WO2013102362A1 - 一种原子层沉积设备 - Google Patents

一种原子层沉积设备 Download PDF

Info

Publication number
WO2013102362A1
WO2013102362A1 PCT/CN2012/082188 CN2012082188W WO2013102362A1 WO 2013102362 A1 WO2013102362 A1 WO 2013102362A1 CN 2012082188 W CN2012082188 W CN 2012082188W WO 2013102362 A1 WO2013102362 A1 WO 2013102362A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
main control
atomic layer
layer deposition
deposition apparatus
Prior art date
Application number
PCT/CN2012/082188
Other languages
English (en)
French (fr)
Inventor
张艳清
夏洋
李超波
万军
吕树玲
陈波
石莎莉
李楠
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Publication of WO2013102362A1 publication Critical patent/WO2013102362A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • This invention relates to an atomic layer deposition apparatus, and more particularly to an atomic layer deposition apparatus using an integrated display unit for display and control as a main control unit of a control system. Background technique
  • Atomic Layer Deposition (ALD) technology has a unique deposition method (monoatomic layer low-temperature layer-by-layer deposition). Compared with traditional processes, the film prepared by this method has properties such as uniformity, shape retention, step coverage and thickness control. Great improvements have been an important technique in the preparation of High-K materials and optoelectronic films.
  • Atomic layer deposition equipment generally requires continuous operation for a long time, and some precursor reactants are flammable and explosive, thus placing high demands on the reliability of the control system.
  • the existing atomic layer deposition equipment mostly adopts the control mode of display + industrial computer + PLC (or control board), as shown in Fig. 1, in this control mode, the three components are independent of each other, and each needs to occupy A certain space causes the whole equipment to increase in volume and cost, and the communication between the industrial computer and the PLC host needs to be completed through the communication protocol, which increases the programming workload and makes the system reliability worse.
  • This split design it is easy to cause system performance instability, there are certain hidden dangers.
  • With the development of automation technology a variety of main control components have emerged, and a variety of optional control methods have been provided for atomic layer devices. Compared with the control architecture of existing devices, the use of integrated main control components is apparent. It has advantages in terms of volume, reliability and cost. Summary of the invention
  • the object of the present invention is to provide a highly integrated atomic layer deposition apparatus for a control system, which can effectively prevent accidents from occurring during operation of the equipment.
  • the technical solution adopted by the present invention is:
  • An atomic layer deposition apparatus comprising a main control component, an electrical control component, a vacuum component, a heating component, and a pneumatic component, the main control component and the electrical control component, the vacuum component, the heating component, and the
  • the air passage members are connected to the vacuum member, the heating member, and the air passage member, and the main control member is a control device that integrates display and control.
  • the main control component includes a display and a controller and a built-in I/O disposed inside the display, the controller and the built-in I/O are connected through an internal bus, and the built-in I/O includes
  • the analog input module, the analog output module, and the digital output module are connected by an internal bus between the analog input module, the analog output module and the digital output module, and can be configured according to the type and number of control points.
  • the electrical control component includes a circuit breaker, a fuse, a micro contactor, a relay, and a power source, and the power source is respectively connected to the circuit breaker, the micro contactor, and the relay to supply power thereto.
  • the fuse is connected to the circuit breaker.
  • the built-in I/O of the main control unit is respectively connected to the micro contactor and the relay of the electric control unit.
  • the vacuum gauge in the vacuum component is connected to the controller of the main control component through an RS232 serial port.
  • the power supply source of the heat source in the heating unit is directly connected to the relay of the electric component, and the digital output module of the main control unit controls the relay to control the temperature of the heat source.
  • the mass flow meter in the pneumatic component is controlled by the analog output module of the main control component.
  • the technical solution adopted by the present invention has the following beneficial effects:
  • the invention adopts a main control component integrating display and control to replace the traditional display + industrial computer
  • +PLC (or control board) control structure makes the structure of the equipment clear and small, small size, convenient assembly and maintenance, high reliability, and can effectively prevent accidents during equipment operation.
  • FIG. 1 is a schematic block diagram of a control system of an atomic layer deposition apparatus in the prior art
  • FIG. 2 is a schematic block diagram of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of an atomic layer deposition apparatus according to an embodiment of the present invention. detailed description
  • an embodiment of the present invention provides an atomic layer deposition apparatus including a main control component, an electrical control component, a vacuum component, a heating component, and a pneumatic component, and the main control component and the electrical control component, the vacuum component, and the heating component, respectively. It is connected with the pneumatic components, and the electrical control components are respectively connected with the vacuum component, the heating component and the pneumatic component.
  • the main control component is a control device integrating display and control.
  • the main control unit is a display with integrated controller and built-in I/O.
  • the controller and built-in I/O are connected via an internal bus.
  • the built-in I/O includes analog input modules (AI module and AT module).
  • the analog output module (AO module), digital output module (DO module), analog input module, analog output module and digital output module are connected by internal bus, which can be configured according to the type and number of control points.
  • Each of the above modules can implement event counting, triggering, and frequency measurement functions, and has an expansion slot for expansion.
  • Electrical control components include circuit breakers, fuses, miniature contactors, relays, and power supplies that are connected to circuit breakers, miniature contactors, and relays, respectively. The line is powered and the fuse is connected to the circuit breaker.
  • the built-in I/O of the main control unit is connected to the micro contactor and relay of the electrical control unit.
  • the vacuum gauge in the vacuum unit is connected to the controller of the main control unit via the RS232 serial port.
  • the power supply of the heated source in the heating element is directly connected to the relay of the electrical component, and the digital output module of the main control unit controls the relay to control the temperature of the heated source.
  • the mass flow meter in the pneumatic components is controlled by the analog output module of the main control unit.
  • the main control component in this embodiment uses B&R's 4P3040.01-490 module with a resolution of 320x240 pixels, with numeric keys, cursor keys and control keys.
  • the typical instruction cycle time of the built-in processor is 0.5us. It has RS232 communication and CAN bus communication functions. It has 10 channels of digital input modules and 8 channels of digital output modules. It can expand 2 channels of analog output modules and 4 channels of analog input modules. It is an integrated control unit that integrates display and control. It not only has human-computer interaction function, but also has the control functions of industrial computer and PLC (or control board).
  • It is used to display the system operation interface, receive external commands, display the parameters of the running parts of the device, and receive feedback data of the controlled components (including vacuum components, heating components and pneumatic components), and receive various commands and
  • the feedback data is analyzed and processed and an execution command is sent to the electrical component to control the controlled component of the device.
  • the vacuum unit includes a vacuum chamber 11, a vacuum gauge 12, a pump unit 13, a pump line 14 connected to the pump unit and the vacuum chamber, a manual valve 15 for isolating the pump unit and the vacuum chamber, and a solenoid valve 16.
  • the reaction chamber located in the vacuum chamber 11 includes a substrate stage 21 and a gas distributor 22.
  • the gas input through the intake duct 23 reacts with the sample located in the reaction chamber, and the gas distributor 22 is located in the reaction chamber to supply Reaction gas.
  • the opening and closing of the solenoid valve 16 and the pump unit 13 are controlled by the on/off of the digital output module of the main control unit.
  • the vacuum gauge 12 detects the pressure of the vacuum chamber, and feeds back the pressure value of the vacuum chamber to the main control program through RS232 serial communication, which is displayed on the main control interface.
  • the pneumatic system includes a purge gas nitrogen source 41, a first precursor source 47 and a second precursor source 44, a mass flow controller 42, a first precursor source manual valve 49, a second precursor source manual valve 46, A front body source solenoid valve 48, a second front body source solenoid valve 45, and a pneumatic circuit solenoid valve 43.
  • the purge gas nitrogen source 41 is connected to the vacuum chamber 11 through the mass flow controller 42 and the gas path solenoid valve 43.
  • the two front body sources 47, 44 are connected to the reaction chamber of the vacuum chamber 11 via manual valves 49, 46 and solenoid valves 48, 45, respectively.
  • the mass flow meter 42 is 0-5V voltage control, and the flow control is performed by the analog output module in the main control unit, and the actual flow value feedback is performed by the analog input module.
  • the main control module controls whether the intake of the reaction chamber and the amount of intake air are controlled by controlling the on and off of each solenoid valve, the length of the on/off time, and the flow value of the mass flow meter.
  • the heating component includes 5 heat-receiving sources and their corresponding 5 thermocouples 30-39 (including pump pipe heating source 39 and its thermocouple 30, second front zone source heat source 31 and its thermocouple 32, intake air
  • the main control unit, the relay in the electric control unit, the heated source and its thermocouple 30-39 form a PID closed-loop control, wherein the keyboard in the main control unit sets the temperature value for the source to be heated, and the thermocouple is used to feedback each heating source in real time.
  • the measured temperature value, the relay is a specific instruction execution module, which is directly connected to the power supply source of the heat source.
  • the main control program of the main control unit compares the temperature setting value with the feedback value, performs a PID control algorithm, and opens and closes the relay. Command to control whether the heated source is heated to complete the temperature control.
  • the present invention will be described below in conjunction with the structure of the atomic layer deposition apparatus shown in FIG. 3, as follows: (1) The purge gas nitrogen source is turned on, adjusted to 0.25 MPa, and the source valves 49, 46 of each source bottle are closed, and turned on.
  • Total system power supply adjust the manual valve 15 to full open, enter the device control system interface, first switch to the system setting page, set the reaction pressure, pressure and temperature temperature time, then adjust to the automatic page, click the open pump group button, then pump Group 13 is running, the solenoid valve 16 between the vacuum chamber and the pump set is open,
  • the vacuum chamber 11 and each gas pipeline are evacuated, and after pumping the background vacuum (about 5x10 - 3 torr), the flow rate of the mass flow meter 42 is set, the electromagnetic valve 43 is opened, nitrogen gas is introduced, and the chamber pressure is reached. Stabilize, adjust the manual valve so that the pressure in the vacuum chamber 11 reaches the working pressure set on the system settings page.
  • the system pops up the dialog box, prompting that the reaction conditions are met, and the source bottle can be opened to start the deposition process.
  • the system needs to be purged and cleaned. Close the source bottle manual valves 49, 46, stop heating the selected heating source, click the Start Cleaning Recipe button, and the system automatically executes the pre-written recipe program. During the cleaning process, the pump set 13 is directly in operation, and the vacuum chamber 11 and the gas path pipes are cleaned by alternately opening the respective source bottle solenoid valves 48, 45 and the solenoid valve 16.
  • the temperature is cooled to a certain temperature, the electromagnetic valve 43 is opened, the mass flow meter flow rate 42 is set to the maximum, the vacuum chamber 11 is inflated, and after being charged to the atmospheric pressure, the vacuum chamber door is opened, and the piece is taken. Complete all the work of atomic layer deposition.
  • the invention adopts the main control component integrating display and control to replace the control structure of the traditional display + industrial computer + PLC (or control board), so that the structure of the device is clear and clean, the volume is small, and the assembly and maintenance of the single is convenient. High reliability, can effectively prevent accidents during equipment operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种原子层沉积设备,尤其是涉及一种使用集显示和控制于一体的嵌入式控制单元作为控制系统主控部件的原子层沉积设备。所述原子层沉积设备,包括主控部件、电气控制部件、真空部件、加热部件和气路部件,主控部件分别与电气控制部件、真空部件、加热部件和气路部件连接,电气控制部件分别与真空部件、加热部件和气路部件连接,主控部件为集显示与控制于一体的控制设备。本发明采用集显示和控制于一体的主控部件代替传统的显示器+工控机+PLC(或控制板卡)的控制架构,使得设备结构筒洁清晰、占用体积小、组装和维护筒单方便、可靠性高,能够有效防止设备运行中意外事故的发生。

Description

一种原子层沉积设备
技术领域
本发明涉及一种原子层沉积设备, 尤其是涉及一种使用集显示和控制于一 体的嵌入式控制单元作为控制系统主控部件的原子层沉积设备。 背景技术
原子层沉积(ALD )技术有着独特的沉积方式(单原子层低温逐层沉积), 相对于传统工艺, 用此方法制备的薄膜在均匀性、 保形性、 台阶覆盖率以及厚 度控制等性能方面有了很大的改进, 是制备 High-K材料和光电子薄膜的重要技 术。 原子层沉积设备一般需要连续运行很长时间, 且有些前躯体反应物是易燃 易爆的, 因此对控制系统的可靠性提出了很高的要求。
现有的原子层沉积设备多采用显示器 +工控机 +PLC (或控制板卡) 的控制 方式, 如图 1 所示, 在这种控制方式中, 三个部件是相互独立的, 各自都需要 占用一定的空间, 致使整个设备体积增大、 成本较高, 并且工控机与 PLC主机 之间需要通过通信协议完成通信, 加大了编程工作量, 且使系统可靠性变差, 这种分体式设计, 容易造成系统性能不稳定, 有一定的运行隐患。 随着自动化 技术的发展, 出现了形式多样的主控部件, 也为原子层设备提供了多种可选的 控制方式, 与现有设备的控制架构相比, 使用一体化的主控部件, 显然在体积、 可靠性、 成本方面更具优势。 发明内容
本发明的目的在于提供一种控制系统高度集成的原子层沉积设备, 能够有 效防止设备运行中意外事故的发生。 为了达到上述目的, 本发明采用的技术方案为:
一种原子层沉积设备, 包括主控部件、 电气控制部件、 真空部件、 加热部 件和气路部件, 所述主控部件分别与所述电气控制部件、 所述真空部件、 所述 加热部件和所述气路部件连接, 所述电气控制部件分别与所述真空部件、 所述 加热部件和所述气路部件连接, 所述主控部件为集显示与控制于一体的控制设 备。
上述方案中, 所述主控部件包括显示器和设置在所述显示器内部的控制器 和内置 I/O, 所述控制器和所述内置 I/O通过内部总线相连, 所述内置 I/O包括 模拟量输入模块、 模拟量输出模块、 数字量输出模块, 所述模拟量输入模块、 模拟量输出模块和数字量输出模块之间通过内部总线相连, 可以根据控制点的 种类和数量进行配置。
上述方案中, 所述电气控制部件包括断路器、 保险丝、 微型接触器、 继电 器和电源, 所述电源分别与所述断路器、 所述微型接触器和所述继电器相连, 为其进行供电, 所述保险丝与所述断路器相连。
上述方案中,所述主控部件的内置 I/O分别与所述电气控制部件的微型接触 器和继电器相连。
上述方案中, 所述真空部件中的真空计通过 RS232 串口与所述主控部件的 控制器连接。
上述方案中, 所述加热部件中的被加热源的供电电源直接与所述电气部件 的继电器相连, 所述主控部件的数字量输出模块控制所述继电器来控制所述被 加热源的温度。
上述方案中, 所述气路部件中的质量流量计由所述主控部件的模拟量输出 模块控制。 与现有技术方案相比, 本发明采用的技术方案产生的有益效果如下: 本发明采用集显示和控制于一体的主控部件代替传统的显示器 +工控机
+PLC (或控制板卡) 的控制架构, 使得设备结构筒洁清晰、 占用体积小、 组装 和维护筒单方便、 可靠性高, 能够有效防止设备运行中意外事故的发生。 附图说明
图 1为现有技术中原子层沉积设备控制系统原理框图;
图 2为本发明实施例提供的原子层沉积设备的原理框图;
图 3为本发明实施例提供的原子层沉积设备的结构图。 具体实施方式
下面结合附图和实施例对本发明技术方案进行详细描述。
如图 2所示, 本发明实施例提供一种原子层沉积设备, 包括主控部件、 电 气控制部件、 真空部件、 加热部件和气路部件, 主控部件分别与电气控制部件、 真空部件、 加热部件和气路部件连接, 电气控制部件分别与真空部件、 加热部 件和气路部件连接, 主控部件为集显示与控制于一体的控制设备。
其中, 主控部件主体为一个显示器, 内部集成了控制器和内置 I/O, 控制器 和内置 I/O通过内部总线相连, 内置 I/O包括模拟量输入模块 (AI模块和 AT模 块)、 模拟量输出模块 (AO模块)、 数字量输出模块 (DO模块), 模拟量输入模块、 模拟量输出模块和数字量输出模块之间通过内部总线相连, 可以根据控制点的 种类和数量进行配置。 上述各模块可以实现事件计数、 触发功能以及频率测量 功能, 并带有扩展槽, 可供扩展。 电气控制部件包括断路器、 保险丝、 微型接 触器、 继电器和电源, 电源分别与断路器、 微型接触器和继电器相连, 为其进 行供电,保险丝与断路器相连。主控部件的内置 I/O分别与电气控制部件的微型 接触器和继电器相连。 真空部件中的真空计通过 RS232 串口与主控部件的控制 器连接。 加热部件中的被加热源的供电电源直接与电气部件的继电器相连, 主 控部件的数字量输出模块控制继电器来控制被加热源的温度。 气路部件中的质 量流量计由主控部件的模拟量输出模块控制。
本实施例中的主控部件采用贝加莱公司的 4P3040.01-490模块,其分辨率为 320x240像素, 带有数字键、 光标键和控制键, 内置处理器典型指令循环时间为 0.5us, 具有 RS232通信和 CAN bus通信功能, 有 10个通道的数字量输入模块 和 8个通道的数字量输出模块, 可扩展 2个通道的模拟量输出模块和 4个通道 的模拟量输入模块。 它为集成了显示和控制于一体的一体化控制部件, 不仅仅 具有人机交互功能, 而且具有工控机和 PLC (或控制板卡)的控制功能。 它用来显 示系统操作界面、 接收外部命令、 显示设备各部件运行中的参数, 用于接收被 控部件 (包括真空部件、 加热部件和气路部件) 的反馈数据, 对接收到的各种 指令和反馈数据进行分析处理, 并向电气部件发送执行指令以控制设备的被控 部件。
如图 3所示, 真空部件包括真空室 11、 真空计 12、 泵组 13、 泵组与真空室 连接的泵管道 14、 隔离泵组与真空室的手动阀 15和电磁阀 16。
位于真空室 11内的反应室包括基片台 21、 气体分配器 22, 反应室中, 通过 进气管道 23输入的气体与位于反应室内的样品进行反应, 气体分配器 22位于 反应室内, 以供给反应气体。
其中,电磁阀 16和泵组 13的开启和关闭均由主控部件的数字量输出模块控 制继电器的通断来控制。 真空计 12检测真空室的压力, 通过 RS232串口通信将 真空室的压力值反馈给主控程序, 显示在主控界面上。 气路系统包括吹扫气体氮气源 41、第一前躯体源 47和第二前躯体源 44,质 量流量控制器 42、 第一前躯体源手动阀 49、 第二前躯体源手动阀 46 、 第一前 躯体源电磁阀 48、 第二前躯体源电磁阀 45和气路电磁阀 43。 吹扫气体氮气源 41通过质量流量控制器 42、气路电磁阀 43与真空室 11连接。两路前躯体源 47、 44分别通过手动阀 49、 46、 电磁阀 48、 45与真空室 11的反应室相连。 质量流 量计 42为 0-5V电压控制, 由主控部件中的模拟量输出模块进行流量控制, 由 模拟量输入模块进行实际流量值反馈。 主控模块通过控制各电磁阀的通断、 通 断时间长短以及设置质量流量计的流量值来控制是否为反应室进气, 以及进气 量的大小。
加热部件包括 5路被加热源和其相应的 5个热电偶 30-39 (包括泵管道加热 源 39和其热电偶 30、 第二前 ^区体源加热源 31和其热电偶 32、 进气管道加热源 33和其热电偶 34、真空室加热源 35和其热电偶 36、基片台加热源 37和其热电 偶 38 )。 主控部件、 电气控制部件中的继电器、 被加热源和其热电偶 30-39构成 PID闭环控制,其中主控部件中的键盘为待加热源设置温度值, 热电偶用来实时 反馈各加热源的实测温度值, 继电器为具体指令执行模块, 其与被加热源的供 电电源直接相连, 主控部件的主控程序根据温度设置值和反馈值进行比较, 进 行 PID控制算法, 对继电器下达通断指令, 控制是否对被加热源进行加热, 以 此完成温度控制。
下面结合图 3所示的原子层沉积设备的结构对本发明进行说明, 具体如下: ( 1 )打开吹扫气体氮气源, 调至 0.25MPa, 确保各源瓶手动阀 49、 46是关 闭的, 开启系统总电源, 将手动阀 15调至全开, 进入设备控制系统界面, 先切 换至系统设置页面, 设置反应压强、 压力和温度温度时间, 然后调至自动页面, 点击开启泵组按钮, 随即泵组 13运行, 真空室和泵组之间的电磁阀 16打开, 对真空室 11和各气路管道进行抽气, 抽到本底真空(约到 5xl0-3torr )后, 设置 质量流量计 42的流量, 打开电磁阀 43 , 通入氮气, 待腔室压力达到稳定, 调节 手动阀, 使真空室 11压力达到在系统设置页面设置的工作压强。
( 2 )从被加热源中选择要加热的部件, 设置加热温度, 点击开始加热按钮, 系统自动为所选加热源加热, 各加热源的实际温度值由热电偶反馈回主控页面。
( 3 )等温度值和压力值都达到设定值并且稳定了一段时间后, 系统弹出对 话框, 提示满足反应条件, 可以打开源瓶开始沉积过程。 打开源瓶手动阀 49、 46, 点击开始沉积按钮, 系统便开始运行设定好的工艺配方, 开始沉积过程, 运行完配方设置的周期数, 系统停止运行, 同时弹出对话框, 提示沉积过程结 束, 关闭源瓶。
( 4 )沉积结束后需要对系统进行吹扫清洗, 关闭各源瓶手动阀 49、 46, 停 止对所选被加热源的加热, 点击开始清洗配方按钮, 系统自动执行事先编写好 的配方程序。 清洗过程中, 泵组 13—直处于运行状态, 通过交替开启各源瓶电 磁阀 48、 45和电磁阀 16, 对真空室 11和各气路管道进行清洗。
( 5 )吹扫结束后, 等温度冷却到一定温度, 打开电磁阀 43 , 将质量流量计 流量 42设置为最大, 对真空室 11进行充气, 充到大气压之后, 打开真空室门, 取片, 完成一次原子层沉积的全部工作。
本发明采用集显示和控制于一体的主控部件代替传统的显示器 +工控机 +PLC (或控制板卡) 的控制架构, 使得设备结构筒洁清晰、 占用体积小、 组装 和维护筒单方便、 可靠性高, 能够有效防止设备运行中意外事故的发生。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 2-

Claims

权 利 要 求 书
1、 一种原子层沉积设备, 其特征在于: 包括主控部件、 电气控制部件、 真 空部件、 加热部件和气路部件, 所述主控部件分别与所述电气控制部件、 所述 真空部件、 所述加热部件和所述气路部件连接, 所述电气控制部件分别与所述 真空部件、 所述加热部件和所述气路部件连接, 所述主控部件为集显示与控制 于一体的控制设备。
2、 如权利要求 1所述的原子层沉积设备, 其特征在于: 所述主控部件包括 显示器和设置在所述显示器内部的控制器和内置 I/O,所述控制器和所述内置 I/O 通过内部总线相连, 所述内置 I/O包括模拟量输入模块、模拟量输出模块、数字 量输出模块, 所述模拟量输入模块、 模拟量输出模块和数字量输出模块之间通 过内部总线相连。
3、 如权利要求 2所述的原子层沉积设备, 其特征在于: 所述电气控制部件 包括断路器、 保险丝、 微型接触器、 继电器和电源, 所述电源分别与所述断路 器、 所述微型接触器和所述继电器相连, 所述保险丝与所述断路器相连。
4、 如权利要求 3所述的原子层沉积设备, 其特征在于: 所述主控部件的内 置 I/O分别与所述电气控制部件的微型接触器和继电器相连。
5、 如权利要求 2所述的原子层沉积设备, 其特征在于: 所述真空部件中的 真空计通过 RS232串口与所述主控部件的控制器连接。
6、 如权利要求 3所述的原子层沉积设备, 其特征在于: 所述加热部件中的 被加热源的供电电源直接与所述电气部件的继电器相连, 所述主控部件的数字 量输出模块控制所述继电器来控制所述被加热源的温度。
7、 如权利要求 2所述的原子层沉积设备, 其特征在于: 所述气路部件中的 质量流量计由所述主控部件的模拟量输出模块控制。
PCT/CN2012/082188 2012-01-05 2012-09-27 一种原子层沉积设备 WO2013102362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210001945.6A CN103194733B (zh) 2012-01-05 2012-01-05 一种原子层沉积设备
CN201210001945.6 2012-01-05

Publications (1)

Publication Number Publication Date
WO2013102362A1 true WO2013102362A1 (zh) 2013-07-11

Family

ID=48717546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082188 WO2013102362A1 (zh) 2012-01-05 2012-09-27 一种原子层沉积设备

Country Status (2)

Country Link
CN (1) CN103194733B (zh)
WO (1) WO2013102362A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353680B (zh) * 2015-11-19 2018-07-17 许昌学院 一种用于原子层沉积仪的控制设备
CN108254026B (zh) * 2018-01-26 2024-03-22 上海正帆科技股份有限公司 阀件分流箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092298A (ja) * 2004-09-24 2006-04-06 Hitachi Kokusai Electric Inc 基板処理装置
JP2010080675A (ja) * 2008-09-26 2010-04-08 Hitachi Kokusai Electric Inc 基板処理システム
CN201560234U (zh) * 2009-05-14 2010-08-25 广东昭信半导体装备制造有限公司 集成有原子层沉积工艺的化学气相沉积设备
CN102251226A (zh) * 2010-05-20 2011-11-23 东京毅力科创株式会社 基板处理装置、基板处理装置的控制装置及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042582A (zh) * 2007-04-25 2007-09-26 上海电器科学研究所(集团)有限公司 带现场总线接口的可编程可配置远程i/o模块
CN101452639A (zh) * 2007-11-30 2009-06-10 中国科学院沈阳自动化研究所 一种以太网数据采集传输方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092298A (ja) * 2004-09-24 2006-04-06 Hitachi Kokusai Electric Inc 基板処理装置
JP2010080675A (ja) * 2008-09-26 2010-04-08 Hitachi Kokusai Electric Inc 基板処理システム
CN201560234U (zh) * 2009-05-14 2010-08-25 广东昭信半导体装备制造有限公司 集成有原子层沉积工艺的化学气相沉积设备
CN102251226A (zh) * 2010-05-20 2011-11-23 东京毅力科创株式会社 基板处理装置、基板处理装置的控制装置及其控制方法

Also Published As

Publication number Publication date
CN103194733B (zh) 2015-11-18
CN103194733A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
US8628618B2 (en) Precursor vapor generation and delivery system with filters and filter monitoring system
US7681055B2 (en) Control device and method for a substrate processing apparatus
TWI647331B (zh) 成膜裝置及排氣裝置以及排氣方法
TW583716B (en) Manufacturing apparatus and method for a semiconductor device, and cleaning method for a semiconductor manufacturing device
US8651135B2 (en) Mass flow controller, mass flow controller system, substrate processing device, and gas flow rate adjusting method
WO2011136982A2 (en) Methods for processing substrates in process systems having shared resources
CN104889551B (zh) 一种精细等离子切割机的电流和气体控制系统及方法
KR20070023387A (ko) 원자층 증착 챔버의 에어 밸브 장치
WO2013102362A1 (zh) 一种原子层沉积设备
CN103789750B (zh) 等离子增强化学气相沉积装置
CN109402608B (zh) 一种原子层沉积设备的气路系统及其控制方法
US10329666B2 (en) Vapor deposition apparatus
CN104032283B (zh) 一种大面积平板式pecvd设备反应腔压力的控制装置
CN105353680B (zh) 一种用于原子层沉积仪的控制设备
CN204700424U (zh) 一种精细等离子切割机的电流和气体控制系统
CN103046024B (zh) 一种防回流的原子层沉积设备及其使用方法
CN202047130U (zh) 一种新型的多段工艺供气集成装置
CN202304460U (zh) 软磁铁氧体烧结自动控制系统
CN103046028B (zh) 基于高精度pid控制温度的原子层沉积设备
CN111101115B (zh) 气路切换装置及其控制方法、半导体加工设备
CN103031533B (zh) 一种可实时数据处理的原子层沉积设备
CN103031544A (zh) 一种可快速处理数据的原子层沉积设备
CN103031532B (zh) 一种安全性高的原子层沉积设备
CN111524778B (zh) 气体输运管路、控制气体输运的方法及半导体设备
CN101593788A (zh) 太阳电池组件的层压方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864594

Country of ref document: EP

Kind code of ref document: A1