触部分有间隙, 其间隙最小值为 0毫米。
原动力机拖动发电机转子旋转, 转子上磁体 4随之运动, 磁体 4对定子 上导磁靴 6、导磁颈 12进行通磁,随着磁力线在线圈绕组 2内部的磁通变化, 绕组线圈 2被感应产生电流。 转子上磁体 4运动, 磁体 4磁力线从 N极出发 通过导磁靴 6、 导磁颈 12和磁轭 8回到了磁体 4中, 形成了一个磁体 4磁力 线封闭回路。
在磁体 4运动中, 磁力线不停地在线圈绕组 2内部通磁变化, A组线圈 被感应产生电流, A组线圈接有电容, A组线圈电流产生的磁场助磁与磁体 4 励磁, B 组线圈被复合磁场感应产生电场, 接负载形成电流, 由于磁线喜欢 在最容易通过的地方中通过, 于是线圈绕组 2中电流产生的磁场磁力线就在 磁路最短磁阻较小的硅铁片组成的导磁架 1 内通过, 形成绕组 2磁力线封闭 回路。
如图 2所示, 在动转子旋转磁体 4运动磁体磁力线通过导磁颈 12时, 绕 组 2及导磁架 1与导磁颈 12之间进行磁力耦合,线圈绕组 2电流产生磁场反 作用于励磁场源磁体 4, 由于 A组线圈电流助磁与磁体 4励磁, B组线圈电 流产生的磁场也对 A组线圈进行耦合, A组线圈电流助磁与磁体 4励磁, B 组线圈被复合磁场感应, B组线圈电流产生的磁场对 A组线圈作用, A组线 圈遵循愣次定律对转子上磁体 4运动产生阻力作用, 选择 A组线圈适当的线 径及匝数、 选择适当容量的电容, 那么, A组线圈电流产生的磁场, 就较小 地影响转子上磁体 4运动, 所以 B组线圈电流产生的磁场只有部分磁力作用 于磁体 4, 显然, 动转子旋转磁体 4运动时机械效率得到提高 , 那么该发电 机的能量转换效率同时得到提高。
当原动力机通过传动轮、 传动轴 7拖动转子及磁体 4旋转, 线圈绕组 2 被感应产生电流, 转子速度到一定值稳速旋转, 该发电机产生的电流也为一 定值。 当原拖动机停止旋转, 转子也将停止旋转, 该发电机也将停止产生电 流、 停止对外输出电流停止做功。
当然, 该发电机的转子上有至少一个以上磁体 4构成, 磁体 4每一个磁 极对应的线圈绕组 2有至少一个线圈绕组, 线圈绕组之间是可以有至少一个 以上的绕组并联或串联组合构成, 这样可以构成不同能量的发电机组, 满足 各种需求电力的场所。
图 3为本发明实施例提供的一种变压器并联结构示意图, 如图 3所示, 本发明实施例变压器包括有感应绕组、 被感应绕组 2、 导磁颈 12、 导磁架 1、 导磁框 15。
所述变压器的一个导磁框 15上安装设置有一组感应(励磁)绕组既变压 器原边绕组, 有二个导磁颈 12与导磁框 15并联固接, 在导磁颈 12上及导磁 架 1内安装设置被感应单元既变压器副边绕组(即被感应绕组 2 ) 。
被感应绕组 2由 、 B二组线圈构成, B组线圈套装在 A组线圈外, A 组线圈内套在和导磁颈 12导共为一体的磁支架 1 上, 组与组之间有绝缘层 11隔离; 其中 A组线圈串接有负载, 负载有发光二极管、 电阻先串联、 再并 联电容, 电容大干 0.01 啟法 , B组线圈的感生电流对外输出; A组或 B组 线圈均为漆包线, 其直径大于 0.001毫米, B组漆包线直径大于 A组漆包线, 每组有至少一匝线圈。
导磁框 15、 导磁颈 12、 导磁架 1固接为一体, 导磁颈 12与导磁架 1对 应结合两端部分开有空槽 14, 导磁架 1内形面包裹被感应绕组 2且外形面相 对应导磁框 15 , 导磁架 1相对应导磁框 15部分有间隙 13 , 其间隙大于 0.1 毫米; 其中空槽 14所占空间为立体几何形, 所占空间大于 0.01立方毫米; 其中导磁颈 12导磁截面面积等于导磁架导磁截面总面积, 导磁框 15导磁截 面面积等于导磁颈磁导截面总面积。
变压器工作中, 所述导磁架包围 B组线圈的磁路中的空隙, 防止原边线 圈绕组磁场磁力线从包围 B组线圈外部部分的导磁架中通过, 漏磁小, 使原 边线圈绕组励磁磁场磁力线较高地耦合副边线圈绕组 2; 公知, 副边线圈绕 组 2电流产生磁场反作用于原边线圈绕组磁场, 由于 A组线圈接有电容, A 组线圈电流助磁与原边线圈绕组磁场, B组线圈电流产生的磁场也对 A组线 圈进行耦合, A组线圈电流助磁与原边线圈绕组励磁, B组线圈被复合磁场 感应, B组线圈电流产生的磁场对 A组线圈作用, A组线圈遵循愣次定律对 原边线圈绕组励磁产生阻碍作用, 选择 A组线圈适当的线径及匝数、 选择适 当容量的电容, 那么, A组线圈电流产生的磁场, 就较小地影响原边线圈绕 组磁场, 显然, 副边线圈绕组 2电力耦合效率得到较大提高 , 那么该磁电耦 合器的能量转换效率就高, 那么该变压器的能量转换效率同时得到提高。
图 4为本发明实施例提供的一种变压器串联结构示意图, 如图 4所示, 本发明实施例变压器与上述图 3变压器的基本结构是一样的, 其区别在于本 实施例结构是串联型的, 也由感应绕组、 被感应绕组 2、 导磁颈 12、 导磁架 1、 导磁框 15构成, 一个导磁框 15上安装设置有一组感应(励磁)绕组既变 压器原边绕组, 有二个导磁颈 12与导磁框 15串联固接, 在导磁颈 12上及导 磁架 1内安装设置被感应单元既变压器副边绕组 2,被感应绕组 2有 A、 B二 组线圈构成, B组线圈套装在 A组线圈外, A组线圈内套在和导磁颈 12导共 为一体的磁支架 1上,组与组之间有绝缘层 11隔离;该变压器工作中与图 3、 所示变压器是一样的, 该变压器的能量转换效率也较高。
其中 A组线圈串接有大干 0.01 啟法的电容, B组线圈的感生电流对外 输出; 优选的 A组或 B组线圈均为漆包线, 其直径大于 0.001毫米, B组漆 包线直径大于 A组漆包线, 每组有至少一匝线圈。
导磁框 15、 导磁颈 12与导磁支架 1固结为一体, 导磁颈 12与导磁支架
1对应结合两端部分开有空槽 14, 导磁支架 1内形面包裹绕组 2且外形面相 对应导磁框 15 , 导磁支架 1相对应导磁框 15部分有间隙 13 , 其间隙大于 0.1 毫米; 其中空槽 14所占空间为立体几何形, 所占空间大于 0.01立方毫米; 其中导磁颈 12磁导截面面积等于导磁架 1磁导截面总面积, 导磁框 15磁导 截面面积等于导磁颈磁导截面总面积。 图 5为本发明提供的另一种磁电耦合器的结构及其电原理示意图, 如图 5所示, 磁电耦合器被感应单元由导磁靴 6、 导磁颈 12、 导磁架 1、 导磁框 11、 绕组 2构成。 所述导磁靴 6、 导磁颈 12、 导磁架 1、 导磁框 11有硅铁片 组合而成且固接为一体结构, 所述绕组 2由 A组线圈、 B组线圈组合, A组 线圈套装在与导磁颈 12为一体的导磁架 1上, B组线圈套在 A组线圈外,导 磁架 1包围 B组线圈外部, 导磁架 1的磁通路中有 2个截面之间为空隙 16, 空隙 16占空间大于 5立方毫米, 空隙 16内充满绝缘材料 15 , 空隙 16的一 个面为平面, 另一个面为锯齿形面, 导磁颈 12与导磁架 1结合体两端部分设 有空间 13 , 导磁架 1与导磁靴 6之间设置有空间 17, 导磁架 1与导磁框 11 之间设置有空间 14, 所述空间大于 1立方厘米, 空间 13、 14、 17中是空气, 导磁架 1的导磁截面积大于导磁革化 6及导磁框 11的导磁截面积,导磁革化 6及 导磁框 11的导磁截面积等于导磁颈 12的导磁截面积, 所述导磁截面积大于 5立方厘米; 所述绕组 2有 A组线圈、 B组线圈组合, A组与 B组之间有绝 缘材料 15隔离, A组线圈与负载串联接, 负载是发光二极管、 电阻串联接后 与电容并联, B组线圈对外输出。
在图 5中, 所示磁体 4左右运动, 磁体 4磁力线从 N极出发通过导磁靴 6, 从 ABCDE又回到了磁体 4中, 形成了一个磁体 4磁力线封闭回路; 在磁 体 4运动中 , 磁力线不停地在绕组 2内部通磁变化, A组线圈被感应产生电 流, A组线圈连接的电容由蓄电到放电, 对励磁场助磁, B组线圈被复合磁 场高效率耦合即高效率感应, B组线圈产生电场, 接负载形成电流; B组线 圈电流产生的磁场磁力线从导磁架 1硅钢片 abc中通过, 形成磁力线封闭回 路, 结果, 磁体 4运动中, 只受到 A组线圈电流磁场的影响, B组线圈接负 载后, A组线圈连接的电容放电助磁, 不但感应了 B组线圈, 而且使磁体 4 保持原来运动速率不变, 显然, 磁体 4运动的机械效率高, B组线圈对负载 输出稳定的电力, 实现了本发明磁电耦合器高效率地转换电能的目的。
图 6 为本发明实施例提供的另一种交流发电机磁电耦合器的结构示意 图, 如图 6所示, 本发明实施例包括机座 9、 机壳、 端盖、 磁轭 8、 定子、 转 子、 传动轴 7、 传动轮和风扇。 定子与磁轭 8 固接为一体, 定子是磁电耦合 器也就是被感应单元, 被感应单元包括绕组 2、 导磁靴 6、 导磁颈 12、 导磁 架 1。 所述导磁靴 6、 导磁颈 12、 导磁架 1有硅铁片组合而成且固接为一体 结构, 所述绕组 2有 A组线圈、 B二组线圈组合, A组线圈套装在与导磁颈 12为一体的导磁架 1上, B组线圈套在 A组线圈外, 导磁架 1包围 B组线圈 外部, 导磁架 1的磁通路中有 2个截面之间为空隙 16, 空隙 16占空间大于 1 立方厘米, 空隙 16内充满绝缘材料 15 , 空隙 16的一个面为平面, 另一个面 为锯齿形面, 导磁颈 12与导磁架 1结合体两端部分设有空间 13 , 导磁架 1 与磁轭 8之间设置有空间 14, 空间 13、 14中充满绝缘材料 15, 导磁架 1与 导磁靴 6之间设置有空间 17, 空间 17中是空气, 导磁架 1的导磁截面积大 于导磁靴 6的导磁截面积,导磁靴 6的导磁截面积等于导磁颈 12和磁轭 8的 导磁截面积, 所述导磁截面积大于 10立方厘米; 所述绕组 2有 A组线圈、 B 组线圈组合, A组与 B组之间有绝缘材料 15隔离, A组线圈与负载串联接, 负载是发光二极管、 电阻串联接后与电容并联。 在图 6中, 所示转子及磁体 4旋转运动, 磁体 4磁力线从 N极出发通过导磁靴 6、 导磁颈 12、 磁轭 8、 导磁颈 12、 导磁靴 6回到了磁体 4中, 形成了转子磁体 4磁力线封闭回路; 在转子及磁体 4旋转运动中 , 绕组 2内部通磁变化产生电流, A组线圈连接 的电容由蓄电到放电, 对励磁场助磁, B组线圈被复合磁场高效率耦合即高 效率感应, B组线圈产生电场, 接负载形成电流, B组线圈电流产生的磁场 磁力线从导磁架 1硅钢片中通过, 形成磁力线封闭回路; 结果, 转子及磁体 4旋转运动中, 只受到 A组线圈电流磁场的影响, B组线圈接负载后, A组 线圈连接的电容放电助磁, 不但感应了 B组线圈, B组线圈输出稳定的电力, 而且使转子及磁体 4保持原来旋转运动速率不变, 显然, 转子及磁体 4旋转 运动的机械效率高, 那么, 该磁路封闭发电机高效率的转换电能。
图 7为本发明实施例提供的另一种变压器磁电耦合器并联结构示意图, 如图 7所示, 本发明实施例变压器中副边结构单元由导磁颈 12、 导磁架 1、 导磁框 11、 绕组 2构成。 所述导磁颈 12、 导磁架 1、 导磁框 11有硅铁片组 合而成且固接为一体结构, 所述绕组 2有 A组线圈、 B组线圈组合, A组线 圈套装在与导磁颈 12为一体的导磁架 1上, B组线圈套在 A组线圈外,导磁 架 1包围 B组线圈外部, 导磁架 1的磁通路中有 2个截面之间为空隙 16, 空 隙 16占空间大于 1立方厘米, 空隙 16内充满绝缘材料 15 , 空隙的一个面为 平面, 另一个面为锯齿形面, 导磁架 1与导磁颈 12结合为一体的两端部分对 应设置有空间 13 , 导磁架与导磁框之间设置有空间 14, 所述空间 14大于 5 立方厘米, 空间 13、 14中是空气, 导磁架 1的导磁截面积大于导磁框 11的 导磁截面积, 导磁框 11的导磁截面积等于导磁颈 12的导磁截面积, 所述导 磁截面积大于 5立方厘米; 所述绕组 2有 A组线圈、 B组线圈组合, A组线 圈与 B组线圈之间有绝缘材料 15隔离, A组线圈与负载串联接, 负载是发光 二极管、 电阻串联接后与电容并联; 所述 2 个副边结构单元中导磁颈 12并 连接导磁框 11即 2个绕组 2并联设置在导磁框 11的磁路上, 形成一个变压 器。 在原边绕组电流产生磁场时, 磁力线从磁场 N极出发通过导磁框 1、 同 时经过 2个导磁颈 12、 再通过导磁框 11回到了原边线圈磁场中, 形成了原 边线圈磁场磁力线回路, 副边结构单元中绕组 2的 A组线圈内部通磁变化产 生电流, A组线圈连接的电容由蓄电到放电, 对原边绕组磁场助磁, B组线 圈被复合磁场高效率耦合即高效率感应, B 组线圈产生电场, 接负载形成电 流; B组线圈电流产生的磁场磁力线从导磁架 1 中通过, 形成磁力线封闭回 路; 结果, 原边绕组磁场磁力线同时经过 2个导磁颈 12的回路中, 只受到 A 组线圈电流磁场的影响, B组线圈接负载后, A组线圈连接的电容放电, 不 但感应了 B组线圈全载的输出功率, 而且使原边绕组磁场得到了加强, 原边 绕组工作接近全载状态, 从而变压器转送能量大, 损耗小。
图 8为本发明实施例提供的另一种变压器磁电耦合器串联结构示意图, 如图 8所示, 本发明实施例变压器与上述图 7变压器的结构基本一样, 也有 绕组 2、 导磁颈 12、 导磁架 1、 导磁框 11构成, 其区别在于本实施例结构是 串联型的, 在导磁框 11 上安装设置原边绕组, 2 个副边结构单元中导磁颈 12与导磁框 11 串联固接, 在 2个导磁支架 1内安装设置绕组 2, 绕组 2中 A 组线圈、 B组线圈同上图 7安装设置, 形成一个变压器。 图 8所示的实施例 变压器与上述图 7变压器的原边绕组耦合副边结构单元转送电能一样, 其区 别在于原边绕组电流产生磁场, 磁力线从磁场 N极出发通过导磁框 11、 经过 第 1个副边结构单元的导磁颈 12、 通过导磁框 11再经过第 2个副边结构单 元的导磁颈 12, 通过导磁框 11 回到了原边绕组磁场中, 形成了原边绕组磁 场磁力线回路; 所述副边结构单元中绕组 2的 A组线圈、 B组线圈的电流及 磁场磁力线与上述图 7变压器的副边结构单元一样形成磁力线封闭回路, 这 样, 原边绕组磁场磁力线先后经过 2个导磁颈 12的回路中, 只受到 A组线 圈电流磁场的影响, B组线圈接负载后, A组线圈连接的电容放电, 不但感 应了 B组线圈全载的输出功率, 而且使原边绕组磁场得到了加强, 原边绕组 工作接近全载状态, 从而变压器转送能量大, 损耗小。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种磁电耦合器, 其特征在于: 有机座、 机壳、 端盖、 磁轭、 传 动轴、 传动轮、 风扇、 转子和被感应单元构成的定子组成发电机, 有感应 的原边绕组和被感应单元的副边绕组组成变压器, 所述被感应单元有至少 一个构成, 被感应单元包括被感应绕组、 导磁革化、 导磁颈、 导磁架。
2、 根据权利要求 1所述的磁电耦合器, 其特征在于: 所述被感应绕 组有 A、 B二组线圈构成, B组线圈套装在 A组线圈外, A组线圈内套在 和导磁颈共为一体的导磁架上, A组与 B组之间有绝缘层隔离; 其中 A 组线圈接有大干 0.001微法的电容, 或者接有大于 0.001欧姆的负载, B 组线圈的感生电流对外输出; A组或 B组线圈均为漆包线, 其直径大于 0.001毫米, B组漆包线直径大于 A组漆包线, 每组有至少一匝线圈。
3、 根据权利要求 1所述的磁电耦合器, 其特征在于: 所述被感应单 元有导磁颈、 导磁架, 导磁颈与导磁架为 0毫米固接固接为一体, 导磁颈 与导磁架对应结合两端部分开有空槽, 导磁架内形面包裹绕组且外形面相 对应磁轭 , 导磁架相对应导磁靴部分有间隙 , 其间隙大于 0.1毫米; 其中 空槽所占空间为立体几何形, 所占空间大于 0.01立方毫米; 其中导磁颈磁 导截面面积等于导磁架磁导截面总面积。
4、 根据权利要求 1所述的磁电耦合器, 其特征在于: 所述被感应单 元有导磁靴, 导磁靴的圓心角大于所对应励磁磁源即转子上磁体磁极的圓 心角, 每个导磁靴磁通截面面积大于或等于所对应转子上磁极磁力线所需 磁通截面面积, 并且导磁靴最大磁通量大于或等于导磁颈磁通量, 即导磁 靴最大磁通能力饱和导磁颈, 导磁颈达到磁饱和;
其中, 所述导磁靴与相邻定子单元的导磁靴之间有小部分 0毫米固定 连接, 这小部分连接为磁桥, 磁桥通截面面积大于或等于所对应转子上磁 极磁力线所需磁通截面面积。
5、 根据权利要求 1、 2、 3、 4任一所述的磁电耦合器, 其特征在于: 所述被感应单元有至少一个以上固接为一体, 形成一个定子既发电机定 子, 其定子内为圓孔, 圓孔同心与发电机转子且直径大于转子直径 0.01 毫米; 其中定子与磁轭固定接触, 定子的导磁颈与磁轭接触部分有间隙, 其间隙最小值为 0毫米。
6、 根据权利要求 1所述的磁电耦合器, 其特征在于: 所述被感应单 元有导磁框, 导磁框与导磁颈之间为 0毫米固接, 导磁框磁导截面面积等 于导磁颈磁导截面总面积; 其中有至少一个以上导磁颈与导磁框串联固接 或并联固接。
7、 根据权利要求 1、 2、 3、 6任一所述的磁电耦合器, 其特征在于: 所述被感应单元有至少一个以上导磁颈与导磁框固接为一体, 在其中一个 导磁框上安装设置有一组用于感应励磁的原边绕组, 在其中至少一个以上 的导磁颈上及导磁架内安装设置被感应的副边绕组, 形成一个变压器; 其 中导磁架与导磁框之间有间隙, 其间隙大于 0.1毫米。
8、 根据权利要求 2所述的磁电耦合器, 其特征在于: 所述负载为发 光二极管、 电阻串联接后与电容并联。
9、 根据权利要求 1-8任一所述的磁电耦合器, 其特征在于: 所述导磁 架的磁通路中有 2个截面之间为空隙。
10、 根据权利要求 9所述的磁电耦合器, 其特征在于: 所述空隙占空 间大于 5立方毫米,所述空隙内充满绝缘材料,所述空隙的一个面为平面, 另一个面为锯齿形面。
PCT/CN2013/070112 2012-01-06 2013-01-06 磁电耦合器 WO2013102444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380001111.8A CN103688444B (zh) 2012-01-06 2013-01-06 磁电耦合器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210002864 2012-01-06
CN201210002864.8 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013102444A1 true WO2013102444A1 (zh) 2013-07-11

Family

ID=48722067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070112 WO2013102444A1 (zh) 2012-01-06 2013-01-06 磁电耦合器

Country Status (2)

Country Link
CN (2) CN103199671A (zh)
WO (1) WO2013102444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040620A1 (en) * 2013-09-18 2015-03-26 E.V.R. Motors Ltd. Multipole electrical machine
US9502951B2 (en) 2009-02-05 2016-11-22 Evr Motors Ltd. Electrical machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199671A (zh) * 2012-01-06 2013-07-10 刘刚 磁电耦合器
WO2021008507A1 (zh) * 2019-07-14 2021-01-21 刘刚 一种双磁路耦合器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107021A (ja) * 1994-10-04 1996-04-23 Murata Mfg Co Ltd トランス
JP2005185041A (ja) * 2003-12-22 2005-07-07 Toyo Electric Mfg Co Ltd 分散電源用永久磁石型発電機の構造
CN101257226A (zh) * 2006-10-18 2008-09-03 刘刚 磁路封闭发电机
CN101373660A (zh) * 2007-07-14 2009-02-25 刘刚 电能耦合器
CN201699563U (zh) * 2010-06-06 2011-01-05 浙江三力机电制造有限公司 一种三相六极直流无刷电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2720713Y (zh) * 2004-08-11 2005-08-24 苏州百胜稀土动力有限公司 新型组合励磁稀土永磁发电机
CN103199671A (zh) * 2012-01-06 2013-07-10 刘刚 磁电耦合器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107021A (ja) * 1994-10-04 1996-04-23 Murata Mfg Co Ltd トランス
JP2005185041A (ja) * 2003-12-22 2005-07-07 Toyo Electric Mfg Co Ltd 分散電源用永久磁石型発電機の構造
CN101257226A (zh) * 2006-10-18 2008-09-03 刘刚 磁路封闭发电机
CN101373660A (zh) * 2007-07-14 2009-02-25 刘刚 电能耦合器
CN201699563U (zh) * 2010-06-06 2011-01-05 浙江三力机电制造有限公司 一种三相六极直流无刷电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502951B2 (en) 2009-02-05 2016-11-22 Evr Motors Ltd. Electrical machine
WO2015040620A1 (en) * 2013-09-18 2015-03-26 E.V.R. Motors Ltd. Multipole electrical machine
JP2016531543A (ja) * 2013-09-18 2016-10-06 イー.ヴィー.アール. モーターズ リミテッドE.V.R. Motors Ltd. 多極電気機械
US10056813B2 (en) 2013-09-18 2018-08-21 E.V.R. Motors Ltd. Multipole electrical machine

Also Published As

Publication number Publication date
CN103688444A (zh) 2014-03-26
CN103688444B (zh) 2016-09-21
CN103199671A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4476627B2 (ja) 電気的マシン
CN109478805A (zh) 配有多组层叠涂层导体的定子总成
US20130307366A1 (en) Axial-flux electric machine
JP2005522161A5 (zh)
JP2002218729A (ja) 永久磁石励磁同期型電動機と非接触電源供給装置を結合したシステム
CN103560632A (zh) 一种基于电能无线传输的无刷励磁机构
WO2013102444A1 (zh) 磁电耦合器
Pollock et al. Electronically controlled flux switching motors: A comparison with an induction motor driving an axial fan
US11502569B2 (en) High efficiency electric machine
US20160322877A1 (en) Electromagnetic motor
CN106849437A (zh) 一种电枢绕组及径向磁场永磁无铁芯同步电机
US8917004B2 (en) Homopolar motor-generator
CN107681854A (zh) 一种轴向永磁电机
CN103997177B (zh) 一种单相u形定子齿外转子开关磁阻发电机
JP2014529892A (ja) 送電のための回転接続器
CN103248193B (zh) 容错式初级永磁游标直线电机
CN103346634A (zh) 一种新型电机
WO2009010003A1 (en) Power coupler
CN110474506B (zh) 无刷自激励磁式脉冲发电机
US8878412B2 (en) Alternating current electric induction motor with auxiliary closed loop toroidal winding
CN107546947A (zh) 稀土永磁无刷直流电机
CN208656535U (zh) 一种电机定子绝缘结构及牵引电机定子
TWM542291U (zh) 機械換相式磁阻發電機
CN105811703A (zh) 一种永磁电焊与发电机双用设备
CN102237736A (zh) 新永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13733689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13733689

Country of ref document: EP

Kind code of ref document: A1